Compare commits

...

22 Commits

Author SHA1 Message Date
Lorenze Jay
6068fe941f chore: update crewAI version to 0.165.0 and tools dependency to 0.62.1 (#3357) 2025-08-18 18:25:59 -07:00
Lucas Gomide
2a0cefc98b feat: pin openai<1.100.0 due ResponseTextConfigParam import issue (#3355)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 18:31:18 -04:00
Lucas Gomide
a4f65e4870 chore: renaming inject_trigger_input to allow_crewai_trigger_context (#3353)
* chore: renaming inject_trigger_input to allow_crewai_trigger_context

* test: add missing cassetes
2025-08-18 17:57:21 -04:00
Lorenze Jay
a1b3edd79c Refactor tracing logic to consolidate conditions for enabling tracing… (#3347)
* Refactor tracing logic to consolidate conditions for enabling tracing in Crew class and update TraceBatchManager to handle ephemeral batches more effectively. Added tests for trace listener handling of both ephemeral and authenticated user batches.

* drop print

* linted

* refactor: streamline ephemeral handling in TraceBatchManager

This commit removes the ephemeral parameter from the _send_events_to_backend and _finalize_backend_batch methods, replacing it with internal logic that checks the current batch's ephemeral status. This change simplifies the method signatures and enhances the clarity of the code by directly using the is_current_batch_ephemeral attribute for conditional logic.
2025-08-18 14:16:51 -07:00
Lucas Gomide
80b3d9689a Auto inject crewai_trigger_payload (#3351)
* feat: add props to inject trigger payload

* feat: auto-inject trigger_input in the first crew task
2025-08-18 16:36:08 -04:00
Vini Brasil
ec03a53121 Add example to Tool Repository docs (#3352) 2025-08-18 13:19:35 -07:00
Vini Brasil
2fdf3f3a6a Move Chroma lockfile to db/ (#3342)
This commit fixes an issue where using Chroma would spam lockfiles over
the root path of the crew.
2025-08-18 11:00:50 -07:00
Greyson LaLonde
1d3d7ebf5e fix: convert XMLSearchTool config values to strings for configparser compatibility (#3344) 2025-08-18 13:23:58 -04:00
Gabe Milani
2c2196f415 fix: flaky test with PytestUnraisableExceptionWarning (#3346) 2025-08-18 14:07:51 -03:00
Gabe Milani
c9f30b175c chore: ignore deprecation warning from chromadb (#3328)
* chore: ignore deprecation warning from chromadb

* adding TODO: in the comment
2025-08-18 13:24:11 -03:00
Greyson LaLonde
a17b93a7f8 Mock telemetry in pytest tests (#3340)
* Add telemetry mocking for pytest tests

- Mock telemetry by default for all tests except telemetry-specific tests
- Add @pytest.mark.telemetry marker for real telemetry tests
- Reduce test overhead and improve isolation

* Fix telemetry test isolation

- Properly isolate telemetry tests from mocking environment
- Preserve API keys and other necessary environment variables
- Ensure telemetry tests can run with real telemetry instances
2025-08-18 11:55:30 -04:00
namho kim
0d3e462791 fix: Revised Korean translation and sentence structure improvement (#3337)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 10:46:13 -04:00
Greyson LaLonde
947c9552f0 chore: remove AgentOps integration (#3334)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-08-17 23:07:41 -04:00
Lorenze Jay
04a03d332f Lorenze/emphemeral tracing (#3323)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* for ephemeral traces

* default false

* simpler and consolidated

* keep raising exception but catch it and continue if its for trace batches

* cleanup

* more cleanup

* not using logger

* refactor: rename TEMP_TRACING_RESOURCE to EPHEMERAL_TRACING_RESOURCE for clarity and consistency in PlusAPI; update related method calls accordingly

* default true

* drop print
2025-08-15 13:37:16 -07:00
Vidit Ostwal
992e093610 Update Docs: Added Mem0 integration with Short Term and Entity Memory (#3293)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Added Mem0 integration with Short Term and Entity Memory

* Flaky test case of telemetry
2025-08-14 22:50:24 -04:00
Lucas Gomide
07f8e73958 feat: include exchanged agent messages into ExternalMemory metadata (#3290)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-14 09:41:09 -04:00
Lorenze Jay
66c2fa1623 chore: update crewAI and tools dependencies to version 0.159.0 and 0.62.0 respectively (#3318)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Bump crewAI version from 0.157.0 to 0.159.0
- Update tools dependency from 0.60.0 to 0.62.0 in pyproject.toml and uv.lock
- Ensure compatibility with the latest features and improvements in the tools package
2025-08-13 16:52:58 -07:00
Greyson LaLonde
7a52cc9667 fix: comment out listener resumability check (#3316) 2025-08-13 19:04:16 -04:00
Greyson LaLonde
8b686fb0c6 feat: add flow resumability support (#3312)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
- Add reload() method to restore flow state from execution data
- Add FlowExecutionData type definitions
- Track completed methods for proper flow resumption
- Support OpenTelemetry baggage context for flow inputs
2025-08-13 13:45:08 -04:00
Tony Kipkemboi
dc6771ae95 docs: Fix API Reference, add RBAC, revamp Examples/Cookbooks (EN/PT-BR/KO) (#3314)
* docs: add RBAC docs and other chores

* docs: fix API Reference rendering; per-locale OpenAPI; add Enterprise RBAC; restructure Examples (EN/PT-BR/KO) + Cookbooks; update nav and links

* docs(i18n): add RBAC docs for pt-BR and ko; update Enterprise Features nav
2025-08-13 13:13:24 -04:00
Tony Kipkemboi
e9b1e5a8f6 docs: add RBAC docs and other chores (#3313) 2025-08-13 12:08:42 -04:00
rishiraj
57c787f919 Docs update/add truefoundry (#3245)
* Add TrueFoundry observability integration documentation

- Added comprehensive TrueFoundry integration guide for CrewAI
- Included AI Gateway overview with key features
- Added technical architecture details for Traceloop SDK integration
- Provided step-by-step setup instructions
- Added advanced configuration examples
- Included tracing dashboard screenshot
- Added support contact and documentation links

* Update TrueFoundry integration documentation

Major improvements and fixes:
- Fixed integration pattern to follow LLM provider approach (base_url + api_key)
- Added technical architecture details showing LLM provider and observability flows
- Updated model names to use correct TrueFoundry format (openai-main/gpt-4o, anthropic/claude-3.5-sonnet)
- Added unified-code-tfy.png image for visual code example
- Reorganized document structure with better section placement
- Moved Additional Tracing section to better position
- Added link to TrueFoundry quick start guide
- Added comprehensive observability details and dashboard explanation
- Removed complex tracing setup in favor of simpler LLM provider integration

* Finalize TrueFoundry integration documentation

Key improvements:
- Updated base_url references to use placeholder from code snippet
- Added gateway-metrics.png image for observability dashboard
- Formatted metrics description with proper bullet points and bold headers
- Added link to TrueFoundry tracing overview documentation
- Improved readability and consistency throughout the documentation
- Updated Portuguese translation (pt-BR) version

* added truefoundry.mdx

* updated tfy mdx

* Update docs/en/observability/truefoundry.mdx

Co-authored-by: Nikhil Popli <97437109+nikp1172@users.noreply.github.com>

* Update truefoundry.mdx

* Update truefoundry.mdx

-minor updates

* Update truefoundry.mdx

* updated truefoundry.mdx PT-BR

---------

Co-authored-by: Nikhil Popli <97437109+nikp1172@users.noreply.github.com>
2025-08-13 10:08:15 -04:00
76 changed files with 5519 additions and 1224 deletions

1
.gitignore vendored
View File

@@ -21,7 +21,6 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
test_flow.html
crewairules.mdc
plan.md

View File

@@ -226,7 +226,6 @@
"group": "Observability",
"pages": [
"en/observability/overview",
"en/observability/agentops",
"en/observability/arize-phoenix",
"en/observability/langdb",
"en/observability/langfuse",
@@ -238,7 +237,8 @@
"en/observability/opik",
"en/observability/patronus-evaluation",
"en/observability/portkey",
"en/observability/weave"
"en/observability/weave",
"en/observability/truefoundry"
]
},
{
@@ -281,6 +281,7 @@
{
"group": "Features",
"pages": [
"en/enterprise/features/rbac",
"en/enterprise/features/tool-repository",
"en/enterprise/features/webhook-streaming",
"en/enterprise/features/traces",
@@ -344,7 +345,7 @@
},
{
"group": "Endpoints",
"openapi": "enterprise-api.yaml"
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.en.yaml"
}
]
},
@@ -353,7 +354,7 @@
"groups": [
{
"group": "Examples",
"pages": ["en/examples/example"]
"pages": ["en/examples/example", "en/examples/cookbooks"]
}
]
}
@@ -564,7 +565,6 @@
"group": "Observabilidade",
"pages": [
"pt-BR/observability/overview",
"pt-BR/observability/agentops",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
@@ -575,7 +575,8 @@
"pt-BR/observability/opik",
"pt-BR/observability/patronus-evaluation",
"pt-BR/observability/portkey",
"pt-BR/observability/weave"
"pt-BR/observability/weave",
"pt-BR/observability/truefoundry"
]
},
{
@@ -618,6 +619,7 @@
{
"group": "Funcionalidades",
"pages": [
"pt-BR/enterprise/features/rbac",
"pt-BR/enterprise/features/tool-repository",
"pt-BR/enterprise/features/webhook-streaming",
"pt-BR/enterprise/features/traces",
@@ -682,7 +684,7 @@
},
{
"group": "Endpoints",
"openapi": "enterprise-api.yaml"
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.pt-BR.yaml"
}
]
},
@@ -691,7 +693,7 @@
"groups": [
{
"group": "Exemplos",
"pages": ["pt-BR/examples/example"]
"pages": ["pt-BR/examples/example", "pt-BR/examples/cookbooks"]
}
]
}
@@ -707,7 +709,7 @@
"icon": "globe"
},
{
"anchor": "법정",
"anchor": "포럼",
"href": "https://community.crewai.com",
"icon": "discourse"
},
@@ -717,7 +719,7 @@
"icon": "robot"
},
{
"anchor": "출시",
"anchor": "릴리스",
"href": "https://github.com/crewAIInc/crewAI/releases",
"icon": "tag"
}
@@ -732,22 +734,22 @@
"pages": ["ko/introduction", "ko/installation", "ko/quickstart"]
},
{
"group": "안내서",
"group": "가이드",
"pages": [
{
"group": "전략",
"pages": ["ko/guides/concepts/evaluating-use-cases"]
},
{
"group": "Agents",
"group": "에이전트 (Agents)",
"pages": ["ko/guides/agents/crafting-effective-agents"]
},
{
"group": "Crews",
"group": "크루 (Crews)",
"pages": ["ko/guides/crews/first-crew"]
},
{
"group": "Flows",
"group": "플로우 (Flows)",
"pages": [
"ko/guides/flows/first-flow",
"ko/guides/flows/mastering-flow-state"
@@ -795,7 +797,7 @@
]
},
{
"group": "도구",
"group": "도구 (Tools)",
"pages": [
"ko/tools/overview",
{
@@ -885,7 +887,7 @@
]
},
{
"group": "클라우드 & 저장",
"group": "클라우드 & 스토리지",
"pages": [
"ko/tools/cloud-storage/overview",
"ko/tools/cloud-storage/s3readertool",
@@ -907,10 +909,9 @@
]
},
{
"group": "오브저버빌리티",
"group": "Observability",
"pages": [
"ko/observability/overview",
"ko/observability/agentops",
"ko/observability/arize-phoenix",
"ko/observability/langdb",
"ko/observability/langfuse",
@@ -926,7 +927,7 @@
]
},
{
"group": "익히다",
"group": "학습",
"pages": [
"ko/learn/overview",
"ko/learn/llm-selection-guide",
@@ -950,13 +951,13 @@
]
},
{
"group": "원격측정",
"group": "Telemetry",
"pages": ["ko/telemetry"]
}
]
},
{
"tab": "기업",
"tab": "엔터프라이즈",
"groups": [
{
"group": "시작 안내",
@@ -965,6 +966,7 @@
{
"group": "특징",
"pages": [
"ko/enterprise/features/rbac",
"ko/enterprise/features/tool-repository",
"ko/enterprise/features/webhook-streaming",
"ko/enterprise/features/traces",
@@ -995,7 +997,7 @@
]
},
{
"group": "사용 안내서",
"group": "How-To Guides",
"pages": [
"ko/enterprise/guides/build-crew",
"ko/enterprise/guides/deploy-crew",
@@ -1028,7 +1030,7 @@
},
{
"group": "Endpoints",
"openapi": "enterprise-api.yaml"
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.ko.yaml"
}
]
},
@@ -1037,7 +1039,7 @@
"groups": [
{
"group": "예시",
"pages": ["ko/examples/example"]
"pages": ["ko/examples/example", "ko/examples/cookbooks"]
}
]
}

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
This is how third-party event listeners are registered in the CrewAI codebase.
## Available Event Types
@@ -280,77 +273,6 @@ The structure of the event object depends on the event type, but all events inhe
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers

View File

@@ -539,16 +539,71 @@ crew = Crew(
)
```
### Mem0 Provider
Short-Term Memory and Entity Memory both supports a tight integration with both Mem0 OSS and Mem0 Client as a provider. Here is how you can use Mem0 as a provider.
```python
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.entity_entity_memory import EntityMemory
mem0_oss_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"local_mem0_config": {
"vector_store": {"provider": "qdrant","config": {"host": "localhost", "port": 6333}},
"llm": {"provider": "openai","config": {"api_key": "your-api-key", "model": "gpt-4"}},
"embedder": {"provider": "openai","config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}}
},
"infer": True # Optional defaults to True
},
}
mem0_client_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
}
short_term_memory_mem0_oss = ShortTermMemory(embedder_config=mem0_oss_embedder_config) # Short Term Memory with Mem0 OSS
short_term_memory_mem0_client = ShortTermMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
entity_memory_mem0_oss = EntityMemory(embedder_config=mem0_oss_embedder_config) # Entity Memory with Mem0 OSS
entity_memory_mem0_client = EntityMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
crew = Crew(
memory=True,
short_term_memory=short_term_memory_mem0_oss, # or short_term_memory_mem0_client
entity_memory=entity_memory_mem0_oss # or entity_memory_mem0_client
)
```
### Choosing the Right Embedding Provider
| Provider | Best For | Pros | Cons |
|:---------|:----------|:------|:------|
| **OpenAI** | General use, reliability | High quality, well-tested | Cost, requires API key |
| **Ollama** | Privacy, cost savings | Free, local, private | Requires local setup |
| **Google AI** | Google ecosystem | Good performance | Requires Google account |
| **Azure OpenAI** | Enterprise, compliance | Enterprise features | Complex setup |
| **Cohere** | Multilingual content | Great language support | Specialized use case |
| **VoyageAI** | Retrieval tasks | Optimized for search | Newer provider |
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
Below is a comparison to help you decide:
| Provider | Best For | Pros | Cons |
| -------------- | ------------------------------ | --------------------------------- | ------------------------- |
| **OpenAI** | General use, high reliability | High quality, widely tested | Paid service, API key required |
| **Ollama** | Privacy-focused, cost savings | Free, runs locally, fully private | Requires local installation/setup |
| **Google AI** | Integration in Google ecosystem| Strong performance, good support | Google account required |
| **Azure OpenAI** | Enterprise & compliance needs| Enterprise-grade features, security | More complex setup process |
| **Cohere** | Multilingual content handling | Excellent language support | More niche use cases |
| **VoyageAI** | Information retrieval & search | Optimized for retrieval tasks | Relatively new provider |
| **Mem0** | Per-user personalization | Search-optimized embeddings | Paid service, API key required |
### Environment Variable Configuration

View File

@@ -0,0 +1,103 @@
---
title: "Role-Based Access Control (RBAC)"
description: "Control access to crews, tools, and data with roles, scopes, and granular permissions."
icon: "shield"
---
## Overview
RBAC in CrewAI Enterprise enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI Enterprise" />
</Frame>
## Users and Roles
Each member in your CrewAI workspace is assigned a role, which determines their access across various features.
You can:
- Use predefined roles (Owner, Member)
- Create custom roles tailored to specific permissions
- Assign roles at any time through the settings panel
You can configure users and roles in Settings → Roles.
<Steps>
<Step title="Open Roles settings">
Go to <b>Settings → Roles</b> in CrewAI Enterprise.
</Step>
<Step title="Choose a role type">
Use a predefined role (<b>Owner</b>, <b>Member</b>) or click <b>Create role</b> to define a custom one.
</Step>
<Step title="Assign to members">
Select users and assign the role. You can change this anytime.
</Step>
</Steps>
### Configuration summary
| Area | Where to configure | Options |
|:---|:---|:---|
| Users & Roles | Settings → Roles | Predefined: Owner, Member; Custom roles |
| Automation visibility | Automation → Settings → Visibility | Private; Whitelist users/roles |
## Automationlevel Access Control
In addition to organizationwide roles, CrewAI Automations support finegrained visibility settings that let you restrict access to specific automations by user or role.
This is useful for:
- Keeping sensitive or experimental automations private
- Managing visibility across large teams or external collaborators
- Testing automations in isolated contexts
Deployments can be configured as private, meaning only whitelisted users and roles will be able to:
- View the deployment
- Run it or interact with its API
- Access its logs, metrics, and settings
The organization owner always has access, regardless of visibility settings.
You can configure automationlevel access control in Automation → Settings → Visibility tab.
<Steps>
<Step title="Open Visibility tab">
Navigate to <b>Automation → Settings → Visibility</b>.
</Step>
<Step title="Set visibility">
Choose <b>Private</b> to restrict access. The organization owner always retains access.
</Step>
<Step title="Whitelist access">
Add specific users and roles allowed to view, run, and access logs/metrics/settings.
</Step>
<Step title="Save and verify">
Save changes, then confirm that nonwhitelisted users cannot view or run the automation.
</Step>
</Steps>
### Private visibility: access outcomes
| Action | Owner | Whitelisted user/role | Not whitelisted |
|:---|:---|:---|:---|
| View automation | ✓ | ✓ | ✗ |
| Run automation/API | ✓ | ✓ | ✗ |
| Access logs/metrics/settings | ✓ | ✓ | ✗ |
<Tip>
The organization owner always has access. In private mode, only whitelisted users and roles can view, run, and access logs/metrics/settings.
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI Enterprise" />
</Frame>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with RBAC questions.
</Card>

View File

@@ -35,6 +35,22 @@ crewai tool install <tool-name>
This installs the tool and adds it to `pyproject.toml`.
You can use the tool by importing it and adding it to your agents:
```python
from your_tool.tool import YourTool
custom_tool = YourTool()
researcher = Agent(
role='Market Research Analyst',
goal='Provide up-to-date market analysis of the AI industry',
backstory='An expert analyst with a keen eye for market trends.',
tools=[custom_tool],
verbose=True
)
```
## Creating and Publishing Tools
To create a new tool project:

View File

@@ -0,0 +1,22 @@
---
title: CrewAI Cookbooks
description: Feature-focused quickstarts and notebooks for learning patterns fast.
icon: book
---
## Quickstarts & Demos
<CardGroup cols={2}>
<Card title="Task Guardrails" icon="shield-check" href="https://github.com/crewAIInc/crewAI-quickstarts/tree/main/Task%20Guardrails">
Interactive notebooks for hands-on exploration.
</Card>
<Card title="Browse Quickstarts" icon="bolt" href="https://github.com/crewAIInc/crewAI-quickstarts">
Feature demos and small projects showcasing specific CrewAI capabilities.
</Card>
</CardGroup>
<Tip>
Use Cookbooks to learn a pattern quickly, then jump to Full Examples for productiongrade implementations.
</Tip>

View File

@@ -1,62 +1,85 @@
---
title: CrewAI Examples
description: A collection of examples that show how to use CrewAI framework to automate workflows.
description: Explore curated examples organized by Crews, Flows, Integrations, and Notebooks.
icon: rocket-launch
---
## Crews
<CardGroup cols={3}>
<Card
title="Marketing Strategy"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/marketing_strategy"
icon="bullhorn"
iconType="solid"
>
Automate marketing strategy creation with CrewAI.
<Card title="Marketing Strategy" icon="bullhorn" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/marketing_strategy">
Multiagent marketing campaign planning.
</Card>
<Card title="Surprise Trip" icon="plane" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/surprise_trip">
Personalized surprise travel planning.
</Card>
<Card title="Match Profile to Positions" icon="id-card" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/match_profile_to_positions">
CVtojob matching with vector search.
</Card>
<Card title="Job Posting" icon="newspaper" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting">
Automated job description creation.
</Card>
<Card title="Game Builder Crew" icon="gamepad" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/game-builder-crew">
Multiagent team that designs and builds Python games.
</Card>
<Card title="Recruitment" icon="user-group" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/recruitment">
Candidate sourcing and evaluation.
</Card>
<Card title="Browse all Crews" icon="users" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews">
See the full list of crew examples.
</Card>
</CardGroup>
## Flows
<CardGroup cols={3}>
<Card title="Content Creator Flow" icon="pen" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/content_creator_flow">
Multicrew content generation with routing.
</Card>
<Card title="Email Auto Responder" icon="envelope" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/email_auto_responder_flow">
Automated email monitoring and replies.
</Card>
<Card title="Lead Score Flow" icon="chart-line" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/lead_score_flow">
Lead qualification with humanintheloop.
</Card>
<Card title="Meeting Assistant Flow" icon="calendar" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/meeting_assistant_flow">
Notes processing with integrations.
</Card>
<Card title="Self Evaluation Loop" icon="rotate" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/self_evaluation_loop_flow">
Iterative selfimprovement workflows.
</Card>
<Card title="Write a Book (Flows)" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/write_a_book_with_flows">
Parallel chapter generation.
</Card>
<Card title="Browse all Flows" icon="diagram-project" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows">
See the full list of flow examples.
</Card>
</CardGroup>
## Integrations
<CardGroup cols={3}>
<Card title="CrewAI ↔ LangGraph" icon="link" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/crewai-langgraph">
Integration with LangGraph framework.
</Card>
<Card title="Azure OpenAI" icon="cloud" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/azure_model">
Using CrewAI with Azure OpenAI.
</Card>
<Card title="NVIDIA Models" icon="microchip" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/nvidia_models">
NVIDIA ecosystem integrations.
</Card>
<Card title="Browse Integrations" icon="puzzle-piece" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations">
See all integration examples.
</Card>
</CardGroup>
## Notebooks
<CardGroup cols={2}>
<Card title="Simple QA Crew + Flow" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/Simple%20QA%20Crew%20%2B%20Flow">
Simple QA Crew + Flow.
</Card>
<Card title="All Notebooks" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
Interactive examples for learning and experimentation.
</Card>
<Card
title="Surprise Trip"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/surprise_trip"
icon="plane"
iconType="duotone"
>
Create a surprise trip itinerary with CrewAI.
</Card>
<Card
title="Match Profile to Positions"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/match_profile_to_positions"
icon="linkedin"
iconType="duotone"
>
Match a profile to jobpositions with CrewAI.
</Card>
<Card
title="Create Job Posting"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting"
icon="newspaper"
iconType="duotone"
>
Create a job posting with CrewAI.
</Card>
<Card
title="Game Generator"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/game-builder-crew"
icon="gamepad"
iconType="duotone"
>
Create a game with CrewAI.
</Card>
<Card
title="Find Job Candidates"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/recruitment"
icon="user-group"
iconType="duotone"
>
Find job candidates with CrewAI.
</Card>
</CardGroup>

View File

@@ -1,126 +0,0 @@
---
title: AgentOps Integration
description: Understanding and logging your agent performance with AgentOps.
icon: paperclip
---
# Introduction
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how their agents are performing,
how their agents are interacting with users, and how their agents use external tools and APIs.
AgentOps is a product independent of CrewAI that provides a comprehensive observability solution for agents.
## AgentOps
[AgentOps](https://agentops.ai/?=crew) provides session replays, metrics, and monitoring for agents.
At a high level, AgentOps gives you the ability to monitor cost, token usage, latency, agent failures, session-wide statistics, and more.
For more info, check out the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
### Overview
AgentOps provides monitoring for agents in development and production.
It provides a dashboard for tracking agent performance, session replays, and custom reporting.
Additionally, AgentOps provides session drilldowns for viewing Crew agent interactions, LLM calls, and tool usage in real-time.
This feature is useful for debugging and understanding how agents interact with users as well as other agents.
![Overview of a select series of agent session runs](/images/agentops-overview.png)
![Overview of session drilldowns for examining agent runs](/images/agentops-session.png)
![Viewing a step-by-step agent replay execution graph](/images/agentops-replay.png)
### Features
- **LLM Cost Management and Tracking**: Track spend with foundation model providers.
- **Replay Analytics**: Watch step-by-step agent execution graphs.
- **Recursive Thought Detection**: Identify when agents fall into infinite loops.
- **Custom Reporting**: Create custom analytics on agent performance.
- **Analytics Dashboard**: Monitor high-level statistics about agents in development and production.
- **Public Model Testing**: Test your agents against benchmarks and leaderboards.
- **Custom Tests**: Run your agents against domain-specific tests.
- **Time Travel Debugging**: Restart your sessions from checkpoints.
- **Compliance and Security**: Create audit logs and detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
### Using AgentOps
<Steps>
<Step title="Create an API Key">
Create a user API key here: [Create API Key](https://app.agentops.ai/account)
</Step>
<Step title="Configure Your Environment">
Add your API key to your environment variables:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="Install AgentOps">
Install AgentOps with:
```bash
pip install 'crewai[agentops]'
```
or
```bash
pip install agentops
```
</Step>
<Step title="Initialize AgentOps">
Before using `Crew` in your script, include these lines:
```python
import agentops
agentops.init()
```
This will initiate an AgentOps session as well as automatically track Crew agents. For further info on how to outfit more complex agentic systems,
check out the [AgentOps documentation](https://docs.agentops.ai) or join the [Discord](https://discord.gg/j4f3KbeH).
</Step>
</Steps>
### Crew + AgentOps Examples
<CardGroup cols={3}>
<Card
title="Job Posting"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
Example of a Crew agent that generates job posts.
</Card>
<Card
title="Markdown Validator"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Example of a Crew agent that validates Markdown files.
</Card>
<Card
title="Instagram Post"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Example of a Crew agent that generates Instagram posts.
</Card>
</CardGroup>
### Further Information
To get started, create an [AgentOps account](https://agentops.ai/?=crew).
For feature requests or bug reports, please reach out to the AgentOps team on the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
#### Extra links
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>

View File

@@ -21,9 +21,6 @@ Observability is crucial for understanding how your CrewAI agents perform, ident
### Monitoring & Tracing Platforms
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/en/observability/agentops">
Session replays, metrics, and monitoring for agent development and production.
</Card>
<Card title="LangDB" icon="database" href="/en/observability/langdb">
End-to-end tracing for CrewAI workflows with automatic agent interaction capture.

View File

@@ -0,0 +1,146 @@
---
title: TrueFoundry Integration
icon: chart-line
---
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) which can integrate with agentic frameworks like CrewAI and provides governance and observability for your AI Applications. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
## How TrueFoundry Integrates with CrewAI
### Installation & Setup
<Steps>
<Step title="Install CrewAI">
```bash
pip install crewai
```
</Step>
<Step title="Get TrueFoundry Access Token">
1. Sign up for a [TrueFoundry account](https://www.truefoundry.com/register)
2. Follow the steps here in [Quick start](https://docs.truefoundry.com/gateway/quick-start)
</Step>
<Step title="Configure CrewAI with TrueFoundry">
![TrueFoundry Code Configuration](/images/new-code-snippet.png)
```python
from crewai import LLM
# Create an LLM instance with TrueFoundry AI Gateway
truefoundry_llm = LLM(
model="openai-main/gpt-4o", # Similarly, you can call any model from any provider
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Use in your CrewAI agents
from crewai import Agent
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
llm=truefoundry_llm,
verbose=True
)
```
</Step>
</Steps>
### Complete CrewAI Example
```python
from crewai import Agent, Task, Crew, LLM
# Configure LLM with TrueFoundry
llm = LLM(
model="openai-main/gpt-4o",
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Create agents
researcher = Agent(
role='Research Analyst',
goal='Conduct detailed market research',
backstory='Expert market analyst with attention to detail',
llm=llm,
verbose=True
)
writer = Agent(
role='Content Writer',
goal='Create comprehensive reports',
backstory='Experienced technical writer',
llm=llm,
verbose=True
)
# Create tasks
research_task = Task(
description='Research AI market trends for 2024',
agent=researcher,
expected_output='Comprehensive research summary'
)
writing_task = Task(
description='Create a market research report',
agent=writer,
expected_output='Well-structured report with insights',
context=[research_task]
)
# Create and execute crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
result = crew.kickoff()
```
### Observability and Governance
Monitor your CrewAI agents through TrueFoundry's metrics tab:
![TrueFoundry metrics](/images/gateway-metrics.png)
With Truefoundry's AI gateway, you can monitor and analyze:
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
- **Rate limit and Load balancing**: You can set up rate limiting, load balancing and fallback for your models
## Tracing
For a more detailed understanding on tracing, please see [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started).For tracing, you can add the Traceloop SDK:
For tracing, you can add the Traceloop SDK:
```bash
pip install traceloop-sdk
```
```python
from traceloop.sdk import Traceloop
# Initialize enhanced tracing
Traceloop.init(
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
headers={
"Authorization": f"Bearer {your_truefoundry_pat_token}",
"TFY-Tracing-Project": "your_project_name",
},
)
```
This provides additional trace correlation across your entire CrewAI workflow.
![TrueFoundry CrewAI Tracing](/images/tracing_crewai.png)

435
docs/enterprise-api.en.yaml Normal file
View File

@@ -0,0 +1,435 @@
openapi: 3.0.3
info:
title: CrewAI Enterprise API
description: |
REST API for interacting with your deployed CrewAI crews on CrewAI Enterprise.
## Getting Started
1. **Find your crew URL**: Get your unique crew URL from the CrewAI Enterprise dashboard
2. **Copy examples**: Use the code examples from each endpoint page as templates
3. **Replace placeholders**: Update URLs and tokens with your actual values
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
## Authentication
All API requests require a bearer token for authentication. There are two types of tokens:
- **Bearer Token**: Organization-level token for full crew operations
- **User Bearer Token**: User-scoped token for individual access with limited permissions
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
## Reference Documentation
This documentation provides comprehensive examples for each endpoint:
- **Request formats** with all required and optional parameters
- **Response examples** for success and error scenarios
- **Code samples** in multiple programming languages
- **Authentication patterns** with proper Bearer token usage
Copy the examples and customize them with your actual crew URL and authentication tokens.
## Workflow
1. **Discover inputs** using `GET /inputs`
2. **Start execution** using `POST /kickoff`
3. **Monitor progress** using `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Support
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Replace with your actual deployed crew URL from the CrewAI Enterprise dashboard
- url: https://my-travel-crew.crewai.com
description: Example travel planning crew (replace with your URL)
- url: https://content-creation-crew.crewai.com
description: Example content creation crew (replace with your URL)
- url: https://research-assistant-crew.crewai.com
description: Example research assistant crew (replace with your URL)
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Get Required Inputs
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the list of all required input parameters that your crew expects for execution.
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
operationId: getRequiredInputs
responses:
'200':
description: Successfully retrieved required inputs
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Array of required input parameter names
example: ["budget", "interests", "duration", "age"]
examples:
travel_crew:
summary: Travel planning crew inputs
value:
inputs: ["budget", "interests", "duration", "age"]
outreach_crew:
summary: Outreach crew inputs
value:
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Start Crew Execution
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
to track the execution progress and retrieve results.
Crew executions can take anywhere from seconds to minutes depending on their complexity.
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
description: Key-value pairs of all required inputs for your crew
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
type: object
description: Additional metadata to pass to the crew
additionalProperties: true
example:
requestId: "user-request-12345"
source: "mobile-app"
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes
example: "https://your-server.com/webhooks/crew"
examples:
travel_planning:
summary: Travel planning crew
value:
inputs:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
requestId: "travel-req-123"
source: "web-app"
outreach_campaign:
summary: Outreach crew with webhooks
value:
inputs:
name: "John Smith"
title: "CTO"
company: "TechCorp"
industry: "Software"
our_product: "AI Development Platform"
linkedin_url: "https://linkedin.com/in/johnsmith"
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Crew execution started successfully
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
description: Unique identifier for tracking this execution
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'400':
description: Invalid request body or missing required inputs
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'401':
$ref: '#/components/responses/UnauthorizedError'
'422':
description: Validation error - ensure all required inputs are provided
content:
application/json:
schema:
$ref: '#/components/schemas/ValidationError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Get Execution Status
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the current status and results of a crew execution using its kickoff ID.
The response structure varies depending on the execution state:
- **running**: Execution in progress with current task info
- **completed**: Execution finished with full results
- **error**: Execution failed with error details
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
description: The kickoff ID returned from the /kickoff endpoint
schema:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
responses:
'200':
description: Successfully retrieved execution status
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
examples:
running:
summary: Execution in progress
value:
status: "running"
current_task: "research_task"
progress:
completed_tasks: 1
total_tasks: 3
completed:
summary: Execution completed successfully
value:
status: "completed"
result:
output: "Comprehensive travel itinerary for 7 days in Japan focusing on tech culture..."
tasks:
- task_id: "research_task"
output: "Research findings on tech destinations in Japan..."
agent: "Travel Researcher"
execution_time: 45.2
- task_id: "planning_task"
output: "7-day detailed itinerary with activities and recommendations..."
agent: "Trip Planner"
execution_time: 62.8
execution_time: 108.5
error:
summary: Execution failed
value:
status: "error"
error: "Task execution failed: Invalid API key for external service"
execution_time: 23.1
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Execution not found"
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
Use your actual Bearer Token or User Bearer Token from the CrewAI Enterprise dashboard for real API calls.
**Bearer Token**: Organization-level access for full crew operations
**User Bearer Token**: User-scoped access with limited permissions
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
example: "running"
current_task:
type: string
description: Name of the currently executing task
example: "research_task"
progress:
type: object
properties:
completed_tasks:
type: integer
description: Number of completed tasks
example: 1
total_tasks:
type: integer
description: Total number of tasks in the crew
example: 3
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
example: "completed"
result:
type: object
properties:
output:
type: string
description: Final output from the crew execution
example: "Comprehensive travel itinerary..."
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
description: Total execution time in seconds
example: 108.5
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
example: "error"
error:
type: string
description: Error message describing what went wrong
example: "Task execution failed: Invalid API key"
execution_time:
type: number
description: Time until error occurred in seconds
example: 23.1
TaskResult:
type: object
properties:
task_id:
type: string
description: Unique identifier for the task
example: "research_task"
output:
type: string
description: Output generated by this task
example: "Research findings..."
agent:
type: string
description: Name of the agent that executed this task
example: "Travel Researcher"
execution_time:
type: number
description: Time taken to execute this task in seconds
example: 45.2
Error:
type: object
properties:
error:
type: string
description: Error type or title
example: "Authentication Error"
message:
type: string
description: Detailed error message
example: "Invalid bearer token provided"
ValidationError:
type: object
properties:
error:
type: string
example: "Validation Error"
message:
type: string
example: "Missing required inputs"
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
example: ["budget", "interests"]
responses:
UnauthorizedError:
description: Authentication failed - check your bearer token
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Unauthorized"
message: "Invalid or missing bearer token"
NotFoundError:
description: Resource not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "The requested resource was not found"
ServerError:
description: Internal server error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Internal Server Error"
message: "An unexpected error occurred"

231
docs/enterprise-api.ko.yaml Normal file
View File

@@ -0,0 +1,231 @@
openapi: 3.0.3
info:
title: CrewAI 엔터프라이즈 API
description: |
CrewAI Enterprise에 배포된 crew와 상호작용하기 위한 REST API입니다.
## 시작하기
1. **Crew URL 확인**: 대시보드에서 고유한 crew URL을 확인하세요
2. **예제 복사**: 각 엔드포인트의 예제를 템플릿으로 사용하세요
3. **플레이스홀더 교체**: 실제 URL과 토큰으로 바꾸세요
4. **도구로 테스트**: cURL, Postman 등 선호하는 도구로 테스트하세요
version: 1.0.0
contact:
name: CrewAI 지원
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: 대시보드의 실제 crew URL로 교체하세요
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: 필요 입력값 조회
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
실행에 필요한 입력 파라미터 목록을 반환합니다.
operationId: getRequiredInputs
responses:
'200':
description: 입력값을 성공적으로 조회
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Crew 실행 시작
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
제공된 입력으로 새로운 실행을 시작하고 kickoff ID를 반환합니다.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
additionalProperties:
type: string
responses:
'200':
description: 실행이 성공적으로 시작됨
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
'401':
$ref: '#/components/responses/UnauthorizedError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: 실행 상태 조회
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
kickoff ID로 실행 상태와 결과를 조회합니다.
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
schema:
type: string
format: uuid
responses:
'200':
description: 상태를 성공적으로 조회
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID를 찾을 수 없음
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 참고** - *예시의 토큰은 자리 표시자입니다.* 실제 토큰을 사용하세요.
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
current_task:
type: string
progress:
type: object
properties:
completed_tasks:
type: integer
total_tasks:
type: integer
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
result:
type: object
properties:
output:
type: string
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
error:
type: string
execution_time:
type: number
TaskResult:
type: object
properties:
task_id:
type: string
output:
type: string
agent:
type: string
execution_time:
type: number
Error:
type: object
properties:
error:
type: string
message:
type: string
ValidationError:
type: object
properties:
error:
type: string
message:
type: string
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
responses:
UnauthorizedError:
description: 인증 실패
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
NotFoundError:
description: 리소스를 찾을 수 없음
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
ServerError:
description: 서버 내부 오류
content:
application/json:
schema:
$ref: '#/components/schemas/Error'

View File

@@ -0,0 +1,268 @@
openapi: 3.0.3
info:
title: CrewAI Enterprise API
description: |
REST API para interagir com suas crews implantadas no CrewAI Enterprise.
## Introdução
1. **Encontre a URL da sua crew**: Obtenha sua URL única no painel do CrewAI Enterprise
2. **Copie os exemplos**: Use os exemplos de cada endpoint como modelo
3. **Substitua os placeholders**: Atualize URLs e tokens com seus valores reais
4. **Teste com suas ferramentas**: Use cURL, Postman ou seu cliente preferido
## Autenticação
Todas as requisições exigem um token bearer. Existem dois tipos:
- **Bearer Token**: Token em nível de organização para operações completas
- **User Bearer Token**: Token com escopo de usuário com permissões limitadas
Você encontra os tokens na aba Status da sua crew no painel do CrewAI Enterprise.
## Documentação de Referência
Este documento fornece exemplos completos para cada endpoint:
- **Formatos de requisição** com parâmetros obrigatórios e opcionais
- **Exemplos de resposta** para sucesso e erro
- **Amostras de código** em várias linguagens
- **Padrões de autenticação** com uso correto de Bearer token
Copie os exemplos e personalize com sua URL e tokens reais.
## Fluxo
1. **Descubra os inputs** usando `GET /inputs`
2. **Inicie a execução** usando `POST /kickoff`
3. **Monitore o progresso** usando `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Suporte
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Substitua pela URL real da sua crew no painel do CrewAI Enterprise
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Obter Inputs Requeridos
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Retorna a lista de parâmetros de entrada que sua crew espera.
operationId: getRequiredInputs
responses:
'200':
description: Inputs requeridos obtidos com sucesso
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Nomes dos parâmetros de entrada
example: ["budget", "interests", "duration", "age"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Iniciar Execução da Crew
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Inicia uma nova execução da crew com os inputs fornecidos e retorna um kickoff ID.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
responses:
'200':
description: Execução iniciada com sucesso
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'401':
$ref: '#/components/responses/UnauthorizedError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Obter Status da Execução
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Retorna o status atual e os resultados de uma execução usando o kickoff ID.
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
schema:
type: string
format: uuid
responses:
'200':
description: Status recuperado com sucesso
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID não encontrado
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Referência** - *Os tokens mostrados são apenas exemplos.*
Use seus tokens reais do painel do CrewAI Enterprise.
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
current_task:
type: string
progress:
type: object
properties:
completed_tasks:
type: integer
total_tasks:
type: integer
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
result:
type: object
properties:
output:
type: string
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
error:
type: string
execution_time:
type: number
TaskResult:
type: object
properties:
task_id:
type: string
output:
type: string
agent:
type: string
execution_time:
type: number
Error:
type: object
properties:
error:
type: string
message:
type: string
ValidationError:
type: object
properties:
error:
type: string
message:
type: string
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
responses:
UnauthorizedError:
description: Autenticação falhou
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
NotFoundError:
description: Recurso não encontrado
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
ServerError:
description: Erro interno do servidor
content:
application/json:
schema:
$ref: '#/components/schemas/Error'

Binary file not shown.

Before

Width:  |  Height:  |  Size: 288 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 419 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 263 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 248 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 472 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 530 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 554 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Your crew implementation...
```
이것이 바로 CrewAI의 내장 `agentops_listener`가 등록되는 방식과 동일합니다. CrewAI 코드베이스에서는 다음과 같이 되어 있습니다:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
이렇게 하면 `crewai.utilities.events` 패키지가 임포트될 때 `agentops_listener`가 자동으로 로드됩니다.
이것이 CrewAI 코드베이스에서 서드파티 이벤트 리스너가 등록되는 방식입니다.
## 사용 가능한 이벤트 유형
@@ -280,77 +273,6 @@ CrewAI는 여러분이 청취할 수 있는 다양한 이벤트를 제공합니
추가 필드는 이벤트 타입에 따라 다릅니다. 예를 들어, `CrewKickoffCompletedEvent`에는 `crew_name`과 `output` 필드가 포함됩니다.
## 실제 예시: AgentOps와의 통합
CrewAI는 AI 에이전트를 위한 모니터링 및 관찰 플랫폼인 [AgentOps](https://github.com/AgentOps-AI/agentops)와의 서드파티 통합 예시를 포함하고 있습니다. 구현 방식은 다음과 같습니다:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
이 listener는 crew가 시작될 때 AgentOps 세션을 초기화하고, agent를 AgentOps에 등록하며, 도구 사용을 추적하고, crew가 완료되면 세션을 종료합니다.
AgentOps listener는 `src/crewai/utilities/events/third_party/__init__.py` 파일의 import를 통해 CrewAI 이벤트 시스템에 등록됩니다:
```python
from .agentops_listener import agentops_listener
```
이렇게 하면 `crewai.utilities.events` 패키지가 import될 때 `agentops_listener`가 로드되는 것이 보장됩니다.
## 고급 사용법: Scoped Handlers

