Compare commits

...

56 Commits

Author SHA1 Message Date
Brandon Hancock
b94d99918f explain how to use event listener 2025-02-27 10:15:52 -05:00
Brandon Hancock (bhancock_ai)
66c66e3d84 Update docs (#2226) 2025-02-26 15:21:36 -05:00
Brandon Hancock (bhancock_ai)
b9b625a70d Improve extract thought (#2223)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 14:51:46 -05:00
Brandon Hancock (bhancock_ai)
b58253cacc Support multiple router calls and address issue #2175 (#2231)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 13:42:17 -05:00
Brandon Hancock (bhancock_ai)
fbf8732784 Fix type issue (#2224)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 13:27:41 -05:00
Brandon Hancock (bhancock_ai)
8fedbe49cb Add support for python 3.10 (#2230) 2025-02-26 13:24:31 -05:00
Lorenze Jay
1e8ee247ca feat: Enhance agent knowledge setup with optional crew embedder (#2232)
- Modify `Agent` class to add `set_knowledge` method
- Allow setting embedder from crew-level configuration
- Remove `_set_knowledge` method from initialization
- Update `Crew` class to set agent knowledge during agent setup
- Add default implementation in `BaseAgent` for compatibility
2025-02-26 12:10:43 -05:00
Fernando Galves
34d2993456 Update the constants.py file adding the list of foundation models available in Amazon Bedrock (#2170)
* Update constants.py

This PR updates the list of foundation models available in Amazon Bedrock to reflect the latest offerings.

* Update constants.py with inference profiles

Add the cross-region inference profiles to increase throughput and improve resiliency by routing your requests across multiple AWS Regions during peak utilization bursts.

* Update constants.py

Fix the model order

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:39:23 -05:00
devin-ai-integration[bot]
e3c5c174ee feat: add context window size for o3-mini model (#2192)
* feat: add context window size for o3-mini model

Fixes #2191

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add context window validation and tests

- Add validation for context window size bounds (1024-2097152)
- Add test for context window validation
- Fix test import error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in llm_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:32:14 -05:00
Brandon Hancock (bhancock_ai)
b4e2db0306 incorporating fix from @misrasaurabh1 with additional type fix (#2213)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-25 15:29:21 -05:00
Shivtej Narake
9cc759ba32 [MINOR]support ChatOllama from langchain_ollama (#2158)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:19:36 -05:00
Vidit Ostwal
ac9f8b9d5a Fixed the issue 2123 around memory command with CLI (#2155)
* Fixed the issue 2123 around memory command with CLI

* Fixed typo, added the recommendations

* Fixed Typo

* Fixed lint issue

* Fixed the print statement to include path as well

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:29:33 -05:00
Victor Degliame
3d4a1e4b18 fix: typo in 'delegate_work' and 'ask_question' promps (#2144)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:16:04 -05:00
nikolaidk
123f302744 Update kickoff-async.mdx (#2138)
Missing mandatory field expected_output on task in example

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:12:27 -05:00
Brandon Hancock (bhancock_ai)
5bae78639e Revert "feat: add prompt observability code (#2027)" (#2211)
* Revert "feat: add prompt observability code (#2027)"

This reverts commit 90f1bee602.

* Fix issues with flows post merge

* Decoupling telemetry and ensure tests  (#2212)

* feat: Enhance event listener and telemetry tracking

- Update event listener to improve telemetry span handling
- Add execution_span field to Task for better tracing
- Modify event handling in EventListener to use new span tracking
- Remove debug print statements
- Improve test coverage for crew and flow events
- Update cassettes to reflect new event tracking behavior

* Remove telemetry references from Crew class

- Remove Telemetry import and initialization from Crew class
- Delete _telemetry attribute from class configuration
- Clean up unused telemetry-related code

* test: Improve crew verbose output test with event log filtering

- Filter out event listener logs in verbose output test
- Ensure no output when verbose is set to False
- Enhance test coverage for crew logging behavior

* dropped comment

* refactor: Improve telemetry span tracking in EventListener

- Remove `execution_span` from Task class
- Add `execution_spans` dictionary to EventListener to track spans
- Update task event handlers to use new span tracking mechanism
- Simplify span management across task lifecycle events

* lint

* Fix failing test

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-24 16:30:16 -05:00
Lorenze Jay
5235442a5b Decoupling telemetry and ensure tests (#2212)
* feat: Enhance event listener and telemetry tracking

- Update event listener to improve telemetry span handling
- Add execution_span field to Task for better tracing
- Modify event handling in EventListener to use new span tracking
- Remove debug print statements
- Improve test coverage for crew and flow events
- Update cassettes to reflect new event tracking behavior

* Remove telemetry references from Crew class

- Remove Telemetry import and initialization from Crew class
- Delete _telemetry attribute from class configuration
- Clean up unused telemetry-related code

* test: Improve crew verbose output test with event log filtering

- Filter out event listener logs in verbose output test
- Ensure no output when verbose is set to False
- Enhance test coverage for crew logging behavior

* dropped comment

* refactor: Improve telemetry span tracking in EventListener

- Remove `execution_span` from Task class
- Add `execution_spans` dictionary to EventListener to track spans
- Update task event handlers to use new span tracking mechanism
- Simplify span management across task lifecycle events

* lint
2025-02-24 12:24:35 -08:00
Lorenze Jay
c62fb615b1 feat: Add LLM call events for improved observability (#2214)
* feat: Add LLM call events for improved observability

- Introduce new LLM call events: LLMCallStartedEvent, LLMCallCompletedEvent, and LLMCallFailedEvent
- Emit events for LLM calls and tool calls to provide better tracking and debugging
- Add event handling in the LLM class to track call lifecycle
- Update event bus to support new LLM-related events
- Add test cases to validate LLM event emissions

* feat: Add event handling for LLM call lifecycle events

- Implement event listeners for LLM call events in EventListener
- Add logging for LLM call start, completion, and failure events
- Import and register new LLM-specific event types

* less log

* refactor: Update LLM event response type to support Any

* refactor: Simplify LLM call completed event emission

Remove unnecessary LLMCallType conversion when emitting LLMCallCompletedEvent

* refactor: Update LLM event docstrings for clarity

Improve docstrings for LLM call events to more accurately describe their purpose and lifecycle

* feat: Add LLMCallFailedEvent emission for tool execution errors

Enhance error handling by emitting a specific event when tool execution fails during LLM calls
2025-02-24 15:17:44 -05:00
Brandon Hancock (bhancock_ai)
78797c64b0 fix reset memory issue (#2182)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-24 14:51:58 -05:00
Brandon Hancock (bhancock_ai)
8a7584798b Better support async flows (#2193)
* Better support async

* Drop coroutine
2025-02-24 10:25:30 -05:00
Jannik Maierhöfer
b50772a38b docs: add header image to langfuse guide (#2128)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-21 10:11:55 -05:00
João Moura
96a7e8038f cassetes 2025-02-20 21:00:10 -06:00
Brandon Hancock (bhancock_ai)
ec050e5d33 drop prints (#2181) 2025-02-20 12:35:39 -05:00
Brandon Hancock (bhancock_ai)
e2ce65fc5b Check the right property for tool calling (#2160)
* Check the right property

* Fix failing tests

* Update cassettes

* Update cassettes again

* Update cassettes again 2

* Update cassettes again 3

* fix other test that fails in ci/cd

* Fix issues pointed out by lorenze
2025-02-20 12:12:52 -05:00
Brandon Hancock (bhancock_ai)
14503bc43b imporve HITL (#2169)
* imporve HITL

* fix failing test

* fix failing test part 2

* Drop extra logs that were causing confusion

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-20 12:01:49 -05:00
Lorenze Jay
00c2f5043e WIP crew events emitter (#2048)
* WIP crew events emitter

* Refactor event handling and introduce new event types

- Migrate from global `emit` function to `event_bus.emit`
- Add new event types for task failures, tool usage, and agent execution
- Update event listeners and event bus to support more granular event tracking
- Remove deprecated event emission methods
- Improve event type consistency and add more detailed event information

* Add event emission for agent execution lifecycle

- Emit AgentExecutionStarted and AgentExecutionError events
- Update CrewAgentExecutor to use event_bus for tracking agent execution
- Refactor error handling to include event emission
- Minor code formatting improvements in task.py and crew_agent_executor.py
- Fix a typo in test file

* Refactor event system and add third-party event listeners

- Move event_bus import to correct module paths
- Introduce BaseEventListener abstract base class
- Add AgentOpsListener for third-party event tracking
- Update event listener initialization and setup
- Clean up event-related imports and exports

* Enhance event system type safety and error handling

- Improve type annotations for event bus and event types
- Add null checks for agent and task in event emissions
- Update import paths for base tool and base agent
- Refactor event listener type hints
- Remove unnecessary print statements
- Update test configurations to match new event handling

* Refactor event classes to improve type safety and naming consistency

- Rename event classes to have explicit 'Event' suffix (e.g., TaskStartedEvent)
- Update import statements and references across multiple files
- Remove deprecated events.py module
- Enhance event type hints and configurations
- Clean up unnecessary event-related code

* Add default model for CrewEvaluator and fix event import order

- Set default model to "gpt-4o-mini" in CrewEvaluator when no model is specified
- Reorder event-related imports in task.py to follow standard import conventions
- Update event bus initialization method return type hint
- Export event_bus in events/__init__.py

* Fix tool usage and event import handling

- Update tool usage to use `.get()` method when checking tool name
- Remove unnecessary `__all__` export list in events/__init__.py

* Refactor Flow and Agent event handling to use event_bus

- Remove `event_emitter` from Flow class and replace with `event_bus.emit()`
- Update Flow and Agent tests to use event_bus event listeners
- Remove redundant event emissions in Flow methods
- Add debug print statements in Flow execution
- Simplify event tracking in test cases

* Enhance event handling for Crew, Task, and Event classes

- Add crew name to failed event types (CrewKickoffFailedEvent, CrewTrainFailedEvent, CrewTestFailedEvent)
- Update Task events to remove redundant task and context attributes
- Refactor EventListener to use Logger for consistent event logging
- Add new event types for Crew train and test events
- Improve event bus event tracking in test cases

* Remove telemetry and tracing dependencies from Task and Flow classes

- Remove telemetry-related imports and private attributes from Task class
- Remove `_telemetry` attribute from Flow class
- Update event handling to emit events without direct telemetry tracking
- Simplify task and flow execution by removing explicit telemetry spans
- Move telemetry-related event handling to EventListener

* Clean up unused imports and event-related code

- Remove unused imports from various event and flow-related files
- Reorder event imports to follow standard conventions
- Remove unnecessary event type references
- Simplify import statements in event and flow modules

* Update crew test to validate verbose output and kickoff_for_each method

- Enhance test_crew_verbose_output to check specific listener log messages
- Modify test_kickoff_for_each_invalid_input to use Pydantic validation error
- Improve test coverage for crew logging and input validation

* Update crew test verbose output with improved emoji icons

- Replace task and agent completion icons from 👍 to 
- Enhance readability of test output logging
- Maintain consistent test coverage for crew verbose output

* Add MethodExecutionFailedEvent to handle flow method execution failures

- Introduce new MethodExecutionFailedEvent in flow_events module
- Update Flow class to catch and emit method execution failures
- Add event listener for method execution failure events
- Update event-related imports to include new event type
- Enhance test coverage for method execution failure handling

* Propagate method execution failures in Flow class

- Modify Flow class to re-raise exceptions after emitting MethodExecutionFailedEvent
- Reorder MethodExecutionFailedEvent import to maintain consistent import style

* Enable test coverage for Flow method execution failure event

- Uncomment pytest.raises() in test_events to verify exception handling
- Ensure test validates MethodExecutionFailedEvent emission during flow kickoff

* Add event handling for tool usage events

- Introduce event listeners for ToolUsageFinishedEvent and ToolUsageErrorEvent
- Log tool usage events with descriptive emoji icons ( and )
- Update event_listener to track and log tool usage lifecycle

* Reorder and clean up event imports in event_listener

- Reorganize imports for tool usage events and other event types
- Maintain consistent import ordering and remove unused imports
- Ensure clean and organized import structure in event_listener module

* moving to dedicated eventlistener

* dont forget crew level

* Refactor AgentOps event listener for crew-level tracking

- Modify AgentOpsListener to handle crew-level events
- Initialize and end AgentOps session at crew kickoff and completion
- Create agents for each crew member during session initialization
- Improve session management and event recording
- Clean up and simplify event handling logic

* Update test_events to validate tool usage error event handling

- Modify test to assert single error event with correct attributes
- Use pytest.raises() to verify error event generation
- Simplify error event validation in test case

* Improve AgentOps listener type hints and formatting

- Add string type hints for AgentOps classes to resolve potential import issues
- Clean up unnecessary whitespace and improve code indentation
- Simplify initialization and event handling logic

* Update test_events to validate multiple tool usage events

- Modify test to assert 75 events instead of a single error event
- Remove pytest.raises() check, allowing crew kickoff to complete
- Adjust event validation to support broader event tracking

* Rename event_bus to crewai_event_bus for improved clarity and specificity

- Replace all references to `event_bus` with `crewai_event_bus`
- Update import statements across multiple files
- Remove the old `event_bus.py` file
- Maintain existing event handling functionality

* Enhance EventListener with singleton pattern and color configuration

- Implement singleton pattern for EventListener to ensure single instance
- Add default color configuration using EMITTER_COLOR from constants
- Modify log method calls to use default color and remove redundant color parameters
- Improve initialization logic to prevent multiple initializations

* Add FlowPlotEvent and update event bus to support flow plotting

- Introduce FlowPlotEvent to track flow plotting events
- Replace Telemetry method with event bus emission in Flow.plot()
- Update event bus to support new FlowPlotEvent type
- Add test case to validate flow plotting event emission

* Remove RunType enum and clean up crew events module

- Delete unused RunType enum from crew_events.py
- Simplify crew_events.py by removing unnecessary enum definition
- Improve code clarity by removing unneeded imports

* Enhance event handling for tool usage and agent execution

- Add new events for tool usage: ToolSelectionErrorEvent, ToolValidateInputErrorEvent
- Improve error tracking and event emission in ToolUsage and LLM classes
- Update AgentExecutionStartedEvent to use task_prompt instead of inputs
- Add comprehensive test coverage for new event types and error scenarios

* Refactor event system and improve crew testing

- Extract base CrewEvent class to a new base_events.py module
- Update event imports across multiple event-related files
- Modify CrewTestStartedEvent to use eval_llm instead of openai_model_name
- Add LLM creation validation in crew testing method
- Improve type handling and event consistency

* Refactor task events to use base CrewEvent

- Move CrewEvent import from crew_events to base_events
- Remove unnecessary blank lines in task_events.py
- Simplify event class structure for task-related events

* Update AgentExecutionStartedEvent to use task_prompt

- Modify test_events.py to use task_prompt instead of inputs
- Simplify event input validation in test case
- Align with recent event system refactoring

* Improve type hinting for TaskCompletedEvent handler

- Add explicit type annotation for TaskCompletedEvent in event_listener.py
- Enhance type safety for event handling in EventListener

* Improve test_validate_tool_input_invalid_input with mock objects

- Add explicit mock objects for agent and action in test case
- Ensure proper string values for mock agent and action attributes
- Simplify test setup for ToolUsage validation method

* Remove ToolUsageStartedEvent emission in tool usage process

- Remove unnecessary event emission for tool usage start
- Simplify tool usage event handling
- Eliminate redundant event data preparation step

* refactor: clean up and organize imports in llm and flow modules

* test: Improve flow persistence test cases and logging
2025-02-19 13:52:47 -08:00
João Moura
bcd90e26b0 making flow verbsoe false by default 2025-02-19 12:54:19 -08:00
Tony Kipkemboi
4eaa8755eb docs: update accordions and fix layout (#2110)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-19 11:06:46 -05:00
Vini Brasil
ba66910fbd Implement flow.state_utils.to_string method and improve types (#2161) 2025-02-19 10:12:51 -05:00
Eduardo Chiarotti
90f1bee602 feat: add prompt observability code (#2027)
* feat: add prompt observability code

* feat: improve logic for llm call

* feat: add tests for traces

* feat: remove unused improt

* feat: add function to clear and add task traces

* feat: fix import

* feat:  chagne time

* feat: fix type checking issues

* feat: add fixed time to fix test

* feat: fix datetime test issue

* feat: add add task traces function

* feat: add same logic as entp

* feat: add start_time as reference for duplication of tool call

* feat: add max_depth

* feat: add protocols file to properly import on LLM

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-19 08:52:30 -03:00
Brandon Hancock (bhancock_ai)
1cb5f57864 Bugfix/fix backtick in agent response (#2159)
* updating prompts

* fix issue

* clean up thoughts as well

* drop trailing set
2025-02-18 16:10:11 -05:00
sharmasundip
7dc47adb5c fix user memory config issue (#2086)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-18 11:59:29 -05:00
Vidit Ostwal
ac819bcb6e Added functionality to have any llm run test functionality (#2071)
* Added functionality to have any llm run test functionality

* Fixed lint issues

* Fixed Linting issues

* Fixed unit test case

* Fixed unit test

* Fixed test case

* Fixed unit test case

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-18 11:45:26 -05:00
Vini Brasil
b6d668fc66 Implement Flow state export method (#2134)
This commit implements a method for exporting the state of a flow into a
JSON-serializable dictionary.

The idea is producing a human-readable version of state that can be
inspected or consumed by other systems, hence JSON and not pickling or
marshalling.

I consider it an export because it's a one-way process, meaning it
cannot be loaded back into Python because of complex types.
2025-02-18 08:47:01 -05:00
luctrate
1b488b6da7 fix: Missing required template variable 'current_year' in description (#2085) 2025-02-13 10:19:52 -03:00
João Moura
d3b398ed52 preparring new version 2025-02-12 18:16:48 -05:00
Vini Brasil
d52fd09602 Fix linting issues (#2115) 2025-02-12 15:33:16 -05:00
Vini Brasil
d6800d8957 Ensure @start methods emit MethodExecutionStartedEvent (#2114)
Previously, `@start` methods triggered a `FlowStartedEvent` but did not
emit a `MethodExecutionStartedEvent`. This was fine for a single entry
point but caused ambiguity when multiple `@start` methods existed.

This commit (1) emits events for starting points, (2) adds tests
ensuring ordering, (3) adds more fields to events.
2025-02-12 14:19:41 -06:00
Tony Kipkemboi
2fd7506ed9 Merge pull request #2109 from tonykipkemboi/main
docs: update observability documentation and mint configuration
2025-02-12 11:43:28 -05:00
Tony Kipkemboi
161084aff2 Update observability documentation and mint configuration 2025-02-12 10:17:36 -05:00
Tony Kipkemboi
b145cb3247 Merge pull request #2100 from jannikmaierhoefer/main
docs: add Langfuse guide
2025-02-12 10:05:07 -05:00
Jannik Maierhöfer
1adbcf697d fix openlit typo 2025-02-11 13:11:08 +01:00
Jannik Maierhöfer
e51355200a docs: add Langfuse guide 2025-02-11 12:52:49 +01:00
Brandon Hancock (bhancock_ai)
47818f4f41 updating bedrock docs (#2088)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:48:12 -05:00
Brandon Hancock (bhancock_ai)
9b10fd47b0 incorporate Small update in memory.mdx, fixing Google AI parameters #2008 (#2087) 2025-02-10 12:17:41 -05:00
Brandon Hancock (bhancock_ai)
c408368267 fix linting issues in new tests (#2089)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:10:53 -05:00
Kevin King
90b3145e92 Updated excel_knowledge_source.py to account for excel files with multiple tabs. (#1921)
* Updated excel_knowledge_source.py to account for excel sheets that have multiple tabs. The old implementation contained a single df=pd.read_excel(excel_file_path), which only reads the first or most recently used excel sheet. The updated functionality reads all sheets in the excel workbook.

* updated load_content() function in excel_knowledge_source.py to reduce memory usage and provide better documentation

* accidentally didn't delete the old load_content() function in last commit - corrected this

* Added an override for the content field from the inheritted BaseFileKnowledgeSource to account for the change in the load_content method to support excel files with multiple tabs/sheets. This change should ensure it passes the type check test, as it failed before since content was assigned a different type in BaseFileKnowledgeSource

* Now removed the commented out imports in _import_dependencies, as requested

* Updated excel_knowledge_source to fix linter errors and type errors. Changed inheritence from basefileknowledgesource to baseknowledgesource because basefileknowledgesource's types conflicted (in particular the load_content function and the content class variable.

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 08:56:32 -08:00
Nicolas Lorin
fbd0e015d5 doc: use the corresponding source depending on filetype (#2038)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 20:25:33 -03:00
Bradley Goodyear
17e25fb842 Fix a typo in the Task Guardrails section (#2043)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 20:23:52 -03:00
devin-ai-integration[bot]
d6d98ee969 docs: fix long term memory class name in examples (#2049)
* docs: fix long term memory class name in examples

- Replace EnhanceLongTermMemory with LongTermMemory to match actual implementation
- Update code examples to show correct usage
- Fixes #2026

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: improve memory examples with imports, types and security

- Add proper import statements
- Add type hints for better readability
- Add descriptive comments for each memory type
- Add security considerations section
- Add configuration examples section
- Use environment variables for storage paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update memory.mdx

* Update memory.mdx

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:47:31 -03:00
devin-ai-integration[bot]
e0600e3bb9 fix: ensure proper message formatting for Anthropic models (#2063)
* fix: ensure proper message formatting for Anthropic models

- Add Anthropic-specific message formatting
- Add placeholder user message when required
- Add test case for Anthropic message formatting

Fixes #1869

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve Anthropic model handling

- Add robust model detection with _is_anthropic_model
- Enhance message formatting with better edge cases
- Add type hints and improve documentation
- Improve test structure with fixtures
- Add edge case tests

Addresses review feedback on #2063

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 16:35:52 -03:00
devin-ai-integration[bot]
a79d77dfd7 docs: document FileWriterTool as solution for file writing issues (#2039)
* docs: add FileWriterTool recommendation for file writing issues

- Add FileWriterTool recommendation in _save_file docstring
- Update error message to suggest using FileWriterTool for cross-platform compatibility
- Resolves #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance FileWriterTool documentation

- Add cross-platform compatibility details
- Highlight UTF-8 encoding support
- Emphasize Windows compatibility
- Add recommendation for users experiencing file writing issues

Part of #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve _save_file type hints and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:21:56 -03:00
devin-ai-integration[bot]
56ec9bc224 fix: handle multiple task outputs correctly in conditional tasks (#1937)
* fix: handle multiple task outputs correctly in conditional tasks

- Fix IndexError in _handle_conditional_task by using first output
- Modify _execute_tasks to accumulate task outputs instead of resetting
- Update _create_crew_output to handle multiple outputs correctly
- Add tests for multiple tasks with conditional and multiple conditional tasks

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* feat: validate at least one non-conditional task and refine task outputs

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Revert to single output in _create_crew_output; remove redundant empty task check

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: use last output in conditional tasks, add validation test

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: updated conditional tasks tests and indexing

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:20:16 -03:00
João Moura
8eef02739a adding shoutout to enterprise 2025-02-09 12:55:33 -05:00
Brandon Hancock (bhancock_ai)
6f4ad532e6 Brandon/general cleanup (#2059)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop

* clean up linting issues

* more linting
2025-02-07 17:00:41 -05:00
Brandon Hancock (bhancock_ai)
74a1de8550 clean up google docs (#2061) 2025-02-07 16:58:13 -05:00
Lorenze Jay
e529766391 Enhance embedding configuration with custom embedder support (#2060)
* Enhance embedding configuration with custom embedder support

- Add support for custom embedding functions in EmbeddingConfigurator
- Update type hints for embedder configuration
- Extend configuration options for various embedding providers
- Add optional embedder configuration to Memory class

* added docs

* Refine custom embedder configuration support

- Update custom embedder configuration method to handle custom embedding functions
- Modify type hints for embedder configuration
- Remove unused model_name parameter in custom embedder configuration
2025-02-07 16:49:46 -05:00
102 changed files with 19078 additions and 3925 deletions

3
.gitignore vendored
View File

@@ -21,4 +21,5 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
agentops.log
test_flow.html

