mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-25 08:48:31 +00:00
Compare commits
3 Commits
fix/clone_
...
bugfix/add
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b1c4c2c887 | ||
|
|
932537a037 | ||
|
|
b3c2e4e26d |
@@ -43,7 +43,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
|
||||
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
|
||||
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
|
||||
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
|
||||
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
|
||||
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
|
||||
|
||||
@@ -152,7 +152,7 @@ agent = Agent(
|
||||
use_system_prompt=True, # Default: True
|
||||
tools=[SerperDevTool()], # Optional: List of tools
|
||||
knowledge_sources=None, # Optional: List of knowledge sources
|
||||
embedder=None, # Optional: Custom embedder configuration
|
||||
embedder_config=None, # Optional: Custom embedder configuration
|
||||
system_template=None, # Optional: Custom system prompt template
|
||||
prompt_template=None, # Optional: Custom prompt template
|
||||
response_template=None, # Optional: Custom response template
|
||||
|
||||
@@ -12,7 +12,7 @@ The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you
|
||||
|
||||
To use the CrewAI CLI, make sure you have CrewAI installed:
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
@@ -20,7 +20,7 @@ pip install crewai
|
||||
|
||||
The basic structure of a CrewAI CLI command is:
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
```
|
||||
|
||||
@@ -30,7 +30,7 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
|
||||
Create a new crew or flow.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
@@ -38,7 +38,7 @@ crewai create [OPTIONS] TYPE NAME
|
||||
- `NAME`: Name of the crew or flow
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai create crew my_new_crew
|
||||
crewai create flow my_new_flow
|
||||
```
|
||||
@@ -47,14 +47,14 @@ crewai create flow my_new_flow
|
||||
|
||||
Show the installed version of CrewAI.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai version [OPTIONS]
|
||||
```
|
||||
|
||||
- `--tools`: (Optional) Show the installed version of CrewAI tools
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai version
|
||||
crewai version --tools
|
||||
```
|
||||
@@ -63,7 +63,7 @@ crewai version --tools
|
||||
|
||||
Train the crew for a specified number of iterations.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai train [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -71,7 +71,7 @@ crewai train [OPTIONS]
|
||||
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai train -n 10 -f my_training_data.pkl
|
||||
```
|
||||
|
||||
@@ -79,14 +79,14 @@ crewai train -n 10 -f my_training_data.pkl
|
||||
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai replay [OPTIONS]
|
||||
```
|
||||
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
@@ -94,7 +94,7 @@ crewai replay -t task_123456
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
@@ -102,7 +102,7 @@ crewai log-tasks-outputs
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai reset-memories [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -113,7 +113,7 @@ crewai reset-memories [OPTIONS]
|
||||
- `-a, --all`: Reset ALL memories
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai reset-memories --long --short
|
||||
crewai reset-memories --all
|
||||
```
|
||||
@@ -122,7 +122,7 @@ crewai reset-memories --all
|
||||
|
||||
Test the crew and evaluate the results.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai test [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -130,7 +130,7 @@ crewai test [OPTIONS]
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
@@ -138,7 +138,7 @@ crewai test -n 5 -m gpt-3.5-turbo
|
||||
|
||||
Run the crew.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai run
|
||||
```
|
||||
<Note>
|
||||
@@ -153,7 +153,7 @@ Starting in version `0.98.0`, when you run the `crewai chat` command, you start
|
||||
|
||||
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
|
||||
|
||||
```shell Terminal
|
||||
```shell
|
||||
crewai chat
|
||||
```
|
||||
<Note>
|
||||
|
||||
@@ -324,13 +324,6 @@ agent = Agent(
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=gemini_llm,
|
||||
embedder={
|
||||
"provider": "google",
|
||||
"config": {
|
||||
"model": "models/text-embedding-004",
|
||||
"api_key": GEMINI_API_KEY,
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
task = Task(
|
||||
|
||||
@@ -243,9 +243,6 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
# llm: bedrock/amazon.titan-text-express-v1
|
||||
# llm: bedrock/meta.llama2-70b-chat-v1
|
||||
|
||||
# Amazon SageMaker Models - Enterprise-grade
|
||||
# llm: sagemaker/<my-endpoint>
|
||||
|
||||
# Mistral Models - Open source alternative
|
||||
# llm: mistral/mistral-large-latest
|
||||
# llm: mistral/mistral-medium-latest
|
||||
@@ -509,21 +506,6 @@ Learn how to get the most out of your LLM configuration:
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Amazon SageMaker">
|
||||
```python Code
|
||||
AWS_ACCESS_KEY_ID=<your-access-key>
|
||||
AWS_SECRET_ACCESS_KEY=<your-secret-key>
|
||||
AWS_DEFAULT_REGION=<your-region>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="sagemaker/<my-endpoint>"
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Mistral">
|
||||
```python Code
|
||||
|
||||
@@ -15,48 +15,10 @@ icon: wrench
|
||||
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
|
||||
</Note>
|
||||
|
||||
# Setting Up Your Environment
|
||||
|
||||
Before installing CrewAI, it's recommended to set up a virtual environment. This helps isolate your project dependencies and avoid conflicts.
|
||||
|
||||
<Steps>
|
||||
<Step title="Create a Virtual Environment">
|
||||
Choose your preferred method to create a virtual environment:
|
||||
|
||||
**Using venv (Python's built-in tool):**
|
||||
```shell Terminal
|
||||
python3 -m venv .venv
|
||||
```
|
||||
|
||||
**Using conda:**
|
||||
```shell Terminal
|
||||
conda create -n crewai-env python=3.12
|
||||
```
|
||||
</Step>
|
||||
|
||||
<Step title="Activate the Virtual Environment">
|
||||
Activate your virtual environment based on your platform:
|
||||
|
||||
**On macOS/Linux (venv):**
|
||||
```shell Terminal
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
**On Windows (venv):**
|
||||
```shell Terminal
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
**Using conda (all platforms):**
|
||||
```shell Terminal
|
||||
conda activate crewai-env
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
# Installing CrewAI
|
||||
|
||||
Now let's get you set up! 🚀
|
||||
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
|
||||
Let's get you set up! 🚀
|
||||
|
||||
<Steps>
|
||||
<Step title="Install CrewAI">
|
||||
@@ -110,9 +72,9 @@ Now let's get you set up! 🚀
|
||||
|
||||
# Creating a New Project
|
||||
|
||||
<Tip>
|
||||
<Info>
|
||||
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
|
||||
</Tip>
|
||||
</Info>
|
||||
|
||||
<Steps>
|
||||
<Step title="Generate Project Structure">
|
||||
@@ -142,18 +104,7 @@ Now let's get you set up! 🚀
|
||||
└── tasks.yaml
|
||||
```
|
||||
</Frame>
|
||||
</Step>
|
||||
|
||||
<Step title="Install Additional Tools">
|
||||
You can install additional tools using UV:
|
||||
```shell Terminal
|
||||
uv add <tool-name>
|
||||
```
|
||||
|
||||
<Tip>
|
||||
UV is our preferred package manager as it's significantly faster than pip and provides better dependency resolution.
|
||||
</Tip>
|
||||
</Step>
|
||||
</Step>
|
||||
|
||||
<Step title="Customize Your Project">
|
||||
Your project will contain these essential files:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Composio Tool
|
||||
title: Composio
|
||||
description: Composio provides 250+ production-ready tools for AI agents with flexible authentication management.
|
||||
icon: gear-code
|
||||
---
|
||||
@@ -75,8 +75,7 @@ filtered_action_enums = toolset.find_actions_by_use_case(
|
||||
)
|
||||
|
||||
tools = toolset.get_tools(actions=filtered_action_enums)
|
||||
```
|
||||
<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
|
||||
```<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
|
||||
|
||||
- Using specific tools:
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.100.0"
|
||||
version = "0.98.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
@@ -11,7 +11,7 @@ dependencies = [
|
||||
# Core Dependencies
|
||||
"pydantic>=2.4.2",
|
||||
"openai>=1.13.3",
|
||||
"litellm==1.59.8",
|
||||
"litellm==1.57.4",
|
||||
"instructor>=1.3.3",
|
||||
# Text Processing
|
||||
"pdfplumber>=0.11.4",
|
||||
@@ -36,7 +36,6 @@ dependencies = [
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"blinker>=1.9.0",
|
||||
"json5>=0.10.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
||||
@@ -14,7 +14,7 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.100.0"
|
||||
__version__ = "0.98.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
@@ -7,6 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
@@ -61,7 +63,6 @@ class Agent(BaseAgent):
|
||||
tools: Tools at agents disposal
|
||||
step_callback: Callback to be executed after each step of the agent execution.
|
||||
knowledge_sources: Knowledge sources for the agent.
|
||||
embedder: Embedder configuration for the agent.
