Compare commits

..

1 Commits

Author SHA1 Message Date
Brandon Hancock
940fb30e0e quick fix for mike 2025-01-27 17:37:42 -05:00
26 changed files with 745 additions and 640 deletions

View File

@@ -43,7 +43,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
@@ -152,7 +152,7 @@ agent = Agent(
use_system_prompt=True, # Default: True
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder=None, # Optional: Custom embedder configuration
embedder_config=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template

View File

@@ -324,13 +324,6 @@ agent = Agent(
verbose=True,
allow_delegation=False,
llm=gemini_llm,
embedder={
"provider": "google",
"config": {
"model": "models/text-embedding-004",
"api_key": GEMINI_API_KEY,
}
}
)
task = Task(

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.100.0"
version = "0.98.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -11,7 +11,7 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.59.8",
"litellm==1.57.4",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.100.0"
__version__ = "0.98.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -61,7 +61,6 @@ class Agent(BaseAgent):
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
embedder: Embedder configuration for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -123,10 +122,17 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder: Optional[Dict[str, Any]] = Field(
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
@@ -157,11 +163,10 @@ class Agent(BaseAgent):
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder=self.embedder,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
storage=self.knowledge_storage or None,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
@@ -220,8 +225,8 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self.knowledge:
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets

View File

@@ -18,8 +18,6 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities import I18N, Logger, RPMController
@@ -50,8 +48,6 @@ class BaseAgent(ABC, BaseModel):
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
knowledge_sources: Knowledge sources for the agent.
knowledge_storage: Custom knowledge storage for the agent.
Methods:
@@ -134,17 +130,6 @@ class BaseAgent(ABC, BaseModel):
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
knowledge: Optional[Knowledge] = Field(
default=None, description="Knowledge for the agent."
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
knowledge_storage: Optional[Any] = Field(
default=None,
description="Custom knowledge storage for the agent.",
)
@model_validator(mode="before")
@classmethod
@@ -271,44 +256,13 @@ class BaseAgent(ABC, BaseModel):
"tools_handler",
"cache_handler",
"llm",
"knowledge_sources",
"knowledge_storage",
"knowledge",
}
# Copy llm
# Copy llm and clear callbacks
existing_llm = shallow_copy(self.llm)
copied_knowledge = shallow_copy(self.knowledge)
copied_knowledge_storage = shallow_copy(self.knowledge_storage)
# Properly copy knowledge sources if they exist
existing_knowledge_sources = None
if self.knowledge_sources:
# Create a shared storage instance for all knowledge sources
shared_storage = (
self.knowledge_sources[0].storage if self.knowledge_sources else None
)
existing_knowledge_sources = []
for source in self.knowledge_sources:
copied_source = (
source.model_copy()
if hasattr(source, "model_copy")
else shallow_copy(source)
)
# Ensure all copied sources use the same storage instance
copied_source.storage = shared_storage
existing_knowledge_sources.append(copied_source)
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(
**copied_data,
llm=existing_llm,
tools=self.tools,
knowledge_sources=existing_knowledge_sources,
knowledge=copied_knowledge,
knowledge_storage=copied_knowledge_storage,
)
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
return copied_agent

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.0,<1.0.0"
"crewai[tools]>=0.98.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.0,<1.0.0",
"crewai[tools]>=0.98.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.100.0"
"crewai[tools]>=0.98.0"
]
[tool.crewai]

View File

@@ -4,7 +4,6 @@ import re
import uuid
import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
@@ -211,9 +210,8 @@ class Crew(BaseModel):
default=None,
description="LLM used to handle chatting with the crew.",
)
knowledge: Optional[Knowledge] = Field(
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
description="Knowledge for the crew.",
)
@field_validator("id", mode="before")
@@ -291,7 +289,7 @@ class Crew(BaseModel):
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder,
collection_name="crew",
@@ -993,8 +991,8 @@ class Crew(BaseModel):
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self.knowledge:
return self.knowledge.query(query)
if self._knowledge:
return self._knowledge.query(query)
return None
def fetch_inputs(self) -> Set[str]:
@@ -1038,8 +1036,6 @@ class Crew(BaseModel):
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
"knowledge",
}
cloned_agents = [agent.copy() for agent in self.agents]
@@ -1047,9 +1043,6 @@ class Crew(BaseModel):
task_mapping = {}
cloned_tasks = []
existing_knowledge_sources = shallow_copy(self.knowledge_sources)
existing_knowledge = shallow_copy(self.knowledge)
for task in self.tasks:
cloned_task = task.copy(cloned_agents, task_mapping)
cloned_tasks.append(cloned_task)
@@ -1069,13 +1062,7 @@ class Crew(BaseModel):
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
copied_crew = Crew(
**copied_data,
agents=cloned_agents,
tasks=cloned_tasks,
knowledge_sources=existing_knowledge_sources,
knowledge=existing_knowledge,
)
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
return copied_crew