View File

@@ -1,10 +1,18 @@
<div align="center">
![Logo of CrewAI, two people rowing on a boat](./docs/crewai_logo.png)
![Logo of CrewAI](./docs/crewai_logo.png)
# **CrewAI**
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI Enterprise**
Want to plan, build (+ no code), deploy, monitor and interare your agents: [CrewAI Enterprise](https://www.crewai.com/enterprise). Designed for complex, real-world applications, our enterprise solution offers:
- **Seamless Integrations**
- **Scalable & Secure Deployment**
- **Actionable Insights**
- **24/7 Support**
<h3>
@@ -392,7 +400,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
@@ -403,7 +411,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],

View File

@@ -136,17 +136,21 @@ crewai test -n 5 -m gpt-3.5-turbo
### 8. Run
Run the crew.
Run the crew or flow.
```shell Terminal
crewai run
```
<Note>
Starting from version 0.103.0, the `crewai run` command can be used to run both standard crews and flows. For flows, it automatically detects the type from pyproject.toml and runs the appropriate command. This is now the recommended way to run both crews and flows.
</Note>
<Note>
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. Chat
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
@@ -175,7 +179,6 @@ def crew(self) -> Crew:
```
</Note>
### 10. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.

View File

@@ -0,0 +1,349 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
---
# Event Listeners
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
## How It Works
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
2. **CrewEvent**: Base class for all events in the system
3. **BaseEventListener**: Abstract base class for creating custom event listeners
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
## Creating a Custom Event Listener
To create a custom event listener, you need to:
1. Create a class that inherits from `BaseEventListener`
2. Implement the `setup_listeners` method
3. Register handlers for the events you're interested in
4. Create an instance of your listener in the appropriate file
Here's a simple example of a custom event listener class:
```python
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
print(f"Crew '{event.crew_name}' has started execution!")
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
print(f"Crew '{event.crew_name}' has completed execution!")
print(f"Output: {event.output}")
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event):
print(f"Agent '{event.agent.role}' completed task")
print(f"Output: {event.output}")
```
## Properly Registering Your Listener
Simply defining your listener class isn't enough. You need to create an instance of it and ensure it's imported in your application. This ensures that:
1. The event handlers are registered with the event bus
2. The listener instance remains in memory (not garbage collected)
3. The listener is active when events are emitted
### Option 1: Import and Instantiate in Your Crew or Flow Implementation
The most important thing is to create an instance of your listener in the file where your Crew or Flow is defined and executed:
#### For Crew-based Applications
Create and import your listener at the top of your Crew implementation file:
```python
# In your crew.py file
from crewai import Agent, Crew, Task
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomCrew:
# Your crew implementation...
def crew(self):
return Crew(
agents=[...],
tasks=[...],
# ...
)
```
#### For Flow-based Applications
Create and import your listener at the top of your Flow implementation file:
```python
# In your main.py or flow.py file
from crewai.flow import Flow, listen, start
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomFlow(Flow):
# Your flow implementation...
@start()
def first_step(self):
# ...
```
This ensures that your listener is loaded and active when your Crew or Flow is executed.
### Option 2: Create a Package for Your Listeners
For a more structured approach, especially if you have multiple listeners:
1. Create a package for your listeners:
```
my_project/
├── listeners/
│ ├── __init__.py
│ ├── my_custom_listener.py
│ └── another_listener.py
```
2. In `my_custom_listener.py`, define your listener class and create an instance:
```python
# my_custom_listener.py
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
# ... implementation ...
# Create an instance of your listener
my_custom_listener = MyCustomListener()
```
3. In `__init__.py`, import the listener instances to ensure they're loaded:
```python
# __init__.py
from .my_custom_listener import my_custom_listener
from .another_listener import another_listener
# Optionally export them if you need to access them elsewhere
__all__ = ['my_custom_listener', 'another_listener']
```
4. Import your listeners package in your Crew or Flow file:
```python
# In your crew.py or flow.py file
import my_project.listeners # This loads all your listeners
class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Available Event Types
CrewAI provides a wide range of events that you can listen for:
### Crew Events
- **CrewKickoffStartedEvent**: Emitted when a Crew starts execution
- **CrewKickoffCompletedEvent**: Emitted when a Crew completes execution
- **CrewKickoffFailedEvent**: Emitted when a Crew fails to complete execution
- **CrewTestStartedEvent**: Emitted when a Crew starts testing
- **CrewTestCompletedEvent**: Emitted when a Crew completes testing
- **CrewTestFailedEvent**: Emitted when a Crew fails to complete testing
- **CrewTrainStartedEvent**: Emitted when a Crew starts training
- **CrewTrainCompletedEvent**: Emitted when a Crew completes training
- **CrewTrainFailedEvent**: Emitted when a Crew fails to complete training
### Agent Events
- **AgentExecutionStartedEvent**: Emitted when an Agent starts executing a task
- **AgentExecutionCompletedEvent**: Emitted when an Agent completes executing a task
- **AgentExecutionErrorEvent**: Emitted when an Agent encounters an error during execution
### Task Events
- **TaskStartedEvent**: Emitted when a Task starts execution
- **TaskCompletedEvent**: Emitted when a Task completes execution
- **TaskFailedEvent**: Emitted when a Task fails to complete execution
- **TaskEvaluationEvent**: Emitted when a Task is evaluated
### Tool Usage Events
- **ToolUsageStartedEvent**: Emitted when a tool execution is started
- **ToolUsageFinishedEvent**: Emitted when a tool execution is completed
- **ToolUsageErrorEvent**: Emitted when a tool execution encounters an error
- **ToolValidateInputErrorEvent**: Emitted when a tool input validation encounters an error
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created
- **FlowStartedEvent**: Emitted when a Flow starts execution
- **FlowFinishedEvent**: Emitted when a Flow completes execution
- **FlowPlotEvent**: Emitted when a Flow is plotted
- **MethodExecutionStartedEvent**: Emitted when a Flow method starts execution
- **MethodExecutionFinishedEvent**: Emitted when a Flow method completes execution
- **MethodExecutionFailedEvent**: Emitted when a Flow method fails to complete execution
### LLM Events
- **LLMCallStartedEvent**: Emitted when an LLM call starts
- **LLMCallCompletedEvent**: Emitted when an LLM call completes
- **LLMCallFailedEvent**: Emitted when an LLM call fails
## Event Handler Structure
Each event handler receives two parameters:
1. **source**: The object that emitted the event
2. **event**: The event instance, containing event-specific data
The structure of the event object depends on the event type, but all events inherit from `CrewEvent` and include:
- **timestamp**: The time when the event was emitted
- **type**: A string identifier for the event type
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def temp_handler(source, event):
print("This handler only exists within this context")
# Do something that emits events
# Outside the context, the temporary handler is removed
```
## Use Cases
Event listeners can be used for a variety of purposes:
1. **Logging and Monitoring**: Track the execution of your Crew and log important events
2. **Analytics**: Collect data about your Crew's performance and behavior
3. **Debugging**: Set up temporary listeners to debug specific issues
4. **Integration**: Connect CrewAI with external systems like monitoring platforms, databases, or notification services
5. **Custom Behavior**: Trigger custom actions based on specific events
## Best Practices
1. **Keep Handlers Light**: Event handlers should be lightweight and avoid blocking operations
2. **Error Handling**: Include proper error handling in your event handlers to prevent exceptions from affecting the main execution
3. **Cleanup**: If your listener allocates resources, ensure they're properly cleaned up
4. **Selective Listening**: Only listen for events you actually need to handle
5. **Testing**: Test your event listeners in isolation to ensure they behave as expected
By leveraging CrewAI's event system, you can extend its functionality and integrate it seamlessly with your existing infrastructure.

View File

@@ -150,12 +150,12 @@ final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
````
```
```text Output
---- Final Output ----
Second method received: Output from first_method
````
```
</CodeGroup>
@@ -738,3 +738,34 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows
There are two ways to run a flow:
### Using the Flow API
You can run a flow programmatically by creating an instance of your flow class and calling the `kickoff()` method:
```python
flow = ExampleFlow()
result = flow.kickoff()
```
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:
```shell
crewai run
```
This command automatically detects if your project is a flow (based on the `type = "flow"` setting in your pyproject.toml) and runs it accordingly. This is the recommended way to run flows from the command line.
For backward compatibility, you can also use:
```shell
crewai flow kickoff
```
However, the `crewai run` command is now the preferred method as it works for both crews and flows.

View File

@@ -91,7 +91,7 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
```
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including MD, PDF, DOCX, HTML, and more.
<Note>
You need to install `docling` for the following example to work: `uv add docling`
@@ -152,10 +152,10 @@ Here are examples of how to use different types of knowledge sources:
### Text File Knowledge Source
```python
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
# Create a text file knowledge source
text_source = CrewDoclingSource(
text_source = TextFileKnowledgeSource(
file_paths=["document.txt", "another.txt"]
)

File diff suppressed because it is too large Load Diff

View File

@@ -58,41 +58,107 @@ my_crew = Crew(
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
```python Code
from crewai import Crew, Agent, Task, Process
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage import LTMSQLiteStorage, RAGStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
my_crew = Crew(
agents=[...],
tasks=[...],
process="Process.sequential",
memory=True,
long_term_memory=EnhanceLongTermMemory(
my_crew: Crew = Crew(
agents = [...],
tasks = [...],
process = Process.sequential,
memory = True,
# Long-term memory for persistent storage across sessions
long_term_memory = LongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
db_path="/my_crew1/long_term_memory_storage.db"
)
),
short_term_memory=EnhanceShortTermMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="short_term",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
# Short-term memory for current context using RAG
short_term_memory = ShortTermMemory(
storage = RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
),
entity_memory=EnhanceEntityMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="entities",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
# Entity memory for tracking key information about entities
entity_memory = EntityMemory(
storage=RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
verbose=True,
)
```
## Security Considerations
When configuring memory storage:
- Use environment variables for storage paths (e.g., `CREWAI_STORAGE_DIR`)
- Never hardcode sensitive information like database credentials
- Consider access permissions for storage directories
- Use relative paths when possible to maintain portability
Example using environment variables:
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path="{storage_path}/memory.db".format(storage_path=storage_path)
)
)
)
```
## Configuration Examples
### Basic Memory Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(db_path="./memory.db")
)
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
@@ -216,6 +282,19 @@ my_crew = Crew(
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
@@ -368,7 +447,66 @@ my_crew = Crew(
)
```
### Resetting Memory
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb import Documents, EmbeddingFunction, Embeddings
# Create a custom embedding function
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
# generate embeddings
return [1, 2, 3] # this is a dummy embedding
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
```
### Resetting Memory via cli
```shell
crewai reset-memories [OPTIONS]
@@ -382,8 +520,46 @@ crewai reset-memories [OPTIONS]
| `-s`, `--short` | Reset SHORT TERM memory. | Flag (boolean) | False |
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
### Resetting Memory via crew object
```python
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
my_crew.reset_memories(command_type = 'all') # Resets all the memory
```
#### Resetting Memory Options
| Command Type | Description |
| :----------------- | :------------------------------- |
| `long` | Reset LONG TERM memory. |
| `short` | Reset SHORT TERM memory. |
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
## Benefits of Using CrewAI's Memory System

View File

@@ -268,7 +268,7 @@ analysis_task = Task(
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
efeedback to agents when their output doesn't meet specific criteria.
feedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails

View File

@@ -54,7 +54,8 @@ coding_agent = Agent(
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
agent=coding_agent,
expected_output="The average age of the participants."
)
# Create a crew and add the task
@@ -116,4 +117,4 @@ async def async_multiple_crews():
# Run the async function
asyncio.run(async_multiple_crews())
```
```

View File

@@ -0,0 +1,100 @@
---
title: Agent Monitoring with Langfuse
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
---
# Integrate Langfuse with CrewAI
This notebook demonstrates how to integrate **Langfuse** with **CrewAI** using OpenTelemetry via the **OpenLit** SDK. By the end of this notebook, you will be able to trace your CrewAI applications with Langfuse for improved observability and debugging.
> **What is Langfuse?** [Langfuse](https://langfuse.com) is an open-source LLM engineering platform. It provides tracing and monitoring capabilities for LLM applications, helping developers debug, analyze, and optimize their AI systems. Langfuse integrates with various tools and frameworks via native integrations, OpenTelemetry, and APIs/SDKs.
[![Langfuse Overview Video](https://github.com/user-attachments/assets/3926b288-ff61-4b95-8aa1-45d041c70866)](https://langfuse.com/watch-demo)
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Langfuse via OpenTelemetry using OpenLit.
### Step 1: Install Dependencies
```python
%pip install langfuse openlit crewai crewai_tools
```
### Step 2: Set Up Environment Variables
Set your Langfuse API keys and configure OpenTelemetry export settings to send traces to Langfuse. Please refer to the [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started) for more information on the Langfuse OpenTelemetry endpoint `/api/public/otel` and authentication.
```python
import os
import base64
LANGFUSE_PUBLIC_KEY="pk-lf-..."
LANGFUSE_SECRET_KEY="sk-lf-..."
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
# your openai key
os.environ["OPENAI_API_KEY"] = "sk-..."
```
### Step 3: Initialize OpenLit
Initialize the OpenLit OpenTelemetry instrumentation SDK to start capturing OpenTelemetry traces.
```python
import openlit
openlit.init()
```
### Step 4: Create a Simple CrewAI Application
We'll create a simple CrewAI application where multiple agents collaborate to answer a user's question.
```python
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
```
### Step 5: See Traces in Langfuse
After running the agent, you can view the traces generated by your CrewAI application in [Langfuse](https://cloud.langfuse.com). You should see detailed steps of the LLM interactions, which can help you debug and optimize your AI agent.
![CrewAI example trace in Langfuse](https://langfuse.com/images/cookbook/integration_crewai/crewai-example-trace.png)
_[Public example trace in Langfuse](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/e2cf380ffc8d47d28da98f136140642b?timestamp=2025-02-05T15%3A12%3A02.717Z&observation=3b32338ee6a5d9af)_
## References
- [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started)

View File

@@ -1,211 +0,0 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -1,5 +1,5 @@
---
title: Portkey Observability and Guardrails
title: Agent Monitoring with Portkey
description: How to use Portkey with CrewAI
icon: key
---

View File

@@ -103,7 +103,8 @@
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability"
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{

View File

@@ -8,9 +8,9 @@ icon: file-pen
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files.
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files with cross-platform compatibility (Windows, Linux, macOS).
It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more.
This tool supports creating new directories if they don't exist, making it easier to organize your output.
This tool handles path differences across operating systems, supports UTF-8 encoding, and automatically creates directories if they don't exist, making it easier to organize your output reliably across different platforms.
## Installation
@@ -43,6 +43,8 @@ print(result)
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories.
This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided,
incorporating this tool into projects is straightforward and efficient.
By integrating the `FileWriterTool` into your crews, the agents can reliably write content to files across different operating systems.
This tool is essential for tasks that require saving output data, creating structured file systems, and handling cross-platform file operations.
It's particularly recommended for Windows users who may encounter file writing issues with standard Python file operations.
By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and ensures consistent file writing behavior across all platforms.

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.100.1"
version = "0.102.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -45,7 +45,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.32.1"]
tools = ["crewai-tools>=0.36.0"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.100.1"
__version__ = "0.102.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -16,29 +16,20 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
@track_agent()
class Agent(BaseAgent):
"""Represents an agent in a system.
@@ -123,7 +114,6 @@ class Agent(BaseAgent):
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
@@ -143,10 +133,13 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def _set_knowledge(self):
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
if self.knowledge_sources:
full_pattern = re.compile(r'[^a-zA-Z0-9\-_\r\n]|(\.\.)')
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
@@ -241,6 +234,15 @@ class Agent(BaseAgent):
task_prompt = self._use_trained_data(task_prompt=task_prompt)
try:
crewai_event_bus.emit(
self,
event=AgentExecutionStartedEvent(
agent=self,
tools=self.tools,
task_prompt=task_prompt,
task=task,
),
)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -252,9 +254,25 @@ class Agent(BaseAgent):
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
result = self.execute_task(task, context, tools)
@@ -267,7 +285,10 @@ class Agent(BaseAgent):
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
return result
def create_agent_executor(

View File

@@ -20,8 +20,7 @@ from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.tools.base_tool import BaseTool, Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
@@ -112,7 +111,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: int = Field(
@@ -352,3 +351,6 @@ class BaseAgent(ABC, BaseModel):
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
pass

View File

@@ -114,10 +114,15 @@ class CrewAgentExecutorMixin:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Respond with 'looks good' to accept or provide specific improvement requests.\n"
"You can provide multiple rounds of feedback until satisfied.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
)
self._printer.print(content=prompt, color="bold_yellow")
return input()
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response

View File

@@ -31,11 +31,11 @@ class OutputConverter(BaseModel, ABC):
)
@abstractmethod
def to_pydantic(self, current_attempt=1):
def to_pydantic(self, current_attempt=1) -> BaseModel:
"""Convert text to pydantic."""
pass
@abstractmethod
def to_json(self, current_attempt=1):
def to_json(self, current_attempt=1) -> dict:
"""Convert text to json."""
pass

View File

@@ -18,6 +18,12 @@ from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -107,11 +113,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
raise
except Exception as e:
self._handle_unknown_error(e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
self._handle_unknown_error(e)
raise e
if self.ask_for_human_input:
@@ -349,40 +355,68 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
try:
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
),
)
return ToolResult(result=tool_result, result_as_answer=False)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
except Exception as e:
# TODO: drop
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageErrorEvent( # validation error
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
error=str(e),
),
)
raise e
def _summarize_messages(self) -> None:
messages_groups = []
@@ -514,10 +548,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process feedback for training scenarios with single iteration."""
self._printer.print(
content="\nProcessing training feedback.\n",
color="yellow",
)
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
self._format_msg(
@@ -537,9 +567,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
answer = current_answer
while self.ask_for_human_input:
response = self._get_llm_feedback_response(feedback)
if not self._feedback_requires_changes(response):
# If the user provides a blank response, assume they are happy with the result
if feedback.strip() == "":
self.ask_for_human_input = False
else:
answer = self._process_feedback_iteration(feedback)
@@ -547,27 +576,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return answer
def _get_llm_feedback_response(self, feedback: str) -> Optional[str]:
"""Get LLM classification of whether feedback requires changes."""
prompt = self._i18n.slice("human_feedback_classification").format(
feedback=feedback
)
message = self._format_msg(prompt, role="system")
for retry in range(MAX_LLM_RETRY):
try:
response = self.llm.call([message], callbacks=self.callbacks)
return response.strip().lower() if response else None
except Exception as error:
self._log_feedback_error(retry, error)
self._log_max_retries_exceeded()
return None
def _feedback_requires_changes(self, response: Optional[str]) -> bool:
"""Determine if feedback response indicates need for changes."""
return response == "true" if response else False
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(

View File

@@ -94,6 +94,13 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -117,11 +124,15 @@ class CrewAgentParser:
)
def _extract_thought(self, text: str) -> str:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
return ""
thought_index = text.find("\n\nAction")
if thought_index == -1:
thought_index = text.find("\n\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""

View File

@@ -203,7 +203,6 @@ def install(context):
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()

View File

@@ -216,10 +216,43 @@ MODELS = {
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/us.amazon.nova-pro-v1:0",
"bedrock/us.amazon.nova-micro-v1:0",
"bedrock/us.amazon.nova-lite-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/us.anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/us.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/us.anthropic.claude-3-opus-20240229-v1:0",
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
"bedrock/us.meta.llama3-2-90b-instruct-v1:0",
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
"bedrock/us.meta.llama3-1-8b-instruct-v1:0",
"bedrock/us.meta.llama3-1-70b-instruct-v1:0",
"bedrock/us.meta.llama3-3-70b-instruct-v1:0",
"bedrock/us.meta.llama3-1-405b-instruct-v1:0",
"bedrock/eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/eu.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/eu.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/eu.meta.llama3-2-3b-instruct-v1:0",
"bedrock/eu.meta.llama3-2-1b-instruct-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/apac.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/apac.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/amazon.nova-pro-v1:0",
"bedrock/amazon.nova-micro-v1:0",
"bedrock/amazon.nova-lite-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
@@ -234,8 +267,6 @@ MODELS = {
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],

View File

@@ -3,11 +3,6 @@ import subprocess
import click
from crewai.cli.utils import get_crew
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
def reset_memories_command(

View File

@@ -1,4 +1,6 @@
import subprocess
from enum import Enum
from typing import List, Optional
import click
from packaging import version
@@ -7,16 +9,24 @@ from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
class CrewType(Enum):
STANDARD = "standard"
FLOW = "flow"
def run_crew() -> None:
"""
Run the crew by running a command in the UV environment.
Run the crew or flow by running a command in the UV environment.
Starting from version 0.103.0, this command can be used to run both
standard crews and flows. For flows, it detects the type from pyproject.toml
and automatically runs the appropriate command.
"""
command = ["uv", "run", "run_crew"]
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
pyproject_data = read_toml()
# Check for legacy poetry configuration
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
@@ -26,18 +36,54 @@ def run_crew() -> None:
fg="red",
)
# Determine crew type
is_flow = pyproject_data.get("tool", {}).get("crewai", {}).get("type") == "flow"
crew_type = CrewType.FLOW if is_flow else CrewType.STANDARD
# Display appropriate message
click.echo(f"Running the {'Flow' if is_flow else 'Crew'}")
# Execute the appropriate command
execute_command(crew_type)
def execute_command(crew_type: CrewType) -> None:
"""
Execute the appropriate command based on crew type.
Args:
crew_type: The type of crew to run
"""
command = ["uv", "run", "kickoff" if crew_type == CrewType.FLOW else "run_crew"]
try:
subprocess.run(command, capture_output=False, text=True, check=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)
handle_error(e, crew_type)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)
def handle_error(error: subprocess.CalledProcessError, crew_type: CrewType) -> None:
"""
Handle subprocess errors with appropriate messaging.
Args:
error: The subprocess error that occurred
crew_type: The type of crew that was being run
"""
entity_type = "flow" if crew_type == CrewType.FLOW else "crew"
click.echo(f"An error occurred while running the {entity_type}: {error}", err=True)
if error.output:
click.echo(error.output, err=True, nl=True)
pyproject_data = read_toml()
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, "
"please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)

View File

@@ -56,7 +56,8 @@ def test():
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs"
"topic": "AI LLMs",
"current_year": str(datetime.now().year)
}
try:
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.1,<1.0.0"
"crewai[tools]>=0.102.0,<1.0.0"
]
[project.scripts]

View File

@@ -30,13 +30,13 @@ crewai install
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
To kickstart your flow and begin execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This command initializes the {{name}} Flow as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.1,<1.0.0",
"crewai[tools]>=0.102.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.1"
"crewai[tools]>=0.102.0"
]
[tool.crewai]

View File

@@ -257,11 +257,11 @@ def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
import os
for root, _, files in os.walk("."):
if "crew.py" in files:
crew_path = os.path.join(root, "crew.py")
if crew_path in files:
crew_os_path = os.path.join(root, crew_path)
try:
spec = importlib.util.spec_from_file_location(
"crew_module", crew_path
"crew_module", crew_os_path
)
if not spec or not spec.loader:
continue
@@ -273,9 +273,11 @@ def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
for attr_name in dir(module):
attr = getattr(module, attr_name)
try:
if callable(attr) and hasattr(attr, "crew"):
crew_instance = attr().crew()
return crew_instance
if isinstance(attr, Crew) and hasattr(attr, "kickoff"):
print(
f"Found valid crew object in attribute '{attr_name}' at {crew_os_path}."
)
return attr
except Exception as e:
print(f"Error processing attribute {attr_name}: {e}")

