mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-23 15:58:30 +00:00
Compare commits
21 Commits
feat/add-i
...
fix/step-c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ee8fe74395 | ||
|
|
d8f271daeb | ||
|
|
bcfcf88e78 | ||
|
|
fd0de3a47e | ||
|
|
c7b9ae02fd | ||
|
|
4afb022572 | ||
|
|
8610faef22 | ||
|
|
6d677541c7 | ||
|
|
49220ec163 | ||
|
|
40a676b7ac | ||
|
|
50bf146d1e | ||
|
|
40d378abfb | ||
|
|
1b09b085a7 | ||
|
|
9f2acfe91f | ||
|
|
e856359e23 | ||
|
|
faa231e278 | ||
|
|
3d44795476 | ||
|
|
f50e709985 | ||
|
|
d70c542547 | ||
|
|
57201fb856 | ||
|
|
9b142e580b |
@@ -25,7 +25,100 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
|
||||
- `OPENAI_API_BASE`
|
||||
- `OPENAI_API_KEY`
|
||||
|
||||
### 2. Custom LLM Objects
|
||||
### 2. Updating YAML files
|
||||
|
||||
You can update the `agents.yml` file to refer to the LLM you want to use:
|
||||
|
||||
```yaml Code
|
||||
researcher:
|
||||
role: Research Specialist
|
||||
goal: Conduct comprehensive research and analysis to gather relevant information,
|
||||
synthesize findings, and produce well-documented insights.
|
||||
backstory: A dedicated research professional with years of experience in academic
|
||||
investigation, literature review, and data analysis, known for thorough and
|
||||
methodical approaches to complex research questions.
|
||||
verbose: true
|
||||
llm: openai/gpt-4o
|
||||
# llm: azure/gpt-4o-mini
|
||||
# llm: gemini/gemini-pro
|
||||
# llm: anthropic/claude-3-5-sonnet-20240620
|
||||
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
# llm: mistral/mistral-large-latest
|
||||
# llm: ollama/llama3:70b
|
||||
# llm: groq/llama-3.2-90b-vision-preview
|
||||
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
|
||||
# ...
|
||||
```
|
||||
|
||||
Keep in mind that you will need to set certain ENV vars depending on the model you are
|
||||
using to account for the credentials or set a custom LLM object like described below.
|
||||
Here are some of the required ENV vars for some of the LLM integrations:
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion title="OpenAI">
|
||||
```python Code
|
||||
OPENAI_API_KEY=<your-api-key>
|
||||
OPENAI_API_BASE=<optional-custom-base-url>
|
||||
OPENAI_MODEL_NAME=<openai-model-name>
|
||||
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
|
||||
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Anthropic">
|
||||
```python Code
|
||||
ANTHROPIC_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Google">
|
||||
```python Code
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Azure">
|
||||
```python Code
|
||||
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
|
||||
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
|
||||
AZURE_API_VERSION=<api-version> # "2023-05-15"
|
||||
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
|
||||
AZURE_API_TYPE=<your-azure-api-type> # Optional
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="AWS Bedrock">
|
||||
```python Code
|
||||
AWS_ACCESS_KEY_ID=<your-access-key>
|
||||
AWS_SECRET_ACCESS_KEY=<your-secret-key>
|
||||
AWS_DEFAULT_REGION=<your-region>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Mistral">
|
||||
```python Code
|
||||
MISTRAL_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
```python Code
|
||||
GROQ_API_KEY=<your-api-key>
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="IBM watsonx.ai">
|
||||
```python Code
|
||||
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
|
||||
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
|
||||
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
|
||||
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
|
||||
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
|
||||
```
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
### 3. Custom LLM Objects
|
||||
|
||||
Pass a custom LLM implementation or object from another library.
|
||||
|
||||
@@ -102,7 +195,7 @@ When configuring an LLM for your agent, you have access to a wide range of param
|
||||
|
||||
These are examples of how to configure LLMs for your agent.
|
||||
|
||||
<AccordionGroup>
|
||||
<AccordionGroup>
|
||||
<Accordion title="OpenAI">
|
||||
|
||||
```python Code
|
||||
@@ -133,10 +226,10 @@ These are examples of how to configure LLMs for your agent.
|
||||
model="cerebras/llama-3.1-70b",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Ollama (Local LLMs)">
|
||||
|
||||
CrewAI supports using Ollama for running open-source models locally:
|
||||
@@ -150,7 +243,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
|
||||
agent = Agent(
|
||||
llm=LLM(
|
||||
model="ollama/llama3.1",
|
||||
model="ollama/llama3.1",
|
||||
base_url="http://localhost:11434"
|
||||
),
|
||||
...
|
||||
@@ -164,7 +257,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="groq/llama3-8b-8192",
|
||||
model="groq/llama3-8b-8192",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
@@ -189,7 +282,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
|
||||
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
|
||||
api_key="your-api-key-here"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
@@ -224,6 +317,29 @@ These are examples of how to configure LLMs for your agent.
