Compare commits

..

6 Commits

Author SHA1 Message Date
Devin AI
50508297c9 feat: centralize default memory path logic & add path validation tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-28 01:36:03 +00:00
Devin AI
58b2ba4d90 refactor: update database connections to use storage_path
Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-28 01:12:30 +00:00
Arnaud Gelas
4274cde583 Improve handling of optional configurations in memory and storage
- Initialize contextual_memory in src/crewai/agent.py and src/crewai/crew.py
- Make UserMemory optional and add checks in src/crewai/memory/contextual/contextual_memory.py
- Add crew checks in src/crewai/memory/entity/entity_memory.py and
  src/crewai/memory/short_term/short_term_memory.py
- Allow optional storage_path in src/crewai/memory/storage/base_rag_storage.py
- Update storage classes to accept optional db_path in:
  src/crewai/memory/storage/kickoff_task_outputs_storage.py,
  src/crewai/memory/storage/ltm_sqlite_storage.py, and
  src/crewai/memory/storage/mem0_storage.py
- Modify src/crewai/memory/storage/rag_storage.py to use storage_path
- Enhance src/crewai/utilities/embedding_configurator.py to handle missing providers
2024-12-28 01:12:30 +00:00
Arnaud Gelas
12245d66a7 Run uv run ruff format 2024-12-28 01:12:30 +00:00
devin-ai-integration[bot]
2433819c4f fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:30:39 -03:00
Erick Amorim
97fc44c930 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:18:25 -03:00
27 changed files with 470 additions and 651 deletions

View File

@@ -294,14 +294,7 @@ class Agent(BaseAgent):
)
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
memory = self.crew.contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)

View File

@@ -358,9 +358,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_handler.save(training_data)
else:
self._printer.print(

View File

@@ -153,8 +153,12 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
login_response_json = login_response.json()
settings = Settings()
settings.tool_repository_username = login_response_json["credential"]["username"]
settings.tool_repository_password = login_response_json["credential"]["password"]
settings.tool_repository_username = login_response_json["credential"][
"username"
]
settings.tool_repository_password = login_response_json["credential"][
"password"
]
settings.dump()
console.print(
@@ -179,7 +183,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
capture_output=False,
env=self._build_env_with_credentials(repository_handle),
text=True,
check=True
check=True,
)
if add_package_result.stderr:
@@ -204,7 +208,11 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
settings = Settings()
env = os.environ.copy()
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(
settings.tool_repository_username or ""
)
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(
settings.tool_repository_password or ""
)
return env

View File

@@ -25,6 +25,7 @@ from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
@@ -113,10 +114,6 @@ class Crew(BaseModel):
default=False,
description="Whether the crew should use memory to store memories of it's execution",
)
memory_verbose: bool = Field(
default=False,
description="Whether to show verbose logs about memory operations",
)
memory_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Configuration for the memory to be used for the crew.",
@@ -261,7 +258,7 @@ class Crew(BaseModel):
"""Set private attributes."""
if self.memory:
self._long_term_memory = (
self.long_term_memory if self.long_term_memory else LongTermMemory(memory_verbose=self.memory_verbose)
self.long_term_memory if self.long_term_memory else LongTermMemory()
)
self._short_term_memory = (
self.short_term_memory
@@ -269,20 +266,26 @@ class Crew(BaseModel):
else ShortTermMemory(
crew=self,
embedder_config=self.embedder,
memory_verbose=self.memory_verbose,
)
)
self._entity_memory = (
self.entity_memory
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder, memory_verbose=self.memory_verbose)
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self, memory_verbose=self.memory_verbose)
self.user_memory if self.user_memory else UserMemory(crew=self)
)
else:
self._user_memory = None
self.contextual_memory = ContextualMemory(
memory_config=self.memory_config,
stm=self._short_term_memory,
ltm=self._long_term_memory,
em=self._entity_memory,
um=self._user_memory,
)
return self
@model_validator(mode="after")

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
@@ -49,8 +49,13 @@ class Knowledge(BaseModel):
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -1,4 +1,5 @@
from typing import Any, Dict, Optional
from crewai.task import Task
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
@@ -10,7 +11,7 @@ class ContextualMemory:
stm: ShortTermMemory,
ltm: LongTermMemory,
em: EntityMemory,
um: UserMemory,
um: Optional[UserMemory],
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
@@ -21,7 +22,7 @@ class ContextualMemory:
self.em = em
self.um = um
def build_context_for_task(self, task, context) -> str:
def build_context_for_task(self, task: Task, context: str) -> str:
"""
Automatically builds a minimal, highly relevant set of contextual information
for a given task.
@@ -39,7 +40,7 @@ class ContextualMemory:
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
def _fetch_stm_context(self, query) -> str:
def _fetch_stm_context(self, query: str) -> str:
"""
Fetches recent relevant insights from STM related to the task's description and expected_output,
formatted as bullet points.
@@ -53,7 +54,7 @@ class ContextualMemory:
)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> Optional[str]:
def _fetch_ltm_context(self, task: str) -> Optional[str]:
"""
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
@@ -72,7 +73,7 @@ class ContextualMemory:
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query) -> str:
def _fetch_entity_context(self, query: str) -> str:
"""
Fetches relevant entity information from Entity Memory related to the task's description and expected_output,
formatted as bullet points.
@@ -94,6 +95,8 @@ class ContextualMemory:
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
if not self.um:
return ""
user_memories = self.um.search(query)
if not user_memories:
return ""

