mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-25 16:58:29 +00:00
Compare commits
2 Commits
github_too
...
fix/step-c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ee8fe74395 | ||
|
|
d8f271daeb |
2
.github/workflows/security-checker.yml
vendored
2
.github/workflows/security-checker.yml
vendored
@@ -19,5 +19,5 @@ jobs:
|
||||
run: pip install bandit
|
||||
|
||||
- name: Run Bandit
|
||||
run: bandit -c pyproject.toml -r src/ -ll
|
||||
run: bandit -c pyproject.toml -r src/ -lll
|
||||
|
||||
|
||||
@@ -22,8 +22,7 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
|
||||
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
|
||||
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
|
||||
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
|
||||
|
||||
@@ -18,7 +18,6 @@ reason, and learn from past interactions.
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
|
||||
|
||||
## How Memory Systems Empower Agents
|
||||
|
||||
@@ -93,47 +92,6 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
## Integrating Mem0 for Enhanced User Memory
|
||||
|
||||
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
|
||||
|
||||
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
|
||||
|
||||
|
||||
```python Code
|
||||
import os
|
||||
from crewai import Crew, Process
|
||||
from mem0 import MemoryClient
|
||||
|
||||
# Set environment variables for Mem0
|
||||
os.environ["MEM0_API_KEY"] = "m0-xx"
|
||||
|
||||
# Step 1: Record preferences based on past conversation or user input
|
||||
client = MemoryClient()
|
||||
messages = [
|
||||
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
|
||||
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
|
||||
{"role": "user", "content": "I am more of a beach person than a mountain person."},
|
||||
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
|
||||
{"role": "user", "content": "I like Airbnb more."},
|
||||
]
|
||||
client.add(messages, user_id="john")
|
||||
|
||||
# Step 2: Create a Crew with User Memory
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
memory_config={
|
||||
"provider": "mem0",
|
||||
"config": {"user_id": "john"},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
## Additional Embedding Providers
|
||||
|
||||
|
||||
@@ -34,7 +34,6 @@ from crewai_tools import GithubSearchTool
|
||||
# Initialize the tool for semantic searches within a specific GitHub repository
|
||||
tool = GithubSearchTool(
|
||||
github_repo='https://github.com/example/repo',
|
||||
gh_token='your_github_personal_access_token',
|
||||
content_types=['code', 'issue'] # Options: code, repo, pr, issue
|
||||
)
|
||||
|
||||
@@ -42,7 +41,6 @@ tool = GithubSearchTool(
|
||||
|
||||
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
|
||||
tool = GithubSearchTool(
|
||||
gh_token='your_github_personal_access_token',
|
||||
content_types=['code', 'issue'] # Options: code, repo, pr, issue
|
||||
)
|
||||
```
|
||||
@@ -50,7 +48,6 @@ tool = GithubSearchTool(
|
||||
## Arguments
|
||||
|
||||
- `github_repo` : The URL of the GitHub repository where the search will be conducted. This is a mandatory field and specifies the target repository for your search.
|
||||
- `gh_token` : Your GitHub Personal Access Token (PAT) required for authentication. You can create one in your GitHub account settings under Developer Settings > Personal Access Tokens.
|
||||
- `content_types` : Specifies the types of content to include in your search. You must provide a list of content types from the following options: `code` for searching within the code,
|
||||
`repo` for searching within the repository's general information, `pr` for searching within pull requests, and `issue` for searching within issues.
|
||||
This field is mandatory and allows tailoring the search to specific content types within the GitHub repository.
|
||||
@@ -80,4 +77,5 @@ tool = GithubSearchTool(
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
```
|
||||
6
poetry.lock
generated
6
poetry.lock
generated
@@ -1597,12 +1597,12 @@ files = [
|
||||
google-auth = ">=2.14.1,<3.0.dev0"
|
||||
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
|
||||
grpcio = [
|
||||
{version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
]
|
||||
grpcio-status = [
|
||||
{version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
|
||||
{version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
|
||||
]
|
||||
proto-plus = ">=1.22.3,<2.0.0dev"
|
||||
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0"
|
||||
@@ -4286,8 +4286,8 @@ files = [
|
||||
|
||||
[package.dependencies]
|
||||
numpy = [
|
||||
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
|
||||
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
|
||||
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
|
||||
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
|
||||
]
|
||||
python-dateutil = ">=2.8.2"
|
||||
|
||||
@@ -27,8 +27,8 @@ dependencies = [
|
||||
"pyvis>=0.3.2",
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"chromadb>=0.4.24",
|
||||
"tomli>=2.0.2",
|
||||
"chromadb>=0.5.18",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -39,7 +39,6 @@ Repository = "https://github.com/crewAIInc/crewAI"
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
mem0 = ["mem0ai>=0.1.29"]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
|
||||
@@ -262,11 +262,9 @@ class Agent(BaseAgent):
|
||||
|
||||
if self.crew and self.crew.memory:
|
||||
contextual_memory = ContextualMemory(
|
||||
self.crew.memory_config,
|
||||
self.crew._short_term_memory,
|
||||
self.crew._long_term_memory,
|
||||
self.crew._entity_memory,
|
||||
self.crew._user_memory,
|
||||
)
|
||||
memory = contextual_memory.build_context_for_task(task, context)
|
||||
if memory.strip() != "":
|
||||
|
||||
@@ -4,7 +4,6 @@ from crewai.types.usage_metrics import UsageMetrics
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
cached_prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
|
||||
@@ -16,9 +15,6 @@ class TokenProcess:
|
||||
self.completion_tokens = self.completion_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_cached_prompt_tokens(self, tokens: int):
|
||||
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
|
||||
|
||||
def sum_successful_requests(self, requests: int):
|
||||
self.successful_requests = self.successful_requests + requests
|
||||
|
||||
@@ -26,7 +22,6 @@ class TokenProcess:
|
||||
return UsageMetrics(
|
||||
total_tokens=self.total_tokens,
|
||||
prompt_tokens=self.prompt_tokens,
|
||||
cached_prompt_tokens=self.cached_prompt_tokens,
|
||||
completion_tokens=self.completion_tokens,
|
||||
successful_requests=self.successful_requests,
|
||||
)
|
||||
|
||||
@@ -34,9 +34,7 @@ class AuthenticationCommand:
|
||||
"scope": "openid",
|
||||
"audience": AUTH0_AUDIENCE,
|
||||
}
|
||||
response = requests.post(
|
||||
url=self.DEVICE_CODE_URL, data=device_code_payload, timeout=20
|
||||
)
|
||||
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
@@ -56,7 +54,7 @@ class AuthenticationCommand:
|
||||
|
||||
attempts = 0
|
||||
while True and attempts < 5:
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload, timeout=30)
|
||||
response = requests.post(self.TOKEN_URL, data=token_payload)
|
||||
token_data = response.json()
|
||||
|
||||
if response.status_code == 200:
|
||||
|
||||
@@ -27,7 +27,6 @@ from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
@@ -72,7 +71,6 @@ class Crew(BaseModel):
|
||||
manager_llm: The language model that will run manager agent.
|
||||
manager_agent: Custom agent that will be used as manager.
|
||||
memory: Whether the crew should use memory to store memories of it's execution.
|
||||
memory_config: Configuration for the memory to be used for the crew.
