Compare commits

..

10 Commits

Author SHA1 Message Date
Devin AI
50508297c9 feat: centralize default memory path logic & add path validation tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-28 01:36:03 +00:00
Devin AI
58b2ba4d90 refactor: update database connections to use storage_path
Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-28 01:12:30 +00:00
Arnaud Gelas
4274cde583 Improve handling of optional configurations in memory and storage
- Initialize contextual_memory in src/crewai/agent.py and src/crewai/crew.py
- Make UserMemory optional and add checks in src/crewai/memory/contextual/contextual_memory.py
- Add crew checks in src/crewai/memory/entity/entity_memory.py and
  src/crewai/memory/short_term/short_term_memory.py
- Allow optional storage_path in src/crewai/memory/storage/base_rag_storage.py
- Update storage classes to accept optional db_path in:
  src/crewai/memory/storage/kickoff_task_outputs_storage.py,
  src/crewai/memory/storage/ltm_sqlite_storage.py, and
  src/crewai/memory/storage/mem0_storage.py
- Modify src/crewai/memory/storage/rag_storage.py to use storage_path
- Enhance src/crewai/utilities/embedding_configurator.py to handle missing providers
2024-12-28 01:12:30 +00:00
Arnaud Gelas
12245d66a7 Run uv run ruff format 2024-12-28 01:12:30 +00:00
devin-ai-integration[bot]
2433819c4f fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:30:39 -03:00
Erick Amorim
97fc44c930 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:18:25 -03:00
siddharth Sambharia
409892d65f Portkey Integration with CrewAI (#1233)
* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 18:16:47 -03:00
devin-ai-integration[bot]
62f3df7ed5 docs: add guide for multimodal agents (#1807)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-27 18:16:02 -03:00
João Igor
4cf8913d31 chore: removing crewai-tools from dev-dependencies (#1760)
As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 17:45:06 -03:00
João Moura
82647358b2 Adding Multimodal Abilities to Crew (#1805)
* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit 2eda5fdeed.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements
2024-12-27 17:03:35 -03:00
27 changed files with 753 additions and 113 deletions

View File

@@ -0,0 +1,211 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -0,0 +1,138 @@
---
title: Using Multimodal Agents
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
icon: image
---
# Using Multimodal Agents
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
## Enabling Multimodal Capabilities
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
```python
from crewai import Agent
agent = Agent(
role="Image Analyst",
goal="Analyze and extract insights from images",
backstory="An expert in visual content interpretation with years of experience in image analysis",
multimodal=True # This enables multimodal capabilities
)
```
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
## Working with Images
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
Here's a complete example showing how to use a multimodal agent to analyze an image:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent
image_analyst = Agent(
role="Product Analyst",
goal="Analyze product images and provide detailed descriptions",
backstory="Expert in visual product analysis with deep knowledge of design and features",
multimodal=True
)
# Create a task for image analysis
task = Task(
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
agent=image_analyst
)
# Create and run the crew
crew = Crew(
agents=[image_analyst],
tasks=[task]
)
result = crew.kickoff()
```
### Advanced Usage with Context
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
```python
from crewai import Agent, Task, Crew
# Create a multimodal agent for detailed analysis
expert_analyst = Agent(
role="Visual Quality Inspector",
goal="Perform detailed quality analysis of product images",
backstory="Senior quality control expert with expertise in visual inspection",
multimodal=True # AddImageTool is automatically included
)
# Create a task with specific analysis requirements
inspection_task = Task(
description="""
Analyze the product image at https://example.com/product.jpg with focus on:
1. Quality of materials
2. Manufacturing defects
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
agent=expert_analyst
)
# Create and run the crew
crew = Crew(
agents=[expert_analyst],
tasks=[inspection_task]
)
result = crew.kickoff()
```
### Tool Details
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
```python
class AddImageToolSchema:
image_url: str # Required: The URL or path of the image to process
action: Optional[str] = None # Optional: Additional context or specific questions about the image
```
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
- Access images via URLs or local file paths
- Process image content with optional context or specific questions
- Provide analysis and insights based on the visual information and task requirements
## Best Practices
When working with multimodal agents, keep these best practices in mind:
1. **Image Access**