View File

@@ -1,7 +1,5 @@
from typing import Any, Dict, List, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.memory import Memory, MemoryOperationError
from crewai.memory.memory import Memory
from crewai.memory.storage.rag_storage import RAGStorage
@@ -10,25 +8,10 @@ class EntityMemory(Memory):
EntityMemory class for managing structured information about entities
and their relationships using SQLite storage.
Inherits from the Memory class.
Attributes:
memory_provider: The memory provider to use, if any.
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None, memory_verbose=False):
"""
Initialize an EntityMemory instance.
Args:
crew: The crew to associate with this memory.
embedder_config: Configuration for the embedder.
storage: The storage backend for the memory.
path: Path to the storage file, if any.
memory_verbose: Whether to log memory operations.
"""
if hasattr(crew, "memory_config") and crew.memory_config is not None:
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
@@ -53,48 +36,23 @@ class EntityMemory(Memory):
path=path,
)
)
super().__init__(storage, memory_verbose=memory_verbose)
super().__init__(storage)
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""
Saves an entity item into storage.
Args:
item: The entity memory item to save.
Raises:
MemoryOperationError: If there's an error saving the entity to memory.
"""
try:
if self.memory_verbose:
self._log_operation("Saving entity", f"{item.name} ({item.type})")
self._log_operation("Description", item.description)
if self.memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error saving entity", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "save entity", self.__class__.__name__)
"""Saves an entity item into the SQLite storage."""
if self.memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
def reset(self) -> None:
"""
Reset the entity memory.
Raises:
MemoryOperationError: If there's an error resetting the memory.
"""
try:
self.storage.reset()
except Exception as e:
if self.memory_verbose:
self._log_operation("Error resetting", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "reset", self.__class__.__name__)
raise Exception(f"An error occurred while resetting the entity memory: {e}")

View File

@@ -1,7 +1,7 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.memory import Memory, MemoryOperationError
from crewai.memory.memory import Memory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
@@ -12,90 +12,34 @@ class LongTermMemory(Memory):
Inherits from the Memory class and utilizes an instance of a class that
adheres to the Storage for data storage, specifically working with
LongTermMemoryItem instances.
Attributes:
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, storage=None, path=None, memory_verbose=False):
"""
Initialize a LongTermMemory instance.
def __init__(self, storage=None, path=None):
"""Initialize long term memory.
Args:
storage: The storage backend for the memory.
path: Path to the storage file, if any.
memory_verbose: Whether to log memory operations.
storage: Optional custom storage instance
path: Optional custom path for storage location
Note:
If both storage and path are provided, storage takes precedence
"""
if not storage:
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
super().__init__(storage, memory_verbose=memory_verbose)
storage = LTMSQLiteStorage(storage_path=path) if path else LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""
Save a long-term memory item to storage.
Args:
item: The long-term memory item to save.
Raises:
MemoryOperationError: If there's an error saving the item to memory.
"""
try:
if self.memory_verbose:
self._log_operation("Saving task", item.task)
self._log_operation("Agent", item.agent)
self._log_operation("Quality", str(item.metadata.get('quality')))
metadata = item.metadata
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
task_description=item.task,
score=metadata["quality"],
metadata=metadata,
datetime=item.datetime,
)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error saving task", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "save task", self.__class__.__name__)
metadata = item.metadata
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
task_description=item.task,
score=metadata["quality"],
metadata=metadata,
datetime=item.datetime,
)
def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
"""
Search for long-term memories related to a task.
Args:
task: The task description to search for.
latest_n: Maximum number of results to return.
Returns:
A list of matching long-term memories.
Raises:
MemoryOperationError: If there's an error searching memory.
"""
try:
if self.memory_verbose:
self._log_operation("Searching for task", task)
results = self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
if self.memory_verbose and results:
self._log_operation("Found", f"{len(results)} results")
return results
except Exception as e:
if self.memory_verbose:
self._log_operation("Error searching", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "search", self.__class__.__name__)
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
def reset(self) -> None:
"""
Reset the long-term memory.
Raises:
MemoryOperationError: If there's an error resetting the memory.
"""
try:
self.storage.reset()
except Exception as e:
if self.memory_verbose:
self._log_operation("Error resetting", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "reset", self.__class__.__name__)
self.storage.reset()