View File

@@ -0,0 +1,103 @@
---
title: "역할 기반 접근 제어 (RBAC)"
description: "역할과 자동화별 가시성으로 crews, 도구, 데이터 접근을 제어합니다."
icon: "shield"
---
## 개요
CrewAI Enterprise의 RBAC는 **조직 수준 역할**과 **자동화(Automation) 수준 가시성**을 결합하여 안전하고 확장 가능한 접근 제어를 제공합니다.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="CrewAI Enterprise RBAC 개요" />
</Frame>
## 사용자와 역할
워크스페이스의 각 구성원은 역할이 있으며, 이는 기능 접근 범위를 결정합니다.
가능한 작업:
- 사전 정의된 역할 사용 (Owner, Member)
- 권한을 세분화한 커스텀 역할 생성
- 설정 화면에서 언제든 역할 할당/변경
설정 위치: Settings → Roles
<Steps>
<Step title="Roles 열기">
<b>Settings → Roles</b>로 이동합니다.
</Step>
<Step title="역할 선택">
<b>Owner</b> 또는 <b>Member</b>를 사용하거나 <b>Create role</b>로 커스텀 역할을 만듭니다.
</Step>
<Step title="멤버에 할당">
사용자들을 선택하여 역할을 지정합니다. 언제든 변경할 수 있습니다.
</Step>
</Steps>
### 구성 요약
| 영역 | 위치 | 옵션 |
|:---|:---|:---|
| 사용자 & 역할 | Settings → Roles | Owner, Member; 커스텀 역할 |
| 자동화 가시성 | Automation → Settings → Visibility | Private; 사용자/역할 화이트리스트 |
## 자동화 수준 접근 제어
조직 역할과 별개로, **Automations**는 사용자/역할별로 특정 자동화 접근을 제한하는 가시성 설정을 제공합니다.
유용한 경우:
- 민감/실험 자동화를 비공개로 유지
- 대규모 팀/외부 협업에서 가시성 관리
- 격리된 컨텍스트에서 자동화 테스트
Private 모드에서는 화이트리스트에 포함된 사용자/역할만 다음 작업이 가능합니다:
- 자동화 보기
- 실행/API 사용
- 로그, 메트릭, 설정 접근
조직 Owner는 항상 접근 가능하며, 가시성 설정에 영향을 받지 않습니다.
설정 위치: Automation → Settings → Visibility
<Steps>
<Step title="Visibility 탭 열기">
<b>Automation → Settings → Visibility</b>로 이동합니다.
</Step>
<Step title="가시성 설정">
<b>Private</b>를 선택합니다. Owner는 항상 접근 가능합니다.
</Step>
<Step title="허용 대상 추가">
보기/실행/로그·메트릭·설정 접근이 가능한 사용자/역할을 추가합니다.
</Step>
<Step title="저장 및 확인">
저장 후, 목록에 없는 사용자가 보거나 실행할 수 없는지 확인합니다.
</Step>
</Steps>
### Private 모드 접근 결과
| 동작 | Owner | 화이트리스트 사용자/역할 | 비포함 |
|:---|:---|:---|:---|
| 자동화 보기 | ✓ | ✓ | ✗ |
| 실행/API | ✓ | ✓ | ✗ |
| 로그/메트릭/설정 | ✓ | ✓ | ✗ |
<Tip>
Owner는 항상 접근 가능하며, Private 모드에서는 화이트리스트에 포함된 사용자/역할만 권한이 부여됩니다.
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="CrewAI Enterprise 가시성 설정" />
</Frame>
<Card title="도움이 필요하신가요?" icon="headset" href="mailto:support@crewai.com">
RBAC 구성과 점검에 대한 지원이 필요하면 연락해 주세요.
</Card>

View File

@@ -0,0 +1,22 @@
---
title: CrewAI Cookbooks
description: 패턴을 빠르게 익히기 위한 기능 중심 Quickstarts와 노트북.
icon: book
---
## Quickstarts & Demos
<CardGroup cols={2}>
<Card title="Quickstarts 저장소" icon="bolt" href="https://github.com/crewAIInc/crewAI-quickstarts">
특정 CrewAI 기능을 보여주는 데모와 소규모 프로젝트.
</Card>
<Card title="예시의 노트북" icon="book-open" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
실습을 위한 인터랙티브 노트북.
</Card>
</CardGroup>
<Tip>
Cookbooks로 패턴을 빠르게 익힌 뒤, 프로덕션급 구현은 Full Examples에서 확인하세요.
</Tip>

View File

@@ -1,62 +1,85 @@
---
title: CrewAI 예시
description: CrewAI 프레임워크를 사용하여 워크플로우를 자동화하는 방법을 보여주는 예시 모음입니다.
description: Crews, Flows, 통합, Notebooks로 구성된 예시 모음입니다.
icon: rocket-launch
---
## Crews
<CardGroup cols={3}>
<Card
title="마케팅 전략"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/marketing_strategy"
icon="bullhorn"
iconType="solid"
>
CrewAI로 마케팅 전략 생성을 자동화하세요.
<Card title="마케팅 전략" icon="bullhorn" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/marketing_strategy">
다중 에이전트 마케팅 캠페인 기획.
</Card>
<Card title="깜짝 여행" icon="plane" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/surprise_trip">
개인화된 여행 계획.
</Card>
<Card title="프로필-포지션 매칭" icon="id-card" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/match_profile_to_positions">
벡터 검색 기반 이력서 매칭.
</Card>
<Card title="채용 공고" icon="newspaper" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting">
채용 공고 자동 생성.
</Card>
<Card title="게임 빌더 Crew" icon="gamepad" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/game-builder-crew">
파이썬 게임을 설계·구축하는 멀티 에이전트 팀.
</Card>
<Card title="리크루팅" icon="user-group" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/recruitment">
후보자 소싱 및 평가.
</Card>
<Card title="모든 Crews 보기" icon="users" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews">
전체 crew 예시 목록.
</Card>
</CardGroup>
## Flows
<CardGroup cols={3}>
<Card title="Content Creator Flow" icon="pen" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/content_creator_flow">
라우팅 기반 콘텐츠 생성.
</Card>
<Card title="이메일 자동 응답" icon="envelope" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/email_auto_responder_flow">
이메일 모니터링과 자동 응답.
</Card>
<Card title="리드 점수 Flow" icon="chart-line" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/lead_score_flow">
휴먼‑인‑더‑루프 리드 평가.
</Card>
<Card title="미팅 어시스턴트 Flow" icon="calendar" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/meeting_assistant_flow">
노트 처리 및 연동.
</Card>
<Card title="Self Evaluation Loop" icon="rotate" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/self_evaluation_loop_flow">
반복적 자가 개선 워크플로우.
</Card>
<Card title="책 쓰기 (Flows)" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/write_a_book_with_flows">
병렬 챕터 생성.
</Card>
<Card title="모든 Flows 보기" icon="diagram-project" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows">
전체 flow 예시 목록.
</Card>
</CardGroup>
## 통합 (Integrations)
<CardGroup cols={3}>
<Card title="CrewAI ↔ LangGraph" icon="link" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/crewai-langgraph">
LangGraph 프레임워크 연동.
</Card>
<Card title="Azure OpenAI" icon="cloud" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/azure_model">
Azure OpenAI와 함께 사용.
</Card>
<Card title="NVIDIA 모델" icon="microchip" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/nvidia_models">
NVIDIA 생태계 연동.
</Card>
<Card title="모든 통합 보기" icon="puzzle-piece" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations">
전체 통합 예시.
</Card>
</CardGroup>
## 노트북 (Notebooks)
<CardGroup cols={2}>
<Card title="Simple QA Crew + Flow" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/Simple%20QA%20Crew%20%2B%20Flow">
Simple QA Crew + Flow.
</Card>
<Card title="모든 노트북" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
학습과 실험을 위한 인터랙티브 예시 모음.
</Card>
<Card
title="깜짝 여행"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/surprise_trip"
icon="plane"
iconType="duotone"
>
CrewAI로 깜짝 여행 일정표를 만들어보세요.
</Card>
<Card
title="프로필과 포지션 매칭"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/match_profile_to_positions"
icon="linkedin"
iconType="duotone"
>
CrewAI로 프로필을 채용 포지션에 매칭하세요.
</Card>
<Card
title="채용 공고 생성"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting"
icon="newspaper"
iconType="duotone"
>
CrewAI로 채용 공고를 만드세요.
</Card>
<Card
title="게임 생성기"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/game-builder-crew"
icon="gamepad"
iconType="duotone"
>
CrewAI로 게임을 만들어보세요.
</Card>
<Card
title="채용 후보자 찾기"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/recruitment"
icon="user-group"
iconType="duotone"
>
CrewAI로 채용 후보자를 찾으세요.
</Card>
</CardGroup>

View File

@@ -1,65 +1,65 @@
---
title: 소개
description: 함께 협력하여 복잡한 작업을 해결하는 AI 에이전트 팀 구축
description: 함께 협력하여 복잡한 작업을 해결하는 AI agent 팀 구축
icon: handshake
---
# CrewAI란 무엇인가?
**CrewAI는 완전히 독립적으로, LangChain이나 기타 agent 프레임워크에 의존하지 않고 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
**CrewAI는 LangChain이나 기타 agent 프레임워크에 의존하지 않고, 완전히 독립적으로 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공하여, 어떤 시나리오에도 맞춤화된 자율 AI agent를 만드는 데 이상적입니다:
- **[CrewAI Crews](/ko/guides/crews/first-crew)**: 자율성과 협업 지능을 극대화하여, 각 agent가 특정 역할, 도구, 목표를 가진 AI 팀을 만들 수 있습니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 세밀한 이벤트 기반 제어와 단일 LLM 호출을 통한 정확한 작업 오케스트레이션을 가능하게 하며 Crews 네이티브로 지원합니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 이벤트 기반의 세밀한 제어와 단일 LLM 호출을 통한 정확한 작업 orchestration을 지원하며, Crews 네이티브로 통합됩니다.
10만 명이 넘는 개발자가 커뮤니티 과정을 통해 인증을 받았으며, CrewAI는 기업용 AI 자동화의 표준으로 빠르게 자리잡고 있습니다.
## 크루 작동 방식
## Crew의 작동 방식
<Note>
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI 에이전트들이 협력하는 조직을 만들 수 있도록 도와줍니다.
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI agent들이 협력하는 조직을 만들 수 있도록 도와줍니다.
</Note>
<Frame caption="CrewAI 프레임워크 개요">
<Frame caption="CrewAI Framework Overview">
<img src="/images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
| 구성 요소 | 설명 | 주요 특징 |
|:--------------|:---------------------:|:----------|
| **크루** | 최상위 조직 | • AI 에이전트 팀 관리<br/>• 워크플로우 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI 에이전트** | 전문 팀원 | • 특정 역할 보유(연구원, 작가 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **프로세스** | 워크플로우 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **작업** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
| 구성 요소 | 설명 | 주요 특징 |
|:----------|:----:|:----------|
| **Crew** | 최상위 조직 | • AI agent 팀 관리<br/>• workflow 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI agents** | 전문 팀원 | • 특정 역할 보유(Researcher, Writer 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **Process** | workflow 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **Task** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
### 어떻게 모두 함께 작동하는가
### 전체 구조의 동작 방식
1. **Crew**가 전체 운영을 조직합니다
2. **AI Agents**가 자신들의 전문 작업을 수행합니다
2. **AI agents**가 자신들의 전문 작업을 수행합니다
3. **Process**가 원활한 협업을 보장합니다
4. **Tasks**가 완료되어 목표를 달성합니다
## 주요 기능
<CardGroup cols={2}>
<Card title="역할 기반 에이전트" icon="users">
연구원, 분석가, 작가 등 다양한 역할, 전문성, 목표를 가진 전문 에이전트를 생성할 수 있습니다
<Card title="역할 기반 agent" icon="users">
Researcher, Analyst, Writer 등 다양한 역할 전문성, 목표를 가진 agent를 생성할 수 있습니다
</Card>
<Card title="유연한 도구" icon="screwdriver-wrench">
에이전트에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
agent에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
</Card>
<Card title="지능형 협업" icon="people-arrows">
에이전트가 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
agent들이 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
</Card>
<Card title="작업 관리" icon="list-check">
순차적 또는 병렬 워크플로우를 정의할 수 있으며, 에이전트가 작업 의존성을 자동으로 처리합니다
순차적 또는 병렬 workflow를 정의할 수 있으며, agent가 작업 의존성을 자동으로 처리합니다
</Card>
</CardGroup>
## 플로우의 작동 원리
## Flow의 작동 원리
<Note>
crew 자율 협업에 탁월한 반면, 플로우는 구조화된 자동화를 제공하여 워크플로우 실행에 대한 세밀한 제어를 제공합니다. 플로우는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. 플로우crew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
Crew 자율 협업에 탁월하다면, Flow는 구조화된 자동화를 제공하여 workflow 실행에 대한 세밀한 제어를 제공합니다. Flow는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. FlowCrew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
</Note>
<Frame caption="CrewAI Framework Overview">
@@ -68,41 +68,41 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
| 구성 요소 | 설명 | 주요 기능 |
|:----------|:-----------:|:------------|
| **Flow** | 구조화된 워크플로우 오케스트레이션 | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | 워크플로우 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | 워크플로우 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | 워크플로우 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 워크플로우 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
| **Flow** | 구조화된 workflow orchestration | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | workflow 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | workflow 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | workflow 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 workflow 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
### 주요 기능
<CardGroup cols={2}>
<Card title="이벤트 기반 오케스트레이션" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의
<Card title="이벤트 기반 orchestration" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의합니다
</Card>
<Card title="세밀한 제어" icon="sliders">
워크플로우 상태와 조건부 실행을 안전하고 효율적으로 관리
workflow 상태와 조건부 실행을 안전하고 효율적으로 관리합니다
</Card>
<Card title="네이티브 Crew 통합" icon="puzzle-piece">
Crews와 손쉽게 결합하여 자율성과 지능 강화
Crews와 손쉽게 결합하여 자율성과 지능 강화합니다
</Card>
<Card title="결정론적 실행" icon="route">
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장합니다
</Card>
</CardGroup>
## 크루(Crews)와 플로우(Flows)를 언제 사용할까
## CrewFlow를 언제 사용할까
<Note>
[크루](/ko/guides/crews/first-crew)와 [플로우](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
[Crew](/ko/guides/crews/first-crew)와 [Flow](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
</Note>
| 사용 사례 | 권장 접근 방식 | 이유 |
|:---------|:---------------------|:-----|
| **개방형 연구** | [크루](/ko/guides/crews/first-crew) | 과제가 창의적 사고, 탐색, 적응이 필요할 때 |
| **콘텐츠 생성** | [크루](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성 |
| **의사결정 워크플로우** | [플로우](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API 오케스트레이션** | [플로우](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [플로우](/ko/guides/flows/first-flow)로 전체 프로세스를 오케스트레이션하고, [크루](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
| **개방형 연구** | [Crew](/ko/guides/crews/first-crew) | 창의적 사고, 탐색, 적응이 필요한 작업에 적합 |
| **콘텐츠 생성** | [Crew](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성에 적합 |
| **의사결정 workflow** | [Flow](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API orchestration** | [Flow](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [Flow](/ko/guides/flows/first-flow)로 전체 프로세스를 orchestration하고, [Crew](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
### 의사결정 프레임워크
@@ -112,8 +112,8 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
## CrewAI를 선택해야 하는 이유?
- 🧠 **자율적 운영**: 에이전트가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: 에이전트가 인간 팀원처럼 소통하고 협업합니다
- 🧠 **자율적 운영**: agent가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: agent가 인간 팀원처럼 소통하고 협업합니다
- 🛠️ **확장 가능한 설계**: 새로운 도구, 역할, 기능을 쉽게 추가할 수 있습니다
- 🚀 **프로덕션 준비 완료**: 실제 환경에서의 신뢰성과 확장성을 고려하여 구축되었습니다
- 🔒 **보안 중심**: 엔터프라이즈 보안 요구 사항을 고려하여 설계되었습니다
@@ -134,7 +134,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="diagram-project"
href="/ko/guides/flows/first-flow"
>
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 워크플로우를 만드는 방법을 배워보세요.
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 workflow를 만드는 방법을 배워보세요.
</Card>
</CardGroup>
@@ -151,7 +151,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="bolt"
href="ko/quickstart"
>
빠른 시작 가이드를 따라 첫 번째 CrewAI 에이전트를 만들고 직접 경험해 보세요.
빠른 시작 가이드를 따라 첫 번째 CrewAI agent를 만들고 직접 경험해 보세요.
</Card>
<Card
title="커뮤니티 가입하기"

View File

@@ -1,124 +0,0 @@
---
title: AgentOps 통합
description: AgentOps를 사용하여 에이전트 성능을 이해하고 로깅하기
icon: paperclip
---
# 소개
Observability는 대화형 AI 에이전트를 개발하고 배포하는 데 있어 핵심적인 요소입니다. 이는 개발자가 에이전트의 성능을 이해하고, 에이전트가 사용자와 어떻게 상호작용하는지, 그리고 에이전트가 외부 도구와 API를 어떻게 사용하는지를 파악할 수 있게 해줍니다.
AgentOps는 CrewAI와 독립적인 제품으로, 에이전트를 위한 종합적인 observability 솔루션을 제공합니다.
## AgentOps
[AgentOps](https://agentops.ai/?=crew)은 에이전트에 대한 세션 리플레이, 메트릭, 모니터링을 제공합니다.
AgentOps는 높은 수준에서 비용, 토큰 사용량, 대기 시간, 에이전트 실패, 세션 전체 통계 등 다양한 항목을 모니터링할 수 있는 기능을 제공합니다.
더 자세한 내용은 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)를 확인하세요.
### 개요
AgentOps는 개발 및 프로덕션 환경에서 에이전트에 대한 모니터링을 제공합니다.
에이전트 성능, 세션 리플레이, 맞춤형 리포팅을 추적할 수 있는 대시보드를 제공합니다.
또한, AgentOps는 Crew 에이전트 상호작용, LLM 호출, 툴 사용을 실시간으로 볼 수 있는 세션 드릴다운 기능을 제공합니다.
이 기능은 에이전트가 사용자 및 다른 에이전트와 어떻게 상호작용하는지 디버깅하고 이해하는 데 유용합니다.
![선택된 에이전트 세션 실행 시리즈의 개요](/images/agentops-overview.png)
![에이전트 실행을 조사하기 위한 세션 드릴다운 개요](/images/agentops-session.png)
![단계별 에이전트 리플레이 실행 그래프 보기](/images/agentops-replay.png)
### 특징
- **LLM 비용 관리 및 추적**: 기반 모델 공급자와의 지출을 추적합니다.
- **재생 분석**: 단계별 에이전트 실행 그래프를 시청할 수 있습니다.
- **재귀적 사고 감지**: 에이전트가 무한 루프에 빠졌는지 식별합니다.
- **맞춤형 보고서**: 에이전트 성능에 대한 맞춤형 분석을 생성합니다.
- **분석 대시보드**: 개발 및 운영 중인 에이전트에 대한 상위 수준 통계를 모니터링합니다.
- **공개 모델 테스트**: 벤치마크 및 리더보드를 통해 에이전트를 테스트할 수 있습니다.
- **맞춤형 테스트**: 도메인별 테스트로 에이전트를 실행합니다.
- **타임 트래블 디버깅**: 체크포인트에서 세션을 재시작합니다.
- **컴플라이언스 및 보안**: 감사 로그를 생성하고 욕설 및 PII 유출과 같은 잠재적 위협을 감지합니다.
- **프롬프트 인젝션 감지**: 잠재적 코드 인젝션 및 시크릿 유출을 식별합니다.
### AgentOps 사용하기
<Steps>
<Step title="API 키 생성">
사용자 API 키를 여기서 생성하세요: [API 키 생성](https://app.agentops.ai/account)
</Step>
<Step title="환경 설정">
API 키를 환경 변수에 추가하세요:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="AgentOps 설치">
다음 명령어로 AgentOps를 설치하세요:
```bash
pip install 'crewai[agentops]'
```
또는
```bash
pip install agentops
```
</Step>
<Step title="AgentOps 초기화">
스크립트에서 `Crew`를 사용하기 전에 다음 코드를 포함하세요:
```python
import agentops
agentops.init()
```
이렇게 하면 AgentOps 세션이 시작되고 Crew 에이전트가 자동으로 추적됩니다. 더 복잡한 agentic 시스템을 구성하는 방법에 대한 자세한 정보는 [AgentOps 문서](https://docs.agentops.ai) 또는 [Discord](https://discord.gg/j4f3KbeH)를 참조하세요.
</Step>
</Steps>
### Crew + AgentOps 예시
<CardGroup cols={3}>
<Card
title="Job Posting"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
채용 공고를 생성하는 Crew agent의 예시입니다.
</Card>
<Card
title="Markdown Validator"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Markdown 파일을 검증하는 Crew agent의 예시입니다.
</Card>
<Card
title="Instagram Post"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Instagram 게시물을 생성하는 Crew agent의 예시입니다.
</Card>
</CardGroup>
### 추가 정보
시작하려면 [AgentOps 계정](https://agentops.ai/?=crew)을 생성하세요.
기능 요청이나 버그 보고가 필요하시면 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)에서 AgentOps 팀에 문의해 주세요.
#### 추가 링크
<a href="https://twitter.com/agentopsai/">🐦 트위터</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 디스코드</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps 대시보드</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 문서화</a>

View File

@@ -21,9 +21,6 @@ icon: "face-smile"
### 모니터링 & 트레이싱 플랫폼
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/ko/observability/agentops">
에이전트 개발 및 운영을 위한 세션 리플레이, 메트릭, 모니터링 제공.
</Card>
<Card title="LangDB" icon="database" href="/ko/observability/langdb">
자동 에이전트 상호작용 캡처를 포함한 CrewAI 워크플로의 엔드-투-엔드 트레이싱.