|
||||
cache: Whether the crew should use a cache to store the results of the tools execution.
|
||||
function_calling_llm: The language model that will run the tool calling for all the agents.
|
||||
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
|
||||
@@ -96,7 +94,6 @@ class Crew(BaseModel):
|
||||
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
||||
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
||||
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
||||
_user_memory: Optional[InstanceOf[UserMemory]] = PrivateAttr()
|
||||
_train: Optional[bool] = PrivateAttr(default=False)
|
||||
_train_iteration: Optional[int] = PrivateAttr()
|
||||
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
|
||||
@@ -117,10 +114,6 @@ class Crew(BaseModel):
|
||||
default=False,
|
||||
description="Whether the crew should use memory to store memories of it's execution",
|
||||
)
|
||||
memory_config: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Configuration for the memory to be used for the crew.",
|
||||
)
|
||||
short_term_memory: Optional[InstanceOf[ShortTermMemory]] = Field(
|
||||
default=None,
|
||||
description="An Instance of the ShortTermMemory to be used by the Crew",
|
||||
@@ -133,11 +126,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="An Instance of the EntityMemory to be used by the Crew",
|
||||
)
|
||||
user_memory: Optional[InstanceOf[UserMemory]] = Field(
|
||||
default=None,
|
||||
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
|
||||
)
|
||||
embedder: Optional[dict] = Field(
|
||||
embedder: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Configuration for the embedder to be used for the crew.",
|
||||
)
|
||||
@@ -249,22 +238,13 @@ class Crew(BaseModel):
|
||||
self._short_term_memory = (
|
||||
self.short_term_memory
|
||||
if self.short_term_memory
|
||||
else ShortTermMemory(
|
||||
crew=self,
|
||||
embedder_config=self.embedder,
|
||||
)
|
||||
else ShortTermMemory(crew=self, embedder_config=self.embedder)
|
||||
)
|
||||
self._entity_memory = (
|
||||
self.entity_memory
|
||||
if self.entity_memory
|
||||
else EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
)
|
||||
if hasattr(self, "memory_config") and self.memory_config is not None:
|
||||
self._user_memory = (
|
||||
self.user_memory if self.user_memory else UserMemory(crew=self)
|
||||
)
|
||||
else:
|
||||
self._user_memory = None
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from .entity.entity_memory import EntityMemory
|
||||
from .long_term.long_term_memory import LongTermMemory
|
||||
from .short_term.short_term_memory import ShortTermMemory
|
||||
from .user.user_memory import UserMemory
|
||||
|
||||
__all__ = ["UserMemory", "EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
|
||||
|
||||
@@ -1,25 +1,13 @@
|
||||
from typing import Optional, Dict, Any
|
||||
from typing import Optional
|
||||
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
|
||||
|
||||
|
||||
class ContextualMemory:
|
||||
def __init__(
|
||||
self,
|
||||
memory_config: Optional[Dict[str, Any]],
|
||||
stm: ShortTermMemory,
|
||||
ltm: LongTermMemory,
|
||||
em: EntityMemory,
|
||||
um: UserMemory,
|
||||
):
|
||||
if memory_config is not None:
|
||||
self.memory_provider = memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory):
|
||||
self.stm = stm
|
||||
self.ltm = ltm
|
||||
self.em = em
|
||||
self.um = um
|
||||
|
||||
def build_context_for_task(self, task, context) -> str:
|
||||
"""
|
||||
@@ -35,8 +23,6 @@ class ContextualMemory:
|
||||
context.append(self._fetch_ltm_context(task.description))
|
||||
context.append(self._fetch_stm_context(query))
|
||||
context.append(self._fetch_entity_context(query))
|
||||
if self.memory_provider == "mem0":
|
||||
context.append(self._fetch_user_context(query))
|
||||
return "\n".join(filter(None, context))
|
||||
|
||||
def _fetch_stm_context(self, query) -> str:
|
||||
@@ -46,10 +32,7 @@ class ContextualMemory:
|
||||
"""
|
||||
stm_results = self.stm.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
for result in stm_results
|
||||
]
|
||||
[f"- {result['context']}" for result in stm_results]
|
||||
)
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
@@ -79,26 +62,6 @@ class ContextualMemory:
|
||||
"""
|
||||
em_results = self.em.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
for result in em_results
|
||||
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
def _fetch_user_context(self, query: str) -> str:
|
||||
"""
|
||||
Fetches and formats relevant user information from User Memory.
|
||||
Args:
|
||||
query (str): The search query to find relevant user memories.
|
||||
Returns:
|
||||
str: Formatted user memories as bullet points, or an empty string if none found.
|
||||
"""
|
||||
user_memories = self.um.search(query)
|
||||
if not user_memories:
|
||||
return ""
|
||||
|
||||
formatted_memories = "\n".join(
|
||||
f"- {result['memory']}" for result in user_memories
|
||||
)
|
||||
return f"User memories/preferences:\n{formatted_memories}"
|
||||
|
||||
@@ -11,43 +11,21 @@ class EntityMemory(Memory):
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="entities", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
)
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
if self.memory_provider == "mem0":
|
||||
data = f"""
|
||||
Remember details about the following entity:
|
||||
Name: {item.name}
|
||||
Type: {item.type}
|
||||
Entity Description: {item.description}
|
||||
"""
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
|
||||
def reset(self) -> None:
|
||||
|
||||
@@ -23,12 +23,5 @@ class Memory:
|
||||
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
)
|
||||
def search(self, query: str) -> List[Dict[str, Any]]:
|
||||
return self.storage.search(query)
|
||||
|
||||
@@ -14,27 +14,13 @@ class ShortTermMemory(Memory):
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None):
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="short_term", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(
|
||||
@@ -44,20 +30,11 @@ class ShortTermMemory(Memory):
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self.memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
):
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
def search(self, query: str, score_threshold: float = 0.35):
|
||||
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -7,10 +7,8 @@ class Storage:
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
pass
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int, score_threshold: float
|
||||
) -> Dict[str, Any] | List[Any]:
|
||||
return {}
|
||||
def search(self, key: str) -> List[Dict[str, Any]]: # type: ignore
|
||||
pass
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
|
||||
@@ -103,7 +103,7 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
else value
|
||||
)
|
||||
|
||||
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?" # nosec
|
||||
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
|
||||
values.append(task_index)
|
||||
|
||||
cursor.execute(query, tuple(values))
|
||||
|
||||
@@ -83,7 +83,7 @@ class LTMSQLiteStorage:
|
||||
WHERE task_description = ?
|
||||
ORDER BY datetime DESC, score ASC
|
||||
LIMIT {latest_n}
|
||||
""", # nosec
|
||||
""",
|
||||
(task_description,),
|
||||
)
|
||||
rows = cursor.fetchall()
|
||||
|
||||
@@ -1,104 +0,0 @@
|
||||
import os
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from mem0 import MemoryClient
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
|
||||
class Mem0Storage(Storage):
|
||||
"""
|
||||
Extends Storage to handle embedding and searching across entities using Mem0.
|
||||
"""
|
||||
|
||||
def __init__(self, type, crew=None):
|
||||
super().__init__()
|
||||
|
||||
if type not in ["user", "short_term", "long_term", "entities"]:
|
||||
raise ValueError("Invalid type for Mem0Storage. Must be 'user' or 'agent'.")
