mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-02-05 13:38:16 +00:00
Compare commits
4 Commits
gl/chore/e
...
lg-support
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
216332424e | ||
|
|
dad26680fc | ||
|
|
61d26924af | ||
|
|
712ac0589a |
@@ -13,10 +13,16 @@ from crewai_tools.tools.crewai_platform_tools.crewai_platform_tool_builder impor
|
||||
from crewai_tools.tools.crewai_platform_tools.crewai_platform_tools import (
|
||||
CrewaiPlatformTools,
|
||||
)
|
||||
from crewai_tools.tools.crewai_platform_tools.file_hook import (
|
||||
process_file_markers,
|
||||
register_file_processing_hook,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"CrewAIPlatformActionTool",
|
||||
"CrewaiPlatformToolBuilder",
|
||||
"CrewaiPlatformTools",
|
||||
"process_file_markers",
|
||||
"register_file_processing_hook",
|
||||
]
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
from typing import Any
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
@@ -14,6 +16,26 @@ from crewai_tools.tools.crewai_platform_tools.misc import (
|
||||
get_platform_integration_token,
|
||||
)
|
||||
|
||||
_FILE_MARKER_PREFIX = "__CREWAI_FILE__"
|
||||
|
||||
_MIME_TO_EXTENSION = {
|
||||
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": ".xlsx",
|
||||
"application/vnd.ms-excel": ".xls",
|
||||
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
||||
"application/msword": ".doc",
|
||||
"application/vnd.openxmlformats-officedocument.presentationml.presentation": ".pptx",
|
||||
"application/vnd.ms-powerpoint": ".ppt",
|
||||
"application/pdf": ".pdf",
|
||||
"image/png": ".png",
|
||||
"image/jpeg": ".jpg",
|
||||
"image/gif": ".gif",
|
||||
"image/webp": ".webp",
|
||||
"text/plain": ".txt",
|
||||
"text/csv": ".csv",
|
||||
"application/json": ".json",
|
||||
"application/zip": ".zip",
|
||||
}
|
||||
|
||||
|
||||
class CrewAIPlatformActionTool(BaseTool):
|
||||
action_name: str = Field(default="", description="The name of the action")
|
||||
@@ -71,10 +93,18 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
url=api_url,
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=60,
|
||||
timeout=300,
|
||||
stream=True,
|
||||
verify=os.environ.get("CREWAI_FACTORY", "false").lower() != "true",
|
||||
)
|
||||
|
||||
content_type = response.headers.get("Content-Type", "")
|
||||
|
||||
# Check if response is binary (non-JSON)
|
||||
if "application/json" not in content_type:
|
||||
return self._handle_binary_response(response)
|
||||
|
||||
# Normal JSON response
|
||||
data = response.json()
|
||||
if not response.ok:
|
||||
if isinstance(data, dict):
|
||||
@@ -91,3 +121,49 @@ class CrewAIPlatformActionTool(BaseTool):
|
||||
|
||||
except Exception as e:
|
||||
return f"Error executing action {self.action_name}: {e!s}"
|
||||
|
||||
def _handle_binary_response(self, response: requests.Response) -> str:
|
||||
"""Handle binary streaming response from the API.
|
||||
|
||||
Streams the binary content to a temporary file and returns a marker
|
||||
that can be processed by the file hook to inject the file into the
|
||||
LLM context.
|
||||
|
||||
Args:
|
||||
response: The streaming HTTP response with binary content.