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Sua implementação do crew...
```
É exatamente assim que o `agentops_listener` integrado do CrewAI é registrado. No código-fonte do CrewAI, você encontrará:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
É assim que listeners de eventos de terceiros são registrados no código do CrewAI.
## Tipos de Eventos Disponíveis
@@ -269,77 +262,6 @@ A estrutura do objeto de evento depende do tipo do evento, mas todos herdam de `
Campos adicionais variam pelo tipo de evento. Por exemplo, `CrewKickoffCompletedEvent` inclui os campos `crew_name` e `output`.
## Exemplo Real: Integração com AgentOps
O CrewAI inclui um exemplo de integração com [AgentOps](https://github.com/AgentOps-AI/agentops), uma plataforma de monitoramento e observabilidade para agentes de IA. Veja como é implementado:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
Esse listener inicializa uma sessão do AgentOps quando um Crew inicia, cadastra agentes no AgentOps, rastreia o uso de ferramentas e finaliza a sessão quando o Crew é concluído.
O listener AgentOps é registrado no sistema de eventos do CrewAI via importação em `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
## Uso Avançado: Handlers Escopados

View File

@@ -0,0 +1,103 @@
---
title: "Controle de Acesso Baseado em Funções (RBAC)"
description: "Controle o acesso a crews, ferramentas e dados com funções e visibilidade por automação."
icon: "shield"
---
## Visão Geral
O RBAC no CrewAI Enterprise permite gerenciar acesso de forma segura e escalável combinando **funções em nível de organização** com **controles de visibilidade em nível de automação**.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="Visão geral de RBAC no CrewAI Enterprise" />
</Frame>
## Usuários e Funções
Cada membro da sua workspace possui uma função, que determina o acesso aos recursos.
Você pode:
- Usar funções pré-definidas (Owner, Member)
- Criar funções personalizadas com permissões específicas
- Atribuir funções a qualquer momento no painel de configurações
A configuração de usuários e funções é feita em Settings → Roles.
<Steps>
<Step title="Abrir Roles">
Vá em <b>Settings → Roles</b> no CrewAI Enterprise.
</Step>
<Step title="Escolher a função">
Use <b>Owner</b> ou <b>Member</b>, ou clique em <b>Create role</b> para criar uma função personalizada.
</Step>
<Step title="Atribuir aos membros">
Selecione os usuários e atribua a função. Você pode alterar depois.
</Step>
</Steps>
### Resumo de configuração
| Área | Onde configurar | Opções |
|:---|:---|:---|
| Usuários & Funções | Settings → Roles | Pré-definidas: Owner, Member; Funções personalizadas |
| Visibilidade da automação | Automation → Settings → Visibility | Private; Lista de usuários/funções |
## Controle de Acesso em Nível de Automação
Além das funções na organização, as **Automations** suportam visibilidade refinada para restringir acesso por usuário ou função.
Útil para:
- Manter automações sensíveis/experimentais privadas
- Gerenciar visibilidade em equipes grandes ou colaboradores externos
- Testar automações em contexto isolado
Em modo privado, somente usuários/funções na whitelist poderão:
- Ver a automação
- Executar/usar a API
- Acessar logs, métricas e configurações
O owner da organização sempre tem acesso, independente da visibilidade.
Configure em Automation → Settings → Visibility.
<Steps>
<Step title="Abrir a aba Visibility">
Acesse <b>Automation → Settings → Visibility</b>.
</Step>
<Step title="Definir visibilidade">
Selecione <b>Private</b> para restringir o acesso. O owner mantém acesso.
</Step>
<Step title="Permitir acesso">
Adicione usuários e funções que poderão ver/executar e acessar logs/métricas/configurações.
</Step>
<Step title="Salvar e verificar">
Salve e confirme que não listados não conseguem ver ou executar a automação.
</Step>
</Steps>
### Resultado de acesso no modo Private
| Ação | Owner | Usuário/função na whitelist | Não listado |
|:---|:---|:---|:---|
| Ver automação | ✓ | ✓ | ✗ |
| Executar/API | ✓ | ✓ | ✗ |
| Logs/métricas/configurações | ✓ | ✓ | ✗ |
<Tip>
O owner sempre possui acesso. Em modo privado, somente usuários/funções na whitelist têm permissão.
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="Configuração de visibilidade no CrewAI Enterprise" />
</Frame>
<Card title="Precisa de Ajuda?" icon="headset" href="mailto:support@crewai.com">
Fale com o nosso time para suporte em configuração e auditoria de RBAC.
</Card>

View File

@@ -0,0 +1,22 @@
---
title: CrewAI Cookbooks
description: Quickstarts e notebooks focados em recursos para aprender padrões rapidamente.
icon: book
---
## Quickstarts & Demos
<CardGroup cols={2}>
<Card title="Repositório de Quickstarts" icon="bolt" href="https://github.com/crewAIInc/crewAI-quickstarts">
Demos e projetos pequenos que mostram capacidades específicas do CrewAI.
</Card>
<Card title="Notebooks nos Exemplos" icon="book-open" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
Notebooks interativos para aprendizado prático.
</Card>
</CardGroup>
<Tip>
Use Cookbooks para aprender um padrão rapidamente e, em seguida, avance para os Exemplos completos para implementações de produção.
</Tip>

View File

@@ -1,62 +1,85 @@
---
title: Exemplos CrewAI
description: Uma coleção de exemplos que mostram como usar o framework CrewAI para automatizar fluxos de trabalho.
description: Explore exemplos organizados por Crews, Flows, Integrações e Notebooks.
icon: rocket-launch
---
## Crews
<CardGroup cols={3}>
<Card
title="Estratégia de Marketing"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/marketing_strategy"
icon="bullhorn"
iconType="solid"
>
Automatize a criação de estratégias de marketing com CrewAI.
<Card title="Estratégia de Marketing" icon="bullhorn" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/marketing_strategy">
Planejamento de campanhas com múltiplos agentes.
</Card>
<Card title="Viagem Surpresa" icon="plane" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/surprise_trip">
Planejamento de viagens personalizadas.
</Card>
<Card title="Relacionar Perfil a Posições" icon="id-card" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/match_profile_to_positions">
Correspondência de CV para vagas com busca vetorial.
</Card>
<Card title="Criar Vaga" icon="newspaper" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting">
Criação automatizada de descrições de vagas.
</Card>
<Card title="Crew Construtor de Jogos" icon="gamepad" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/game-builder-crew">
Equipe multiagente que projeta e constrói jogos em Python.
</Card>
<Card title="Recrutamento" icon="user-group" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/recruitment">
Prospecção e avaliação de candidatos.
</Card>
<Card title="Ver todos os Crews" icon="users" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews">
Lista completa de exemplos de crews.
</Card>
</CardGroup>
## Flows
<CardGroup cols={3}>
<Card title="Content Creator Flow" icon="pen" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/content_creator_flow">
Geração de conteúdo com roteamento.
</Card>
<Card title="Email Auto Responder" icon="envelope" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/email_auto_responder_flow">
Monitoramento e respostas de email.
</Card>
<Card title="Lead Score Flow" icon="chart-line" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/lead_score_flow">
Qualificação de leads com revisão humana.
</Card>
<Card title="Meeting Assistant Flow" icon="calendar" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/meeting_assistant_flow">
Processamento de notas com integrações.
</Card>
<Card title="Self Evaluation Loop" icon="rotate" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/self_evaluation_loop_flow">
Fluxos de autoaperfeiçoamento iterativo.
</Card>
<Card title="Escrever um Livro (Flows)" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/write_a_book_with_flows">
Geração paralela de capítulos.
</Card>
<Card title="Ver todos os Flows" icon="diagram-project" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows">
Lista completa de exemplos de flows.
</Card>
</CardGroup>
## Integrações
<CardGroup cols={3}>
<Card title="CrewAI ↔ LangGraph" icon="link" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/crewai-langgraph">
Integração com o framework LangGraph.
</Card>
<Card title="Azure OpenAI" icon="cloud" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/azure_model">
Usando CrewAI com Azure OpenAI.
</Card>
<Card title="Modelos NVIDIA" icon="microchip" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/nvidia_models">
Integrações com o ecossistema NVIDIA.
</Card>
<Card title="Ver todas as Integrações" icon="puzzle-piece" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations">
Todos os exemplos de integrações.
</Card>
</CardGroup>
## Notebooks
<CardGroup cols={2}>
<Card title="Simple QA Crew + Flow" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/Simple%20QA%20Crew%20%2B%20Flow">
Simple QA Crew + Flow.
</Card>
<Card title="Todos os Notebooks" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
Exemplos interativos para aprendizado e experimentação.
</Card>
<Card
title="Viagem Surpresa"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/surprise_trip"
icon="plane"
iconType="duotone"
>
Crie um roteiro de viagem surpresa com CrewAI.
</Card>
<Card
title="Relacionar Perfil a Posições"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/match_profile_to_positions"
icon="linkedin"
iconType="duotone"
>
Relacione um perfil a vagas de emprego com CrewAI.
</Card>
<Card
title="Criar Vaga"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting"
icon="newspaper"
iconType="duotone"
>
Crie uma vaga de emprego com CrewAI.
</Card>
<Card
title="Gerador de Jogos"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/game-builder-crew"
icon="gamepad"
iconType="duotone"
>
Crie um jogo com CrewAI.
</Card>
<Card
title="Encontrar Candidatos"
color="#F3A78B"
href="https://github.com/crewAIInc/crewAI-examples/tree/main/recruitment"
icon="user-group"
iconType="duotone"
>
Encontre candidatos a vagas com CrewAI.
</Card>
</CardGroup>

View File

@@ -1,126 +0,0 @@
---
title: Integração com AgentOps
description: Entendendo e registrando a performance do seu agente com AgentOps.
icon: paperclip
---
# Introdução
Observabilidade é um aspecto fundamental no desenvolvimento e implantação de agentes de IA conversacional. Ela permite que desenvolvedores compreendam como seus agentes estão performando,
como eles estão interagindo com os usuários e como utilizam ferramentas externas e APIs.
AgentOps é um produto independente do CrewAI que fornece uma solução completa de observabilidade para agentes.
## AgentOps
[AgentOps](https://agentops.ai/?=crew) oferece replay de sessões, métricas e monitoramento para agentes.
Em um alto nível, o AgentOps oferece a capacidade de monitorar custos, uso de tokens, latência, falhas do agente, estatísticas de sessão e muito mais.
Para mais informações, confira o [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
### Visão Geral
AgentOps fornece monitoramento para agentes em desenvolvimento e produção.
Disponibiliza um dashboard para acompanhamento de performance dos agentes, replay de sessões e relatórios personalizados.
Além disso, o AgentOps traz análises detalhadas das sessões para visualizar interações do agente Crew, chamadas LLM e uso de ferramentas em tempo real.
Esse recurso é útil para depuração e entendimento de como os agentes interagem com usuários e entre si.
![Visão geral de uma série selecionada de execuções de sessões do agente](/images/agentops-overview.png)
![Visão geral das análises detalhadas de sessões para examinar execuções de agentes](/images/agentops-session.png)
![Visualizando um gráfico de execução passo a passo do replay do agente](/images/agentops-replay.png)
### Funcionalidades
- **Gerenciamento e Rastreamento de Custos de LLM**: Acompanhe gastos com provedores de modelos fundamentais.
- **Análises de Replay**: Assista gráficos de execução do agente, passo a passo.
- **Detecção de Pensamento Recursivo**: Identifique quando agentes entram em loops infinitos.
- **Relatórios Personalizados**: Crie análises customizadas sobre a performance dos agentes.
- **Dashboard Analítico**: Monitore estatísticas gerais de agentes em desenvolvimento e produção.
- **Teste de Modelos Públicos**: Teste seus agentes em benchmarks e rankings.
- **Testes Personalizados**: Execute seus agentes em testes específicos de domínio.
- **Depuração com Viagem no Tempo**: Reinicie suas sessões a partir de checkpoints.
- **Conformidade e Segurança**: Crie registros de auditoria e detecte possíveis ameaças como uso de palavrões e vazamento de dados pessoais.
- **Detecção de Prompt Injection**: Identifique possíveis injeções de código e vazamentos de segredos.
### Utilizando o AgentOps
<Steps>
<Step title="Crie uma Chave de API">
Crie uma chave de API de usuário aqui: [Create API Key](https://app.agentops.ai/account)
</Step>
<Step title="Configure seu Ambiente">
Adicione sua chave API nas variáveis de ambiente:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="Instale o AgentOps">
Instale o AgentOps com:
```bash
pip install 'crewai[agentops]'
```
ou
```bash
pip install agentops
```
</Step>
<Step title="Inicialize o AgentOps">
Antes de utilizar o `Crew` no seu script, inclua estas linhas:
```python
import agentops
agentops.init()
```
Isso irá iniciar uma sessão do AgentOps e também rastrear automaticamente os agentes Crew. Para mais detalhes sobre como adaptar sistemas de agentes mais complexos,
confira a [documentação do AgentOps](https://docs.agentops.ai) ou participe do [Discord](https://discord.gg/j4f3KbeH).
</Step>
</Steps>
### Exemplos de Crew + AgentOps
<CardGroup cols={3}>
<Card
title="Vaga de Emprego"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
Exemplo de um agente Crew que gera vagas de emprego.
</Card>
<Card
title="Validador de Markdown"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Exemplo de um agente Crew que valida arquivos Markdown.
</Card>
<Card
title="Post no Instagram"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Exemplo de um agente Crew que gera posts para Instagram.
</Card>
</CardGroup>
### Mais Informações
Para começar, crie uma [conta AgentOps](https://agentops.ai/?=crew).
Para sugestões de funcionalidades ou relatos de bugs, entre em contato com o time do AgentOps pelo [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
#### Links Extras
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ Dashboard AgentOps</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentação</a>

View File

@@ -21,9 +21,6 @@ A observabilidade é fundamental para entender como seus agentes CrewAI estão d
### Plataformas de Monitoramento e Rastreamento
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/pt-BR/observability/agentops">
Replays de sessões, métricas e monitoramento para desenvolvimento e produção de agentes.
</Card>
<Card title="LangDB" icon="database" href="/pt-BR/observability/langdb">
Rastreamento ponta a ponta para fluxos de trabalho CrewAI com captura automática de interações de agentes.

View File

@@ -0,0 +1,145 @@
---
title: Integração com a TrueFoundry
icon: chart-line
---
A TrueFoundry fornece um [AI Gateway](https://www.truefoundry.com/ai-gateway) pronto para uso empresarial, que pode ser usado para governança e observabilidade em frameworks agentivos como o CrewAI. O AI Gateway da TrueFoundry funciona como uma interface unificada para acesso a LLMs, oferecendo:
- **Acesso unificado à API**: Conecte-se a 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) por meio de uma única API
- **Baixa latência**: Latência interna abaixo de 3 ms com roteamento inteligente e balanceamento de carga
- **Segurança corporativa**: Conformidade com SOC 2, HIPAA e GDPR, com RBAC e auditoria de logs
- **Gestão de cotas e custos**: Cotas baseadas em tokens, rate limiting e rastreamento abrangente de uso
- **Observabilidade**: Registro completo de requisições/respostas, métricas e traces com retenção personalizável
## Como a TrueFoundry se integra ao CrewAI
### Instalação e configuração
<Steps>
<Step title="Instalar o CrewAI">
```bash
pip install crewai
```
</Step>
<Step title="Obter o token de acesso da TrueFoundry">
1. Crie uma conta na [TrueFoundry](https://www.truefoundry.com/register)
2. Siga os passos do [Início rápido](https://docs.truefoundry.com/gateway/quick-start)
</Step>
<Step title="Configurar o CrewAI com a TrueFoundry">
![Configuração de código da TrueFoundry](/images/new-code-snippet.png)
```python
from crewai import LLM
# Criar uma instância de LLM com o AI Gateway da TrueFoundry
truefoundry_llm = LLM(
model="openai-main/gpt-4o", # Da mesma forma, você pode chamar qualquer modelo de qualquer provedor
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Usar nos seus agentes do CrewAI
from crewai import Agent
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
llm=truefoundry_llm,
verbose=True
)
```
</Step>
</Steps>
### Exemplo completo do CrewAI
```python
from crewai import Agent, Task, Crew, LLM
# Configurar o LLM com a TrueFoundry
llm = LLM(
model="openai-main/gpt-4o",
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Criar agentes
researcher = Agent(
role='Analista de Pesquisa',
goal='Conduzir pesquisa de mercado detalhada',
backstory='Analista de mercado especialista com atenção aos detalhes',
llm=llm,
verbose=True
)
writer = Agent(
role='Redator de Conteúdo',
goal='Criar relatórios abrangentes',
backstory='Redator técnico experiente',
llm=llm,
verbose=True
)
# Criar tarefas
research_task = Task(
description='Pesquisar tendências do mercado de IA para 2024',
agent=researcher,
expected_output='Resumo de pesquisa abrangente'
)
writing_task = Task(
description='Criar um relatório de pesquisa de mercado',
agent=writer,
expected_output='Relatório bem estruturado com insights',
context=[research_task]
)
# Criar e executar a crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
result = crew.kickoff()
```
### Observabilidade e governança
Monitore seus agentes do CrewAI pela aba de métricas da TrueFoundry:
![Métricas da TrueFoundry](/images/gateway-metrics.png)
Com o AI Gateway da TrueFoundry, você pode monitorar e analisar:
- **Métricas de desempenho**: Acompanhe métricas-chave de latência como Latência da Requisição, Tempo até o Primeiro Token (TTFS) e Latência entre Tokens (ITL), com percentis P99, P90 e P50
- **Custos e uso de tokens**: Tenha visibilidade dos custos da sua aplicação com detalhamento de tokens de entrada/saída e das despesas associadas a cada modelo
- **Padrões de uso**: Entenda como sua aplicação está sendo utilizada com análises detalhadas sobre atividade de usuários, distribuição de modelos e uso por equipe
- **Limite de taxa e balanceamento de carga**: Você pode configurar rate limiting, balanceamento de carga e fallback para seus modelos
## Rastreamento
Para uma compreensão mais detalhada sobre rastreamento, consulte [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started). Para rastreamento, você pode adicionar o SDK do Traceloop:
```bash
pip install traceloop-sdk
```
```python
from traceloop.sdk import Traceloop
# Inicializar rastreamento avançado
Traceloop.init(
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
headers={
"Authorization": f"Bearer {your_truefoundry_pat_token}",
"TFY-Tracing-Project": "your_project_name",
},
)
```
Isso oferece correlação adicional de rastreamentos em todo o seu fluxo de trabalho com o CrewAI.