|
||||
|
||||
self.memory_type = type
|
||||
self.crew = crew
|
||||
self.memory_config = crew.memory_config
|
||||
|
||||
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
|
||||
user_id = self._get_user_id()
|
||||
if type == "user" and not user_id:
|
||||
raise ValueError("User ID is required for user memory type")
|
||||
|
||||
# API key in memory config overrides the environment variable
|
||||
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
|
||||
"MEM0_API_KEY"
|
||||
)
|
||||
self.memory = MemoryClient(api_key=mem0_api_key)
|
||||
|
||||
def _sanitize_role(self, role: str) -> str:
|
||||
"""
|
||||
Sanitizes agent roles to ensure valid directory names.
|
||||
"""
|
||||
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
user_id = self._get_user_id()
|
||||
agent_name = self._get_agent_name()
|
||||
if self.memory_type == "user":
|
||||
self.memory.add(value, user_id=user_id, metadata={**metadata})
|
||||
elif self.memory_type == "short_term":
|
||||
agent_name = self._get_agent_name()
|
||||
self.memory.add(
|
||||
value, agent_id=agent_name, metadata={"type": "short_term", **metadata}
|
||||
)
|
||||
elif self.memory_type == "long_term":
|
||||
agent_name = self._get_agent_name()
|
||||
self.memory.add(
|
||||
value,
|
||||
agent_id=agent_name,
|
||||
infer=False,
|
||||
metadata={"type": "long_term", **metadata},
|
||||
)
|
||||
elif self.memory_type == "entities":
|
||||
entity_name = None
|
||||
self.memory.add(
|
||||
value, user_id=entity_name, metadata={"type": "entity", **metadata}
|
||||
)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
params = {"query": query, "limit": limit}
|
||||
if self.memory_type == "user":
|
||||
user_id = self._get_user_id()
|
||||
params["user_id"] = user_id
|
||||
elif self.memory_type == "short_term":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "short_term"}
|
||||
elif self.memory_type == "long_term":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "long_term"}
|
||||
elif self.memory_type == "entities":
|
||||
agent_name = self._get_agent_name()
|
||||
params["agent_id"] = agent_name
|
||||
params["metadata"] = {"type": "entity"}
|
||||
|
||||
# Discard the filters for now since we create the filters
|
||||
# automatically when the crew is created.
|
||||
results = self.memory.search(**params)
|
||||
return [r for r in results if r["score"] >= score_threshold]
|
||||
|
||||
def _get_user_id(self):
|
||||
if self.memory_type == "user":
|
||||
if hasattr(self, "memory_config") and self.memory_config is not None:
|
||||
return self.memory_config.get("config", {}).get("user_id")
|
||||
else:
|
||||
return None
|
||||
return None
|
||||
|
||||
def _get_agent_name(self):
|
||||
agents = self.crew.agents if self.crew else []
|
||||
agents = [self._sanitize_role(agent.role) for agent in agents]
|
||||
agents = "_".join(agents)
|
||||
return agents
|
||||
@@ -51,6 +51,8 @@ class RAGStorage(BaseRAGStorage):
|
||||
self._initialize_app()
|
||||
|
||||
def _set_embedder_config(self):
|
||||
import chromadb.utils.embedding_functions as embedding_functions
|
||||
|
||||
if self.embedder_config is None:
|
||||
self.embedder_config = self._create_default_embedding_function()
|
||||
|
||||
@@ -59,20 +61,12 @@ class RAGStorage(BaseRAGStorage):
|
||||
config = self.embedder_config.get("config", {})
|
||||
model_name = config.get("model")
|
||||
if provider == "openai":
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = OpenAIEmbeddingFunction(
|
||||
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
|
||||
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
|
||||
model_name=model_name,
|
||||
)
|
||||
elif provider == "azure":
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = OpenAIEmbeddingFunction(
|
||||
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
|
||||
api_key=config.get("api_key"),
|
||||
api_base=config.get("api_base"),
|
||||
api_type=config.get("api_type", "azure"),
|
||||
@@ -80,55 +74,45 @@ class RAGStorage(BaseRAGStorage):
|
||||
model_name=model_name,
|
||||
)
|
||||
elif provider == "ollama":
|
||||
from chromadb.utils.embedding_functions.ollama_embedding_function import (
|
||||
OllamaEmbeddingFunction,
|
||||
)
|
||||
from openai import OpenAI
|
||||
|
||||
self.embedder_config = OllamaEmbeddingFunction(
|
||||
url=config.get("url", "http://localhost:11434/api/embeddings"),
|
||||
model_name=model_name,
|
||||
)
|
||||
class OllamaEmbeddingFunction(EmbeddingFunction):
|
||||
def __call__(self, input: Documents) -> Embeddings:
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:11434/v1",
|
||||
api_key=config.get("api_key", "ollama"),
|
||||
)
|
||||
try:
|
||||
response = client.embeddings.create(
|
||||
input=input, model=model_name
|
||||
)
|
||||
embeddings = [item.embedding for item in response.data]
|
||||
return cast(Embeddings, embeddings)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
self.embedder_config = OllamaEmbeddingFunction()
|
||||
elif provider == "vertexai":
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleVertexEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
self.embedder_config = (
|
||||
embedding_functions.GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
)
|
||||
elif provider == "google":
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleGenerativeAiEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
self.embedder_config = (
|
||||
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
)
|
||||
elif provider == "cohere":
|
||||
from chromadb.utils.embedding_functions.cohere_embedding_function import (
|
||||
CohereEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = CohereEmbeddingFunction(
|
||||
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
elif provider == "bedrock":
|
||||
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
|
||||
AmazonBedrockEmbeddingFunction,
|
||||
)
|
||||
|
||||
self.embedder_config = AmazonBedrockEmbeddingFunction(
|
||||
session=config.get("session"),
|
||||
)
|
||||
elif provider == "huggingface":
|
||||
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
|
||||
HuggingFaceEmbeddingServer,
|
||||
)
|
||||
|
||||
self.embedder_config = HuggingFaceEmbeddingServer(
|
||||
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
|
||||
url=config.get("api_url"),
|
||||
)
|
||||
elif provider == "watson":
|
||||
@@ -269,10 +253,8 @@ class RAGStorage(BaseRAGStorage):
|
||||
)
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
import chromadb.utils.embedding_functions as embedding_functions
|
||||
|
||||
return OpenAIEmbeddingFunction(
|
||||
return embedding_functions.OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
@@ -1,45 +0,0 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from crewai.memory.memory import Memory
|
||||
|
||||
|
||||
class UserMemory(Memory):
|
||||
"""
|
||||
UserMemory class for handling user memory storage and retrieval.
|
||||
Inherits from the Memory class and utilizes an instance of a class that
|
||||
adheres to the Storage for data storage, specifically working with
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None):
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="user", crew=crew)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(
|
||||
self,
|
||||
value,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
# TODO: Change this function since we want to take care of the case where we save memories for the usr
|
||||
data = f"Remember the details about the user: {value}"
|
||||
super().save(data, metadata)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
):
|
||||
results = super().search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
return results
|
||||
@@ -1,8 +0,0 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
class UserMemoryItem:
|
||||
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
|
||||
self.data = data
|
||||
self.user = user
|
||||
self.metadata = metadata if metadata is not None else {}
|
||||
@@ -8,7 +8,6 @@ class UsageMetrics(BaseModel):
|
||||
Attributes:
|
||||
total_tokens: Total number of tokens used.