- Ensure your images are accessible via URLs that the agent can reach
- For local images, consider hosting them temporarily or using absolute file paths
- Verify that image URLs are valid and accessible before running tasks
2. **Task Description**
- Be specific about what aspects of the image you want the agent to analyze
- Include clear questions or requirements in the task description
- Consider using the optional `action` parameter for focused analysis
3. **Resource Management**
- Image processing may require more computational resources than text-only tasks
- Some language models may require base64 encoding for image data
- Consider batch processing for multiple images to optimize performance
4. **Environment Setup**
- Verify that your environment has the necessary dependencies for image processing
- Ensure your language model supports multimodal capabilities
- Test with small images first to validate your setup
5. **Error Handling**
- Implement proper error handling for image loading failures
- Have fallback strategies for when image processing fails
- Monitor and log image processing operations for debugging

View File

@@ -67,7 +67,6 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.17.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -294,14 +294,7 @@ class Agent(BaseAgent):
)
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
memory = self.crew.contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)

View File

@@ -358,9 +358,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_handler.save(training_data)
else:
self._printer.print(

View File

@@ -153,8 +153,12 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
login_response_json = login_response.json()
settings = Settings()
settings.tool_repository_username = login_response_json["credential"]["username"]
settings.tool_repository_password = login_response_json["credential"]["password"]
settings.tool_repository_username = login_response_json["credential"][
"username"
]
settings.tool_repository_password = login_response_json["credential"][
"password"
]
settings.dump()
console.print(
@@ -179,7 +183,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
capture_output=False,
env=self._build_env_with_credentials(repository_handle),
text=True,
check=True
check=True,
)
if add_package_result.stderr:
@@ -204,7 +208,11 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
settings = Settings()
env = os.environ.copy()
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(
settings.tool_repository_username or ""
)
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(
settings.tool_repository_password or ""
)
return env

View File

@@ -25,6 +25,7 @@ from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
@@ -278,6 +279,13 @@ class Crew(BaseModel):
)
else:
self._user_memory = None
self.contextual_memory = ContextualMemory(
memory_config=self.memory_config,
stm=self._short_term_memory,
ltm=self._long_term_memory,
em=self._entity_memory,
um=self._user_memory,
)
return self
@model_validator(mode="after")

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
@@ -49,8 +49,13 @@ class Knowledge(BaseModel):
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -1,4 +1,5 @@
from typing import Any, Dict, Optional
from crewai.task import Task
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
@@ -10,7 +11,7 @@ class ContextualMemory:
stm: ShortTermMemory,
ltm: LongTermMemory,
em: EntityMemory,
um: UserMemory,
um: Optional[UserMemory],
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
@@ -21,7 +22,7 @@ class ContextualMemory:
self.em = em
self.um = um
def build_context_for_task(self, task, context) -> str:
def build_context_for_task(self, task: Task, context: str) -> str:
"""
Automatically builds a minimal, highly relevant set of contextual information
for a given task.
@@ -39,7 +40,7 @@ class ContextualMemory:
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
def _fetch_stm_context(self, query) -> str:
def _fetch_stm_context(self, query: str) -> str:
"""
Fetches recent relevant insights from STM related to the task's description and expected_output,
formatted as bullet points.
@@ -53,7 +54,7 @@ class ContextualMemory:
)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> Optional[str]:
def _fetch_ltm_context(self, task: str) -> Optional[str]:
"""
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
@@ -72,7 +73,7 @@ class ContextualMemory:
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query) -> str:
def _fetch_entity_context(self, query: str) -> str:
"""
Fetches relevant entity information from Entity Memory related to the task's description and expected_output,
formatted as bullet points.
@@ -94,6 +95,8 @@ class ContextualMemory:
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
if not self.um:
return ""
user_memories = self.um.search(query)
if not user_memories:
return ""

View File

@@ -11,7 +11,7 @@ class EntityMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None

View File

@@ -15,8 +15,17 @@ class LongTermMemory(Memory):
"""
def __init__(self, storage=None, path=None):
"""Initialize long term memory.