|
||||
"""
|
||||
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
@@ -123,10 +124,17 @@ class Agent(BaseAgent):
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
)
|
||||
embedder: Optional[Dict[str, Any]] = Field(
|
||||
embedder_config: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Embedder configuration for the agent.",
|
||||
)
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
|
||||
default=None,
|
||||
description="Knowledge sources for the agent.",
|
||||
)
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(
|
||||
default=None,
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
@@ -157,11 +165,10 @@ class Agent(BaseAgent):
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self.knowledge = Knowledge(
|
||||
self._knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder=self.embedder,
|
||||
embedder_config=self.embedder_config,
|
||||
collection_name=knowledge_agent_name,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
|
||||
@@ -220,8 +227,8 @@ class Agent(BaseAgent):
|
||||
if memory.strip() != "":
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
if self.knowledge:
|
||||
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
|
||||
if self._knowledge:
|
||||
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
|
||||
if agent_knowledge_snippets:
|
||||
agent_knowledge_context = extract_knowledge_context(
|
||||
agent_knowledge_snippets
|
||||
@@ -254,9 +261,6 @@ class Agent(BaseAgent):
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
self._times_executed += 1
|
||||
if self._times_executed > self.max_retry_limit:
|
||||
raise e
|
||||
|
||||
@@ -18,8 +18,6 @@ from pydantic_core import PydanticCustomError
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
@@ -50,8 +48,6 @@ class BaseAgent(ABC, BaseModel):
|
||||
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
|
||||
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
|
||||
max_tokens: Maximum number of tokens for the agent to generate in a response.
|
||||
knowledge_sources: Knowledge sources for the agent.
|
||||
knowledge_storage: Custom knowledge storage for the agent.
|
||||
|
||||
|
||||
Methods:
|
||||
@@ -134,17 +130,6 @@ class BaseAgent(ABC, BaseModel):
|
||||
max_tokens: Optional[int] = Field(
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
)
|
||||
knowledge: Optional[Knowledge] = Field(
|
||||
default=None, description="Knowledge for the agent."
|
||||
)
|
||||
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
|
||||
default=None,
|
||||
description="Knowledge sources for the agent.",
|
||||
)
|
||||
knowledge_storage: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Custom knowledge storage for the agent.",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
@@ -271,44 +256,13 @@ class BaseAgent(ABC, BaseModel):
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
"llm",
|
||||
"knowledge_sources",
|
||||
"knowledge_storage",
|
||||
"knowledge",
|
||||
}
|
||||
|
||||
# Copy llm
|
||||
# Copy llm and clear callbacks
|
||||
existing_llm = shallow_copy(self.llm)
|
||||
copied_knowledge = shallow_copy(self.knowledge)
|
||||
copied_knowledge_storage = shallow_copy(self.knowledge_storage)
|
||||
# Properly copy knowledge sources if they exist
|
||||
existing_knowledge_sources = None
|
||||
if self.knowledge_sources:
|
||||
# Create a shared storage instance for all knowledge sources
|
||||
shared_storage = (
|
||||
self.knowledge_sources[0].storage if self.knowledge_sources else None
|
||||
)
|
||||
|
||||
existing_knowledge_sources = []
|
||||
for source in self.knowledge_sources:
|
||||
copied_source = (
|
||||
source.model_copy()
|
||||
if hasattr(source, "model_copy")
|
||||
else shallow_copy(source)
|
||||
)
|
||||
# Ensure all copied sources use the same storage instance
|
||||
copied_source.storage = shared_storage
|
||||
existing_knowledge_sources.append(copied_source)
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
copied_agent = type(self)(
|
||||
**copied_data,
|
||||
llm=existing_llm,
|
||||
tools=self.tools,
|
||||
knowledge_sources=existing_knowledge_sources,
|
||||
knowledge=copied_knowledge,
|
||||
knowledge_storage=copied_knowledge_storage,
|
||||
)
|
||||
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
|
||||
|
||||
return copied_agent
|
||||
|
||||
|
||||
@@ -13,7 +13,6 @@ from crewai.agents.parser import (
|
||||
OutputParserException,
|
||||
)
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
@@ -55,7 +54,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks: List[Any] = [],
|
||||
):
|
||||
self._i18n: I18N = I18N()
|
||||
self.llm: LLM = llm
|
||||
self.llm = llm
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
@@ -81,8 +80,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
|
||||
tool.name: tool for tool in self.tools
|
||||
}
|
||||
self.stop = stop_words
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
if self.llm.stop:
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
else:
|
||||
self.llm.stop = self.stop
|
||||
|
||||
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
if "system" in self.prompt:
|
||||
@@ -97,16 +98,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._show_start_logs()
|
||||
|
||||
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
|
||||
|
||||
try:
|
||||
formatted_answer = self._invoke_loop()
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
else:
|
||||
self._handle_unknown_error(e)
|
||||
raise e
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
if self.ask_for_human_input:
|
||||
formatted_answer = self._handle_human_feedback(formatted_answer)
|
||||
@@ -132,6 +124,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._enforce_rpm_limit()
|
||||
|
||||
answer = self._get_llm_response()
|
||||
|
||||
formatted_answer = self._process_llm_response(answer)
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
@@ -149,32 +142,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer = self._handle_output_parser_exception(e)
|
||||
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
if self._is_context_length_exceeded(e):
|
||||
self._handle_context_length()
|
||||
continue
|
||||
else:
|
||||
self._handle_unknown_error(e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
def _handle_unknown_error(self, exception: Exception) -> None:
|
||||
"""Handle unknown errors by informing the user."""
|
||||
self._printer.print(
|
||||
content="An unknown error occurred. Please check the details below.",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"Error details: {exception}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def _has_reached_max_iterations(self) -> bool:
|
||||
"""Check if the maximum number of iterations has been reached."""
|
||||
return self.iterations >= self.max_iter
|
||||
@@ -186,17 +160,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
def _get_llm_response(self) -> str:
|
||||
"""Call the LLM and return the response, handling any invalid responses."""
|
||||
try:
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Error during LLM call: {e}",
|
||||
color="red",
|
||||
)
|
||||
raise e
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
if not answer:
|
||||
self._printer.print(
|
||||
@@ -217,6 +184,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
|
||||
answer = answer.split("Observation:")[0].strip()
|
||||
|
||||
self.iterations += 1
|
||||
return self._format_answer(answer)
|
||||
|
||||
def _handle_agent_action(
|
||||
|
||||
@@ -350,10 +350,7 @@ def chat():
|
||||
Start a conversation with the Crew, collecting user-supplied inputs,
|
||||
and using the Chat LLM to generate responses.
|
||||
"""
|
||||
click.secho(
|
||||
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
|
||||
)
|
||||
|
||||
click.echo("Starting a conversation with the Crew")
|
||||
run_chat()
|
||||
|
||||
|
||||
|
||||
@@ -1,52 +1,17 @@
|
||||
import json
|
||||
import platform
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple
|
||||
|
||||
import click
|
||||
import tomli
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.crew import Crew
|
||||
from crewai.llm import LLM
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
MIN_REQUIRED_VERSION = "0.98.0"
|
||||
|
||||
|
||||
def check_conversational_crews_version(
|
||||
crewai_version: str, pyproject_data: dict
|
||||
) -> bool:
|
||||
"""
|
||||
Check if the installed crewAI version supports conversational crews.
|
||||
|
||||
Args:
|
||||
crewai_version: The current version of crewAI.
|
||||
pyproject_data: Dictionary containing pyproject.toml data.
|
||||
|
||||
Returns:
|
||||
bool: True if version check passes, False otherwise.
|
||||
"""
|
||||
try:
|
||||
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
|
||||
click.secho(
|
||||
"You are using an older version of crewAI that doesn't support conversational crews. "
|
||||
"Run 'uv upgrade crewai' to get the latest version.",
|
||||
fg="red",
|
||||
)
|
||||
return False
|
||||
except version.InvalidVersion:
|
||||
click.secho("Invalid crewAI version format detected.", fg="red")
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def run_chat():
|
||||
"""
|
||||
@@ -54,47 +19,20 @@ def run_chat():
|
||||
Incorporates crew_name, crew_description, and input fields to build a tool schema.
|
||||
Exits if crew_name or crew_description are missing.
|
||||
"""
|
||||
crewai_version = get_crewai_version()
|
||||
pyproject_data = read_toml()
|
||||
|
||||
if not check_conversational_crews_version(crewai_version, pyproject_data):
|
||||
return
|
||||
|
||||
crew, crew_name = load_crew_and_name()
|
||||
chat_llm = initialize_chat_llm(crew)
|
||||
if not chat_llm:
|
||||
return
|
||||
|
||||
# Indicate that the crew is being analyzed
|
||||
click.secho(
|
||||
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
|
||||
"depending on the complexity of your crew.",
|
||||
fg="white",
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
)
|
||||
|
||||
# Start loading indicator
|
||||
loading_complete = threading.Event()
|
||||
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
|
||||
loading_thread.start()
|
||||
|
||||
try:
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
)
|
||||
finally:
|
||||
# Stop loading indicator
|
||||
loading_complete.set()
|
||||
loading_thread.join()
|
||||
|
||||
# Indicate that the analysis is complete
|
||||
click.secho("\nFinished analyzing crew.\n", fg="white")
|
||||
|
||||
click.secho(f"Assistant: {introductory_message}\n", fg="green")
|
||||
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
@@ -105,17 +43,15 @@ def run_chat():
|
||||
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
|
||||
}
|
||||
|
||||
click.secho(
|
||||
"\nEntering an interactive chat loop with function-calling.\n"
|
||||
"Type 'exit' or Ctrl+C to quit.\n",
|
||||
fg="cyan",
|
||||
)
|
||||
|
||||
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
|
||||
|
||||
|
||||
def show_loading(event: threading.Event):
|
||||
"""Display animated loading dots while processing."""
