mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
6 Commits
lg-agent-e
...
devin/1740
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
25441f3a14 | ||
|
|
559d64b4af | ||
|
|
0fa021dea8 | ||
|
|
0a0a46f972 | ||
|
|
8f0d85b5e7 | ||
|
|
b524855e22 |
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
@@ -5,6 +6,8 @@ from typing import Any, Dict, List, Literal, Optional, Sequence, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
@@ -207,6 +210,27 @@ class Agent(BaseAgent):
|
||||
if memory.strip() != "":
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
# Check if the task has knowledge first
|
||||
if hasattr(task, 'knowledge') and task.knowledge:
|
||||
"""
|
||||
Knowledge is queried in the following priority order:
|
||||
1. Task-specific knowledge
|
||||
2. Agent's knowledge
|
||||
3. Crew's knowledge
|
||||
This ensures the most specific context is considered first.
|
||||
"""
|
||||
try:
|
||||
task_knowledge_snippets = task.knowledge.query([task.prompt()])
|
||||
if task_knowledge_snippets:
|
||||
task_knowledge_context = extract_knowledge_context(
|
||||
task_knowledge_snippets
|
||||
)
|
||||
if task_knowledge_context:
|
||||
task_prompt += task_knowledge_context
|
||||
except Exception as e:
|
||||
logger.warning(f"Error querying task knowledge: {str(e)}")
|
||||
|
||||
# Then check agent's knowledge
|
||||
if self.knowledge:
|
||||
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
|
||||
if agent_knowledge_snippets:
|
||||
@@ -216,6 +240,7 @@ class Agent(BaseAgent):
|
||||
if agent_knowledge_context:
|
||||
task_prompt += agent_knowledge_context
|
||||
|
||||
# Finally check crew's knowledge
|
||||
if self.crew:
|
||||
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
|
||||
if knowledge_snippets:
|
||||
|
||||
@@ -0,0 +1,7 @@
|
||||
"""
|
||||
Knowledge management module for CrewAI.
|
||||
Provides functionality for managing and querying knowledge sources.
|
||||
"""
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
|
||||
__all__ = ["Knowledge"]
|
||||
|
||||
@@ -32,6 +32,7 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.knowledge import Knowledge
|
||||
from crewai.tasks.guardrail_result import GuardrailResult
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -144,6 +145,10 @@ class Task(BaseModel):
|
||||
end_time: Optional[datetime.datetime] = Field(
|
||||
default=None, description="End time of the task execution"
|
||||
)
|
||||
knowledge: Optional[Knowledge] = Field(
|
||||
default=None,
|
||||
description="Knowledge sources for the task. This knowledge will be used by the agent when executing the task.",
|
||||
)
|
||||
|
||||
@field_validator("guardrail")
|
||||
@classmethod
|
||||
@@ -215,6 +220,24 @@ class Task(BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@field_validator("knowledge")
|
||||
@classmethod
|
||||
def validate_knowledge(cls, knowledge):
|
||||
"""Validate that the knowledge field is an instance of Knowledge class.
|
||||
|
||||
Args:
|
||||
knowledge: The knowledge to validate. Can be None or an instance of Knowledge.
|
||||
|
||||
Returns:
|
||||
The validated knowledge object, or None if no knowledge was provided.
|
||||
|
||||
Raises:
|
||||
ValueError: If the knowledge is not an instance of Knowledge class.
|
||||
"""
|
||||
if knowledge is not None and not isinstance(knowledge, Knowledge):
|
||||
raise ValueError("Knowledge must be an instance of Knowledge class")
|
||||
return knowledge
|
||||
|
||||
@field_validator("output_file")
|
||||
@classmethod
|
||||
def output_file_validation(cls, value: Optional[str]) -> Optional[str]:
|
||||
|
||||
@@ -10,6 +10,7 @@ from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
|
||||
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
|
||||
from crewai.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
@@ -1661,6 +1662,99 @@ def test_agent_with_knowledge_sources_works_with_copy():
|
||||
assert isinstance(agent_copy.llm, LLM)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_uses_task_knowledge():
|
||||
"""Test that an agent uses the knowledge provided in the task."""
|
||||
# Create a knowledge source with specific content
|
||||
content = "The capital of France is Paris. The Eiffel Tower is located in Paris."