|
||||
prompt_tokens: Number of tokens used in prompts.
|
||||
cached_prompt_tokens: Number of cached prompt tokens used.
|
||||
completion_tokens: Number of tokens used in completions.
|
||||
successful_requests: Number of successful requests made.
|
||||
"""
|
||||
@@ -17,9 +16,6 @@ class UsageMetrics(BaseModel):
|
||||
prompt_tokens: int = Field(
|
||||
default=0, description="Number of tokens used in prompts."
|
||||
)
|
||||
cached_prompt_tokens: int = Field(
|
||||
default=0, description="Number of cached prompt tokens used."
|
||||
)
|
||||
completion_tokens: int = Field(
|
||||
default=0, description="Number of tokens used in completions."
|
||||
)
|
||||
@@ -36,6 +32,5 @@ class UsageMetrics(BaseModel):
|
||||
"""
|
||||
self.total_tokens += usage_metrics.total_tokens
|
||||
self.prompt_tokens += usage_metrics.prompt_tokens
|
||||
self.cached_prompt_tokens += usage_metrics.cached_prompt_tokens
|
||||
self.completion_tokens += usage_metrics.completion_tokens
|
||||
self.successful_requests += usage_metrics.successful_requests
|
||||
|
||||
@@ -16,11 +16,7 @@ class FileHandler:
|
||||
|
||||
def log(self, **kwargs):
|
||||
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
message = (
|
||||
f"{now}: "
|
||||
+ ", ".join([f'{key}="{value}"' for key, value in kwargs.items()])
|
||||
+ "\n"
|
||||
)
|
||||
message = f"{now}: " + ", ".join([f"{key}=\"{value}\"" for key, value in kwargs.items()]) + "\n"
|
||||
with open(self._path, "a", encoding="utf-8") as file:
|
||||
file.write(message + "\n")
|
||||
|
||||
@@ -67,7 +63,7 @@ class PickleHandler:
|
||||
|
||||
with open(self.file_path, "rb") as file:
|
||||
try:
|
||||
return pickle.load(file) # nosec
|
||||
return pickle.load(file)
|
||||
except EOFError:
|
||||
return {} # Return an empty dictionary if the file is empty or corrupted
|
||||
except Exception:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.types.utils import Usage
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
|
||||
|
||||
@@ -11,11 +11,8 @@ class TokenCalcHandler(CustomLogger):
|
||||
if self.token_cost_process is None:
|
||||
return
|
||||
|
||||
usage : Usage = response_obj["usage"]
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(
|
||||
response_obj["usage"].completion_tokens
|
||||
)
|
||||
|
||||
@@ -10,8 +10,7 @@ interactions:
|
||||
criteria for your final answer: 1 bullet point about dog that''s under 15 words.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -20,50 +19,49 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '919'
|
||||
- '869'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86ysWPEuB7ciV7VuAIkUObQ+59QFhTa0kttQuS9Jx08D/XkhyLAVJ
|
||||
gV4EaGdnMLPDpwRAmUrtQOkWo+6czW7u41q2t3+cvCvuPvxafSG+58XHTzXlxWeV9gzZ/yAdn1lX
|
||||
WjpnKRrhEdaeMFKvuiyul3m+uV7lA9BJRbanNS5muWSdYZOtFqs8WxTZcnNmt2I0BbWDrwkAwNPw
|
||||
7X1yRb/VDhbp86SjELAhtbssASgvtp8oDMGEiBxVOoFaOBIP1u+A5QgaGRrzQIDQ9LYBORzJA3zj
|
||||
W8No4Wb438F7aQKgJ7DyiBb6zMhGOKRA3CJrww10xBEttIQ2toBcgTyQR2vhSNZmezLcXM39eKoP
|
||||
Afub8MHa8/x0CWilcV724Yxf5rVhE9rSEwbhPkyI4tSAnhKA78MhDy9uo5yXzsUyyk/iMHSzHvXU
|
||||
1N+Ejo0BqCgR7Yy13aZv6JUVRTQ2zKpQGnVL1USdesNDZWQGJLPUr928pT0mN9z8j/wEaE0uUlU6
|
||||
T5XRLxNPa5765/2vtcuVB8MqPIZIXVkbbsg7b8bHVbuyXm9xs8xXRa2SU/IXAAD//wMAq2ZCBWoD
|
||||
AAA=
|
||||
content: "{\n \"id\": \"chatcmpl-AB7auGDrAVE0iXSBBhySZp3xE8gvP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer\\nFinal
|
||||
Answer: Dogs are unparalleled in loyalty and companionship to humans.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
|
||||
21,\n \"total_tokens\": 196,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e19bf36db158761-GRU
|
||||
- 8c85f22ddda01cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -71,27 +69,19 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 21:52:04 GMT
|
||||
- Tue, 24 Sep 2024 21:42:44 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
path=/; expires=Tue, 12-Nov-24 22:22:04 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '601'
|
||||
- '349'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -99,20 +89,19 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199793'
|
||||
- '29999792'
|
||||
x-ratelimit-reset-requests:
|
||||
- 8.64s
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 62ms
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_77fb166b4e272bfd45c37c08d2b93b0c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- req_4c8cd76fdfba7b65e5ce85397b33c22b
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
|
||||
have a lot of experience with cat.\nYour personal goal is: Express hot takes
|
||||
@@ -124,8 +113,7 @@ interactions:
|
||||
criteria for your final answer: 1 bullet point about cat that''s under 15 words.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -134,53 +122,49 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '919'
|
||||
- '869'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86ysWPFuB7MhN6ltQIGmBnlL00BcEmlxJ21JLhlzFLQL/eyH5IRlt
|
||||
gV4EaGZnMLPLlwxAkVUbUKbVYrrg8rsPsg4P+Orxs9XvPz0U8eP966dS6sdo3wa1GBR++x2NnFRX
|
||||
xnfBoZDnA20iasHBdXlzvSzL2+vVeiQ6b9ENsiZIXvq8I6Z8VazKvLjJl7dHdevJYFIb+JIBALyM
|
||||
3yEnW/ypNlAsTkiHKekG1eY8BKCidwOidEqURLOoxUQaz4I8Rn8H7HdgNENDzwgamiE2aE47jABf
|
||||
+Z5YO7gb/zfwRksCHRGGGAHZIg/D1GmXFiBtpGfiBjyDtEgR/I5BMHYJNFvomZ56hIAxedaOhDBd
|
||||
zYNFrPukh+Vw79wR35+bOt+E6LfpyJ/xmphSW0XUyfPQKokPamT3GcC3caP9xZJUiL4LUon/gZzG
|
||||
I60Pfmo65MSuTqR40W6GF8c7XPpVFkWTS7ObKKNNi3aSTgfUvSU/I7JZ6z/T/M370Jy4+R/7iTAG
|
||||
g6CtQkRL5rLxNBZxeOf/GjtveQys0q8k2FU1cYMxRDq8sjpUxVYXdrkq66XK9tlvAAAA//8DAIjK
|
||||
KzJzAwAA
|
||||
content: "{\n \"id\": \"chatcmpl-AB7auNbAqjT3rgBX92rhxBLuhaLBj\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
|
||||
Answer: Cats are highly independent, agile, and intuitive creatures beloved
|
||||
by millions worldwide.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
175,\n \"completion_tokens\": 28,\n \"total_tokens\": 203,\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e19bf3fae118761-GRU
|
||||
- 8c85f2321c1c1cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -188,7 +172,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 21:52:05 GMT
|
||||
- Tue, 24 Sep 2024 21:42:45 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -197,12 +181,10 @@ interactions:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '464'
|
||||
- '430'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -210,20 +192,19 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9998'
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199792'
|
||||
- '29999792'
|
||||
x-ratelimit-reset-requests:
|
||||
- 16.369s
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 62ms
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_91706b23d0ef23458ba63ec18304cd28
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- req_ace859b7d9e83d9fa7753ce23bb03716
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
|
||||
You have a lot of experience with apple.\nYour personal goal is: Express hot
