Compare commits

...

27 Commits

Author SHA1 Message Date
Devin AI
65ce1dbf31 fix: Fix type-checker error in crew_agent_executor.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:19:28 +00:00
Devin AI
7ada6daa39 test: Update VCR configuration and test cases
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:15:03 +00:00
Devin AI
16ab38f330 test: Add VCR cassettes for tool output formatting tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:13:54 +00:00
Devin AI
09417f9821 style: Fix import sorting in crew_test.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:10:49 +00:00
Devin AI
77fa4a548e test: Update test environment and VCR configuration
- Add mock_openai_key fixture for consistent test API key
- Update VCR configuration to record API interactions
- Update test cases to handle None and whitespace inputs

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:06:44 +00:00
Devin AI
e9e998e8b2 test: Update VCR cassette with proper test API key
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:02:18 +00:00
Devin AI
4c7fe88ca2 test: Add negative test cases for tool output formatting
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:01:37 +00:00
Devin AI
9c2d49d3de fix: Fix indentation in crew_agent_executor.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 11:00:42 +00:00
Devin AI
892e4f6154 style: Fix import sorting in crew_test.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 10:58:12 +00:00
Devin AI
c8bb9561ce refactor: Improve backtick stripping and test coverage
- Extract backtick stripping to _clean_tool_result method
- Add docstrings explaining the backtick cleaning logic
- Add parameterized tests for various backtick scenarios

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 10:56:42 +00:00
Devin AI
4073d9a103 style: Fix import sorting in crew_test.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 10:55:31 +00:00
Devin AI
4129a93993 test: Add VCR cassette for hierarchical tool output test
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 10:53:43 +00:00
Devin AI
c830ffab7a fix: Remove extra backticks from hierarchical tool outputs
Issue #2105 - Tool outputs in hierarchical mode were getting extra backticks
appended. This fix:
- Strips trailing backticks from tool results
- Adds test to verify tool output formatting in hierarchical mode

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-12 10:53:11 +00:00
Brandon Hancock (bhancock_ai)
47818f4f41 updating bedrock docs (#2088)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:48:12 -05:00
Brandon Hancock (bhancock_ai)
9b10fd47b0 incorporate Small update in memory.mdx, fixing Google AI parameters #2008 (#2087) 2025-02-10 12:17:41 -05:00
Brandon Hancock (bhancock_ai)
c408368267 fix linting issues in new tests (#2089)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:10:53 -05:00
Kevin King
90b3145e92 Updated excel_knowledge_source.py to account for excel files with multiple tabs. (#1921)
* Updated excel_knowledge_source.py to account for excel sheets that have multiple tabs. The old implementation contained a single df=pd.read_excel(excel_file_path), which only reads the first or most recently used excel sheet. The updated functionality reads all sheets in the excel workbook.

* updated load_content() function in excel_knowledge_source.py to reduce memory usage and provide better documentation

* accidentally didn't delete the old load_content() function in last commit - corrected this

* Added an override for the content field from the inheritted BaseFileKnowledgeSource to account for the change in the load_content method to support excel files with multiple tabs/sheets. This change should ensure it passes the type check test, as it failed before since content was assigned a different type in BaseFileKnowledgeSource

* Now removed the commented out imports in _import_dependencies, as requested

* Updated excel_knowledge_source to fix linter errors and type errors. Changed inheritence from basefileknowledgesource to baseknowledgesource because basefileknowledgesource's types conflicted (in particular the load_content function and the content class variable.

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 08:56:32 -08:00
Nicolas Lorin
fbd0e015d5 doc: use the corresponding source depending on filetype (#2038)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 20:25:33 -03:00
Bradley Goodyear
17e25fb842 Fix a typo in the Task Guardrails section (#2043)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 20:23:52 -03:00
devin-ai-integration[bot]
d6d98ee969 docs: fix long term memory class name in examples (#2049)
* docs: fix long term memory class name in examples

- Replace EnhanceLongTermMemory with LongTermMemory to match actual implementation
- Update code examples to show correct usage
- Fixes #2026

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: improve memory examples with imports, types and security

- Add proper import statements
- Add type hints for better readability
- Add descriptive comments for each memory type
- Add security considerations section
- Add configuration examples section
- Use environment variables for storage paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update memory.mdx

* Update memory.mdx

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:47:31 -03:00
devin-ai-integration[bot]
e0600e3bb9 fix: ensure proper message formatting for Anthropic models (#2063)
* fix: ensure proper message formatting for Anthropic models

- Add Anthropic-specific message formatting
- Add placeholder user message when required
- Add test case for Anthropic message formatting

Fixes #1869

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve Anthropic model handling

- Add robust model detection with _is_anthropic_model
- Enhance message formatting with better edge cases
- Add type hints and improve documentation
- Improve test structure with fixtures
- Add edge case tests