View File

@@ -1,7 +1,6 @@
import asyncio
import json
import re
import sys
import uuid
import warnings
from concurrent.futures import Future
@@ -36,7 +35,6 @@ from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.usage_metrics import UsageMetrics
@@ -44,6 +42,18 @@ from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -53,12 +63,6 @@ from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
try:
import agentops # type: ignore
except ImportError:
agentops = None
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -252,8 +256,6 @@ class Crew(BaseModel):
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self
@model_validator(mode="after")
@@ -276,12 +278,26 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
else:
self._user_memory = None
self._user_memory = None # No user memory if not in config
return self
@model_validator(mode="after")
@@ -381,6 +397,22 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_must_have_non_conditional_task(self) -> "Crew":
"""Ensure that a crew has at least one non-conditional task."""
if not self.tasks:
return self
non_conditional_count = sum(
1 for task in self.tasks if not isinstance(task, ConditionalTask)
)
if non_conditional_count == 0:
raise PydanticCustomError(
"only_conditional_tasks",
"Crew must include at least one non-conditional task",
{},
)
return self
@model_validator(mode="after")
def validate_first_task(self) -> "Crew":
"""Ensure the first task is not a ConditionalTask."""
@@ -440,7 +472,6 @@ class Crew(BaseModel):
)
return self
@property
def key(self) -> str:
source = [agent.key for agent in self.agents] + [
@@ -493,10 +524,19 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
train_crew = self.copy()
train_crew._setup_for_training(filename)
try:
crewai_event_bus.emit(
self,
CrewTrainStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
inputs=inputs,
),
)
train_crew = self.copy()
train_crew._setup_for_training(filename)
for n_iteration in range(n_iterations):
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
@@ -511,7 +551,20 @@ class Crew(BaseModel):
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
crewai_event_bus.emit(
self,
CrewTrainCompletedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTrainFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
self._logger.log("error", f"Training failed: {e}", color="red")
CrewTrainingHandler(TRAINING_DATA_FILE).clear()
CrewTrainingHandler(filename).clear()
@@ -521,60 +574,71 @@ class Crew(BaseModel):
self,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
try:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
crewai_event_bus.emit(
self,
CrewKickoffStartedEvent(crew_name=self.name or "crew", inputs=inputs),
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
# Starts the crew to work on its assigned tasks.
self._task_output_handler.reset()
self._logging_color = "bold_purple"
metrics += [agent._token_process.get_summary() for agent in self.agents]
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
i18n = I18N(prompt_file=self.prompt_file)
return result
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
agent.set_knowledge(crew_embedder=self.embedder)
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
metrics += [agent._token_process.get_summary() for agent in self.agents]
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
return result
except Exception as e:
crewai_event_bus.emit(
self,
CrewKickoffFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
@@ -743,6 +807,7 @@ class Crew(BaseModel):
task, task_outputs, futures, task_index, was_replayed
)
if skipped_task_output:
task_outputs.append(skipped_task_output)
continue
if task.async_execution:
@@ -766,7 +831,7 @@ class Crew(BaseModel):
context=context,
tools=tools_for_task,
)
task_outputs = [task_output]
task_outputs.append(task_output)
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
@@ -787,7 +852,7 @@ class Crew(BaseModel):
task_outputs = self._process_async_tasks(futures, was_replayed)
futures.clear()
previous_output = task_outputs[task_index - 1] if task_outputs else None
previous_output = task_outputs[-1] if task_outputs else None
if previous_output is not None and not task.should_execute(previous_output):
self._logger.log(
"debug",
@@ -909,20 +974,29 @@ class Crew(BaseModel):
)
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
# Filter out empty outputs and get the last valid one as the main output
valid_outputs = [t for t in task_outputs if t.raw]
if not valid_outputs:
raise ValueError("No valid task outputs available to create crew output.")
final_task_output = valid_outputs[-1]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
crew_name=self.name or "crew", output=final_task_output
),
)
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
tasks_output=task_outputs,
token_usage=token_usage,
)
@@ -1037,7 +1111,6 @@ class Crew(BaseModel):
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
@@ -1103,13 +1176,6 @@ class Crew(BaseModel):
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
if agentops:
agentops.end_session(
end_state="Success",
end_state_reason="Finished Execution",
is_auto_end=True,
)
self._telemetry.end_crew(self, final_string_output)
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
@@ -1127,25 +1193,45 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
eval_llm: Union[str, InstanceOf[LLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
test_crew = self.copy()
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
raise ValueError("Failed to create LLM instance.")
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
crewai_event_bus.emit(
self,
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
evaluator.print_crew_evaluation_result()
crewai_event_bus.emit(
self,
CrewTestCompletedEvent(
crew_name=self.name or "crew",
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTestFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
@@ -1187,11 +1273,11 @@ class Crew(BaseModel):
def _reset_all_memories(self) -> None:
"""Reset all available memory systems."""
memory_systems = [
("short term", self._short_term_memory),
("entity", self._entity_memory),
("long term", self._long_term_memory),
("task output", self._task_output_handler),
("knowledge", self.knowledge),
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
]
for name, system in memory_systems:

View File

@@ -1,4 +1,5 @@
import asyncio
import copy
import inspect
import logging
from typing import (
@@ -16,19 +17,21 @@ from typing import (
)
from uuid import uuid4
from blinker import Signal
from pydantic import BaseModel, Field, ValidationError
from crewai.flow.flow_events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
FlowFinishedEvent,
FlowPlotEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
@@ -394,7 +397,6 @@ class FlowMeta(type):
or hasattr(attr_value, "__trigger_methods__")
or hasattr(attr_value, "__is_router__")
):
# Register start methods
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
@@ -427,7 +429,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
_telemetry = Telemetry()
_printer = Printer()
_start_methods: List[str] = []
@@ -435,7 +436,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -469,7 +469,13 @@ class Flow(Generic[T], metaclass=FlowMeta):
if kwargs:
self._initialize_state(kwargs)
self._telemetry.flow_creation_span(self.__class__.__name__)
crewai_event_bus.emit(
self,
FlowCreatedEvent(
type="flow_created",
flow_name=self.__class__.__name__,
),
)
# Register all flow-related methods
for method_name in dir(self):
@@ -569,6 +575,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
)
def _copy_state(self) -> T:
return copy.deepcopy(self._state)
@property
def state(self) -> T:
return self._state
@@ -700,16 +709,34 @@ class Flow(Generic[T], metaclass=FlowMeta):
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""Start the flow execution.
"""
Start the flow execution in a synchronous context.
This method wraps kickoff_async so that all state initialization and event
emission is handled in the asynchronous method.
"""
async def run_flow():
return await self.kickoff_async(inputs)
return asyncio.run(run_flow())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution asynchronously.
This method performs state restoration (if an 'id' is provided and persistence is available)
and updates the flow state with any additional inputs. It then emits the FlowStartedEvent,
logs the flow startup, and executes all start methods. Once completed, it emits the
FlowFinishedEvent and returns the final output.
Args:
inputs: Optional dictionary containing input values and potentially a state ID to restore
"""
# Handle state restoration if ID is provided in inputs
if inputs and "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
inputs: Optional dictionary containing input values and/or a state ID for restoration.
Returns:
The final output from the flow, which is the result of the last executed method.
"""
if inputs:
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
@@ -717,29 +744,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
# Restore the state
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
# Apply any additional inputs after restoration
# Update state with any additional inputs (ignoring the 'id' key)
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
# Start flow execution
self.event_emitter.send(
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
self,
event=FlowStartedEvent(
FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
@@ -749,16 +780,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
if inputs is not None and "id" not in inputs:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
if not self._start_methods:
raise ValueError("No start method defined")
self._telemetry.flow_execution_span(
self.__class__.__name__, list(self._methods.keys())
)
tasks = [
self._execute_start_method(start_method)
for start_method in self._start_methods
@@ -767,14 +788,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
final_output = self._method_outputs[-1] if self._method_outputs else None
self.event_emitter.send(
crewai_event_bus.emit(
self,
event=FlowFinishedEvent(
FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
@@ -803,16 +825,55 @@ class Flow(Generic[T], metaclass=FlowMeta):
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
try:
dumped_params = {f"_{i}": arg for i, arg in enumerate(args)} | (
kwargs or {}
)
crewai_event_bus.emit(
self,
MethodExecutionStartedEvent(
type="method_execution_started",
method_name=method_name,
flow_name=self.__class__.__name__,
params=dumped_params,
state=self._copy_state(),
),
)
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
crewai_event_bus.emit(
self,
MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=method_name,
flow_name=self.__class__.__name__,
state=self._copy_state(),
result=result,
),
)
return result
except Exception as e:
crewai_event_bus.emit(
self,
MethodExecutionFailedEvent(
type="method_execution_failed",
method_name=method_name,
flow_name=self.__class__.__name__,
error=e,
),
)
raise e
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
"""
@@ -833,35 +894,45 @@ class Flow(Generic[T], metaclass=FlowMeta):
Notes
-----
- Routers are executed sequentially to maintain flow control
- Each router's result becomes the new trigger_method
- Each router's result becomes a new trigger_method
- Normal listeners are executed in parallel for efficiency
- Listeners can receive the trigger method's result as a parameter
"""
# First, handle routers repeatedly until no router triggers anymore
router_results = []
current_trigger = trigger_method
while True:
routers_triggered = self._find_triggered_methods(
trigger_method, router_only=True
current_trigger, router_only=True
)
if not routers_triggered:
break
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
# The last router executed sets the trigger_method
# The router result is the last element in self._method_outputs
trigger_method = self._method_outputs[-1]
router_result = self._method_outputs[-1]
if router_result: # Only add non-None results
router_results.append(router_result)
current_trigger = (
router_result # Update for next iteration of router chain
)
# Now that no more routers are triggered by current trigger_method,
# execute normal listeners
listeners_triggered = self._find_triggered_methods(
trigger_method, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
# Now execute normal listeners for all router results and the original trigger
all_triggers = [trigger_method] + router_results
for current_trigger in all_triggers:
if current_trigger: # Skip None results
listeners_triggered = self._find_triggered_methods(
current_trigger, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
@@ -951,15 +1022,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
method_params = [p for p in params if p.name != "self"]
@@ -971,15 +1033,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
listener_result = await self._execute_method(listener_name, method)
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners (and possibly routers) of this listener
await self._execute_listeners(listener_name, listener_result)
@@ -1018,7 +1071,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
logger.warning(message)
def plot(self, filename: str = "crewai_flow") -> None:
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())
crewai_event_bus.emit(
self,
FlowPlotEvent(
type="flow_plot",
flow_name=self.__class__.__name__,
),
)
plot_flow(self, filename)

View File

@@ -1,33 +0,0 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -58,7 +58,7 @@ class PersistenceDecorator:
_printer = Printer() # Class-level printer instance
@classmethod
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence) -> None:
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence, verbose: bool = False) -> None:
"""Persist flow state with proper error handling and logging.
This method handles the persistence of flow state data, including proper
@@ -68,6 +68,7 @@ class PersistenceDecorator:
flow_instance: The flow instance whose state to persist
method_name: Name of the method that triggered persistence
persistence_instance: The persistence backend to use
verbose: Whether to log persistence operations
Raises:
ValueError: If flow has no state or state lacks an ID
@@ -88,9 +89,10 @@ class PersistenceDecorator:
if not flow_uuid:
raise ValueError("Flow state must have an 'id' field for persistence")
# Log state saving with consistent message
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
# Log state saving only if verbose is True
if verbose:
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
try:
persistence_instance.save_state(
@@ -115,7 +117,7 @@ class PersistenceDecorator:
raise ValueError(error_msg) from e
def persist(persistence: Optional[FlowPersistence] = None):
def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False):
"""Decorator to persist flow state.
This decorator can be applied at either the class level or method level.
@@ -126,6 +128,7 @@ def persist(persistence: Optional[FlowPersistence] = None):
Args:
persistence: Optional FlowPersistence implementation to use.
If not provided, uses SQLiteFlowPersistence.
verbose: Whether to log persistence operations. Defaults to False.
Returns:
A decorator that can be applied to either a class or method
@@ -135,13 +138,12 @@ def persist(persistence: Optional[FlowPersistence] = None):
RuntimeError: If state persistence fails
Example:
@persist # Class-level persistence with default SQLite
@persist(verbose=True) # Class-level persistence with logging
class MyFlow(Flow[MyState]):
@start()
def begin(self):
pass
"""
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
"""Decorator that handles both class and method decoration."""
actual_persistence = persistence or SQLiteFlowPersistence()
@@ -179,7 +181,7 @@ def persist(persistence: Optional[FlowPersistence] = None):
@functools.wraps(original_method)
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = await original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
@@ -199,7 +201,7 @@ def persist(persistence: Optional[FlowPersistence] = None):
@functools.wraps(original_method)
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
@@ -228,7 +230,7 @@ def persist(persistence: Optional[FlowPersistence] = None):
result = await method_coro
else:
result = method_coro
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
@@ -240,7 +242,7 @@ def persist(persistence: Optional[FlowPersistence] = None):
@functools.wraps(method)
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
result = method(flow_instance, *args, **kwargs)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:

View File

@@ -4,7 +4,7 @@ SQLite-based implementation of flow state persistence.
import json
import sqlite3
from datetime import datetime
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, Optional, Union
@@ -34,6 +34,7 @@ class SQLiteFlowPersistence(FlowPersistence):
ValueError: If db_path is invalid
"""
from crewai.utilities.paths import db_storage_path
# Get path from argument or default location
path = db_path or str(Path(db_storage_path()) / "flow_states.db")
@@ -46,7 +47,8 @@ class SQLiteFlowPersistence(FlowPersistence):
def init_db(self) -> None:
"""Create the necessary tables if they don't exist."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
conn.execute(
"""
CREATE TABLE IF NOT EXISTS flow_states (
id INTEGER PRIMARY KEY AUTOINCREMENT,
flow_uuid TEXT NOT NULL,
@@ -54,12 +56,15 @@ class SQLiteFlowPersistence(FlowPersistence):
timestamp DATETIME NOT NULL,
state_json TEXT NOT NULL
)
""")
"""
)
# Add index for faster UUID lookups
conn.execute("""
conn.execute(
"""
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
ON flow_states(flow_uuid)
""")
"""
)
def save_state(
self,
@@ -85,19 +90,22 @@ class SQLiteFlowPersistence(FlowPersistence):
)
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
conn.execute(
"""
INSERT INTO flow_states (
flow_uuid,
method_name,
timestamp,
state_json
) VALUES (?, ?, ?, ?)
""", (
flow_uuid,
method_name,
datetime.utcnow().isoformat(),
json.dumps(state_dict),
))
""",
(
flow_uuid,
method_name,
datetime.now(timezone.utc).isoformat(),
json.dumps(state_dict),
),
)
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
@@ -109,13 +117,16 @@ class SQLiteFlowPersistence(FlowPersistence):
The most recent state as a dictionary, or None if no state exists
"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute("""
cursor = conn.execute(
"""
SELECT state_json
FROM flow_states
WHERE flow_uuid = ?
ORDER BY id DESC
LIMIT 1
""", (flow_uuid,))
""",
(flow_uuid,),
)
row = cursor.fetchone()
if row:

View File

@@ -0,0 +1,91 @@
import json
from datetime import date, datetime
from typing import Any, Dict, List, Union
from pydantic import BaseModel
from crewai.flow import Flow
SerializablePrimitive = Union[str, int, float, bool, None]
Serializable = Union[
SerializablePrimitive, List["Serializable"], Dict[str, "Serializable"]
]
def export_state(flow: Flow) -> dict[str, Serializable]:
"""Exports the Flow's internal state as JSON-compatible data structures.
Performs a one-way transformation of a Flow's state into basic Python types
that can be safely serialized to JSON. To prevent infinite recursion with
circular references, the conversion is limited to a depth of 5 levels.
Args:
flow: The Flow object whose state needs to be exported
Returns:
dict[str, Any]: The transformed state using JSON-compatible Python
types.
"""
result = to_serializable(flow._state)
assert isinstance(result, dict)
return result
def to_serializable(
obj: Any, max_depth: int = 5, _current_depth: int = 0
) -> Serializable:
"""Converts a Python object into a JSON-compatible representation.
Supports primitives, datetime objects, collections, dictionaries, and
Pydantic models. Recursion depth is limited to prevent infinite nesting.
Non-convertible objects default to their string representations.
Args:
obj (Any): Object to transform.
max_depth (int, optional): Maximum recursion depth. Defaults to 5.
Returns:
Serializable: A JSON-compatible structure.
"""
if _current_depth >= max_depth:
return repr(obj)
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, (date, datetime)):
return obj.isoformat()
elif isinstance(obj, (list, tuple, set)):
return [to_serializable(item, max_depth, _current_depth + 1) for item in obj]
elif isinstance(obj, dict):
return {
_to_serializable_key(key): to_serializable(
value, max_depth, _current_depth + 1
)
for key, value in obj.items()
}
elif isinstance(obj, BaseModel):
return to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
else:
return repr(obj)
def _to_serializable_key(key: Any) -> str:
if isinstance(key, (str, int)):
return str(key)
return f"key_{id(key)}_{repr(key)}"
def to_string(obj: Any) -> str | None:
"""Serializes an object into a JSON string.
Args:
obj (Any): Object to serialize.
Returns:
str | None: A JSON-formatted string or `None` if empty.
"""
serializable = to_serializable(obj)
if serializable is None:
return None
else:
return json.dumps(serializable)

View File

@@ -16,7 +16,8 @@ Example
import ast
import inspect
import textwrap
from typing import Any, Dict, List, Optional, Set, Union
from collections import defaultdict, deque
from typing import Any, Deque, Dict, List, Optional, Set, Union
def get_possible_return_constants(function: Any) -> Optional[List[str]]:
@@ -118,7 +119,7 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
- Processes router paths separately
"""
levels: Dict[str, int] = {}
queue: List[str] = []
queue: Deque[str] = deque()
visited: Set[str] = set()
pending_and_listeners: Dict[str, Set[str]] = {}
@@ -128,28 +129,35 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
levels[method_name] = 0
queue.append(method_name)
# Precompute listener dependencies
or_listeners = defaultdict(list)
and_listeners = defaultdict(set)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
for method in trigger_methods:
or_listeners[method].append(listener_name)
elif condition_type == "AND":
and_listeners[listener_name] = set(trigger_methods)
# Breadth-first traversal to assign levels
while queue:
current = queue.pop(0)
current = queue.popleft()
current_level = levels[current]
visited.add(current)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
if current in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
elif condition_type == "AND":
for listener_name in or_listeners[current]:
if listener_name not in levels or levels[listener_name] > current_level + 1:
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
for listener_name, required_methods in and_listeners.items():
if current in required_methods:
if listener_name not in pending_and_listeners:
pending_and_listeners[listener_name] = set()
if current in trigger_methods:
pending_and_listeners[listener_name].add(current)
if set(trigger_methods) == pending_and_listeners[listener_name]:
pending_and_listeners[listener_name].add(current)
if required_methods == pending_and_listeners[listener_name]:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
@@ -159,22 +167,7 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
queue.append(listener_name)
# Handle router connections
if current in flow._routers:
router_method_name = current
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
process_router_paths(flow, current, current_level, levels, queue)
return levels
@@ -227,10 +220,7 @@ def build_ancestor_dict(flow: Any) -> Dict[str, Set[str]]:
def dfs_ancestors(
node: str,
ancestors: Dict[str, Set[str]],
visited: Set[str],
flow: Any
node: str, ancestors: Dict[str, Set[str]], visited: Set[str], flow: Any
) -> None:
"""
Perform depth-first search to build ancestor relationships.
@@ -274,7 +264,9 @@ def dfs_ancestors(
dfs_ancestors(listener_name, ancestors, visited, flow)
def is_ancestor(node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]) -> bool:
def is_ancestor(
node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]
) -> bool:
"""
Check if one node is an ancestor of another.
@@ -339,7 +331,9 @@ def build_parent_children_dict(flow: Any) -> Dict[str, List[str]]:
return parent_children
def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str]]) -> int:
def get_child_index(
parent: str, child: str, parent_children: Dict[str, List[str]]
) -> int:
"""
Get the index of a child node in its parent's sorted children list.
@@ -360,3 +354,23 @@ def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str
children = parent_children.get(parent, [])
children.sort()
return children.index(child)
def process_router_paths(flow, current, current_level, levels, queue):
"""
Handle the router connections for the current node.
"""
if current in flow._routers:
paths = flow._router_paths.get(current, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
queue.append(listener_name)

View File

@@ -1,28 +1,138 @@
from pathlib import Path
from typing import Dict, List
from typing import Dict, Iterator, List, Optional, Union
from urllib.parse import urlparse
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
from pydantic import Field, field_validator
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
class ExcelKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
pd = self._import_dependencies()
# override content to be a dict of file paths to sheet names to csv content
_logger: Logger = Logger(verbose=True)
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default=None,
description="[Deprecated] The path to the file. Use file_paths instead.",
)
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default_factory=list, description="The path to the file"
)
chunks: List[str] = Field(default_factory=list)
content: Dict[Path, Dict[str, str]] = Field(default_factory=dict)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
raise ValueError("Either file_path or file_paths must be provided")
return v
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
if hasattr(self, "file_path") and self.file_path is not None:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
if self.file_paths is None:
raise ValueError("Your source must be provided with a file_paths: []")
# Convert single path to list
path_list: List[Union[Path, str]] = (
[self.file_paths]
if isinstance(self.file_paths, (str, Path))
else list(self.file_paths)
if isinstance(self.file_paths, list)
else []
)
if not path_list:
raise ValueError(
"file_path/file_paths must be a Path, str, or a list of these types"
)
return [self.convert_to_path(path) for path in path_list]
def validate_content(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
self._logger.log(
"error",
f"Path is not a file: {path}",
color="red",
)
def model_post_init(self, _) -> None:
if self.file_path:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
self.safe_file_paths = self._process_file_paths()
self.validate_content()
self.content = self._load_content()
def _load_content(self) -> Dict[Path, Dict[str, str]]:
"""Load and preprocess Excel file content from multiple sheets.
Each sheet's content is converted to CSV format and stored.
Returns:
Dict[Path, Dict[str, str]]: A mapping of file paths to their respective sheet contents.
Raises:
ImportError: If required dependencies are missing.
FileNotFoundError: If the specified Excel file cannot be opened.
"""
pd = self._import_dependencies()
content_dict = {}
for file_path in self.safe_file_paths:
file_path = self.convert_to_path(file_path)
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
content_dict[file_path] = content
with pd.ExcelFile(file_path) as xl:
sheet_dict = {
str(sheet_name): str(
pd.read_excel(xl, sheet_name).to_csv(index=False)
)
for sheet_name in xl.sheet_names
}
content_dict[file_path] = sheet_dict
return content_dict
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
@@ -38,10 +148,14 @@ class ExcelKnowledgeSource(BaseFileKnowledgeSource):
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
# Updated to account for .xlsx workbooks with multiple tabs/sheets
content_str = ""
for value in self.content.values():
if isinstance(value, dict):
for sheet_value in value.values():
content_str += str(sheet_value) + "\n"
else:
content_str += str(value) + "\n"
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)

View File

@@ -76,7 +76,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold: # type: ignore
if result["score"] >= score_threshold:
results.append(result)
return results
else:

View File

@@ -10,14 +10,23 @@ from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
from dotenv import load_dotenv
from pydantic import BaseModel
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices, get_supported_openai_params
from litellm import Choices
from litellm.types.utils import ModelResponse
from litellm.utils import supports_response_schema
from litellm.utils import get_supported_openai_params, supports_response_schema
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -55,6 +64,7 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
"o3-mini": 200000, # Based on official o3-mini specifications
# gemini
"gemini-2.0-flash": 1048576,
"gemini-1.5-pro": 2097152,
@@ -164,6 +174,7 @@ class LLM:
self.context_window_size = 0
self.reasoning_effort = reasoning_effort
self.additional_params = kwargs
self.is_anthropic = self._is_anthropic_model(model)
litellm.drop_params = True
@@ -178,43 +189,72 @@ class LLM:
self.set_callbacks(callbacks)
self.set_env_callbacks()
def _is_anthropic_model(self, model: str) -> bool:
"""Determine if the model is from Anthropic provider.
Args:
model: The model identifier string.
Returns:
bool: True if the model is from Anthropic, False otherwise.
"""
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level llm call method that:
1) Accepts either a string or a list of messages
2) Converts string input to the required message format
3) Calls litellm.completion
4) Handles function/tool calls if any
5) Returns the final text response or tool result
) -> Union[str, Any]:
"""High-level LLM call method.
Parameters:
- messages (Union[str, List[Dict[str, str]]]): The input messages for the LLM.
- If a string is provided, it will be converted into a message list with a single entry.
- If a list of dictionaries is provided, each dictionary should have 'role' and 'content' keys.
- tools (Optional[List[dict]]): A list of tool schemas for function calling.
- callbacks (Optional[List[Any]]): A list of callback functions to be executed.
- available_functions (Optional[Dict[str, Any]]): A dictionary mapping function names to actual Python functions.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
- str: The final text response from the LLM or the result of a tool function call.
Union[str, Any]: Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
TypeError: If messages format is invalid
ValueError: If response format is not supported
LLMContextLengthExceededException: If input exceeds model's context limit
Examples:
---------
# Example 1: Using a string input
response = llm.call("Return the name of a random city in the world.")
print(response)
# Example 1: Simple string input
>>> response = llm.call("Return the name of a random city.")
>>> print(response)
"Paris"
# Example 2: Using a list of messages
messages = [{"role": "user", "content": "What is the capital of France?"}]
response = llm.call(messages)
print(response)
# Example 2: Message list with system and user messages
>>> messages = [
... {"role": "system", "content": "You are a geography expert"},
... {"role": "user", "content": "What is France's capital?"}
... ]
>>> response = llm.call(messages)
>>> print(response)
"The capital of France is Paris."
"""
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
),
)
# Validate parameters before proceeding with the call.
self._validate_call_params()
@@ -233,10 +273,13 @@ class LLM:
self.set_callbacks(callbacks)
try:
# --- 1) Prepare the parameters for the completion call
# --- 1) Format messages according to provider requirements
formatted_messages = self._format_messages_for_provider(messages)
# --- 2) Prepare the parameters for the completion call
params = {
"model": self.model,
"messages": messages,
"messages": formatted_messages,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
@@ -286,6 +329,7 @@ class LLM:
# --- 4) If no tool calls, return the text response
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
# --- 5) Handle the tool call
@@ -303,12 +347,28 @@ class LLM:
try:
# Call the actual tool function
result = fn(**function_args)
self._handle_emit_call_events(result, LLMCallType.TOOL_CALL)
return result
except Exception as e:
logging.error(
f"Error executing function '{function_name}': {e}"
)
crewai_event_bus.emit(
self,
event=ToolExecutionErrorEvent(
tool_name=function_name,
tool_args=function_args,
tool_class=fn,
error=str(e),
),
)
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(
error=f"Tool execution error: {str(e)}"
),
)
return text_response
else:
@@ -318,12 +378,64 @@ class LLM:
return text_response
except Exception as e:
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
"""Handle the events for the LLM call.
Args:
response (str): The response from the LLM call.
call_type (str): The type of call, either "tool_call" or "llm_call".
"""
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
)
def _format_messages_for_provider(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]:
"""Format messages according to provider requirements.
Args:
messages: List of message dictionaries with 'role' and 'content' keys.
Can be empty or None.
Returns:
List of formatted messages according to provider requirements.
For Anthropic models, ensures first message has 'user' role.
Raises:
TypeError: If messages is None or contains invalid message format.
"""
if messages is None:
raise TypeError("Messages cannot be None")
# Validate message format first
for msg in messages:
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise TypeError(
"Invalid message format. Each message must be a dict with 'role' and 'content' keys"
)
if not self.is_anthropic:
return messages
# Anthropic requires messages to start with 'user' role
if not messages or messages[0]["role"] == "system":
# If first message is system or empty, add a placeholder user message
return [{"role": "user", "content": "."}, *messages]
return messages
def _get_custom_llm_provider(self) -> str:
"""
Derives the custom_llm_provider from the model string.
@@ -357,7 +469,7 @@ class LLM:
def supports_function_calling(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return "response_format" in params
return params is not None and "tools" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
@@ -365,7 +477,7 @@ class LLM:
def supports_stop_words(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return "stop" in params
return params is not None and "stop" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
@@ -374,10 +486,23 @@ class LLM:
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
Raises:
ValueError: If a model's context window size is outside valid bounds (1024-2097152)
"""
if self.context_window_size != 0:
return self.context_window_size
MIN_CONTEXT = 1024
MAX_CONTEXT = 2097152 # Current max from gemini-1.5-pro
# Validate all context window sizes
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if value < MIN_CONTEXT or value > MAX_CONTEXT:
raise ValueError(
f"Context window for {key} must be between {MIN_CONTEXT} and {MAX_CONTEXT}"
)
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Optional
from pydantic import PrivateAttr

View File

@@ -1,15 +1,15 @@
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional
from pydantic import BaseModel
from crewai.memory.storage.rag_storage import RAGStorage
class Memory(BaseModel):
"""
Base class for memory, now supporting agent tags and generic metadata.
"""
embedder_config: Optional[Dict[str, Any]] = None
storage: Any
def __init__(self, storage: Any, **data: Any):

View File

@@ -13,7 +13,7 @@ class BaseRAGStorage(ABC):
self,
type: str,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
embedder_config: Optional[Dict[str, Any]] = None,
crew: Any = None,
):
self.type = type

View File

@@ -21,7 +21,6 @@ from typing import (
Union,
)
from opentelemetry.trace import Span
from pydantic import (
UUID4,
BaseModel,
@@ -36,10 +35,15 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.guardrail_result import GuardrailResult
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
@@ -183,8 +187,6 @@ class Task(BaseModel):
)
return v
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
_execution_span: Optional[Span] = PrivateAttr(default=None)
_original_description: Optional[str] = PrivateAttr(default=None)
_original_expected_output: Optional[str] = PrivateAttr(default=None)
_original_output_file: Optional[str] = PrivateAttr(default=None)
@@ -348,100 +350,102 @@ class Task(BaseModel):
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
try:
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
self.start_time = datetime.datetime.now()
self.prompt_context = context
tools = tools or self.tools or []
self.processed_by_agents.add(agent.role)
crewai_event_bus.emit(self, TaskStartedEvent(context=context))
result = agent.execute_task(
task=self,
context=context,
tools=tools,
)
self.start_time = datetime.datetime.now()
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
self.prompt_context = context
tools = tools or self.tools or []
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(
self.guardrail(task_output)
)
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
self.processed_by_agents.add(agent.role)
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
result = agent.execute_task(
task=self,
context=context,
tools=tools,
)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(self.guardrail(task_output))
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
if guardrail_result.result is None:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
"Task guardrail returned None as result. This is not allowed."
)
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
crew = self.agent.crew # type: ignore[union-attr]
if crew and crew.task_callback and crew.task_callback != self.callback:
crew.task_callback(self.output)
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
if guardrail_result.result is None:
raise Exception(
"Task guardrail returned None as result. This is not allowed."
)
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
crew = self.agent.crew # type: ignore[union-attr]
if crew and crew.task_callback and crew.task_callback != self.callback:
crew.task_callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self, agent.crew)
self._execution_span = None
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)
return task_output
self._save_file(content)
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output))
return task_output
except Exception as e:
self.end_time = datetime.datetime.now()
crewai_event_bus.emit(self, TaskFailedEvent(error=str(e)))
raise e # Re-raise the exception after emitting the event
def prompt(self) -> str:
"""Prompt the task.
@@ -674,19 +678,32 @@ class Task(BaseModel):
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _save_file(self, result: Any) -> None:
def _save_file(self, result: Union[Dict, str, Any]) -> None:
"""Save task output to a file.
Note:
For cross-platform file writing, especially on Windows, consider using FileWriterTool
from the crewai_tools package:
pip install 'crewai[tools]'
from crewai_tools import FileWriterTool
Args:
result: The result to save to the file. Can be a dict or any stringifiable object.
Raises:
ValueError: If output_file is not set
RuntimeError: If there is an error writing to the file
RuntimeError: If there is an error writing to the file. For cross-platform
compatibility, especially on Windows, use FileWriterTool from crewai_tools
package.
"""
if self.output_file is None:
raise ValueError("output_file is not set.")
FILEWRITER_RECOMMENDATION = (
"For cross-platform file writing, especially on Windows, "
"use FileWriterTool from crewai_tools package."
)
try:
resolved_path = Path(self.output_file).expanduser().resolve()
directory = resolved_path.parent
@@ -702,7 +719,11 @@ class Task(BaseModel):
else:
file.write(str(result))
except (OSError, IOError) as e:
raise RuntimeError(f"Failed to save output file: {e}")
raise RuntimeError(
"\n".join(
[f"Failed to save output file: {e}", FILEWRITER_RECOMMENDATION]
)
)
return None
def __repr__(self):

View File

@@ -10,20 +10,21 @@ from typing import Any, Dict, List, Optional, Union
import json5
from json_repair import repair_json
import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolValidateInputErrorEvent,
)
try:
import agentops # type: ignore
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = [
"gpt-4",
"gpt-4o",
@@ -136,7 +137,6 @@ class ToolUsage:
tool: Any,
calling: Union[ToolCalling, InstructorToolCalling],
) -> str: # TODO: Fix this return type
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None # type: ignore
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
@@ -212,10 +212,6 @@ class ToolUsage:
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
if agentops:
agentops.record(
agentops.ErrorEvent(exception=e, trigger_event=tool_event)
)
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
if self.tools_handler:
@@ -231,9 +227,6 @@ class ToolUsage:
self.tools_handler.on_tool_use(
calling=calling, output=result, should_cache=should_cache
)
if agentops:
agentops.record(tool_event)
self._telemetry.tool_usage(
llm=self.function_calling_llm,
tool_name=tool.name,
@@ -308,14 +301,33 @@ class ToolUsage:
):
return tool
self.task.increment_tools_errors()
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"tool_name": tool_name,
"tool_args": {},
"tool_class": self.tools_description,
}
if tool_name and tool_name != "":
raise Exception(
f"Action '{tool_name}' don't exist, these are the only available Actions:\n{self.tools_description}"
error = f"Action '{tool_name}' don't exist, these are the only available Actions:\n{self.tools_description}"
crewai_event_bus.emit(
self,
ToolSelectionErrorEvent(
**tool_selection_data,
error=error,
),
)
raise Exception(error)
else:
raise Exception(
f"I forgot the Action name, these are the only available Actions: {self.tools_description}"
error = f"I forgot the Action name, these are the only available Actions: {self.tools_description}"
crewai_event_bus.emit(
self,
ToolSelectionErrorEvent(
**tool_selection_data,
error=error,
),
)
raise Exception(error)
def _render(self) -> str:
"""Render the tool name and description in plain text."""
@@ -451,18 +463,33 @@ class ToolUsage:
if isinstance(arguments, dict):
return arguments
except Exception as e:
self._printer.print(content=f"Failed to repair JSON: {e}", color="red")
error = f"Failed to repair JSON: {e}"
self._printer.print(content=error, color="red")
# If all parsing attempts fail, raise an error
raise Exception(
error_message = (
"Tool input must be a valid dictionary in JSON or Python literal format"
)
self._emit_validate_input_error(error_message)
# If all parsing attempts fail, raise an error
raise Exception(error_message)
def _emit_validate_input_error(self, final_error: str):
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"tool_name": self.action.tool,
"tool_args": str(self.action.tool_input),
"tool_class": self.__class__.__name__,
}
crewai_event_bus.emit(
self,
ToolValidateInputErrorEvent(**tool_selection_data, error=final_error),
)
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
event_data = self._prepare_event_data(tool, tool_calling)
events.emit(
source=self, event=ToolUsageError(**{**event_data, "error": str(e)})
)
crewai_event_bus.emit(self, ToolUsageErrorEvent(**{**event_data, "error": e}))
def on_tool_use_finished(
self, tool: Any, tool_calling: ToolCalling, from_cache: bool, started_at: float
@@ -476,7 +503,7 @@ class ToolUsage:
"from_cache": from_cache,
}
)
events.emit(source=self, event=ToolUsageFinished(**event_data))
crewai_event_bus.emit(self, ToolUsageFinishedEvent(**event_data))
def _prepare_event_data(self, tool: Any, tool_calling: ToolCalling) -> dict:
return {

View File

@@ -1,24 +0,0 @@
from datetime import datetime
from typing import Any, Dict
from pydantic import BaseModel
class ToolUsageEvent(BaseModel):
agent_key: str
agent_role: str
tool_name: str
tool_args: Dict[str, Any]
tool_class: str
run_attempts: int | None = None
delegations: int | None = None
class ToolUsageFinished(ToolUsageEvent):
started_at: datetime
finished_at: datetime
from_cache: bool = False
class ToolUsageError(ToolUsageEvent):
error: str

View File

@@ -23,7 +23,6 @@
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\"",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals.",
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary."
},
@@ -40,8 +39,8 @@
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error."
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolutely everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolutely everything you know, don't reference things but instead explain them.",
"add_image": {
"name": "Add image to content",
"description": "See image to understand its content, you can optionally ask a question about the image",

View File

@@ -4,3 +4,4 @@ DEFAULT_SCORE_THRESHOLD = 0.35
KNOWLEDGE_DIRECTORY = "knowledge"
MAX_LLM_RETRY = 3
MAX_FILE_NAME_LENGTH = 255
EMITTER_COLOR = "bold_blue"

View File

@@ -20,11 +20,11 @@ class ConverterError(Exception):
class Converter(OutputConverter):
"""Class that converts text into either pydantic or json."""
def to_pydantic(self, current_attempt=1):
def to_pydantic(self, current_attempt=1) -> BaseModel:
"""Convert text to pydantic."""
try:
if self.llm.supports_function_calling():
return self._create_instructor().to_pydantic()
result = self._create_instructor().to_pydantic()
else:
response = self.llm.call(
[
@@ -32,18 +32,40 @@ class Converter(OutputConverter):
{"role": "user", "content": self.text},
]
)
return self.model.model_validate_json(response)
try:
# Try to directly validate the response JSON
result = self.model.model_validate_json(response)
except ValidationError:
# If direct validation fails, attempt to extract valid JSON
result = handle_partial_json(response, self.model, False, None)
# Ensure result is a BaseModel instance
if not isinstance(result, BaseModel):
if isinstance(result, dict):
result = self.model.parse_obj(result)
elif isinstance(result, str):
try:
parsed = json.loads(result)
result = self.model.parse_obj(parsed)
except Exception as parse_err:
raise ConverterError(
f"Failed to convert partial JSON result into Pydantic: {parse_err}"
)
else:
raise ConverterError(
"handle_partial_json returned an unexpected type."
)
return result
except ValidationError as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
raise ConverterError(
f"Failed to convert text into a Pydantic model due to the following validation error: {e}"
f"Failed to convert text into a Pydantic model due to validation error: {e}"
)
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
raise ConverterError(
f"Failed to convert text into a Pydantic model due to the following error: {e}"
f"Failed to convert text into a Pydantic model due to error: {e}"
)
def to_json(self, current_attempt=1):
@@ -197,11 +219,15 @@ def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
if llm.supports_function_calling():
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions += (
f"\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
f"\n\nOutput ONLY the valid JSON and nothing else.\n\n"
f"The JSON must follow this schema exactly:\n```json\n{model_schema}\n```"
)
else:
model_description = generate_model_description(model)
instructions += f"\n\nThe JSON should follow this format:\n{model_description}"
instructions += (
f"\n\nOutput ONLY the valid JSON and nothing else.\n\n"
f"The JSON must follow this format exactly:\n{model_description}"
)
return instructions

View File

@@ -1,5 +1,5 @@
import os
from typing import Any, Dict, cast
from typing import Any, Dict, Optional, cast
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api.types import validate_embedding_function
@@ -18,11 +18,12 @@ class EmbeddingConfigurator:
"bedrock": self._configure_bedrock,
"huggingface": self._configure_huggingface,
"watson": self._configure_watson,
"custom": self._configure_custom,
}
def configure_embedder(
self,
embedder_config: Dict[str, Any] | None = None,
embedder_config: Optional[Dict[str, Any]] = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
if embedder_config is None:
@@ -30,20 +31,19 @@ class EmbeddingConfigurator:
provider = embedder_config.get("provider")
config = embedder_config.get("config", {})
model_name = config.get("model")
if isinstance(provider, EmbeddingFunction):
try:
validate_embedding_function(provider)
return provider
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
model_name = config.get("model") if provider != "custom" else None
if provider not in self.embedding_functions:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
embedding_function = self.embedding_functions[provider]
return (
embedding_function(config)
if provider == "custom"
else embedding_function(config, model_name)
)
@staticmethod
def _create_default_embedding_function():
@@ -64,6 +64,13 @@ class EmbeddingConfigurator:
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
api_base=config.get("api_base", None),
api_type=config.get("api_type", None),
api_version=config.get("api_version", None),
default_headers=config.get("default_headers", None),
dimensions=config.get("dimensions", None),
deployment_id=config.get("deployment_id", None),
organization_id=config.get("organization_id", None),
)
@staticmethod
@@ -78,6 +85,10 @@ class EmbeddingConfigurator:
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
default_headers=config.get("default_headers"),
dimensions=config.get("dimensions"),
deployment_id=config.get("deployment_id"),
organization_id=config.get("organization_id"),
)
@staticmethod
@@ -100,6 +111,8 @@ class EmbeddingConfigurator:
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
project_id=config.get("project_id"),
region=config.get("region"),
)
@staticmethod
@@ -111,6 +124,7 @@ class EmbeddingConfigurator:
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
task_type=config.get("task_type"),
)
@staticmethod
@@ -195,3 +209,28 @@ class EmbeddingConfigurator:
raise e
return WatsonEmbeddingFunction()
@staticmethod
def _configure_custom(config):
custom_embedder = config.get("embedder")
if isinstance(custom_embedder, EmbeddingFunction):
try:
validate_embedding_function(custom_embedder)
return custom_embedder
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
elif callable(custom_embedder):
try:
instance = custom_embedder()
if isinstance(instance, EmbeddingFunction):
validate_embedding_function(instance)
return instance
raise ValueError(
"Custom embedder does not create an EmbeddingFunction instance"
)
except Exception as e:
raise ValueError(f"Error instantiating custom embedder: {str(e)}")
else:
raise ValueError(
"Custom embedder must be an instance of `EmbeddingFunction` or a callable that creates one"
)

View File

@@ -1,11 +1,12 @@
from collections import defaultdict
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, InstanceOf
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -23,7 +24,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
eval_llm (LLM): Language model instance to use for evaluations
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -32,9 +33,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = eval_llm
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +52,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -181,7 +182,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.openai_model_name,
self.llm.model,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -3,19 +3,9 @@ from typing import List
from pydantic import BaseModel, Field
from crewai.utilities import Converter
from crewai.utilities.events import TaskEvaluationEvent, crewai_event_bus
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
agentops = None
try:
from agentops import track_agent # type: ignore
except ImportError:
def track_agent(name):
def noop(f):
return f
return noop
class Entity(BaseModel):
name: str = Field(description="The name of the entity.")
@@ -48,12 +38,15 @@ class TrainingTaskEvaluation(BaseModel):
)
@track_agent(name="Task Evaluator")
class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
self.original_agent = original_agent
def evaluate(self, task, output) -> TaskEvaluation:
crewai_event_bus.emit(
self, TaskEvaluationEvent(evaluation_type="task_evaluation")
)
evaluation_query = (
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"
f"Task Description:\n{task.description}\n\n"
@@ -90,6 +83,9 @@ class TaskEvaluator:
- training_data (dict): The training data to be evaluated.
- agent_id (str): The ID of the agent.
"""
crewai_event_bus.emit(
self, TaskEvaluationEvent(evaluation_type="training_data_evaluation")
)
output_training_data = training_data[agent_id]
final_aggregated_data = ""

View File

@@ -1,44 +0,0 @@
from functools import wraps
from typing import Any, Callable, Dict, Generic, List, Type, TypeVar
from pydantic import BaseModel
T = TypeVar("T")
EVT = TypeVar("EVT", bound=BaseModel)
class Emitter(Generic[T, EVT]):
_listeners: Dict[Type[EVT], List[Callable]] = {}
def on(self, event_type: Type[EVT]):
def decorator(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
self._listeners.setdefault(event_type, []).append(wrapper)
return wrapper
return decorator
def emit(self, source: T, event: EVT) -> None:
event_type = type(event)
for func in self._listeners.get(event_type, []):
func(source, event)
default_emitter = Emitter[Any, BaseModel]()
def emit(source: Any, event: BaseModel, raise_on_error: bool = False) -> None:
try:
default_emitter.emit(source, event)
except Exception as e:
if raise_on_error:
raise e
else:
print(f"Error emitting event: {e}")
def on(event_type: Type[BaseModel]) -> Callable:
return default_emitter.on(event_type)

View File

@@ -0,0 +1,41 @@
from .crew_events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewTrainStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTestStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
)
from .agent_events import (
AgentExecutionStartedEvent,
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
)
from .task_events import TaskStartedEvent, TaskCompletedEvent, TaskFailedEvent, TaskEvaluationEvent
from .flow_events import (
FlowCreatedEvent,
FlowStartedEvent,
FlowFinishedEvent,
FlowPlotEvent,
MethodExecutionStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionFailedEvent,
)
from .crewai_event_bus import CrewAIEventsBus, crewai_event_bus
from .tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
ToolExecutionErrorEvent,
ToolSelectionErrorEvent,
ToolUsageEvent,
ToolValidateInputErrorEvent,
)
from .llm_events import LLMCallCompletedEvent, LLMCallFailedEvent, LLMCallStartedEvent
# events
from .event_listener import EventListener
from .third_party.agentops_listener import agentops_listener

View File

@@ -0,0 +1,40 @@
from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from .base_events import CrewEvent
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
class AgentExecutionStartedEvent(CrewEvent):
"""Event emitted when an agent starts executing a task"""
agent: BaseAgent
task: Any
tools: Optional[Sequence[Union[BaseTool, CrewStructuredTool]]]
task_prompt: str
type: str = "agent_execution_started"
model_config = {"arbitrary_types_allowed": True}
class AgentExecutionCompletedEvent(CrewEvent):
"""Event emitted when an agent completes executing a task"""
agent: BaseAgent
task: Any
output: str
type: str = "agent_execution_completed"
class AgentExecutionErrorEvent(CrewEvent):
"""Event emitted when an agent encounters an error during execution"""
agent: BaseAgent
task: Any
error: str
type: str = "agent_execution_error"

View File

@@ -0,0 +1,14 @@
from abc import ABC, abstractmethod
from logging import Logger
from crewai.utilities.events.crewai_event_bus import CrewAIEventsBus, crewai_event_bus
class BaseEventListener(ABC):
def __init__(self):
super().__init__()
self.setup_listeners(crewai_event_bus)
@abstractmethod
def setup_listeners(self, crewai_event_bus: CrewAIEventsBus):
pass

View File

@@ -0,0 +1,10 @@
from datetime import datetime
from pydantic import BaseModel, Field
class CrewEvent(BaseModel):
"""Base class for all crew events"""
timestamp: datetime = Field(default_factory=datetime.now)
type: str

View File

@@ -0,0 +1,81 @@
from typing import Any, Dict, Optional, Union
from pydantic import InstanceOf
from crewai.utilities.events.base_events import CrewEvent
class CrewKickoffStartedEvent(CrewEvent):
"""Event emitted when a crew starts execution"""
crew_name: Optional[str]
inputs: Optional[Dict[str, Any]]
type: str = "crew_kickoff_started"
class CrewKickoffCompletedEvent(CrewEvent):
"""Event emitted when a crew completes execution"""
crew_name: Optional[str]
output: Any
type: str = "crew_kickoff_completed"
class CrewKickoffFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete execution"""
error: str
crew_name: Optional[str]
type: str = "crew_kickoff_failed"
class CrewTrainStartedEvent(CrewEvent):
"""Event emitted when a crew starts training"""
crew_name: Optional[str]
n_iterations: int
filename: str
inputs: Optional[Dict[str, Any]]
type: str = "crew_train_started"
class CrewTrainCompletedEvent(CrewEvent):
"""Event emitted when a crew completes training"""
crew_name: Optional[str]
n_iterations: int
filename: str
type: str = "crew_train_completed"
class CrewTrainFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete training"""
error: str
crew_name: Optional[str]
type: str = "crew_train_failed"
class CrewTestStartedEvent(CrewEvent):
"""Event emitted when a crew starts testing"""
crew_name: Optional[str]
n_iterations: int
eval_llm: Optional[Union[str, Any]]
inputs: Optional[Dict[str, Any]]
type: str = "crew_test_started"
class CrewTestCompletedEvent(CrewEvent):
"""Event emitted when a crew completes testing"""
crew_name: Optional[str]
type: str = "crew_test_completed"
class CrewTestFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete testing"""
error: str
crew_name: Optional[str]
type: str = "crew_test_failed"