View File

@@ -1,67 +1,15 @@
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.utilities.logger import Logger
class MemoryOperationError(Exception):
"""
Exception raised for errors in memory operations.
Attributes:
message: Explanation of the error
operation: The operation that failed (e.g., "save", "search")
memory_type: The type of memory where the error occurred
"""
def __init__(self, message: str, operation: str, memory_type: str):
self.operation = operation
self.memory_type = memory_type
super().__init__(f"{memory_type} {operation} error: {message}")
class Memory:
"""
Base class for memory, now supporting agent tags and generic metadata.
Attributes:
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, storage: RAGStorage, memory_verbose: bool = False):
"""
Initialize a Memory instance.
Args:
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, storage: RAGStorage):
self.storage = storage
self.memory_verbose = memory_verbose
self._logger = Logger(verbose=memory_verbose)
def _log_operation(self, operation: str, details: str, agent: Optional[str] = None, level: str = "info", color: str = "cyan") -> None:
"""
Log a memory operation if memory_verbose is enabled.
Args:
operation: The type of operation (e.g., "Saving", "Searching").
details: Details about the operation.
agent: The agent performing the operation, if any.
level: The log level.
color: The color to use for the log message.
"""
if not self.memory_verbose:
return
sanitized_details = str(details)
if len(sanitized_details) > 100:
sanitized_details = f"{sanitized_details[:100]}..."
memory_type = self.__class__.__name__
agent_info = f" from agent '{agent}'" if agent else ""
self._logger.log(level, f"{memory_type}: {operation}{agent_info}: {sanitized_details}", color=color)
def save(
self,
@@ -69,30 +17,11 @@ class Memory:
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""
Save a value to memory.
Args:
value: The value to save.
metadata: Additional metadata to store with the value.
agent: The agent saving the value, if any.
Raises:
MemoryOperationError: If there's an error saving the value to memory.
"""
metadata = metadata or {}
if agent:
metadata["agent"] = agent
if self.memory_verbose:
self._log_operation("Saving", str(value), agent)
try:
self.storage.save(value, metadata)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error saving", str(e), agent, level="error", color="red")
raise MemoryOperationError(str(e), "save", self.__class__.__name__)
self.storage.save(value, metadata)
def search(
self,
@@ -100,33 +29,6 @@ class Memory:
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
"""
Search for values in memory.
Args:
query: The search query.
limit: Maximum number of results to return.
score_threshold: Minimum similarity score for results.
Returns:
A list of matching values.
Raises:
MemoryOperationError: If there's an error searching memory.
"""
if self.memory_verbose:
self._log_operation("Searching for", query)
try:
results = self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
)
if self.memory_verbose and results:
self._log_operation("Found", f"{len(results)} results")
return results
except Exception as e:
if self.memory_verbose:
self._log_operation("Error searching", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "search", self.__class__.__name__)
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
)

View File

@@ -1,6 +1,6 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory, MemoryOperationError
from crewai.memory.memory import Memory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.memory.storage.rag_storage import RAGStorage
@@ -12,25 +12,10 @@ class ShortTermMemory(Memory):
Inherits from the Memory class and utilizes an instance of a class that
adheres to the Storage for data storage, specifically working with
MemoryItem instances.
Attributes:
memory_provider: The memory provider to use, if any.
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None, memory_verbose=False):
"""
Initialize a ShortTermMemory instance.
Args:
crew: The crew to associate with this memory.
embedder_config: Configuration for the embedder.
storage: The storage backend for the memory.
path: Path to the storage file, if any.
memory_verbose: Whether to log memory operations.
"""
if hasattr(crew, "memory_config") and crew.memory_config is not None:
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
@@ -54,7 +39,7 @@ class ShortTermMemory(Memory):
path=path,
)
)
super().__init__(storage, memory_verbose=memory_verbose)
super().__init__(storage)
def save(
self,
@@ -62,68 +47,26 @@ class ShortTermMemory(Memory):
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""
Save a value to short-term memory.
Args:
value: The value to save.
metadata: Additional metadata to store with the value.
agent: The agent saving the value, if any.
Raises:
MemoryOperationError: If there's an error saving to memory.
"""
try:
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self.memory_verbose:
self._log_operation("Saving item", str(item.data), agent)
if self.memory_provider == "mem0":
item.data = f"Remember the following insights from Agent run: {item.data}"
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self.memory_provider == "mem0":
item.data = f"Remember the following insights from Agent run: {item.data}"
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error saving item", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "save", self.__class__.__name__)
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
"""
Search for values in short-term memory.
Args:
query: The search query.
limit: Maximum number of results to return.
score_threshold: Minimum similarity score for results.
Returns:
A list of matching values.
Raises:
MemoryOperationError: If there's an error searching memory.
"""
try:
return super().search(query=query, limit=limit, score_threshold=score_threshold)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error searching", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "search", self.__class__.__name__)
):
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def reset(self) -> None:
"""
Reset the short-term memory.
Raises:
MemoryOperationError: If there's an error resetting the memory.
"""
try:
self.storage.reset()
except Exception as e:
if self.memory_verbose:
self._log_operation("Error resetting", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "reset", self.__class__.__name__)
raise Exception(
f"An error occurred while resetting the short-term memory: {e}"
)