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="IBM watsonx.ai">
|
||||
You can use IBM Watson by seeting the following ENV vars:
|
||||
|
||||
```python Code
|
||||
WATSONX_URL=<your-url>
|
||||
WATSONX_APIKEY=<your-apikey>
|
||||
WATSONX_PROJECT_ID=<your-project-id>
|
||||
```
|
||||
|
||||
You can then define your agents llms by updating the `agents.yml`
|
||||
|
||||
```yaml Code
|
||||
researcher:
|
||||
role: Research Specialist
|
||||
goal: Conduct comprehensive research and analysis to gather relevant information,
|
||||
synthesize findings, and produce well-documented insights.
|
||||
backstory: A dedicated research professional with years of experience in academic
|
||||
investigation, literature review, and data analysis, known for thorough and
|
||||
methodical approaches to complex research questions.
|
||||
verbose: true
|
||||
llm: watsonx/meta-llama/llama-3-1-70b-instruct
|
||||
```
|
||||
|
||||
You can also set up agents more dynamically as a base level LLM instance, like bellow:
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
@@ -247,7 +363,7 @@ These are examples of how to configure LLMs for your agent.
|
||||
api_key="your-api-key-here",
|
||||
base_url="your_api_endpoint"
|
||||
)
|
||||
agent = Agent(llm=llm, ...)
|
||||
agent = Agent(llm=llm, ...)
|
||||
```
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -330,4 +330,4 @@ This will clear the crew's memory, allowing for a fresh start.
|
||||
|
||||
## Deploying Your Project
|
||||
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
|
||||
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com/), where you can deploy your crew in a few clicks.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.76.9"
|
||||
version = "0.79.4"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
@@ -16,7 +16,7 @@ dependencies = [
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.13.4",
|
||||
"crewai-tools>=0.14.0",
|
||||
"click>=8.1.7",
|
||||
"python-dotenv>=1.0.0",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -37,7 +37,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.13.4"]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
|
||||
[tool.uv]
|
||||
@@ -52,7 +52,7 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.13.4",
|
||||
"crewai-tools>=0.14.0",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -14,5 +14,5 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.76.9"
|
||||
__version__ = "0.79.4"
|
||||
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
|
||||
|
||||
@@ -8,6 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
@@ -122,6 +123,11 @@ class Agent(BaseAgent):
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
unnacepted_attributes = [
|
||||
"AWS_ACCESS_KEY_ID",
|
||||
"AWS_SECRET_ACCESS_KEY",
|
||||
"AWS_REGION_NAME",
|
||||
]
|
||||
|
||||
# Handle different cases for self.llm
|
||||
if isinstance(self.llm, str):
|
||||
@@ -131,8 +137,12 @@ class Agent(BaseAgent):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# If it's None, use environment variables or default
|
||||
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
|
||||
# Determine the model name from environment variables or use default
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or "gpt-4o-mini"
|
||||
)
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
@@ -141,9 +151,44 @@ class Agent(BaseAgent):
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
|
||||
|
||||
# Iterate over all environment variables to find matching API keys or use defaults
|
||||
for provider, env_vars in ENV_VARS.items():
|
||||
if provider == set_provider:
|
||||
for env_var in env_vars:
|
||||
if env_var["key_name"] in unnacepted_attributes:
|
||||
continue
|
||||
# Check if the environment variable is set
|
||||
if "key_name" in env_var:
|
||||
env_value = os.environ.get(env_var["key_name"])
|
||||
if env_value:
|
||||
# Map key names containing "API_KEY" to "api_key"
|
||||
key_name = (
|
||||
"api_key"
|
||||
if "API_KEY" in env_var["key_name"]
|
||||
else env_var["key_name"]
|
||||
)
|
||||
# Map key names containing "API_BASE" to "api_base"
|
||||
key_name = (
|
||||
"api_base"
|
||||
if "API_BASE" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
# Map key names containing "API_VERSION" to "api_version"
|
||||
key_name = (
|
||||
"api_version"
|
||||
if "API_VERSION" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
for key, value in env_var.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
# Only add default if the key is already set in os.environ
|
||||
if key in os.environ:
|
||||
llm_params[key] = value
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
|
||||
@@ -117,6 +117,15 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
if answer is None or answer == "":
|
||||
self._printer.print(
|
||||
content="Received None or empty response from LLM call.",
|
||||
color="red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Invalid response from LLM call - None or empty."