View File

@@ -0,0 +1,113 @@
import threading
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Type, TypeVar, cast
from blinker import Signal
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.event_types import EventTypes
EventT = TypeVar("EventT", bound=CrewEvent)
class CrewAIEventsBus:
"""
A singleton event bus that uses blinker signals for event handling.
Allows both internal (Flow/Crew) and external event handling.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None: # prevent race condition
cls._instance = super(CrewAIEventsBus, cls).__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self) -> None:
"""Initialize the event bus internal state"""
self._signal = Signal("crewai_event_bus")
self._handlers: Dict[Type[CrewEvent], List[Callable]] = {}
def on(
self, event_type: Type[EventT]
) -> Callable[[Callable[[Any, EventT], None]], Callable[[Any, EventT], None]]:
"""
Decorator to register an event handler for a specific event type.
Usage:
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(
source: Any, event: AgentExecutionCompletedEvent
):
print(f"👍 Agent '{event.agent}' completed task")
print(f" Output: {event.output}")
"""
def decorator(
handler: Callable[[Any, EventT], None],
) -> Callable[[Any, EventT], None]:
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventT], None], handler)
)
return handler
return decorator
def emit(self, source: Any, event: CrewEvent) -> None:
"""
Emit an event to all registered handlers
Args:
source: The object emitting the event
event: The event instance to emit
"""
event_type = type(event)
if event_type in self._handlers:
for handler in self._handlers[event_type]:
handler(source, event)
self._signal.send(source, event=event)
def clear_handlers(self) -> None:
"""Clear all registered event handlers - useful for testing"""
self._handlers.clear()
def register_handler(
self, event_type: Type[EventTypes], handler: Callable[[Any, EventTypes], None]
) -> None:
"""Register an event handler for a specific event type"""
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventTypes], None], handler)
)
@contextmanager
def scoped_handlers(self):
"""
Context manager for temporary event handling scope.
Useful for testing or temporary event handling.
Usage:
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStarted)
def temp_handler(source, event):
print("Temporary handler")
# Do stuff...
# Handlers are cleared after the context
"""
previous_handlers = self._handlers.copy()
self._handlers.clear()
try:
yield
finally:
self._handlers = previous_handlers
# Global instance
crewai_event_bus = CrewAIEventsBus()

View File

@@ -0,0 +1,288 @@
from typing import Any, Dict
from pydantic import Field, PrivateAttr
from crewai.task import Task
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities import Logger
from crewai.utilities.constants import EMITTER_COLOR
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
)
from .agent_events import AgentExecutionCompletedEvent, AgentExecutionStartedEvent
from .crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from .flow_events import (
FlowCreatedEvent,
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from .task_events import TaskCompletedEvent, TaskFailedEvent, TaskStartedEvent
from .tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
class EventListener(BaseEventListener):
_instance = None
_telemetry: Telemetry = PrivateAttr(default_factory=lambda: Telemetry())
logger = Logger(verbose=True, default_color=EMITTER_COLOR)
execution_spans: Dict[Task, Any] = Field(default_factory=dict)
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not hasattr(self, "_initialized") or not self._initialized:
super().__init__()
self._telemetry = Telemetry()
self._telemetry.set_tracer()
self.execution_spans = {}
self._initialized = True
# ----------- CREW EVENTS -----------
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event: CrewKickoffStartedEvent):
self.logger.log(
f"🚀 Crew '{event.crew_name}' started, {source.id}",
event.timestamp,
)
self._telemetry.crew_execution_span(source, event.inputs)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event: CrewKickoffCompletedEvent):
final_string_output = event.output.raw
self._telemetry.end_crew(source, final_string_output)
self.logger.log(
f"✅ Crew '{event.crew_name}' completed, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewKickoffFailedEvent)
def on_crew_failed(source, event: CrewKickoffFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewTestStartedEvent)
def on_crew_test_started(source, event: CrewTestStartedEvent):
cloned_crew = source.copy()
self._telemetry.test_execution_span(
cloned_crew,
event.n_iterations,
event.inputs,
event.eval_llm or "",
)
self.logger.log(
f"🚀 Crew '{event.crew_name}' started test, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewTestCompletedEvent)
def on_crew_test_completed(source, event: CrewTestCompletedEvent):
self.logger.log(
f"✅ Crew '{event.crew_name}' completed test",
event.timestamp,
)
@crewai_event_bus.on(CrewTestFailedEvent)
def on_crew_test_failed(source, event: CrewTestFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed test",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainStartedEvent)
def on_crew_train_started(source, event: CrewTrainStartedEvent):
self.logger.log(
f"📋 Crew '{event.crew_name}' started train",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainCompletedEvent)
def on_crew_train_completed(source, event: CrewTrainCompletedEvent):
self.logger.log(
f"✅ Crew '{event.crew_name}' completed train",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainFailedEvent)
def on_crew_train_failed(source, event: CrewTrainFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed train",
event.timestamp,
)
# ----------- TASK EVENTS -----------
@crewai_event_bus.on(TaskStartedEvent)
def on_task_started(source, event: TaskStartedEvent):
span = self._telemetry.task_started(crew=source.agent.crew, task=source)
self.execution_spans[source] = span
self.logger.log(
f"📋 Task started: {source.description}",
event.timestamp,
)
@crewai_event_bus.on(TaskCompletedEvent)
def on_task_completed(source, event: TaskCompletedEvent):
span = self.execution_spans.get(source)
if span:
self._telemetry.task_ended(span, source, source.agent.crew)
self.logger.log(
f"✅ Task completed: {source.description}",
event.timestamp,
)
self.execution_spans[source] = None
@crewai_event_bus.on(TaskFailedEvent)
def on_task_failed(source, event: TaskFailedEvent):
span = self.execution_spans.get(source)
if span:
if source.agent and source.agent.crew:
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
self.logger.log(
f"❌ Task failed: {source.description}",
event.timestamp,
)
# ----------- AGENT EVENTS -----------
@crewai_event_bus.on(AgentExecutionStartedEvent)
def on_agent_execution_started(source, event: AgentExecutionStartedEvent):
self.logger.log(
f"🤖 Agent '{event.agent.role}' started task",
event.timestamp,
)
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event: AgentExecutionCompletedEvent):
self.logger.log(
f"✅ Agent '{event.agent.role}' completed task",
event.timestamp,
)
# ----------- FLOW EVENTS -----------
@crewai_event_bus.on(FlowCreatedEvent)
def on_flow_created(source, event: FlowCreatedEvent):
self._telemetry.flow_creation_span(event.flow_name)
self.logger.log(
f"🌊 Flow Created: '{event.flow_name}'",
event.timestamp,
)
@crewai_event_bus.on(FlowStartedEvent)
def on_flow_started(source, event: FlowStartedEvent):
self._telemetry.flow_execution_span(
event.flow_name, list(source._methods.keys())
)
self.logger.log(
f"🤖 Flow Started: '{event.flow_name}', {source.flow_id}",
event.timestamp,
)
@crewai_event_bus.on(FlowFinishedEvent)
def on_flow_finished(source, event: FlowFinishedEvent):
self.logger.log(
f"👍 Flow Finished: '{event.flow_name}', {source.flow_id}",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def on_method_execution_started(source, event: MethodExecutionStartedEvent):
self.logger.log(
f"🤖 Flow Method Started: '{event.method_name}'",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionFailedEvent)
def on_method_execution_failed(source, event: MethodExecutionFailedEvent):
self.logger.log(
f"❌ Flow Method Failed: '{event.method_name}'",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def on_method_execution_finished(source, event: MethodExecutionFinishedEvent):
self.logger.log(
f"👍 Flow Method Finished: '{event.method_name}'",
event.timestamp,
)
# ----------- TOOL USAGE EVENTS -----------
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.logger.log(
f"🤖 Tool Usage Started: '{event.tool_name}'",
event.timestamp,
)
@crewai_event_bus.on(ToolUsageFinishedEvent)
def on_tool_usage_finished(source, event: ToolUsageFinishedEvent):
self.logger.log(
f"✅ Tool Usage Finished: '{event.tool_name}'",
event.timestamp,
#
)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
self.logger.log(
f"❌ Tool Usage Error: '{event.tool_name}'",
event.timestamp,
#
)
# ----------- LLM EVENTS -----------
@crewai_event_bus.on(LLMCallStartedEvent)
def on_llm_call_started(source, event: LLMCallStartedEvent):
self.logger.log(
f"🤖 LLM Call Started",
event.timestamp,
)
@crewai_event_bus.on(LLMCallCompletedEvent)
def on_llm_call_completed(source, event: LLMCallCompletedEvent):
self.logger.log(
f"✅ LLM Call Completed",
event.timestamp,
)
@crewai_event_bus.on(LLMCallFailedEvent)
def on_llm_call_failed(source, event: LLMCallFailedEvent):
self.logger.log(
f"❌ LLM Call Failed: '{event.error}'",
event.timestamp,
)
event_listener = EventListener()

View File

@@ -0,0 +1,61 @@
from typing import Union
from .agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from .crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from .flow_events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from .task_events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from .tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
EventTypes = Union[
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewTestStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTrainStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
AgentExecutionStartedEvent,
AgentExecutionCompletedEvent,
TaskStartedEvent,
TaskCompletedEvent,
TaskFailedEvent,
FlowStartedEvent,
FlowFinishedEvent,
MethodExecutionStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionFailedEvent,
AgentExecutionErrorEvent,
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
]

View File

@@ -0,0 +1,71 @@
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from .base_events import CrewEvent
class FlowEvent(CrewEvent):
"""Base class for all flow events"""
type: str
flow_name: str
class FlowStartedEvent(FlowEvent):
"""Event emitted when a flow starts execution"""
flow_name: str
inputs: Optional[Dict[str, Any]] = None
type: str = "flow_started"
class FlowCreatedEvent(FlowEvent):
"""Event emitted when a flow is created"""
flow_name: str
type: str = "flow_created"
class MethodExecutionStartedEvent(FlowEvent):
"""Event emitted when a flow method starts execution"""
flow_name: str
method_name: str
state: Union[Dict[str, Any], BaseModel]
params: Optional[Dict[str, Any]] = None
type: str = "method_execution_started"
class MethodExecutionFinishedEvent(FlowEvent):
"""Event emitted when a flow method completes execution"""
flow_name: str
method_name: str
result: Any = None
state: Union[Dict[str, Any], BaseModel]
type: str = "method_execution_finished"
class MethodExecutionFailedEvent(FlowEvent):
"""Event emitted when a flow method fails execution"""
flow_name: str
method_name: str
error: Any
type: str = "method_execution_failed"
class FlowFinishedEvent(FlowEvent):
"""Event emitted when a flow completes execution"""
flow_name: str
result: Optional[Any] = None
type: str = "flow_finished"
class FlowPlotEvent(FlowEvent):
"""Event emitted when a flow plot is created"""
flow_name: str
type: str = "flow_plot"

View File

@@ -0,0 +1,36 @@
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from crewai.utilities.events.base_events import CrewEvent
class LLMCallType(Enum):
"""Type of LLM call being made"""
TOOL_CALL = "tool_call"
LLM_CALL = "llm_call"
class LLMCallStartedEvent(CrewEvent):
"""Event emitted when a LLM call starts"""
type: str = "llm_call_started"
messages: Union[str, List[Dict[str, str]]]
tools: Optional[List[dict]] = None
callbacks: Optional[List[Any]] = None
available_functions: Optional[Dict[str, Any]] = None
class LLMCallCompletedEvent(CrewEvent):
"""Event emitted when a LLM call completes"""
type: str = "llm_call_completed"
response: Any
call_type: LLMCallType
class LLMCallFailedEvent(CrewEvent):
"""Event emitted when a LLM call fails"""
error: str
type: str = "llm_call_failed"

View File

@@ -0,0 +1,32 @@
from typing import Optional
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.events.base_events import CrewEvent
class TaskStartedEvent(CrewEvent):
"""Event emitted when a task starts"""
type: str = "task_started"
context: Optional[str]
class TaskCompletedEvent(CrewEvent):
"""Event emitted when a task completes"""
output: TaskOutput
type: str = "task_completed"
class TaskFailedEvent(CrewEvent):
"""Event emitted when a task fails"""
error: str
type: str = "task_failed"
class TaskEvaluationEvent(CrewEvent):
"""Event emitted when a task evaluation is completed"""
type: str = "task_evaluation"
evaluation_type: str

View File

@@ -0,0 +1 @@
from .agentops_listener import agentops_listener

View File

@@ -0,0 +1,67 @@
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
@crewai_event_bus.on(TaskEvaluationEvent)
def on_task_evaluation(source, event: TaskEvaluationEvent):
if self.session:
self.session.create_agent(
name="Task Evaluator", agent_id=str(source.original_agent.id)
)
agentops_listener = AgentOpsListener()

View File

@@ -0,0 +1,64 @@
from datetime import datetime
from typing import Any, Callable, Dict
from .base_events import CrewEvent
class ToolUsageEvent(CrewEvent):
"""Base event for tool usage tracking"""
agent_key: str
agent_role: str
tool_name: str
tool_args: Dict[str, Any] | str
tool_class: str
run_attempts: int | None = None
delegations: int | None = None
model_config = {"arbitrary_types_allowed": True}
class ToolUsageStartedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is started"""
type: str = "tool_usage_started"
class ToolUsageFinishedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is completed"""
started_at: datetime
finished_at: datetime
from_cache: bool = False
type: str = "tool_usage_finished"
class ToolUsageErrorEvent(ToolUsageEvent):
"""Event emitted when a tool execution encounters an error"""
error: Any
type: str = "tool_usage_error"
class ToolValidateInputErrorEvent(ToolUsageEvent):
"""Event emitted when a tool input validation encounters an error"""
error: Any
type: str = "tool_validate_input_error"
class ToolSelectionErrorEvent(ToolUsageEvent):
"""Event emitted when a tool selection encounters an error"""
error: Any
type: str = "tool_selection_error"
class ToolExecutionErrorEvent(CrewEvent):
"""Event emitted when a tool execution encounters an error"""
error: Any
type: str = "tool_execution_error"
tool_name: str
tool_args: Dict[str, Any]
tool_class: Callable

View File

@@ -44,6 +44,7 @@ def create_llm(
# Extract attributes with explicit types
model = (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "model", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
)

View File

@@ -8,8 +8,11 @@ from crewai.utilities.printer import Printer
class Logger(BaseModel):
verbose: bool = Field(default=False)
_printer: Printer = PrivateAttr(default_factory=Printer)
default_color: str = Field(default="bold_yellow")
def log(self, level, message, color="bold_yellow"):
def log(self, level, message, color=None):
if color is None:
color = self.default_color
if self.verbose:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._printer.print(

View File

@@ -30,8 +30,14 @@ class TokenCalcHandler(CustomLogger):
if hasattr(usage, "prompt_tokens"):
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
if hasattr(usage, "completion_tokens"):
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
self.token_cost_process.sum_completion_tokens(
usage.completion_tokens
)
if (
hasattr(usage, "prompt_tokens_details")
and usage.prompt_tokens_details
and usage.prompt_tokens_details.cached_tokens
):
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)

View File

@@ -8,7 +8,7 @@ import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
@@ -16,9 +16,9 @@ from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import Emitter
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
def test_agent_llm_creation_with_env_vars():
@@ -154,15 +154,19 @@ def test_agent_execution_with_tools():
agent=agent,
expected_output="The result of the multiplication.",
)
with patch.object(Emitter, "emit") as emit:
output = agent.execute_task(task)
assert output == "The result of the multiplication is 12."
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert not args[1].from_cache
assert args[1].tool_name == "multiplier"
assert args[1].tool_args == {"first_number": 3, "second_number": 4}
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
output = agent.execute_task(task)
assert output == "The result of the multiplication is 12."
assert len(received_events) == 1
assert isinstance(received_events[0], ToolUsageFinishedEvent)
assert received_events[0].tool_name == "multiplier"
assert received_events[0].tool_args == {"first_number": 3, "second_number": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -249,10 +253,14 @@ def test_cache_hitting():
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
with (
patch.object(CacheHandler, "read") as read,
patch.object(Emitter, "emit") as emit,
):
read.return_value = "0"
task = Task(
@@ -265,10 +273,9 @@ def test_cache_hitting():
read.assert_called_with(
tool="multiplier", input={"first_number": 2, "second_number": 6}
)
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert args[1].from_cache
assert len(received_events) == 1
assert isinstance(received_events[0], ToolUsageFinishedEvent)
assert received_events[0].from_cache
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -983,23 +990,35 @@ def test_agent_human_input():
# Side effect function for _ask_human_input to simulate multiple feedback iterations
feedback_responses = iter(
[
"Don't say hi, say Hello instead!", # First feedback
"looks good", # Second feedback to exit loop
"Don't say hi, say Hello instead!", # First feedback: instruct change
"", # Second feedback: empty string signals acceptance
]
)
def ask_human_input_side_effect(*args, **kwargs):
return next(feedback_responses)
with patch.object(
CrewAgentExecutor, "_ask_human_input", side_effect=ask_human_input_side_effect
) as mock_human_input:
# Patch both _ask_human_input and _invoke_loop to avoid real API/network calls.
with (
patch.object(
CrewAgentExecutor,
"_ask_human_input",
side_effect=ask_human_input_side_effect,
) as mock_human_input,
patch.object(
CrewAgentExecutor,
"_invoke_loop",
return_value=AgentFinish(output="Hello", thought="", text=""),
) as mock_invoke_loop,
):
# Execute the task
output = agent.execute_task(task)
# Assertions to ensure the agent behaves correctly
assert mock_human_input.call_count == 2 # Should have asked for feedback twice
assert output.strip().lower() == "hello" # Final output should be 'Hello'
# Assertions to ensure the agent behaves correctly.
# It should have requested feedback twice.
assert mock_human_input.call_count == 2
# The final result should be processed to "Hello"
assert output.strip().lower() == "hello"
def test_interpolate_inputs():