View File

@@ -1,5 +1,11 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pathlib import Path
import os
from typing import Any, Dict, List, Optional, TypeVar
from abc import ABC, abstractmethod
from pathlib import Path
from crewai.utilities.paths import get_default_storage_path
class BaseRAGStorage(ABC):
@@ -12,17 +18,46 @@ class BaseRAGStorage(ABC):
def __init__(
self,
type: str,
storage_path: Optional[Path] = None,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
crew: Any = None,
):
) -> None:
"""Initialize the BaseRAGStorage.
Args:
type: Type of storage being used
storage_path: Optional custom path for storage location
allow_reset: Whether storage can be reset
embedder_config: Optional configuration for the embedder
crew: Optional crew instance this storage belongs to
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.type = type
self.storage_path = storage_path if storage_path else get_default_storage_path('rag')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self.allow_reset = allow_reset
self.embedder_config = embedder_config
self.crew = crew
self.agents = self._initialize_agents()
def _initialize_agents(self) -> str:
"""Initialize agent identifiers for storage.
Returns:
str: Underscore-joined string of sanitized agent role names
"""
if self.crew:
return "_".join(
[self._sanitize_role(agent.role) for agent in self.crew.agents]
@@ -31,12 +66,27 @@ class BaseRAGStorage(ABC):
@abstractmethod
def _sanitize_role(self, role: str) -> str:
"""Sanitizes agent roles to ensure valid directory names."""
"""Sanitizes agent roles to ensure valid directory names.
Args:
role: The agent role name to sanitize
Returns:
str: Sanitized role name safe for use in paths
"""
pass
@abstractmethod
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
"""Save a value with metadata to the storage."""
"""Save a value with metadata to the storage.
Args:
value: The value to store
metadata: Additional metadata to store with the value
Raises:
OSError: If there is an error writing to storage
"""
pass
@abstractmethod
@@ -46,25 +96,55 @@ class BaseRAGStorage(ABC):
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Any]:
"""Search for entries in the storage."""
) -> List[Dict[str, Any]]:
"""Search for entries in the storage.
Args:
query: The search query string
limit: Maximum number of results to return
filter: Optional filter criteria
score_threshold: Minimum similarity score threshold
Returns:
List[Dict[str, Any]]: List of matching entries with their metadata
"""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the storage."""
"""Reset the storage.
Raises:
OSError: If there is an error clearing storage
PermissionError: If reset is not allowed
"""
pass
@abstractmethod
def _generate_embedding(
self, text: str, metadata: Optional[Dict[str, Any]] = None
) -> Any:
"""Generate an embedding for the given text and metadata."""
) -> List[float]:
"""Generate an embedding for the given text and metadata.
Args:
text: Text to generate embedding for
metadata: Optional metadata to include in embedding
Returns:
List[float]: Vector embedding of the text
Raises:
ValueError: If text is empty or invalid
"""
pass
@abstractmethod
def _initialize_app(self):
"""Initialize the vector db."""
def _initialize_app(self) -> None:
"""Initialize the vector db.
Raises:
OSError: If vector db initialization fails
"""
pass
def setup_config(self, config: Dict[str, Any]):

View File

@@ -1,11 +1,13 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.paths import db_storage_path
from crewai.utilities.paths import get_default_storage_path
class KickoffTaskOutputsSQLiteStorage:
@@ -13,10 +15,26 @@ class KickoffTaskOutputsSQLiteStorage:
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
) -> None:
self.db_path = db_path
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize kickoff task outputs storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('kickoff')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self._printer: Printer = Printer()
self._initialize_db()
@@ -25,7 +43,7 @@ class KickoffTaskOutputsSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -55,9 +73,21 @@ class KickoffTaskOutputsSQLiteStorage:
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
) -> None:
"""Add a task output to storage.
Args:
task: The task whose output is being stored
output: The output data from the task
task_index: Index of this task in the sequence
was_replayed: Whether this was from a replay
inputs: Optional input data that led to this output
Raises:
sqlite3.Error: If there is an error saving to database
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -90,7 +120,7 @@ class KickoffTaskOutputsSQLiteStorage:
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
fields = []
@@ -119,7 +149,7 @@ class KickoffTaskOutputsSQLiteStorage:
def load(self) -> Optional[List[Dict[str, Any]]]:
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT *
@@ -155,7 +185,7 @@ class KickoffTaskOutputsSQLiteStorage:
Deletes all rows from the latest_kickoff_task_outputs table.
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()