|
||||
|
||||
Returns:
|
||||
A file marker string in the format:
|
||||
__CREWAI_FILE__:filename:content_type:file_path
|
||||
"""
|
||||
content_type = response.headers.get("Content-Type", "application/octet-stream")
|
||||
|
||||
filename = self._extract_filename_from_headers(response.headers)
|
||||
|
||||
extension = self._get_file_extension(content_type, filename)
|
||||
|
||||
with tempfile.NamedTemporaryFile(
|
||||
delete=False, suffix=extension, prefix="crewai_"
|
||||
) as tmp_file:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
tmp_file.write(chunk)
|
||||
tmp_path = tmp_file.name
|
||||
|
||||
return f"{_FILE_MARKER_PREFIX}:{filename}:{content_type}:{tmp_path}"
|
||||
|
||||
def _extract_filename_from_headers(
|
||||
self, headers: requests.structures.CaseInsensitiveDict
|
||||
) -> str:
|
||||
content_disposition = headers.get("Content-Disposition", "")
|
||||
if content_disposition:
|
||||
match = re.search(r'filename="?([^";\s]+)"?', content_disposition)
|
||||
if match:
|
||||
return match.group(1)
|
||||
return "downloaded_file"
|
||||
|
||||
def _get_file_extension(self, content_type: str, filename: str) -> str:
|
||||
if "." in filename:
|
||||
return "." + filename.rsplit(".", 1)[-1]
|
||||
|
||||
base_content_type = content_type.split(";")[0].strip()
|
||||
return _MIME_TO_EXTENSION.get(base_content_type, "")
|
||||
|
||||
@@ -6,6 +6,9 @@ from crewai_tools.adapters.tool_collection import ToolCollection
|
||||
from crewai_tools.tools.crewai_platform_tools.crewai_platform_tool_builder import (
|
||||
CrewaiPlatformToolBuilder,
|
||||
)
|
||||
from crewai_tools.tools.crewai_platform_tools.file_hook import (
|
||||
register_file_processing_hook,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -22,6 +25,8 @@ def CrewaiPlatformTools( # noqa: N802
|
||||
Returns:
|
||||
A list of BaseTool instances for platform actions
|
||||
"""
|
||||
register_file_processing_hook()
|
||||
|
||||
builder = CrewaiPlatformToolBuilder(apps=apps)
|
||||
|
||||
return builder.tools() # type: ignore
|
||||
|
||||
@@ -0,0 +1,132 @@
|
||||
"""File processing hook for CrewAI Platform Tools.
|
||||
|
||||
This module provides a hook that processes file markers returned by platform tools
|
||||
and injects the files into the LLM context for native file handling.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.hooks.tool_hooks import ToolCallHookContext
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_FILE_MARKER_PREFIX = "__CREWAI_FILE__"
|
||||
|
||||
_hook_registered = False
|
||||
|
||||
|
||||
def process_file_markers(context: ToolCallHookContext) -> str | None:
|
||||
"""Process file markers in tool results and inject files into context.
|
||||
|
||||
This hook detects file markers returned by platform tools (e.g., download_file)
|
||||
and converts them into FileInput objects that are attached to the hook context.
|
||||
The agent executor will then inject these files into the tool message for
|
||||
native LLM file handling.
|
||||
|
||||
The marker format is:
|
||||
__CREWAI_FILE__:filename:content_type:file_path
|
||||
|
||||
Args:
|
||||
context: The tool call hook context containing the tool result.
|
||||
|
||||
Returns:
|
||||
A human-readable message if a file was processed, None otherwise.
|
||||
"""
|
||||
result = context.tool_result
|
||||
|
||||
if not result or not result.startswith(_FILE_MARKER_PREFIX):
|
||||
return None
|
||||
|
||||
try:
|
||||
parts = result.split(":", 3)
|
||||
if len(parts) < 4:
|
||||
logger.warning(f"Invalid file marker format: {result[:100]}")
|
||||
return None
|
||||
|
||||
_, filename, content_type, file_path = parts
|
||||
|
||||
if not os.path.isfile(file_path):
|
||||
logger.error(f"File not found: {file_path}")
|
||||
return f"Error: Downloaded file not found at {file_path}"
|
||||
|
||||
try:
|
||||
from crewai_files import File
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"crewai_files not installed. File will not be attached to LLM context."
|
||||
)
|
||||
return (
|
||||
f"Downloaded file: {filename} ({content_type}). "
|
||||
f"File saved at: {file_path}. "
|
||||
"Note: Install crewai_files for native LLM file handling."
|
||||
)
|
||||
|
||||
file = File(source=file_path, content_type=content_type, filename=filename)
|
||||
|
||||
context.files = {filename: file}
|
||||
|
||||
file_size = os.path.getsize(file_path)
|
||||
size_str = _format_file_size(file_size)
|
||||
|
||||
return f"Downloaded file: {filename} ({content_type}, {size_str}). File is attached for LLM analysis."