|
||||
)
|
||||
|
||||
if not self.use_stop_words:
|
||||
try:
|
||||
self._format_answer(answer)
|
||||
@@ -136,25 +145,26 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer.result = action_result
|
||||
self._show_logs(formatted_answer)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(formatted_answer)
|
||||
if self.step_callback:
|
||||
self.step_callback(formatted_answer)
|
||||
|
||||
if self._should_force_answer():
|
||||
if self.have_forced_answer:
|
||||
return AgentFinish(
|
||||
output=self._i18n.errors(
|
||||
"force_final_answer_error"
|
||||
).format(formatted_answer.text),
|
||||
text=formatted_answer.text,
|
||||
)
|
||||
else:
|
||||
formatted_answer.text += (
|
||||
f'\n{self._i18n.errors("force_final_answer")}'
|
||||
)
|
||||
self.have_forced_answer = True
|
||||
self.messages.append(
|
||||
self._format_msg(formatted_answer.text, role="assistant")
|
||||
)
|
||||
if self._should_force_answer():
|
||||
if self.have_forced_answer:
|
||||
return AgentFinish(
|
||||
thought="",
|
||||
output=self._i18n.errors(
|
||||
"force_final_answer_error"
|
||||
).format(formatted_answer.text),
|
||||
text=formatted_answer.text,
|
||||
)
|
||||
else:
|
||||
formatted_answer.text += (
|
||||
f'\n{self._i18n.errors("force_final_answer")}'
|
||||
)
|
||||
self.have_forced_answer = True
|
||||
self.messages.append(
|
||||
self._format_msg(formatted_answer.text, role="assistant")
|
||||
)
|
||||
|
||||
except OutputParserException as e:
|
||||
self.messages.append({"role": "user", "content": e.error})
|
||||
@@ -323,9 +333,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
|
||||
train_iteration = self.crew._train_iteration
|
||||
if agent_id in training_data and isinstance(train_iteration, int):
|
||||
training_data[agent_id][train_iteration][
|
||||
"improved_output"
|
||||
] = result.output
|
||||
training_data[agent_id][train_iteration]["improved_output"] = (
|
||||
result.output
|
||||
)
|
||||
training_handler.save(training_data)
|
||||
else:
|
||||
self._logger.log(
|
||||
@@ -376,4 +386,5 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
return CrewAgentParser(agent=self.agent).parse(answer)
|
||||
|
||||
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
|
||||
prompt = prompt.rstrip()
|
||||
return {"role": role, "content": prompt}
|
||||
|
||||
@@ -54,7 +54,7 @@ def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
|
||||
|
||||
templates_dir = Path(__file__).parent / "templates" / "crew"
|
||||
config_template_files = ["agents.yaml", "tasks.yaml"]
|
||||
crew_template_file = f"{folder_name}_crew.py" # Updated file name
|
||||
crew_template_file = f"{folder_name}.py" # Updated file name
|
||||
|
||||
for file_name in config_template_files:
|
||||
src_file = templates_dir / "config" / file_name
|
||||
|
||||
@@ -1,19 +1,168 @@
|
||||
ENV_VARS = {
|
||||
'openai': ['OPENAI_API_KEY'],
|
||||
'anthropic': ['ANTHROPIC_API_KEY'],
|
||||
'gemini': ['GEMINI_API_KEY'],
|
||||
'groq': ['GROQ_API_KEY'],
|
||||
'ollama': ['FAKE_KEY'],
|
||||
"openai": [
|
||||
{
|
||||
"prompt": "Enter your OPENAI API key (press Enter to skip)",
|
||||
"key_name": "OPENAI_API_KEY",
|
||||
}
|
||||
],
|
||||
"anthropic": [
|
||||
{
|
||||
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
|
||||
"key_name": "ANTHROPIC_API_KEY",
|
||||
}
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
"groq": [
|
||||
{
|
||||
"prompt": "Enter your GROQ API key (press Enter to skip)",
|
||||
"key_name": "GROQ_API_KEY",
|
||||
}
|
||||
],
|
||||
"watson": [
|
||||
{
|
||||
"prompt": "Enter your WATSONX URL (press Enter to skip)",
|
||||
"key_name": "WATSONX_URL",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
|
||||
"key_name": "WATSONX_APIKEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
|
||||
"key_name": "WATSONX_PROJECT_ID",
|
||||
},
|
||||
],
|
||||
"ollama": [
|
||||
{
|
||||
"default": True,
|
||||
"API_BASE": "http://localhost:11434",
|
||||
}
|
||||
],
|
||||
"bedrock": [
|
||||
{
|
||||
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
|
||||
"key_name": "AWS_ACCESS_KEY_ID",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
|
||||
"key_name": "AWS_SECRET_ACCESS_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Region Name (press Enter to skip)",
|
||||
"key_name": "AWS_REGION_NAME",
|
||||
},
|
||||
],
|
||||
"azure": [
|
||||
{
|
||||
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API key (press Enter to skip)",
|
||||
"key_name": "AZURE_API_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
|
||||
"key_name": "AZURE_API_BASE",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API version (press Enter to skip)",
|
||||
"key_name": "AZURE_API_VERSION",
|
||||
},
|
||||
],
|
||||
"cerebras": [
|
||||
{
|
||||
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your Cerebras API version (press Enter to skip)",
|
||||
"key_name": "CEREBRAS_API_KEY",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
|
||||
|
||||
PROVIDERS = [
|
||||
"openai",
|
||||
"anthropic",
|
||||
"gemini",
|
||||
"groq",
|
||||
"ollama",
|
||||
"watson",
|
||||
"bedrock",
|
||||
"azure",
|
||||
"cerebras",
|
||||
]
|
||||
|
||||
MODELS = {
|
||||
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
|
||||
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
|
||||
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
|
||||
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
|
||||
'ollama': ['llama3.1', 'mixtral'],
|
||||
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
|
||||
"anthropic": [
|
||||
"claude-3-5-sonnet-20240620",