View File

@@ -15,20 +15,20 @@ class Knowledge(BaseModel):
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder: Optional[Dict[str, Any]] = None
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder: Optional[Dict[str, Any]] = None
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
def __init__(
self,
collection_name: str,
sources: List[BaseKnowledgeSource],
embedder: Optional[Dict[str, Any]] = None,
embedder_config: Optional[Dict[str, Any]] = None,
storage: Optional[KnowledgeStorage] = None,
**data,
):
@@ -37,23 +37,25 @@ class Knowledge(BaseModel):
self.storage = storage
else:
self.storage = KnowledgeStorage(
embedder=embedder, collection_name=collection_name
embedder_config=embedder_config, collection_name=collection_name
)
self.sources = sources
self.storage.initialize_knowledge_storage()
self._add_sources()
for source in sources:
source.storage = self.storage
source.add()
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,
@@ -61,9 +63,6 @@ class Knowledge(BaseModel):
return results
def _add_sources(self):
try:
for source in self.sources:
source.storage = self.storage
source.add()
except Exception as e:
raise e
for source in self.sources:
source.storage = self.storage
source.add()

View File

@@ -29,13 +29,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
if v is None and info.data.get("file_path" if info.field_name == "file_paths" else "file_paths") is None:
raise ValueError("Either file_path or file_paths must be provided")
return v

View File

@@ -48,11 +48,11 @@ class KnowledgeStorage(BaseKnowledgeStorage):
def __init__(
self,
embedder: Optional[Dict[str, Any]] = None,
embedder_config: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.collection_name = collection_name
self._set_embedder_config(embedder)
self._set_embedder_config(embedder_config)
def search(
self,
@@ -99,7 +99,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder
name=collection_name, embedding_function=self.embedder_config
)
else:
raise Exception("Vector Database Client not initialized")
@@ -187,15 +187,17 @@ class KnowledgeStorage(BaseKnowledgeStorage):
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
def _set_embedder_config(
self, embedder_config: Optional[Dict[str, Any]] = None
) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder = (
EmbeddingConfigurator().configure_embedder(embedder)
if embedder
self.embedder_config = (
EmbeddingConfigurator().configure_embedder(embedder_config)
if embedder_config
else self._create_default_embedding_function()
)

View File

@@ -43,6 +43,7 @@ class EmbeddingConfigurator:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
@staticmethod

View File

@@ -96,9 +96,9 @@ class TaskEvaluator:
final_aggregated_data = ""
for _, data in output_training_data.items():
final_aggregated_data += (
f"Initial Output:\n{data.get('initial_output', '')}\n\n"
f"Human Feedback:\n{data.get('human_feedback', '')}\n\n"
f"Improved Output:\n{data.get('improved_output', '')}\n\n"
f"Initial Output:\n{data['initial_output']}\n\n"
f"Human Feedback:\n{data['human_feedback']}\n\n"
f"Improved Output:\n{data['improved_output']}\n\n"
)
evaluation_query = (

View File

@@ -10,14 +10,13 @@ from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities import Printer, RPMController
from crewai.utilities.events import Emitter
@@ -1603,45 +1602,6 @@ def test_agent_with_knowledge_sources():
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_works_with_copy():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch(
"crewai.knowledge.source.base_knowledge_source.BaseKnowledgeSource",
autospec=True,
) as MockKnowledgeSource:
mock_knowledge_source_instance = MockKnowledgeSource.return_value
mock_knowledge_source_instance.__class__ = BaseKnowledgeSource
mock_knowledge_source_instance.sources = [string_source]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledgeStorage:
mock_knowledge_storage = MockKnowledgeStorage.return_value
agent.knowledge_storage = mock_knowledge_storage
agent_copy = agent.copy()
assert agent_copy.role == agent.role
assert agent_copy.goal == agent.goal
assert agent_copy.backstory == agent.backstory
assert agent_copy.knowledge_sources is not None
assert len(agent_copy.knowledge_sources) == 1
assert isinstance(agent_copy.knowledge_sources[0], StringKnowledgeSource)
assert agent_copy.knowledge_sources[0].content == content
assert isinstance(agent_copy.llm, LLM)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_litellm_auth_error_handling():
"""Test that LiteLLM authentication errors are handled correctly and not retried."""