|
||||
while not event.is_set():
|
||||
print(".", end="", flush=True)
|
||||
time.sleep(1)
|
||||
print()
|
||||
|
||||
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
|
||||
"""Initializes the chat LLM and handles exceptions."""
|
||||
try:
|
||||
@@ -149,7 +85,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
|
||||
"Please keep your responses concise and friendly. "
|
||||
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
|
||||
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
|
||||
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
|
||||
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
|
||||
f"\nCrew Name: {crew_chat_inputs.crew_name}"
|
||||
@@ -166,33 +102,25 @@ def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
|
||||
return run_crew_tool_with_messages
|
||||
|
||||
|
||||
def flush_input():
|
||||
"""Flush any pending input from the user."""
|
||||
if platform.system() == "Windows":
|
||||
# Windows platform
|
||||
import msvcrt
|
||||
|
||||
while msvcrt.kbhit():
|
||||
msvcrt.getch()
|
||||
else:
|
||||
# Unix-like platforms (Linux, macOS)
|
||||
import termios
|
||||
|
||||
termios.tcflush(sys.stdin, termios.TCIFLUSH)
|
||||
|
||||
|
||||
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
"""Main chat loop for interacting with the user."""
|
||||
while True:
|
||||
try:
|
||||
# Flush any pending input before accepting new input
|
||||
flush_input()
|
||||
user_input = click.prompt("You", type=str)
|
||||
if user_input.strip().lower() in ["exit", "quit"]:
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
break
|
||||
|
||||
user_input = get_user_input()
|
||||
handle_user_input(
|
||||
user_input, chat_llm, messages, crew_tool_schema, available_functions
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
click.echo("\nExiting chat. Goodbye!")
|
||||
break
|
||||
@@ -201,55 +129,6 @@ def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
break
|
||||
|
||||
|
||||
def get_user_input() -> str:
|
||||
"""Collect multi-line user input with exit handling."""
|
||||
click.secho(
|
||||
"\nYou (type your message below. Press 'Enter' twice when you're done):",
|
||||
fg="blue",
|
||||
)
|
||||
user_input_lines = []
|
||||
while True:
|
||||
line = input()
|
||||
if line.strip().lower() == "exit":
|
||||
return "exit"
|
||||
if line == "":
|
||||
break
|
||||
user_input_lines.append(line)
|
||||
return "\n".join(user_input_lines)
|
||||
|
||||
|
||||
def handle_user_input(
|
||||
user_input: str,
|
||||
chat_llm: LLM,
|
||||
messages: List[Dict[str, str]],
|
||||
crew_tool_schema: Dict[str, Any],
|
||||
available_functions: Dict[str, Any],
|
||||
) -> None:
|
||||
if user_input.strip().lower() == "exit":
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
return
|
||||
|
||||
if not user_input.strip():
|
||||
click.echo("Empty message. Please provide input or type 'exit' to quit.")
|
||||
return
|
||||
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
|
||||
# Indicate that assistant is processing
|
||||
click.echo()
|
||||
click.secho("Assistant is processing your input. Please wait...", fg="green")
|
||||
|
||||
# Process assistant's response
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
|
||||
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
|
||||
"""
|
||||
Dynamically build a Littellm 'function' schema for the given crew.
|
||||
@@ -444,10 +323,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description or ""
|
||||
lambda m: m.group(1), task.description
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
lambda m: m.group(1), task.expected_output
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
@@ -458,10 +337,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
or f"{{{input_name}}}" in agent.backstory
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
lambda m: m.group(1), agent.backstory
|
||||
)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
@@ -502,20 +381,18 @@ def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
|
||||
for task in crew.tasks:
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description or ""
|
||||
lambda m: m.group(1), task.description
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
lambda m: m.group(1), task.expected_output
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
for agent in crew.agents:
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
)
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
context_texts.append(f"Agent Backstory: {agent_backstory}")
|
||||
|
||||
1
src/crewai/cli/templates/crew/.gitignore
vendored
1
src/crewai/cli/templates/crew/.gitignore
vendored
@@ -1,3 +1,2 @@
|
||||
.env
|
||||
__pycache__/
|
||||
.DS_Store
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.100.0,<1.0.0"
|
||||
"crewai[tools]>=0.98.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
1
src/crewai/cli/templates/flow/.gitignore
vendored
1
src/crewai/cli/templates/flow/.gitignore
vendored
@@ -1,4 +1,3 @@
|
||||
.env
|
||||
__pycache__/
|
||||
lib/
|
||||
.DS_Store
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.100.0,<1.0.0",
|
||||
"crewai[tools]>=0.98.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.100.0"
|
||||
"crewai[tools]>=0.98.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -4,7 +4,6 @@ import re
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
@@ -211,9 +210,8 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="LLM used to handle chatting with the crew.",
|
||||
)
|
||||
knowledge: Optional[Knowledge] = Field(
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(
|
||||
default=None,
|
||||
description="Knowledge for the crew.",
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@@ -291,7 +289,7 @@ class Crew(BaseModel):
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self.knowledge = Knowledge(
|
||||
self._knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder_config=self.embedder,
|
||||
collection_name="crew",
|
||||
@@ -993,8 +991,8 @@ class Crew(BaseModel):
|
||||
return result
|
||||
|
||||
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
|
||||
if self.knowledge:
|
||||
return self.knowledge.query(query)
|
||||
if self._knowledge:
|
||||
return self._knowledge.query(query)
|
||||
return None
|
||||
|
||||
def fetch_inputs(self) -> Set[str]:
|
||||
@@ -1038,8 +1036,6 @@ class Crew(BaseModel):
|
||||
"_telemetry",
|
||||
"agents",
|
||||
"tasks",
|
||||
"knowledge_sources",
|
||||
"knowledge",
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
@@ -1047,9 +1043,6 @@ class Crew(BaseModel):
|
||||
task_mapping = {}
|
||||
|
||||
cloned_tasks = []
|
||||
existing_knowledge_sources = shallow_copy(self.knowledge_sources)
|
||||
existing_knowledge = shallow_copy(self.knowledge)
|
||||
|
||||
for task in self.tasks:
|
||||
cloned_task = task.copy(cloned_agents, task_mapping)
|
||||
cloned_tasks.append(cloned_task)
|
||||
@@ -1069,13 +1062,7 @@ class Crew(BaseModel):
|
||||
copied_data.pop("agents", None)
|
||||
copied_data.pop("tasks", None)
|
||||
|
||||
copied_crew = Crew(
|
||||
**copied_data,
|
||||
agents=cloned_agents,
|
||||
tasks=cloned_tasks,
|
||||
knowledge_sources=existing_knowledge_sources,
|
||||
knowledge=existing_knowledge,
|
||||
)
|
||||
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
|
||||
|
||||
return copied_crew
|
||||
|
||||
|
||||
@@ -15,20 +15,20 @@ class Knowledge(BaseModel):
|
||||
Args:
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder: Optional[Dict[str, Any]] = None
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder: Optional[Dict[str, Any]] = None
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
collection_name: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: str,
|
||||
sources: List[BaseKnowledgeSource],
|
||||
embedder: Optional[Dict[str, Any]] = None,
|
||||
embedder_config: Optional[Dict[str, Any]] = None,
|
||||
storage: Optional[KnowledgeStorage] = None,
|
||||
**data,
|
||||
):
|
||||
@@ -37,23 +37,25 @@ class Knowledge(BaseModel):
|
||||
self.storage = storage
|
||||
else:
|
||||
self.storage = KnowledgeStorage(
|
||||
embedder=embedder, collection_name=collection_name
|
||||
embedder_config=embedder_config, collection_name=collection_name
|
||||
)
|
||||
self.sources = sources
|
||||
self.storage.initialize_knowledge_storage()
|
||||
self._add_sources()
|
||||
for source in sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
|
||||
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Query across all knowledge sources to find the most relevant information.
|
||||
Returns the top_k most relevant chunks.
|
||||
|
||||
|
||||
Raises:
|
||||
ValueError: If storage is not initialized.
|
||||
"""
|
||||
if self.storage is None:
|
||||
raise ValueError("Storage is not initialized.")