|
||||
"claude-3-sonnet-20240229",
|
||||
"claude-3-opus-20240229",
|
||||
"claude-3-haiku-20240307",
|
||||
],
|
||||
"gemini": [
|
||||
"gemini/gemini-1.5-flash",
|
||||
"gemini/gemini-1.5-pro",
|
||||
"gemini/gemini-gemma-2-9b-it",
|
||||
"gemini/gemini-gemma-2-27b-it",
|
||||
],
|
||||
"groq": [
|
||||
"groq/llama-3.1-8b-instant",
|
||||
"groq/llama-3.1-70b-versatile",
|
||||
"groq/llama-3.1-405b-reasoning",
|
||||
"groq/gemma2-9b-it",
|
||||
"groq/gemma-7b-it",
|
||||
],
|
||||
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
|
||||
"watson": [
|
||||
"watsonx/google/flan-t5-xxl",
|
||||
"watsonx/google/flan-ul2",
|
||||
"watsonx/bigscience/mt0-xxl",
|
||||
"watsonx/eleutherai/gpt-neox-20b",
|
||||
"watsonx/ibm/mpt-7b-instruct2",
|
||||
"watsonx/bigcode/starcoder",
|
||||
"watsonx/meta-llama/llama-2-70b-chat",
|
||||
"watsonx/meta-llama/llama-2-13b-chat",
|
||||
"watsonx/ibm/granite-13b-instruct-v1",
|
||||
"watsonx/ibm/granite-13b-chat-v1",
|
||||
"watsonx/google/flan-t5-xl",
|
||||
"watsonx/ibm/granite-13b-chat-v2",
|
||||
"watsonx/ibm/granite-13b-instruct-v2",
|
||||
"watsonx/elyza/elyza-japanese-llama-2-7b-instruct",
|
||||
"watsonx/ibm-mistralai/mixtral-8x7b-instruct-v01-q",
|
||||
],
|
||||
"bedrock": [
|
||||
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-v2:1",
|
||||
"bedrock/anthropic.claude-v2",
|
||||
"bedrock/anthropic.claude-instant-v1",
|
||||
"bedrock/meta.llama3-1-405b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-8b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-8b-instruct-v1:0",
|
||||
"bedrock/amazon.titan-text-lite-v1",
|
||||
"bedrock/amazon.titan-text-express-v1",
|
||||
"bedrock/cohere.command-text-v14",
|
||||
"bedrock/ai21.j2-mid-v1",
|
||||
"bedrock/ai21.j2-ultra-v1",
|
||||
"bedrock/ai21.jamba-instruct-v1:0",
|
||||
"bedrock/meta.llama2-13b-chat-v1",
|
||||
"bedrock/meta.llama2-70b-chat-v1",
|
||||
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
||||
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
||||
],
|
||||
}
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.constants import ENV_VARS, MODELS
|
||||
from crewai.cli.provider import (
|
||||
PROVIDERS,
|
||||
get_provider_data,
|
||||
select_model,
|
||||
select_provider,
|
||||
@@ -29,20 +29,20 @@ def create_folder_structure(name, parent_folder=None):
|
||||
click.secho("Operation cancelled.", fg="yellow")
|
||||
sys.exit(0)
|
||||
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
|
||||
else:
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
shutil.rmtree(folder_path) # Delete the existing folder and its contents
|
||||
|
||||
if not folder_path.exists():
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
|
||||
return folder_path, folder_name, class_name
|
||||
|
||||
@@ -92,7 +92,10 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
|
||||
existing_provider = None
|
||||
for provider, env_keys in ENV_VARS.items():
|
||||
if any(key in env_vars for key in env_keys):
|
||||
if any(
|
||||
"key_name" in details and details["key_name"] in env_vars
|
||||
for details in env_keys
|
||||
):
|
||||
existing_provider = provider
|
||||
break
|
||||
|
||||
@@ -118,47 +121,48 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
"No provider selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
# Check if the selected provider has predefined models
|
||||
if selected_provider in MODELS and MODELS[selected_provider]:
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.",
|
||||
fg="red",
|
||||
)
|
||||
env_vars["MODEL"] = selected_model
|
||||
|
||||
if selected_provider in PROVIDERS:
|
||||
api_key_var = ENV_VARS[selected_provider][0]
|
||||
else:
|
||||
api_key_var = click.prompt(
|
||||
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
|
||||
type=str,
|
||||
default="",
|
||||
)
|
||||
# Check if the selected provider requires API keys
|
||||
if selected_provider in ENV_VARS:
|
||||
provider_env_vars = ENV_VARS[selected_provider]
|
||||
for details in provider_env_vars:
|
||||
if details.get("default", False):
|
||||
# Automatically add default key-value pairs
|
||||
for key, value in details.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
env_vars[key] = value
|
||||
elif "key_name" in details:
|
||||
# Prompt for non-default key-value pairs
|
||||
prompt = details["prompt"]
|
||||
key_name = details["key_name"]
|
||||
api_key_value = click.prompt(prompt, default="", show_default=False)
|
||||
|
||||
api_key_value = ""
|
||||
click.echo(
|
||||
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
|
||||
nl=False,
|
||||
)
|
||||
try:
|
||||
api_key_value = input()
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
api_key_value = ""
|
||||
if api_key_value.strip():
|
||||
env_vars[key_name] = api_key_value
|
||||
|
||||
if api_key_value.strip():
|
||||
env_vars = {api_key_var: api_key_value}
|
||||
if env_vars:
|
||||
write_env_file(folder_path, env_vars)
|
||||
click.secho("API key saved to .env file", fg="green")
|
||||
click.secho("API keys and model saved to .env file", fg="green")
|
||||
else:
|
||||
click.secho(
|
||||
"No API key provided. Skipping .env file creation.", fg="yellow"
|
||||
"No API keys provided. Skipping .env file creation.", fg="yellow"
|
||||
)
|
||||
|
||||
env_vars["MODEL"] = selected_model
|
||||
click.secho(f"Selected model: {selected_model}", fg="green")
|
||||
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
@@ -164,7 +164,7 @@ def fetch_provider_data(cache_file):
|
||||
- dict or None: The fetched provider data or None if the operation fails.
