mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-04 13:48:31 +00:00
Compare commits
12 Commits
lg-tool-in
...
devin/1753
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
90afeae467 | ||
|
|
2593242234 | ||
|
|
2ab6c31544 | ||
|
|
3c55c8a22a | ||
|
|
424433ff58 | ||
|
|
2fd99503ed | ||
|
|
942014962e | ||
|
|
2ab79a7dd5 | ||
|
|
27c449c9c4 | ||
|
|
9737333ffd | ||
|
|
bf248d5118 | ||
|
|
2490e8cd46 |
18
.github/workflows/tests.yml
vendored
18
.github/workflows/tests.yml
vendored
@@ -37,25 +37,9 @@ jobs:
|
||||
- name: Install the project
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
- name: Install SQLite with FTS5 support
|
||||
run: |
|
||||
# WORKAROUND: GitHub Actions' Ubuntu runner uses SQLite without FTS5 support compiled in.
|
||||
# This is a temporary fix until the runner includes SQLite with FTS5 or Python's sqlite3
|
||||
# module is compiled with FTS5 support by default.
|
||||
# TODO: Remove this workaround once GitHub Actions runners include SQLite FTS5 support
|
||||
|
||||
# Install pysqlite3-binary which has FTS5 support
|
||||
uv pip install pysqlite3-binary
|
||||
# Create a sitecustomize.py to override sqlite3 with pysqlite3
|
||||
mkdir -p .pytest_sqlite_override
|
||||
echo "import sys; import pysqlite3; sys.modules['sqlite3'] = pysqlite3" > .pytest_sqlite_override/sitecustomize.py
|
||||
# Test FTS5 availability
|
||||
PYTHONPATH=.pytest_sqlite_override uv run python -c "import sqlite3; print(f'SQLite version: {sqlite3.sqlite_version}')"
|
||||
PYTHONPATH=.pytest_sqlite_override uv run python -c "import sqlite3; conn = sqlite3.connect(':memory:'); conn.execute('CREATE VIRTUAL TABLE test USING fts5(content)'); print('FTS5 module available')"
|
||||
|
||||
- name: Run tests (group ${{ matrix.group }} of 8)
|
||||
run: |
|
||||
PYTHONPATH=.pytest_sqlite_override uv run pytest \
|
||||
uv run pytest \
|
||||
--block-network \
|
||||
--timeout=30 \
|
||||
-vv \
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -26,4 +26,5 @@ test_flow.html
|
||||
crewairules.mdc
|
||||
plan.md
|
||||
conceptual_plan.md
|
||||
build_image
|
||||
build_image
|
||||
chromadb-*.lock
|
||||
|
||||
@@ -166,7 +166,9 @@
|
||||
"en/tools/search-research/websitesearchtool",
|
||||
"en/tools/search-research/codedocssearchtool",
|
||||
"en/tools/search-research/youtubechannelsearchtool",
|
||||
"en/tools/search-research/youtubevideosearchtool"
|
||||
"en/tools/search-research/youtubevideosearchtool",
|
||||
"en/tools/search-research/tavilysearchtool",
|
||||
"en/tools/search-research/tavilyextractortool"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -712,7 +712,7 @@ crew = Crew(
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {"user_id": "john"},
|
||||
"user_memory": {} # Required - triggers user memory initialization
|
||||
"user_memory": {} # DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, use external_memory instead
|
||||
},
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
|
||||
@@ -10,8 +10,6 @@ Neatlogs helps you **see what your agent did**, **why**, and **share it**.
|
||||
|
||||
It captures every step: thoughts, tool calls, responses, evaluations. No raw logs. Just clear, structured traces. Great for debugging and collaboration.
|
||||
|
||||
---
|
||||
|
||||
## Why use Neatlogs?
|
||||
|
||||
CrewAI agents use multiple tools and reasoning steps. When something goes wrong, you need context — not just errors.
|
||||
@@ -37,8 +35,6 @@ The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to d
|
||||

|
||||

|
||||
|
||||
---
|
||||
|
||||
## Core Features
|
||||
|
||||
- **Trace Viewer**: Track thoughts, tools, and decisions in sequence
|
||||
@@ -49,8 +45,6 @@ The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to d
|
||||
- **Ask the Trace (AI)**: Chat with your trace using Neatlogs AI bot
|
||||
- **Public Sharing**: Publish trace links to your community
|
||||
|
||||
---
|
||||
|
||||
## Quick Setup with CrewAI
|
||||
|
||||
<Steps>
|
||||
@@ -61,7 +55,7 @@ The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to d
|
||||
```bash
|
||||
pip install neatlogs
|
||||
```
|
||||
(Latest version 0.8.0, Python 3.8+; MIT license) :contentReference[oaicite:1]{index=1}
|
||||
(Latest version 0.8.0, Python 3.8+; MIT license)
|
||||
</Step>
|
||||
<Step title="Initialize Neatlogs">
|
||||
Before starting Crew agents, add:
|
||||
@@ -76,18 +70,18 @@ The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to d
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Under the Hood
|
||||
|
||||
According to GitHub, Neatlogs:
|
||||
|
||||
- Captures thoughts, tool calls, responses, errors, and token stats :contentReference[oaicite:2]{index=2}
|
||||
- Supports AI-powered task generation and robust evaluation workflows :contentReference[oaicite:3]{index=3}
|
||||
- Captures thoughts, tool calls, responses, errors, and token stats
|
||||
- Supports AI-powered task generation and robust evaluation workflows
|
||||
|
||||
All with just two lines of code.