Addresses review feedback on #2063

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 16:35:52 -03:00
devin-ai-integration[bot]
a79d77dfd7 docs: document FileWriterTool as solution for file writing issues (#2039)
* docs: add FileWriterTool recommendation for file writing issues

- Add FileWriterTool recommendation in _save_file docstring
- Update error message to suggest using FileWriterTool for cross-platform compatibility
- Resolves #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance FileWriterTool documentation

- Add cross-platform compatibility details
- Highlight UTF-8 encoding support
- Emphasize Windows compatibility
- Add recommendation for users experiencing file writing issues

Part of #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve _save_file type hints and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:21:56 -03:00
devin-ai-integration[bot]
56ec9bc224 fix: handle multiple task outputs correctly in conditional tasks (#1937)
* fix: handle multiple task outputs correctly in conditional tasks

- Fix IndexError in _handle_conditional_task by using first output
- Modify _execute_tasks to accumulate task outputs instead of resetting
- Update _create_crew_output to handle multiple outputs correctly
- Add tests for multiple tasks with conditional and multiple conditional tasks

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* feat: validate at least one non-conditional task and refine task outputs

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Revert to single output in _create_crew_output; remove redundant empty task check

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: use last output in conditional tasks, add validation test

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: updated conditional tasks tests and indexing

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:20:16 -03:00
João Moura
8eef02739a adding shoutout to enterprise 2025-02-09 12:55:33 -05:00
Brandon Hancock (bhancock_ai)
6f4ad532e6 Brandon/general cleanup (#2059)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop

* clean up linting issues

* more linting
2025-02-07 17:00:41 -05:00
Brandon Hancock (bhancock_ai)
74a1de8550 clean up google docs (#2061) 2025-02-07 16:58:13 -05:00
Lorenze Jay
e529766391 Enhance embedding configuration with custom embedder support (#2060)
* Enhance embedding configuration with custom embedder support

- Add support for custom embedding functions in EmbeddingConfigurator
- Update type hints for embedder configuration
- Extend configuration options for various embedding providers
- Add optional embedder configuration to Memory class

* added docs

* Refine custom embedder configuration support

- Update custom embedder configuration method to handle custom embedding functions
- Modify type hints for embedder configuration
- Remove unused model_name parameter in custom embedder configuration
2025-02-07 16:49:46 -05:00
28 changed files with 1827 additions and 135 deletions

View File

@@ -1,10 +1,18 @@
<div align="center">
![Logo of CrewAI, two people rowing on a boat](./docs/crewai_logo.png)
![Logo of CrewAI](./docs/crewai_logo.png)
# **CrewAI**
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI Enterprise**
Want to plan, build (+ no code), deploy, monitor and interare your agents: [CrewAI Enterprise](https://www.crewai.com/enterprise). Designed for complex, real-world applications, our enterprise solution offers:
- **Seamless Integrations**
- **Scalable & Secure Deployment**
- **Actionable Insights**
- **24/7 Support**
<h3>
@@ -392,7 +400,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
@@ -403,7 +411,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],

View File

@@ -91,7 +91,7 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
```
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including MD, PDF, DOCX, HTML, and more.
<Note>
You need to install `docling` for the following example to work: `uv add docling`
@@ -152,10 +152,10 @@ Here are examples of how to use different types of knowledge sources:
### Text File Knowledge Source
```python
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
# Create a text file knowledge source
text_source = CrewDoclingSource(
text_source = TextFileKnowledgeSource(
file_paths=["document.txt", "another.txt"]
)

View File

@@ -463,26 +463,32 @@ Learn how to get the most out of your LLM configuration:
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# Option 1: Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# Option 2: Vertex AI IAM credentials for Gemini, Anthropic, and Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
## GET CREDENTIALS
Get credentials:
```python Code
import json
file_path = 'path/to/vertex_ai_service_account.json'
# Load the JSON file
with open(file_path, 'r') as file:
vertex_credentials = json.load(file)
# Convert to JSON string
# Convert the credentials to a JSON string
vertex_credentials_json = json.dumps(vertex_credentials)
```
Example usage:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-pro-latest",
temperature=0.7,