|
||||
"""
|
||||
try:
|
||||
response = requests.get(JSON_URL, stream=True, timeout=10)
|
||||
response = requests.get(JSON_URL, stream=True, timeout=60)
|
||||
response.raise_for_status()
|
||||
data = download_data(response)
|
||||
with open(cache_file, "w") as f:
|
||||
|
||||
@@ -24,7 +24,6 @@ def run_crew() -> None:
|
||||
f"Please run `crewai update` to update your pyproject.toml to use uv.",
|
||||
fg="red",
|
||||
)
|
||||
print()
|
||||
|
||||
try:
|
||||
subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
@@ -8,9 +8,12 @@ from crewai.project import CrewBase, agent, crew, task
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class {{crew_name}}Crew():
|
||||
class {{crew_name}}():
|
||||
"""{{crew_name}} crew"""
|
||||
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
@@ -48,4 +51,4 @@ class {{crew_name}}Crew():
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
#!/usr/bin/env python
|
||||
import sys
|
||||
from {{folder_name}}.crew import {{crew_name}}Crew
|
||||
import warnings
|
||||
|
||||
from {{folder_name}}.crew import {{crew_name}}
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
# This main file is intended to be a way for you to run your
|
||||
# crew locally, so refrain from adding unnecessary logic into this file.
|
||||
@@ -14,7 +18,7 @@ def run():
|
||||
inputs = {
|
||||
'topic': 'AI LLMs'
|
||||
}
|
||||
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
|
||||
{{crew_name}}().crew().kickoff(inputs=inputs)
|
||||
|
||||
|
||||
def train():
|
||||
@@ -25,7 +29,7 @@ def train():
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
|
||||
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
@@ -35,7 +39,7 @@ def replay():
|
||||
Replay the crew execution from a specific task.
|
||||
"""
|
||||
try:
|
||||
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
|
||||
{{crew_name}}().crew().replay(task_id=sys.argv[1])
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
@@ -48,7 +52,7 @@ def test():
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
"crewai[tools]>=0.79.4,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0",
|
||||
"crewai[tools]>=0.79.4,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = { extras = ["tools"], version = ">=0.76.9,<1.0.0" }
|
||||
crewai = { extras = ["tools"], version = ">=0.79.4,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9,<1.0.0"
|
||||
"crewai[tools]>=0.79.4,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.76.9"
|
||||
"crewai[tools]>=0.79.4"
|
||||
]
|
||||
|
||||
|
||||
@@ -445,13 +445,14 @@ class Crew(BaseModel):
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
|
||||
for agent in train_crew.agents:
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
if training_data.get(str(agent.id)):
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
CrewTrainingHandler(filename).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
|
||||
@@ -131,7 +131,6 @@ class FlowMeta(type):
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
# TODO: should we add a check for __condition_type__ 'AND'?
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
@@ -171,8 +170,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
def __init__(self) -> None:
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._executed_methods: Set[str] = set()
|
||||
self._scheduled_tasks: Set[str] = set()
|
||||
self._method_execution_counts: Dict[str, int] = {}
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
|
||||
@@ -309,7 +307,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
self._executed_methods.add(method_name)
|
||||
# Track method execution counts
|
||||
self._method_execution_counts[method_name] = (
|
||||
self._method_execution_counts.get(method_name, 0) + 1
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@@ -319,35 +320,34 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(
|
||||
trigger_method, router_method
|
||||
) # TODO: Change or not?
|
||||
# Use the path as the new trigger method
|
||||
self._routers[trigger_method], router_method
|
||||
)
|
||||
trigger_method = path
|
||||
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if trigger_method in methods:
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Schedule the listener without preventing re-execution
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
elif condition_type == "AND":
|
||||
if all(method in self._executed_methods for method in methods):
|
||||
if (
|
||||
listener_name not in self._executed_methods
|
||||
and listener_name not in self._scheduled_tasks
|
||||
):
|
||||
self._scheduled_tasks.add(listener_name)
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Initialize pending methods for this listener if not already done
|
||||
if listener_name not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener_name] = set(methods)
|
||||
# Remove the trigger method from pending methods
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
if not self._pending_and_listeners[listener_name]:
|
||||
# All required methods have been executed
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
# Reset pending methods for this listener
|
||||
self._pending_and_listeners.pop(listener_name, None)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
await asyncio.gather(*listener_tasks)
|
||||
if listener_tasks:
|
||||
await asyncio.gather(*listener_tasks)
|
||||
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
try:
|
||||
@@ -367,9 +367,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Remove from scheduled tasks after execution