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Watch It Work
|
||||
|
||||
@@ -113,7 +107,7 @@ All with just two lines of code.
|
||||
allowFullScreen
|
||||
></iframe>
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Links & Support
|
||||
|
||||
@@ -121,9 +115,9 @@ All with just two lines of code.
|
||||
- 🔐 [Dashboard & API Key](https://app.neatlogs.com/)
|
||||
- 🐦 [Follow on Twitter](https://twitter.com/neatlogs)
|
||||
- 📧 Contact: hello@neatlogs.com
|
||||
- 🛠 [GitHub SDK](https://github.com/NeatLogs/neatlogs) :contentReference[oaicite:4]{index=4}
|
||||
- 🛠 [GitHub SDK](https://github.com/NeatLogs/neatlogs)
|
||||
|
||||
|
||||
---
|
||||
|
||||
## TL;DR
|
||||
|
||||
|
||||
@@ -44,6 +44,14 @@ These tools enable your agents to search the web, research topics, and find info
|
||||
<Card title="YouTube Video Search" icon="play" href="/en/tools/search-research/youtubevideosearchtool">
|
||||
Find and analyze YouTube videos by topic, keyword, or criteria.
|
||||
</Card>
|
||||
|
||||
<Card title="Tavily Search Tool" icon="magnifying-glass" href="/en/tools/search-research/tavilysearchtool">
|
||||
Comprehensive web search using Tavily's AI-powered search API.
|
||||
</Card>
|
||||
|
||||
<Card title="Tavily Extractor Tool" icon="file-text" href="/en/tools/search-research/tavilyextractortool">
|
||||
Extract structured content from web pages using the Tavily API.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## **Common Use Cases**
|
||||
@@ -55,17 +63,19 @@ These tools enable your agents to search the web, research topics, and find info
|
||||
- **Academic Research**: Find scholarly articles and technical papers
|
||||
|
||||
```python
|
||||
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool
|
||||
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool, TavilySearchTool, TavilyExtractorTool
|
||||
|
||||
# Create research tools
|
||||
web_search = SerperDevTool()
|
||||
code_search = GitHubSearchTool()
|
||||
video_research = YoutubeVideoSearchTool()
|
||||
tavily_search = TavilySearchTool()
|
||||
content_extractor = TavilyExtractorTool()
|
||||
|
||||
# Add to your agent
|
||||
agent = Agent(
|
||||
role="Research Analyst",
|
||||
tools=[web_search, code_search, video_research],
|
||||
tools=[web_search, code_search, video_research, tavily_search, content_extractor],
|
||||
goal="Gather comprehensive information on any topic"
|
||||
)
|
||||
```
|
||||
|
||||
139
docs/en/tools/search-research/tavilyextractortool.mdx
Normal file
139
docs/en/tools/search-research/tavilyextractortool.mdx
Normal file
@@ -0,0 +1,139 @@
|
||||
---
|
||||
title: "Tavily Extractor Tool"
|
||||
description: "Extract structured content from web pages using the Tavily API"
|
||||
icon: "file-text"
|
||||
---
|
||||
|
||||
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]' tavily-python
|
||||
```
|
||||
|
||||
You also need to set your Tavily API key as an environment variable:
|
||||
|
||||
```bash
|
||||
export TAVILY_API_KEY='your-tavily-api-key'
|
||||
```
|
||||
|
||||
## Example Usage
|
||||
|
||||
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import TavilyExtractorTool
|
||||
|
||||
# Ensure TAVILY_API_KEY is set in your environment
|
||||
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
|
||||
|
||||
# Initialize the tool
|
||||
tavily_tool = TavilyExtractorTool()
|
||||
|
||||
# Create an agent that uses the tool
|
||||
extractor_agent = Agent(
|
||||
role='Web Content Extractor',
|
||||
goal='Extract key information from specified web pages',
|
||||
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
|
||||
tools=[tavily_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Define a task for the agent
|
||||
extract_task = Task(
|
||||
description='Extract the main content from the URL https://example.com using basic extraction depth.',
|
||||
expected_output='A JSON string containing the extracted content from the URL.',
|
||||
agent=extractor_agent
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[extractor_agent],
|
||||
tasks=[extract_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
The `TavilyExtractorTool` accepts the following arguments:
|
||||
|
||||
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
|
||||
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
|
||||
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
|
||||
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple URLs with Advanced Extraction
|
||||
|
||||
```python
|
||||
# Example with multiple URLs and advanced extraction
|
||||
multi_extract_task = Task(
|
||||
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
|
||||
expected_output='A JSON string containing the extracted content from both URLs.',
|
||||
agent=extractor_agent
|
||||
)
|
||||
|
||||
# Configure the tool with custom parameters
|
||||
custom_extractor = TavilyExtractorTool(
|
||||
extract_depth='advanced',
|
||||
include_images=True,
|
||||
timeout=120
|
||||
)
|
||||
|
||||
agent_with_custom_tool = Agent(
|
||||
role="Advanced Content Extractor",
|
||||
goal="Extract comprehensive content with images",
|
||||
tools=[custom_extractor]
|
||||
)
|
||||
```
|
||||
|
||||
### Tool Parameters
|
||||
|
||||
You can customize the tool's behavior by setting parameters during initialization:
|
||||
|
||||
```python
|
||||
# Initialize with custom configuration
|
||||
extractor_tool = TavilyExtractorTool(
|
||||
extract_depth='advanced', # More comprehensive extraction
|
||||
include_images=True, # Include image results
|
||||
timeout=90 # Custom timeout
|
||||
)
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
|
||||
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
|
||||
- **Image Support**: Optionally include images in the extraction results
|
||||
- **Structured Output**: Returns well-formatted JSON containing the extracted content
|
||||
- **Error Handling**: Robust handling of network timeouts and extraction errors
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
|
||||
|
||||
Common response elements include:
|
||||
- **Title**: The page title
|
||||
- **Content**: Main text content of the page
|
||||
- **Images**: Image URLs and metadata (when `include_images=True`)
|
||||
- **Metadata**: Additional page information like author, description, etc.