View File

@@ -1,520 +0,0 @@
interactions:
- request:
body: !!binary |
CqcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/hYKEgoQY3Jld2FpLnRl
bGVtZXRyeRJ5ChBuJJtOdNaB05mOW/p3915eEgj2tkAd3rZcASoQVG9vbCBVc2FnZSBFcnJvcjAB
OYa7/URvKBUYQUpcFEVvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoPCgNsbG0SCAoG
Z3B0LTRvegIYAYUBAAEAABLJBwoQifhX01E5i+5laGdALAlZBBIIBuGM1aN+OPgqDENyZXcgQ3Jl
YXRlZDABORVGruBvKBUYQaipwOBvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5w
eXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogN2U2NjA4OTg5ODU5YTY3ZWVj
ODhlZWY3ZmNlODUyMjVKMQoHY3Jld19pZBImCiRiOThiNWEwMC01YTI1LTQxMDctYjQwNS1hYmYz
MjBhOGYzYThKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
SuQCCgtjcmV3X2FnZW50cxLUAgrRAlt7ImtleSI6ICIyMmFjZDYxMWU0NGVmNWZhYzA1YjUzM2Q3
NWU4ODkzYiIsICJpZCI6ICJkNWIyMzM1YS0yMmIyLTQyZWEtYmYwNS03OTc3NmU3MmYzOTIiLCAi
cm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsi
Z2V0IGdyZWV0aW5ncyJdfV1KkgIKCmNyZXdfdGFza3MSgwIKgAJbeyJrZXkiOiAiYTI3N2IzNGIy
YzE0NmYwYzU2YzVlMTM1NmU4ZjhhNTciLCAiaWQiOiAiMjJiZWMyMzEtY2QyMS00YzU4LTgyN2Ut
MDU4MWE4ZjBjMTExIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJhZ2VudF9rZXkiOiAiMjJh
Y2Q2MTFlNDRlZjVmYWMwNWI1MzNkNzVlODg5M2IiLCAidG9vbHNfbmFtZXMiOiBbImdldCBncmVl
dGluZ3MiXX1degIYAYUBAAEAABKOAgoQ5WYoxRtTyPjge4BduhL0rRIIv2U6rvWALfwqDFRhc2sg
Q3JlYXRlZDABOX068uBvKBUYQZkv8+BvKBUYSi4KCGNyZXdfa2V5EiIKIDdlNjYwODk4OTg1OWE2
N2VlYzg4ZWVmN2ZjZTg1MjI1SjEKB2NyZXdfaWQSJgokYjk4YjVhMDAtNWEyNS00MTA3LWI0MDUt
YWJmMzIwYThmM2E4Si4KCHRhc2tfa2V5EiIKIGEyNzdiMzRiMmMxNDZmMGM1NmM1ZTEzNTZlOGY4
YTU3SjEKB3Rhc2tfaWQSJgokMjJiZWMyMzEtY2QyMS00YzU4LTgyN2UtMDU4MWE4ZjBjMTExegIY
AYUBAAEAABKQAQoQXyeDtJDFnyp2Fjk9YEGTpxIIaNE7gbhPNYcqClRvb2wgVXNhZ2UwATkaXTvj
bygVGEGvx0rjbygVGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKHAoJdG9vbF9uYW1lEg8K
DUdldCBHcmVldGluZ3NKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABLVBwoQMWfznt0qwauEzl7T
UOQxRBII9q+pUS5EdLAqDENyZXcgQ3JlYXRlZDABORONPORvKBUYQSAoS+RvKBUYShoKDmNyZXdh
aV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19r
ZXkSIgogYzMwNzYwMDkzMjY3NjE0NDRkNTdjNzFkMWRhM2YyN2NKMQoHY3Jld19pZBImCiQ3OTQw
MTkyNS1iOGU5LTQ3MDgtODUzMC00NDhhZmEzYmY4YjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuoCCgtjcmV3X2FnZW50cxLaAgrXAlt7ImtleSI6ICI5
OGYzYjFkNDdjZTk2OWNmMDU3NzI3Yjc4NDE0MjVjZCIsICJpZCI6ICI5OTJkZjYyZi1kY2FiLTQy
OTUtOTIwNi05MDBkNDExNGIxZTkiLCAicm9sZSI6ICJGcmllbmRseSBOZWlnaGJvciIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsiZGVjaWRlIGdyZWV0aW5ncyJdfV1KmAIKCmNyZXdf
dGFza3MSiQIKhgJbeyJrZXkiOiAiODBkN2JjZDQ5MDk5MjkwMDgzODMyZjBlOTgzMzgwZGYiLCAi
aWQiOiAiMmZmNjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3IiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJGcmll
bmRseSBOZWlnaGJvciIsICJhZ2VudF9rZXkiOiAiOThmM2IxZDQ3Y2U5NjljZjA1NzcyN2I3ODQx
NDI1Y2QiLCAidG9vbHNfbmFtZXMiOiBbImRlY2lkZSBncmVldGluZ3MiXX1degIYAYUBAAEAABKO
AgoQnjTp5boK7/+DQxztYIpqihIIgGnMUkBtzHEqDFRhc2sgQ3JlYXRlZDABOcpYcuRvKBUYQalE
c+RvKBUYSi4KCGNyZXdfa2V5EiIKIGMzMDc2MDA5MzI2NzYxNDQ0ZDU3YzcxZDFkYTNmMjdjSjEK
B2NyZXdfaWQSJgokNzk0MDE5MjUtYjhlOS00NzA4LTg1MzAtNDQ4YWZhM2JmOGIwSi4KCHRhc2tf
a2V5EiIKIDgwZDdiY2Q0OTA5OTI5MDA4MzgzMmYwZTk4MzM4MGRmSjEKB3Rhc2tfaWQSJgokMmZm
NjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3egIYAYUBAAEAABKTAQoQ26H9pLUgswDN
p9XhJwwL6BIIx3bw7mAvPYwqClRvb2wgVXNhZ2UwATmy7NPlbygVGEEvb+HlbygVGEoaCg5jcmV3
YWlfdmVyc2lvbhIICgYwLjg2LjBKHwoJdG9vbF9uYW1lEhIKEERlY2lkZSBHcmVldGluZ3NKDgoI
YXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2986'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Say the word: Hi\n\nThis
is the expect criteria for your final answer: The word: Hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '824'
content-type:
- application/json
cookie:
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZLLrWi8ZASpP9bz6HaCV7xBIn\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
158,\n \"completion_tokens\": 12,\n \"total_tokens\": 170,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa83deca756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw;
path=/; expires=Fri, 27-Dec-24 22:44:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '404'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999816'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_6ac84634bff9193743c4b0911c09b4a6
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "Determine if the following
feedback indicates that the user is satisfied or if further changes are needed.
Respond with ''True'' if further changes are needed, or ''False'' if the user
is satisfied. **Important** Do not include any additional commentary outside
of your ''True'' or ''False'' response.\n\nFeedback: \"Don''t say hi, say Hello
instead!\""}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '461'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZNlWdrrPZhq0MJDqd16sMuQEJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"True\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 78,\n \"completion_tokens\":
1,\n \"total_tokens\": 79,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa87094f756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '156'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999898'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ec74bef2a9ef7b2144c03fd7f7bbeab0
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Say the word: Hi\n\nThis
is the expect criteria for your final answer: The word: Hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I now
can give a great answer \nFinal Answer: Hi"}, {"role": "user", "content": "Feedback:
Don''t say hi, say Hello instead!"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '986'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZGv4f3h7GDdhyOy9G0sB1lRgC\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I understand the feedback and
will adjust my response accordingly. \\nFinal Answer: Hello\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 188,\n \"completion_tokens\":
18,\n \"total_tokens\": 206,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa88cac4756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '358'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999793'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ae1ab6b206d28ded6fee3c83ed0c2ab7
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "Determine if the following
feedback indicates that the user is satisfied or if further changes are needed.
Respond with ''True'' if further changes are needed, or ''False'' if the user
is satisfied. **Important** Do not include any additional commentary outside
of your ''True'' or ''False'' response.\n\nFeedback: \"looks good\""}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '439'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtaiHL4TY8Dssk0j2miqmjrzquy\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337694,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"False\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 73,\n \"completion_tokens\":
1,\n \"total_tokens\": 74,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa8bdd26756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '184'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999902'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_652891f79c1104a7a8436275d78a69f1
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,112 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Use the failing tool"}], "model":
"gpt-4o-mini", "stop": [], "tools": [{"type": "function", "function": {"name":
"failing_tool", "description": "This tool always fails.", "parameters": {"type":
"object", "properties": {"param": {"type": "string", "description": "A test
parameter"}}, "required": ["param"]}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '353'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B2P4zoJZuES7Aom8ugEq1modz5Vsl\",\n \"object\":
\"chat.completion\",\n \"created\": 1739912761,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_F6fJxISpMKUBIGV6dd2vjRNG\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"failing_tool\",\n
\ \"arguments\": \"{\\\"param\\\":\\\"test\\\"}\"\n }\n
\ }\n ],\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": {\n
\ \"prompt_tokens\": 51,\n \"completion_tokens\": 15,\n \"total_tokens\":
66,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\":
0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\":
0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\":
\"fp_00428b782a\"\n}\n"
headers:
CF-RAY:
- 9140fa827f38eb1e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 18 Feb 2025 21:06:02 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=xbuu3IQpCMh.43ZrqL1TRMECOc6QldgHV0hzOX1GrWI-1739912762-1.0.1.1-t7iyq5xMioPrwfeaHLvPT9rwRPp7Q9A9uIm69icH9dPxRD4xMA3cWqb1aXj1_e2IyAEQQWFe1UWjlmJ22aHh3Q;
path=/; expires=Tue, 18-Feb-25 21:36:02 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=x9l.Rhja8_wXDN.j8qcEU1PvvEqAwZp4Fd3s_aj4qwM-1739912762161-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '861'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8666ec3aa6677cb346ba00993556051d
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -6,7 +6,6 @@ from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
import instructor
import pydantic_core
import pytest
@@ -15,15 +14,24 @@ from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.events import (
CrewTrainCompletedEvent,
CrewTrainStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.crew_events import (
CrewTestCompletedEvent,
CrewTestStartedEvent,
)
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
@@ -49,6 +57,41 @@ writer = Agent(
)
def test_crew_with_only_conditional_tasks_raises_error():
"""Test that creating a crew with only conditional tasks raises an error."""
def condition_func(task_output: TaskOutput) -> bool:
return True
conditional1 = ConditionalTask(
description="Conditional task 1",
expected_output="Output 1",
agent=researcher,
condition=condition_func,
)
conditional2 = ConditionalTask(
description="Conditional task 2",
expected_output="Output 2",
agent=researcher,
condition=condition_func,
)
conditional3 = ConditionalTask(
description="Conditional task 3",
expected_output="Output 3",
agent=researcher,
condition=condition_func,
)
with pytest.raises(
pydantic_core._pydantic_core.ValidationError,
match="Crew must include at least one non-conditional task",
):
Crew(
agents=[researcher],
tasks=[conditional1, conditional2, conditional3],
)
def test_crew_config_conditional_requirement():
with pytest.raises(ValueError):
Crew(process=Process.sequential)
@@ -556,12 +599,12 @@ def test_crew_with_delegating_agents_should_not_override_task_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(isinstance(tool, TestTool) for tool in tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -620,12 +663,12 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(isinstance(tool, TestTool) for tool in new_ceo.tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in new_ceo.tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -749,17 +792,17 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
used_tools = kwargs["tools"]
# Confirm AnotherTestTool is present but TestTool is not
assert any(isinstance(tool, AnotherTestTool) for tool in used_tools), (
"AnotherTestTool should be present"
)
assert not any(isinstance(tool, TestTool) for tool in used_tools), (
"TestTool should not be present among used tools"
)
assert any(
isinstance(tool, AnotherTestTool) for tool in used_tools
), "AnotherTestTool should be present"
assert not any(
isinstance(tool, TestTool) for tool in used_tools
), "TestTool should not be present among used tools"
# Confirm delegation tool(s) are present
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
# Finally, make sure the agent's original tools remain unchanged
assert len(researcher_with_delegation.tools) == 1
@@ -790,6 +833,12 @@ def test_crew_verbose_output(capsys):
crew.kickoff()
captured = capsys.readouterr()
# Filter out event listener logs (lines starting with '[')
filtered_output = "\n".join(
line for line in captured.out.split("\n") if not line.startswith("[")
)
expected_strings = [
"\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mResearcher",
"\x1b[00m\n\x1b[95m## Task:\x1b[00m \x1b[92mResearch AI advancements.",
@@ -802,14 +851,19 @@ def test_crew_verbose_output(capsys):
]
for expected_string in expected_strings:
assert expected_string in captured.out
assert expected_string in filtered_output
# Now test with verbose set to False
crew.verbose = False
crew._logger = Logger(verbose=False)
crew.kickoff()
captured = capsys.readouterr()
assert captured.out == ""
filtered_output = "\n".join(
line
for line in captured.out.split("\n")
if not line.startswith("[") and line.strip() and not line.startswith("\x1b")
)
assert filtered_output == ""
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1247,9 +1301,9 @@ def test_kickoff_for_each_invalid_input():
crew = Crew(agents=[agent], tasks=[task])
with pytest.raises(TypeError):
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
# Pass a string instead of a list
crew.kickoff_for_each("invalid input")
crew.kickoff_for_each(["invalid input"])
def test_kickoff_for_each_error_handling():
@@ -1560,9 +1614,9 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
# Verify that exactly one tool was used and it was a CodeInterpreterTool
assert len(used_tools) == 1, "Should have exactly one tool"
assert isinstance(used_tools[0], CodeInterpreterTool), (
"Tool should be CodeInterpreterTool"
)
assert isinstance(
used_tools[0], CodeInterpreterTool
), "Tool should be CodeInterpreterTool"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1919,6 +1973,7 @@ def test_task_callback_on_crew():
def test_task_callback_both_on_task_and_crew():
from unittest.mock import MagicMock, patch
mock_callback_on_task = MagicMock()
mock_callback_on_crew = MagicMock()
@@ -2060,6 +2115,210 @@ def test_tools_with_custom_caching():
assert result.raw == "3"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_task_uses_last_output():
"""Test that conditional tasks use the last task output for condition evaluation."""
task1 = Task(
description="First task",
expected_output="First output",
agent=researcher,
)
def condition_fails(task_output: TaskOutput) -> bool:
# This condition will never be met
return "never matches" in task_output.raw.lower()
def condition_succeeds(task_output: TaskOutput) -> bool:
# This condition will match first task's output
return "first success" in task_output.raw.lower()
conditional_task1 = ConditionalTask(
description="Second task - conditional that fails condition",
expected_output="Second output",
agent=researcher,
condition=condition_fails,
)
conditional_task2 = ConditionalTask(
description="Third task - conditional that succeeds using first task output",
expected_output="Third output",
agent=writer,
condition=condition_succeeds,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, conditional_task1, conditional_task2],
)
# Mock outputs for tasks
mock_first = TaskOutput(
description="First task output",
raw="First success output", # Will be used by third task's condition
agent=researcher.role,
)
mock_third = TaskOutput(
description="Third task output",
raw="Third task executed", # Output when condition succeeds using first task output
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_first, mock_third]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify outputs collection:
# First executed task output, followed by an automatically generated (skipped) output, then the conditional execution
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "First success output"
) # First task succeeded
assert (
result.tasks_output[1].raw == ""
) # Second task skipped (condition failed)
assert (
result.tasks_output[2].raw == "Third task executed"
) # Third task used first task's output
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_tasks_result_collection():
"""Test that task outputs are properly collected based on execution status."""
task1 = Task(
description="Normal task that always executes",
expected_output="First output",
agent=researcher,
)
def condition_never_met(task_output: TaskOutput) -> bool:
return "never matches" in task_output.raw.lower()
def condition_always_met(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
task2 = ConditionalTask(
description="Conditional task that never executes",
expected_output="Second output",
agent=researcher,
condition=condition_never_met,
)
task3 = ConditionalTask(
description="Conditional task that always executes",
expected_output="Third output",
agent=writer,
condition=condition_always_met,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2, task3],
)
# Mock outputs for different execution paths
mock_success = TaskOutput(
description="Success output",
raw="Success output", # Triggers third task's condition
agent=researcher.role,
)
mock_conditional = TaskOutput(
description="Conditional output",
raw="Conditional task executed",
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_success, mock_conditional]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify task output collection:
# There should be three outputs: normal task, skipped conditional task (empty output),
# and the conditional task that executed.
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
# Verify task output collection
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multiple_conditional_tasks():
"""Test that having multiple conditional tasks in sequence works correctly."""
task1 = Task(
description="Initial research task",
expected_output="Research output",
agent=researcher,
)
def condition1(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
def condition2(task_output: TaskOutput) -> bool:
return "proceed" in task_output.raw.lower()
task2 = ConditionalTask(
description="First conditional task",
expected_output="Conditional output 1",
agent=writer,
condition=condition1,
)
task3 = ConditionalTask(
description="Second conditional task",
expected_output="Conditional output 2",
agent=writer,
condition=condition2,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2, task3],
)
# Mock different task outputs to test conditional logic
mock_success = TaskOutput(
description="Mock success",
raw="Success and proceed output",
agent=researcher.role,
)
# Set up mocks for task execution
with patch.object(Task, "execute_sync", return_value=mock_success) as mock_execute:
result = crew.kickoff()
# Verify all tasks were executed (no IndexError)
assert mock_execute.call_count == 3
assert len(result.tasks_output) == 3
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
@@ -2328,6 +2587,16 @@ def test_crew_train_success(
# Create a mock for the copied crew
copy_mock.return_value = crew
received_events = []
@crewai_event_bus.on(CrewTrainStartedEvent)
def on_crew_train_started(source, event: CrewTrainStartedEvent):
received_events.append(event)
@crewai_event_bus.on(CrewTrainCompletedEvent)
def on_crew_train_completed(source, event: CrewTrainCompletedEvent):
received_events.append(event)
crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
)
@@ -2373,6 +2642,10 @@ def test_crew_train_success(
]
)
assert len(received_events) == 2
assert isinstance(received_events[0], CrewTrainStartedEvent)
assert isinstance(received_events[1], CrewTrainCompletedEvent)
def test_crew_train_error():
task = Task(
@@ -3101,7 +3374,19 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
copy_mock.return_value = crew
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
llm_instance = LLM("gpt-4o-mini")
received_events = []
@crewai_event_bus.on(CrewTestStartedEvent)
def on_crew_test_started(source, event: CrewTestStartedEvent):
received_events.append(event)
@crewai_event_bus.on(CrewTestCompletedEvent)
def on_crew_test_completed(source, event: CrewTestCompletedEvent):
received_events.append(event)
crew.test(n_iterations, llm_instance, inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
@@ -3110,13 +3395,17 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call(crew, llm_instance),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)
assert len(received_events) == 2
assert isinstance(received_events[0], CrewTestStartedEvent)
assert isinstance(received_events[1], CrewTestCompletedEvent)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
@@ -3178,9 +3467,9 @@ def test_fetch_inputs():
expected_placeholders = {"role_detail", "topic", "field"}
actual_placeholders = crew.fetch_inputs()
assert actual_placeholders == expected_placeholders, (
f"Expected {expected_placeholders}, but got {actual_placeholders}"
)
assert (
actual_placeholders == expected_placeholders
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
def test_task_tools_preserve_code_execution_tools():
@@ -3253,20 +3542,20 @@ def test_task_tools_preserve_code_execution_tools():
used_tools = kwargs["tools"]
# Verify all expected tools are present
assert any(isinstance(tool, TestTool) for tool in used_tools), (
"Task's TestTool should be present"
)
assert any(isinstance(tool, CodeInterpreterTool) for tool in used_tools), (
"CodeInterpreterTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in used_tools
), "Task's TestTool should be present"
assert any(
isinstance(tool, CodeInterpreterTool) for tool in used_tools
), "CodeInterpreterTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
# Verify the total number of tools (TestTool + CodeInterpreter + 2 delegation tools)
assert len(used_tools) == 4, (
"Should have TestTool, CodeInterpreter, and 2 delegation tools"
)
assert (
len(used_tools) == 4
), "Should have TestTool, CodeInterpreter, and 2 delegation tools"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -3310,9 +3599,9 @@ def test_multimodal_flag_adds_multimodal_tools():
used_tools = kwargs["tools"]
# Check that the multimodal tool was added
assert any(isinstance(tool, AddImageTool) for tool in used_tools), (
"AddImageTool should be present when agent is multimodal"
)
assert any(
isinstance(tool, AddImageTool) for tool in used_tools
), "AddImageTool should be present when agent is multimodal"
# Verify we have exactly one tool (just the AddImageTool)
assert len(used_tools) == 1, "Should only have the AddImageTool"
@@ -3538,9 +3827,9 @@ def test_crew_guardrail_feedback_in_context():
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
# Verify that the second execution included the guardrail feedback
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], (
"Guardrail feedback should be included in retry context"
)
assert (
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
), "Guardrail feedback should be included in retry context"
# Verify final output meets guardrail requirements
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"

View File

@@ -0,0 +1,150 @@
from datetime import date, datetime
from typing import List
from unittest.mock import Mock
import pytest
from pydantic import BaseModel
from crewai.flow import Flow
from crewai.flow.state_utils import export_state, to_string
class Address(BaseModel):
street: str
city: str
country: str
class Person(BaseModel):
name: str
age: int
address: Address
birthday: date
skills: List[str]
@pytest.fixture
def mock_flow():
def create_flow(state):
flow = Mock(spec=Flow)
flow._state = state
return flow
return create_flow
@pytest.mark.parametrize(
"test_input,expected",
[
({"text": "hello world"}, {"text": "hello world"}),
({"number": 42}, {"number": 42}),
({"decimal": 3.14}, {"decimal": 3.14}),
({"flag": True}, {"flag": True}),
({"empty": None}, {"empty": None}),
({"list": [1, 2, 3]}, {"list": [1, 2, 3]}),
({"tuple": (1, 2, 3)}, {"tuple": [1, 2, 3]}),
({"set": {1, 2, 3}}, {"set": [1, 2, 3]}),
({"nested": [1, [2, 3], {4, 5}]}, {"nested": [1, [2, 3], [4, 5]]}),
],
)
def test_basic_serialization(mock_flow, test_input, expected):
flow = mock_flow(test_input)
result = export_state(flow)
assert result == expected
@pytest.mark.parametrize(
"input_date,expected",
[
(date(2024, 1, 1), "2024-01-01"),
(datetime(2024, 1, 1, 12, 30), "2024-01-01T12:30:00"),
],
)
def test_temporal_serialization(mock_flow, input_date, expected):
flow = mock_flow({"date": input_date})
result = export_state(flow)
assert result["date"] == expected
@pytest.mark.parametrize(
"key,value,expected_key_type",
[
(("tuple", "key"), "value", str),
(None, "value", str),
(123, "value", str),
("normal", "value", str),
],
)
def test_dictionary_key_serialization(mock_flow, key, value, expected_key_type):
flow = mock_flow({key: value})
result = export_state(flow)
assert len(result) == 1
result_key = next(iter(result.keys()))
assert isinstance(result_key, expected_key_type)
assert result[result_key] == value
@pytest.mark.parametrize(
"callable_obj,expected_in_result",
[
(lambda x: x * 2, "lambda"),
(str.upper, "upper"),
],
)
def test_callable_serialization(mock_flow, callable_obj, expected_in_result):
flow = mock_flow({"func": callable_obj})
result = export_state(flow)
assert isinstance(result["func"], str)
assert expected_in_result in result["func"].lower()
def test_pydantic_model_serialization(mock_flow):
address = Address(street="123 Main St", city="Tech City", country="Pythonia")
person = Person(
name="John Doe",
age=30,
address=address,
birthday=date(1994, 1, 1),
skills=["Python", "Testing"],
)
flow = mock_flow(
{
"single_model": address,
"nested_model": person,
"model_list": [address, address],
"model_dict": {"home": address},
}
)
result = export_state(flow)
assert (
to_string(result)
== '{"single_model": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "nested_model": {"name": "John Doe", "age": 30, "address": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "birthday": "1994-01-01", "skills": ["Python", "Testing"]}, "model_list": [{"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}], "model_dict": {"home": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}}}'
)
def test_depth_limit(mock_flow):
"""Test max depth handling with a deeply nested structure"""
def create_nested(depth):
if depth == 0:
return "value"
return {"next": create_nested(depth - 1)}
deep_structure = create_nested(10)
flow = mock_flow(deep_structure)
result = export_state(flow)
assert result == {
"next": {
"next": {
"next": {
"next": {
"next": "{'next': {'next': {'next': {'next': {'next': 'value'}}}}}"
}
}
}
}
}

View File

@@ -1,11 +1,20 @@
"""Test Flow creation and execution basic functionality."""
import asyncio
from datetime import datetime
import pytest
from pydantic import BaseModel
from crewai.flow.flow import Flow, and_, listen, or_, router, start
from crewai.utilities.events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.flow_events import FlowPlotEvent
def test_simple_sequential_flow():
@@ -398,3 +407,351 @@ def test_router_with_multiple_conditions():
# final_step should run after router_and
assert execution_order.index("log_final_step") > execution_order.index("router_and")
def test_unstructured_flow_event_emission():
"""Test that the correct events are emitted during unstructured flow
execution with all fields validated."""
class PoemFlow(Flow):
@start()
def prepare_flower(self):
self.state["flower"] = "roses"
return "foo"
@start()
def prepare_color(self):
self.state["color"] = "red"
return "bar"
@listen(prepare_color)
def write_first_sentence(self):
return f"{self.state['flower']} are {self.state['color']}"
@listen(write_first_sentence)
def finish_poem(self, first_sentence):
separator = self.state.get("separator", "\n")
return separator.join([first_sentence, "violets are blue"])
@listen(finish_poem)
def save_poem_to_database(self):
# A method without args/kwargs to ensure events are sent correctly
return "roses are red\nviolets are blue"
flow = PoemFlow()
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff(inputs={"separator": ", "})
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "PoemFlow"
assert received_events[0].inputs == {"separator": ", "}
assert isinstance(received_events[0].timestamp, datetime)
# All subsequent events are MethodExecutionStartedEvent
for event in received_events[1:-1]:
assert isinstance(event, MethodExecutionStartedEvent)
assert event.flow_name == "PoemFlow"
assert isinstance(event.state, dict)
assert isinstance(event.state["id"], str)
assert event.state["separator"] == ", "
assert received_events[1].method_name == "prepare_flower"
assert received_events[1].params == {}
assert "flower" not in received_events[1].state
assert received_events[2].method_name == "prepare_color"
assert received_events[2].params == {}
print("received_events[2]", received_events[2])
assert "flower" in received_events[2].state
assert received_events[3].method_name == "write_first_sentence"
assert received_events[3].params == {}
assert received_events[3].state["flower"] == "roses"
assert received_events[3].state["color"] == "red"
assert received_events[4].method_name == "finish_poem"
assert received_events[4].params == {"_0": "roses are red"}
assert received_events[4].state["flower"] == "roses"
assert received_events[4].state["color"] == "red"
assert received_events[5].method_name == "save_poem_to_database"
assert received_events[5].params == {}
assert received_events[5].state["flower"] == "roses"
assert received_events[5].state["color"] == "red"
assert isinstance(received_events[6], FlowFinishedEvent)
assert received_events[6].flow_name == "PoemFlow"
assert received_events[6].result == "roses are red\nviolets are blue"
assert isinstance(received_events[6].timestamp, datetime)
def test_structured_flow_event_emission():
"""Test that the correct events are emitted during structured flow
execution with all fields validated."""
class OnboardingState(BaseModel):
name: str = ""
sent: bool = False
class OnboardingFlow(Flow[OnboardingState]):
@start()
def user_signs_up(self):
self.state.sent = False
@listen(user_signs_up)
def send_welcome_message(self):
self.state.sent = True
return f"Welcome, {self.state.name}!"
flow = OnboardingFlow()
flow.kickoff(inputs={"name": "Anakin"})
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def handle_method_end(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff(inputs={"name": "Anakin"})
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "OnboardingFlow"
assert received_events[0].inputs == {"name": "Anakin"}
assert isinstance(received_events[0].timestamp, datetime)
assert isinstance(received_events[1], MethodExecutionStartedEvent)
assert received_events[1].method_name == "user_signs_up"
assert isinstance(received_events[2], MethodExecutionFinishedEvent)
assert received_events[2].method_name == "user_signs_up"
assert isinstance(received_events[3], MethodExecutionStartedEvent)
assert received_events[3].method_name == "send_welcome_message"
assert received_events[3].params == {}
assert getattr(received_events[3].state, "sent") is False
assert isinstance(received_events[4], MethodExecutionFinishedEvent)
assert received_events[4].method_name == "send_welcome_message"
assert getattr(received_events[4].state, "sent") is True
assert received_events[4].result == "Welcome, Anakin!"
assert isinstance(received_events[5], FlowFinishedEvent)
assert received_events[5].flow_name == "OnboardingFlow"
assert received_events[5].result == "Welcome, Anakin!"
assert isinstance(received_events[5].timestamp, datetime)
def test_stateless_flow_event_emission():
"""Test that the correct events are emitted stateless during flow execution
with all fields validated."""
class StatelessFlow(Flow):
@start()
def init(self):
pass
@listen(init)
def process(self):
return "Deeds will not be less valiant because they are unpraised."
event_log = []
def handle_event(_, event):
event_log.append(event)
flow = StatelessFlow()
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def handle_method_end(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff()
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "StatelessFlow"
assert received_events[0].inputs is None
assert isinstance(received_events[0].timestamp, datetime)
assert isinstance(received_events[1], MethodExecutionStartedEvent)
assert received_events[1].method_name == "init"
assert isinstance(received_events[2], MethodExecutionFinishedEvent)
assert received_events[2].method_name == "init"
assert isinstance(received_events[3], MethodExecutionStartedEvent)
assert received_events[3].method_name == "process"
assert isinstance(received_events[4], MethodExecutionFinishedEvent)
assert received_events[4].method_name == "process"
assert isinstance(received_events[5], FlowFinishedEvent)
assert received_events[5].flow_name == "StatelessFlow"
assert (
received_events[5].result
== "Deeds will not be less valiant because they are unpraised."
)
assert isinstance(received_events[5].timestamp, datetime)
def test_flow_plotting():
class StatelessFlow(Flow):
@start()
def init(self):
return "Initializing flow..."
@listen(init)
def process(self):
return "Deeds will not be less valiant because they are unpraised."
flow = StatelessFlow()
flow.kickoff()
received_events = []
@crewai_event_bus.on(FlowPlotEvent)
def handle_flow_plot(source, event):
received_events.append(event)
flow.plot("test_flow")
assert len(received_events) == 1
assert isinstance(received_events[0], FlowPlotEvent)
assert received_events[0].flow_name == "StatelessFlow"
assert isinstance(received_events[0].timestamp, datetime)
def test_multiple_routers_from_same_trigger():
"""Test that multiple routers triggered by the same method all activate their listeners."""
execution_order = []
class MultiRouterFlow(Flow):
def __init__(self):
super().__init__()
# Set diagnosed conditions to trigger all routers
self.state["diagnosed_conditions"] = "DHA" # Contains D, H, and A
@start()
def scan_medical(self):
execution_order.append("scan_medical")
return "scan_complete"
@router(scan_medical)
def diagnose_conditions(self):
execution_order.append("diagnose_conditions")
return "diagnosis_complete"
@router(diagnose_conditions)
def diabetes_router(self):
execution_order.append("diabetes_router")
if "D" in self.state["diagnosed_conditions"]:
return "diabetes"
return None
@listen("diabetes")
def diabetes_analysis(self):
execution_order.append("diabetes_analysis")
return "diabetes_analysis_complete"
@router(diagnose_conditions)
def hypertension_router(self):
execution_order.append("hypertension_router")
if "H" in self.state["diagnosed_conditions"]:
return "hypertension"
return None
@listen("hypertension")
def hypertension_analysis(self):
execution_order.append("hypertension_analysis")
return "hypertension_analysis_complete"
@router(diagnose_conditions)
def anemia_router(self):
execution_order.append("anemia_router")
if "A" in self.state["diagnosed_conditions"]:
return "anemia"
return None
@listen("anemia")
def anemia_analysis(self):
execution_order.append("anemia_analysis")
return "anemia_analysis_complete"
flow = MultiRouterFlow()
flow.kickoff()
# Verify all methods were called
assert "scan_medical" in execution_order
assert "diagnose_conditions" in execution_order
# Verify all routers were called
assert "diabetes_router" in execution_order
assert "hypertension_router" in execution_order
assert "anemia_router" in execution_order
# Verify all listeners were called - this is the key test for the fix
assert "diabetes_analysis" in execution_order
assert "hypertension_analysis" in execution_order
assert "anemia_analysis" in execution_order
# Verify execution order constraints
assert execution_order.index("diagnose_conditions") > execution_order.index(
"scan_medical"
)
# All routers should execute after diagnose_conditions
assert execution_order.index("diabetes_router") > execution_order.index(
"diagnose_conditions"
)
assert execution_order.index("hypertension_router") > execution_order.index(
"diagnose_conditions"
)
assert execution_order.index("anemia_router") > execution_order.index(
"diagnose_conditions"
)
# All analyses should execute after their respective routers
assert execution_order.index("diabetes_analysis") > execution_order.index(
"diabetes_router"
)
assert execution_order.index("hypertension_analysis") > execution_order.index(
"hypertension_router"
)
assert execution_order.index("anemia_analysis") > execution_order.index(
"anemia_router"
)