View File

@@ -1,9 +1,11 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
from crewai.utilities.paths import db_storage_path
from crewai.utilities.paths import get_default_storage_path
class LTMSQLiteStorage:
@@ -11,10 +13,26 @@ class LTMSQLiteStorage:
An updated SQLite storage class for LTM data storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
) -> None:
self.db_path = db_path
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize LTM SQLite storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('ltm')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self._printer: Printer = Printer()
self._initialize_db()
@@ -23,7 +41,7 @@ class LTMSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -51,9 +69,20 @@ class LTMSQLiteStorage:
datetime: str,
score: Union[int, float],
) -> None:
"""Save a memory entry to long-term memory.
Args:
task_description: Description of the task this memory relates to
metadata: Additional data to store with the memory
datetime: Timestamp for when this memory was created
score: Relevance score for this memory (higher is more relevant)
Raises:
sqlite3.Error: If there is an error saving to the database
"""
"""Saves data to the LTM table with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -74,7 +103,7 @@ class LTMSQLiteStorage:
) -> Optional[List[Dict[str, Any]]]:
"""Queries the LTM table by task description with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute(
f"""
@@ -109,7 +138,7 @@ class LTMSQLiteStorage:
) -> None:
"""Resets the LTM table with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
with sqlite3.connect(str(self.storage_path)) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM long_term_memories")
conn.commit()

View File

@@ -19,7 +19,7 @@ class Mem0Storage(Storage):
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config
self.memory_config = crew.memory_config if crew else None
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
@@ -27,9 +27,10 @@ class Mem0Storage(Storage):
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
if self.memory_config and self.memory_config.get("config"):
mem0_api_key = self.memory_config.get("config").get("api_key")
else:
mem0_api_key = os.getenv("MEM0_API_KEY")
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:

View File

@@ -11,7 +11,6 @@ from chromadb.api import ClientAPI
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
@@ -40,9 +39,15 @@ class RAGStorage(BaseRAGStorage):
app: ClientAPI | None = None
def __init__(
self, type, allow_reset=True, embedder_config=None, crew=None, path=None
self,
type,
storage_path=None,
allow_reset=True,
embedder_config=None,
crew=None,
path=None,
):
super().__init__(type, allow_reset, embedder_config, crew)
super().__init__(type, storage_path, allow_reset, embedder_config, crew)
agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
@@ -90,7 +95,7 @@ class RAGStorage(BaseRAGStorage):
"""
Ensures file name does not exceed max allowed by OS
"""
base_path = f"{db_storage_path()}/{type}"
base_path = f"{self.storage_path}/{type}"
if len(file_name) > MAX_FILE_NAME_LENGTH:
logging.warning(
@@ -152,7 +157,7 @@ class RAGStorage(BaseRAGStorage):
try:
if self.app:
self.app.reset()
shutil.rmtree(f"{db_storage_path()}/{self.type}")
shutil.rmtree(f"{self.storage_path}/{self.type}")
self.app = None
self.collection = None
except Exception as e:

View File

@@ -1,6 +1,6 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory, MemoryOperationError
from crewai.memory.memory import Memory
class UserMemory(Memory):
@@ -9,23 +9,9 @@ class UserMemory(Memory):
Inherits from the Memory class and utilizes an instance of a class that
adheres to the Storage for data storage, specifically working with
MemoryItem instances.
Attributes:
storage: The storage backend for the memory.
memory_verbose: Whether to log memory operations.
"""
def __init__(self, crew=None, memory_verbose=False):
"""
Initialize a UserMemory instance.
Args:
crew: The crew to associate with this memory.
memory_verbose: Whether to log memory operations.
Raises:
ImportError: If Mem0 is not installed.
"""
def __init__(self, crew=None):
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
@@ -33,72 +19,27 @@ class UserMemory(Memory):
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="user", crew=crew)
super().__init__(storage, memory_verbose=memory_verbose)
super().__init__(storage)
def save(
self,
value: Any,
value,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""
Save user memory.
Args:
value: The value to save.
metadata: Additional metadata to store with the value.
agent: The agent saving the value, if any.
Raises:
MemoryOperationError: If there's an error saving to memory.
"""
try:
if self.memory_verbose:
self._log_operation("Saving user memory", str(value))
# TODO: Change this function since we want to take care of the case where we save memories for the usr
data = f"Remember the details about the user: {value}"
super().save(data, metadata)
except Exception as e:
if self.memory_verbose:
self._log_operation("Error saving user memory", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "save", self.__class__.__name__)
# TODO: Change this function since we want to take care of the case where we save memories for the usr
data = f"Remember the details about the user: {value}"
super().save(data, metadata)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
"""
Search for user memories.
Args:
query: The search query.
limit: Maximum number of results to return.
score_threshold: Minimum similarity score for results.
Returns:
A list of matching user memories.
Raises:
MemoryOperationError: If there's an error searching memory.
"""
try:
if self.memory_verbose:
self._log_operation("Searching user memory", query)
results = self.storage.search(
query=query,
limit=limit,
score_threshold=score_threshold,
)
if self.memory_verbose and results:
self._log_operation("Found", f"{len(results)} results")
return results
except Exception as e:
if self.memory_verbose:
self._log_operation("Error searching user memory", str(e), level="error", color="red")
raise MemoryOperationError(str(e), "search", self.__class__.__name__)
):
results = self.storage.search(
query=query,
limit=limit,
score_threshold=score_threshold,
)
return results