![Rastreamento do CrewAI na TrueFoundry](/images/tracing_crewai.png)

View File

@@ -10,7 +10,7 @@ authors = [
dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"openai<1.100.0", # TODO: Temporarily pin due to https://github.com/openai/openai-python/issues/2564. Can revert once the issue is fixed.
"litellm==1.74.9",
"instructor>=1.3.3",
# Text Processing
@@ -48,11 +48,10 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.60.0"]
tools = ["crewai-tools~=0.62.1"]
embeddings = [
"tiktoken~=0.8.0"
]
agentops = ["agentops==0.3.18"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
@@ -99,6 +98,11 @@ exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[tool.pytest.ini_options]
markers = [
"telemetry: mark test as a telemetry test (don't mock telemetry)",
]
# PyTorch index configuration, since torch 2.5.0 is not compatible with python 3.13
[[tool.uv.index]]
name = "pytorch-nightly"

View File

@@ -54,7 +54,7 @@ def _track_install_async():
_track_install_async()
__version__ = "0.157.0"
__version__ = "0.165.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,5 +1,5 @@
import time
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Dict, List
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
@@ -21,6 +21,7 @@ class CrewAgentExecutorMixin:
task: "Task"
iterations: int
max_iter: int
messages: List[Dict[str, str]]
_i18n: I18N
_printer: Printer = Printer()
@@ -62,6 +63,7 @@ class CrewAgentExecutorMixin:
value=output.text,
metadata={
"description": self.task.description,
"messages": self.messages,
},
agent=self.agent.role,
)
@@ -127,7 +129,6 @@ class CrewAgentExecutorMixin:
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input with mode-appropriate messaging."""
event_listener.formatter.pause_live_updates()
try:
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"

View File

@@ -1,9 +1,13 @@
from .utils import TokenManager
class AuthError(Exception):
pass
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception("No token found, make sure you are logged in")
raise AuthError("No token found, make sure you are logged in")
return access_token

View File

@@ -18,6 +18,7 @@ class PlusAPI:
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
TRACING_RESOURCE = "/crewai_plus/api/v1/tracing"
EPHEMERAL_TRACING_RESOURCE = "/crewai_plus/api/v1/tracing/ephemeral"
def __init__(self, api_key: str) -> None:
self.api_key = api_key
@@ -124,6 +125,11 @@ class PlusAPI:
"POST", f"{self.TRACING_RESOURCE}/batches", json=payload
)
def initialize_ephemeral_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST", f"{self.EPHEMERAL_TRACING_RESOURCE}/batches", json=payload
)
def send_trace_events(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"POST",
@@ -131,9 +137,27 @@ class PlusAPI:
json=payload,
)
def send_ephemeral_trace_events(
self, trace_batch_id: str, payload
) -> requests.Response:
return self._make_request(
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
)
def finalize_trace_batch(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"PATCH",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
)
def finalize_ephemeral_trace_batch(
self, trace_batch_id: str, payload
) -> requests.Response:
return self._make_request(
"PATCH",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.157.0,<1.0.0"
"crewai[tools]>=0.165.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.157.0,<1.0.0",
"crewai[tools]>=0.165.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.157.0"
"crewai[tools]>=0.165.0"
]
[tool.crewai]

View File

@@ -77,7 +77,10 @@ from crewai.utilities.events.listeners.tracing.trace_listener import (
)
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
on_first_execution_tracing_confirmation,
)
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -283,8 +286,13 @@ class Crew(FlowTrackable, BaseModel):
self._cache_handler = CacheHandler()
event_listener = EventListener()
if is_tracing_enabled() or self.tracing:
trace_listener = TraceCollectionListener(tracing=self.tracing)
if (
on_first_execution_tracing_confirmation()
or is_tracing_enabled()
or self.tracing
):
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
event_listener.verbose = self.verbose
event_listener.formatter.verbose = self.verbose
@@ -497,6 +505,7 @@ class Crew(FlowTrackable, BaseModel):
)
return self
@property
def key(self) -> str:
source: List[str] = [agent.key for agent in self.agents] + [
@@ -633,6 +642,7 @@ class Crew(FlowTrackable, BaseModel):
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self._set_allow_crewai_trigger_context_for_first_task()
i18n = I18N(prompt_file=self.prompt_file)
@@ -1502,3 +1512,10 @@ class Crew(FlowTrackable, BaseModel):
"""Reset crew and agent knowledge storage."""
for ks in knowledges:
ks.reset()
def _set_allow_crewai_trigger_context_for_first_task(self):
crewai_trigger_payload = self._inputs and self._inputs.get("crewai_trigger_payload")
able_to_inject = self.tasks and self.tasks[0].allow_crewai_trigger_context is None
if self.process == Process.sequential and crewai_trigger_payload and able_to_inject:
self.tasks[0].allow_crewai_trigger_context = True

View File

@@ -17,10 +17,13 @@ from typing import (
)
from uuid import uuid4
from opentelemetry import baggage
from opentelemetry.context import attach, detach
from pydantic import BaseModel, Field, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.types import FlowExecutionData
from crewai.flow.utils import get_possible_return_constants
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
@@ -35,7 +38,10 @@ from crewai.utilities.events.flow_events import (
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
on_first_execution_tracing_confirmation,
)
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
@@ -467,13 +473,18 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
self._completed_methods: Set[str] = set() # Track completed methods for reload
self._persistence: Optional[FlowPersistence] = persistence
# Initialize state with initial values
self._state = self._create_initial_state()
self.tracing = tracing
if is_tracing_enabled() or tracing:
trace_listener = TraceCollectionListener(tracing=tracing)
if (
on_first_execution_tracing_confirmation()
or is_tracing_enabled()
or self.tracing
):
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
# Apply any additional kwargs
if kwargs:
@@ -718,6 +729,73 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def reload(self, execution_data: FlowExecutionData) -> None:
"""Reloads the flow from an execution data dict.
This method restores the flow's execution ID, completed methods, and state,
allowing it to resume from where it left off.
Args:
execution_data: Flow execution data containing:
- id: Flow execution ID
- flow: Flow structure
- completed_methods: List of successfully completed methods
- execution_methods: All execution methods with their status
"""
flow_id = execution_data.get("id")
if flow_id:
self._update_state_field("id", flow_id)
self._completed_methods = {
name
for method_data in execution_data.get("completed_methods", [])
if (name := method_data.get("flow_method", {}).get("name")) is not None
}
execution_methods = execution_data.get("execution_methods", [])
if not execution_methods:
return
sorted_methods = sorted(
execution_methods,
key=lambda m: m.get("started_at", ""),
)
state_to_apply = None
for method in reversed(sorted_methods):
if method.get("final_state"):
state_to_apply = method["final_state"]
break
if not state_to_apply and sorted_methods:
last_method = sorted_methods[-1]
if last_method.get("initial_state"):
state_to_apply = last_method["initial_state"]
if state_to_apply:
self._apply_state_updates(state_to_apply)
for i, method in enumerate(sorted_methods[:-1]):
method_name = method.get("flow_method", {}).get("name")
if method_name:
self._completed_methods.add(method_name)
def _update_state_field(self, field_name: str, value: Any) -> None:
"""Update a single field in the state."""
if isinstance(self._state, dict):
self._state[field_name] = value
elif hasattr(self._state, field_name):
object.__setattr__(self._state, field_name, value)
def _apply_state_updates(self, updates: Dict[str, Any]) -> None:
"""Apply multiple state updates efficiently."""
if isinstance(self._state, dict):
self._state.update(updates)
elif hasattr(self._state, "__dict__"):
for key, value in updates.items():
if hasattr(self._state, key):
object.__setattr__(self._state, key, value)
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution in a synchronous context.
@@ -746,68 +824,81 @@ class Flow(Generic[T], metaclass=FlowMeta):
Returns:
The final output from the flow, which is the result of the last executed method.
"""
if inputs:
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
self._state["id"] = inputs["id"]
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
ctx = baggage.set_baggage("flow_inputs", inputs or {})
flow_token = attach(ctx)
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
try:
# Reset flow state for fresh execution unless restoring from persistence
is_restoring = inputs and "id" in inputs and self._persistence is not None
if not is_restoring:
# Clear completed methods and outputs for a fresh start
self._completed_methods.clear()
self._method_outputs.clear()
# Update state with any additional inputs (ignoring the 'id' key)
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
if inputs:
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
self._state["id"] = inputs["id"]
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
self,
FlowStartedEvent(
type="flow_started",
flow_name=self.name or self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
f"Flow started with ID: {self.flow_id}", color="bold_magenta"
)
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
if inputs is not None and "id" not in inputs:
self._initialize_state(inputs)
# Update state with any additional inputs (ignoring the 'id' key)
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
tasks = [
self._execute_start_method(start_method)
for start_method in self._start_methods
]
await asyncio.gather(*tasks)
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
self,
FlowStartedEvent(
type="flow_started",
flow_name=self.name or self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
f"Flow started with ID: {self.flow_id}", color="bold_magenta"
)
final_output = self._method_outputs[-1] if self._method_outputs else None
if inputs is not None and "id" not in inputs:
self._initialize_state(inputs)
crewai_event_bus.emit(
self,
FlowFinishedEvent(
type="flow_finished",
flow_name=self.name or self.__class__.__name__,
result=final_output,
),
)
tasks = [
self._execute_start_method(start_method)
for start_method in self._start_methods
]
await asyncio.gather(*tasks)
return final_output
final_output = self._method_outputs[-1] if self._method_outputs else None
crewai_event_bus.emit(
self,
FlowFinishedEvent(
type="flow_finished",
flow_name=self.name or self.__class__.__name__,
result=final_output,
),
)
return final_output
finally:
detach(flow_token)
async def _execute_start_method(self, start_method_name: str) -> None:
"""
@@ -826,7 +917,13 @@ class Flow(Generic[T], metaclass=FlowMeta):
- Executes the start method and captures its result
- Triggers execution of any listeners waiting on this start method
- Part of the flow's initialization sequence
- Skips execution if method was already completed (e.g., after reload)
"""
if start_method_name in self._completed_methods:
last_output = self._method_outputs[-1] if self._method_outputs else None
await self._execute_listeners(start_method_name, last_output)
return
result = await self._execute_method(
start_method_name, self._methods[start_method_name]
)
@@ -861,6 +958,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
self._method_execution_counts.get(method_name, 0) + 1
)
self._completed_methods.add(method_name)
crewai_event_bus.emit(
self,
MethodExecutionFinishedEvent(
@@ -1023,12 +1121,18 @@ class Flow(Generic[T], metaclass=FlowMeta):
- Handles errors gracefully with detailed logging
- Recursively triggers listeners of this listener
- Supports both parameterized and parameter-less listeners
- Skips execution if method was already completed (e.g., after reload)
Error Handling
-------------
Catches and logs any exceptions during execution, preventing
individual listener failures from breaking the entire flow.
"""
# TODO: greyson fix
# if listener_name in self._completed_methods:
# await self._execute_listeners(listener_name, None)
# return
try:
method = self._methods[listener_name]
@@ -1047,12 +1151,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
await self._execute_listeners(listener_name, listener_result)
except Exception as e:
print(
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
)
import traceback
traceback.print_exc()
logger.error(f"Error executing listener {listener_name}: {e}")
raise
def _log_flow_event(

95
src/crewai/flow/types.py Normal file
View File

@@ -0,0 +1,95 @@
"""Type definitions for CrewAI Flow module.
This module contains TypedDict definitions and type aliases used throughout
the Flow system.
"""
from typing import Any, TypedDict
from typing_extensions import NotRequired, Required
class FlowMethodData(TypedDict):
"""Flow method information.
Attributes:
name: The name of the flow method.
starting_point: Whether this method is a starting point for the flow.
"""
name: str
starting_point: NotRequired[bool]
class CompletedMethodData(TypedDict):
"""Completed method information.
Represents a flow method that has been successfully executed.
Attributes:
flow_method: The flow method information.
status: The completion status of the method.
"""
flow_method: FlowMethodData
status: str
class ExecutionMethodData(TypedDict, total=False):
"""Execution method information.
Contains detailed information about a method's execution, including
timing, state, and any error details.
Attributes:
flow_method: The flow method information.
started_at: ISO timestamp when the method started execution.
finished_at: ISO timestamp when the method finished execution, if completed.
status: Current status of the method execution.
initial_state: The state before method execution.
final_state: The state after method execution.
error_details: Details about any error that occurred during execution.
"""
flow_method: Required[FlowMethodData]
started_at: Required[str]
status: Required[str]
finished_at: str
initial_state: dict[str, Any]
final_state: dict[str, Any]
error_details: dict[str, Any]
class FlowData(TypedDict):
"""Flow structure information.
Contains metadata about the flow structure and its methods.
Attributes:
name: The name of the flow.
flow_methods_attributes: List of all flow methods and their attributes.
"""
name: str
flow_methods_attributes: list[FlowMethodData]
class FlowExecutionData(TypedDict):
"""Flow execution data.
Complete execution data for a flow, including its current state,
completed methods, and execution history. Used for resuming flows
from a previous state.
Attributes:
id: Unique identifier for the flow execution.
flow: Flow structure and metadata.
inputs: Input data provided to the flow.
completed_methods: List of methods that have been successfully completed.
execution_methods: Detailed execution history for all methods.
"""
id: str
flow: FlowData
inputs: dict[str, Any]
completed_methods: list[CompletedMethodData]
execution_methods: list[ExecutionMethodData]

View File

@@ -11,6 +11,8 @@ import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
from pydantic.warnings import PydanticDeprecatedSince211
import warnings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
@@ -85,6 +87,15 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
category=PydanticDeprecatedSince211,
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self.app = create_persistent_client(
path=os.path.join(db_storage_path(), "knowledge"),
settings=Settings(allow_reset=True),

View File

@@ -12,6 +12,8 @@ from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.chromadb import create_persistent_client
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
import warnings
from pydantic.warnings import PydanticDeprecatedSince211
@contextlib.contextmanager
@@ -62,6 +64,15 @@ class RAGStorage(BaseRAGStorage):
def _initialize_app(self):
from chromadb.config import Settings
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
category=PydanticDeprecatedSince211,
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self._set_embedder_config()
self.app = create_persistent_client(

View File

@@ -72,6 +72,10 @@ class Task(BaseModel):
output_pydantic: Pydantic model for task output.
security_config: Security configuration including fingerprinting.
tools: List of tools/resources limited for task execution.
allow_crewai_trigger_context: Optional flag to control crewai_trigger_payload injection.
None (default): Auto-inject for first task only.
True: Always inject trigger payload for this task.
False: Never inject trigger payload, even for first task.
"""
__hash__ = object.__hash__ # type: ignore
@@ -163,6 +167,10 @@ class Task(BaseModel):
end_time: Optional[datetime.datetime] = Field(
default=None, description="End time of the task execution"
)
allow_crewai_trigger_context: Optional[bool] = Field(
default=None,
description="Whether this task should append 'Trigger Payload: {crewai_trigger_payload}' to the task description when crewai_trigger_payload exists in crew inputs.",
)
model_config = {"arbitrary_types_allowed": True}
@field_validator("guardrail")
@@ -548,12 +556,23 @@ class Task(BaseModel):
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
"""
tasks_slices = [self.description]
description = self.description
should_inject = self.allow_crewai_trigger_context
if should_inject and self.agent:
crew = getattr(self.agent, 'crew', None)
if crew and hasattr(crew, '_inputs') and crew._inputs:
trigger_payload = crew._inputs.get("crewai_trigger_payload")
if trigger_payload is not None:
description += f"\n\nTrigger Payload: {trigger_payload}"
tasks_slices = [description]
output = self.i18n.slice("expected_output").format(
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
tasks_slices = [description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.

18
src/crewai/types/hitl.py Normal file
View File

@@ -0,0 +1,18 @@
from typing import List, Dict, TypedDict
class HITLResumeInfo(TypedDict, total=False):
"""HITL resume information passed from flow to crew."""
task_id: str
crew_execution_id: str
task_key: str
task_output: str
human_feedback: str
previous_messages: List[Dict[str, str]]
class CrewInputsWithHITL(TypedDict, total=False):
"""Crew inputs that may contain HITL resume information."""
_hitl_resume: HITLResumeInfo

View File

@@ -1,9 +1,10 @@
import os
import re
import portalocker
from chromadb import PersistentClient
from hashlib import md5
from typing import Optional
from crewai.utilities.paths import db_storage_path
MIN_COLLECTION_LENGTH = 3
MAX_COLLECTION_LENGTH = 63
@@ -27,7 +28,9 @@ def is_ipv4_pattern(name: str) -> bool:
return bool(IPV4_PATTERN.match(name))
def sanitize_collection_name(name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH) -> str:
def sanitize_collection_name(
name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH
) -> str:
"""
Sanitize a collection name to meet ChromaDB requirements:
1. 3-63 characters long
@@ -72,7 +75,8 @@ def create_persistent_client(path: str, **kwargs):
concurrent creations. Works for both multi-threads and multi-processes
environments.
"""
lockfile = f"chromadb-{md5(path.encode(), usedforsecurity=False).hexdigest()}.lock"