|
||||
|
||||
## Use Cases
|
||||
|
||||
- **Content Analysis**: Extract and analyze content from competitor websites
|
||||
- **Research**: Gather structured data from multiple sources for analysis
|
||||
- **Content Migration**: Extract content from existing websites for migration
|
||||
- **Monitoring**: Regular extraction of content for change detection
|
||||
- **Data Collection**: Systematic extraction of information from web sources
|
||||
|
||||
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.
|
||||
122
docs/en/tools/search-research/tavilysearchtool.mdx
Normal file
122
docs/en/tools/search-research/tavilysearchtool.mdx
Normal file
@@ -0,0 +1,122 @@
|
||||
---
|
||||
title: "Tavily Search Tool"
|
||||
description: "Perform comprehensive web searches using the Tavily Search API"
|
||||
icon: "magnifying-glass"
|
||||
---
|
||||
|
||||
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]' tavily-python
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
Ensure your Tavily API key is set as an environment variable:
|
||||
|
||||
```bash
|
||||
export TAVILY_API_KEY='your_tavily_api_key'
|
||||
```
|
||||
|
||||
## Example Usage
|
||||
|
||||
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import TavilySearchTool
|
||||
|
||||
# Ensure the TAVILY_API_KEY environment variable is set
|
||||
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
|
||||
|
||||
# Initialize the tool
|
||||
tavily_tool = TavilySearchTool()
|
||||
|
||||
# Create an agent that uses the tool
|
||||
researcher = Agent(
|
||||
role='Market Researcher',
|
||||
goal='Find information about the latest AI trends',
|
||||
backstory='An expert market researcher specializing in technology.',
|
||||
tools=[tavily_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task for the agent
|
||||
research_task = Task(
|
||||
description='Search for the top 3 AI trends in 2024.',
|
||||
expected_output='A JSON report summarizing the top 3 AI trends found.',
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Form the crew and kick it off
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
|
||||
|
||||
- `query` (str): **Required**. The search query string.
|
||||
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
|
||||
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
|
||||
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
|
||||
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
|
||||
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
|
||||
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
|
||||
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
|
||||
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
|
||||
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
|
||||
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
|
||||
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
You can configure the tool with custom parameters:
|
||||
|
||||
```python
|
||||
# Example: Initialize with specific parameters
|
||||
custom_tavily_tool = TavilySearchTool(
|
||||
search_depth='advanced',
|
||||
max_results=10,
|
||||
include_answer=True
|
||||
)
|
||||
|
||||
# The agent will use these defaults
|
||||
agent_with_custom_tool = Agent(
|
||||
role="Advanced Researcher",
|
||||
goal="Conduct detailed research with comprehensive results",
|
||||
tools=[custom_tavily_tool]
|
||||
)
|
||||
```
|
||||
|
||||
## Features
|
||||
|
||||
- **Comprehensive Search**: Access to Tavily's powerful search index
|
||||
- **Configurable Depth**: Choose between basic and advanced search modes
|
||||
- **Topic Filtering**: Focus searches on general, news, or finance topics
|
||||
- **Time Range Control**: Limit results to specific time periods
|
||||
- **Domain Control**: Include or exclude specific domains
|
||||
- **Direct Answers**: Get synthesized answers from search results
|
||||
- **Content Filtering**: Prevent context window issues with automatic content truncation
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns search results as a JSON string containing:
|
||||
- Search results with titles, URLs, and content snippets
|
||||
- Optional direct answers to queries
|
||||
- Optional image results
|
||||
- Optional raw HTML content (when enabled)
|
||||
|
||||
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.