View File

@@ -66,7 +66,6 @@ def cache_handler(func):
def crew(func) -> Callable[..., Crew]:
@wraps(func)
def wrapper(self, *args, **kwargs) -> Crew:
instantiated_tasks = []

View File

@@ -216,5 +216,5 @@ def CrewBase(cls: T) -> T:
# Include base class (qual)name in the wrapper class (qual)name.
WrappedClass.__name__ = CrewBase.__name__ + "(" + cls.__name__ + ")"
WrappedClass.__qualname__ = CrewBase.__qualname__ + "(" + cls.__name__ + ")"
return cast(T, WrappedClass)

View File

@@ -373,7 +373,9 @@ class Task(BaseModel):
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)

View File

@@ -27,7 +27,7 @@ class EmbeddingConfigurator:
if embedder_config is None:
return self._create_default_embedding_function()
provider = embedder_config.get("provider")
provider = embedder_config.get("provider", "")
config = embedder_config.get("config", {})
model_name = config.get("model")
@@ -38,12 +38,13 @@ class EmbeddingConfigurator:
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
if provider not in self.embedding_functions:
embedding_function = self.embedding_functions.get(provider, None)
if not embedding_function:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
return embedding_function(config, model_name)
@staticmethod
def _create_default_embedding_function():

View File

@@ -22,3 +22,26 @@ def get_project_directory_name():
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name
def get_default_storage_path(storage_type: str) -> Path:
"""Returns the default storage path for a given storage type.
Args:
storage_type: Type of storage ('ltm', 'kickoff', 'rag')
Returns:
Path: Default storage path for the specified type
Raises:
ValueError: If storage_type is not recognized
"""
base_path = db_storage_path()
if storage_type == 'ltm':
return base_path / 'latest_long_term_memories.db'
elif storage_type == 'kickoff':
return base_path / 'latest_kickoff_task_outputs.db'
elif storage_type == 'rag':
return base_path
else:
raise ValueError(f"Unknown storage type: {storage_type}")

View File

@@ -28,9 +28,10 @@ def test_create_success(mock_subprocess):
with in_temp_dir():
tool_command = ToolCommand()
with patch.object(tool_command, "login") as mock_login, patch(
"sys.stdout", new=StringIO()
) as fake_out:
with (
patch.object(tool_command, "login") as mock_login,
patch("sys.stdout", new=StringIO()) as fake_out,
):
tool_command.create("test-tool")
output = fake_out.getvalue()
@@ -82,7 +83,7 @@ def test_install_success(mock_get, mock_subprocess_run):
capture_output=False,
text=True,
check=True,
env=unittest.mock.ANY
env=unittest.mock.ANY,
)
assert "Successfully installed sample-tool" in output