Args:
storage: Optional custom storage instance
path: Optional custom path for storage location
Note:
If both storage and path are provided, storage takes precedence
"""
if not storage:
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
storage = LTMSQLiteStorage(storage_path=path) if path else LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"

View File

@@ -15,7 +15,7 @@ class ShortTermMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None

View File

@@ -1,5 +1,11 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pathlib import Path
import os
from typing import Any, Dict, List, Optional, TypeVar
from abc import ABC, abstractmethod
from pathlib import Path
from crewai.utilities.paths import get_default_storage_path
class BaseRAGStorage(ABC):
@@ -12,17 +18,46 @@ class BaseRAGStorage(ABC):
def __init__(
self,
type: str,
storage_path: Optional[Path] = None,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
crew: Any = None,
):
) -> None:
"""Initialize the BaseRAGStorage.
Args:
type: Type of storage being used
storage_path: Optional custom path for storage location
allow_reset: Whether storage can be reset
embedder_config: Optional configuration for the embedder
crew: Optional crew instance this storage belongs to
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.type = type
self.storage_path = storage_path if storage_path else get_default_storage_path('rag')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self.allow_reset = allow_reset
self.embedder_config = embedder_config
self.crew = crew
self.agents = self._initialize_agents()
def _initialize_agents(self) -> str:
"""Initialize agent identifiers for storage.
Returns:
str: Underscore-joined string of sanitized agent role names
"""
if self.crew:
return "_".join(
[self._sanitize_role(agent.role) for agent in self.crew.agents]
@@ -31,12 +66,27 @@ class BaseRAGStorage(ABC):
@abstractmethod
def _sanitize_role(self, role: str) -> str:
"""Sanitizes agent roles to ensure valid directory names."""
"""Sanitizes agent roles to ensure valid directory names.
Args:
role: The agent role name to sanitize
Returns:
str: Sanitized role name safe for use in paths
"""
pass
@abstractmethod
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
"""Save a value with metadata to the storage."""
"""Save a value with metadata to the storage.
Args:
value: The value to store
metadata: Additional metadata to store with the value
Raises:
OSError: If there is an error writing to storage
"""
pass
@abstractmethod
@@ -46,25 +96,55 @@ class BaseRAGStorage(ABC):
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Any]:
"""Search for entries in the storage."""
) -> List[Dict[str, Any]]:
"""Search for entries in the storage.
Args:
query: The search query string
limit: Maximum number of results to return
filter: Optional filter criteria
score_threshold: Minimum similarity score threshold
Returns:
List[Dict[str, Any]]: List of matching entries with their metadata
"""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the storage."""
"""Reset the storage.
Raises:
OSError: If there is an error clearing storage
PermissionError: If reset is not allowed
"""
pass
@abstractmethod
def _generate_embedding(
self, text: str, metadata: Optional[Dict[str, Any]] = None
) -> Any:
"""Generate an embedding for the given text and metadata."""
) -> List[float]:
"""Generate an embedding for the given text and metadata.
Args:
text: Text to generate embedding for
metadata: Optional metadata to include in embedding
Returns:
List[float]: Vector embedding of the text
Raises:
ValueError: If text is empty or invalid
"""
pass
@abstractmethod
def _initialize_app(self):
"""Initialize the vector db."""
def _initialize_app(self) -> None:
"""Initialize the vector db.
Raises:
OSError: If vector db initialization fails
"""
pass
def setup_config(self, config: Dict[str, Any]):

View File

@@ -1,11 +1,13 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.paths import db_storage_path
from crewai.utilities.paths import get_default_storage_path
class KickoffTaskOutputsSQLiteStorage:
@@ -13,10 +15,26 @@ class KickoffTaskOutputsSQLiteStorage:
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
) -> None:
self.db_path = db_path
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize kickoff task outputs storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('kickoff')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self._printer: Printer = Printer()
self._initialize_db()
@@ -25,7 +43,7 @@ class KickoffTaskOutputsSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -55,9 +73,21 @@ class KickoffTaskOutputsSQLiteStorage:
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
) -> None:
"""Add a task output to storage.