lock_id = md5(path.encode(), usedforsecurity=False).hexdigest()
lockfile = os.path.join(db_storage_path(), f"chromadb-{lock_id}.lock")
with portalocker.Lock(lockfile):
client = PersistentClient(path=path, **kwargs)

View File

@@ -67,11 +67,9 @@ from .memory_events import (
# events
from .event_listener import EventListener
from .third_party.agentops_listener import agentops_listener
__all__ = [
"EventListener",
"agentops_listener",
"CrewAIEventsBus",
"crewai_event_bus",
"AgentExecutionStartedEvent",
@@ -105,7 +103,6 @@ __all__ = [
"MemoryRetrievalStartedEvent",
"MemoryRetrievalCompletedEvent",
"EventListener",
"agentops_listener",
"CrewKickoffStartedEvent",
"CrewKickoffCompletedEvent",
"CrewKickoffFailedEvent",

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from crewai.utilities.constants import CREWAI_BASE_URL
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.authentication.token import AuthError, get_auth_token
from crewai.cli.version import get_crewai_version
from crewai.cli.plus_api import PlusAPI
@@ -40,30 +40,42 @@ class TraceBatch:
class TraceBatchManager:
"""Single responsibility: Manage batches and event buffering"""
is_current_batch_ephemeral: bool = False
def __init__(self):
self.plus_api = PlusAPI(api_key=get_auth_token())
try:
self.plus_api = PlusAPI(api_key=get_auth_token())
except AuthError:
self.plus_api = PlusAPI(api_key="")
self.trace_batch_id: Optional[str] = None # Backend ID
self.current_batch: Optional[TraceBatch] = None
self.event_buffer: List[TraceEvent] = []
self.execution_start_times: Dict[str, datetime] = {}
def initialize_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
self,
user_context: Dict[str, str],
execution_metadata: Dict[str, Any],
use_ephemeral: bool = False,
) -> TraceBatch:
"""Initialize a new trace batch"""
self.current_batch = TraceBatch(
user_context=user_context, execution_metadata=execution_metadata
)
self.event_buffer.clear()
self.is_current_batch_ephemeral = use_ephemeral
self.record_start_time("execution")
self._initialize_backend_batch(user_context, execution_metadata)
self._initialize_backend_batch(user_context, execution_metadata, use_ephemeral)
return self.current_batch
def _initialize_backend_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
self,
user_context: Dict[str, str],
execution_metadata: Dict[str, Any],
use_ephemeral: bool = False,
):
"""Send batch initialization to backend"""
@@ -74,6 +86,7 @@ class TraceBatchManager:
payload = {
"trace_id": self.current_batch.batch_id,
"execution_type": execution_metadata.get("execution_type", "crew"),
"user_identifier": execution_metadata.get("user_context", None),
"execution_context": {
"crew_fingerprint": execution_metadata.get("crew_fingerprint"),
"crew_name": execution_metadata.get("crew_name", None),
@@ -91,12 +104,22 @@ class TraceBatchManager:
"execution_started_at": datetime.now(timezone.utc).isoformat(),
},
}
if use_ephemeral:
payload["ephemeral_trace_id"] = self.current_batch.batch_id
response = self.plus_api.initialize_trace_batch(payload)
response = (
self.plus_api.initialize_ephemeral_trace_batch(payload)
if use_ephemeral
else self.plus_api.initialize_trace_batch(payload)
)
if response.status_code == 201 or response.status_code == 200:
response_data = response.json()
self.trace_batch_id = response_data["trace_id"]
self.trace_batch_id = (
response_data["trace_id"]
if not use_ephemeral
else response_data["ephemeral_trace_id"]
)
console = Console()
panel = Panel(
f"✅ Trace batch initialized with session ID: {self.trace_batch_id}",
@@ -134,7 +157,11 @@ class TraceBatchManager:
if not self.trace_batch_id:
raise Exception("❌ Trace batch ID not found")
response = self.plus_api.send_trace_events(self.trace_batch_id, payload)
response = (
self.plus_api.send_ephemeral_trace_events(self.trace_batch_id, payload)
if self.is_current_batch_ephemeral
else self.plus_api.send_trace_events(self.trace_batch_id, payload)
)
if response.status_code == 200 or response.status_code == 201:
self.event_buffer.clear()
@@ -153,7 +180,6 @@ class TraceBatchManager:
if self.event_buffer:
self._send_events_to_backend()
self._finalize_backend_batch()
self.current_batch.events = self.event_buffer.copy()
@@ -163,6 +189,7 @@ class TraceBatchManager:
self.current_batch = None
self.event_buffer.clear()
self.trace_batch_id = None
self.is_current_batch_ephemeral = False
self._cleanup_batch_data()
@@ -182,12 +209,24 @@ class TraceBatchManager:
"final_event_count": total_events,
}
response = self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
response = (
self.plus_api.finalize_ephemeral_trace_batch(
self.trace_batch_id, payload
)
if self.is_current_batch_ephemeral
else self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
)
if response.status_code == 200:
access_code = response.json().get("access_code", None)
console = Console()
return_link = (
f"{CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}"
if not self.is_current_batch_ephemeral and access_code is None
else f"{CREWAI_BASE_URL}/crewai_plus/ephemeral_trace_batches/{self.trace_batch_id}?access_code={access_code}"
)
panel = Panel(
f"✅ Trace batch finalized with session ID: {self.trace_batch_id}. View here: {CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}",
f"✅ Trace batch finalized with session ID: {self.trace_batch_id}. View here: {return_link} {f', Access Code: {access_code}' if access_code else ''}",
title="Trace Batch Finalization",
border_style="green",
)

View File

@@ -13,7 +13,6 @@ from crewai.utilities.events.agent_events import (
AgentExecutionErrorEvent,
)
from crewai.utilities.events.listeners.tracing.types import TraceEvent
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
@@ -67,7 +66,7 @@ from crewai.utilities.events.memory_events import (
MemorySaveFailedEvent,
)
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.authentication.token import AuthError, get_auth_token
from crewai.cli.version import get_crewai_version
@@ -76,13 +75,12 @@ class TraceCollectionListener(BaseEventListener):
Trace collection listener that orchestrates trace collection
"""
trace_enabled: Optional[bool] = False
complex_events = ["task_started", "llm_call_started", "llm_call_completed"]
_instance = None
_initialized = False
def __new__(cls, batch_manager=None, tracing: Optional[bool] = False):
def __new__(cls, batch_manager=None):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
@@ -90,25 +88,22 @@ class TraceCollectionListener(BaseEventListener):
def __init__(
self,
batch_manager: Optional[TraceBatchManager] = None,
tracing: Optional[bool] = False,
):
if self._initialized:
return
super().__init__()
self.batch_manager = batch_manager or TraceBatchManager()
self.tracing = tracing or False
self.trace_enabled = self._check_trace_enabled()
self._initialized = True
def _check_trace_enabled(self) -> bool:
def _check_authenticated(self) -> bool:
"""Check if tracing should be enabled"""
auth_token = get_auth_token()
if not auth_token:
try:
res = bool(get_auth_token())
return res
except AuthError:
return False
return is_tracing_enabled() or self.tracing
def _get_user_context(self) -> Dict[str, str]:
"""Extract user context for tracing"""
return {
@@ -120,8 +115,6 @@ class TraceCollectionListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
"""Setup event listeners - delegates to specific handlers"""
if not self.trace_enabled:
return
self._register_flow_event_handlers(crewai_event_bus)
self._register_context_event_handlers(crewai_event_bus)
@@ -167,7 +160,7 @@ class TraceCollectionListener(BaseEventListener):
@event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
if not self.batch_manager.is_batch_initialized():
self._initialize_batch(source, event)
self._initialize_crew_batch(source, event)
self._handle_trace_event("crew_kickoff_started", source, event)
@event_bus.on(CrewKickoffCompletedEvent)
@@ -287,7 +280,7 @@ class TraceCollectionListener(BaseEventListener):
def on_agent_reasoning_failed(source, event):
self._handle_action_event("agent_reasoning_failed", source, event)
def _initialize_batch(self, source: Any, event: Any):
def _initialize_crew_batch(self, source: Any, event: Any):
"""Initialize trace batch"""
user_context = self._get_user_context()
execution_metadata = {
@@ -296,7 +289,7 @@ class TraceCollectionListener(BaseEventListener):
"crewai_version": get_crewai_version(),
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
self._initialize_batch(user_context, execution_metadata)
def _initialize_flow_batch(self, source: Any, event: Any):
"""Initialize trace batch for Flow execution"""
@@ -308,7 +301,20 @@ class TraceCollectionListener(BaseEventListener):
"execution_type": "flow",
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
self._initialize_batch(user_context, execution_metadata)
def _initialize_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
):
"""Initialize trace batch if ephemeral"""
if not self._check_authenticated():
self.batch_manager.initialize_batch(
user_context, execution_metadata, use_ephemeral=True
)
else:
self.batch_manager.initialize_batch(
user_context, execution_metadata, use_ephemeral=False
)
def _handle_trace_event(self, event_type: str, source: Any, event: Any):
"""Generic handler for context end events"""

View File

@@ -1,5 +1,153 @@
import os
import platform
import uuid
import hashlib
import subprocess
import getpass
from pathlib import Path
from datetime import datetime
import re
import json
import click
from crewai.utilities.paths import db_storage_path
def is_tracing_enabled() -> bool:
return os.getenv("CREWAI_TRACING_ENABLED", "false").lower() == "true"
def on_first_execution_tracing_confirmation() -> bool:
if _is_test_environment():
return False
if is_first_execution():
mark_first_execution_done()
return click.confirm(
"This is the first execution of CrewAI. Do you want to enable tracing?",
default=True,
show_default=True,
)
return False
def _is_test_environment() -> bool:
"""Detect if we're running in a test environment."""
return os.environ.get("CREWAI_TESTING", "").lower() == "true"
def _get_machine_id() -> str:
"""Stable, privacy-preserving machine fingerprint (cross-platform)."""
parts = []
try:
mac = ":".join(
["{:02x}".format((uuid.getnode() >> b) & 0xFF) for b in range(0, 12, 2)][
::-1
]
)
parts.append(mac)
except Exception:
pass
sysname = platform.system()
parts.append(sysname)
try:
if sysname == "Darwin":
res = subprocess.run(
["system_profiler", "SPHardwareDataType"],
capture_output=True,
text=True,
timeout=2,
)
m = re.search(r"Hardware UUID:\s*([A-Fa-f0-9\-]+)", res.stdout)
if m:
parts.append(m.group(1))
elif sysname == "Linux":
try:
parts.append(Path("/etc/machine-id").read_text().strip())
except Exception:
parts.append(Path("/sys/class/dmi/id/product_uuid").read_text().strip())
elif sysname == "Windows":
res = subprocess.run(
["wmic", "csproduct", "get", "UUID"],
capture_output=True,
text=True,
timeout=2,
)
lines = [line.strip() for line in res.stdout.splitlines() if line.strip()]
if len(lines) >= 2:
parts.append(lines[1])
except Exception:
pass
return hashlib.sha256("".join(parts).encode()).hexdigest()
def _user_data_file() -> Path:
base = Path(db_storage_path())
base.mkdir(parents=True, exist_ok=True)
return base / ".crewai_user.json"
def _load_user_data() -> dict:
p = _user_data_file()
if p.exists():
try:
return json.loads(p.read_text())
except Exception:
pass
return {}
def _save_user_data(data: dict) -> None:
try:
p = _user_data_file()
p.write_text(json.dumps(data, indent=2))
except Exception:
pass
def get_user_id() -> str:
"""Stable, anonymized user identifier with caching."""
data = _load_user_data()
if "user_id" in data:
return data["user_id"]
try:
username = getpass.getuser()
except Exception:
username = "unknown"
seed = f"{username}|{_get_machine_id()}"
uid = hashlib.sha256(seed.encode()).hexdigest()
data["user_id"] = uid
_save_user_data(data)
return uid
def is_first_execution() -> bool:
"""True if this is the first execution for this user."""
data = _load_user_data()
return not data.get("first_execution_done", False)
def mark_first_execution_done() -> None:
"""Mark that the first execution has been completed."""
data = _load_user_data()
if data.get("first_execution_done", False):
return
data.update(
{
"first_execution_done": True,
"first_execution_at": datetime.now().timestamp(),
"user_id": get_user_id(),
"machine_id": _get_machine_id(),
}
)
_save_user_data(data)

View File

@@ -1 +0,0 @@
from .agentops_listener import agentops_listener

View File

@@ -1,67 +0,0 @@
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
@crewai_event_bus.on(TaskEvaluationEvent)
def on_task_evaluation(source, event: TaskEvaluationEvent):
if self.session:
self.session.create_agent(
name="Task Evaluator", agent_id=str(source.original_agent.id)
)
agentops_listener = AgentOpsListener()

View File

@@ -21,7 +21,7 @@ from crewai.utilities import RPMController
from crewai.utilities.errors import AgentRepositoryError
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
from crewai.process import Process
def test_agent_llm_creation_with_env_vars():
# Store original environment variables
@@ -1209,6 +1209,181 @@ Thought:<|eot_id|>
assert mock_format_prompt.return_value == expected_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload: Important context data" in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_without_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=False
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
assert "Important context data" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context_no_payload():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"other_input": "other data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_do_not_allow_crewai_trigger_context_for_first_task_hierarchical():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task],
process=Process.hierarchical,
manager_llm="gpt-4o"
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" not in first_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_first_task_auto_inject_trigger():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" in first_prompt
second_prompt = second_task.prompt()
assert "Process secondary data" in second_prompt
assert "Trigger Payload:" not in second_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ensure_first_task_allow_crewai_trigger_context_is_false_does_not_inject():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
allow_crewai_trigger_context=False
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
allow_crewai_trigger_context=True
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Context data"})
first_prompt = first_task.prompt()
assert "Trigger Payload: Context data" not in first_prompt
second_prompt = second_task.prompt()
assert "Trigger Payload: Context data" in second_prompt
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_training_handler(crew_training_handler):
task_prompt = "What is 1 + 1?"
@@ -1896,7 +2071,7 @@ def test_agent_with_knowledge_sources_generate_search_query():
assert "red" in result.raw.lower()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1904,8 +2079,11 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=mock_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=mock_knowledge,
)
# Create a task that requires the agent to use the knowledge
@@ -1920,7 +2098,7 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_only_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1928,33 +2106,10 @@ def test_agent_with_only_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY'))
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent
)
crew = Crew(agents=[agent], tasks=[task],knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=agent_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
)
# Create a task that requires the agent to use the knowledge
@@ -1964,7 +2119,35 @@ def test_agent_knowledege_with_crewai_knowledge():
agent=agent,
)
crew = Crew(agents=[agent],tasks=[task],knowledge=crew_knowledge)
crew = Crew(agents=[agent], tasks=[task], knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=agent_knowledge,
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], knowledge=crew_knowledge)
crew.kickoff()
agent_knowledge.query.assert_called_once()
crew_knowledge.query.assert_called_once()
@@ -2164,7 +2347,12 @@ def mock_get_auth_token():
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
from crewai_tools import SerperDevTool, XMLSearchTool, CSVSearchTool, EnterpriseActionTool
from crewai_tools import (
SerperDevTool,
XMLSearchTool,
CSVSearchTool,
EnterpriseActionTool,
)
mock_get_response = MagicMock()
mock_get_response.status_code = 200
@@ -2173,12 +2361,23 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
"goal": "test goal",
"backstory": "test backstory",
"tools": [
{"module": "crewai_tools", "name": "SerperDevTool", "init_params": {"n_results": 30}},
{"module": "crewai_tools", "name": "XMLSearchTool", "init_params": {"summarize": True}},
{
"module": "crewai_tools",
"name": "SerperDevTool",
"init_params": {"n_results": "30"},
},
{
"module": "crewai_tools",
"name": "XMLSearchTool",
"init_params": {"summarize": "true"},
},
{"module": "crewai_tools", "name": "CSVSearchTool", "init_params": {}},
# using a tools that returns a list of BaseTools
{"module": "crewai_tools", "name": "CrewaiEnterpriseTools", "init_params": {"actions_list": [], "enterprise_token": "test_key"}},
{
"module": "crewai_tools",
"name": "CrewaiEnterpriseTools",
"init_params": {"actions_list": [], "enterprise_token": "test_key"},
},
],
}
mock_get_agent.return_value = mock_get_response
@@ -2221,7 +2420,9 @@ def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}],
"tools": [
{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}
],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent", role="Custom Role")

View File

@@ -0,0 +1,126 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdi9swEHz3r1j0HBc7ZydXvx1HC0evhT6UUtrDKNLa1lXWqpJ8aTjy
34vsXOz0A/pi8M7OaGZ3nxMApiSrgImOB9Fbnd4Why/v79HeePeD37/Zfdx8evf5+rY4fNjdPbJV
ZNDuEUV4Yb0S1FuNQZGZYOGQB4yq+bYsr7J1nhcj0JNEHWmtDWlBaa+MStfZukizbZpfn9gdKYGe
VfA1AQB4Hr/Rp5H4k1WQrV4qPXrPW2TVuQmAOdKxwrj3ygduAlvNoCAT0IzW78DQHgQ30KonBA5t
tA3c+D06gG/mrTJcw834X0GHWhPsyWm5FHTYDJ7HUGbQegFwYyjwOJQxysMJOZ7Na2qto53/jcoa
ZZTvaofck4lGfSDLRvSYADyMQxoucjPrqLehDvQdx+fycjvpsXk3C/TqBAYKXC/q29NoL/VqiYEr
7RdjZoKLDuVMnXfCB6loASSL1H+6+Zv2lFyZ9n/kZ0AItAFlbR1KJS4Tz20O4+n+q+085dEw8+ie
lMA6KHRxExIbPujpoJg/+IB93SjTorNOTVfV2LrcZLzZYFm+Zskx+QUAAP//AwB1vYZ+YwMAAA==
headers:
CF-RAY:
- 96fc9f29dea3cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
path=/; expires=Sat, 16-Aug-25 00:25:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '735'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '753'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_212fde9d945a462ba0d89ea856131dce
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,123 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
_cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLLbtswELzrKxY8W4VkW3ajW1GgQA7JJUGLog0EmlxJrCkuQ1J2g8D/
XlByLLkPoBcB2tkZzuzuawLAlGQlMNHyIDqr04/rl6/3z+6hu8vq/cOX5936cRPE3i8Px88rtogM
2v1AEd5Y7wR1VmNQZEZYOOQBo2q+LYpVtszzYgA6kqgjrbEhXVPaKaPSZbZcp9k2zd+f2S0pgZ6V
8C0BAHgdvtGnkfiTlZAt3iodes8bZOWlCYA50rHCuPfKB24CW0ygIBPQDNZvwdARBDfQqAMChyba
Bm78ER3Ad/NJGa7hw/BfQotaExzJaTkXdFj3nsdQptd6BnBjKPA4lCHK0xk5Xcxraqyjnf+Nympl
lG8rh9yTiUZ9IMsG9JQAPA1D6q9yM+uos6EKtMfhubzYjnps2s0MXZ3BQIHrWX17Hu21XiUxcKX9
bMxMcNGinKjTTngvFc2AZJb6Tzd/0x6TK9P8j/wECIE2oKysQ6nEdeKpzWE83X+1XaY8GGYe3UEJ
rIJCFzchsea9Hg+K+RcfsKtqZRp01qnxqmpbFZuM1xssihuWnJJfAAAA//8DAFSowWRjAwAA