|
||||
@@ -11,7 +11,7 @@ dependencies = [
|
||||
# Core Dependencies
|
||||
"pydantic>=2.4.2",
|
||||
"openai>=1.13.3",
|
||||
"litellm==1.72.6",
|
||||
"litellm==1.74.3",
|
||||
"instructor>=1.3.3",
|
||||
# Text Processing
|
||||
"pdfplumber>=0.11.4",
|
||||
@@ -23,7 +23,7 @@ dependencies = [
|
||||
# Data Handling
|
||||
"chromadb>=0.5.23",
|
||||
"tokenizers>=0.20.3",
|
||||
"onnxruntime==1.22.0",
|
||||
"onnxruntime>=1.19.0,<=1.22.0",
|
||||
"openpyxl>=3.1.5",
|
||||
"pyvis>=0.3.2",
|
||||
# Authentication and Security
|
||||
@@ -39,6 +39,7 @@ dependencies = [
|
||||
"tomli>=2.0.2",
|
||||
"blinker>=1.9.0",
|
||||
"json5>=0.10.0",
|
||||
"portalocker==2.7.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -47,7 +48,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools~=0.51.0"]
|
||||
tools = ["crewai-tools~=0.55.0"]
|
||||
embeddings = [
|
||||
"tiktoken~=0.8.0"
|
||||
]
|
||||
|
||||
@@ -54,7 +54,7 @@ def _track_install_async():
|
||||
|
||||
_track_install_async()
|
||||
|
||||
__version__ = "0.141.0"
|
||||
__version__ = "0.148.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.141.0,<1.0.0"
|
||||
"crewai[tools]>=0.148.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.141.0,<1.0.0",
|
||||
"crewai[tools]>=0.148.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.14"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.141.0"
|
||||
"crewai[tools]>=0.148.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -161,7 +161,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
)
|
||||
user_memory: Optional[InstanceOf[UserMemory]] = Field(
|
||||
default=None,
|
||||
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
|
||||
description="DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first. Use external_memory instead.",
|
||||
)
|
||||
external_memory: Optional[InstanceOf[ExternalMemory]] = Field(
|
||||
default=None,
|
||||
@@ -327,7 +327,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
self._short_term_memory = self.short_term_memory
|
||||
self._entity_memory = self.entity_memory
|
||||
|
||||
# UserMemory is gonna to be deprecated in the future, but we have to initialize a default value for now
|
||||
# UserMemory will be removed in version 0.156.0 or on 2025-08-04, whichever comes first
|
||||
self._user_memory = None
|
||||
|
||||
if self.memory:
|
||||
@@ -1255,6 +1255,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
if self.external_memory:
|
||||
copied_data["external_memory"] = self.external_memory.model_copy(deep=True)
|
||||
if self.user_memory:
|
||||
# DEPRECATED: UserMemory will be removed in version 0.156.0 or on 2025-08-04
|
||||
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
|
||||
|
||||
copied_data.pop("agents", None)
|
||||
|
||||
@@ -18,6 +18,7 @@ from crewai.utilities.chromadb import sanitize_collection_name
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from crewai.utilities.chromadb import create_persistent_client
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -84,14 +85,11 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
raise Exception("Collection not initialized")
|
||||
|
||||
def initialize_knowledge_storage(self):
|
||||
base_path = os.path.join(db_storage_path(), "knowledge")
|
||||
chroma_client = chromadb.PersistentClient(
|
||||
path=base_path,
|
||||
self.app = create_persistent_client(
|
||||
path=os.path.join(db_storage_path(), "knowledge"),
|
||||
settings=Settings(allow_reset=True),
|
||||
)
|
||||
|
||||
self.app = chroma_client
|
||||
|
||||
try:
|
||||
collection_name = (
|
||||
f"knowledge_{self.collection_name}"
|
||||
@@ -111,9 +109,8 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
def reset(self):
|
||||
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
|
||||
if not self.app:
|
||||
self.app = chromadb.PersistentClient(
|
||||
path=base_path,
|
||||
settings=Settings(allow_reset=True),
|
||||
self.app = create_persistent_client(
|
||||
path=base_path, settings=Settings(allow_reset=True)
|
||||
)
|
||||
|
||||
self.app.reset()
|
||||
|
||||
@@ -760,7 +760,7 @@ class LLM(BaseLLM):
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
from_task: Optional[Any] = None,
|
||||
from_agent: Optional[Any] = None,
|
||||
) -> str:
|
||||
) -> str | Any:
|
||||
"""Handle a non-streaming response from the LLM.
|
||||
|
||||
Args:
|
||||
@@ -784,13 +784,11 @@ class LLM(BaseLLM):
|
||||
# Convert litellm's context window error to our own exception type
|
||||
# for consistent handling in the rest of the codebase
|
||||
raise LLMContextLengthExceededException(str(e))
|
||||
|
||||
# --- 2) Extract response message and content
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
0
|
||||
].message
|
||||
text_response = response_message.content or ""
|
||||
|
||||
# --- 3) Handle callbacks with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
@@ -803,21 +801,22 @@ class LLM(BaseLLM):
|
||||
start_time=0,
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 4) Check for tool calls
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# --- 5) If no tool calls or no available functions, return the text response directly
|
||||
if not tool_calls or not available_functions:
|
||||
# --- 5) If no tool calls or no available functions, return the text response directly as long as there is a text response
|
||||
if (not tool_calls or not available_functions) and text_response:
|
||||
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
|
||||
return text_response
|
||||
# --- 6) If there is no text response, no available functions, but there are tool calls, return the tool calls
|
||||
elif tool_calls and not available_functions and not text_response:
|
||||
return tool_calls
|
||||
|
||||
# --- 6) Handle tool calls if present
|
||||
# --- 7) Handle tool calls if present
|
||||
tool_result = self._handle_tool_call(tool_calls, available_functions)
|
||||
if tool_result is not None:
|
||||
return tool_result
|
||||
|
||||
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
|
||||
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
|
||||
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