|
||||
|
||||
# Create a mock Knowledge object
|
||||
with patch("crewai.knowledge.Knowledge", autospec=True) as MockKnowledge:
|
||||
try:
|
||||
# Configure the mock
|
||||
mock_knowledge = MockKnowledge.return_value
|
||||
mock_knowledge.query.return_value = [{"context": content}]
|
||||
|
||||
# Create a real LLM but patch its call method
|
||||
agent = Agent(
|
||||
role="Geography Teacher",
|
||||
goal="Provide accurate geographic information",
|
||||
backstory="You are a geography expert who teaches students about world capitals.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
)
|
||||
|
||||
# Create a task with knowledge
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France.",
|
||||
agent=agent,
|
||||
knowledge=mock_knowledge,
|
||||
)
|
||||
|
||||
# Mock the agent's execute_task method to avoid actual LLM calls
|
||||
with patch.object(agent.llm, "call") as mock_llm_call:
|
||||
mock_llm_call.return_value = "The capital of France is Paris, where the Eiffel Tower is located."
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "paris" in result.lower()
|
||||
assert "eiffel tower" in result.lower()
|
||||
|
||||
# Verify that the task's knowledge was queried
|
||||
mock_knowledge.query.assert_called_once()
|
||||
|
||||
# The query should include the task prompt
|
||||
query_arg = mock_knowledge.query.call_args[0][0]
|
||||
assert isinstance(query_arg, list)
|
||||
assert "capital of france" in query_arg[0].lower()
|
||||
finally:
|
||||
MockKnowledge.reset_mock()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_empty_task_knowledge():
|
||||
"""Test that an agent handles empty task knowledge gracefully."""
|
||||
# Create a mock Knowledge object
|
||||
with patch("crewai.knowledge.Knowledge", autospec=True) as MockKnowledge:
|
||||
try:
|
||||
# Configure the mock to return empty results
|
||||
mock_knowledge = MockKnowledge.return_value
|
||||
mock_knowledge.query.return_value = []
|
||||
|
||||
# Create a real LLM but patch its call method
|
||||
agent = Agent(
|
||||
role="Geography Teacher",
|
||||
goal="Provide accurate geographic information",
|
||||
backstory="You are a geography expert who teaches students about world capitals.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
)
|
||||
|
||||
# Create a task with empty knowledge
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France.",
|
||||
agent=agent,
|
||||
knowledge=mock_knowledge,
|
||||
)
|
||||
|
||||
# Mock the agent's execute_task method to avoid actual LLM calls
|
||||
with patch.object(agent.llm, "call") as mock_llm_call:
|
||||
mock_llm_call.return_value = "The capital of France is Paris."
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
|
||||
# Assert that the agent still provides a response
|
||||
assert "paris" in result.lower()
|
||||
|
||||
# Verify that the task's knowledge was queried
|
||||
mock_knowledge.query.assert_called_once()
|
||||
finally:
|
||||
MockKnowledge.reset_mock()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
|
||||
77
tests/cassettes/test_agent_uses_task_knowledge.yaml
Normal file
77
tests/cassettes/test_agent_uses_task_knowledge.yaml
Normal file
@@ -0,0 +1,77 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"input": ["The capital of France is Paris. The Eiffel Tower is located
|
||||
in Paris."], "model": "text-embedding-3-small", "encoding_format": "base64"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '148'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/embeddings
|
||||
response:
|
||||
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
|
||||
sk-proj-********************************************************************************************************************************************************sLcA.
|
||||
You can find your API key at https://platform.openai.com/account/api-keys.\",\n
|
||||
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
|
||||
\"invalid_api_key\"\n }\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 917d03088faba9ba-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '414'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 26 Feb 2025 03:57:35 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=HYYT2XR.PKWNdkkixpkZ1Ng9oco3jg0qXKeCMokrXpg-1740542255-1.0.1.1-R8kmsL1ridzwjB7hh8WsXLH0.cFmLphr4rrzvoa34aVcYrHEMLhLjQMNEFk3785VyTO20pOk1s_XPYcrzP3IvQ;
|
||||
path=/; expires=Wed, 26-Feb-25 04:27:35 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=sI_WkX3WMX8K_QEgvBkUG5bNf_iSQm5w662QY8C.4HY-1740542255564-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
vary:
|
||||
- Origin
|
||||
x-request-id:
|
||||
- req_f655c752d31b6c29cd52118e474f5a48
|
||||
http_version: HTTP/1.1
|
||||
status_code: 401
|
||||
version: 1
|
||||
Reference in New Issue
Block a user