mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-04 13:48:31 +00:00
Fix test implementation to improve reliability and prevent timeouts
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
@@ -5,6 +6,8 @@ from typing import Any, Dict, List, Literal, Optional, Sequence, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
@@ -209,13 +212,23 @@ class Agent(BaseAgent):
|
||||
|
||||
# Check if the task has knowledge first
|
||||
if hasattr(task, 'knowledge') and task.knowledge:
|
||||
task_knowledge_snippets = task.knowledge.query([task.prompt()])
|
||||
if task_knowledge_snippets:
|
||||
task_knowledge_context = extract_knowledge_context(
|
||||
task_knowledge_snippets
|
||||
)
|
||||
if task_knowledge_context:
|
||||
task_prompt += task_knowledge_context
|
||||
"""
|
||||
Knowledge is queried in the following priority order:
|
||||
1. Task-specific knowledge
|
||||
2. Agent's knowledge
|
||||
3. Crew's knowledge
|
||||
This ensures the most specific context is considered first.
|
||||
"""
|
||||
try:
|
||||
task_knowledge_snippets = task.knowledge.query([task.prompt()])
|
||||
if task_knowledge_snippets:
|
||||
task_knowledge_context = extract_knowledge_context(
|
||||
task_knowledge_snippets
|
||||
)
|
||||
if task_knowledge_context:
|
||||
task_prompt += task_knowledge_context
|
||||
except Exception as e:
|
||||
logger.warning(f"Error querying task knowledge: {str(e)}")
|
||||
|
||||
# Then check agent's knowledge
|
||||
if self.knowledge:
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
"""
|
||||
Knowledge management module for CrewAI.
|
||||
Provides functionality for managing and querying knowledge sources.
|
||||
"""
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
|
||||
__all__ = ["Knowledge"]
|
||||
|
||||
@@ -220,6 +220,24 @@ class Task(BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@field_validator("knowledge")
|
||||
@classmethod
|
||||
def validate_knowledge(cls, knowledge):
|
||||
"""Validate that the knowledge field is an instance of Knowledge class.
|
||||
|
||||
Args:
|
||||
knowledge: The knowledge to validate. Can be None or an instance of Knowledge.
|
||||
|
||||
Returns:
|
||||
The validated knowledge object, or None if no knowledge was provided.
|
||||
|
||||
Raises:
|
||||
ValueError: If the knowledge is not an instance of Knowledge class.
|
||||
"""
|
||||
if knowledge is not None and not isinstance(knowledge, Knowledge):
|
||||
raise ValueError("Knowledge must be an instance of Knowledge class")
|
||||
return knowledge
|
||||
|
||||
@field_validator("output_file")
|
||||
@classmethod
|
||||
def output_file_validation(cls, value: Optional[str]) -> Optional[str]:
|
||||
|
||||
@@ -1670,44 +1670,89 @@ def test_agent_uses_task_knowledge():
|
||||
|
||||
# Create a mock Knowledge object
|
||||
with patch("crewai.knowledge.Knowledge", autospec=True) as MockKnowledge:
|
||||
# Configure the mock
|
||||
mock_knowledge = MockKnowledge.return_value
|
||||
mock_knowledge.query.return_value = [{"content": content}]
|
||||
|
||||
# Create an agent without knowledge sources
|
||||
agent = Agent(
|
||||
role="Geography Teacher",
|
||||
goal="Provide accurate geographic information",
|
||||
backstory="You are a geography expert who teaches students about world capitals.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
)
|
||||
|
||||
# Create a task with knowledge
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France.",
|
||||
agent=agent,
|
||||
knowledge=mock_knowledge,
|
||||
)
|
||||
|
||||
# Mock the agent's execute_task method to avoid actual LLM calls
|
||||
with patch.object(agent.llm, "call") as mock_llm_call:
|
||||
mock_llm_call.return_value = "The capital of France is Paris, where the Eiffel Tower is located."
|
||||
try:
|
||||
# Configure the mock
|
||||
mock_knowledge = MockKnowledge.return_value
|
||||
mock_knowledge.query.return_value = [{"content": content}]
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
# Create an agent with a simple mocked LLM
|
||||
with patch("crewai.llm.LLM", autospec=True) as MockLLM:
|
||||
mock_llm = MockLLM.return_value
|
||||
mock_llm.call.return_value = "The capital of France is Paris, where the Eiffel Tower is located."
|
||||
|
||||
agent = Agent(
|
||||
role="Geography Teacher",
|
||||
goal="Provide accurate geographic information",
|
||||
backstory="You are a geography expert who teaches students about world capitals.",
|
||||
llm=mock_llm,
|
||||
)
|
||||
|
||||
# Create a task with knowledge
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France.",
|
||||
agent=agent,
|
||||
knowledge=mock_knowledge,
|
||||
)
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "paris" in result.lower()
|
||||
assert "eiffel tower" in result.lower()
|
||||
|
||||
# Verify that the task's knowledge was queried
|
||||
mock_knowledge.query.assert_called_once()
|
||||
|
||||
# The query should include the task prompt
|
||||
query_arg = mock_knowledge.query.call_args[0][0]
|
||||
assert isinstance(query_arg, list)
|
||||
assert "capital of france" in query_arg[0].lower()
|
||||
finally:
|
||||
MockKnowledge.reset_mock()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_empty_task_knowledge():
|
||||
"""Test that an agent handles empty task knowledge gracefully."""
|
||||
# Create a mock Knowledge object
|
||||
with patch("crewai.knowledge.Knowledge", autospec=True) as MockKnowledge:
|
||||
try:
|
||||
# Configure the mock to return empty results
|
||||
mock_knowledge = MockKnowledge.return_value
|
||||
mock_knowledge.query.return_value = []
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "paris" in result.lower()
|
||||
assert "eiffel tower" in result.lower()
|
||||
|
||||
# Verify that the task's knowledge was queried
|
||||
mock_knowledge.query.assert_called_once()
|
||||
|
||||
# The query should include the task prompt
|
||||
query_arg = mock_knowledge.query.call_args[0][0]
|
||||
assert isinstance(query_arg, list)
|
||||
assert "capital of france" in query_arg[0].lower()
|
||||
# Create an agent with a simple mocked LLM
|
||||
with patch("crewai.llm.LLM", autospec=True) as MockLLM:
|
||||
mock_llm = MockLLM.return_value
|
||||
mock_llm.call.return_value = "The capital of France is Paris."
|
||||
|
||||
agent = Agent(
|
||||
role="Geography Teacher",
|
||||
goal="Provide accurate geographic information",
|
||||
backstory="You are a geography expert who teaches students about world capitals.",
|
||||
llm=mock_llm,
|
||||
)
|
||||
|
||||
# Create a task with empty knowledge
|
||||
task = Task(
|
||||
description="What is the capital of France?",
|
||||
expected_output="The capital of France.",
|
||||
agent=agent,
|
||||
knowledge=mock_knowledge,
|
||||
)
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
|
||||
# Assert that the agent still provides a response
|
||||
assert "paris" in result.lower()
|
||||
|
||||
# Verify that the task's knowledge was queried
|
||||
mock_knowledge.query.assert_called_once()
|
||||
finally:
|
||||
MockKnowledge.reset_mock()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
|
||||
Reference in New Issue
Block a user