|
||||
return text_response
|
||||
|
||||
@@ -952,22 +951,18 @@ class LLM(BaseLLM):
|
||||
# --- 3) Convert string messages to proper format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# --- 4) Handle O1 model special case (system messages not supported)
|
||||
if "o1" in self.model.lower():
|
||||
for message in messages:
|
||||
if message.get("role") == "system":
|
||||
message["role"] = "assistant"
|
||||
|
||||
# --- 5) Set up callbacks if provided
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
# --- 6) Prepare parameters for the completion call
|
||||
params = self._prepare_completion_params(messages, tools)
|
||||
|
||||
# --- 7) Make the completion call and handle response
|
||||
if self.stream:
|
||||
return self._handle_streaming_response(
|
||||
@@ -984,6 +979,27 @@ class LLM(BaseLLM):
|
||||
# whether to summarize the content or abort based on the respect_context_window flag
|
||||
raise
|
||||
except Exception as e:
|
||||
unsupported_stop = "Unsupported parameter" in str(e) and "'stop'" in str(e)
|
||||
|
||||
if unsupported_stop:
|
||||
if "additional_drop_params" in self.additional_params and isinstance(self.additional_params["additional_drop_params"], list):
|
||||
self.additional_params["additional_drop_params"].append("stop")
|
||||
else:
|
||||
self.additional_params = {"additional_drop_params": ["stop"]}
|
||||
|
||||
logging.info(
|
||||
"Retrying LLM call without the unsupported 'stop'"
|
||||
)
|
||||
|
||||
return self.call(
|
||||
messages,
|
||||
tools=tools,
|
||||
callbacks=callbacks,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
assert hasattr(crewai_event_bus, "emit")
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
@@ -1058,6 +1074,15 @@ class LLM(BaseLLM):
|
||||
messages.append({"role": "user", "content": "Please continue."})
|
||||
return messages
|
||||
|
||||
# TODO: Remove this code after merging PR https://github.com/BerriAI/litellm/pull/10917
|
||||
# Ollama doesn't supports last message to be 'assistant'
|
||||
if "ollama" in self.model.lower() and messages and messages[-1]["role"] == "assistant":
|
||||
messages = messages.copy()
|
||||
messages.append(
|
||||
{"role": "user", "content": ""}
|
||||
)
|
||||
return messages
|
||||
|
||||
# Handle Anthropic models
|
||||
if not self.is_anthropic:
|
||||
return messages
|
||||
|
||||
@@ -108,6 +108,7 @@ class ContextualMemory:
|
||||
|
||||
def _fetch_user_context(self, query: str) -> str:
|
||||
"""
|
||||
DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first.
|
||||
Fetches and formats relevant user information from User Memory.
|
||||
Args:
|
||||
query (str): The search query to find relevant user memories.
|
||||
|
||||
@@ -64,6 +64,7 @@ class Mem0Storage(Storage):
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
user_id = self._get_user_id()
|
||||
agent_name = self._get_agent_name()
|
||||
assistant_message = [{"role" : "assistant","content" : value}]
|
||||
params = None
|
||||
if self.memory_type == "short_term":
|
||||
params = {
|
||||
@@ -93,7 +94,8 @@ class Mem0Storage(Storage):
|
||||
if params:
|
||||
if isinstance(self.memory, MemoryClient):
|
||||
params["output_format"] = "v1.1"
|
||||
self.memory.add(value, **params)
|
||||
|
||||
self.memory.add(assistant_message, **params)
|
||||
|
||||
def search(
|
||||
self,
|
||||
|
||||
@@ -4,12 +4,12 @@ import logging
|
||||
import os
|
||||
import shutil
|
||||
import uuid
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from chromadb.api import ClientAPI
|
||||
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.chromadb import create_persistent_client
|
||||
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
@@ -60,17 +60,15 @@ class RAGStorage(BaseRAGStorage):
|
||||
self.embedder_config = configurator.configure_embedder(self.embedder_config)
|
||||
|
||||
def _initialize_app(self):
|
||||
import chromadb
|
||||
from chromadb.config import Settings
|
||||
|
||||
self._set_embedder_config()
|
||||
chroma_client = chromadb.PersistentClient(
|
||||
|
||||
self.app = create_persistent_client(
|
||||
path=self.path if self.path else self.storage_file_name,
|
||||
settings=Settings(allow_reset=self.allow_reset),
|
||||
)
|
||||
|
||||
self.app = chroma_client
|
||||
|
||||
self.collection = self.app.get_or_create_collection(
|
||||
name=self.type, embedding_function=self.embedder_config
|
||||
)
|
||||
|
||||
@@ -14,7 +14,8 @@ class UserMemory(Memory):
|
||||
|
||||
def __init__(self, crew=None):
|
||||
warnings.warn(
|
||||
"UserMemory is deprecated and will be removed in a future version. "
|
||||
"UserMemory is deprecated and will be removed in version 0.156.0 "
|
||||
"or on 2025-08-04, whichever comes first. "
|
||||
"Please use ExternalMemory instead.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
|
||||
@@ -1,8 +1,16 @@
|
||||
import warnings
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
class UserMemoryItem:
|
||||
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
|
||||
warnings.warn(
|
||||
"UserMemoryItem is deprecated and will be removed in version 0.156.0 "
|
||||
"or on 2025-08-04, whichever comes first. "
|
||||
"Please use ExternalMemory instead.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
self.data = data
|
||||
self.user = user
|
||||
self.metadata = metadata if metadata is not None else {}
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
import re
|
||||
import portalocker
|
||||
from chromadb import PersistentClient
|
||||
from hashlib import md5
|
||||
from typing import Optional
|
||||
|
||||
|
||||
MIN_COLLECTION_LENGTH = 3
|
||||
MAX_COLLECTION_LENGTH = 63
|
||||
DEFAULT_COLLECTION = "default_collection"
|
||||
@@ -60,3 +64,16 @@ def sanitize_collection_name(name: Optional[str], max_collection_length: int = M
|
||||
sanitized = sanitized[:-1] + "z"
|
||||
|
||||
return sanitized
|
||||
|
||||
|
||||
def create_persistent_client(path: str, **kwargs):
|
||||
"""
|
||||
Creates a persistent client for ChromaDB with a lock file to prevent
|
||||
concurrent creations. Works for both multi-threads and multi-processes
|
||||
environments.