|
||||
@@ -236,7 +217,7 @@ interactions:
|
||||
under 15 words.\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
"gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -245,53 +226,49 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '929'
|
||||
- '879'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
|
||||
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSPW/bMBDd9SsOXLpIgeTITarNS4t26JJubSHQ5IliSh1ZHv0RBP7vhSTHctAU
|
||||
6CJQ7909vHd3zxmAsFo0IFQvkxqCKzYPaf1b2/hhW+8PR9N9Kh9W5Zdhjebr4zeRjx1++4gqvXTd
|
||||
KD8Eh8l6mmkVUSYcVau726qu729X7ydi8Brd2GZCKmpfDJZssSpXdVHeFdX9ubv3ViGLBr5nAADP
|
||||
03f0SRqPooEyf0EGZJYGRXMpAhDRuxERktlykpREvpDKU0KarH8G8gdQksDYPYIEM9oGSXzACPCD
|
||||
PlqSDjbTfwObEBy+Y0Dl+YkTDmApoYkyIUMvoz7IiDmw79L8kqSBMe7HMMAoB4fM7ikHpF6SsmRg
|
||||
xxgBjwGjRVJ4c+00YrdjOU6Lds6d8dMluvMmRL/lM3/BO0uW+zaiZE9jTE4+iIk9ZQA/pxHvXk1N
|
||||
hOiHkNrkfyHxtLX1rCeWzS7svEsAkXyS7govq/wNvVZjktbx1ZKEkqpHvbQuG5U7bf0VkV2l/tvN
|
||||
W9pzckvmf+QXQikMCXUbImqrXideyiKOh/+vssuUJ8NiPpO2s2Qwhmjns+tCW25lqatV3VUiO2V/
|
||||
AAAA//8DAPtpFJCEAwAA
|
||||
content: "{\n \"id\": \"chatcmpl-AB7avZ0yqY18ukQS7SnLkZydsx72b\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214165,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer.\\n\\nFinal
|
||||
Answer: Apples are incredibly versatile, nutritious, and a staple in diets globally.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
|
||||
25,\n \"total_tokens\": 200,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_a5d11b2ef2\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e19bf447ba48761-GRU
|
||||
- 8c85f2369a761cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -299,7 +276,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 21:52:06 GMT
|
||||
- Tue, 24 Sep 2024 21:42:46 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -308,12 +285,10 @@ interactions:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '655'
|
||||
- '389'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -321,18 +296,17 @@ interactions:
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9997'
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199791'
|
||||
- '29999791'
|
||||
x-ratelimit-reset-requests:
|
||||
- 24.239s
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 62ms
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a228208b0e965ecee334a6947d6c9e7c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- req_0167388f0a7a7f1a1026409834ceb914
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -564,7 +564,6 @@ def test_crew_kickoff_usage_metrics():
|
||||
assert result.token_usage.prompt_tokens > 0
|
||||
assert result.token_usage.completion_tokens > 0
|
||||
assert result.token_usage.successful_requests > 0
|
||||
assert result.token_usage.cached_prompt_tokens == 0
|
||||
|
||||
|
||||
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
|
||||
@@ -1285,7 +1284,6 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
|
||||
prompt_tokens=1562,
|
||||
completion_tokens=111,
|
||||
successful_requests=3,
|
||||
cached_prompt_tokens=0
|
||||
)
|
||||
|
||||
|
||||
@@ -1779,22 +1777,26 @@ def test_crew_train_success(
|
||||
]
|
||||
)
|
||||
|
||||
crew_training_handler.assert_any_call("training_data.pkl")
|
||||
crew_training_handler().load.assert_called()
|
||||
|
||||
crew_training_handler.assert_any_call("trained_agents_data.pkl")
|
||||
crew_training_handler().load.assert_called()
|
||||
|
||||
crew_training_handler().save_trained_data.assert_has_calls([
|
||||
mock.call(
|
||||
agent_id="Researcher",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call(
|
||||
agent_id="Senior Writer",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
)
|
||||
])
|
||||
crew_training_handler.assert_has_calls(
|
||||
[
|
||||
mock.call("training_data.pkl"),
|
||||
mock.call().load(),
|
||||
mock.call("trained_agents_data.pkl"),
|
||||
mock.call().save_trained_data(
|
||||
agent_id="Researcher",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call("trained_agents_data.pkl"),
|
||||
mock.call().save_trained_data(
|
||||
agent_id="Senior Writer",
|
||||
trained_data=task_evaluator().evaluate_training_data().model_dump(),
|
||||
),
|
||||
mock.call(),
|
||||
mock.call().load(),
|
||||
mock.call(),
|
||||
mock.call().load(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def test_crew_train_error():
|
||||
|
||||
@@ -1,270 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: ''
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: GET
|
||||
uri: https://api.mem0.ai/v1/memories/?user_id=test
|
||||
response:
|
||||
body:
|
||||
string: '[]'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b477138bad847b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:11 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=uuyH2foMJVDpV%2FH52g1q%2FnvXKe3dBKVzvsK0mqmSNezkiszNR9OgrEJfVqmkX%2FlPFRP2sH4zrOuzGo6k%2FjzsjYJczqSWJUZHN2pPujiwnr1E9W%2BdLGKmG6%2FqPrGYAy2SBRWkkJVWsTO3OQ%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- GET, POST, DELETE, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
|
||||
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
|
||||
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
|
||||
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
|
||||
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
|
||||
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:11.526640+00:00", "context":
|
||||
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.init"}],
|
||||
"historical_migration": false, "sentAt": "2024-08-17T06:00:11.701621+00:00",
|
||||
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '740'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- posthog-python/3.5.0
|
||||
method: POST
|
||||
uri: https://us.i.posthog.com/batch/
|
||||
response:
|
||||
body:
|
||||
string: '{"status":"Ok"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '15'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:12 GMT
|
||||
access-control-allow-credentials:
|
||||
- 'true'
|
||||
server:
|
||||
- envoy
|
||||
vary:
|
||||
- origin, access-control-request-method, access-control-request-headers
|
||||
x-envoy-upstream-service-time:
|
||||
- '69'
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Remember the following insights
|
||||
from Agent run: test value with provider"}], "metadata": {"task": "test_task_provider",
|
||||
"agent": "test_agent_provider"}, "app_id": "Researcher"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '219'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: POST
|
||||
uri: https://api.mem0.ai/v1/memories/
|
||||
response:
|
||||
body:
|
||||