Args:
task: The task whose output is being stored
output: The output data from the task
task_index: Index of this task in the sequence
was_replayed: Whether this was from a replay
inputs: Optional input data that led to this output
Raises:
sqlite3.Error: If there is an error saving to database
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -90,7 +120,7 @@ class KickoffTaskOutputsSQLiteStorage:
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
fields = []
@@ -119,7 +149,7 @@ class KickoffTaskOutputsSQLiteStorage:
def load(self) -> Optional[List[Dict[str, Any]]]:
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT *
@@ -155,7 +185,7 @@ class KickoffTaskOutputsSQLiteStorage:
Deletes all rows from the latest_kickoff_task_outputs table.
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()

View File

@@ -1,9 +1,11 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
from crewai.utilities.paths import db_storage_path
from crewai.utilities.paths import get_default_storage_path
class LTMSQLiteStorage:
@@ -11,10 +13,26 @@ class LTMSQLiteStorage:
An updated SQLite storage class for LTM data storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
) -> None:
self.db_path = db_path
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize LTM SQLite storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('ltm')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self._printer: Printer = Printer()
self._initialize_db()
@@ -23,7 +41,7 @@ class LTMSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -51,9 +69,20 @@ class LTMSQLiteStorage:
datetime: str,
score: Union[int, float],
) -> None:
"""Save a memory entry to long-term memory.
Args:
task_description: Description of the task this memory relates to
metadata: Additional data to store with the memory
datetime: Timestamp for when this memory was created
score: Relevance score for this memory (higher is more relevant)
Raises:
sqlite3.Error: If there is an error saving to the database
"""
"""Saves data to the LTM table with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -74,7 +103,7 @@ class LTMSQLiteStorage:
) -> Optional[List[Dict[str, Any]]]:
"""Queries the LTM table by task description with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
f"""
@@ -109,7 +138,7 @@ class LTMSQLiteStorage:
) -> None:
"""Resets the LTM table with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM long_term_memories")
conn.commit()

View File

@@ -19,7 +19,7 @@ class Mem0Storage(Storage):
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config
self.memory_config = crew.memory_config if crew else None
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
@@ -27,9 +27,10 @@ class Mem0Storage(Storage):
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
if self.memory_config and self.memory_config.get("config"):
mem0_api_key = self.memory_config.get("config").get("api_key")
else:
mem0_api_key = os.getenv("MEM0_API_KEY")
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:

View File

@@ -11,7 +11,6 @@ from chromadb.api import ClientAPI
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
@@ -40,9 +39,15 @@ class RAGStorage(BaseRAGStorage):
app: ClientAPI | None = None
def __init__(
self, type, allow_reset=True, embedder_config=None, crew=None, path=None
self,
type,
storage_path=None,
allow_reset=True,
embedder_config=None,
crew=None,
path=None,
):
super().__init__(type, allow_reset, embedder_config, crew)
super().__init__(type, storage_path, allow_reset, embedder_config, crew)
agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
@@ -90,7 +95,7 @@ class RAGStorage(BaseRAGStorage):
"""
Ensures file name does not exceed max allowed by OS
"""
base_path = f"{db_storage_path()}/{type}"
base_path = f"{self.storage_path}/{type}"
if len(file_name) > MAX_FILE_NAME_LENGTH:
logging.warning(
@@ -152,7 +157,7 @@ class RAGStorage(BaseRAGStorage):
try:
if self.app:
self.app.reset()
shutil.rmtree(f"{db_storage_path()}/{self.type}")
shutil.rmtree(f"{self.storage_path}/{self.type}")
self.app = None
self.collection = None
except Exception as e:

View File

@@ -66,7 +66,6 @@ def cache_handler(func):
def crew(func) -> Callable[..., Crew]:
@wraps(func)
def wrapper(self, *args, **kwargs) -> Crew:
instantiated_tasks = []

View File

@@ -216,5 +216,5 @@ def CrewBase(cls: T) -> T:
# Include base class (qual)name in the wrapper class (qual)name.
WrappedClass.__name__ = CrewBase.__name__ + "(" + cls.__name__ + ")"
WrappedClass.__qualname__ = CrewBase.__qualname__ + "(" + cls.__name__ + ")"
return cast(T, WrappedClass)

View File

@@ -373,7 +373,9 @@ class Task(BaseModel):
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)

View File

@@ -27,7 +27,7 @@ class EmbeddingConfigurator:
if embedder_config is None:
return self._create_default_embedding_function()
provider = embedder_config.get("provider")
provider = embedder_config.get("provider", "")
config = embedder_config.get("config", {})
model_name = config.get("model")
@@ -38,12 +38,13 @@ class EmbeddingConfigurator:
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
if provider not in self.embedding_functions:
embedding_function = self.embedding_functions.get(provider, None)
if not embedding_function:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
return embedding_function(config, model_name)
@staticmethod
def _create_default_embedding_function():

View File

@@ -22,3 +22,26 @@ def get_project_directory_name():
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name
def get_default_storage_path(storage_type: str) -> Path:
"""Returns the default storage path for a given storage type.
Args:
storage_type: Type of storage ('ltm', 'kickoff', 'rag')
Returns:
Path: Default storage path for the specified type
Raises:
ValueError: If storage_type is not recognized
"""
base_path = db_storage_path()
if storage_type == 'ltm':
return base_path / 'latest_long_term_memories.db'
elif storage_type == 'kickoff':
return base_path / 'latest_kickoff_task_outputs.db'
elif storage_type == 'rag':
return base_path
else:
raise ValueError(f"Unknown storage type: {storage_type}")

View File

@@ -28,9 +28,10 @@ def test_create_success(mock_subprocess):
with in_temp_dir():
tool_command = ToolCommand()
with patch.object(tool_command, "login") as mock_login, patch(
"sys.stdout", new=StringIO()
) as fake_out:
with (
patch.object(tool_command, "login") as mock_login,
patch("sys.stdout", new=StringIO()) as fake_out,
):
tool_command.create("test-tool")
output = fake_out.getvalue()
@@ -82,7 +83,7 @@ def test_install_success(mock_get, mock_subprocess_run):
capture_output=False,
text=True,
check=True,
env=unittest.mock.ANY
env=unittest.mock.ANY,
)
assert "Successfully installed sample-tool" in output

View File

@@ -0,0 +1,83 @@
import os
import tempfile
from pathlib import Path
import pytest
from unittest.mock import patch
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage.kickoff_task_outputs_storage import KickoffTaskOutputsSQLiteStorage
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import get_default_storage_path
class MockRAGStorage(BaseRAGStorage):
"""Mock implementation of BaseRAGStorage for testing."""
def _sanitize_role(self, role: str) -> str:
return role.lower()
def save(self, value, metadata):
pass
def search(self, query, limit=3, filter=None, score_threshold=0.35):
return []
def reset(self):
pass
def _generate_embedding(self, text, metadata=None):
return []
def _initialize_app(self):
pass
def test_default_storage_paths():
"""Test that default storage paths are created correctly."""
ltm_path = get_default_storage_path('ltm')
kickoff_path = get_default_storage_path('kickoff')
rag_path = get_default_storage_path('rag')
assert str(ltm_path).endswith('latest_long_term_memories.db')
assert str(kickoff_path).endswith('latest_kickoff_task_outputs.db')
assert isinstance(rag_path, Path)
def test_custom_storage_paths():
"""Test that custom storage paths are respected."""
with tempfile.TemporaryDirectory() as temp_dir:
custom_path = Path(temp_dir) / 'custom.db'
ltm = LTMSQLiteStorage(storage_path=custom_path)
assert ltm.storage_path == custom_path
kickoff = KickoffTaskOutputsSQLiteStorage(storage_path=custom_path)
assert kickoff.storage_path == custom_path
rag = MockRAGStorage('test', storage_path=custom_path)
assert rag.storage_path == custom_path
def test_directory_creation():
"""Test that storage directories are created automatically."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'test_storage'
storage_path = test_dir / 'test.db'
assert not test_dir.exists()
LTMSQLiteStorage(storage_path=storage_path)
assert test_dir.exists()
def test_permission_error():
"""Test that permission errors are handled correctly."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'readonly'
test_dir.mkdir()
os.chmod(test_dir, 0o444) # Read-only
storage_path = test_dir / 'test.db'
with pytest.raises((PermissionError, OSError)) as exc_info:
LTMSQLiteStorage(storage_path=storage_path)
# Verify that the error message mentions permission
assert "permission" in str(exc_info.value).lower()
def test_invalid_path():
"""Test that invalid paths raise appropriate errors."""