|
||||
"""
|
||||
lockfile = f"chromadb-{md5(path.encode(), usedforsecurity=False).hexdigest()}.lock"
|
||||
with portalocker.Lock(lockfile):
|
||||
client = PersistentClient(path=path, **kwargs)
|
||||
|
||||
return client
|
||||
|
||||
209
tests/cassettes/test_llm_call_when_stop_is_unsupported.yaml
Normal file
209
tests/cassettes/test_llm_call_when_stop_is_unsupported.yaml
Normal file
@@ -0,0 +1,209 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o1-mini", "stop": ["stop"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '115'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.75.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.75.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.12
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
|
||||
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
|
||||
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 961215744c94cb45-GIG
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '196'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 18 Jul 2025 12:46:46 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
|
||||
path=/; expires=Fri, 18-Jul-25 13:16:46 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '20'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '32'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999990'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7be4715c3ee32aa406eacb68c7cc966e
|
||||
status:
|
||||
code: 400
|
||||
message: Bad Request
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '97'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
|
||||
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.75.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.75.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.12
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA3RSwU7jMBC95ytGPlYNakJhQ2/sgSsg7QUhFA32pJni2JHtwFao/76yC3XQwsWH
|
||||
efOe35uZ9wJAsBIbELLHIIdRl78nGvaqOt/dPDxf71/fdg/9bXO3e5ETXt+LZWTY5x3J8Mk6k3YY
|
||||
NQW25ghLRxgoqla/LupmXTeXqwQMVpGONFuVAxsu61W9LldXZVV/MHvLkrzYwGMBAPCe3ujRKPor
|
||||
NpB0UmUg73FLYnNqAhDO6lgR6D37gCaIZQalNYFMsv2nJ5A4ckANtoMbh0YSsIfF4g4d+8XibM50
|
||||
1E0eo3MzaT0D0BgbMCZPnp8+kMPJZceGfd86Qm9N/NkHO4qEHgqAp5R6+hJEjM4OY2iDfaEkW62P
|
||||
ciLPOYPNJxhsQJ3rV83yG7VWUUDWfjY1IVH2pDIzjxgnxXYGFLNs/5v5TvuYm802q1yuf9TPgJQ0
|
||||
BlLt6Eix/Jo4tzmKZ/hT22nIybHw5F5ZUhuYXFyEog4nfTwQ4fc+0NB2bLbkRsfpSuKui0PxDwAA
|
||||
//8DAN7IUy8kAwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 961216c3f9837e07-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 18 Jul 2025 12:47:41 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1027'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '1029'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999990'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_19a0763b09f0410b9d09598078a04cd6
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,206 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o1-mini", "stop": ["stop"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '115'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
|
||||
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.75.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.75.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.12
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
|
||||
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
|
||||
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 961220323a627e05-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '196'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 18 Jul 2025 12:54:06 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '9'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '11'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999990'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_e8d7880c5977029062d8487d215e5282
|
||||
status:
|
||||
code: 400
|
||||
message: Bad Request
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "o1-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '97'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
|
||||
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.75.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.75.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.12
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA3SSQW/bMAyF7/4Vgo5BXCSeV6c5bkAPPTVbMaAYCoOT6JitLAkSPbQo8t8HKWns
|
||||
Yu1FB3181HsUXwshJGm5FVL1wGrwpvw2In/fXY3Pcd/sftzf9ENvnurm569dc9/IZVK4P4+o+E11
|
||||
odzgDTI5e8QqIDCmruvma7Wpv1T1ZQaD02iSzK3LgSyV1aqqy9VVua5Oyt6Rwii34nchhBCv+Uwe
|
||||
rcZnuRWr5dvNgDHCHuX2XCSEDM6kGwkxUmSwLJcTVM4y2mz7rkehwBODEa4T1wGsQkFRLBa3ECgu
|
||||
FhdzZcBujJCc29GYGQBrHUNKnj0/nMjh7LIjS7FvA0J0Nr0c2XmZ6aEQ4iGnHt8FkT64wXPL7glz
|
||||
23V9bCenOc/h5kTZMZgZuKyWH/RrNTKQibO5SQWqRz1JpyHDqMnNQDFL97+dj3ofk5Pdz5xVm08f
|
||||
mIBS6Bl16wNqUu9DT2UB0yZ+Vnaec7YsI4a/pLBlwpD+QmMHoznuiIwvkXFoO7J7DD5QXpT03cWh
|
||||
+AcAAP//AwAo/zsSJwMAAA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 961220338bd47e05-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 18 Jul 2025 12:54:08 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1280'
|
||||
openai-project:
|
||||
- proj_xitITlrFeen7zjNSzML82h9x
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '1286'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999990'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_b7390d46fa4e14380d42162cb22045df
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
import os
|
||||
from time import sleep
|
||||
from unittest.mock import MagicMock, patch
|
||||
@@ -664,3 +665,49 @@ def test_handle_streaming_tool_calls_no_tools(mock_emit):
|
||||
expected_completed_llm_call=1,
|
||||
expected_final_chunk_result=response,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_when_stop_is_unsupported(caplog):
|
||||
llm = LLM(model="o1-mini", stop=["stop"])
|
||||
with caplog.at_level(logging.INFO):
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provided(caplog):
|
||||
llm = LLM(model="o1-mini", stop=["stop"], additional_drop_params=["another_param"])
|
||||
with caplog.at_level(logging.INFO):
|
||||
result = llm.call("What is the capital of France?")