|
||||
self._scheduled_tasks.discard(listener_name)
|
||||
|
||||
# Execute listeners of this listener
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import io
|
||||
import logging
|
||||
import sys
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import litellm
|
||||
from litellm import get_supported_openai_params
|
||||
|
||||
@@ -9,9 +12,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
|
||||
import sys
|
||||
import io
|
||||
|
||||
|
||||
class FilteredStream(io.StringIO):
|
||||
def write(self, s):
|
||||
@@ -118,12 +118,12 @@ class LLM:
|
||||
|
||||
litellm.drop_params = True
|
||||
litellm.set_verbose = False
|
||||
litellm.callbacks = callbacks
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
litellm.callbacks = callbacks
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
params = {
|
||||
@@ -181,3 +181,15 @@ class LLM:
|
||||
def get_context_window_size(self) -> int:
|
||||
# Only using 75% of the context window size to avoid cutting the message in the middle
|
||||
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
|
||||
|
||||
def set_callbacks(self, callbacks: List[Any]):
|
||||
callback_types = [type(callback) for callback in callbacks]
|
||||
for callback in litellm.success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm.success_callback.remove(callback)
|
||||
|
||||
for callback in litellm._async_success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm._async_success_callback.remove(callback)
|
||||
|
||||
litellm.callbacks = callbacks
|
||||
|
||||
@@ -34,7 +34,6 @@ class ContextualMemory:
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in stm_results]
|
||||
)
|
||||
print("formatted_results stm", formatted_results)
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
def _fetch_ltm_context(self, task) -> Optional[str]:
|
||||
@@ -54,8 +53,6 @@ class ContextualMemory:
|
||||
formatted_results = list(dict.fromkeys(formatted_results))
|
||||
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
|
||||
|
||||
print("formatted_results ltm", formatted_results)
|
||||
|
||||
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
|
||||
|
||||
def _fetch_entity_context(self, query) -> str:
|
||||
@@ -67,5 +64,4 @@ class ContextualMemory:
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
)
|
||||
print("formatted_results em", formatted_results)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
0
src/crewai/tools/cache_tools/__init__.py
Normal file
0
src/crewai/tools/cache_tools/__init__.py
Normal file
205
tests/cassettes/test_llm_callback_replacement.yaml
Normal file
205
tests/cassettes/test_llm_callback_replacement.yaml
Normal file
@@ -0,0 +1,205 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '101'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSwWrcMBS8+ytedY6LvWvYZi8lpZSkBJLSQiChGK307FUi66nSc9Ml7L8H2e56
|
||||
l7bQiw8zb8Yzg14yAGG0WINQW8mq8za/+Oqv5MUmXv+8+/Hl3uO3j59u1efreHO+/PAszpKCNo+o
|
||||
+LfqraLOW2RDbqRVQMmYXMvVsqyWy1VVDERHGm2StZ7zivLOOJMvikWVF6u8fDept2QURrGGhwwA
|
||||
4GX4ppxO4y+xhsFrQDqMUbYo1ocjABHIJkTIGE1k6ViczaQix+iG6JdoLb2BS3oGJR1cwSiAHfXA
|
||||
pOXu/bEwYNNHmcK73toJ3x+SWGp9oE2c+APeGGfitg4oI7n018jkxcDuM4DvQ+P+pITwgTrPNdMT
|
||||
umRYlqOdmHeeyfOJY2JpZ3gxjXRqVmtkaWw8GkwoqbaoZ+W8ruy1oSMiO6r8Z5a/eY+1jWv/x34m
|
||||
lELPqGsfUBt12nc+C5ge4b/ODhMPgUXcRcauboxrMfhgxifQ+LrYyEKXi6opRbbPXgEAAP//AwAM
|
||||
DMWoEAMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e185b2c1b790303-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 17:49:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
|
||||
path=/; expires=Tue, 12-Nov-24 18:19:00 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '322'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 8.64s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 6ms
|
||||
x-request-id:
|
||||
- req_037288753767e763a51a04eae757ca84
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
"model": "gpt-4o-mini", "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '120'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
|
||||
_cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xSy27bMBC86yu2PFuBZAt14UvRU5MA7aVAEKAIBJpcSUwoLkuu6jiB/z3QI5aM
|
||||
tkAvPMzsDGZ2+ZoACKPFDoRqJKvW2/TLD3+z//oiD8dfL7d339zvW125x9zX90/3mVj1Cto/ouJ3
|
||||
1ZWi1ltkQ26kVUDJ2Lvm201ebDbbIh+IljTaXlZ7TgtKW+NMus7WRZpt0/zTpG7IKIxiBz8TAIDX
|
||||
4e1zOo3PYgfZ6h1pMUZZo9idhwBEINsjQsZoIkvHYjWTihyjG6Jfo7X0Ab4bhcAEipxDxXAw3IB0
|
||||
xA0GkDU6voJrOoCSDm5gNIUjdcCk5fHz0jxg1UXZF3SdtRN+Oqe1VPtA+zjxZ7wyzsSmDCgjuT5Z
|
||||
ZPJiYE8JwMOwle6iqPCBWs8l0xO63jAvRjsx32JBfpxIJpZ2xjfTJi/dSo0sjY2LrQolVYN6Vs4n
|
||||
kJ02tCCSRec/w/zNe+xtXP0/9jOhFHpGXfqA2qjLwvNYwP6n/mvsvOMhsIjHyNiWlXE1Bh/M+E8q
|
||||
X2Z7mel8XVS5SE7JGwAAAP//AwA/cK4yNQMAAA==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8e185b31398a0303-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 12 Nov 2024 17:49:02 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- user-tqfegqsiobpvvjmn0giaipdq
|
||||
openai-processing-ms:
|
||||
- '889'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '200000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9998'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '199975'
|
||||
x-ratelimit-reset-requests:
|
||||
- 16.489s
|
||||
x-ratelimit-reset-tokens:
|
||||
- 7ms
|
||||
x-request-id:
|
||||
- req_bde3810b36a4859688e53d1df64bdd20
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1280,10 +1280,10 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
|
||||
assert result.raw == "Howdy!"