View File

@@ -6,8 +6,9 @@ import pytest
from pydantic import BaseModel
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
from crewai.tools import tool
from crewai.llm import CONTEXT_WINDOW_USAGE_RATIO, LLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -284,8 +285,103 @@ def test_o3_mini_reasoning_effort_medium():
assert isinstance(result, str)
assert "Paris" in result
def test_context_window_validation():
"""Test that context window validation works correctly."""
# Test valid window size
llm = LLM(model="o3-mini")
assert llm.get_context_window_size() == int(200000 * CONTEXT_WINDOW_USAGE_RATIO)
# Test invalid window size
with pytest.raises(ValueError) as excinfo:
with patch.dict(
"crewai.llm.LLM_CONTEXT_WINDOW_SIZES",
{"test-model": 500}, # Below minimum
clear=True,
):
llm = LLM(model="test-model")
llm.get_context_window_size()
assert "must be between 1024 and 2097152" in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.fixture
def anthropic_llm():
"""Fixture providing an Anthropic LLM instance."""
return LLM(model="anthropic/claude-3-sonnet")
@pytest.fixture
def system_message():
"""Fixture providing a system message."""
return {"role": "system", "content": "test"}
@pytest.fixture
def user_message():
"""Fixture providing a user message."""
return {"role": "user", "content": "test"}
def test_anthropic_message_formatting_edge_cases(anthropic_llm):
"""Test edge cases for Anthropic message formatting."""
# Test None messages
with pytest.raises(TypeError, match="Messages cannot be None"):
anthropic_llm._format_messages_for_provider(None)
# Test empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test invalid message format
with pytest.raises(TypeError, match="Invalid message format"):
anthropic_llm._format_messages_for_provider([{"invalid": "message"}])
def test_anthropic_model_detection():
"""Test Anthropic model detection with various formats."""
models = [
("anthropic/claude-3", True),
("claude-instant", True),
("claude/v1", True),
("gpt-4", False),
("", False),
("anthropomorphic", False), # Should not match partial words
]
for model, expected in models:
llm = LLM(model=model)
assert llm.is_anthropic == expected, f"Failed for model: {model}"
def test_anthropic_message_formatting(anthropic_llm, system_message, user_message):
"""Test Anthropic message formatting with fixtures."""
# Test when first message is system
formatted = anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 2
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
assert formatted[1] == system_message
# Test when first message is already user
formatted = anthropic_llm._format_messages_for_provider([user_message])
assert len(formatted) == 1
assert formatted[0] == user_message
# Test with empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test with non-Anthropic model (should not modify messages)
non_anthropic_llm = LLM(model="gpt-4")
formatted = non_anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 1
assert formatted[0] == system_message
def test_deepseek_r1_with_open_router():
if not os.getenv("OPEN_ROUTER_API_KEY"):
pytest.skip("OPEN_ROUTER_API_KEY not set; skipping test.")
@@ -298,3 +394,51 @@ def test_deepseek_r1_with_open_router():
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_execution_error_event():
llm = LLM(model="gpt-4o-mini")
def failing_tool(param: str) -> str:
"""This tool always fails."""
raise Exception("Tool execution failed!")
tool_schema = {
"type": "function",
"function": {
"name": "failing_tool",
"description": "This tool always fails.",
"parameters": {
"type": "object",
"properties": {
"param": {"type": "string", "description": "A test parameter"}
},
"required": ["param"],
},
},
}
received_events = []
@crewai_event_bus.on(ToolExecutionErrorEvent)
def event_handler(source, event):
received_events.append(event)
available_functions = {"failing_tool": failing_tool}
messages = [{"role": "user", "content": "Use the failing tool"}]
llm.call(
messages,
tools=[tool_schema],
available_functions=available_functions,
)
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolExecutionErrorEvent)
assert event.tool_name == "failing_tool"
assert event.tool_args == {"param": "test"}
assert event.tool_class == failing_tool
assert "Tool execution failed!" in event.error

View File

@@ -13,11 +13,12 @@ from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
class TestState(FlowState):
"""Test state model with required id field."""
counter: int = 0
message: str = ""
def test_persist_decorator_saves_state(tmp_path):
def test_persist_decorator_saves_state(tmp_path, caplog):
"""Test that @persist decorator saves state in SQLite."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
@@ -73,7 +74,6 @@ def test_flow_state_restoration(tmp_path):
# First flow execution to create initial state
class RestorableFlow(Flow[TestState]):
@start()
@persist(persistence)
def set_message(self):
@@ -89,10 +89,7 @@ def test_flow_state_restoration(tmp_path):
# Test case 1: Restore using restore_uuid with field override
flow2 = RestorableFlow(persistence=persistence)
flow2.kickoff(inputs={
"id": original_uuid,
"counter": 43
})
flow2.kickoff(inputs={"id": original_uuid, "counter": 43})
# Verify state restoration and selective field override
assert flow2.state.id == original_uuid
@@ -101,10 +98,7 @@ def test_flow_state_restoration(tmp_path):
# Test case 2: Restore using kwargs['id']
flow3 = RestorableFlow(persistence=persistence)
flow3.kickoff(inputs={
"id": original_uuid,
"message": "Updated message"
})
flow3.kickoff(inputs={"id": original_uuid, "message": "Updated message"})
# Verify state restoration and selective field override
assert flow3.state.id == original_uuid
@@ -174,3 +168,43 @@ def test_multiple_method_persistence(tmp_path):
final_state = flow2.state
assert final_state.counter == 99999
assert final_state.message == "Step 99999"
def test_persist_decorator_verbose_logging(tmp_path, caplog):
"""Test that @persist decorator's verbose parameter controls logging."""
# Set logging level to ensure we capture all logs
caplog.set_level("INFO")
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
# Test with verbose=False (default)
class QuietFlow(Flow[Dict[str, str]]):
initial_state = dict()
@start()
@persist(persistence) # Default verbose=False
def init_step(self):
self.state["message"] = "Hello, World!"
self.state["id"] = "test-uuid-1"
flow = QuietFlow(persistence=persistence)
flow.kickoff()
assert "Saving flow state" not in caplog.text
# Clear the log
caplog.clear()
# Test with verbose=True
class VerboseFlow(Flow[Dict[str, str]]):
initial_state = dict()
@start()
@persist(persistence, verbose=True)
def init_step(self):
self.state["message"] = "Hello, World!"
self.state["id"] = "test-uuid-2"
flow = VerboseFlow(persistence=persistence)
flow.kickoff()
assert "Saving flow state" in caplog.text

View File

@@ -1,6 +1,6 @@
import json
import random
from unittest.mock import MagicMock
from unittest.mock import MagicMock, patch
import pytest
from pydantic import BaseModel, Field
@@ -8,6 +8,11 @@ from pydantic import BaseModel, Field
from crewai import Agent, Task
from crewai.tools import BaseTool
from crewai.tools.tool_usage import ToolUsage
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolValidateInputErrorEvent,
)
class RandomNumberToolInput(BaseModel):
@@ -226,7 +231,7 @@ def test_validate_tool_input_with_special_characters():
)
# Input with special characters
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
tool_input = '{"message": "Hello, world! \u263a", "valid": True}'
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
arguments = tool_usage._validate_tool_input(tool_input)
@@ -331,6 +336,19 @@ def test_validate_tool_input_with_trailing_commas():
def test_validate_tool_input_invalid_input():
# Create mock agent with proper string values
mock_agent = MagicMock()
mock_agent.key = "test_agent_key" # Must be a string
mock_agent.role = "test_agent_role" # Must be a string
mock_agent._original_role = "test_agent_role" # Must be a string
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
# Create mock action with proper string value
mock_action = MagicMock()
mock_action.tool = "test_tool" # Must be a string
mock_action.tool_input = "test_input" # Must be a string
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
@@ -339,8 +357,8 @@ def test_validate_tool_input_invalid_input():
tools_names="",
task=MagicMock(),
function_calling_llm=None,
agent=MagicMock(),
action=MagicMock(),
agent=mock_agent,
action=mock_action,
)
invalid_inputs = [
@@ -360,7 +378,7 @@ def test_validate_tool_input_invalid_input():
# Test for None input separately
arguments = tool_usage._validate_tool_input(None)
assert arguments == {} # Expecting an empty dictionary
assert arguments == {}
def test_validate_tool_input_complex_structure():
@@ -468,18 +486,141 @@ def test_validate_tool_input_large_json_content():
assert arguments == expected_arguments
def test_validate_tool_input_none_input():
def test_tool_selection_error_event_direct():
"""Test tool selection error event emission directly from ToolUsage class."""
mock_agent = MagicMock()
mock_agent.key = "test_key"
mock_agent.role = "test_role"
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
mock_task = MagicMock()
mock_tools_handler = MagicMock()
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
tools_handler=mock_tools_handler,
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
function_calling_llm=None,
agent=MagicMock(),
agent=mock_agent,
action=MagicMock(),
)
arguments = tool_usage._validate_tool_input(None)
assert arguments == {} # Expecting an empty dictionary
received_events = []
@crewai_event_bus.on(ToolSelectionErrorEvent)
def event_handler(source, event):
received_events.append(event)
with pytest.raises(Exception) as exc_info:
tool_usage._select_tool("Non Existent Tool")
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolSelectionErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == "Non Existent Tool"
assert event.tool_args == {}
assert event.tool_class == "Test Tool Description"
assert "don't exist" in event.error
received_events.clear()
with pytest.raises(Exception) as exc_info:
tool_usage._select_tool("")
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolSelectionErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == ""
assert event.tool_args == {}
assert event.tool_class == "Test Tool Description"
assert "forgot the Action name" in event.error
def test_tool_validate_input_error_event():
"""Test tool validation input error event emission from ToolUsage class."""
# Mock agent and required components
mock_agent = MagicMock()
mock_agent.key = "test_key"
mock_agent.role = "test_role"
mock_agent.verbose = False
mock_agent._original_role = "test_role"
# Mock i18n with error message
mock_i18n = MagicMock()
mock_i18n.errors.return_value = (
"Tool input must be a valid dictionary in JSON or Python literal format"
)
mock_agent.i18n = mock_i18n
# Mock task and tools handler
mock_task = MagicMock()
mock_tools_handler = MagicMock()
# Mock printer
mock_printer = MagicMock()
# Create test tool
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
# Create ToolUsage instance
tool_usage = ToolUsage(
tools_handler=mock_tools_handler,
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
function_calling_llm=None,
agent=mock_agent,
action=MagicMock(tool="test_tool"),
)
tool_usage._printer = mock_printer
# Mock all parsing attempts to fail
with (
patch("json.loads", side_effect=json.JSONDecodeError("Test Error", "", 0)),
patch("ast.literal_eval", side_effect=ValueError),
patch("json5.loads", side_effect=json.JSONDecodeError("Test Error", "", 0)),
patch("json_repair.repair_json", side_effect=Exception("Failed to repair")),
):
received_events = []
@crewai_event_bus.on(ToolValidateInputErrorEvent)
def event_handler(source, event):
received_events.append(event)
# Test invalid input
invalid_input = "invalid json {[}"
with pytest.raises(Exception) as exc_info:
tool_usage._validate_tool_input(invalid_input)
# Verify event was emitted
assert len(received_events) == 1, "Expected one event to be emitted"
event = received_events[0]
assert isinstance(event, ToolValidateInputErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == "test_tool"
assert "must be a valid dictionary" in event.error

View File

@@ -0,0 +1,243 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzTXAk4GatJOmLO9sEOCCITIjf1Dx\",\n \"object\":
\"chat.completion\",\n \"created\": 1739214900,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fe6ce92eba67b3-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:15:01 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=pjX1I6y8RlqCjS.gvOqvXk4vM69UNwFwmslh1BhALNg-1739214901-1.0.1.1-nJcNlSdNcug82eDl7KSvteLbsg0xCiEh2yI1TZX2jMAblL7AMQ8LFhvXkJLlAMfk49RMzRzWy2aiQgeM7WRHPg;
path=/; expires=Mon, 10-Feb-25 19:45:01 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '571'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a95183a7a85e6bdfe381b2510bf70f34
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=pjX1I6y8RlqCjS.gvOqvXk4vM69UNwFwmslh1BhALNg-1739214901-1.0.1.1-nJcNlSdNcug82eDl7KSvteLbsg0xCiEh2yI1TZX2jMAblL7AMQ8LFhvXkJLlAMfk49RMzRzWy2aiQgeM7WRHPg;
_cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzTXDcgKWq3yosIyBal8LcY8dDrn1\",\n \"object\":
\"chat.completion\",\n \"created\": 1739214903,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_c41SAnqyEKNXEAZd5XV3jKF3\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Consider specifying
the tone or context of the greeting for more engaging interactions.\\\",\\\"Clarify
if additional greetings or responses are acceptable to enhance the task's scope.\\\"],\\\"quality\\\":10,\\\"entities\\\":[]
}\"\n }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 43,\n
\ \"total_tokens\": 316,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90fe6cf8c96e67b3-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:15:04 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1181'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b2286c8ae6f9b2a42f46a3e2c52b4211
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,14 +1,9 @@
interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### User:\nName: Alice Llama, Age:
30\n\n### System:\nProduce JSON OUTPUT ONLY! Adhere to this format {\"name\":
\"function_name\", \"arguments\":{\"argument_name\": \"argument_value\"}} The
following functions are available to you:\n{''type'': ''function'', ''function'':
{''name'': ''SimpleModel'', ''description'': ''Correctly extracted `SimpleModel`
with all the required parameters with correct types'', ''parameters'': {''properties'':
{''name'': {''title'': ''Name'', ''type'': ''string''}, ''age'': {''title'':
''Age'', ''type'': ''integer''}}, ''required'': [''age'', ''name''], ''type'':
''object''}}}\n\n\n", "options": {}, "stream": false, "format": "json"}'
body: '{"model": "llama3.2:3b", "prompt": "### System:\nPlease convert the following
text into valid JSON.\n\nOutput ONLY the valid JSON and nothing else.\n\nThe
JSON must follow this format exactly:\n{\n \"name\": str,\n \"age\": int\n}\n\n###
User:\nName: Alice Llama, Age: 30\n\n", "options": {"stop": []}, "stream": false}'
headers:
accept:
- '*/*'
@@ -17,23 +12,23 @@ interactions:
connection:
- keep-alive
content-length:
- '657'
- '321'
host:
- localhost:11434
user-agent:
- litellm/1.57.4
- litellm/1.60.2
method: POST
uri: http://localhost:11434/api/generate
response:
content: '{"model":"llama3.2:3b","created_at":"2025-01-15T20:47:11.926411Z","response":"{\"name\":
\"SimpleModel\", \"arguments\":{\"name\": \"Alice Llama\", \"age\": 30}}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,14711,744,512,1360,13677,4823,32090,27785,0,2467,6881,311,420,3645,5324,609,794,330,1723,1292,498,330,16774,23118,14819,1292,794,330,14819,3220,32075,578,2768,5865,527,2561,311,499,512,13922,1337,1232,364,1723,518,364,1723,1232,5473,609,1232,364,16778,1747,518,364,4789,1232,364,34192,398,28532,1595,16778,1747,63,449,682,279,2631,5137,449,4495,4595,518,364,14105,1232,5473,13495,1232,5473,609,1232,5473,2150,1232,364,678,518,364,1337,1232,364,928,25762,364,425,1232,5473,2150,1232,364,17166,518,364,1337,1232,364,11924,8439,2186,364,6413,1232,2570,425,518,364,609,4181,364,1337,1232,364,1735,23742,3818,128009,128006,78191,128007,271,5018,609,794,330,16778,1747,498,330,16774,23118,609,794,330,62786,445,81101,498,330,425,794,220,966,3500],"total_duration":3374470708,"load_duration":1075750500,"prompt_eval_count":167,"prompt_eval_duration":1871000000,"eval_count":24,"eval_duration":426000000}'
content: '{"model":"llama3.2:3b","created_at":"2025-02-21T02:57:55.059392Z","response":"{\"name\":
\"Alice Llama\", \"age\": 30}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,5618,5625,279,2768,1495,1139,2764,4823,382,5207,27785,279,2764,4823,323,4400,775,382,791,4823,2011,1833,420,3645,7041,512,517,220,330,609,794,610,345,220,330,425,794,528,198,633,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,128009,128006,78191,128007,271,5018,609,794,330,62786,445,81101,498,330,425,794,220,966,92],"total_duration":4675906000,"load_duration":836091458,"prompt_eval_count":82,"prompt_eval_duration":3561000000,"eval_count":15,"eval_duration":275000000}'
headers:
Content-Length:
- '1263'
- '761'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
- Fri, 21 Feb 2025 02:57:55 GMT
http_version: HTTP/1.1
status_code: 200
- request:
@@ -52,7 +47,7 @@ interactions:
host:
- localhost:11434
user-agent:
- litellm/1.57.4
- litellm/1.60.2
method: POST
uri: http://localhost:11434/api/show
response:
@@ -228,7 +223,7 @@ interactions:
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
FROM llama3.2:3b\\n\\nFROM /Users/joaomoura/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
@@ -441,12 +436,12 @@ interactions:
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2025-02-20T18:55:09.150577031-08:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
- Fri, 21 Feb 2025 02:57:55 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
@@ -467,7 +462,7 @@ interactions:
host:
- localhost:11434
user-agent:
- litellm/1.57.4
- litellm/1.60.2
method: POST
uri: http://localhost:11434/api/show
response:
@@ -643,7 +638,7 @@ interactions:
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
FROM llama3.2:3b\\n\\nFROM /Users/joaomoura/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
@@ -856,12 +851,12 @@ interactions:
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2025-02-20T18:55:09.150577031-08:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
- Fri, 21 Feb 2025 02:57:55 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1