View File

@@ -58,41 +58,107 @@ my_crew = Crew(
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
```python Code
from crewai import Crew, Agent, Task, Process
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage import LTMSQLiteStorage, RAGStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
my_crew = Crew(
agents=[...],
tasks=[...],
process="Process.sequential",
memory=True,
long_term_memory=EnhanceLongTermMemory(
my_crew: Crew = Crew(
agents = [...],
tasks = [...],
process = Process.sequential,
memory = True,
# Long-term memory for persistent storage across sessions
long_term_memory = LongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
db_path="/my_crew1/long_term_memory_storage.db"
)
),
short_term_memory=EnhanceShortTermMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="short_term",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
# Short-term memory for current context using RAG
short_term_memory = ShortTermMemory(
storage = RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
),
entity_memory=EnhanceEntityMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="entities",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
# Entity memory for tracking key information about entities
entity_memory = EntityMemory(
storage=RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
verbose=True,
)
```
## Security Considerations
When configuring memory storage:
- Use environment variables for storage paths (e.g., `CREWAI_STORAGE_DIR`)
- Never hardcode sensitive information like database credentials
- Consider access permissions for storage directories
- Use relative paths when possible to maintain portability
Example using environment variables:
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path="{storage_path}/memory.db".format(storage_path=storage_path)
)
)
)
```
## Configuration Examples
### Basic Memory Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(db_path="./memory.db")
)
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
@@ -216,6 +282,19 @@ my_crew = Crew(
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
@@ -368,6 +447,65 @@ my_crew = Crew(
)
```
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb import Documents, EmbeddingFunction, Embeddings
# Create a custom embedding function
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
# generate embeddings
return [1, 2, 3] # this is a dummy embedding
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
```
### Resetting Memory
```shell

View File

@@ -268,7 +268,7 @@ analysis_task = Task(
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
efeedback to agents when their output doesn't meet specific criteria.
feedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails

View File

@@ -8,9 +8,9 @@ icon: file-pen
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files.
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files with cross-platform compatibility (Windows, Linux, macOS).
It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more.
This tool supports creating new directories if they don't exist, making it easier to organize your output.
This tool handles path differences across operating systems, supports UTF-8 encoding, and automatically creates directories if they don't exist, making it easier to organize your output reliably across different platforms.
## Installation
@@ -43,6 +43,8 @@ print(result)
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories.
This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided,
incorporating this tool into projects is straightforward and efficient.
By integrating the `FileWriterTool` into your crews, the agents can reliably write content to files across different operating systems.
This tool is essential for tasks that require saving output data, creating structured file systems, and handling cross-platform file operations.
It's particularly recommended for Windows users who may encounter file writing issues with standard Python file operations.
By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and ensures consistent file writing behavior across all platforms.

View File

@@ -16,7 +16,6 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
@@ -146,7 +145,7 @@ class Agent(BaseAgent):
def _set_knowledge(self):
try:
if self.knowledge_sources:
full_pattern = re.compile(r'[^a-zA-Z0-9\-_\r\n]|(\.\.)')
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources

View File

@@ -366,23 +366,41 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
valid_names = [name.casefold().strip() for name in self.tool_name_to_tool_map]
tool_name = tool_calling.tool_name.casefold().strip()
tool_name_alt = tool_calling.tool_name.casefold().replace("_", " ")
if tool_name in valid_names or tool_name_alt in valid_names:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool_result = self._clean_tool_result(tool_result)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
return ToolResult(
result=tool_result,
result_as_answer=tool.result_as_answer if tool else False
)
return ToolResult(result=tool_result, result_as_answer=False)
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
def _clean_tool_result(self, tool_result: Any) -> Any:
"""Clean tool result by removing trailing backticks.
This is particularly important in hierarchical mode where tool outputs
might contain markdown formatting that needs to be cleaned up.
Args:
tool_result: The result from a tool execution, can be any type
Returns:
The cleaned result with any trailing backticks removed if it's a string,
otherwise returns the original result unchanged
"""
if isinstance(tool_result, str):
return tool_result.rstrip('`').rstrip('```')
return tool_result
def _summarize_messages(self) -> None:
messages_groups = []

View File

@@ -3,11 +3,6 @@ import subprocess
import click
from crewai.cli.utils import get_crew
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
def reset_memories_command(

View File

@@ -1,7 +1,6 @@
import asyncio
import json
import re
import sys
import uuid
import warnings
from concurrent.futures import Future
@@ -381,6 +380,22 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_must_have_non_conditional_task(self) -> "Crew":
"""Ensure that a crew has at least one non-conditional task."""
if not self.tasks:
return self
non_conditional_count = sum(
1 for task in self.tasks if not isinstance(task, ConditionalTask)
)
if non_conditional_count == 0:
raise PydanticCustomError(
"only_conditional_tasks",
"Crew must include at least one non-conditional task",
{},
)
return self
@model_validator(mode="after")
def validate_first_task(self) -> "Crew":
"""Ensure the first task is not a ConditionalTask."""
@@ -441,6 +456,7 @@ class Crew(BaseModel):
return self
@property
def key(self) -> str:
source = [agent.key for agent in self.agents] + [
@@ -743,6 +759,7 @@ class Crew(BaseModel):
task, task_outputs, futures, task_index, was_replayed
)
if skipped_task_output:
task_outputs.append(skipped_task_output)
continue
if task.async_execution:
@@ -766,7 +783,7 @@ class Crew(BaseModel):
context=context,
tools=tools_for_task,
)
task_outputs = [task_output]
task_outputs.append(task_output)
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
@@ -787,7 +804,7 @@ class Crew(BaseModel):
task_outputs = self._process_async_tasks(futures, was_replayed)
futures.clear()
previous_output = task_outputs[task_index - 1] if task_outputs else None
previous_output = task_outputs[-1] if task_outputs else None
if previous_output is not None and not task.should_execute(previous_output):
self._logger.log(
"debug",
@@ -909,11 +926,15 @@ class Crew(BaseModel):
)
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
# Filter out empty outputs and get the last valid one as the main output
valid_outputs = [t for t in task_outputs if t.raw]
if not valid_outputs:
raise ValueError("No valid task outputs available to create crew output.")
final_task_output = valid_outputs[-1]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
@@ -922,7 +943,7 @@ class Crew(BaseModel):
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
tasks_output=task_outputs,
token_usage=token_usage,
)