string: '{"message":"ok"}'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b477140282547b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '16'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:13 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=FRjJKSk3YxVj03wA7S05H8ts35KnWfqS3wb6Rfy4kVZ4BgXfw7nJbm92wI6vEv5fWcAcHVnOlkJDggs11B01BMuB2k3a9RqlBi0dJNiMuk%2Bgm5xE%2BODMPWJctYNRwQMjNVbteUpS%2Fad8YA%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- GET, POST, DELETE, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"query": "test value with provider", "limit": 3, "app_id": "Researcher"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '73'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.mem0.ai
|
||||
user-agent:
|
||||
- python-httpx/0.27.0
|
||||
method: POST
|
||||
uri: https://api.mem0.ai/v1/memories/search/
|
||||
response:
|
||||
body:
|
||||
string: '[]'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8b47714d083b47b9-BOM
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:14 GMT
|
||||
NEL:
|
||||
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
|
||||
Report-To:
|
||||
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=2DRWL1cdKdMvnE8vx1fPUGeTITOgSGl3N5g84PS6w30GRqpfz79BtSx6REhpnOiFV8kM6KGqln0iCZ5yoHc2jBVVJXhPJhQ5t0uerD9JFnkphjISrJOU1MJjZWneT9PlNABddxvVNCmluA%3D%3D"}],"group":"cf-nel","max_age":604800}'
|
||||
Server:
|
||||
- cloudflare
|
||||
allow:
|
||||
- POST, OPTIONS
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cross-origin-opener-policy:
|
||||
- same-origin
|
||||
referrer-policy:
|
||||
- same-origin
|
||||
vary:
|
||||
- Accept, origin, Cookie
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- DENY
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
|
||||
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
|
||||
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
|
||||
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
|
||||
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
|
||||
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:13.593952+00:00", "context":
|
||||
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.add"}],
|
||||
"historical_migration": false, "sentAt": "2024-08-17T06:00:13.858277+00:00",
|
||||
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '739'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- posthog-python/3.5.0
|
||||
method: POST
|
||||
uri: https://us.i.posthog.com/batch/
|
||||
response:
|
||||
body:
|
||||
string: '{"status":"Ok"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '15'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 17 Aug 2024 06:00:13 GMT
|
||||
access-control-allow-credentials:
|
||||
- 'true'
|
||||
server:
|
||||
- envoy
|
||||
vary:
|
||||
- origin, access-control-request-method, access-control-request-headers
|
||||
x-envoy-upstream-service-time:
|
||||
- '33'
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
84
uv.lock
generated
84
uv.lock
generated
@@ -490,32 +490,28 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "chroma-hnswlib"
|
||||
version = "0.7.6"
|
||||
version = "0.7.3"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/73/09/10d57569e399ce9cbc5eee2134996581c957f63a9addfa6ca657daf006b8/chroma_hnswlib-0.7.6.tar.gz", hash = "sha256:4dce282543039681160259d29fcde6151cc9106c6461e0485f57cdccd83059b7", size = 32256 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c0/59/1224cbae62c7b84c84088cdf6c106b9b2b893783c000d22c442a1672bc75/chroma-hnswlib-0.7.3.tar.gz", hash = "sha256:b6137bedde49fffda6af93b0297fe00429fc61e5a072b1ed9377f909ed95a932", size = 31876 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a8/74/b9dde05ea8685d2f8c4681b517e61c7887e974f6272bb24ebc8f2105875b/chroma_hnswlib-0.7.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f35192fbbeadc8c0633f0a69c3d3e9f1a4eab3a46b65458bbcbcabdd9e895c36", size = 195821 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/58/101bfa6bc41bc6cc55fbb5103c75462a7bf882e1704256eb4934df85b6a8/chroma_hnswlib-0.7.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f007b608c96362b8f0c8b6b2ac94f67f83fcbabd857c378ae82007ec92f4d82", size = 183854 },
|
||||
{ url = "https://files.pythonhosted.org/packages/17/ff/95d49bb5ce134f10d6aa08d5f3bec624eaff945f0b17d8c3fce888b9a54a/chroma_hnswlib-0.7.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:456fd88fa0d14e6b385358515aef69fc89b3c2191706fd9aee62087b62aad09c", size = 2358774 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/6d/27826180a54df80dbba8a4f338b022ba21c0c8af96fd08ff8510626dee8f/chroma_hnswlib-0.7.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5dfaae825499c2beaa3b75a12d7ec713b64226df72a5c4097203e3ed532680da", size = 2392739 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/63/ee3e8b7a8f931918755faacf783093b61f32f59042769d9db615999c3de0/chroma_hnswlib-0.7.6-cp310-cp310-win_amd64.whl", hash = "sha256:2487201982241fb1581be26524145092c95902cb09fc2646ccfbc407de3328ec", size = 150955 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f5/af/d15fdfed2a204c0f9467ad35084fbac894c755820b203e62f5dcba2d41f1/chroma_hnswlib-0.7.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:81181d54a2b1e4727369486a631f977ffc53c5533d26e3d366dda243fb0998ca", size = 196911 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/19/aa6f2139f1ff7ad23a690ebf2a511b2594ab359915d7979f76f3213e46c4/chroma_hnswlib-0.7.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4b4ab4e11f1083dd0a11ee4f0e0b183ca9f0f2ed63ededba1935b13ce2b3606f", size = 185000 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/b1/1b269c750e985ec7d40b9bbe7d66d0a890e420525187786718e7f6b07913/chroma_hnswlib-0.7.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53db45cd9173d95b4b0bdccb4dbff4c54a42b51420599c32267f3abbeb795170", size = 2377289 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/2d/d5663e134436e5933bc63516a20b5edc08b4c1b1588b9680908a5f1afd04/chroma_hnswlib-0.7.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c093f07a010b499c00a15bc9376036ee4800d335360570b14f7fe92badcdcf9", size = 2411755 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/79/1bce519cf186112d6d5ce2985392a89528c6e1e9332d680bf752694a4cdf/chroma_hnswlib-0.7.6-cp311-cp311-win_amd64.whl", hash = "sha256:0540b0ac96e47d0aa39e88ea4714358ae05d64bbe6bf33c52f316c664190a6a3", size = 151888 },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/ac/782b8d72de1c57b64fdf5cb94711540db99a92768d93d973174c62d45eb8/chroma_hnswlib-0.7.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e87e9b616c281bfbe748d01705817c71211613c3b063021f7ed5e47173556cb7", size = 197804 },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/4e/fd9ce0764228e9a98f6ff46af05e92804090b5557035968c5b4198bc7af9/chroma_hnswlib-0.7.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ec5ca25bc7b66d2ecbf14502b5729cde25f70945d22f2aaf523c2d747ea68912", size = 185421 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/3d/b59a8dedebd82545d873235ef2d06f95be244dfece7ee4a1a6044f080b18/chroma_hnswlib-0.7.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:305ae491de9d5f3c51e8bd52d84fdf2545a4a2bc7af49765cda286b7bb30b1d4", size = 2389672 },
|
||||