|
||||
|
||||
assert result.token_usage == UsageMetrics(
|
||||
total_tokens=2626,
|
||||
prompt_tokens=2482,
|
||||
completion_tokens=144,
|
||||
successful_requests=5,
|
||||
total_tokens=1673,
|
||||
prompt_tokens=1562,
|
||||
completion_tokens=111,
|
||||
successful_requests=3,
|
||||
)
|
||||
|
||||
|
||||
|
||||
264
tests/flow_test.py
Normal file
264
tests/flow_test.py
Normal file
@@ -0,0 +1,264 @@
|
||||
"""Test Flow creation and execution basic functionality."""
|
||||
|
||||
import asyncio
|
||||
|
||||
import pytest
|
||||
from crewai.flow.flow import Flow, and_, listen, or_, router, start
|
||||
|
||||
|
||||
def test_simple_sequential_flow():
|
||||
"""Test a simple flow with two steps called sequentially."""
|
||||
execution_order = []
|
||||
|
||||
class SimpleFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = SimpleFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert execution_order == ["step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_multiple_starts():
|
||||
"""Test a flow with multiple start methods."""
|
||||
execution_order = []
|
||||
|
||||
class MultiStartFlow(Flow):
|
||||
@start()
|
||||
def step_a(self):
|
||||
execution_order.append("step_a")
|
||||
|
||||
@start()
|
||||
def step_b(self):
|
||||
execution_order.append("step_b")
|
||||
|
||||
@listen(step_a)
|
||||
def step_c(self):
|
||||
execution_order.append("step_c")
|
||||
|
||||
@listen(step_b)
|
||||
def step_d(self):
|
||||
execution_order.append("step_d")
|
||||
|
||||
flow = MultiStartFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_a" in execution_order
|
||||
assert "step_b" in execution_order
|
||||
assert "step_c" in execution_order
|
||||
assert "step_d" in execution_order
|
||||
assert execution_order.index("step_c") > execution_order.index("step_a")
|
||||
assert execution_order.index("step_d") > execution_order.index("step_b")
|
||||
|
||||
|
||||
def test_cyclic_flow():
|
||||
"""Test a cyclic flow that runs a finite number of iterations."""
|
||||
execution_order = []
|
||||
|
||||
class CyclicFlow(Flow):
|
||||
iteration = 0
|
||||
max_iterations = 3
|
||||
|
||||
@start("loop")
|
||||
def step_1(self):
|
||||
if self.iteration >= self.max_iterations:
|
||||
return # Do not proceed further
|
||||
execution_order.append(f"step_1_{self.iteration}")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append(f"step_2_{self.iteration}")
|
||||
|
||||
@router(step_2)
|
||||
def step_3(self):
|
||||
execution_order.append(f"step_3_{self.iteration}")
|
||||
self.iteration += 1
|
||||
if self.iteration < self.max_iterations:
|
||||
return "loop"
|
||||
|
||||
return "exit"
|
||||
|
||||
flow = CyclicFlow()
|
||||
flow.kickoff()
|
||||
|
||||
expected_order = []
|
||||
for i in range(flow.max_iterations):
|
||||
expected_order.extend([f"step_1_{i}", f"step_2_{i}", f"step_3_{i}"])
|
||||
|
||||
assert execution_order == expected_order
|
||||
|
||||
|
||||
def test_flow_with_and_condition():
|
||||
"""Test a flow where a step waits for multiple other steps to complete."""
|
||||
execution_order = []
|
||||
|
||||
class AndConditionFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@start()
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
@listen(and_(step_1, step_2))
|
||||
def step_3(self):
|
||||
execution_order.append("step_3")
|
||||
|
||||
flow = AndConditionFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_1" in execution_order
|
||||
assert "step_2" in execution_order
|
||||
assert execution_order[-1] == "step_3"
|
||||
assert execution_order.index("step_3") > execution_order.index("step_1")
|
||||
assert execution_order.index("step_3") > execution_order.index("step_2")
|
||||
|
||||
|
||||
def test_flow_with_or_condition():
|
||||
"""Test a flow where a step is triggered when any of multiple steps complete."""
|
||||
execution_order = []
|
||||
|
||||
class OrConditionFlow(Flow):
|
||||
@start()
|
||||
def step_a(self):
|
||||
execution_order.append("step_a")
|
||||
|
||||
@start()
|
||||
def step_b(self):
|
||||
execution_order.append("step_b")
|
||||
|
||||
@listen(or_(step_a, step_b))
|
||||
def step_c(self):
|
||||
execution_order.append("step_c")
|
||||
|
||||
flow = OrConditionFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert "step_a" in execution_order or "step_b" in execution_order
|
||||
assert "step_c" in execution_order
|
||||
assert execution_order.index("step_c") > min(
|
||||
execution_order.index("step_a"), execution_order.index("step_b")
|
||||
)
|
||||
|
||||
|
||||
def test_flow_with_router():
|
||||
"""Test a flow that uses a router method to determine the next step."""