View File

@@ -1,28 +1,138 @@
from pathlib import Path
from typing import Dict, List
from typing import Dict, Iterator, List, Optional, Union
from urllib.parse import urlparse
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
from pydantic import Field, field_validator
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
class ExcelKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
pd = self._import_dependencies()
# override content to be a dict of file paths to sheet names to csv content
_logger: Logger = Logger(verbose=True)
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default=None,
description="[Deprecated] The path to the file. Use file_paths instead.",
)
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default_factory=list, description="The path to the file"
)
chunks: List[str] = Field(default_factory=list)
content: Dict[Path, Dict[str, str]] = Field(default_factory=dict)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
raise ValueError("Either file_path or file_paths must be provided")
return v
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
if hasattr(self, "file_path") and self.file_path is not None:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
if self.file_paths is None:
raise ValueError("Your source must be provided with a file_paths: []")
# Convert single path to list
path_list: List[Union[Path, str]] = (
[self.file_paths]
if isinstance(self.file_paths, (str, Path))
else list(self.file_paths)
if isinstance(self.file_paths, list)
else []
)
if not path_list:
raise ValueError(
"file_path/file_paths must be a Path, str, or a list of these types"
)
return [self.convert_to_path(path) for path in path_list]
def validate_content(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
self._logger.log(
"error",
f"Path is not a file: {path}",
color="red",
)
def model_post_init(self, _) -> None:
if self.file_path:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
self.safe_file_paths = self._process_file_paths()
self.validate_content()
self.content = self._load_content()
def _load_content(self) -> Dict[Path, Dict[str, str]]:
"""Load and preprocess Excel file content from multiple sheets.
Each sheet's content is converted to CSV format and stored.
Returns:
Dict[Path, Dict[str, str]]: A mapping of file paths to their respective sheet contents.
Raises:
ImportError: If required dependencies are missing.
FileNotFoundError: If the specified Excel file cannot be opened.
"""
pd = self._import_dependencies()
content_dict = {}
for file_path in self.safe_file_paths:
file_path = self.convert_to_path(file_path)
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
content_dict[file_path] = content
with pd.ExcelFile(file_path) as xl:
sheet_dict = {
str(sheet_name): str(
pd.read_excel(xl, sheet_name).to_csv(index=False)
)
for sheet_name in xl.sheet_names
}
content_dict[file_path] = sheet_dict
return content_dict
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
@@ -38,10 +148,14 @@ class ExcelKnowledgeSource(BaseFileKnowledgeSource):
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
# Updated to account for .xlsx workbooks with multiple tabs/sheets
content_str = ""
for value in self.content.values():
if isinstance(value, dict):
for sheet_value in value.values():
content_str += str(sheet_value) + "\n"
else:
content_str += str(value) + "\n"
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)