{ url = "https://files.pythonhosted.org/packages/74/1e/80a033ea4466338824974a34f418e7b034a7748bf906f56466f5caa434b0/chroma_hnswlib-0.7.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:822ede968d25a2c88823ca078a58f92c9b5c4142e38c7c8b4c48178894a0a3c5", size = 2436986 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/36/d1069ffa520efcf93f6d81b527e3c7311e12363742fdc786cbdaea3ab02e/chroma_hnswlib-0.7.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:59d6a7c6f863c67aeb23e79a64001d537060b6995c3eca9a06e349ff7b0998ca", size = 219588 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c3/e8/263d331f5ce29367f6f8854cd7fa1f54fce72ab4f92ab957525ef9165a9c/chroma_hnswlib-0.7.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d71a3f4f232f537b6152947006bd32bc1629a8686df22fd97777b70f416c127a", size = 197094 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/72/a9b61ae00d490c26359a8e10f3974c0d38065b894e6a2573ec6a7597f8e3/chroma_hnswlib-0.7.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c92dc1ebe062188e53970ba13f6b07e0ae32e64c9770eb7f7ffa83f149d4210", size = 2315620 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/48/f7609a3cb15a24c5d8ec18911ce10ac94144e9a89584f0a86bf9871b024c/chroma_hnswlib-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49da700a6656fed8753f68d44b8cc8ae46efc99fc8a22a6d970dc1697f49b403", size = 2350956 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/3d/ca311b8f79744db3f4faad8fd9140af80d34c94829d3ed1726c98cf4a611/chroma_hnswlib-0.7.3-cp310-cp310-win_amd64.whl", hash = "sha256:108bc4c293d819b56476d8f7865803cb03afd6ca128a2a04d678fffc139af029", size = 150598 },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/3f/844393b0d2ea1072b7704d6eff5c595e05ae8b831b96340cdb76b2fe995c/chroma_hnswlib-0.7.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:11e7ca93fb8192214ac2b9c0943641ac0daf8f9d4591bb7b73be808a83835667", size = 221219 },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/7a/673ccb9bb2faf9cf655d9040e970c02a96645966e06837fde7d10edf242a/chroma_hnswlib-0.7.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6f552e4d23edc06cdeb553cdc757d2fe190cdeb10d43093d6a3319f8d4bf1c6b", size = 198652 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ba/f4/c81a40da5473d5d80fc9d0c5bd5b1cb64e530a6ea941c69f195fe81c488c/chroma_hnswlib-0.7.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f96f4d5699e486eb1fb95849fe35ab79ab0901265805be7e60f4eaa83ce263ec", size = 2332260 },
|
||||
{ url = "https://files.pythonhosted.org/packages/48/0e/068b658a547d6090b969014146321e28dae1411da54b76d081e51a2af22b/chroma_hnswlib-0.7.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:368e57fe9ebae05ee5844840fa588028a023d1182b0cfdb1d13f607c9ea05756", size = 2367211 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/32/a91850c7aa8a34f61838913155103808fe90da6f1ea4302731b59e9ba6f2/chroma_hnswlib-0.7.3-cp311-cp311-win_amd64.whl", hash = "sha256:b7dca27b8896b494456db0fd705b689ac6b73af78e186eb6a42fea2de4f71c6f", size = 151574 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "chromadb"
|
||||
version = "0.5.18"
|
||||
version = "0.4.24"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "bcrypt" },
|
||||
@@ -523,7 +519,6 @@ dependencies = [
|
||||
{ name = "chroma-hnswlib" },
|
||||
{ name = "fastapi" },
|
||||
{ name = "grpcio" },
|
||||
{ name = "httpx" },
|
||||
{ name = "importlib-resources" },
|
||||
{ name = "kubernetes" },
|
||||
{ name = "mmh3" },
|
||||
@@ -536,10 +531,11 @@ dependencies = [
|
||||
{ name = "orjson" },
|
||||
{ name = "overrides" },
|
||||
{ name = "posthog" },
|
||||
{ name = "pulsar-client" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "pypika" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "rich" },
|
||||
{ name = "requests" },
|
||||
{ name = "tenacity" },
|
||||
{ name = "tokenizers" },
|
||||
{ name = "tqdm" },
|
||||
@@ -547,9 +543,9 @@ dependencies = [
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "uvicorn", extra = ["standard"] },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/15/95/d1a3f14c864e37d009606b82bd837090902b5e5a8e892fcab07eeaec0438/chromadb-0.5.18.tar.gz", hash = "sha256:cfbb3e5aeeb1dd532b47d80ed9185e8a9886c09af41c8e6123edf94395d76aec", size = 33620708 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/47/6b/a5465827d8017b658d18ad1e63d2dc31109dec717c6bd068e82485186f4b/chromadb-0.4.24.tar.gz", hash = "sha256:a5c80b4e4ad9b236ed2d4899a5b9e8002b489293f2881cb2cadab5b199ee1c72", size = 13667084 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/82/85/4d2f8b9202153105ad4514ae09e9fe6f3b353a45e44e0ef7eca03dd8b9dc/chromadb-0.5.18-py3-none-any.whl", hash = "sha256:9dd3827b5e04b4ff0a5ea0df28a78bac88a09f45be37fcd7fe20f879b57c43cf", size = 615499 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/63/b7d76109331318423f9cfb89bd89c99e19f5d0b47a5105439a629224d297/chromadb-0.4.24-py3-none-any.whl", hash = "sha256:3a08e237a4ad28b5d176685bd22429a03717fe09d35022fb230d516108da01da", size = 525452 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -638,9 +634,6 @@ dependencies = [
|
||||
agentops = [
|
||||
{ name = "agentops" },
|
||||
]
|
||||
mem0 = [
|
||||
{ name = "mem0ai" },
|
||||
]
|
||||
tools = [
|
||||
{ name = "crewai-tools" },
|
||||
]
|
||||
@@ -670,7 +663,7 @@ requires-dist = [
|
||||
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
|
||||
{ name = "appdirs", specifier = ">=1.4.4" },
|
||||
{ name = "auth0-python", specifier = ">=4.7.1" },
|
||||
{ name = "chromadb", specifier = ">=0.5.18" },
|
||||
{ name = "chromadb", specifier = ">=0.4.24" },
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", specifier = ">=0.14.0" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
|
||||
@@ -679,7 +672,6 @@ requires-dist = [
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
{ name = "langchain", specifier = ">=0.2.16" },
|
||||
{ name = "litellm", specifier = ">=1.44.22" },
|
||||
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
|
||||
{ name = "openai", specifier = ">=1.13.3" },
|
||||
{ name = "opentelemetry-api", specifier = ">=1.22.0" },
|
||||
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.22.0" },
|
||||
@@ -897,7 +889,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "embedchain"
|
||||
version = "0.1.125"
|
||||
version = "0.1.123"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "alembic" },
|
||||
@@ -922,9 +914,9 @@ dependencies = [
|
||||
{ name = "sqlalchemy" },
|
||||
{ name = "tiktoken" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/6c/ea/eedb6016719f94fe4bd4c5aa44cc5463d85494bbd0864cc465e4317d4987/embedchain-0.1.125.tar.gz", hash = "sha256:15a6d368b48ba33feb93b237caa54f6e9078537c02a49c1373e59cc32627a138", size = 125176 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/5d/6a/955b5a72fa6727db203c4d46ae0e30ac47f4f50389f663cd5ea157b0d819/embedchain-0.1.123.tar.gz", hash = "sha256:aecaf81c21de05b5cdb649b6cde95ef68ffa759c69c54f6ff2eaa667f2ad0580", size = 124797 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/52/82/3d0355c22bc68cfbb8fbcf670da4c01b31bd7eb516974a08cf7533e89887/embedchain-0.1.125-py3-none-any.whl", hash = "sha256:f87b49732dc192c6b61221830f29e59cf2aff26d8f5d69df81f6f6cf482715c2", size = 211367 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/51/0c78d26da4afbe68370306669556b274f1021cac02f3155d8da2be407763/embedchain-0.1.123-py3-none-any.whl", hash = "sha256:1210e993b6364d7c702b6bd44b053fc244dd77f2a65ea4b90b62709114ea6c25", size = 210909 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -2168,7 +2160,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mem0ai"