View File

@@ -0,0 +1,83 @@
import os
import tempfile
from pathlib import Path
import pytest
from unittest.mock import patch
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage.kickoff_task_outputs_storage import KickoffTaskOutputsSQLiteStorage
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import get_default_storage_path
class MockRAGStorage(BaseRAGStorage):
"""Mock implementation of BaseRAGStorage for testing."""
def _sanitize_role(self, role: str) -> str:
return role.lower()
def save(self, value, metadata):
pass
def search(self, query, limit=3, filter=None, score_threshold=0.35):
return []
def reset(self):
pass
def _generate_embedding(self, text, metadata=None):
return []
def _initialize_app(self):
pass
def test_default_storage_paths():
"""Test that default storage paths are created correctly."""
ltm_path = get_default_storage_path('ltm')
kickoff_path = get_default_storage_path('kickoff')
rag_path = get_default_storage_path('rag')
assert str(ltm_path).endswith('latest_long_term_memories.db')
assert str(kickoff_path).endswith('latest_kickoff_task_outputs.db')
assert isinstance(rag_path, Path)
def test_custom_storage_paths():
"""Test that custom storage paths are respected."""
with tempfile.TemporaryDirectory() as temp_dir:
custom_path = Path(temp_dir) / 'custom.db'
ltm = LTMSQLiteStorage(storage_path=custom_path)
assert ltm.storage_path == custom_path
kickoff = KickoffTaskOutputsSQLiteStorage(storage_path=custom_path)
assert kickoff.storage_path == custom_path
rag = MockRAGStorage('test', storage_path=custom_path)
assert rag.storage_path == custom_path
def test_directory_creation():
"""Test that storage directories are created automatically."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'test_storage'
storage_path = test_dir / 'test.db'
assert not test_dir.exists()
LTMSQLiteStorage(storage_path=storage_path)
assert test_dir.exists()
def test_permission_error():
"""Test that permission errors are handled correctly."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'readonly'
test_dir.mkdir()
os.chmod(test_dir, 0o444) # Read-only
storage_path = test_dir / 'test.db'
with pytest.raises((PermissionError, OSError)) as exc_info:
LTMSQLiteStorage(storage_path=storage_path)
# Verify that the error message mentions permission
assert "permission" in str(exc_info.value).lower()
def test_invalid_path():
"""Test that invalid paths raise appropriate errors."""
with pytest.raises(OSError):
# Try to create storage in a non-existent root directory
LTMSQLiteStorage(storage_path=Path('/nonexistent/dir/test.db'))

View File

@@ -1,147 +0,0 @@
from unittest.mock import patch, MagicMock
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.memory.memory import Memory, MemoryOperationError
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.task import Task
from crewai.utilities.logger import Logger
def test_memory_verbose_flag_in_crew():
"""Test that memory_verbose flag is correctly set in Crew"""
agent = Agent(
role="Researcher",
goal="Research goal",
backstory="Researcher backstory",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], memory=True, memory_verbose=True)
assert crew.memory_verbose is True
def test_memory_verbose_logging_in_memory():
"""Test that memory operations are logged when memory_verbose is enabled"""
storage = MagicMock()
mock_logger = MagicMock(spec=Logger)
memory = Memory(storage=storage, memory_verbose=True)
memory._logger = mock_logger
memory.save("test value", {"test": "metadata"}, "test_agent")
mock_logger.log.assert_called_once()
args = mock_logger.log.call_args[0]
assert args[0] == "info"
assert "Saving" in args[1]
mock_logger.log.reset_mock()
memory.search("test query")
assert mock_logger.log.call_count == 2
first_call_args = mock_logger.log.call_args_list[0][0]
assert first_call_args[0] == "info"
assert "Searching" in first_call_args[1]
second_call_args = mock_logger.log.call_args_list[1][0]
assert "Found" in second_call_args[1]
def test_no_logging_when_memory_verbose_disabled():
"""Test that no logging occurs when memory_verbose is disabled"""
storage = MagicMock()
mock_logger = MagicMock(spec=Logger)
memory = Memory(storage=storage, memory_verbose=False)
memory._logger = mock_logger
memory.save("test value", {"test": "metadata"}, "test_agent")
mock_logger.log.assert_not_called()
memory.search("test query")
mock_logger.log.assert_not_called()
def test_memory_verbose_in_short_term_memory():
"""Test that memory_verbose flag is correctly passed to ShortTermMemory"""
with patch('crewai.memory.short_term.short_term_memory.RAGStorage') as mock_storage_class:
mock_storage = MagicMock()
mock_storage_class.return_value = mock_storage
memory = ShortTermMemory(memory_verbose=True)
assert memory.memory_verbose is True
mock_logger = MagicMock()
memory._logger = mock_logger
memory.save("test value", {"test": "metadata"}, "test_agent")
assert mock_logger.log.call_count >= 1
def test_memory_verbose_passed_from_crew_to_memory():
"""Test that memory_verbose flag is correctly passed from Crew to memory instances"""
with patch('crewai.crew.LongTermMemory') as mock_ltm, \
patch('crewai.crew.ShortTermMemory') as mock_stm, \
patch('crewai.crew.EntityMemory') as mock_em, \
patch('crewai.crew.UserMemory') as mock_um:
mock_ltm_instance = MagicMock()
mock_stm_instance = MagicMock()
mock_em_instance = MagicMock()
mock_um_instance = MagicMock()
mock_ltm.return_value = mock_ltm_instance
mock_stm.return_value = mock_stm_instance
mock_em.return_value = mock_em_instance
mock_um.return_value = mock_um_instance
agent = Agent(
role="Researcher",
goal="Research goal",
backstory="Researcher backstory",
)
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], memory=True, memory_verbose=True, memory_config={})
mock_ltm.assert_called_once_with(memory_verbose=True)
mock_stm.assert_called_with(crew=crew, embedder_config=None, memory_verbose=True)
mock_em.assert_called_with(crew=crew, embedder_config=None, memory_verbose=True)
mock_um.assert_called_with(crew=crew, memory_verbose=True)
def test_memory_verbose_error_handling():
"""Test that memory operations errors are properly handled when memory_verbose is enabled"""
storage = MagicMock()
storage.save.side_effect = Exception("Test error")
storage.search.side_effect = Exception("Test error")
mock_logger = MagicMock()
with patch('crewai.memory.memory.Logger', return_value=mock_logger):
memory = Memory(storage=storage, memory_verbose=True)
with pytest.raises(MemoryOperationError) as exc_info:
memory.save("test value", {"test": "metadata"}, "test_agent")
assert "save" in str(exc_info.value)
assert "Test error" in str(exc_info.value)
assert "Memory" in str(exc_info.value)
with pytest.raises(MemoryOperationError) as exc_info:
memory.search("test query")
assert "search" in str(exc_info.value)
assert "Test error" in str(exc_info.value)