|
||||
|
||||
|
||||
results = self.storage.search(
|
||||
query,
|
||||
limit,
|
||||
@@ -61,9 +63,6 @@ class Knowledge(BaseModel):
|
||||
return results
|
||||
|
||||
def _add_sources(self):
|
||||
try:
|
||||
for source in self.sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
except Exception as e:
|
||||
raise e
|
||||
for source in self.sources:
|
||||
source.storage = self.storage
|
||||
source.add()
|
||||
|
||||
@@ -29,13 +29,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
def validate_file_path(cls, v, info):
|
||||
"""Validate that at least one of file_path or file_paths is provided."""
|
||||
# Single check if both are None, O(1) instead of nested conditions
|
||||
if (
|
||||
v is None
|
||||
and info.data.get(
|
||||
"file_path" if info.field_name == "file_paths" else "file_paths"
|
||||
)
|
||||
is None
|
||||
):
|
||||
if v is None and info.data.get("file_path" if info.field_name == "file_paths" else "file_paths") is None:
|
||||
raise ValueError("Either file_path or file_paths must be provided")
|
||||
return v
|
||||
|
||||
|
||||
@@ -48,11 +48,11 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedder: Optional[Dict[str, Any]] = None,
|
||||
embedder_config: Optional[Dict[str, Any]] = None,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
self.collection_name = collection_name
|
||||
self._set_embedder_config(embedder)
|
||||
self._set_embedder_config(embedder_config)
|
||||
|
||||
def search(
|
||||
self,
|
||||
@@ -99,7 +99,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
)
|
||||
if self.app:
|
||||
self.collection = self.app.get_or_create_collection(
|
||||
name=collection_name, embedding_function=self.embedder
|
||||
name=collection_name, embedding_function=self.embedder_config
|
||||
)
|
||||
else:
|
||||
raise Exception("Vector Database Client not initialized")
|
||||
@@ -187,15 +187,17 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
|
||||
def _set_embedder_config(
|
||||
self, embedder_config: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""Set the embedding configuration for the knowledge storage.
|
||||
|
||||
Args:
|
||||
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
|
||||
If None or empty, defaults to the default embedding function.
|
||||
"""
|
||||
self.embedder = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder)
|
||||
if embedder
|
||||
self.embedder_config = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder_config)
|
||||
if embedder_config
|
||||
else self._create_default_embedding_function()
|
||||
)
|
||||
|
||||
@@ -142,6 +142,7 @@ class LLM:
|
||||
self.temperature = temperature
|
||||
self.top_p = top_p
|
||||
self.n = n
|
||||
self.stop = stop
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
self.max_tokens = max_tokens
|
||||
self.presence_penalty = presence_penalty
|
||||
@@ -159,63 +160,37 @@ class LLM:
|
||||
|
||||
litellm.drop_params = True
|
||||
|
||||
# Normalize self.stop to always be a List[str]
|
||||
if stop is None:
|
||||
self.stop: List[str] = []
|
||||
elif isinstance(stop, str):
|
||||
self.stop = [stop]
|
||||
else:
|
||||
self.stop = stop
|
||||
|
||||
self.set_callbacks(callbacks)
|
||||
self.set_env_callbacks()
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
messages: List[Dict[str, str]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
High-level llm call method that:
|
||||
1) Accepts either a string or a list of messages
|
||||
2) Converts string input to the required message format
|
||||
3) Calls litellm.completion
|
||||
4) Handles function/tool calls if any
|
||||
5) Returns the final text response or tool result
|
||||
High-level call method that:
|
||||
1) Calls litellm.completion
|
||||
2) Checks for function/tool calls
|
||||
3) If a tool call is found:
|
||||
a) executes the function
|
||||
b) returns the result
|
||||
4) If no tool call, returns the text response
|
||||
|
||||
Parameters:
|
||||
- messages (Union[str, List[Dict[str, str]]]): The input messages for the LLM.
|
||||
- If a string is provided, it will be converted into a message list with a single entry.
|
||||
- If a list of dictionaries is provided, each dictionary should have 'role' and 'content' keys.
|
||||
- tools (Optional[List[dict]]): A list of tool schemas for function calling.
|
||||
- callbacks (Optional[List[Any]]): A list of callback functions to be executed.
|
||||
- available_functions (Optional[Dict[str, Any]]): A dictionary mapping function names to actual Python functions.
|
||||
|
||||
Returns:
|
||||
- str: The final text response from the LLM or the result of a tool function call.
|
||||
|
||||
Examples:
|
||||
---------
|
||||
# Example 1: Using a string input
|
||||
response = llm.call("Return the name of a random city in the world.")
|
||||
print(response)
|
||||
|
||||
# Example 2: Using a list of messages
|
||||
messages = [{"role": "user", "content": "What is the capital of France?"}]
|
||||
response = llm.call(messages)
|
||||
print(response)
|
||||
:param messages: The conversation messages
|
||||
:param tools: Optional list of function schemas for function calling
|
||||
:param callbacks: Optional list of callbacks
|
||||
:param available_functions: A dictionary mapping function_name -> actual Python function
|
||||
:return: Final text response from the LLM or the tool result
|
||||
"""
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
# --- 1) Prepare the parameters for the completion call
|
||||
# --- 1) Make the completion call
|
||||
params = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
@@ -236,21 +211,19 @@ class LLM:
|
||||
"api_version": self.api_version,
|
||||
"api_key": self.api_key,
|
||||
"stream": False,
|
||||
"tools": tools,
|
||||
"tools": tools, # pass the tool schema
|
||||
}
|
||||
|
||||
# Remove None values from params
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
# --- 2) Make the completion call
|
||||
response = litellm.completion(**params)
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
0
|
||||
].message
|
||||
text_response = response_message.content or ""
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# --- 3) Handle callbacks with usage info
|
||||
|
||||
# Ensure callbacks get the full response object with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
if hasattr(callback, "log_success_event"):
|
||||
@@ -263,11 +236,11 @@ class LLM:
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 4) If no tool calls, return the text response
|
||||
# --- 2) If no tool calls, return the text response
|
||||
if not tool_calls or not available_functions:
|
||||
return text_response
|
||||
|
||||
# --- 5) Handle the tool call
|
||||
# --- 3) Handle the tool call
|
||||
tool_call = tool_calls[0]
|
||||
function_name = tool_call.function.name
|
||||
|
||||
@@ -282,6 +255,7 @@ class LLM:
|
||||
try:
|
||||
# Call the actual tool function
|
||||
result = fn(**function_args)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
import ast
|
||||
import datetime
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from difflib import SequenceMatcher
|
||||
from json import JSONDecodeError
|
||||
from textwrap import dedent
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import json5
|
||||
from json_repair import repair_json
|
||||
|
||||
import crewai.utilities.events as events
|
||||
@@ -408,55 +407,28 @@ class ToolUsage:
|
||||
)
|
||||
return self._tool_calling(tool_string)
|
||||
|
||||
def _validate_tool_input(self, tool_input: Optional[str]) -> Dict[str, Any]:
|
||||
if tool_input is None:
|
||||
return {}
|
||||
|
||||
if not isinstance(tool_input, str) or not tool_input.strip():
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
|
||||
# Attempt 1: Parse as JSON
|
||||
def _validate_tool_input(self, tool_input: str) -> Dict[str, Any]:
|
||||
try:
|
||||
# Replace Python literals with JSON equivalents
|
||||
replacements = {
|
||||
r"'": '"',
|
||||
r"None": "null",
|
||||
r"True": "true",
|
||||
r"False": "false",
|
||||
}
|
||||
for pattern, replacement in replacements.items():
|
||||
tool_input = re.sub(pattern, replacement, tool_input)
|
||||
|
||||
arguments = json.loads(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Attempt 2: Parse as Python literal
|
||||
try:
|
||||
arguments = ast.literal_eval(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (ValueError, SyntaxError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Attempt 3: Parse as JSON5
|
||||
try:
|
||||
arguments = json5.loads(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, ValueError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Attempt 4: Repair JSON
|
||||
try:
|
||||
except json.JSONDecodeError:
|
||||
# Attempt to repair JSON string
|
||||
repaired_input = repair_json(tool_input)
|
||||
self._printer.print(
|
||||
content=f"Repaired JSON: {repaired_input}", color="blue"
|
||||
)
|
||||
arguments = json.loads(repaired_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except Exception as e:
|
||||
self._printer.print(content=f"Failed to repair JSON: {e}", color="red")
|
||||
try:
|
||||
arguments = json.loads(repaired_input)
|
||||
except json.JSONDecodeError as e:
|
||||
raise Exception(f"Invalid tool input JSON: {e}")
|
||||
|
||||
# If all parsing attempts fail, raise an error
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
return arguments
|
||||
|
||||
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
|
||||
event_data = self._prepare_event_data(tool, tool_calling)
|
||||
|
||||
@@ -43,6 +43,7 @@ class EmbeddingConfigurator:
|
||||
raise Exception(
|
||||
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
|
||||
)
|
||||
|
||||
return self.embedding_functions[provider](config, model_name)
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -96,9 +96,9 @@ class TaskEvaluator:
|
||||
final_aggregated_data = ""
|
||||
for _, data in output_training_data.items():
|
||||
final_aggregated_data += (
|
||||
f"Initial Output:\n{data.get('initial_output', '')}\n\n"
|
||||
f"Human Feedback:\n{data.get('human_feedback', '')}\n\n"
|
||||
f"Improved Output:\n{data.get('improved_output', '')}\n\n"
|
||||
f"Initial Output:\n{data['initial_output']}\n\n"
|
||||
f"Human Feedback:\n{data['human_feedback']}\n\n"
|
||||
f"Improved Output:\n{data['improved_output']}\n\n"
|
||||
)
|
||||
|
||||
evaluation_query = (
|
||||
|
||||
@@ -24,10 +24,12 @@ def create_llm(
|
||||
|
||||
# 1) If llm_value is already an LLM object, return it directly
|
||||
if isinstance(llm_value, LLM):
|
||||
print("LLM value is already an LLM object")
|
||||
return llm_value
|
||||
|
||||
# 2) If llm_value is a string (model name)
|
||||
if isinstance(llm_value, str):
|
||||
print("LLM value is a string")
|
||||
try:
|
||||
created_llm = LLM(model=llm_value)
|
||||
return created_llm
|
||||
@@ -37,10 +39,12 @@ def create_llm(
|
||||
|
||||
# 3) If llm_value is None, parse environment variables or use default
|
||||
if llm_value is None:
|
||||
print("LLM value is None")
|
||||
return _llm_via_environment_or_fallback()
|
||||
|
||||
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
|
||||
try:
|
||||
print("LLM value is an unknown object")
|
||||
# Extract attributes with explicit types
|
||||
model = (
|
||||
getattr(llm_value, "model_name", None)
|
||||
|
||||
@@ -10,7 +10,6 @@ from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools import tool
|
||||
@@ -1601,181 +1600,3 @@ def test_agent_with_knowledge_sources():
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_works_with_copy():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.source.base_knowledge_source.BaseKnowledgeSource",
|
||||
autospec=True,
|
||||
) as MockKnowledgeSource:
|
||||
mock_knowledge_source_instance = MockKnowledgeSource.return_value
|
||||
mock_knowledge_source_instance.__class__ = BaseKnowledgeSource
|
||||
mock_knowledge_source_instance.sources = [string_source]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledgeStorage:
|
||||
mock_knowledge_storage = MockKnowledgeStorage.return_value
|
||||
agent.knowledge_storage = mock_knowledge_storage
|
||||
|
||||
agent_copy = agent.copy()
|
||||
|
||||
assert agent_copy.role == agent.role
|
||||
assert agent_copy.goal == agent.goal
|
||||
assert agent_copy.backstory == agent.backstory
|
||||
assert agent_copy.knowledge_sources is not None
|
||||
assert len(agent_copy.knowledge_sources) == 1
|
||||
assert isinstance(agent_copy.knowledge_sources[0], StringKnowledgeSource)
|
||||
assert agent_copy.knowledge_sources[0].content == content
|
||||
assert isinstance(agent_copy.llm, LLM)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
from litellm import AuthenticationError as LiteLLMAuthenticationError
|
||||
|
||||
# Create an agent with a mocked LLM and max_retry_limit=0
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4"),
|
||||
max_retry_limit=0, # Disable retries for authentication errors
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
|
||||
):
|
||||
mock_llm_call.side_effect = LiteLLMAuthenticationError(
|
||||
message="Invalid API key", llm_provider="openai", model="gpt-4"
|
||||
)
|
||||
agent.execute_task(task)
|
||||
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
def test_crew_agent_executor_litellm_auth_error():
|
||||
"""Test that CrewAgentExecutor handles LiteLLM authentication errors by raising them."""
|
||||
from litellm.exceptions import AuthenticationError
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import Printer
|
||||
|
||||
# Create an agent and executor
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4", api_key="invalid_api_key"),
|
||||
)
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Create executor with all required parameters
|
||||
executor = CrewAgentExecutor(
|
||||
agent=agent,
|
||||
task=task,
|
||||
llm=agent.llm,
|
||||
crew=None,
|
||||
prompt={"system": "You are a test agent", "user": "Execute the task: {input}"},
|
||||
max_iter=5,
|
||||
tools=[],
|
||||
tools_names="",
|
||||
stop_words=[],
|
||||
tools_description="",
|
||||
tools_handler=ToolsHandler(),
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
patch.object(Printer, "print") as mock_printer,
|
||||
pytest.raises(AuthenticationError) as exc_info,
|
||||
):
|
||||
mock_llm_call.side_effect = AuthenticationError(
|
||||
message="Invalid API key", llm_provider="openai", model="gpt-4"
|
||||
)
|
||||
executor.invoke(
|
||||
{
|
||||
"input": "test input",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
}
|
||||
)
|
||||
|
||||
# Verify error handling messages
|
||||
error_message = f"Error during LLM call: {str(mock_llm_call.side_effect)}"
|
||||
mock_printer.assert_any_call(
|
||||
content=error_message,
|
||||
color="red",
|
||||
)
|
||||
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
# Assert that the exception was raised and has the expected attributes
|
||||
assert exc_info.type is AuthenticationError
|
||||
assert "Invalid API key".lower() in exc_info.value.message.lower()
|
||||
assert exc_info.value.llm_provider == "openai"
|
||||
assert exc_info.value.model == "gpt-4"
|
||||
|
||||
|
||||
def test_litellm_anthropic_error_handling():
|
||||
"""Test that AnthropicError from LiteLLM is handled correctly and not retried."""
|
||||
from litellm.llms.anthropic.common_utils import AnthropicError
|
||||
|
||||
# Create an agent with a mocked LLM that uses an Anthropic model
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="claude-3.5-sonnet-20240620"),
|
||||
max_retry_limit=0,
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AnthropicError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
pytest.raises(AnthropicError, match="Test Anthropic error"),
|
||||
):
|
||||
mock_llm_call.side_effect = AnthropicError(
|
||||
status_code=500,
|
||||
message="Test Anthropic error",
|
||||
)
|
||||
agent.execute_task(task)
|
||||
|
||||
# Verify the LLM call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
@@ -2,21 +2,21 @@ interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
|
||||
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
|
||||
just re-use this\n tool non-stop.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [get_final_answer], just the name, exactly
|
||||
as it''s written.\nAction Input: the input to the action, just a simple JSON
|
||||
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect
|
||||
criteria for your final answer: The final answer\nyou MUST return the actual
|
||||
complete content as the final answer, not a summary.\n\nBegin! This is VERY
|
||||
important to you, use the tools available and give your best Final Answer, your
|
||||
job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
|
||||
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
|
||||
answer but don''t give it yet, just re-use this tool non-stop. \nTool
|
||||
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
|
||||
about what to do\nAction: the action to take, only one name of [get_final_answer],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect criteria
|
||||
for your final answer: The final answer\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -25,13 +25,16 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1367'
|
||||
- '1325'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000;
|
||||
__cf_bm=3giyBOIM0GNudFELtsBWYXwLrpLBTNLsh81wfXgu2tg-1727226247-1.0.1.1-ugUDz0c5EhmfVpyGtcdedlIWeDGuy2q0tXQTKVpv83HZhvxgBcS7SBL1wS4rapPM38yhfEcfwA79ARt3HQEzKA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -41,35 +44,30 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsXdf4OZKCZSigmN4k0gyh67NciqP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737562383,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-ABAtOWmVjvzQ9X58tKAUcOF4gmXwx\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727226842,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"```\\nThought: I have to use the available
|
||||
tool to get the final answer. Let's proceed with executing it.\\nAction: get_final_answer\\nAction
|
||||
Input: {}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
274,\n \"completion_tokens\": 33,\n \"total_tokens\": 307,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
\"assistant\",\n \"content\": \"Thought: I need to use the get_final_answer
|
||||
tool to determine the final answer.\\nAction: get_final_answer\\nAction Input:
|
||||
{}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 274,\n \"completion_tokens\":
|
||||
27,\n \"total_tokens\": 301,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9060d43e3be1d690-IAD
|
||||
- 8c8727b3492f31e6-MIA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -77,27 +75,19 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 16:13:03 GMT
|
||||
- Wed, 25 Sep 2024 01:14:03 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=_Jcp7wnO_mXdvOnborCN6j8HwJxJXbszedJC1l7pFUg-1737562383-1.0.1.1-pDSLXlg.nKjG4wsT7mTJPjUvOX1UJITiS4MqKp6yfMWwRSJINsW1qC48SAcjBjakx2H5I1ESVk9JtUpUFDtf4g;
|
||||
path=/; expires=Wed, 22-Jan-25 16:43:03 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=x3SYvzL2nq_PTBGtE8R9cl5CkeaaDzZFQIrYfo91S2s-1737562383916-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '791'
|
||||
- '348'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -109,59 +99,45 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999680'
|
||||
- '29999682'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_eeed99acafd3aeb1e3d4a6c8063192b0
|
||||
- req_be929caac49706f487950548bdcdd46e
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
|
||||
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
|
||||
just re-use this\n tool non-stop.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [get_final_answer], just the name, exactly
|
||||
as it''s written.\nAction Input: the input to the action, just a simple JSON
|
||||
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect
|
||||
criteria for your final answer: The final answer\nyou MUST return the actual
|
||||
complete content as the final answer, not a summary.\n\nBegin! This is VERY
|
||||
important to you, use the tools available and give your best Final Answer, your
|
||||
job depends on it!\n\nThought:"}, {"role": "assistant", "content": "```\nThought:
|
||||
I have to use the available tool to get the final answer. Let''s proceed with
|
||||
executing it.\nAction: get_final_answer\nAction Input: {}\nObservation: I encountered
|
||||
an error: Error on parsing tool.\nMoving on then. I MUST either use a tool (use
|
||||
one at time) OR give my best final answer not both at the same time. When responding,
|
||||
I must use the following format:\n\n```\nThought: you should always think about
|
||||
what to do\nAction: the action to take, should be one of [get_final_answer]\nAction
|
||||
Input: the input to the action, dictionary enclosed in curly braces\nObservation:
|
||||
the result of the action\n```\nThis Thought/Action/Action Input/Result can repeat
|
||||
N times. Once I know the final answer, I must return the following format:\n\n```\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described\n\n```"}, {"role":
|
||||
"assistant", "content": "```\nThought: I have to use the available tool to get
|
||||
the final answer. Let''s proceed with executing it.\nAction: get_final_answer\nAction
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
|
||||
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
|
||||
answer but don''t give it yet, just re-use this tool non-stop. \nTool