with pytest.raises(OSError):
# Try to create storage in a non-existent root directory
LTMSQLiteStorage(storage_path=Path('/nonexistent/dir/test.db'))

68
uv.lock generated
View File

@@ -1,10 +1,18 @@
version = 1
requires-python = ">=3.10, <3.13"
resolution-markers = [
"python_full_version < '3.11'",
"python_full_version == '3.11.*'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
"python_full_version >= '3.12.4'",
"python_full_version < '3.11' and sys_platform == 'darwin'",
"python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.11.*' and sys_platform == 'darwin'",
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
[[package]]
@@ -300,7 +308,7 @@ name = "build"
version = "1.2.2.post1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "os_name == 'nt'" },
{ name = "colorama", marker = "(os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "importlib-metadata", marker = "python_full_version < '3.10.2'" },
{ name = "packaging" },
{ name = "pyproject-hooks" },
@@ -535,7 +543,7 @@ name = "click"
version = "8.1.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/96/d3/f04c7bfcf5c1862a2a5b845c6b2b360488cf47af55dfa79c98f6a6bf98b5/click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de", size = 336121 }
wheels = [
@@ -642,7 +650,6 @@ tools = [
[package.dev-dependencies]
dev = [
{ name = "cairosvg" },
{ name = "crewai-tools" },
{ name = "mkdocs" },
{ name = "mkdocs-material" },
{ name = "mkdocs-material-extensions" },
@@ -696,7 +703,6 @@ requires-dist = [
[package.metadata.requires-dev]
dev = [
{ name = "cairosvg", specifier = ">=2.7.1" },
{ name = "crewai-tools", specifier = ">=0.17.0" },
{ name = "mkdocs", specifier = ">=1.4.3" },
{ name = "mkdocs-material", specifier = ">=9.5.7" },
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
@@ -2462,7 +2468,7 @@ version = "1.6.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "click" },
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "ghp-import" },
{ name = "jinja2" },
{ name = "markdown" },
@@ -2643,7 +2649,7 @@ version = "2.10.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pygments" },
{ name = "pywin32", marker = "platform_system == 'Windows'" },
{ name = "pywin32", marker = "sys_platform == 'win32'" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3a/93/80ac75c20ce54c785648b4ed363c88f148bf22637e10c9863db4fbe73e74/mpire-2.10.2.tar.gz", hash = "sha256:f66a321e93fadff34585a4bfa05e95bd946cf714b442f51c529038eb45773d97", size = 271270 }
@@ -2890,7 +2896,7 @@ name = "nvidia-cudnn-cu12"
version = "9.1.0.70"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
@@ -2917,9 +2923,9 @@ name = "nvidia-cusolver-cu12"
version = "11.4.5.107"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd", size = 124161928 },
@@ -2930,7 +2936,7 @@ name = "nvidia-cusparse-cu12"
version = "12.1.0.106"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c", size = 195958278 },
@@ -3480,7 +3486,7 @@ name = "portalocker"
version = "2.10.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pywin32", marker = "platform_system == 'Windows'" },
{ name = "pywin32", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ed/d3/c6c64067759e87af98cc668c1cc75171347d0f1577fab7ca3749134e3cd4/portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f", size = 40891 }
wheels = [
@@ -5022,19 +5028,19 @@ dependencies = [
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "sympy" },
{ name = "triton", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions" },
]
wheels = [
@@ -5081,7 +5087,7 @@ name = "tqdm"
version = "4.66.5"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 }
wheels = [
@@ -5124,7 +5130,7 @@ version = "0.27.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "attrs" },
{ name = "cffi", marker = "implementation_name != 'pypy' and os_name == 'nt'" },
{ name = "cffi", marker = "(implementation_name != 'pypy' and os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (implementation_name != 'pypy' and os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "idna" },
{ name = "outcome" },
@@ -5155,7 +5161,7 @@ name = "triton"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "filelock", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a", size = 209376304 },