68
uv.lock generated
View File

@@ -1,10 +1,18 @@
version = 1
requires-python = ">=3.10, <3.13"
resolution-markers = [
"python_full_version < '3.11'",
"python_full_version == '3.11.*'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
"python_full_version >= '3.12.4'",
"python_full_version < '3.11' and sys_platform == 'darwin'",
"python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.11.*' and sys_platform == 'darwin'",
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
[[package]]
@@ -300,7 +308,7 @@ name = "build"
version = "1.2.2.post1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "os_name == 'nt'" },
{ name = "colorama", marker = "(os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "importlib-metadata", marker = "python_full_version < '3.10.2'" },
{ name = "packaging" },
{ name = "pyproject-hooks" },
@@ -535,7 +543,7 @@ name = "click"
version = "8.1.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/96/d3/f04c7bfcf5c1862a2a5b845c6b2b360488cf47af55dfa79c98f6a6bf98b5/click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de", size = 336121 }
wheels = [
@@ -642,7 +650,6 @@ tools = [
[package.dev-dependencies]
dev = [
{ name = "cairosvg" },
{ name = "crewai-tools" },
{ name = "mkdocs" },
{ name = "mkdocs-material" },
{ name = "mkdocs-material-extensions" },
@@ -696,7 +703,6 @@ requires-dist = [
[package.metadata.requires-dev]
dev = [
{ name = "cairosvg", specifier = ">=2.7.1" },
{ name = "crewai-tools", specifier = ">=0.17.0" },
{ name = "mkdocs", specifier = ">=1.4.3" },
{ name = "mkdocs-material", specifier = ">=9.5.7" },
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
@@ -2462,7 +2468,7 @@ version = "1.6.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "click" },
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "ghp-import" },
{ name = "jinja2" },
{ name = "markdown" },
@@ -2643,7 +2649,7 @@ version = "2.10.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pygments" },
{ name = "pywin32", marker = "platform_system == 'Windows'" },
{ name = "pywin32", marker = "sys_platform == 'win32'" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3a/93/80ac75c20ce54c785648b4ed363c88f148bf22637e10c9863db4fbe73e74/mpire-2.10.2.tar.gz", hash = "sha256:f66a321e93fadff34585a4bfa05e95bd946cf714b442f51c529038eb45773d97", size = 271270 }
@@ -2890,7 +2896,7 @@ name = "nvidia-cudnn-cu12"
version = "9.1.0.70"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
@@ -2917,9 +2923,9 @@ name = "nvidia-cusolver-cu12"
version = "11.4.5.107"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd", size = 124161928 },
@@ -2930,7 +2936,7 @@ name = "nvidia-cusparse-cu12"
version = "12.1.0.106"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c", size = 195958278 },
@@ -3480,7 +3486,7 @@ name = "portalocker"
version = "2.10.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pywin32", marker = "platform_system == 'Windows'" },
{ name = "pywin32", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ed/d3/c6c64067759e87af98cc668c1cc75171347d0f1577fab7ca3749134e3cd4/portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f", size = 40891 }
wheels = [
@@ -5022,19 +5028,19 @@ dependencies = [
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "sympy" },
{ name = "triton", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions" },
]
wheels = [
@@ -5081,7 +5087,7 @@ name = "tqdm"
version = "4.66.5"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 }
wheels = [
@@ -5124,7 +5130,7 @@ version = "0.27.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "attrs" },
{ name = "cffi", marker = "implementation_name != 'pypy' and os_name == 'nt'" },
{ name = "cffi", marker = "(implementation_name != 'pypy' and os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (implementation_name != 'pypy' and os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "idna" },
{ name = "outcome" },
@@ -5155,7 +5161,7 @@ name = "triton"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "filelock", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a", size = 209376304 },