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error processing file marker: {e}")
|
||||
return f"Error processing downloaded file: {e}"
|
||||
|
||||
|
||||
def _format_file_size(size_bytes: int) -> str:
|
||||
"""Format file size in human-readable format.
|
||||
|
||||
Args:
|
||||
size_bytes: Size in bytes.
|
||||
|
||||
Returns:
|
||||
Human-readable size string.
|
||||
"""
|
||||
if size_bytes < 1024:
|
||||
return f"{size_bytes} bytes"
|
||||
elif size_bytes < 1024 * 1024:
|
||||
return f"{size_bytes / 1024:.1f} KB"
|
||||
elif size_bytes < 1024 * 1024 * 1024:
|
||||
return f"{size_bytes / (1024 * 1024):.1f} MB"
|
||||
else:
|
||||
return f"{size_bytes / (1024 * 1024 * 1024):.1f} GB"
|
||||
|
||||
|
||||
def register_file_processing_hook() -> bool:
|
||||
"""Register the file processing hook globally.
|
||||
|
||||
This function should be called once during application initialization
|
||||
to enable automatic file injection for platform tools.
|
||||
|
||||
Returns:
|
||||
True if the hook was registered, False if it was already registered
|
||||
or if registration failed.
|
||||
"""
|
||||
global _hook_registered
|
||||
|
||||
if _hook_registered:
|
||||
logger.debug("File processing hook already registered")
|
||||
return False
|
||||
|
||||
try:
|
||||
from crewai.hooks import register_after_tool_call_hook
|
||||
|
||||
register_after_tool_call_hook(process_file_markers)
|
||||
_hook_registered = True
|
||||
logger.info("File processing hook registered successfully")
|
||||
return True
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"crewai.hooks not available. File processing hook not registered."
|
||||
)
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.exception(f"Failed to register file processing hook: {e}")
|
||||
return False
|
||||
@@ -2,6 +2,7 @@ import unittest
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
from crewai_tools.tools.crewai_platform_tools import CrewaiPlatformTools
|
||||
from crewai_tools.tools.crewai_platform_tools import file_hook
|
||||
|
||||
|
||||
class TestCrewaiPlatformTools(unittest.TestCase):
|
||||
@@ -113,3 +114,64 @@ class TestCrewaiPlatformTools(unittest.TestCase):
|
||||
with self.assertRaises(ValueError) as context:
|
||||
CrewaiPlatformTools(apps=["github"])
|
||||
assert "No platform integration token found" in str(context.exception)
|
||||
|
||||
@patch.dict("os.environ", {"CREWAI_PLATFORM_INTEGRATION_TOKEN": "test_token"})
|
||||
@patch(
|
||||
"crewai_tools.tools.crewai_platform_tools.crewai_platform_tool_builder.requests.get"
|
||||
)
|
||||
@patch(
|
||||
"crewai_tools.tools.crewai_platform_tools.crewai_platform_tools.register_file_processing_hook"
|
||||
)
|
||||
def test_crewai_platform_tools_registers_file_hook(
|
||||
self, mock_register_hook, mock_get
|
||||
):
|
||||
mock_response = Mock()
|
||||
mock_response.raise_for_status.return_value = None
|
||||
mock_response.json.return_value = {"actions": {"github": []}}
|
||||
mock_get.return_value = mock_response
|
||||
|
||||
CrewaiPlatformTools(apps=["github"])
|
||||
mock_register_hook.assert_called_once()
|
||||
|
||||
|
||||
class TestFileHook(unittest.TestCase):
|
||||
def setUp(self):
|
||||
file_hook._hook_registered = False
|
||||
|
||||
def tearDown(self):
|
||||
file_hook._hook_registered = False
|
||||
|
||||
@patch("crewai.hooks.register_after_tool_call_hook")
|
||||
def test_register_hook_is_idempotent(self, mock_register):
|
||||
"""Test hook registration succeeds once and is idempotent."""