View File

@@ -0,0 +1,117 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: This is a test task, and the context or question from the coworker is
not specified. Therefore, my best effort would be to affirm my readiness to
answer accurately and in detail any question about Futel Football Club based
on the context described. If provided with specific information or questions,
I will ensure to respond comprehensively as required by my job directives.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78bf7bd6cc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:40 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2263'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7c1a31da73cd103e9f410f908e59187f
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
a specific question regarding Futel Football Club, your request appears to involve
ensuring accuracy and detail in responses. For a proper answer about Futel,
I'd be ready to provide details about the club's history, management, players,
match schedules, and recent performance statistics. Remember to ask specific
questions to receive a targeted response. If this were a real context where
information was shared, I would respond precisely to what's been asked regarding
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c1d0ecdc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:47 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3097'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_179e1d56e2b17303e40480baffbc7b08
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Your best answer to your coworker asking you this, accounting for the
context shared. You MUST return the actual complete content as the final answer,
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c164ad2c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:43 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '899'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_9f5226208edb90a27987aaf7e0ca03d3
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As this is a test task, please note that Futel Football Club is fictional
and any specific details about it would not be available. However, if you have
specific questions or need information about a particular aspect of Futel or
any general football club inquiry, feel free to ask, and I'll do my best to
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78be5eebfc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:37 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2730'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_014478ba748f860d10ac250ca0ba824a
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As an official Futel Football Club infopoint, my responsibility is to
provide detailed and accurate information about the club. This includes answering
questions regarding team statistics, player performances, upcoming fixtures,
ticketing and fan zone details, club history, and community initiatives. Our
focus is to ensure that fans and stakeholders have access to the latest and
most precise information about the club's on and off-pitch activities. If there's
anything specific you need to know, just let me know, and I'll be more than
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c066f37c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:42 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2459'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a146dd27f040f39a576750970cca0f52
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -14,7 +14,6 @@ from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
@@ -556,12 +555,12 @@ def test_crew_with_delegating_agents_should_not_override_task_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(isinstance(tool, TestTool) for tool in tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -620,12 +619,12 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(isinstance(tool, TestTool) for tool in new_ceo.tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in new_ceo.tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -749,17 +748,17 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
used_tools = kwargs["tools"]
# Confirm AnotherTestTool is present but TestTool is not
assert any(isinstance(tool, AnotherTestTool) for tool in used_tools), (
"AnotherTestTool should be present"
)
assert not any(isinstance(tool, TestTool) for tool in used_tools), (
"TestTool should not be present among used tools"
)
assert any(
isinstance(tool, AnotherTestTool) for tool in used_tools
), "AnotherTestTool should be present"
assert not any(
isinstance(tool, TestTool) for tool in used_tools
), "TestTool should not be present among used tools"
# Confirm delegation tool(s) are present
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
# Finally, make sure the agent's original tools remain unchanged
assert len(researcher_with_delegation.tools) == 1
@@ -1467,6 +1466,7 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from crewai import LLM
from crewai.tools import tool
@@ -1560,9 +1560,9 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
# Verify that exactly one tool was used and it was a CodeInterpreterTool
assert len(used_tools) == 1, "Should have exactly one tool"
assert isinstance(used_tools[0], CodeInterpreterTool), (
"Tool should be CodeInterpreterTool"
)
assert isinstance(
used_tools[0], CodeInterpreterTool
), "Tool should be CodeInterpreterTool"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -3107,9 +3107,9 @@ def test_fetch_inputs():
expected_placeholders = {"role_detail", "topic", "field"}
actual_placeholders = crew.fetch_inputs()
assert actual_placeholders == expected_placeholders, (
f"Expected {expected_placeholders}, but got {actual_placeholders}"
)
assert (
actual_placeholders == expected_placeholders
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
def test_task_tools_preserve_code_execution_tools():
@@ -3182,20 +3182,20 @@ def test_task_tools_preserve_code_execution_tools():
used_tools = kwargs["tools"]
# Verify all expected tools are present
assert any(isinstance(tool, TestTool) for tool in used_tools), (
"Task's TestTool should be present"
)
assert any(isinstance(tool, CodeInterpreterTool) for tool in used_tools), (
"CodeInterpreterTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
assert any(
isinstance(tool, TestTool) for tool in used_tools
), "Task's TestTool should be present"
assert any(
isinstance(tool, CodeInterpreterTool) for tool in used_tools
), "CodeInterpreterTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
# Verify the total number of tools (TestTool + CodeInterpreter + 2 delegation tools)
assert len(used_tools) == 4, (
"Should have TestTool, CodeInterpreter, and 2 delegation tools"
)
assert (
len(used_tools) == 4
), "Should have TestTool, CodeInterpreter, and 2 delegation tools"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -3239,9 +3239,9 @@ def test_multimodal_flag_adds_multimodal_tools():
used_tools = kwargs["tools"]
# Check that the multimodal tool was added
assert any(isinstance(tool, AddImageTool) for tool in used_tools), (
"AddImageTool should be present when agent is multimodal"
)
assert any(
isinstance(tool, AddImageTool) for tool in used_tools
), "AddImageTool should be present when agent is multimodal"
# Verify we have exactly one tool (just the AddImageTool)
assert len(used_tools) == 1, "Should only have the AddImageTool"
@@ -3467,9 +3467,9 @@ def test_crew_guardrail_feedback_in_context():
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
# Verify that the second execution included the guardrail feedback
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], (
"Guardrail feedback should be included in retry context"
)
assert (
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
), "Guardrail feedback should be included in retry context"
# Verify final output meets guardrail requirements
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
@@ -3494,6 +3494,7 @@ def test_before_kickoff_callback():
@before_kickoff
def modify_inputs(self, inputs):
self.inputs_modified = True
inputs["modified"] = True
return inputs
@@ -3595,21 +3596,3 @@ def test_before_kickoff_without_inputs():
# Verify that the inputs were initialized and modified inside the before_kickoff method
assert test_crew_instance.received_inputs is not None
assert test_crew_instance.received_inputs.get("modified") is True
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_with_knowledge_sources_works_with_copy():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
crew = Crew(
agents=[researcher, writer],
tasks=[Task(description="test", expected_output="test", agent=researcher)],
knowledge_sources=[string_source],
)
crew_copy = crew.copy()
assert crew_copy.knowledge_sources == crew.knowledge_sources
assert len(crew_copy.agents) == len(crew.agents)
assert len(crew_copy.tasks) == len(crew.tasks)