View File

@@ -164,6 +164,7 @@ class LLM:
self.context_window_size = 0
self.reasoning_effort = reasoning_effort
self.additional_params = kwargs
self.is_anthropic = self._is_anthropic_model(model)
litellm.drop_params = True
@@ -178,42 +179,62 @@ class LLM:
self.set_callbacks(callbacks)
self.set_env_callbacks()
def _is_anthropic_model(self, model: str) -> bool:
"""Determine if the model is from Anthropic provider.
Args:
model: The model identifier string.
Returns:
bool: True if the model is from Anthropic, False otherwise.
"""
ANTHROPIC_PREFIXES = ('anthropic/', 'claude-', 'claude/')
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level llm call method that:
1) Accepts either a string or a list of messages
2) Converts string input to the required message format
3) Calls litellm.completion
4) Handles function/tool calls if any
5) Returns the final text response or tool result
Parameters:
- messages (Union[str, List[Dict[str, str]]]): The input messages for the LLM.
- If a string is provided, it will be converted into a message list with a single entry.
- If a list of dictionaries is provided, each dictionary should have 'role' and 'content' keys.
- tools (Optional[List[dict]]): A list of tool schemas for function calling.
- callbacks (Optional[List[Any]]): A list of callback functions to be executed.
- available_functions (Optional[Dict[str, Any]]): A dictionary mapping function names to actual Python functions.
) -> Union[str, Any]:
"""High-level LLM call method.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
- str: The final text response from the LLM or the result of a tool function call.
Union[str, Any]: Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
TypeError: If messages format is invalid
ValueError: If response format is not supported
LLMContextLengthExceededException: If input exceeds model's context limit
Examples:
---------
# Example 1: Using a string input
response = llm.call("Return the name of a random city in the world.")
print(response)
# Example 2: Using a list of messages
messages = [{"role": "user", "content": "What is the capital of France?"}]
response = llm.call(messages)
print(response)
# Example 1: Simple string input
>>> response = llm.call("Return the name of a random city.")
>>> print(response)
"Paris"
# Example 2: Message list with system and user messages
>>> messages = [
... {"role": "system", "content": "You are a geography expert"},
... {"role": "user", "content": "What is France's capital?"}
... ]
>>> response = llm.call(messages)
>>> print(response)
"The capital of France is Paris."
"""
# Validate parameters before proceeding with the call.
self._validate_call_params()
@@ -233,10 +254,13 @@ class LLM:
self.set_callbacks(callbacks)
try:
# --- 1) Prepare the parameters for the completion call
# --- 1) Format messages according to provider requirements
formatted_messages = self._format_messages_for_provider(messages)
# --- 2) Prepare the parameters for the completion call
params = {
"model": self.model,
"messages": messages,
"messages": formatted_messages,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
@@ -324,6 +348,38 @@ class LLM:
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _format_messages_for_provider(self, messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Format messages according to provider requirements.
Args:
messages: List of message dictionaries with 'role' and 'content' keys.
Can be empty or None.
Returns:
List of formatted messages according to provider requirements.
For Anthropic models, ensures first message has 'user' role.
Raises:
TypeError: If messages is None or contains invalid message format.
"""
if messages is None:
raise TypeError("Messages cannot be None")
# Validate message format first
for msg in messages:
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise TypeError("Invalid message format. Each message must be a dict with 'role' and 'content' keys")
if not self.is_anthropic:
return messages
# Anthropic requires messages to start with 'user' role
if not messages or messages[0]["role"] == "system":
# If first message is system or empty, add a placeholder user message
return [{"role": "user", "content": "."}, *messages]
return messages
def _get_custom_llm_provider(self) -> str:
"""
Derives the custom_llm_provider from the model string.

View File

@@ -1,4 +1,4 @@
from typing import Any, Optional
from typing import Optional
from pydantic import PrivateAttr

View File

@@ -1,15 +1,15 @@
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional
from pydantic import BaseModel
from crewai.memory.storage.rag_storage import RAGStorage
class Memory(BaseModel):
"""
Base class for memory, now supporting agent tags and generic metadata.
"""
embedder_config: Optional[Dict[str, Any]] = None
storage: Any
def __init__(self, storage: Any, **data: Any):

View File

@@ -13,7 +13,7 @@ class BaseRAGStorage(ABC):
self,
type: str,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
embedder_config: Optional[Dict[str, Any]] = None,
crew: Any = None,
):
self.type = type

View File

@@ -674,19 +674,32 @@ class Task(BaseModel):
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _save_file(self, result: Any) -> None:
def _save_file(self, result: Union[Dict, str, Any]) -> None:
"""Save task output to a file.
Note:
For cross-platform file writing, especially on Windows, consider using FileWriterTool
from the crewai_tools package:
pip install 'crewai[tools]'
from crewai_tools import FileWriterTool
Args:
result: The result to save to the file. Can be a dict or any stringifiable object.
Raises:
ValueError: If output_file is not set
RuntimeError: If there is an error writing to the file
RuntimeError: If there is an error writing to the file. For cross-platform
compatibility, especially on Windows, use FileWriterTool from crewai_tools
package.
"""
if self.output_file is None:
raise ValueError("output_file is not set.")
FILEWRITER_RECOMMENDATION = (
"For cross-platform file writing, especially on Windows, "
"use FileWriterTool from crewai_tools package."
)
try:
resolved_path = Path(self.output_file).expanduser().resolve()
directory = resolved_path.parent
@@ -702,7 +715,12 @@ class Task(BaseModel):
else:
file.write(str(result))
except (OSError, IOError) as e:
raise RuntimeError(f"Failed to save output file: {e}")
raise RuntimeError(
"\n".join([
f"Failed to save output file: {e}",
FILEWRITER_RECOMMENDATION
])
)
return None
def __repr__(self):