|
||||
version = "0.1.29"
|
||||
version = "0.1.22"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "openai" },
|
||||
@@ -2178,9 +2170,9 @@ dependencies = [
|
||||
{ name = "qdrant-client" },
|
||||
{ name = "sqlalchemy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a9/bf/152718f9da3844dd24d4c45850b2e719798b5ce9389adf4ec873ee8905ca/mem0ai-0.1.29.tar.gz", hash = "sha256:42adefb7a9b241be03fbcabadf5328abf91b4ac390bc97e5966e55e3cac192c5", size = 55201 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/7f/b4/64c6f7d9684bd1f9b46d251abfc7d5b2cc8371d70f1f9eec097f9872c719/mem0ai-0.1.22.tar.gz", hash = "sha256:d01aa028763719bd0ede2de4602121a7c3bf023f46112cd50cc9169140e11be2", size = 53117 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/65/9b/755be84f669415b3b513cfd935e768c4c84ac5c1ab6ff6ac2dab990a261a/mem0ai-0.1.29-py3-none-any.whl", hash = "sha256:07bbfd4238d0d7da65d5e4cf75a217eeb5b2829834e399074b05bb046730a57f", size = 79558 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/27/3ef75abb28bf8b46c2cc34730f6be733ef2584652474216215019ee036a2/mem0ai-0.1.22-py3-none-any.whl", hash = "sha256:c783e15131c16a0d91e44e30195c1eeae9c36468de40006d5e42cf4516059855", size = 75695 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3210,6 +3202,34 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pulsar-client"
|
||||
version = "3.5.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/aa/eb3b04be87b961324e49748f3a715a12127d45d76258150bfa61b2a002d8/pulsar_client-3.5.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:c18552edb2f785de85280fe624bc507467152bff810fc81d7660fa2dfa861f38", size = 10953552 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/20/d59bf89ccdda45edd89f5b54bd1e93605ebe5ad3cb73f4f4f5e8eca8f9e6/pulsar_client-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18d438e456c146f01be41ef146f649dedc8f7bc714d9eaef94cff2e34099812b", size = 5190714 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/02/ca7e96b97d564d0375b8e3de65f95ac86c8502c40f6ff750e9d145709d9a/pulsar_client-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18a26a0719841103c7a89eb1492c4a8fedf89adaa386375baecbb4fa2707e88f", size = 5429820 },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/f3/682670cdc951b830cd3d8d1287521997327254e59508772664aaa656e246/pulsar_client-3.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ab0e1605dc5f44a126163fd06cd0a768494ad05123f6e0de89a2c71d6e2d2319", size = 5710427 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/00/119cd039286dfc1c91a5580963e9ba79204cd4717b16b7a6fdc57d1c1673/pulsar_client-3.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:cdef720891b97656fdce3bf5913ea7729b2156b84ba64314f432c1e72c6117fa", size = 5916490 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/cc/d606b483dbb263cbaf7fc7c3d2ec4032628cf3324266cf9a4ccdb2a73076/pulsar_client-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:a42544e38773191fe550644a90e8050579476bb2dcf17ac69a4aed62a6cb70e7", size = 3305387 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/2e/aec6886a6d67f09230476182399b7fad694fbcbbaf004ce914725d4eddd9/pulsar_client-3.5.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:fd94432ea5d398ea78f8f2e09a217ec5058d26330c137a22690478c031e116da", size = 10954116 },
|
||||
{ url = "https://files.pythonhosted.org/packages/43/06/b98df9300f60e5fad3396f843dd633c31176a495a2d60ba111c99511658a/pulsar_client-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6252ae462e07ece4071213fdd9c76eab82ca522a749f2dc678037d4cbacd40b", size = 5189618 },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/05/c9aef7da7802a03c0b65ffe8f00a24289ff992f99ed5d5d1fd0ed63d9cf6/pulsar_client-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03b4d440b2d74323784328b082872ee2f206c440b5d224d7941eb3c083ec06c6", size = 5429329 },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/96/9acfe6f1d827cdd53b8460b04c63b4081333ef64a49a2f425419f1eb6b6b/pulsar_client-3.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f60af840b8d64a2fac5a0c1ce6ae0ddffec5f42267c6ded2c5e74bad8345f2a1", size = 5710106 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/7b/877a06eff5c9ac828cdb75e378ee29b0adac9328da9ee173eaf7076d8c56/pulsar_client-3.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2277a447c3b7f6571cb1eb9fc5c25da3fdd43d0b2fb91cf52054adfadc7d6842", size = 5916541 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/62/ed1da1ef72c95ba6a830e43995550ed0a1d26c223fb4b036ac6cd028c2ed/pulsar_client-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:f20f3e9dd50db2a37059abccad42078b7a4754b8bc1d3ae6502e71c1ad2209f0", size = 3305485 },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/19/4b145766df706aa5e09f60bbf5f87b934e6ac950fddd18f4acd520c465b9/pulsar_client-3.5.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:d61f663d85308e12f44033ba95af88730f581a7e8da44f7a5c080a3aaea4878d", size = 10967548 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bf/bd/9bc05ee861b46884554a4c61f96edb9602de131dd07982c27920e554ab5b/pulsar_client-3.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a1ba0be25b6f747bcb28102b7d906ec1de48dc9f1a2d9eacdcc6f44ab2c9e17", size = 5189598 },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/00/379bedfa6f1c810553996a4cb0984fa2e2c89afc5953df0936e1c9636003/pulsar_client-3.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a181e3e60ac39df72ccb3c415d7aeac61ad0286497a6e02739a560d5af28393a", size = 5430145 },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/c8/8a37d75aa9132a69a28061c9e5f4b516328a1968b58bbae018f431c6d3d4/pulsar_client-3.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3c72895ff7f51347e4f78b0375b2213fa70dd4790bbb78177b4002846f1fd290", size = 5708960 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6e/9a/abd98661e3f7ae3a8e1d3fb0fc7eba1a30005391ebd575ab06a66021256c/pulsar_client-3.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:547dba1b185a17eba915e51d0a3aca27c80747b6187e5cd7a71a3ca33921decc", size = 5915227 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/51/db376181d05716de595515fac736e3d06e96d3345ba0e31c0a90c352eae1/pulsar_client-3.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:443b786eed96bc86d2297a6a42e79f39d1abf217ec603e0bd303f3488c0234af", size = 3306515 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pure-eval"
|
||||
version = "0.2.3"
|
||||
|
||||
Reference in New Issue
Block a user