|
||||
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def ollama_llm():
|
||||
return LLM(model="ollama/llama3.2:3b")
|
||||
|
||||
def test_ollama_appends_dummy_user_message_when_last_is_assistant(ollama_llm):
|
||||
original_messages = [
|
||||
{"role": "user", "content": "Hi there"},
|
||||
{"role": "assistant", "content": "Hello!"},
|
||||
]
|
||||
|
||||
formatted = ollama_llm._format_messages_for_provider(original_messages)
|
||||
|
||||
assert len(formatted) == len(original_messages) + 1
|
||||
assert formatted[-1]["role"] == "user"
|
||||
assert formatted[-1]["content"] == ""
|
||||
|
||||
|
||||
def test_ollama_does_not_modify_when_last_is_user(ollama_llm):
|
||||
original_messages = [
|
||||
{"role": "user", "content": "Tell me a joke."},
|
||||
]
|
||||
|
||||
formatted = ollama_llm._format_messages_for_provider(original_messages)
|
||||
|
||||
assert formatted == original_messages
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
import os
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from mem0.client.main import MemoryClient
|
||||
from mem0.memory.main import Memory
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
from crewai.task import Task
|
||||
|
||||
|
||||
# Define the class (if not already defined)
|
||||
@@ -172,7 +168,7 @@ def test_save_method_with_memory_oss(mem0_storage_with_mocked_config):
|
||||
mem0_storage.save(test_value, test_metadata)
|
||||
|
||||
mem0_storage.memory.add.assert_called_once_with(
|
||||
test_value,
|
||||
[{'role': 'assistant' , 'content': test_value}],
|
||||
agent_id="Test_Agent",
|
||||
infer=False,
|
||||
metadata={"type": "short_term", "key": "value"},
|
||||
@@ -191,7 +187,7 @@ def test_save_method_with_memory_client(mem0_storage_with_memory_client_using_co
|
||||
mem0_storage.save(test_value, test_metadata)
|
||||
|
||||
mem0_storage.memory.add.assert_called_once_with(
|
||||
test_value,
|
||||
[{'role': 'assistant' , 'content': test_value}],
|
||||
agent_id="Test_Agent",
|
||||
infer=False,
|
||||
metadata={"type": "short_term", "key": "value"},
|
||||
|
||||
138
tests/test_macos_compatibility.py
Normal file
138
tests/test_macos_compatibility.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import pytest
|
||||
import platform
|
||||
|
||||
|
||||
class TestMacOSCompatibility:
|
||||
"""Test macOS compatibility, especially onnxruntime dependency resolution."""
|
||||
|
||||
def test_chromadb_import_success(self):
|
||||
"""Test that ChromaDB can be imported successfully."""
|
||||
try:
|
||||
import chromadb
|
||||
assert chromadb is not None
|
||||
assert hasattr(chromadb, '__version__')
|
||||
except ImportError as e:
|
||||
pytest.fail(f"ChromaDB import failed: {e}")
|
||||
|
||||
def test_onnxruntime_import_success(self):
|
||||
"""Test that onnxruntime can be imported successfully."""
|
||||
try:
|
||||
import onnxruntime
|
||||
assert onnxruntime is not None
|
||||
assert hasattr(onnxruntime, '__version__')
|
||||
except ImportError as e:
|
||||
pytest.fail(f"onnxruntime import failed: {e}")
|
||||
|
||||
def test_onnxruntime_version_compatibility(self):
|
||||
"""Test that onnxruntime version is within expected range."""
|
||||
try:
|
||||
import onnxruntime
|
||||
version = onnxruntime.__version__
|
||||
|
||||
major, minor, patch = map(int, version.split('.'))
|
||||
version_tuple = (major, minor, patch)
|
||||
|
||||
min_version = (1, 19, 0)
|
||||
max_version = (1, 22, 0)
|
||||
|
||||
assert version_tuple >= min_version, f"onnxruntime version {version} is below minimum {'.'.join(map(str, min_version))}"
|
||||
assert version_tuple <= max_version, f"onnxruntime version {version} is above maximum {'.'.join(map(str, max_version))}"
|
||||
|
||||
except ImportError:
|
||||
pytest.skip("onnxruntime not available for version check")
|
||||
|
||||
def test_chromadb_persistent_client_creation(self):
|
||||
"""Test that ChromaDB PersistentClient can be created successfully."""
|
||||
try:
|
||||
from crewai.utilities.chromadb import create_persistent_client
|
||||
import tempfile
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
client = create_persistent_client(path=temp_dir)
|
||||
assert client is not None
|
||||
|
||||
except ImportError as e:
|
||||
pytest.fail(f"ChromaDB utilities import failed: {e}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"ChromaDB client creation failed: {e}")
|
||||
|
||||
def test_rag_storage_initialization(self):
|
||||
"""Test that RAGStorage can be initialized successfully."""