View File

@@ -0,0 +1,51 @@
import pytest
from crewai import Agent
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
class InternalAgentTool(BaseAgentTool):
"""Concrete implementation of BaseAgentTool for testing."""
def _run(self, *args, **kwargs):
"""Implement required _run method."""
return "Test response"
@pytest.mark.parametrize(
"role_name,should_match",
[
("Futel Official Infopoint", True), # exact match
(' "Futel Official Infopoint" ', True), # extra quotes and spaces
("Futel Official Infopoint\n", True), # trailing newline
('"Futel Official Infopoint"', True), # embedded quotes
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_tool_role_matching(role_name, should_match):
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
# Create test agent
test_agent = Agent(
role="Futel Official Infopoint",
goal="Answer questions about Futel",
backstory="Futel Football Club info",
allow_delegation=False,
)
# Create test agent tool
agent_tool = InternalAgentTool(
name="test_tool", description="Test tool", agents=[test_agent]
)
# Test role matching
result = agent_tool._execute(agent_name=role_name, task="Test task", context=None)
if should_match:
assert (
"coworker mentioned not found" not in result.lower()
), f"Should find agent with role name: {role_name}"
else:
assert (
"coworker mentioned not found" in result.lower()
), f"Should not find agent with role name: {role_name}"

10
uv.lock generated
View File

@@ -649,7 +649,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.100.0"
version = "0.98.0"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },
@@ -740,7 +740,7 @@ requires-dist = [
{ name = "json-repair", specifier = ">=0.25.2" },
{ name = "json5", specifier = ">=0.10.0" },
{ name = "jsonref", specifier = ">=1.1.0" },
{ name = "litellm", specifier = "==1.59.8" },
{ name = "litellm", specifier = "==1.57.4" },
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
{ name = "openai", specifier = ">=1.13.3" },
{ name = "openpyxl", specifier = ">=3.1.5" },
@@ -2374,7 +2374,7 @@ wheels = [
[[package]]
name = "litellm"
version = "1.59.8"
version = "1.57.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aiohttp" },
@@ -2389,9 +2389,9 @@ dependencies = [
{ name = "tiktoken" },
{ name = "tokenizers" },
]
sdist = { url = "https://files.pythonhosted.org/packages/86/b0/c8ec06bd1c87a92d6d824008982b3c82b450d7bd3be850a53913f1ac4907/litellm-1.59.8.tar.gz", hash = "sha256:9d645cc4460f6a9813061f07086648c4c3d22febc8e1f21c663f2b7750d90512", size = 6428607 }
sdist = { url = "https://files.pythonhosted.org/packages/1a/9a/115bde058901b087e7fec1bed4be47baf8d5c78aff7dd2ffebcb922003ff/litellm-1.57.4.tar.gz", hash = "sha256:747a870ddee9c71f9560fc68ad02485bc1008fcad7d7a43e87867a59b8ed0669", size = 6304427 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b9/38/889da058f566ef9ea321aafa25e423249492cf2a508dfdc0e5acfcf04526/litellm-1.59.8-py3-none-any.whl", hash = "sha256:2473914bd2343485a185dfe7eedb12ee5fda32da3c9d9a8b73f6966b9b20cf39", size = 6716233 },
{ url = "https://files.pythonhosted.org/packages/9f/72/35c8509cb2a37343c213b794420405cbef2e1fdf8626ee981fcbba3d7c5c/litellm-1.57.4-py3-none-any.whl", hash = "sha256:afe48924d8a36db801018970a101622fce33d117fe9c54441c0095c491511abb", size = 6592126 },
]
[[package]]