View File

@@ -0,0 +1,315 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJK2OCJSkUj1plgbj59b4dC39QV2\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698990,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd396c0ab71698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:30 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '951'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2c3cb5caed61ccd1e058ef3e6301c691
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cq0TCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkShBMKEgoQY3Jld2FpLnRl
bGVtZXRyeRKkBwoQzBQBWCz+GLuI1awj3OPWrRIIGpT16t5bk6MqDENyZXcgQ3JlYXRlZDABOUBz
OyuEGSEYQYDBSCuEGSEYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKGgoOcHl0aG9uX3Zl
cnNpb24SCAoGMy4xMi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhj
NzQ2MjhjSjEKB2NyZXdfaWQSJgokMDE3NjQ5ZWMtYTBlMS00MzYxLWFlNjgtYzA1N2E3ZGM5YzI5
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrRAgoLY3Jl
d19hZ2VudHMSwQIKvgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEi
LCAiaWQiOiAiOGU3NzgyN2QtN2Y2OC00ZDA2LWI2YTctOWI4YjRkMGE0YzMzIiwgInJvbGUiOiAi
YmFzZV9hZ2VudCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0i
OiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIs
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBm
YWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEKCmNyZXdf
dGFza3MS8AEK7QFbeyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDIiLCAi
aWQiOiAiOTJiZDIzMWYtYzAxMC00ZDI3LWIxNGYtZjE5NjEyZTBmZTkzIiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJiYXNl
X2FnZW50IiwgImFnZW50X2tleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIs
ICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChC22Au0eMkAAjV6cfU1NrNIEggxb1Bq
Xnll/ioMVGFzayBDcmVhdGVkMAE5IOJaK4QZIRhBwG5bK4QZIRhKLgoIY3Jld19rZXkSIgogZTU4
MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiQwMTc2NDllYy1hMGUx
LTQzNjEtYWU2OC1jMDU3YTdkYzljMjlKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4
OWEwZWMzYjI2YTEzZDJKMQoHdGFza19pZBImCiQ5MmJkMjMxZi1jMDEwLTRkMjctYjE0Zi1mMTk2
MTJlMGZlOTN6AhgBhQEAAQAAEqQHChC63jCLGR8RP8RmYiHrdNVeEggZ39ffmGm5xyoMQ3JldyBD
cmVhdGVkMAE5GFEe04QZIRhBELEq04QZIRhKGwoOY3Jld2FpX3ZlcnNpb24SCQoHMC4xMDAuMEoa
Cg5weXRob25fdmVyc2lvbhIICgYzLjEyLjhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVh
ZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiQ5MTY4YmQxNC0yN2Q2LTQ3NWMtODljOC01
NjJjOTAyMGIxOTBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkS
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
AhgBStECCgtjcmV3X2FnZW50cxLBAgq+Alt7ImtleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2
YjI0OWM0YzY0YSIsICJpZCI6ICI4ZTc3ODI3ZC03ZjY4LTRkMDYtYjZhNy05YjhiNGQwYTRjMzMi
LCAicm9sZSI6ICJiYXNlX2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
XUr/AQoKY3Jld190YXNrcxLwAQrtAVt7ImtleSI6ICIxYjE1ZWYyMzkxNWIyNzU1ZTg5YTBlYzNi
MjZhMTNkMiIsICJpZCI6ICI5MmJkMjMxZi1jMDEwLTRkMjctYjE0Zi1mMTk2MTJlMGZlOTMiLCAi
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
b2xlIjogImJhc2VfYWdlbnQiLCAiYWdlbnRfa2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZi
MjQ5YzRjNjRhIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEOo6FGs7r9hHrN+f
qhMTUysSCJgbYV+vQMbCKgxUYXNrIENyZWF0ZWQwATlAxjrThBkhGEEYIDvThBkhGEouCghjcmV3
X2tleRIiCiBlNTgwNzAxZDUyZWI2NWFmZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDkx
NjhiZDE0LTI3ZDYtNDc1Yy04OWM4LTU2MmM5MDIwYjE5MEouCgh0YXNrX2tleRIiCiAxYjE1ZWYy
MzkxNWIyNzU1ZTg5YTBlYzNiMjZhMTNkMkoxCgd0YXNrX2lkEiYKJDkyYmQyMzFmLWMwMTAtNGQy
Ny1iMTRmLWYxOTYxMmUwZmU5M3oCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2480'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 04 Feb 2025 19:56:31 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJK3bJiyqGhPeqdCcCjoeNavGHrR\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698991,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_uAFkclWHIRqgrXFrQFcEoUIS\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Include additional
context for the greeting to make it more meaningful.\\\",\\\"Specify if you
want a casual or formal tone for greetings.\\\",\\\"Provide examples of variations
of the greeting if necessary.\\\"],\\\"quality\\\":10,\\\"entities\\\":[],\\\"relationships\\\":[]}\"\n
\ }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 50,\n
\ \"total_tokens\": 323,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd3973589f1698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:32 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1408'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_519fd27ca3d5da4d541c4331654e0520
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,245 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJIrSWAFqDEsNtLRhcM8vMHO9Ejw\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698917,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd37a83f5f176a-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:55:18 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=rKQWp4fbAvcCp4rasEN6DqiTjQfiWYpLfjcLpWcmzi0-1738698918-1.0.1.1-qlcCSdBY3KWbzVms0eLtz5ub5SSLGs_sRLxTdNhDk_purQuz9k6EFp8PHJfN3aP_sLnuyKnFlppM3.2k_dCtPQ;
path=/; expires=Tue, 04-Feb-25 20:25:18 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Oi91zDXvjWohBYXSVqK4hFsq3_GZePEIIbi7b7wrjcI-1738698918130-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '894'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_864253996bbc0f797f9a2c1b9247a0d5
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=rKQWp4fbAvcCp4rasEN6DqiTjQfiWYpLfjcLpWcmzi0-1738698918-1.0.1.1-qlcCSdBY3KWbzVms0eLtz5ub5SSLGs_sRLxTdNhDk_purQuz9k6EFp8PHJfN3aP_sLnuyKnFlppM3.2k_dCtPQ;
_cfuvid=Oi91zDXvjWohBYXSVqK4hFsq3_GZePEIIbi7b7wrjcI-1738698918130-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJIsVEppA04iGQh0k6sanKnVObrO\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698918,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_AQ3iizjGWjEvk1SmhGCzjbf1\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide context for
the greeting, like a specific scenario or recipient.\\\",\\\"Encourage responses
or follow-ups to promote engagement.\\\",\\\"Specify the tone or formality of
the greeting, if relevant.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"hi\\\",\\\"type\\\":\\\"greeting\\\",\\\"description\\\":\\\"A
common informal expression used to initiate conversation or acknowledge someone.\\\",\\\"relationships\\\":[\\\"used
in conversation\\\",\\\"expresses friendliness\\\"]}]}\"\n }\n }\n
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
273,\n \"completion_tokens\": 84,\n \"total_tokens\": 357,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90cd37aec8c8176a-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:55:21 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3269'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e6e67a3f5c6f2d48e0351cdce95edd97
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,243 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJJzafmayYpGTsTAWbOyZkmQJNa5\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698987,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90cd395b0e641698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:27 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
path=/; expires=Tue, 04-Feb-25 20:26:27 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '839'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_577b484a927b455c40ed80f9fd4d9106
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJJz10KP7iadNPdKsbcsvHBa7cic\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698987,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_czeHQgy5eiOVa0zlrtcfwepe\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide more context
or details for similar tasks to enhance output expectations.\\\",\\\"Encourage
creativity in responses for simple tasks to engage users more effectively.\\\"],\\\"quality\\\":10,\\\"entities\\\":[]
}\"\n }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 40,\n
\ \"total_tokens\": 313,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd39615b281698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1411'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3e717a80c7d9c5ea19893dd990aaae26
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,245 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJiiHEQwIXsiG0Sd5wofcuhxVbo9\",\n \"object\":
\"chat.completion\",\n \"created\": 1738700520,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd5ecd0f7667ee-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 20:22:01 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=nedOdWE1YnKQYt1kSbrcA.zhwa3bZDzmZqTOjZYER0c-1738700521-1.0.1.1-xQk9iXOvqvyXNhkIOgc8Ws2WYcT1mJFkDCvCC8xA5joFD8QfNrBIAr_Qs6sIxt2EzXyeFwBA6gA8ZgWApCHx0Q;
path=/; expires=Tue, 04-Feb-25 20:52:01 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '450'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_10eaafc81640a98a0a4789d270dd94d9
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=nedOdWE1YnKQYt1kSbrcA.zhwa3bZDzmZqTOjZYER0c-1738700521-1.0.1.1-xQk9iXOvqvyXNhkIOgc8Ws2WYcT1mJFkDCvCC8xA5joFD8QfNrBIAr_Qs6sIxt2EzXyeFwBA6gA8ZgWApCHx0Q;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJijOhk12Ua6lS23IwtZTachfjq9\",\n \"object\":
\"chat.completion\",\n \"created\": 1738700521,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_DSteeMHHPf5RanJb8qjCo4qx\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Consider adding context
for the greeting to make it more engaging.\\\",\\\"Specify if any additional
information or tone is desired in the greeting.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"greeting\\\",\\\"type\\\":\\\"text\\\",\\\"description\\\":\\\"A
simple greeting phrase\\\",\\\"relationships\\\":[\\\"is a\\\",\\\"is part of
a conversation\\\"]}]}\"\n }\n }\n ],\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\":
67,\n \"total_tokens\": 340,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd5ed20cb267ee-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 20:22:02 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1624'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4ee944acdd3928afbf6c5562403b064a
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpkZLpCyjKT5d6Udfx4zAme2sOMy\",\n \"object\":
\"chat.completion\",\n \"created\": 1739300299,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 910691d3ab90ebef-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:58:20 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=MOH5EY6n3p8JKY53.yz7qzLuLYsEB8QdQXH09loUMBM-1739300300-1.0.1.1-hjb4mk04sMygPFhoFyiySKZSqB_fN5PbhbOyn.kipa3.eLvk7EtriDyjvGkBFIAV13DYnc08BfF_l2kxdx9hfQ;
path=/; expires=Tue, 11-Feb-25 19:28:20 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=uu.cEiV.FfgvSvCdKOooDYJWrwjVEuFeGdQodijGUUI-1739300300232-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1357'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2277503f851195e7d7a43b66eb044454
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,236 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expected criteria for
your final answer: hi\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4VsaBZ4ec4b0ab4pkqWgyxTFVVfc\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edc5da6f230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:57 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
path=/; expires=Mon, 24-Feb-25 17:15:57 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '721'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999808'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fc3b3bcd4382cddaa3c04ce7003e4857
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Task Execution Evaluator.
Evaluator agent for crew evaluation with precise capabilities to evaluate the
performance of the agents in the crew based on the tasks they have performed\nYour
personal goal is: Your goal is to evaluate the performance of the agents in
the crew based on the tasks they have performed using score from 1 to 10 evaluating
on completion, quality, and overall performance.\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Based on the task description and the expected output, compare and evaluate
the performance of the agents in the crew based on the Task Output they have
performed using score from 1 to 10 evaluating on completion, quality, and overall
performance.task_description: Just say hi task_expected_output: hi agent: base_agent
agent_goal: Just say hi Task Output: hi\n\nThis is the expected criteria for
your final answer: Evaluation Score from 1 to 10 based on the performance of
the agents on the tasks\nyou MUST return the actual complete content as the
final answer, not a summary.\nEnsure your final answer contains only the content
in the following format: {\n \"quality\": float\n}\n\nEnsure the final output
does not include any code block markers like ```json or ```python.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1765'
content-type:
- application/json
cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
_cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4Vsbd9AsRaJ2exDtWnHAwC8rIjfi\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415557,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: { \\n \\\"quality\\\": 10 \\n} \",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 338,\n \"completion_tokens\":
22,\n \"total_tokens\": 360,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edd15bb5230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:58 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '860'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999578'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fad452c2d10b5fc95809130912b08837
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,103 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
__cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YLA2SrC2rwdVQ3U87G5a0P5lsLw\",\n \"object\":
\"chat.completion\",\n \"created\": 1740425016,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_709714d124\"\n}\n"
headers:
CF-RAY:
- 9171d4c0ed44236e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:23:38 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1954'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ea2703502b8827e4297cd2a7bae9d9c8
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,108 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=GefCcEtb_Gem93E4a9Hvt3Xyof1YQZVJAXBb9I6pEUs-1739398417375-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YJU8IWKGyBQtAyPDRd3SFI2flYR\",\n \"object\":
\"chat.completion\",\n \"created\": 1740424912,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9171d230d8ed7ae0-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:21:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg;
path=/; expires=Mon, 24-Feb-25 19:51:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '993'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d9c4d49185e97b1797061efc1e55d811
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- _cfuvid=gsNyCo_jrDOolzf8SXHDaxQQrEgdR3jgv4OAH8MziDE-1739291824699-0.0.1.1-604800000;
__cf_bm=cRijYuylMGzRGxv3udQL5PhHOR5mRN_9_eLLwevlM_o-1739299455-1.0.1.1-Fszr_Msw0B1.IBMkiunP.VF2ilul1YGZZV8TqMcO3Q2SHvSlqfgm9NHgns1bJrm0wWRvHiCE7wdZfUAOx7T3Lg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpWx6pctOvzu6xsbyg0XfSAc0q9V\",\n \"object\":
\"chat.completion\",\n \"created\": 1739299455,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 91067d3ddc68fa16-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:44:16 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '703'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_89222c00e4608e8557a135e91b223556
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- _cfuvid=gsNyCo_jrDOolzf8SXHDaxQQrEgdR3jgv4OAH8MziDE-1739291824699-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpWxLzAcRzigZuIGmjP3ckQgxAom\",\n \"object\":
\"chat.completion\",\n \"created\": 1739299455,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 91067d389e90fa16-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:44:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cRijYuylMGzRGxv3udQL5PhHOR5mRN_9_eLLwevlM_o-1739299455-1.0.1.1-Fszr_Msw0B1.IBMkiunP.VF2ilul1YGZZV8TqMcO3Q2SHvSlqfgm9NHgns1bJrm0wWRvHiCE7wdZfUAOx7T3Lg;
path=/; expires=Tue, 11-Feb-25 19:14:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '716'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ef807dc3223d40332aae8a313e96ef3a
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,512 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: say_hi\nTool Arguments: {}\nTool Description:
Say hi\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [say_hi], just the name, exactly as it''s written.\nAction Input: the
input to the action, just a simple JSON object, enclosed in curly braces, using
\" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Just say
hi\n\nThis is the expect criteria for your final answer: hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1275'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA6kJQfpUvB4CGot4gSfAIR0foh\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217314,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"you should always think about what to
do \\nAction: say_hi \\nAction Input: {} \",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 257,\n \"completion_tokens\":
19,\n \"total_tokens\": 276,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7d78e1fceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q;
path=/; expires=Mon, 10-Feb-25 20:25:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '526'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999703'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f6358ff0cc7a2b8d2e167ab00a40f2a4
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: say_hi\nTool Arguments: {}\nTool Description:
Say hi\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [say_hi], just the name, exactly as it''s written.\nAction Input: the
input to the action, just a simple JSON object, enclosed in curly braces, using
\" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Just say
hi\n\nThis is the expect criteria for your final answer: hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "you
should always think about what to do \nAction: say_hi \nAction Input: {} \nObservation:
hi"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1410'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
__cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA7QdlQy1WZZijxNWUv25sZycg0\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217315,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal
Answer: hi\\n```\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
283,\n \"completion_tokens\": 17,\n \"total_tokens\": 300,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7dc5ba6ceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:15 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '388'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999680'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7d7c68b90b3a9c3ac6092fe17ac1185a
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CoMzCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS2jIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQ2EINIGZRoXD589od63oHmBIIMfUgEWudUbIqDFRhc2sgQ3JlYXRlZDABOcjI
7lbu8CIYQZB471bu8CIYSi4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhj
NzQ2MjhjSjEKB2NyZXdfaWQSJgokNTE4ODdiOTktY2FlMy00Yjc4LWJjMGEtMDY4MmVmNWEzNGQ0
Si4KCHRhc2tfa2V5EiIKIDFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2IyNmExM2QySjEKB3Rhc2tf
aWQSJgokMzlmMDlmMWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVkMDk3ZjM0egIYAYUBAAEAABKkBwoQ
RzhWoF6ewSTS/qUc9yeFRhIIM3SNZCwjz5AqDENyZXcgQ3JlYXRlZDABOQjrGlru8CIYQdgbKVru
8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
Mi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2Ny
ZXdfaWQSJgokYzk4ODFkY2YtMmM0MS00ZjRlLTgzMjctNjJjYjFhYjJkOTg4ShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrRAgoLY3Jld19hZ2VudHMSwQIK
vgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAiaWQiOiAiNTU2
NzJiMDgtOTU4ZC00MjljLWE3ZTctY2ZlN2U4Y2MwOGZkIiwgInJvbGUiOiAiYmFzZV9hZ2VudCIs
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFb
eyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDIiLCAiaWQiOiAiMzlmMDlm
MWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVkMDk3ZjM0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxz
ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJiYXNlX2FnZW50IiwgImFn
ZW50X2tleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIsICJ0b29sc19uYW1l
cyI6IFtdfV16AhgBhQEAAQAAEo4CChB8AxWkb2Uwpdc8RpyCRqw5EggJAxbgNu81XyoMVGFzayBD
cmVhdGVkMAE5+HQ8Wu7wIhhB+PE8Wu7wIhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVh
ZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRjOTg4MWRjZi0yYzQxLTRmNGUtODMyNy02
MmNiMWFiMmQ5ODhKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEz
ZDJKMQoHdGFza19pZBImCiQzOWYwOWYxZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzR6AhgB
hQEAAQAAEqQHChCcXvdbsgYC+gzCMrXs3LN/EgijKwJLCRIiHioMQ3JldyBDcmVhdGVkMAE5iJqz
vu7wIhhBqKC/vu7wIhhKGwoOY3Jld2FpX3ZlcnNpb24SCQoHMC4xMDAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjEyLjhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3
NDYyOGNKMQoHY3Jld19pZBImCiQ2Zjk1ZWI3Yy0wOWM5LTQxOTYtYWFiYi1kOWIxNmMxMzZjODdK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStECCgtjcmV3
X2FnZW50cxLBAgq+Alt7ImtleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIs
ICJpZCI6ICI1NTY3MmIwOC05NThkLTQyOWMtYTdlNy1jZmU3ZThjYzA4ZmQiLCAicm9sZSI6ICJi
YXNlX2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr/AQoKY3Jld190
YXNrcxLwAQrtAVt7ImtleSI6ICIxYjE1ZWYyMzkxNWIyNzU1ZTg5YTBlYzNiMjZhMTNkMiIsICJp
ZCI6ICIzOWYwOWYxZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzQiLCAiYXN5bmNfZXhlY3V0
aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogImJhc2Vf
YWdlbnQiLCAiYWdlbnRfa2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZiMjQ5YzRjNjRhIiwg
InRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEExDo5nPLyHb2H8DfYjPoX4SCLEYs+24
8EenKgxUYXNrIENyZWF0ZWQwATmI4NG+7vAiGEFYZdK+7vAiGEouCghjcmV3X2tleRIiCiBlNTgw
NzAxZDUyZWI2NWFmZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDZmOTVlYjdjLTA5Yzkt
NDE5Ni1hYWJiLWQ5YjE2YzEzNmM4N0ouCgh0YXNrX2tleRIiCiAxYjE1ZWYyMzkxNWIyNzU1ZTg5
YTBlYzNiMjZhMTNkMkoxCgd0YXNrX2lkEiYKJDM5ZjA5ZjFlLTkyZjgtNGRiYi04MzQwLTY1NmZl
ZDA5N2YzNHoCGAGFAQABAAASpAcKEBBQzR2bcR/7woQ+VkaJ4kQSCD1LFx3SNPPPKgxDcmV3IENy
ZWF0ZWQwATlotsW/7vAiGEEgA9C/7vAiGEobCg5jcmV3YWlfdmVyc2lvbhIJCgcwLjEwMC4wShoK
DnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuOEouCghjcmV3X2tleRIiCiBlNTgwNzAxZDUyZWI2NWFm
ZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDJiMWI2MGYzLTNlZTMtNGNjYi05MDM2LTdk
MzE4OTJiYjVkZkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRIC
EABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxIC
GAFK0QIKC2NyZXdfYWdlbnRzEsECCr4CW3sia2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZi
MjQ5YzRjNjRhIiwgImlkIjogIjU1NjcyYjA4LTk1OGQtNDI5Yy1hN2U3LWNmZTdlOGNjMDhmZCIs
ICJyb2xlIjogImJhc2VfYWdlbnQiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAs
ICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0
LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1d
Sv8BCgpjcmV3X3Rhc2tzEvABCu0BW3sia2V5IjogIjFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2Iy
NmExM2QyIiwgImlkIjogIjM5ZjA5ZjFlLTkyZjgtNGRiYi04MzQwLTY1NmZlZDA5N2YzNCIsICJh
c3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3Jv
bGUiOiAiYmFzZV9hZ2VudCIsICJhZ2VudF9rZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIy
NDljNGM2NGEiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQmT07KMiFRgzOOPQf
I4bJPhIIqzN+pCYM6IUqDFRhc2sgQ3JlYXRlZDABOYjr3r/u8CIYQehY37/u8CIYSi4KCGNyZXdf
a2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2NyZXdfaWQSJgokMmIx
YjYwZjMtM2VlMy00Y2NiLTkwMzYtN2QzMTg5MmJiNWRmSi4KCHRhc2tfa2V5EiIKIDFiMTVlZjIz
OTE1YjI3NTVlODlhMGVjM2IyNmExM2QySjEKB3Rhc2tfaWQSJgokMzlmMDlmMWUtOTJmOC00ZGJi
LTgzNDAtNjU2ZmVkMDk3ZjM0egIYAYUBAAEAABKkBwoQE53vZNAWshkoNK1bqTvovRII83djkBUL
EbcqDENyZXcgQ3JlYXRlZDABORBBzsDu8CIYQbAU2MDu8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkK
BzAuMTAwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3
MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2NyZXdfaWQSJgokNTQ0MWY0MWYtOTVjMC00
YzdkLTkxM2QtNDUxODcwY2YyZjYzShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2Ny
ZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJf
b2ZfYWdlbnRzEgIYAUrRAgoLY3Jld19hZ2VudHMSwQIKvgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1
YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAiaWQiOiAiNTU2NzJiMDgtOTU4ZC00MjljLWE3ZTctY2Zl
N2U4Y2MwOGZkIiwgInJvbGUiOiAiYmFzZV9hZ2VudCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxv
d19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19u
YW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1
NWU4OWEwZWMzYjI2YTEzZDIiLCAiaWQiOiAiMzlmMDlmMWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVk
MDk3ZjM0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJiYXNlX2FnZW50IiwgImFnZW50X2tleSI6ICJhZDE1MzE2MWM1YzVh
ODU2YWEwZDA2YjI0OWM0YzY0YSIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChBV
JNEz3VIdOlQM9VT3bctVEgisogN707a2AioMVGFzayBDcmVhdGVkMAE5kGbnwO7wIhhBaMDnwO7w
IhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jl
d19pZBImCiQ1NDQxZjQxZi05NWMwLTRjN2QtOTEzZC00NTE4NzBjZjJmNjNKLgoIdGFza19rZXkS
IgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDJKMQoHdGFza19pZBImCiQzOWYwOWYx
ZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzR6AhgBhQEAAQAAErQHChDA7zaLCfy56rd5t3oS
rDPZEgjYoSW3mq6WJyoMQ3JldyBDcmVhdGVkMAE5cP/5we7wIhhBIH0Dwu7wIhhKGwoOY3Jld2Fp
X3ZlcnNpb24SCQoHMC4xMDAuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjhKLgoIY3Jld19r
ZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRmNjcz
MTc1ZS04Y2Q1LTQ1ZWUtYTZiOS0xYWFjMTliODQxZWJKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStkCCgtjcmV3X2FnZW50cxLJAgrGAlt7ImtleSI6ICJh
ZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIsICJpZCI6ICJmMGUwMGIzZi0wZWNmLTQ2
OGQtYjdjMC0yZmJhN2I5OTc5YjMiLCAicm9sZSI6ICJiYXNlX2FnZW50IiwgInZlcmJvc2U/Ijog
ZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5n
X2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBm
YWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0Ijog
MiwgInRvb2xzX25hbWVzIjogWyJzYXlfaGkiXX1dSocCCgpjcmV3X3Rhc2tzEvgBCvUBW3sia2V5
IjogIjFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2IyNmExM2QyIiwgImlkIjogImFhMGFmMmE2LTdm
MTktNDZmNi1iMjMxLTg1M2JjYzYxYzhiZiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJo
dW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiYmFzZV9hZ2VudCIsICJhZ2VudF9r
ZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAidG9vbHNfbmFtZXMiOiBb
InNheV9oaSJdfV16AhgBhQEAAQAAEo4CChBH8NUZY1Cv8sM2lfQLaEogEgiFlW7Wp7QpdyoMVGFz
ayBDcmVhdGVkMAE5MNkPwu7wIhhBUCcQwu7wIhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmVi
NjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRmNjczMTc1ZS04Y2Q1LTQ1ZWUtYTZi
OS0xYWFjMTliODQxZWJKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2
YTEzZDJKMQoHdGFza19pZBImCiRhYTBhZjJhNi03ZjE5LTQ2ZjYtYjIzMS04NTNiY2M2MWM4YmZ6
AhgBhQEAAQAAEooBChCJg/wSACw+HIDy4vvYISP/EgjoC/oI/1V0cCoKVG9vbCBVc2FnZTABOWA0
ifTu8CIYQTD0lPTu8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKFQoJdG9vbF9uYW1l
EggKBnNheV9oaUoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '6534'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Mon, 10 Feb 2025 19:55:17 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n```\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1967'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
__cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA8oE0A2d99i1Khpu0CI7fSgRtZ\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217316,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_bk3duHRErK1qCyvWJ1uVmmGl\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide more context
or details for similar tasks to enhance clarity.\\\",\\\"Specify desired tone
or style for the output.\\\",\\\"Consider adding more variety in tasks to keep
engagement high.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"hi\\\",\\\"type\\\":\\\"greeting\\\",\\\"description\\\":\\\"A
casual way to say hello or acknowledge someone's presence.\\\",\\\"relationships\\\":[\\\"used
as a greeting\\\",\\\"expresses friendliness\\\"]}]}\"\n }\n }\n
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
275,\n \"completion_tokens\": 80,\n \"total_tokens\": 355,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7dfef41ceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:17 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1535'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999874'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_55d8eb91b4318245556b73d3f4c1e7c4
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,4 +1,5 @@
import json
import os
from typing import Dict, List, Optional
from unittest.mock import MagicMock, Mock, patch
@@ -220,10 +221,13 @@ def test_get_conversion_instructions_gpt():
supports_function_calling.return_value = True
instructions = get_conversion_instructions(SimpleModel, llm)
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
assert (
instructions
== f"Please convert the following text into valid JSON.\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
expected_instructions = (
"Please convert the following text into valid JSON.\n\n"
"Output ONLY the valid JSON and nothing else.\n\n"
"The JSON must follow this schema exactly:\n```json\n"
f"{model_schema}\n```"
)
assert instructions == expected_instructions
def test_get_conversion_instructions_non_gpt():
@@ -346,12 +350,17 @@ def test_convert_with_instructions():
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
def test_converter_with_llama3_2_model():
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
@@ -359,19 +368,17 @@ def test_converter_with_llama3_2_model():
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
def test_converter_with_llama3_1_model():
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
@@ -379,14 +386,19 @@ def test_converter_with_llama3_1_model():
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_nested_model():
llm = LLM(model="gpt-4o-mini")
@@ -563,7 +575,7 @@ def test_converter_with_ambiguous_input():
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "validation error" in str(exc_info.value).lower()
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
# Tests for function calling support

Some files were not shown because too many files have changed in this diff Show More