|
||||
try:
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
import tempfile
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
storage = RAGStorage(
|
||||
type="test_memory",
|
||||
allow_reset=True,
|
||||
embedder_config=None,
|
||||
crew=None,
|
||||
path=temp_dir
|
||||
)
|
||||
assert storage is not None
|
||||
assert hasattr(storage, 'app')
|
||||
assert hasattr(storage, 'collection')
|
||||
|
||||
except ImportError as e:
|
||||
pytest.fail(f"RAGStorage import failed: {e}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"RAGStorage initialization failed: {e}")
|
||||
|
||||
@pytest.mark.skipif(platform.system() != "Darwin", reason="macOS-specific test")
|
||||
def test_macos_onnxruntime_availability(self):
|
||||
"""Test that onnxruntime is available on macOS with proper version."""
|
||||
try:
|
||||
import onnxruntime
|
||||
version = onnxruntime.__version__
|
||||
|
||||
major, minor, patch = map(int, version.split('.'))
|
||||
|
||||
if (major, minor) == (1, 19):
|
||||
assert patch >= 0, f"onnxruntime 1.19.x version should be >= 1.19.0, got {version}"
|
||||
elif (major, minor) == (1, 20):
|
||||
pass
|
||||
elif (major, minor) == (1, 21):
|
||||
pass
|
||||
elif (major, minor) == (1, 22):
|
||||
assert patch <= 0, f"onnxruntime 1.22.x version should be <= 1.22.0, got {version}"
|
||||
else:
|
||||
pytest.fail(f"onnxruntime version {version} is outside expected range 1.19.0-1.22.0")
|
||||
|
||||
except ImportError:
|
||||
pytest.fail("onnxruntime should be available on macOS with the new version range")
|
||||
|
||||
def test_chromadb_collection_operations(self):
|
||||
"""Test basic ChromaDB collection operations work with current onnxruntime."""
|
||||
try:
|
||||
from crewai.utilities.chromadb import create_persistent_client, sanitize_collection_name
|
||||
import tempfile
|
||||
import uuid
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
client = create_persistent_client(path=temp_dir)
|
||||
|
||||
collection_name = sanitize_collection_name("test_collection")
|
||||
collection = client.get_or_create_collection(name=collection_name)
|
||||
|
||||
test_doc = "This is a test document for ChromaDB compatibility."
|
||||
test_id = str(uuid.uuid4())
|
||||
|
||||
collection.add(
|
||||
documents=[test_doc],
|
||||
ids=[test_id],
|
||||
metadatas=[{"test": True}]
|
||||
)
|
||||
|
||||
results = collection.query(
|
||||
query_texts=["test document"],
|
||||
n_results=1
|
||||
)
|
||||
|
||||
assert len(results["ids"][0]) > 0
|
||||
assert results["documents"][0][0] == test_doc
|
||||
|
||||
except ImportError as e:
|
||||
pytest.fail(f"ChromaDB operations import failed: {e}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"ChromaDB operations failed: {e}")
|
||||
@@ -1,16 +1,27 @@
|
||||
import multiprocessing
|
||||
import tempfile
|
||||
import unittest
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import pytest
|
||||
from chromadb.config import Settings
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from crewai.utilities.chromadb import (
|
||||
MAX_COLLECTION_LENGTH,
|
||||
MIN_COLLECTION_LENGTH,
|
||||
is_ipv4_pattern,
|
||||
sanitize_collection_name,
|
||||
create_persistent_client,
|
||||
)
|
||||
|
||||
|
||||
def persistent_client_worker(path, queue):
|
||||
try:
|
||||
create_persistent_client(path=path)
|
||||
queue.put(None)
|
||||
except Exception as e:
|
||||
queue.put(e)
|
||||
|
||||
|
||||
class TestChromadbUtils(unittest.TestCase):
|
||||
def test_sanitize_collection_name_long_name(self):
|
||||
"""Test sanitizing a very long collection name."""
|
||||
@@ -79,3 +90,34 @@ class TestChromadbUtils(unittest.TestCase):
|
||||
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
|
||||
def test_create_persistent_client_passes_args(self):
|
||||
with patch(
|
||||
"crewai.utilities.chromadb.PersistentClient"
|
||||
) as mock_persistent_client, tempfile.TemporaryDirectory() as tmpdir:
|
||||
mock_instance = MagicMock()
|
||||
mock_persistent_client.return_value = mock_instance
|
||||
|
||||
settings = Settings(allow_reset=True)
|
||||
client = create_persistent_client(path=tmpdir, settings=settings)
|
||||
|
||||
mock_persistent_client.assert_called_once_with(
|
||||
path=tmpdir, settings=settings
|
||||
)
|
||||
self.assertIs(client, mock_instance)
|
||||
|
||||
def test_create_persistent_client_process_safe(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
queue = multiprocessing.Queue()
|
||||
processes = [
|
||||
multiprocessing.Process(
|
||||
target=persistent_client_worker, args=(tmpdir, queue)
|
||||
)
|
||||
for _ in range(5)
|
||||
]
|
||||
|
||||
[p.start() for p in processes]
|
||||
[p.join() for p in processes]
|
||||
|
||||
errors = [queue.get(timeout=5) for _ in processes]
|
||||
self.assertTrue(all(err is None for err in errors))
|
||||
|
||||
Reference in New Issue
Block a user