|
||||
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
|
||||
about what to do\nAction: the action to take, only one name of [get_final_answer],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect criteria
|
||||
for your final answer: The final answer\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}, {"role": "user", "content": "Thought: I need to use the
|
||||
get_final_answer tool to determine the final answer.\nAction: get_final_answer\nAction
|
||||
Input: {}\nObservation: I encountered an error: Error on parsing tool.\nMoving
|
||||
on then. I MUST either use a tool (use one at time) OR give my best final answer
|
||||
not both at the same time. When responding, I must use the following format:\n\n```\nThought:
|
||||
you should always think about what to do\nAction: the action to take, should
|
||||
be one of [get_final_answer]\nAction Input: the input to the action, dictionary
|
||||
enclosed in curly braces\nObservation: the result of the action\n```\nThis Thought/Action/Action
|
||||
Input/Result can repeat N times. Once I know the final answer, I must return
|
||||
the following format:\n\n```\nThought: I now can give a great answer\nFinal
|
||||
not both at the same time. To Use the following format:\n\nThought: you should
|
||||
always think about what to do\nAction: the action to take, should be one of
|
||||
[get_final_answer]\nAction Input: the input to the action, dictionary enclosed
|
||||
in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action
|
||||
Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal
|
||||
Answer: Your final answer must be the great and the most complete as possible,
|
||||
it must be outcome described\n\n```\nNow it''s time you MUST give your absolute
|
||||
it must be outcome described\n\n \nNow it''s time you MUST give your absolute
|
||||
best final answer. You''ll ignore all previous instructions, stop using any
|
||||
tools, and just return your absolute BEST Final answer."}], "model": "gpt-4o",
|
||||
"stop": ["\nObservation:"]}'
|
||||
tools, and just return your absolute BEST Final answer."}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -170,16 +146,16 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '3445'
|
||||
- '2320'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=_Jcp7wnO_mXdvOnborCN6j8HwJxJXbszedJC1l7pFUg-1737562383-1.0.1.1-pDSLXlg.nKjG4wsT7mTJPjUvOX1UJITiS4MqKp6yfMWwRSJINsW1qC48SAcjBjakx2H5I1ESVk9JtUpUFDtf4g;
|
||||
_cfuvid=x3SYvzL2nq_PTBGtE8R9cl5CkeaaDzZFQIrYfo91S2s-1737562383916-0.0.1.1-604800000
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000;
|
||||
__cf_bm=3giyBOIM0GNudFELtsBWYXwLrpLBTNLsh81wfXgu2tg-1727226247-1.0.1.1-ugUDz0c5EhmfVpyGtcdedlIWeDGuy2q0tXQTKVpv83HZhvxgBcS7SBL1wS4rapPM38yhfEcfwA79ARt3HQEzKA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -189,36 +165,29 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsXdg9UrLvAiqWP979E6DszLsQ84k\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737562384,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-ABAtPaaeRfdNsZ3k06CfAmrEW8IJu\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727226843,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal
|
||||
Answer: The final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\\n```\",\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 719,\n \"completion_tokens\": 35,\n
|
||||
\ \"total_tokens\": 754,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
\"assistant\",\n \"content\": \"Final Answer: The final answer\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 483,\n \"completion_tokens\":
|
||||
6,\n \"total_tokens\": 489,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9060d4441edad690-IAD
|
||||
- 8c8727b9da1f31e6-MIA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -226,7 +195,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 16:13:05 GMT
|
||||
- Wed, 25 Sep 2024 01:14:03 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -240,7 +209,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '928'
|
||||
- '188'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -252,13 +221,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999187'
|
||||
- '29999445'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1ms
|
||||
x-request-id:
|
||||
- req_61fc7506e6db326ec572224aec81ef23
|
||||
- req_d8e32538689fe064627468bad802d9a8
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -0,0 +1,117 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: This is a test task, and the context or question from the coworker is
|
||||
not specified. Therefore, my best effort would be to affirm my readiness to
|
||||
answer accurately and in detail any question about Futel Football Club based
|
||||
on the context described. If provided with specific information or questions,
|
||||
I will ensure to respond comprehensively as required by my job directives.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
|
||||
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78bf7bd6cc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2263'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7c1a31da73cd103e9f410f908e59187f
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
|
||||
a specific question regarding Futel Football Club, your request appears to involve
|
||||
ensuring accuracy and detail in responses. For a proper answer about Futel,
|
||||
I'd be ready to provide details about the club's history, management, players,
|
||||
match schedules, and recent performance statistics. Remember to ask specific
|
||||
questions to receive a targeted response. If this were a real context where
|
||||
information was shared, I would respond precisely to what's been asked regarding
|
||||
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c1d0ecdc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:47 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '3097'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_179e1d56e2b17303e40480baffbc7b08
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,114 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Your best answer to your coworker asking you this, accounting for the
|
||||
context shared. You MUST return the actual complete content as the final answer,
|
||||
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c164ad2c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '899'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9f5226208edb90a27987aaf7e0ca03d3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As this is a test task, please note that Futel Football Club is fictional
|
||||
and any specific details about it would not be available. However, if you have
|
||||
specific questions or need information about a particular aspect of Futel or
|
||||
any general football club inquiry, feel free to ask, and I'll do my best to
|
||||
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78be5eebfc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:37 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2730'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_014478ba748f860d10ac250ca0ba824a
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As an official Futel Football Club infopoint, my responsibility is to
|
||||
provide detailed and accurate information about the club. This includes answering
|
||||
questions regarding team statistics, player performances, upcoming fixtures,
|
||||
ticketing and fan zone details, club history, and community initiatives. Our
|
||||
focus is to ensure that fans and stakeholders have access to the latest and
|
||||
most precise information about the club's on and off-pitch activities. If there's
|
||||
anything specific you need to know, just let me know, and I'll be more than
|
||||
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c066f37c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:42 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2459'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a146dd27f040f39a576750970cca0f52
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1,102 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '101'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6WjNfEOrHwwEEdSZZCRBiTpBMS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568016,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The capital of France is Paris.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 14,\n \"completion_tokens\":
|
||||
8,\n \"total_tokens\": 22,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dc63b805cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:56 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '355'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_cdbed69c9c63658eb552b07f1220df19
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,108 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Return the name of a random
|
||||
city in the world."}], "model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '117'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6UtbaNSMpNU9VJKxvn52t5eJTq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568014,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"How about \\\"Lisbon\\\"? It\u2019s the
|
||||
capital city of Portugal, known for its rich history and vibrant culture.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 18,\n \"completion_tokens\":
|
||||
24,\n \"total_tokens\": 42,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dbcaefb5cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:55 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA;
|
||||
path=/; expires=Wed, 22-Jan-25 18:16:55 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '449'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999971'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_898373758d2eae3cd84814050b2588e3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,102 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tell me a joke."}], "model":
|
||||
"gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '86'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6VyjuUcXYpChXmD8rUSy6nSGq8\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568015,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Why did the scarecrow win an award? \\n\\nBecause
|
||||
he was outstanding in his field!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
12,\n \"completion_tokens\": 19,\n \"total_tokens\": 31,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dc03b6c5cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:56 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '825'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999979'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4c1485d44e7461396d4a7316a63ff353