View File

@@ -1,5 +1,5 @@
import os
from typing import Any, Dict, cast
from typing import Any, Dict, Optional, cast
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api.types import validate_embedding_function
@@ -18,11 +18,12 @@ class EmbeddingConfigurator:
"bedrock": self._configure_bedrock,
"huggingface": self._configure_huggingface,
"watson": self._configure_watson,
"custom": self._configure_custom,
}
def configure_embedder(
self,
embedder_config: Dict[str, Any] | None = None,
embedder_config: Optional[Dict[str, Any]] = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
if embedder_config is None:
@@ -30,20 +31,19 @@ class EmbeddingConfigurator:
provider = embedder_config.get("provider")
config = embedder_config.get("config", {})
model_name = config.get("model")
if isinstance(provider, EmbeddingFunction):
try:
validate_embedding_function(provider)
return provider
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
model_name = config.get("model") if provider != "custom" else None
if provider not in self.embedding_functions:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
embedding_function = self.embedding_functions[provider]
return (
embedding_function(config)
if provider == "custom"
else embedding_function(config, model_name)
)
@staticmethod
def _create_default_embedding_function():
@@ -64,6 +64,13 @@ class EmbeddingConfigurator:
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
api_base=config.get("api_base", None),
api_type=config.get("api_type", None),
api_version=config.get("api_version", None),
default_headers=config.get("default_headers", None),
dimensions=config.get("dimensions", None),
deployment_id=config.get("deployment_id", None),
organization_id=config.get("organization_id", None),
)
@staticmethod
@@ -78,6 +85,10 @@ class EmbeddingConfigurator:
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
default_headers=config.get("default_headers"),
dimensions=config.get("dimensions"),
deployment_id=config.get("deployment_id"),
organization_id=config.get("organization_id"),
)
@staticmethod
@@ -100,6 +111,8 @@ class EmbeddingConfigurator:
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
project_id=config.get("project_id"),
region=config.get("region"),
)
@staticmethod
@@ -111,6 +124,7 @@ class EmbeddingConfigurator:
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
task_type=config.get("task_type"),
)
@staticmethod
@@ -195,3 +209,28 @@ class EmbeddingConfigurator:
raise e
return WatsonEmbeddingFunction()
@staticmethod
def _configure_custom(config):
custom_embedder = config.get("embedder")
if isinstance(custom_embedder, EmbeddingFunction):
try:
validate_embedding_function(custom_embedder)
return custom_embedder
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
elif callable(custom_embedder):
try:
instance = custom_embedder()
if isinstance(instance, EmbeddingFunction):
validate_embedding_function(instance)
return instance
raise ValueError(
"Custom embedder does not create an EmbeddingFunction instance"
)
except Exception as e:
raise ValueError(f"Error instantiating custom embedder: {str(e)}")
else:
raise ValueError(
"Custom embedder must be an instance of `EmbeddingFunction` or a callable that creates one"
)

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 910c25fe3c8ca373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:16 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_a5651cefb4c7ae9483499a8e538f579d
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 910c25fa2a76a373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:15 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_3ad40f35d4ad6d42f9bbb7fd8ace9a68
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 910c26028e7ba373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:17 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_6f0f7d9e36bbb3ffea4d672b30b700b9
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 910c25f5e85ba373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:15 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_49a0c35d5999eb9f6d71fcea9fa3c68f
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 910c25f1be28a373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:14 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_573ccd417b499cf38012dec20261964d
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 910c25e84886a373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:13 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_e48016407be31edd1f9ee2e1bb4d1b30
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-RAY:
- 910c25e11d1da373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:11 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
path=/; expires=Wed, 12-Feb-25 11:43:11 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_e07e0bddd718b7d5978b6bd9f138fa40
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: Researcher\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: Researcher\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolute everything
you know, don''t reference things but instead explain them.\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [Delegate work
to coworker, Ask question to coworker], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Test task
using test_tool\n\nThis is the expected criteria for your final answer: Test
output\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '2915'
content-type:
- application/json
cookie:
- __cf_bm=0nI_3cs9LKHlz0_cVifl9lVXZWfNQrzhLRZzoaDCVJs-1739358791-1.0.1.1-GJZzVGs1fHQe9gucVHUCoDlI3mwg3JyXCBIIChx_OsB0jgqbzt1s2et96vUgpdjONt9C2tB8OQ6fk70k3vhh0w;
_cfuvid=TvEPcNq35qaIgBFFzOP7g7NQf632eeMrvRDJyr7UTro-1739358791985-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"error\": {\n \"message\": \"Incorrect API key provided:
sk-fake-**********2345. You can find your API key at https://platform.openai.com/account/api-keys.\",\n
\ \"type\": \"invalid_request_error\",\n \"param\": null,\n \"code\":
\"invalid_api_key\"\n }\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 910c25ec6a9fa373-SEA
Connection:
- keep-alive
Content-Length:
- '272'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 12 Feb 2025 11:13:13 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
vary:
- Origin
x-request-id:
- req_f9215c0efc514e3dfea73d6c5f49eb4e
http_version: HTTP/1.1
status_code: 401
version: 1

View File

@@ -8,6 +8,11 @@ from dotenv import load_dotenv
load_result = load_dotenv(override=True)
@pytest.fixture(autouse=True)
def mock_openai_key(monkeypatch):
"""Mock OpenAI API key for VCR cassettes."""
monkeypatch.setenv("OPENAI_API_KEY", "sk-fake-test-key-12345")
@pytest.fixture(autouse=True)
def setup_test_environment():
"""Set up test environment with a temporary directory for SQLite storage."""