|
||||
assert file_hook.register_file_processing_hook() is True
|
||||
assert file_hook._hook_registered is True
|
||||
mock_register.assert_called_once_with(file_hook.process_file_markers)
|
||||
|
||||
# Second call should return False and not register again
|
||||
assert file_hook.register_file_processing_hook() is False
|
||||
mock_register.assert_called_once()
|
||||
|
||||
def test_process_file_markers_ignores_non_file_results(self):
|
||||
"""Test that non-file-marker results return None."""
|
||||
test_cases = [
|
||||
None, # Empty result
|
||||
"Regular tool output", # Non-marker
|
||||
"__CREWAI_FILE__:incomplete", # Invalid format (missing parts)
|
||||
]
|
||||
for tool_result in test_cases:
|
||||
mock_context = Mock()
|
||||
mock_context.tool_result = tool_result
|
||||
assert file_hook.process_file_markers(mock_context) is None
|
||||
|
||||
def test_format_file_size(self):
|
||||
"""Test file size formatting across units."""
|
||||
cases = [
|
||||
(500, "500 bytes"),
|
||||
(1024, "1.0 KB"),
|
||||
(1536, "1.5 KB"),
|
||||
(1024 * 1024, "1.0 MB"),
|
||||
(1024 * 1024 * 1024, "1.0 GB"),
|
||||
]
|
||||
for size_bytes, expected in cases:
|
||||
assert file_hook._format_file_size(size_bytes) == expected
|
||||
|
||||
@@ -16,6 +16,7 @@ from crewai.agents.agent_adapters.openai_agents.protocols import (
|
||||
)
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.utilities.import_utils import require
|
||||
from crewai.utilities.pydantic_schema_utils import force_additional_properties_false
|
||||
from crewai.utilities.string_utils import sanitize_tool_name
|
||||
|
||||
|
||||
@@ -135,7 +136,9 @@ class OpenAIAgentToolAdapter(BaseToolAdapter):
|
||||
for tool in tools:
|
||||
schema: dict[str, Any] = tool.args_schema.model_json_schema()
|
||||
|
||||
schema.update({"additionalProperties": False, "type": "object"})
|
||||
schema = force_additional_properties_false(schema)
|
||||
|
||||
schema.update({"type": "object"})
|
||||
|
||||
openai_tool: OpenAIFunctionTool = cast(
|
||||
OpenAIFunctionTool,
|
||||
|
||||
@@ -930,6 +930,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
"name": func_name,
|
||||
"content": result,
|
||||
}
|
||||
|
||||
if after_hook_context.files:
|
||||
tool_message["files"] = after_hook_context.files
|
||||
|
||||
self.messages.append(tool_message)
|
||||
|
||||
# Log the tool execution
|
||||
|
||||
@@ -814,6 +814,10 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"name": func_name,
|
||||
"content": result,
|
||||
}
|
||||
|
||||
if after_hook_context.files:
|
||||
tool_message["files"] = after_hook_context.files
|
||||
|
||||
self.state.messages.append(tool_message)
|
||||
|
||||
# Log the tool execution
|
||||
|
||||
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any
|
||||
from crewai.events.event_listener import event_listener
|
||||
from crewai.hooks.types import AfterToolCallHookType, BeforeToolCallHookType
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.types import FileInput
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -34,6 +35,9 @@ class ToolCallHookContext:
|
||||
crew: Crew instance (may be None)
|
||||
tool_result: Tool execution result (only set for after_tool_call hooks).
|
||||
Can be modified by returning a new string from after_tool_call hook.
|
||||
files: Optional dictionary of files to attach to the tool message.
|
||||
Can be set by after_tool_call hooks to inject files into the LLM context.
|
||||
These files will be formatted according to the LLM provider's requirements.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -64,6 +68,7 @@ class ToolCallHookContext:
|
||||
self.task = task
|
||||
self.crew = crew
|
||||
self.tool_result = tool_result
|
||||
self.files: dict[str, FileInput] | None = None
|
||||
|
||||
def request_human_input(
|
||||
self,
|
||||
|
||||
@@ -1521,13 +1521,16 @@ class OpenAICompletion(BaseLLM):
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Convert CrewAI tool format to OpenAI function calling format."""