|
||||
execution_order = []
|
||||
|
||||
class RouterFlow(Flow):
|
||||
@start()
|
||||
def start_method(self):
|
||||
execution_order.append("start_method")
|
||||
|
||||
@router(start_method)
|
||||
def router(self):
|
||||
execution_order.append("router")
|
||||
# Ensure the condition is set to True to follow the "step_if_true" path
|
||||
condition = True
|
||||
return "step_if_true" if condition else "step_if_false"
|
||||
|
||||
@listen("step_if_true")
|
||||
def truthy(self):
|
||||
execution_order.append("step_if_true")
|
||||
|
||||
@listen("step_if_false")
|
||||
def falsy(self):
|
||||
execution_order.append("step_if_false")
|
||||
|
||||
flow = RouterFlow()
|
||||
flow.kickoff()
|
||||
|
||||
assert execution_order == ["start_method", "router", "step_if_true"]
|
||||
|
||||
|
||||
def test_async_flow():
|
||||
"""Test an asynchronous flow."""
|
||||
execution_order = []
|
||||
|
||||
class AsyncFlow(Flow):
|
||||
@start()
|
||||
async def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
@listen(step_1)
|
||||
async def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
flow = AsyncFlow()
|
||||
asyncio.run(flow.kickoff_async())
|
||||
|
||||
assert execution_order == ["step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_exceptions():
|
||||
"""Test flow behavior when exceptions occur in steps."""
|
||||
execution_order = []
|
||||
|
||||
class ExceptionFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
raise ValueError("An error occurred in step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = ExceptionFlow()
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
flow.kickoff()
|
||||
|
||||
# Ensure step_2 did not execute
|
||||
assert execution_order == ["step_1"]
|
||||
|
||||
|
||||
def test_flow_restart():
|
||||
"""Test restarting a flow after it has completed."""
|
||||
execution_order = []
|
||||
|
||||
class RestartableFlow(Flow):
|
||||
@start()
|
||||
def step_1(self):
|
||||
execution_order.append("step_1")
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
execution_order.append("step_2")
|
||||
|
||||
flow = RestartableFlow()
|
||||
flow.kickoff()
|
||||
flow.kickoff() # Restart the flow
|
||||
|
||||
assert execution_order == ["step_1", "step_2", "step_1", "step_2"]
|
||||
|
||||
|
||||
def test_flow_with_custom_state():
|
||||
"""Test a flow that maintains and modifies internal state."""
|
||||
|
||||
class StateFlow(Flow):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.counter = 0
|
||||
|
||||
@start()
|
||||
def step_1(self):
|
||||
self.counter += 1
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
self.counter *= 2
|
||||
assert self.counter == 2
|
||||
|
||||
flow = StateFlow()
|
||||
flow.kickoff()
|
||||
assert flow.counter == 2
|
||||
30
tests/llm_test.py
Normal file
30
tests/llm_test.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import pytest
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_callback_replacement():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
|
||||
llm.call(
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
callbacks=[calc_handler_1],
|
||||
)
|
||||
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
|
||||
|
||||
llm.call(
|
||||
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
callbacks=[calc_handler_2],
|
||||
)
|
||||
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
|
||||
|
||||
# The first handler should not have been updated
|
||||
assert usage_metrics_1.successful_requests == 1
|
||||
assert usage_metrics_2.successful_requests == 1
|
||||
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
|
||||
14
uv.lock
generated
14
uv.lock
generated
@@ -604,7 +604,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.76.9"
|
||||
version = "0.79.4"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -665,8 +665,8 @@ requires-dist = [
|
||||
{ name = "auth0-python", specifier = ">=4.7.1" },
|
||||
{ name = "chromadb", specifier = ">=0.4.24" },
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", specifier = ">=0.14.0" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
@@ -688,7 +688,7 @@ requires-dist = [
|
||||
[package.metadata.requires-dev]
|
||||
dev = [
|
||||
{ name = "cairosvg", specifier = ">=2.7.1" },
|
||||
{ name = "crewai-tools", specifier = ">=0.13.4" },
|
||||
{ name = "crewai-tools", specifier = ">=0.14.0" },
|
||||
{ name = "mkdocs", specifier = ">=1.4.3" },
|
||||
{ name = "mkdocs-material", specifier = ">=9.5.7" },
|
||||
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
|
||||
@@ -707,7 +707,7 @@ dev = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai-tools"
|
||||
version = "0.13.4"
|
||||
version = "0.14.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "beautifulsoup4" },
|
||||
@@ -725,9 +725,9 @@ dependencies = [
|
||||
{ name = "requests" },
|
||||
{ name = "selenium" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/64/bd/eff7b633a0b28ff4ed115adde1499e3dcc683e4f0b5c378a4c6f5c0c1bf6/crewai_tools-0.13.4.tar.gz", hash = "sha256:b6ac527633b7018471d892c21ac96bc961a86b6626d996b1ed7d53cd481d4505", size = 816588 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/9b/6d/4fa91b481b120f83bb58f365203d8aa8564e8ced1035d79f8aedb7d71e2f/crewai_tools-0.14.0.tar.gz", hash = "sha256:510f3a194bcda4fdae4314bd775521964b5f229ddbe451e5d9e0216cae57f4e3", size = 815892 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/6c/40/93cd347d854059cf5e54a81b70f896deea7ad1f03e9c024549eb323c4da5/crewai_tools-0.13.4-py3-none-any.whl", hash = "sha256:eda78fe3c4df57676259d8dd6b2610fa31f89b90909512f15893adb57fb9e825", size = 463703 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/ed/9f4e64e1507062957b0118085332d38b621c1000874baef2d1c4069bfd97/crewai_tools-0.14.0-py3-none-any.whl", hash = "sha256:0a804a828c29869c3af3253f4fc4c3967a3f80f06dab22e9bbe9526608a31564", size = 462980 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user