View File

@@ -3,6 +3,7 @@
import hashlib
import json
from concurrent.futures import Future
from typing import Any
from unittest import mock
from unittest.mock import MagicMock, patch
@@ -14,7 +15,9 @@ from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import (
StringKnowledgeSource,
)
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
@@ -22,10 +25,13 @@ from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.tools.base_tool import BaseTool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.task_output_storage_handler import (
TaskOutputStorageHandler,
)
ceo = Agent(
role="CEO",
@@ -49,6 +55,41 @@ writer = Agent(
)
def test_crew_with_only_conditional_tasks_raises_error():
"""Test that creating a crew with only conditional tasks raises an error."""
def condition_func(task_output: TaskOutput) -> bool:
return True
conditional1 = ConditionalTask(
description="Conditional task 1",
expected_output="Output 1",
agent=researcher,
condition=condition_func,
)
conditional2 = ConditionalTask(
description="Conditional task 2",
expected_output="Output 2",
agent=researcher,
condition=condition_func,
)
conditional3 = ConditionalTask(
description="Conditional task 3",
expected_output="Output 3",
agent=researcher,
condition=condition_func,
)
with pytest.raises(
pydantic_core._pydantic_core.ValidationError,
match="Crew must include at least one non-conditional task",
):
Crew(
agents=[researcher],
tasks=[conditional1, conditional2, conditional3],
)
def test_crew_config_conditional_requirement():
with pytest.raises(ValueError):
Crew(process=Process.sequential)
@@ -280,6 +321,69 @@ def test_sync_task_execution():
assert mock_execute_sync.call_count == len(tasks)
@pytest.mark.vcr(
filter_headers=["authorization"],
record_mode="once",
decode_compressed_response=True,
ignore_localhost=True,
match_on=["method", "scheme", "host", "port", "path"]
)
@pytest.mark.parametrize(
"tool_output,expected",
[
("test result```", "test result"),
("test result`", "test result"),
("test result``````", "test result"),
("test result", "test result"),
("test ```result```", "test ```result"), # Only strip trailing backticks
(None, "None"), # Test non-string input gets converted to string
(" ", " "), # Test whitespace string
(
"malformed`result```test",
"malformed`result```test",
), # Test non-trailing backticks
],
)
def test_hierarchical_tool_output_formatting(tool_output, expected):
"""Test that tool outputs in hierarchical mode don't have extra backticks.
This test verifies that the tool output cleaning functionality correctly handles
various scenarios of backtick formatting, ensuring only trailing backticks are
removed while preserving any inline markdown formatting.
"""
class TestTool(BaseTool):
name: str = "test_tool"
description: str = "A test tool"
def _run(self, *args: Any, **kwargs: Any) -> str:
return tool_output
task = Task(
description="Test task using test_tool",
expected_output="Test output",
)
crew = Crew(
agents=[researcher],
process=Process.hierarchical,
manager_llm="gpt-4o",
tasks=[task],
tools=[TestTool()],
)
with patch.object(
Task,
"execute_sync",
return_value=TaskOutput(
description="Test task", raw=expected, agent="researcher"
),
) as mock_execute_sync:
result = crew.kickoff()
assert mock_execute_sync.called
assert result.raw == expected
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_process():
task = Task(
@@ -1919,6 +2023,7 @@ def test_task_callback_on_crew():
def test_task_callback_both_on_task_and_crew():
from unittest.mock import MagicMock, patch
mock_callback_on_task = MagicMock()
mock_callback_on_crew = MagicMock()
@@ -2060,6 +2165,210 @@ def test_tools_with_custom_caching():
assert result.raw == "3"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_task_uses_last_output():
"""Test that conditional tasks use the last task output for condition evaluation."""
task1 = Task(
description="First task",
expected_output="First output",
agent=researcher,
)
def condition_fails(task_output: TaskOutput) -> bool:
# This condition will never be met
return "never matches" in task_output.raw.lower()
def condition_succeeds(task_output: TaskOutput) -> bool:
# This condition will match first task's output
return "first success" in task_output.raw.lower()
conditional_task1 = ConditionalTask(
description="Second task - conditional that fails condition",
expected_output="Second output",
agent=researcher,
condition=condition_fails,
)
conditional_task2 = ConditionalTask(
description="Third task - conditional that succeeds using first task output",
expected_output="Third output",
agent=writer,
condition=condition_succeeds,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, conditional_task1, conditional_task2],
)
# Mock outputs for tasks
mock_first = TaskOutput(
description="First task output",
raw="First success output", # Will be used by third task's condition
agent=researcher.role,
)
mock_third = TaskOutput(
description="Third task output",
raw="Third task executed", # Output when condition succeeds using first task output
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_first, mock_third]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify outputs collection:
# First executed task output, followed by an automatically generated (skipped) output, then the conditional execution
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "First success output"
) # First task succeeded
assert (
result.tasks_output[1].raw == ""
) # Second task skipped (condition failed)
assert (
result.tasks_output[2].raw == "Third task executed"
) # Third task used first task's output
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_tasks_result_collection():
"""Test that task outputs are properly collected based on execution status."""
task1 = Task(
description="Normal task that always executes",
expected_output="First output",
agent=researcher,
)
def condition_never_met(task_output: TaskOutput) -> bool:
return "never matches" in task_output.raw.lower()
def condition_always_met(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
task2 = ConditionalTask(
description="Conditional task that never executes",
expected_output="Second output",
agent=researcher,
condition=condition_never_met,
)
task3 = ConditionalTask(
description="Conditional task that always executes",
expected_output="Third output",
agent=writer,
condition=condition_always_met,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2, task3],
)
# Mock outputs for different execution paths
mock_success = TaskOutput(
description="Success output",
raw="Success output", # Triggers third task's condition
agent=researcher.role,
)
mock_conditional = TaskOutput(
description="Conditional output",
raw="Conditional task executed",
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_success, mock_conditional]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify task output collection:
# There should be three outputs: normal task, skipped conditional task (empty output),
# and the conditional task that executed.
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
# Verify task output collection
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multiple_conditional_tasks():
"""Test that having multiple conditional tasks in sequence works correctly."""
task1 = Task(
description="Initial research task",
expected_output="Research output",
agent=researcher,
)
def condition1(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
def condition2(task_output: TaskOutput) -> bool:
return "proceed" in task_output.raw.lower()
task2 = ConditionalTask(
description="First conditional task",
expected_output="Conditional output 1",
agent=writer,
condition=condition1,
)
task3 = ConditionalTask(
description="Second conditional task",
expected_output="Conditional output 2",
agent=writer,
condition=condition2,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2, task3],
)
# Mock different task outputs to test conditional logic
mock_success = TaskOutput(
description="Mock success",
raw="Success and proceed output",
agent=researcher.role,
)
# Set up mocks for task execution
with patch.object(Task, "execute_sync", return_value=mock_success) as mock_execute:
result = crew.kickoff()
# Verify all tasks were executed (no IndexError)
assert mock_execute.call_count == 3
assert len(result.tasks_output) == 3
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch

View File

@@ -286,6 +286,79 @@ def test_o3_mini_reasoning_effort_medium():
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.fixture
def anthropic_llm():
"""Fixture providing an Anthropic LLM instance."""
return LLM(model="anthropic/claude-3-sonnet")
@pytest.fixture
def system_message():
"""Fixture providing a system message."""
return {"role": "system", "content": "test"}
@pytest.fixture
def user_message():
"""Fixture providing a user message."""
return {"role": "user", "content": "test"}
def test_anthropic_message_formatting_edge_cases(anthropic_llm):
"""Test edge cases for Anthropic message formatting."""
# Test None messages
with pytest.raises(TypeError, match="Messages cannot be None"):
anthropic_llm._format_messages_for_provider(None)
# Test empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test invalid message format
with pytest.raises(TypeError, match="Invalid message format"):
anthropic_llm._format_messages_for_provider([{"invalid": "message"}])
def test_anthropic_model_detection():
"""Test Anthropic model detection with various formats."""
models = [
("anthropic/claude-3", True),
("claude-instant", True),
("claude/v1", True),
("gpt-4", False),
("", False),
("anthropomorphic", False), # Should not match partial words
]
for model, expected in models:
llm = LLM(model=model)
assert llm.is_anthropic == expected, f"Failed for model: {model}"
def test_anthropic_message_formatting(anthropic_llm, system_message, user_message):
"""Test Anthropic message formatting with fixtures."""
# Test when first message is system
formatted = anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 2
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
assert formatted[1] == system_message
# Test when first message is already user
formatted = anthropic_llm._format_messages_for_provider([user_message])
assert len(formatted) == 1
assert formatted[0] == user_message
# Test with empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test with non-Anthropic model (should not modify messages)
non_anthropic_llm = LLM(model="gpt-4")
formatted = non_anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 1
assert formatted[0] == system_message
def test_deepseek_r1_with_open_router():
if not os.getenv("OPEN_ROUTER_API_KEY"):
pytest.skip("OPEN_ROUTER_API_KEY not set; skipping test.")