|
||||
from crewai.llms.providers.utils.common import safe_tool_conversion
|
||||
from crewai.utilities.pydantic_schema_utils import (
|
||||
force_additional_properties_false,
|
||||
)
|
||||
|
||||
openai_tools = []
|
||||
|
||||
for tool in tools:
|
||||
name, description, parameters = safe_tool_conversion(tool, "OpenAI")
|
||||
|
||||
openai_tool = {
|
||||
openai_tool: dict[str, Any] = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": name,
|
||||
@@ -1537,10 +1540,11 @@ class OpenAICompletion(BaseLLM):
|
||||
}
|
||||
|
||||
if parameters:
|
||||
if isinstance(parameters, dict):
|
||||
openai_tool["function"]["parameters"] = parameters # type: ignore
|
||||
else:
|
||||
openai_tool["function"]["parameters"] = dict(parameters)
|
||||
params_dict = (
|
||||
parameters if isinstance(parameters, dict) else dict(parameters)
|
||||
)
|
||||
params_dict = force_additional_properties_false(params_dict)
|
||||
openai_tool["function"]["parameters"] = params_dict
|
||||
|
||||
openai_tools.append(openai_tool)
|
||||
return openai_tools
|
||||
|
||||
@@ -127,6 +127,36 @@ def add_key_in_dict_recursively(
|
||||
return d
|
||||
|
||||
|
||||
def force_additional_properties_false(d: Any) -> Any:
|
||||
"""Force additionalProperties=false on all object-type dicts recursively.
|
||||
|
||||
OpenAI strict mode requires all objects to have additionalProperties=false.
|
||||
This function overwrites any existing value to ensure compliance.
|
||||
|
||||
Also ensures objects have properties and required arrays, even if empty,
|
||||
as OpenAI strict mode requires these for all object types.
|
||||
|
||||
Args:
|
||||
d: The dictionary/list to modify.
|
||||
|
||||
Returns:
|
||||
The modified dictionary/list.
|
||||
"""
|
||||
if isinstance(d, dict):
|
||||
if d.get("type") == "object":
|
||||
d["additionalProperties"] = False
|
||||
if "properties" not in d:
|
||||
d["properties"] = {}
|
||||
if "required" not in d:
|
||||
d["required"] = []
|
||||
for v in d.values():
|
||||
force_additional_properties_false(v)
|
||||
elif isinstance(d, list):
|
||||
for i in d:
|
||||
force_additional_properties_false(i)
|
||||
return d
|
||||
|
||||
|
||||
def fix_discriminator_mappings(schema: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Replace '#/$defs/...' references in discriminator.mapping with just the model name.
|
||||
|
||||
@@ -278,13 +308,7 @@ def generate_model_description(model: type[BaseModel]) -> dict[str, Any]:
|
||||
"""
|
||||
json_schema = model.model_json_schema(ref_template="#/$defs/{model}")
|
||||
|
||||
json_schema = add_key_in_dict_recursively(
|
||||
json_schema,
|
||||
key="additionalProperties",
|
||||
value=False,
|
||||
criteria=lambda d: d.get("type") == "object"
|
||||
and "additionalProperties" not in d,
|
||||
)
|
||||
json_schema = force_additional_properties_false(json_schema)
|
||||
|
||||
json_schema = resolve_refs(json_schema)
|
||||
|
||||
@@ -378,6 +402,9 @@ def create_model_from_schema( # type: ignore[no-any-unimported]
|
||||
"""
|
||||
effective_root = root_schema or json_schema
|
||||
|
||||
json_schema = force_additional_properties_false(json_schema)
|
||||
effective_root = force_additional_properties_false(effective_root)
|
||||
|
||||
if "allOf" in json_schema:
|
||||
json_schema = _merge_all_of_schemas(json_schema["allOf"], effective_root)
|
||||
if "title" not in json_schema and "title" in (root_schema or {}):
|
||||
|
||||
Reference in New Issue
Block a user