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,111 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the square of 5?"}],
|
||||
"model": "gpt-4o-mini", "tools": [{"type": "function", "function": {"name":
|
||||
"square_number", "description": "Returns the square of a number.", "parameters":
|
||||
{"type": "object", "properties": {"number": {"type": "integer", "description":
|
||||
"The number to square"}}, "required": ["number"]}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '361'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZL5nGOaVpcGnDOesTxBZPHhMoaS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568919,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_i6JVJ1KxX79A4WzFri98E03U\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"square_number\",\n
|
||||
\ \"arguments\": \"{\\\"number\\\":5}\"\n }\n }\n
|
||||
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
58,\n \"completion_tokens\": 15,\n \"total_tokens\": 73,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 906173d229b905f6-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 18:02:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=BYDpIoqfPZyRxl9xcFxkt4IzTUGe8irWQlZ.aYLt8Xc-1737568920-1.0.1.1-Y_cVFN7TbguWRBorSKZynVY02QUtYbsbHuR2gR1wJ8LHuqOF4xIxtK5iHVCpWWgIyPDol9xOXiqUkU8xRV_vHA;
|
||||
path=/; expires=Wed, 22-Jan-25 18:32:00 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=etTqqA9SBOnENmrFAUBIexdW0v2ZeO1x9_Ek_WChlfU-1737568920137-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '642'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999976'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_388e63f9b8d4edc0dd153001f25388e5
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,107 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the current year?"}],
|
||||
"model": "gpt-4o-mini", "tools": [{"type": "function", "function": {"name":
|
||||
"get_current_year", "description": "Returns the current year as a string.",
|
||||
"parameters": {"type": "object", "properties": {}, "required": []}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '295'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZJ8HKXQU9nTB7xbGAkKxqrg9BZ2\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568798,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_mfvEs2jngeFloVZpZOHZVaKY\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"get_current_year\",\n
|
||||
\ \"arguments\": \"{}\"\n }\n }\n ],\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"tool_calls\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 46,\n \"completion_tokens\":
|
||||
12,\n \"total_tokens\": 58,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 906170e038281775-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:59:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '416'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999975'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4039a5e5772d1790a3131f0b1ea06139
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -14,7 +14,6 @@ from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.process import Process
|
||||
from crewai.project import crew
|
||||
@@ -556,12 +555,12 @@ def test_crew_with_delegating_agents_should_not_override_task_tools():
|
||||
_, kwargs = mock_execute_sync.call_args
|
||||
tools = kwargs["tools"]
|
||||
|
||||
assert any(isinstance(tool, TestTool) for tool in tools), (
|
||||
"TestTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in tools
|
||||
), "TestTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in tools
|
||||
), "Delegation tool should be present"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -620,12 +619,12 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools():
|
||||
_, kwargs = mock_execute_sync.call_args
|
||||
tools = kwargs["tools"]
|
||||
|
||||
assert any(isinstance(tool, TestTool) for tool in new_ceo.tools), (
|
||||
"TestTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in new_ceo.tools
|
||||
), "TestTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in tools
|
||||
), "Delegation tool should be present"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -749,17 +748,17 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Confirm AnotherTestTool is present but TestTool is not
|
||||
assert any(isinstance(tool, AnotherTestTool) for tool in used_tools), (
|
||||
"AnotherTestTool should be present"
|
||||
)
|
||||
assert not any(isinstance(tool, TestTool) for tool in used_tools), (
|
||||
"TestTool should not be present among used tools"
|
||||
)
|
||||
assert any(
|
||||
isinstance(tool, AnotherTestTool) for tool in used_tools
|
||||
), "AnotherTestTool should be present"
|
||||
assert not any(
|
||||
isinstance(tool, TestTool) for tool in used_tools
|
||||
), "TestTool should not be present among used tools"
|
||||
|
||||
# Confirm delegation tool(s) are present
|
||||
assert any("delegate" in tool.name.lower() for tool in used_tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in used_tools
|
||||
), "Delegation tool should be present"
|
||||
|
||||
# Finally, make sure the agent's original tools remain unchanged
|
||||
assert len(researcher_with_delegation.tools) == 1
|
||||
@@ -1467,6 +1466,7 @@ def test_dont_set_agents_step_callback_if_already_set():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_function_calling_llm():
|
||||
|
||||
from crewai import LLM
|
||||
from crewai.tools import tool
|
||||
|
||||
@@ -1560,9 +1560,9 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
|
||||
|
||||
# Verify that exactly one tool was used and it was a CodeInterpreterTool
|
||||
assert len(used_tools) == 1, "Should have exactly one tool"
|
||||
assert isinstance(used_tools[0], CodeInterpreterTool), (
|
||||
"Tool should be CodeInterpreterTool"
|
||||
)
|
||||
assert isinstance(
|
||||
used_tools[0], CodeInterpreterTool
|
||||
), "Tool should be CodeInterpreterTool"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -3107,9 +3107,9 @@ def test_fetch_inputs():
|
||||
expected_placeholders = {"role_detail", "topic", "field"}
|
||||
actual_placeholders = crew.fetch_inputs()
|
||||
|
||||
assert actual_placeholders == expected_placeholders, (
|
||||
f"Expected {expected_placeholders}, but got {actual_placeholders}"
|
||||
)
|
||||
assert (
|
||||
actual_placeholders == expected_placeholders
|
||||
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
|
||||
|
||||
|
||||
def test_task_tools_preserve_code_execution_tools():
|
||||
@@ -3182,20 +3182,20 @@ def test_task_tools_preserve_code_execution_tools():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Verify all expected tools are present
|
||||
assert any(isinstance(tool, TestTool) for tool in used_tools), (
|
||||
"Task's TestTool should be present"
|
||||
)
|
||||
assert any(isinstance(tool, CodeInterpreterTool) for tool in used_tools), (
|
||||
"CodeInterpreterTool should be present"
|
||||
)
|
||||
assert any("delegate" in tool.name.lower() for tool in used_tools), (
|
||||
"Delegation tool should be present"
|
||||
)
|
||||
assert any(
|
||||
isinstance(tool, TestTool) for tool in used_tools
|
||||
), "Task's TestTool should be present"
|
||||
assert any(
|
||||
isinstance(tool, CodeInterpreterTool) for tool in used_tools
|
||||
), "CodeInterpreterTool should be present"
|
||||
assert any(
|
||||
"delegate" in tool.name.lower() for tool in used_tools
|
||||
), "Delegation tool should be present"
|
||||
|
||||
# Verify the total number of tools (TestTool + CodeInterpreter + 2 delegation tools)
|
||||
assert len(used_tools) == 4, (
|
||||
"Should have TestTool, CodeInterpreter, and 2 delegation tools"
|
||||
)
|
||||
assert (
|
||||
len(used_tools) == 4
|
||||
), "Should have TestTool, CodeInterpreter, and 2 delegation tools"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -3239,9 +3239,9 @@ def test_multimodal_flag_adds_multimodal_tools():
|
||||
used_tools = kwargs["tools"]
|
||||
|
||||
# Check that the multimodal tool was added
|
||||
assert any(isinstance(tool, AddImageTool) for tool in used_tools), (
|
||||
"AddImageTool should be present when agent is multimodal"
|
||||
)
|
||||
assert any(
|
||||
isinstance(tool, AddImageTool) for tool in used_tools
|
||||
), "AddImageTool should be present when agent is multimodal"
|
||||
|
||||
# Verify we have exactly one tool (just the AddImageTool)
|
||||
assert len(used_tools) == 1, "Should only have the AddImageTool"
|
||||
@@ -3467,9 +3467,9 @@ def test_crew_guardrail_feedback_in_context():
|
||||
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
|
||||
|
||||
# Verify that the second execution included the guardrail feedback
|
||||
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], (
|
||||
"Guardrail feedback should be included in retry context"
|
||||
)
|
||||
assert (
|
||||
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
|
||||
), "Guardrail feedback should be included in retry context"
|
||||
|
||||
# Verify final output meets guardrail requirements
|
||||
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
|
||||
@@ -3494,6 +3494,7 @@ def test_before_kickoff_callback():
|
||||
|
||||
@before_kickoff
|
||||
def modify_inputs(self, inputs):
|
||||
|
||||
self.inputs_modified = True
|
||||
inputs["modified"] = True
|
||||
return inputs
|
||||
@@ -3595,21 +3596,3 @@ def test_before_kickoff_without_inputs():
|
||||
# Verify that the inputs were initialized and modified inside the before_kickoff method
|
||||
assert test_crew_instance.received_inputs is not None
|
||||
assert test_crew_instance.received_inputs.get("modified") is True
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_with_knowledge_sources_works_with_copy():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[Task(description="test", expected_output="test", agent=researcher)],
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
crew_copy = crew.copy()
|
||||
|
||||
assert crew_copy.knowledge_sources == crew.knowledge_sources
|
||||
assert len(crew_copy.agents) == len(crew.agents)
|
||||
assert len(crew_copy.tasks) == len(crew.tasks)
|
||||
|
||||
@@ -4,7 +4,6 @@ import pytest
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools import tool
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
@@ -38,119 +37,3 @@ def test_llm_callback_replacement():
|
||||
assert usage_metrics_1.successful_requests == 1
|
||||
assert usage_metrics_2.successful_requests == 1
|
||||
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_string_input():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
# Test the call method with a string input
|
||||
result = llm.call("Return the name of a random city in the world.")
|
||||
assert isinstance(result, str)
|
||||
assert len(result.strip()) > 0 # Ensure the response is not empty
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_string_input_and_callbacks():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
calc_handler = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
|
||||
# Test the call method with a string input and callbacks
|
||||
result = llm.call(
|
||||
"Tell me a joke.",
|
||||
callbacks=[calc_handler],
|
||||
)
|
||||
usage_metrics = calc_handler.token_cost_process.get_summary()
|
||||
|
||||
assert isinstance(result, str)
|
||||
assert len(result.strip()) > 0
|
||||
assert usage_metrics.successful_requests == 1
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_message_list():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
messages = [{"role": "user", "content": "What is the capital of France?"}]
|
||||
|
||||
# Test the call method with a list of messages
|
||||
result = llm.call(messages)
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_tool_and_string_input():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
def get_current_year() -> str:
|
||||
"""Returns the current year as a string."""
|
||||
from datetime import datetime
|
||||
|
||||
return str(datetime.now().year)
|
||||
|
||||
# Create tool schema
|
||||
tool_schema = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_year",
|
||||
"description": "Returns the current year as a string.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# Available functions mapping
|
||||
available_functions = {"get_current_year": get_current_year}
|
||||
|
||||
# Test the call method with a string input and tool
|
||||
result = llm.call(
|
||||
"What is the current year?",
|
||||
tools=[tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
assert isinstance(result, str)
|
||||
assert result == get_current_year()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_tool_and_message_list():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
def square_number(number: int) -> int:
|
||||
"""Returns the square of a number."""
|
||||
return number * number
|
||||
|
||||
# Create tool schema
|
||||
tool_schema = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "square_number",
|
||||
"description": "Returns the square of a number.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": {"type": "integer", "description": "The number to square"}
|
||||
},
|
||||
"required": ["number"],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# Available functions mapping
|
||||
available_functions = {"square_number": square_number}
|
||||
|
||||
messages = [{"role": "user", "content": "What is the square of 5?"}]
|
||||
|
||||
# Test the call method with messages and tool
|
||||
result = llm.call(
|
||||
messages,
|
||||
tools=[tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
assert isinstance(result, int)
|
||||
assert result == 25
|
||||
|
||||
51
tests/test_manager_llm_delegation.py
Normal file
51
tests/test_manager_llm_delegation.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import pytest
|
||||
|
||||
from crewai import Agent
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
class InternalAgentTool(BaseAgentTool):
|
||||
"""Concrete implementation of BaseAgentTool for testing."""
|
||||
|
||||
def _run(self, *args, **kwargs):
|
||||
"""Implement required _run method."""
|
||||
return "Test response"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"role_name,should_match",
|
||||
[
|
||||
("Futel Official Infopoint", True), # exact match
|
||||
(' "Futel Official Infopoint" ', True), # extra quotes and spaces
|
||||
("Futel Official Infopoint\n", True), # trailing newline
|
||||
('"Futel Official Infopoint"', True), # embedded quotes
|
||||
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
|
||||
],
|
||||
)
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_tool_role_matching(role_name, should_match):
|
||||
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
|
||||
# Create test agent
|
||||
test_agent = Agent(
|
||||
role="Futel Official Infopoint",
|
||||
goal="Answer questions about Futel",
|
||||
backstory="Futel Football Club info",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
# Create test agent tool
|
||||
agent_tool = InternalAgentTool(
|
||||
name="test_tool", description="Test tool", agents=[test_agent]
|
||||
)
|
||||
|
||||
# Test role matching
|
||||
result = agent_tool._execute(agent_name=role_name, task="Test task", context=None)
|
||||
|
||||
if should_match:
|
||||
assert (
|
||||
"coworker mentioned not found" not in result.lower()
|
||||
), f"Should find agent with role name: {role_name}"
|
||||
else:
|
||||
assert (
|
||||
"coworker mentioned not found" in result.lower()
|
||||
), f"Should not find agent with role name: {role_name}"
|
||||
@@ -231,255 +231,3 @@ def test_validate_tool_input_with_special_characters():
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {}
|
||||
|
||||
|
||||
def test_validate_tool_input_valid_json():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_python_dict():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{'key': 'value', 'number': 42, 'flag': True}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_json5_unquoted_keys():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{key: 'value', number: 42, flag: true}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_trailing_commas():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true,}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_invalid_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
invalid_inputs = [
|
||||
"Just a string",
|
||||
"['list', 'of', 'values']",
|
||||
"12345",
|
||||
"",
|
||||
]
|
||||
|
||||
for invalid_input in invalid_inputs:
|
||||
with pytest.raises(Exception) as e_info:
|
||||
tool_usage._validate_tool_input(invalid_input)
|
||||
assert (
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
in str(e_info.value)
|
||||
)
|
||||
|
||||
# Test for None input separately
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
|
||||
def test_validate_tool_input_complex_structure():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = """
|
||||
{
|
||||
"user": {
|
||||
"name": "Alice",
|
||||
"age": 30
|
||||
},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2",}
|
||||
],
|
||||
"active": true,
|
||||
}
|
||||
"""
|
||||
expected_arguments = {
|
||||
"user": {"name": "Alice", "age": 30},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2"},
|
||||
],
|
||||
"active": True,
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_code_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"filename": "script.py", "content": "def hello():\\n print(\'Hello, world!\')"}'
|
||||
expected_arguments = {
|
||||
"filename": "script.py",
|
||||
"content": "def hello():\n print('Hello, world!')",
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_escaped_quotes():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"text": "He said, \\"Hello, world!\\""}'
|
||||
expected_arguments = {"text": 'He said, "Hello, world!"'}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_large_json_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Simulate a large JSON content
|
||||
tool_input = (
|
||||
'{"data": ' + json.dumps([{"id": i, "value": i * 2} for i in range(1000)]) + "}"
|
||||
)
|
||||
expected_arguments = {"data": [{"id": i, "value": i * 2} for i in range(1000)]}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
21
uv.lock
generated
21
uv.lock
generated
@@ -649,7 +649,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.100.0"
|
||||
version = "0.98.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -659,7 +659,6 @@ dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "instructor" },
|
||||
{ name = "json-repair" },
|
||||
{ name = "json5" },
|
||||
{ name = "jsonref" },
|
||||
{ name = "litellm" },
|
||||
{ name = "openai" },
|
||||
@@ -738,9 +737,8 @@ requires-dist = [
|
||||
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
{ name = "json5", specifier = ">=0.10.0" },
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
{ name = "litellm", specifier = "==1.59.8" },
|
||||
{ name = "litellm", specifier = "==1.57.4" },
|
||||
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
|
||||
{ name = "openai", specifier = ">=1.13.3" },
|
||||
{ name = "openpyxl", specifier = ">=3.1.5" },
|
||||
@@ -2079,15 +2077,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/23/38/34cb843cee4c5c27aa5c822e90e99bf96feb3dfa705713b5b6e601d17f5c/json_repair-0.30.0-py3-none-any.whl", hash = "sha256:bda4a5552dc12085c6363ff5acfcdb0c9cafc629989a2112081b7e205828228d", size = 17641 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "json5"
|
||||
version = "0.10.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "jsonlines"
|
||||
version = "3.1.0"
|
||||
@@ -2374,7 +2363,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "litellm"
|
||||
version = "1.59.8"
|
||||
version = "1.57.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "aiohttp" },
|
||||
@@ -2389,9 +2378,9 @@ dependencies = [
|
||||
{ name = "tiktoken" },
|
||||
{ name = "tokenizers" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/86/b0/c8ec06bd1c87a92d6d824008982b3c82b450d7bd3be850a53913f1ac4907/litellm-1.59.8.tar.gz", hash = "sha256:9d645cc4460f6a9813061f07086648c4c3d22febc8e1f21c663f2b7750d90512", size = 6428607 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/1a/9a/115bde058901b087e7fec1bed4be47baf8d5c78aff7dd2ffebcb922003ff/litellm-1.57.4.tar.gz", hash = "sha256:747a870ddee9c71f9560fc68ad02485bc1008fcad7d7a43e87867a59b8ed0669", size = 6304427 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b9/38/889da058f566ef9ea321aafa25e423249492cf2a508dfdc0e5acfcf04526/litellm-1.59.8-py3-none-any.whl", hash = "sha256:2473914bd2343485a185dfe7eedb12ee5fda32da3c9d9a8b73f6966b9b20cf39", size = 6716233 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/72/35c8509cb2a37343c213b794420405cbef2e1fdf8626ee981fcbba3d7c5c/litellm-1.57.4-py3-none-any.whl", hash = "sha256:afe48924d8a36db801018970a101622fce33d117fe9c54441c0095c491511abb", size = 6592126 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user