headers:
CF-RAY:
- 96fc9f301bf7cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:16 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '685'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '711'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3f0ec42447374a76a22a4cdb9f336279
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,501 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2921'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFTJbtswEL37KwY824aT2E7qWxcUSE9Fa6CHujDG5EiahhoK5MiOG+Tf
C0re0qZAL4LAN2+WN8vTAMCwMwswtkK1deNH7+dXd5+0lTl/mZYPzd1mOvHNuzhffvt6szTDzAib
n2T1yBrbUDeelIP0sI2EStnr1e1sNptNbmZvOqAOjnymlY2OpmF0PbmejiZ3o8n8QKwCW0pmAd8H
AABP3TenKI4ezQImw+NLTSlhSWZxMgIwMfj8YjAlToqiZngGbRAl6bJeVqEtK13APQiRAw3gyFOJ
SqAVgWJ6gFBAE4OllFjK7pmFldGDQ8XMyW8fOSaFtyWJ5ieS1EaCHUGFWwIErULMwQDFAVrbxhwE
Bf0+cRrDPezY+xxpy66LXsOOtQL0vgsglFPAuAdHiuxTDnNQPNtz6tOloiCrvCW/H69kJW9tbsgC
PhwL24X40HPzH8WjCdxL0+oCnlYmO1qZBazM577yFyWvzBBWvYyP2pstj2KxbIPfUuor+/WqYon0
JEwkS7wlN4ZlroDF+tZRAusJ5cjOrCFYVCpD5M4pKxQhnvQbAjsS5WKfQZQ9aCRxCUKEBlUpShp2
0qe2rvHgJPsuWBxLmXICBGVAD9xJe+hbTiRCK45inqRsmydiV6GecoPsI6eX+u7K/lQwS+Ky0gSa
CRYFNgQu4k6giKEG1vFRzkM3Oj0vpmllni+nN1LRJszLI633FwCKBMXcyG5vfhyQ59Om+FA2MWzS
H1RTsHCq1pEwBclbkTQ0pkOfBwA/uo1sXyyZaWKoG11reKAu3PzquvdnzjfgjF7dTA+oBkV/Bm6n
8+ErDteHCb9YamPRVuTO1PMFwNZxuAAGF2X/nc5rvvvSWcr/cX8GrKVGya2bSI7ty5LPZpHyjfyX
2UnmLmGTKG7Z0lqZYm6FowJb358vk/ZJqV4XLCXFJnJ/w4pmPZ1vimJCE3tnBs+D3wAAAP//AwBY
9uEVzAUAAA==
headers:
CF-RAY:
- 97144bd22eb41abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
path=/; expires=Mon, 18-Aug-25 21:22:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3236'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '3253'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999308'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999308'
x-ratelimit-reset-project-tokens:
- 1ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_08aa9de2797d4fee93003bdc7fc19156
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Your best answer to your coworker asking you this, accounting for the context
shared.\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nThis is the context you''re working with:\nThe task involves analyzing
the initial data set we have received. This includes cleaning the data, categorizing
it for analysis, identifying any trends or patterns, and summarizing the findings.
The goal is to have a clear understanding of what the data indicates and any
initial insights that can be drawn from it.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1262'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbfbxRHDH7PX+HuE6DLKSEkQN6AChUhoUpFULVBkTPj3XUzO96MZ+9y
RfzvlWfubi+USn3Jj/HaY3+f/Y2/HgE07JtLaFyP2Q1jOH5zcfriwx+v36RP3affN+9buetUT27o
4uMvp5+bhXnIzV/k8s5r6WQYA2WWWM0uEWayqKfPz8/Pz0/OLs6KYRBPwdy6MR8/k+OBIx8/PXn6
7Pjk+fHpi613L+xIm0v48wgA4Gv5aXlGT/fNJZwsdicDqWJHzeX+I4AmSbCTBlVZM8bcLGajk5gp
ltTfQZQ1OIzQ8YoAobO0AaOuKQFcxbccMcCr8v8lfBQYkzhShdwTcOTMGMBjRlDKQG1LLvOKwmYB
a4I1hwCthCBrUFpRwgC3tAHNNCpkAYo6JbJPXSCMC3CYqZPEf9MCMGLY1D886DQMaOcgU4KWo+fY
KRjsiXqKWm5dXsWreLqEJ09+tpzeWFCO3ZMnl3AVAeAY3nLSPCeXaMW0LtVYFVZEKwkGVuXYLYCj
k2gYUswLkASUkkSSSYFiTky63EX+vA3ZY/SBdiFghWEihZsNEOeeEvAwTtksuacBblDJg0TQKSWZ
SlkVUEmQaJCVHSRykrzCuqdEEMkowGTllqtfec/WehgOgTfiPSZvoO1wdRhghYnxJtAhA/sq3QYe
0bJbLqrFLscQIIhDuwEiDqSAiUBHCoF8wU5xIFjj5nEh4OlMwI7O4nxAwwe6P2BhZn3PBHDMAokC
rTBmUOoGitn6DnN1QvalF0qbKM9EfOxZgeNKwooUuiTTuAd1FLYoe9SdDIP96jGhy5RYMztdgE6u
B1TwNEiXcOzLaeaBYKTE4rV0A8ZNaeiRUitpwOhsKjw7zJIUHr3/9Z0+tjINsFbcVFpCYoHpzGD6
mCj60uG/Ys6UIrzzFDO37L7H7DPnvuBTZoWq1wydLxXOoG5zAgRPGTkUhwqVEc/1mg1ky0BLsLGm
oMtDJEuwLZxQC9CMuSCFAbJIqN4r1gnDlutyxxSdrMj6ONTDnkcLmHuOe6aX+8kJIreAucKsZNO1
T3kBTtIuDjihtmXH1hJVH4wJ5S4W4GIGmXJgStuGGXADie4mNhqmVOcwrkgzdyViIeSZEfLbVmis
zrdbmXmgH99NmSkQB9POKlEbkPahRq17dv0ORhcmT3AjuYc7Q8uQXFnTKHd9rkDeTRjzzjJQTuwe
UrK7SXuZggeKDkedAuY6P9aRW1a3LDP5RYEoSrbR3zNdweNhDNt+U0s/96S0L2D5ncBhUAEvbrKJ
LFEDDyXd2b1OWxXuriPNNgGoRVx3BCRSwuR64PaBpF3F1xvYvadVJ5XqmzHDHiWDxLCBHsvDZTOR
YIqeUtG9MmctrI39A00po2lyPOVax5hkxZ4AXRFQw2bPRWmd8jhO9omRGuk+11SWlYoHD9A8YFWA
KdmZWm9IYA+tCXzt4HarHriXbqD7MUiqZkngybGyxOMBb62a+tpaT2gdKNNeKVmNSWwZMQW8iu9a
2Mi0xSVu4G6yNi/UWP7k9wS4gGkvNKaG9vmIKVcSWXev/QLGQKgEgTIMBLdR1j8drhSJ2knR1po4
hXBgwGgdV663ZebL1vJtv74E6cYkN/qda9NyZO2vrWkk2qqiWcamWL8dAXwpa9L0YPNpxiTDmK+z
3FK57unZ8xqvmbez2Xr2cmfNkjHMhouzZ4sfBLyuMqoHm1bj0PXkZ9d5LcPJsxwYjg7K/nc6P4pd
S+fY/Z/ws8E5GjP56zGRZ/ew5PmzRNYw//XZHuaScGN9zI6uM1MyKjy1OIW6Uza60UzDdcuxozQm
rotlO16fX5xge0Hn5y+bo29H/wAAAP//AwCE+a2iZgsAAA==
headers:
CF-RAY:
- 97144be7eaa81abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:47 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4424'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4473'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999717'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999717'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5bf23819c1214732aa87a90207bc0d31
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}, {"role": "assistant", "content": "Thought: I need to delegate
the task of processing the initial data to the First Agent to ensure we have
a thorough and accurate analysis. I will provide them with all the necessary
details to complete this task effectively.\n\nAction: Delegate work to coworker\nAction
Input: {\"task\": \"Process initial data\", \"context\": \"The task involves
analyzing the initial data set we have received. This includes cleaning the
data, categorizing it for analysis, identifying any trends or patterns, and
summarizing the findings. The goal is to have a clear understanding of what
the data indicates and any initial insights that can be drawn from it.\", \"coworker\":
\"First Agent\"}\nObservation: To process the initial data set effectively,
we will follow several key steps to ensure we clean, categorize, analyze, and
summarize our findings comprehensively.\n\n1. **Data Cleaning**: \n - First,
we will review the dataset for missing, inconsistent, or erroneous entries.
\n - We will handle missing values by either imputing them based on surrounding
data or removing records where necessary.\n - Additionally, we will standardize
categorical variables to ensure consistency (e.g., ensuring all location names
are spelled the same way).\n\n2. **Data Categorization**: \n - Next, we will
categorize the data into relevant segments that will aid our analysis. \n -
This involves grouping data points based on common characteristics, such as
demographics, time periods, or any key performance indicators (KPIs) we are
focusing on.\n\n3. **Trend and Pattern Identification**: \n - With the cleaned
and categorized data, we will perform a detailed analysis to identify trends
and patterns.\n - This will involve using statistical tools and visualizations
to uncover relationships within the data. We will look at time series analysis,
correlation coefficients, and any significant outliers that may require further
investigation.\n\n4. **Summarizing Findings**: \n - Finally, we will compile
a summary of our findings which will include both qualitative insights and quantitative
metrics.\n - This summary should encapsulate the key trends identified, any
notable patterns, and implications of these findings.\n - We will also document
any limitations of the data and suggest areas for further research if necessary.\n\nBy
completing these steps, we will not only have a clear understanding of what
the data indicates but also provide actionable insights that can guide our next
steps. This comprehensive analysis will serve as a solid foundation for any
additional exploration or decision-making initiatives related to our project.
\n\nIf you have any questions or need further clarification on any part of this
process, please let me know!"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '5714'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbbbhw3DH33VxDzlATrxTq+pX5LUwQJChRBayRA68ChJc4Ma404ETW7
3gT594LS3pymQF/2IooUeQ55pK9HAA375goa12N2wxiOX12cvPj9t/dv4sOf79z1m8vFKvbdl+fy
YfXlvTQz85C7v8nlrdfcyTAGyiyxml0izGRRTy7Pz8/PF6cXl8UwiKdgbt2Yj8/k+Pni+dnx4sXx
4mLj2As70uYK/joCAPhaPi3F6OmhuYLFbLsykCp21FztNgE0SYKtNKjKmjHmZrY3OomZYsn606dP
N/G6l6nr8xW8hSgruLeP3BO0HDEARl1Ruomvy7+X5d8VXAuMSRyplq0cOTMG8JgRlDJQ25LLvKSw
nsGKYMUhQCshyAqUlpQwwD2tQTONClmAok6JbKsLhHEGDjN1kvgLzQAjhnX94UGnYUBbB5mSJek5
dgqGfaKeopZT5zfxJp7M4dmzXyynVxaUY/fs2RXcRAA4htecNO+TS7RkqoVbFVZEKwkGVuXYzYCj
k2hoUswzkASUkkSSSYFiTkw630b+sAnZY/SBtiFgiWEihbs1EOeeEvAwTtksuacB7lDJg0TQKSWZ
SlkVUEmQaJClLSRykrzCqqdEEMkowGTllqNfes/WfxgOgbcW8Ji8gbbF1WGAJSbGu0CHDOyqdGt4
QvNuPqsWOxxDgCAO7QSIOJACJgIdKQTyBTvFgWCF66eFgOd7ArZ0FucDGn6jhwMW9qzvmACOWSBR
oCXGDErdQDFb32GuTsi+9EJpE+U9Edc9K3BcSliSQpdkGnegjsIWZYe6k2Gwrx4TukyJNbPTGejk
ekAFT4N0Cce+rGYeCEZKLF5LN2Bcl4YeKbWSBozOpsKzwyxJ4cmv797qUyvTAGvFTaUlJBaYTg2m
60TRlw5/hzlTivDWU8zcsvsesw+c+4JPmRWqXnvofKlwD+omJ0DwlJFDcahQGfFcj1lDtgy0BBtr
Cjo/RLIE28AJtQDNmAtSGCCLhOq9ZJ0wbLguZ0zRyZKsj0Nd7Hm0gLnnuGN6vpucIHIPmCvMSjZd
u5Rn4CRt44ATalt2bC2x0QfuYgEtZpApB6a0aZYB15Do88RGwZTqDMYlaeauRCtknBkZf2xExmp8
vZGYR9rx3YSZ+nAgwI08rUHaR/pUBCRMZajvJPfw2RAy9JbWKMpdnyt4nyeMeWsZKCd2j2nYnqC9
TMEDRYejTgFznRnrwg2TG2aZ/Kw0aJRs475jtwLGwxg2PaaWdu5JaZf4/DtRw6ACXtxkU1iiBh5K
unv3OmFVrLuONFvXoxZB3QKfSAmT64HbRzJ2E39ew/YirdqoVO+JPdxRMkgMa+hxaaDbHCSYoqdU
tK7MVgsrY/1AR8o4mgRPudYxJlmyJ0BXRNOw2XFRWsZhhG6yLUZmpIdcU5lXKh5dOvuhqqJLydbU
ekICe2hN1GvXthvFwJ1cAz2MQVI1SwJPjpUlHg94b9XUG9Z6QusQmd5KyWpMYq8QU71ynx/e9Yna
SdGeGnEK4cCA0ZqhkGavjI8by7fduyJINya50+9cm5Yja39rfEq0N4RmGZti/XYE8LG8X6ZHT5Jm
TDKM+TbLPZXjTk5OX9SAzf7JtDefXv60sWbJGA78zk8uZz8IeVt1TQ8eQY1D15Pf++5fTDh5lgPD
0UHh/87nR7Fr8Ry7/xN+b3COxkz+dkzk2T2ueb8tkbH5X9t2QJeEG2sydnSbmZKR4anFKdTnXqNr
zTTcthw7SmPi+uZrx9uzi7u2XdDCvWiOvh39AwAA//8DAIF0yI38CgAA
headers:
CF-RAY:
- 97144c04e89a1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:50 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2974'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2999'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29998628'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29998627'
x-ratelimit-reset-project-tokens:
- 2ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 2ms
x-request-id:
- req_c0cd67fc9b9342a7bd649b1458724745
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,296 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Initial analysis\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '831'
content-type:
- application/json
cookie:
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFVNbxw3DL37VxBzyWV3YTtZ2/EtLerCQNH2kCAFmmDBlTgzjDXURKR2
vQny3wtpNp7Nx6EXr0eUqPceH6nPZwAN++YWGtejuWEMy1+vLm6Gi93rF9f4x+/h7V26/zi8fPv3
xT/34c1vzaKciNsP5OzrqZWLwxjIOMoUdonQqGS9uF6v1+vz5zc3NTBET6Ec60ZbvojLgYWXl+eX
L5bn18uLm+PpPrIjbW7h3zMAgM/1b8Epnh6bWzhffF0ZSBU7am6fNgE0KYay0qAqq6FYs5iDLoqR
VOj3IHEPDgU63hEgdAU2oOieEsA7uWPBAK/q9y287glY2BgDoGA4KCvEFqwn8GgILLsYdqSgtKOE
AVxiY4cB1GjUFdxxUlvAnmDIasCexLg91Awac3L0TcIFkGhOLB1Yj1bWD4CJIFFg3AYCFF8+aIdi
YLGenErDuznXmGJZWsFf4ugEroKLIZAz8hXUSKmNaQCEsdwwsGA6AD1i+a8Ut1zhenIP0MYE6FxO
6A4VxdEBJKS6gBDjQ4Fdt8kBBlYt3zsMueBK4FldohHFMenqnbyTP+lx0sahURcTfzrFKhZhIBSW
rs0BlLqBxHQBOI7hUHJvUdmBGhrrpPpA1kevBbXmYcCa8oEO0BJaTqVQ2fWAWjMvYCDP5bfwKUZd
weuetci3Y08KLMpdbzqhqdhYLfE2V3GqDCRWKm8kniq304JWnq+857IfQzgsYMeaMfCnqu8MqGe1
2CUcdAHb+AhjiIVsTKAOzShNK9UNx2YrNLdUY1k8peL86o4pdc+jVohjPS8Ke7aeZQZXDK50RATI
XqGnMALLk1OrFROJL1iyBaakk15jLF1VWyMRVtYuiqMklfRdTtZTGmKiWmNUJdW5vsUobApZccuB
7VBuRe8TTcapHTKS45YdfMykk1xo0KP47xuFDTBwd+R42gPPFLqIQVfwy9R2JH6qEOsPzV2R7jkE
6LHOBxcIE8QdpR3T/rSyzxS0CNNZP6m8J3wovUC6gC6zL9hyseIek1coQgDL0tNofRkchVF3NEFp
Gv8hq1WLgxB58lWiNhffTpIde5ejrOBNMB7QqDiqUmljFo+TzeZhpWST5mrY0WnGumXqmjFFV4FX
Hp4cK0dZDlg7etKojpfV6VhN1GbFMtolh3ASQJFoE7Ey0N8fI1+eRniI3ZjiVr872rQsrP2muClK
GddqcWxq9MsZwPv6VORvpn8zpjiMtrH4QPW6i/V6ytfML9QcvXx+fYxaNAxz4PnLy8VPEm48GXLQ
k9emceh68vPR+WnC7DmeBM5OaP8I52e5J+os3f9JPweco9HIb8ZEnt23lOdtiT7Uyf/zbU8yV8CN
Fsc72hhTKqXw1GIO07va6EGNhk3L0lEaE0+Paztu1lfn2F7Rev2yOfty9h8AAAD//wMAaw+BEmoI
AAA=
headers:
CF-RAY:
- 97144c8758cd1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM;
path=/; expires=Mon, 18-Aug-25 21:23:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4008'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4027'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999825'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999825'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f287350aa2ac4662b9a5e01e85cc221f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Second Agent. Second
backstory\nYour personal goal is: Second goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process secondary data\n\nTrigger Payload: Context data\n\nThis is the expected
criteria for your final answer: Secondary analysis\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\nThe initial analysis of the data involves several critical
steps. First, we must identify the sources of the data, ensuring that they are
reliable and relevant to the objectives of the project. Once the data is collected,
we perform a preliminary examination to check for accuracy and completeness,
looking for any missing values or discrepancies.\n\nNext, we categorize the
data into meaningful segments, applying basic statistical methods to summarize
key features such as mean, median, and mode. This provides insights into the
distribution and central tendencies of the data.\n\nAdditionally, visualizations
such as histograms, box plots, or scatter plots are created to better understand
relationships and patterns within the data. These visual aids help in identifying
trends, outliers, and potential areas of concern.\n\nFurthermore, we assess
the data for its usability in addressing the specific questions at hand, ensuring
that it aligns with the project''s goals. By the end of this initial analysis,
we will have a clear overview of the data''s strengths and weaknesses, guiding
us towards more in-depth investigations or adjustments needed for future data
collection. Ultimately, this foundational analysis sets the stage for future
analytical processes and decision-making initiatives.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2214'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFZNbxw5Dr37VxB9yaVt2JlpO/EtM0Awe5hd7GIWGGAzMGiJVcVYJSmk
1O3OIP99QKn6w94c5lLoFiWKfHx84p8XACv2q3tYuQmLm3O4/Pn25t2XX/9T7z7+evP77vdNdP++
peH6brz95W1ere1EevxMrhxOXbk050CFU+xmJ4SFzOvN3Waz2Vz/8P5tM8zJU7BjYy6XP6bLmSNf
vr1+++Pl9d3lzbvl9JTYka7u4X8XAAB/tq/FGT09r+7hen1YmUkVR1rdHzcBrCQFW1mhKmvBWFbr
k9GlWCi20P8BMe3AYYSRtwQIo4UNGHVHAvApfuSIAT60//fw20TAkQtjAIwY9soKaYAyEXgsCBy3
KWxJQWlLggGccGGHAbRQ1iv4yKJlDTuCuWoB9hQLD/vmQVMVRy8croGiVuE4Qpmw2PoeUAiEAuNj
IMDo7Q9tMRYoqZ3speHtyVeWZEtX8NvEehalk1o48td+AYET8vzIgcvejhK6aQlrDahKqoedM5Up
+RTSyKRQlTwMSToKLoVgAaS4bvG5FAeW+VUWgccIOy5T8yekhOImQJ716lP8FP8VHZ0hqwe35Bt+
mWRIMgNCNjBmjih7oGe0X3a3oeEmck8tMHSuCrr9ElAjK0VSXTCZCaN9C7saUtWwh5DSk8Xcjsc9
zNzT32KopGvwNQd2WAgoFmFbMgRYnVDG6AyYlq9LNXjQJ9pZmjUUvYKfA2E8gNkybMCwghYcqeUr
1RnT7P4jDTgWGsXqwxFSlYWH1DH7Jz13dllYYxL+eg5hLKnlyXEcagClcaZY1KLeojQ+LREbxTJJ
4UidVnbTsURfKqkhfMBucdRRxxDSTlvQdjPmDpKZ0gCPqOwsxcLaG6MTSe0SrfOMLeYn2sNAWKqQ
XsFPe3AYXA1YTvTDuIaZPONCMtOVlvqIHFuNWn9wVB6noj37hgVrEX6sPVpjg5UPAxSKnnrZXrTg
bmJrAxJrGVRAGFKNvudkec5JaOHU88t6fPCebRuGsO91abIIW9aKgb82HwpajfgKE2tJo+Csa3hM
z5BDKtrTU4elkPQlA4tCdezNWW+f0H1NnLUdyG1/1NZiHI/5WM1IDyEAslfIAfeAsOWCAUw7jVwH
bWqQC0Vv/K4lMMkSU06mo00MhbCh5lJ0JFYSo4EdrS1ao61koXKiY0ONY6lsUhX2DbCPVcpEYraG
Vxed46E3JjW4CBRHQO/lTJQ0k+OB3Ymh1lUTRv9a+ZowHJvbpMgYfJKjRTDfKIwJQ0f0TFYNf+tI
ajEKQeoAi3HNoJ+u4EOXjJPzuRmFvlQWWnARokbVctanx3dAIPM2lRed3psGc5aEbmqY/dSfD7IQ
h64hrx+phuWOQ4AJ2ztnbBWaKKq9e2lLsmXanfP+jSmRUBzL1NPfET6ZYNKh7Wv0JPa6egOyeR8r
+yW1HYrXQ5EvPeUyGfxWl3GhvUHvP1ctXYYikV+ekaFa679+TYCGIYmp539D4RkLWVe1hE8def40
K5XOna6pZ57PsMySXEurZenJsXKKlzM+db01JFvV10BzTjuShdaNLFauwB4GwZl2SZ6sqo+Vg4ea
TWDUoPcUtvalTNKVyApKzzkkOWrjsUPPhxWhoSrawBRrCGcGjDF1yW1j0h+L5dtxMAppzJIe9dXR
1cCRdXqwjk3RhiAtKa+a9dsFwB9tAKsvZqpVljTn8lDSE7Xrfni/6f5Wp7nvzPrudrGWVDCcDHfv
btbfcfjgqSAHPZvhVg7dRP509DTwYfWczgwXZ2n/fzjf891T5zj+Hfcng3OUC/mHbEOSe5nyaZvQ
5zakfH/bEeYW8MoeFXb0UJjESuFpwBr6tLrSvRaaHwaOo2kn95F1yA+b22scbmmzeb+6+HbxFwAA
AP//AwAAHGphwAsAAA==
headers:
CF-RAY:
- 97144ca1b97b1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:21 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '8604'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '8628'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999482'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999485'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_545a8ffcdf954433b9059a5b35dddf20
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,228 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'upstream connect error or disconnect/reset before headers. reset reason:
connection termination'
headers:
CF-RAY:
- 97144cd97d521abc-GRU
Connection:
- keep-alive
Content-Length:
- '95'
Content-Type:
- text/plain
Date:
- Mon, 18 Aug 2025 20:53:22 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
status:
code: 503
message: Service Unavailable
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '1'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xXTW8cNxK961cUBtBFmBEkRfKHbrLiAI6xcBLvYRe7gVFDVneXxSZbLPaMx0H+
e1Bkf42kLPZiWM1hseq9V6/IP04AVmxXt7AyDSbTdm5z/+ry7cW/Ht99vfmIPz/uPt73b0MMP3/6
d/fxx3erte4I269k0rjr3IS2c5Q4+LJsImEijXr5+ubm5ubi+uIqL7TBktNtdZc212HTsufN1cXV
9ebi9ebyzbC7CWxIVrfwnxMAgD/yv5qnt/RtdQsX6/FLSyJY0+p2+hHAKganX1YowpLQp9V6XjTB
J/I59Q/gwx4Meqh5R4BQa9qAXvYUAf7rf2KPDu7y37f64ezszqM7CAv8Rl2I6exMP+vCB59isL1R
EMrXfzYEXR+7IAShgtSwQMy7gAVSgC6GHVs9WPGL1JCXnMh4Ri/sa0gNQc76WwKLCcd9FtjnxRS5
rilChwcX0J7DuwPQN1Rsh+0dxcSefIIdRsatIwH0FtiST1wd8u8ieSvrozyR25ypJcc7irBD1+tu
YC9cN0kgNZgyhOyrEFuwZFg4+E2LDxq1i8GQCMl5gelHLeDTjuKOaT/jpHUJJa1TORMFTFMNvUBL
KbIRMME5MoksBM0FQToyXLHR8jjYNZBXIJV2XwPqchKQ3jSAAoJadcV1H0nWYHpJoaUI5GusqSWf
1hmT0FFEZREdUFWxYfLmcA4f6bBAj71xvaVbreryHM7OPufwWt7t2Rn8I/jUuMPxoSBU6zlkYXtQ
ZFQuYDBRHSJniK401P2Y2vsptRxzwCGS0+ZSXqYi2CeKmMUn6yE5BWFPW+FEsGPhJGuQYBgdtGQZ
QQOXDVp3RWS3aB5AedRcftBcPi3QeD+hoelMnRCqI8xGuuYkcEcRa4JI0gUvBIlbWkPVu4qd0ywg
YqIhj0gS+mgI0LlgctSldsZji3YW0P9CUTNHb6isAcAGVFyFhNw67C0r4AIIXRBO2m9Z+UVU2iwO
JUEV+giPPcZEUdaw59QA+vwjdE6Li4SlsS9vTrUTI+3I93Sej2y4bkjSpitJDZ2gfAtgpLHxmKxK
85dBCncZgPGvd+vc9pG3fcoNGuDVxWm2kpDQlbLOhzo/E0qGP0s00wp7igRhKxR3ZMcaQLj22jXo
04CMdPxAYPuop/x6vQZM5dQisiY4tpgF24YcOfPxd1JdgH//vMcmeUgT9oDgQxoMZQCU/TPR9p32
y9XNafZJjCWt7GuRdtkjigMU7BeHqawg+GPZdw5T1jg0KIBOAkQW8nrIDxen61Ekiob0Ru2r6h20
GB8ofzTYdsi1n8Cf6jzuoSwJdIo5Jpaq9OeQVAVvbk4HUkxo2+Chi8iidhHi5A6PPTpOhyyMqduV
UTaUafgfXbpg4s7PU+VJv84elznRwQDc6owpGLJ/qVP3DZsGGtzN1GVW3mpRkSp16nH6UFXpXzvy
JPl49jvyKcQDtOgHrkYs714yi4LJwu0ee1bHLAlYGhOoYmjh+g00oY95cF1dl/+vc0c6nVmaFflG
fULPVaNaINt3efA9HVtq/j+pLnw9OE+xFhPaLfsMZSlszKR01hFrC11KX9ck4/iclSVJ4a21MnWJ
CbjJGL1qZ0/OFeHk6Y+xpgTYWyVRRbGBpR4WXJao6qt7PU0xrVCSDlNvoQ3lyKyGNIpsnP2H526U
TW5ByzOVS05msqaF28jkxNlVM+i9V6HrVMOOEzr+nnt3sh2NMOMz2FVH+DB0/8jVfdDJI4t7GMvi
TuUtRTFB57HC50l1o+oKPrHv87VqR5JG8c/sUFWFOJJmo/LyErmKpUbmVqtSnak0WmSfsFzJFLij
HtRbqsVos2ZHDb6I6zl8njHIiTgaOmYYcMPFbM/OAflsrprNVi+T2n/PAJ7R56HR6hj2ed7Zp06g
kao+9ZEGsH8jNS/ytsycsTfelwYbxEn2Jfc8orBoYyAyJxG6xC1/JztOVk17OHkD9wNb0AbPKeRA
5pkNpzBdcVX6WCKPyl7UlmN+yLznMsk0PrhQH/KGLaWUbee5bekRI7WF12dmmZHKIvyba/5w2R4a
TaAw/eSeHaDu9bFQ0J/pHC/cOidHaU/X/vGGw22HJqkMxw4ywEo46rJkFQw3m26+Rp0v302Rql5Q
326+d26xgF5neGZfX2y/Dyt/Tm80F+ouhq082bqq2LM0X2K2B32PSQrdKq/+eQLwe34L9kfPu5Wa
QZe+pPBA+bjLV1cl3mp+gs6rN9NqvjHNC6+vrtcvBPxiKSE7WTwnVwZNQ3beOr891XHDYuFkUfbz
dF6KXUpnX/8/4ecFY6hLZL90kSyb45Lnn0X6ml9LL//sBP4CAAD//4IGM9jBStAsEV+SmVoEioqU
1LTE0hxIx1mpuLK4JDU3Pi0zLz21qKAoE9J7TiuINzVMSbIwSUxLTFLiquUCAAAA//8DANr6751L
EAAA
headers:
CF-RAY:
- 97144ce12be51abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:29 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '6350'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '6385'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999820'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999820'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_633dd1e17cb44249af3d9408f3d3c21b
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,156 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=wu1mwFBixM_Cn8wLLh.nRacWi8OMVBrEyBNuF_Htz6I-1743463498282-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//fFfbjhtHDn33VxAC5mXQEmY8lh3Mm9e3DHa9NpzZC3YdBFQ31V2Z6mKn
WCVZCfLvC7JKLY2d7IsAdXfxcnh4yPrtCcDCdYtbWLQDpnac/PLV8+vv/n1P7+7yx+f/eeOHXQ7/
/P6uf0fxYfqwaPQEb36mNh1PrVoeJ0/JcSiv20iYSK1ev1iv1+urmxc39mLkjrwe66e0fMbL0QW3
fHr19Nny6sXy+rt6emDXkixu4b9PAAB+s1+NM3T0ZXELV83xyUgi2NPidv4IYBHZ65MFijhJGNKi
Ob1sOSQKFvodBN5DiwF6tyNA6DVswCB7igCfw1sX0MNL+38Ln8PncHn5MqA/iBP4RBPHdHlZHl+v
4C6kyF1uFYbLSz1/PziBaN/BFEkoJAEERSvSQEHM7dEgbyENBB0m/cR7ahN1wDuK9tyjJPglY0wU
V3A/EPSMvpxycjLjBBJDR9GMWzS48QQuiOuHJA24jkJy2wOkSKGTBjB04MKW4wgdtU4ch+WIDy70
MEVuSYQEthxhm1OOBJIiJuodyapk/3QFrzXsDzuKO0f7Y/o1G6FUknZqaMw+uckTTBhxpERRwIXW
504dCnp15vocSRposyQeKUJHI/cRp8G10mhYijS0GgdHRzWLno4foYfOSYpukxWCFfyVDrDD6BSM
Ctev1FXPdKuJLOHy8gfz/7b4v7y8hXtO6GtYkXYUMjWAO4rYE6SIQQrIsEOvr3JwSUDYd6ti8dUx
hddnKajllz010FPoKDbguUU1U/KYcmwHFAVkQwPuHMdq7WPN/NWcuZr6SFHLh6HVmkcWgc5ttxQp
PAbpBPTIksyXJ2XWxFP2GI/ISnX37hzQ12eAqteC1fStb8WZs+LVOw5HltyUIrx1QQOQQpIT5vfG
RrX7OQAsq3UXVEyEOtgc4Hp9YUTCSJ2yXPtiirQzZ7U3Gti7NABC4GTEl8k9EHQ5atZ6YmDvOjyA
EAqHVfGmZP3TqgJ6YYgsZFFcXTSAqUBRAhlcP1A8sRX3GCmQiCGcMPakX44YHyhpHC2OE7q+YvP/
aHIKb4puxHg4edmgELQcVOZMPxTZnesyegHsqYOn6+XNswawbTkHc6xt/OzqwnTDmF2pZr2snt7S
iJ5mJwKc04StRf/o+eYAT68uwAXTKPQeZCIrbbX0IXgXCGTgabLWzrGnrtG+T65VtvkD4Mihhxw3
GE62G8tEGyL0gCCD2yZIvMfYKbF7p4FT6LGnkUKaMfyqOQ7nfTFD+UaVNXJwrQCNpDEBStFYwq5U
p56vVLq5uqi1AxkwqphW9EwXar7f80hFhTB2FOZWAsE9oEqr4eFCVZPNAdYXpmXjVDNVLtNei3Oi
ykltLRx1rYIv1NfcrVmMy1rOo9NvCS8grg9u61oMyR9gwyzKykeSa2VdX8yQPhKAuzpDZizf488c
j9WjkKx2JBO1Dr0/GE4Dwd85psFkRuH5F0mCV4ySGiXHXltIo9QeknQUWVVGiqaJNcdPOaIHVDlo
YD847W1r8cbOoKcOckg4TdTBxDrmHfrGRkcwFBUQDso6WF/M0jJX5CvaBaLO+mXuX84pErZDFbRn
K/hELY8jhc4CPdO093P9fij1O6iyvQmD6eSRw6cq03bLMUn1pU8OnEP/1eQrhJwoWrGdDrC60JSx
EXlkC2QF/0hOPwBhrQWM1DmEyWPShijj/NRBj4pmiqILRKXPWQDzFgE9poFUhreRx3lx+aYT33Kb
TdM/EeoaIZWQf9gpwDqydDaopmoTxqPK0479riwkZGOtJVM8jTWrZKzgVQ0bNjl0vi4vpRc4gq2k
1k5nnVLBUieRtDeSkiFRJEl/3AFvvkwYpM6/17Qjz5MqVO3RVhEOsNWsC9kgzqyFiQKlSmm4Cy45
THQaBZDQea6jTfcB/yhbK/CR1bqv+awvooVPlVibWHigy2ZLp+HCqv5Zx6Qtau85uMQKteZxp9v7
aCTSkW17gC1uVY7qEqh+HogmnY/tg6E/YOhNMOeRVLeVEm7VzLJnruBvVAesbV9J+ZyYvRnGnHjE
RGcMm/u/NKEbyR++XlBrJ66t/K3PMi/fH8pQaow+p+247L4qpmdiCH3kvTbWDK9Gb0oDkX7JznrB
jdZEiXT463daxr8cADsu+q2e4lEQVFhn5S5RcOwxuF9LTnrvOFbtOEDPVqnmJE8zuILJybYsJmVP
1FVaUVNgbOEfWffzs8xmNbUMK1zPV/BysmH95ahYRot0XI47La3KkfM+z9JZBkWx9KeredWh8/X8
cJ7Yqvh7T2ngjj33B8hShfb87qMYWRVq6Sz08xuVUNxpsHql2nKuEozeOGXmsq7WegPsjtVpc7SV
2GPopMWpqlB29kW93hSACyvbwdGOSvVy0vndwUZ7W/uh3ILdjmR1fsWMtM2Ces0N2fuzFxh0JzXj
ern9sb75fb7Oeu6nyBv56uhi64KT4ado0qVXV0k8Lezt708AfrRrc350E16UteKnxA9k7q7X62Jv
UW7r/wMAAP//jFi9DoIhDNx5DGaHbxDi9zSEtEVr/CHANzj47gYwFiOD85XLHSXAtcoQ1Jr9G23/
GgEOy7qbEDqkelvlIXlr8HAilKUS0/2GfB8ANdj+lTPj7tb5dvyHXgAAioXQxUTI8G1ZyhKdW9ie
l322uQnW9dgxkCtMqbYCKfjt0mcMOj9yoasLXF/umLgPGkJ0xi4+WDJm1eqpXgAAAP//AwCGkEKG
dhEAAA==
headers:
CF-RAY:
- 97144c27cad01abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:07 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=gumItH7ZRtD4GgE2NL8KJd5b0g0ukzMySphsV0ru1LE-1755550387-1.0.1.1-iwCn2q9kDpJVTaZu1Swtv1kYCiM39NBeviV1R9awG4XHHMKnojkbu6T7jh_Z3UxfNbluVCsI6RMKj.2rEPp1IcH63gHUQdJfHF71CdCZ3Uc;
path=/; expires=Mon, 18-Aug-25 21:23:07 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=d7iU8FXLKWOoICtn52jYIApBpBp20kALP6yQjOvXHvQ-1755550387858-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '14516'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '14596'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3c1af5f5590a4b76b33f3fbf7d3a3288
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,154 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=aoRHJvKio8gVXmGaYpzTzdGuWwkBsDAyAKAVwm6QUbE-1743465392324-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFddcxu3Dn3Pr8BoJi8eSWM5luP6zbFbN7d1m0n81nQyEAntIuaSe0lQ
itLpf++A+6G1rztzX+zVcgEeAAeH4F+vAGZsZ1cwMzWKaVq3uLlY/XD5n7uffzvLFw+r28tV+nT3
7vdV/hDuf8bZXC3C5isZGayWJjStI+Hgu2UTCYXU6+rter1en56vTstCEyw5NataWZyHRcOeF2en
Z+eL07eL1WVvXQc2lGZX8McrAIC/yl/F6S19m11B8VXeNJQSVjS7Gj8CmMXg9M0MU+Ik6GU2Py6a
4IV8gf4efNiDQQ8V7wgQKoUN6NOeIsBn/xN7dHBdfl/BZ//Zn5xce3SHxAk+UhuinJx0r1dLeO8l
BpuNpuHk5EodPNScIJYPAblJIAFQHXwnkJqgjWHHlixYFIREAuwhREtRv6RvEtEINISefbXNDtgn
rmpJIDVKgc5+G2IDSSIKVWzAkuHEwadlh+xsCbfq/ZaSidw+QUfdxiZ4zVSCsIUmO+HWEewwMm4c
pTmwNy5b9hVssoAPAo4bFrKKMqGjBFuuctRvTU4SGopgqQlVxLZmk+ZQ0fADXY8ZFcoc0FsQbigJ
Nm2BIBF9wpLHtIQf0dRAXuJBkyM9Zs1VpDZSIi8JELLn/2aa2s4BnQt7hb0NETTMpo1Uk0+l3EMh
wxbaHE2NqURINe44RAg7UqPUkuEtk4WWIgfbZ/XNEu5J6mCDC9VhktDRLSe10EDJQi6+k6BwkpKD
plgnSNnUgAnsUJ4dHb/TfIYYyZVcjb67pEWqIiUtNZS20h2UX8lQFGQPg12quU2wIdkT+WNde17s
OGV0/L3bQkJwCTASoEsBsrDj712h2bnc0Qwe6QASydtUkLQoQnFk3PkSfmKvfEl9Yj77BZycfCpM
eSh2/QKA5uwJhSDVYa+J58rzlg16gdzuMdpuy64wMk11V5k57FlqaAkfe4/BmByj5sXm8q8Oji0e
IBGmQq774KVeBL9o9AGqGPZSg8aYAHcUsSILq/Xr3rfuWnNVU5J+i0hG+9UqN2/JULOhuBwCvhl6
4XbSC2Pk17CJhI827L1y8MXGgUg7Qtf3u27f4NcQWQ4T2lKCPUVdsgQbbRPLO7ZZ7UoAZ+vFm/M5
oDEhexka4vz0dem2IOie9dy1tayP6Nzh2NJJg8xxg14Jgkl1QyJvcq8EF1OHJT3zgsVg2RNVpIKv
oI20pUjeUMHRdqqp8JTOG3YshzGHd1PhGMR3zOFHqkaYgzRAylVFSSZJ+y1EqfdaNQUOIcuxNYPU
FLWZNPS+zthXd8IHjcwTRneAs/VrOBD2EqFPSyhKb0J2FjYEKNO8CMaK9LnB+EglFwabFrnyCRxm
b+qOQAWvIhyjf6CmDREdvO+F/8ge/0TBJvVTNS1qU4d9n4PSExORq0OOCdBx5buA9Zi02mIbVSpK
qftkPsif0RSPErI6gw/3pfPfwIf7+ZBw9Rxa4Ub5pIo+lLcJhVcQ4pHl5CusqCGvZx4LoyrfoCDr
JdxMdO9Z2adLJtB2y4bLKdCTjUaihcRFUF9WwhEZOtDU7ViYOkXryr8LLjc0cmKyl6b8dHm57guv
muCGg5mAtWiCSnA9Uceq03YbYsEJNvKuFEk36qO+WMJHMqFpyNsO7hP5fBhodD86vBloNNLiHSbl
tJ+qyDg1zEGQXYhPqDhMDqVcpjuoQnfQFt1QCdFGyO3z9m/wAAcmZyHlTRm0GB1EkjycBQr7d2UE
fyf4JME8wq+0I3fEe8c76jZjS166k7bLvpI2/YtylyKx1zlT431O7Tlg28bQRu7YoBs73RjQfs1J
mkKXVA/9WpRTAjREAm3QAVFDsdQUMuRYUXpZkX781qJPx5kK4EaHKUsFtcYVe4nSk14FbphiRk2a
A0vJ5YZgQ56UYtpBAdjvtK2qEgQ37DC+XDgtjLcUe1UraltKpPOZcJOduujUrCfbW20xnevS04Hw
eKh2s2mCTlV0ZHhh/NyiUb1W991Up8NsP4EuGnwsULwtfCfYZsmRjiLT49VOKXCEfQ45QRM8S4iD
MVpspev3sJ3GvRnZjoKLsoc/gtyzc5pUE3PJKHtokL3ORkWDQ9OSdAKBdodesBp78XIJ121LKig0
sHUxvPoG11dwS9pMZKEba8os9VAGq2ffvruCO+VLR9qbGlUC3g/DlCL5hQ7jxPTM+OZqOmfCu3Fi
UGn9NJknx3tJ0Yv+OPqXeXerZzlCDJucBLYh93pTnB5vEq1D74cahJYi9mLJjZKDui5ScewpHWKF
vp8kl9NLV6RtTqgXP5+dmyyg96GrbLnu/dmv/D1e8Fyo2hg26ZnpbMueU/0lFjnQy1yS0M7K6t+v
AP4sF8n85G44U71v5YuERyrbrdbrzt/seH89rl6s3vSrZaA5Lry9uJy/4PCLLYRIk7vozKAe7UfT
48UVs+UwWXg1Cft/4bzkuwudffX/uD8uGEOtkP3S/gMAAP//KkpNyUxG9TJCWVEqqH+PSxk8mMEO
VipOLSrLTE6NL8lMLQJFRUpqWmJpDqTXrVRcWVySmhuflpmXnlpUUJQJ6XqnFcSbmhkkppmlmppa
KnHVcgEAAAD//wMABbo03YgQAAA=
headers:
CF-RAY:
- 97144d0daeb11abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:43 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=UW4fV15_S2h9VQ58d_nhU200TOxc3Tjdd_QFUBY6B80-1755550423-1.0.1.1-.oSX43E.zjFk61gbEHMacZh5c8ndmynl75bstCvKcohtwVY6oLpdBWnO2lTUFXpzvGaGsbuYt55OUo_Hmi228z97Nm4cDdOT84lhfStAcms;
path=/; expires=Mon, 18-Aug-25 21:23:43 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=dg9d3YnyfwVQNRGWo64PZ6mtqIOlYEozligD5ggvZFc-1755550423708-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '13654'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '13673'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_169cd22058fb418f90f12e041c0880a9
status:
code: 200
message: OK
version: 1

View File

@@ -2,6 +2,7 @@
import os
import tempfile
from pathlib import Path
from unittest.mock import Mock, patch
import pytest
from dotenv import load_dotenv
@@ -34,14 +35,130 @@ def setup_test_environment():
f"Test storage directory {storage_dir} is not writable: {e}"
)
# Set environment variable to point to the test storage directory
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
os.environ["CREWAI_TESTING"] = "true"
yield
os.environ.pop("CREWAI_TESTING", None)
# Cleanup is handled automatically when tempfile context exits
def pytest_configure(config):
config.addinivalue_line(
"markers", "telemetry: mark test as a telemetry test (don't mock telemetry)"
)
@pytest.fixture(autouse=True)
def auto_mock_telemetry(request):
if request.node.get_closest_marker("telemetry"):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
if "telemetry" in str(request.fspath):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
with patch.dict(
os.environ, {"CREWAI_DISABLE_TELEMETRY": "true", "OTEL_SDK_DISABLED": "true"}
):
with patch("crewai.telemetry.Telemetry") as mock_telemetry_class:
mock_instance = create_mock_telemetry_instance()
mock_telemetry_class.return_value = mock_instance
with (
patch(
"crewai.utilities.events.event_listener.Telemetry",
mock_telemetry_class,
),
patch("crewai.tools.tool_usage.Telemetry", mock_telemetry_class),
patch("crewai.cli.command.Telemetry", mock_telemetry_class),
patch("crewai.cli.create_flow.Telemetry", mock_telemetry_class),
):
yield mock_instance
def create_mock_telemetry_instance():
mock_instance = Mock()
mock_instance.ready = False
mock_instance.trace_set = False
mock_instance._initialized = True
mock_instance._is_telemetry_disabled.return_value = True
mock_instance._should_execute_telemetry.return_value = False
telemetry_methods = [
"set_tracer",
"crew_creation",
"task_started",
"task_ended",
"tool_usage",
"tool_repeated_usage",
"tool_usage_error",
"crew_execution_span",
"end_crew",
"flow_creation_span",
"flow_execution_span",
"individual_test_result_span",
"test_execution_span",
"deploy_signup_error_span",
"start_deployment_span",
"create_crew_deployment_span",
"get_crew_logs_span",
"remove_crew_span",
"flow_plotting_span",
"_add_attribute",
"_safe_telemetry_operation",
]
for method in telemetry_methods:
setattr(mock_instance, method, Mock(return_value=None))
mock_instance.task_started.return_value = None
return mock_instance
@pytest.fixture
def mock_opentelemetry_components():
with (
patch("opentelemetry.trace.get_tracer") as mock_get_tracer,
patch("opentelemetry.trace.set_tracer_provider") as mock_set_provider,
patch("opentelemetry.baggage.set_baggage") as mock_set_baggage,
patch("opentelemetry.baggage.get_baggage") as mock_get_baggage,
patch("opentelemetry.context.attach") as mock_attach,
patch("opentelemetry.context.detach") as mock_detach,
):
mock_tracer = Mock()
mock_span = Mock()
mock_tracer.start_span.return_value = mock_span
mock_get_tracer.return_value = mock_tracer
yield {
"get_tracer": mock_get_tracer,
"set_tracer_provider": mock_set_provider,
"tracer": mock_tracer,
"span": mock_span,
"set_baggage": mock_set_baggage,
"get_baggage": mock_get_baggage,
"attach": mock_attach,
"detach": mock_detach,
}
@pytest.fixture(scope="module")
def vcr_config(request) -> dict:
return {

View File

@@ -1,5 +1,4 @@
"""Test Agent creation and execution basic functionality."""
import hashlib
import json
from concurrent.futures import Future
@@ -51,7 +50,7 @@ from crewai.utilities.events.memory_events import (
MemoryRetrievalStartedEvent,
MemoryRetrievalCompletedEvent,
)
from crewai.memory.external.external_memory import ExternalMemory
@pytest.fixture
def ceo():
@@ -312,7 +311,6 @@ def test_crew_creation(researcher, writer):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sync_task_execution(researcher, writer):
from unittest.mock import patch
tasks = [
Task(
@@ -961,7 +959,6 @@ def test_cache_hitting_between_agents(researcher, writer, ceo):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai.tools import tool
@@ -1396,7 +1393,6 @@ def test_kickoff_for_each_invalid_input():
def test_kickoff_for_each_error_handling():
"""Tests error handling in kickoff_for_each when kickoff raises an error."""
from unittest.mock import patch
inputs = [
{"topic": "dog"},
@@ -1433,7 +1429,6 @@ def test_kickoff_for_each_error_handling():
@pytest.mark.asyncio
async def test_kickoff_async_basic_functionality_and_output():
"""Tests the basic functionality and output of kickoff_async."""
from unittest.mock import patch
inputs = {"topic": "dog"}
@@ -1540,7 +1535,6 @@ async def test_async_kickoff_for_each_async_empty_input():
def test_set_agents_step_callback():
from unittest.mock import patch
researcher_agent = Agent(
role="Researcher",
@@ -1570,7 +1564,6 @@ def test_set_agents_step_callback():
def test_dont_set_agents_step_callback_if_already_set():
from unittest.mock import patch
def agent_callback(_):
pass
@@ -2035,7 +2028,6 @@ def test_crew_inputs_interpolate_both_agents_and_tasks():
def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
@@ -2068,7 +2060,6 @@ def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_does_not_interpolate_without_inputs():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
@@ -2203,7 +2194,6 @@ def test_task_same_callback_both_on_task_and_crew():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tools_with_custom_caching():
from unittest.mock import patch
from crewai.tools import tool
@@ -2484,7 +2474,6 @@ def test_multiple_conditional_tasks(researcher, writer):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2583,7 +2572,6 @@ def test_memory_events_are_emitted():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_long_term_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2614,7 +2602,6 @@ def test_using_contextual_memory_with_long_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_warning_long_term_memory_without_entity_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2651,7 +2638,6 @@ def test_warning_long_term_memory_without_entity_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_long_term_memory_with_memory_flag():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2686,7 +2672,6 @@ def test_long_term_memory_with_memory_flag():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_short_term_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2717,7 +2702,6 @@ def test_using_contextual_memory_with_short_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_disabled_memory_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2845,7 +2829,6 @@ def test_crew_output_file_validation_failures():
def test_manager_agent(researcher, writer):
from unittest.mock import patch
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
@@ -4752,3 +4735,43 @@ def test_default_crew_name(researcher, writer):
],
)
assert crew.name == "crew"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ensure_exchanged_messages_are_propagated_to_external_memory():
external_memory = ExternalMemory(storage=MagicMock())
math_researcher = Agent(
role="Researcher",
goal="You research about math.",
backstory="You're an expert in research and you love to learn new things.",
allow_delegation=False,
)
task1 = Task(
description="Research a topic to teach a kid aged 6 about math.",
expected_output="A topic, explanation, angle, and examples.",
agent=math_researcher,
)
crew = Crew(
agents=[math_researcher],
tasks=[task1],
external_memory=external_memory,
)
with patch.object(
ExternalMemory, "save", return_value=None
) as external_memory_save:
crew.kickoff()
expected_messages = [
{'role': 'system', 'content': "You are Researcher. You're an expert in research and you love to learn new things.\nYour personal goal is: You research about math.\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{'role': 'user', 'content': '\nCurrent Task: Research a topic to teach a kid aged 6 about math.\n\nThis is the expected criteria for your final answer: A topic, explanation, angle, and examples.\nyou MUST return the actual complete content as the final answer, not a summary.\n\n# Useful context: \nExternal memories:\n\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:'},
{'role': 'assistant', 'content': 'I now can give a great answer \nFinal Answer: \n\n**Topic: Understanding Shapes (Geometry)**\n\n**Explanation:** \nShapes are everywhere around us! They are the special forms that we can see in everyday objects. Teaching a 6-year-old about shapes is not only fun but also a way to help them think about the world around them and develop their spatial awareness. We will focus on basic shapes: circle, square, triangle, and rectangle. Understanding these shapes helps kids recognize and describe their environment.\n\n**Angle:** \nLets make learning about shapes an adventure! We can turn it into a treasure hunt where the child has to find objects around the house or outside that match the shapes we learn. This hands-on approach helps make the learning stick!\n\n**Examples:** \n1. **Circle:** \n - Explanation: A circle is round and has no corners. It looks like a wheel or a cookie! \n - Activity: Find objects that are circles, such as a clock, a dinner plate, or a ball. Draw a big circle on a paper and then try to draw smaller circles inside it.\n\n2. **Square:** \n - Explanation: A square has four equal sides and four corners. It looks like a box! \n - Activity: Look for squares in books, in windows, or in building blocks. Try to build a tall tower using square blocks!\n\n3. **Triangle:** \n - Explanation: A triangle has three sides and three corners. It looks like a slice of pizza or a roof! \n - Activity: Use crayons to draw a big triangle and then find things that are shaped like a triangle, like a slice of cheese or a traffic sign.\n\n4. **Rectangle:** \n - Explanation: A rectangle has four sides but only opposite sides are equal. Its like a stretched square! \n - Activity: Search for rectangles, such as a book cover or a door. You can cut out rectangles from colored paper and create a collage!\n\nBy relating the shapes to fun activities and using real-world examples, we not only make learning more enjoyable but also help the child better remember and understand the concept of shapes in math. This foundation forms the basis of their future learning in geometry!'}
]
external_memory_save.assert_called_once_with(
value=ANY,
metadata={"description": ANY, "messages": expected_messages},
agent=ANY,
)

View File

@@ -39,6 +39,7 @@ def test_short_term_memory_search_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemoryQueryStartedEvent)
def on_search_started(source, event):
events["MemoryQueryStartedEvent"].append(event)
@@ -59,33 +60,34 @@ def test_short_term_memory_search_events(short_term_memory):
assert len(events["MemoryQueryFailedEvent"]) == 0
assert dict(events["MemoryQueryStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'limit': 3,
'score_threshold': 0.35
"timestamp": ANY,
"type": "memory_query_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"limit": 3,
"score_threshold": 0.35,
}
assert dict(events["MemoryQueryCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'results': [],
'limit': 3,
'score_threshold': 0.35,
'query_time_ms': ANY
"timestamp": ANY,
"type": "memory_query_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"results": [],
"limit": 3,
"score_threshold": 0.35,
"query_time_ms": ANY,
}
def test_short_term_memory_save_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemorySaveStartedEvent)
def on_save_started(source, event):
events["MemorySaveStartedEvent"].append(event)
@@ -105,28 +107,29 @@ def test_short_term_memory_save_events(short_term_memory):
assert len(events["MemorySaveFailedEvent"]) == 0
assert dict(events["MemorySaveStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task'},
'agent_role': "test_agent"
"timestamp": ANY,
"type": "memory_save_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task"},
"agent_role": "test_agent",
}
assert dict(events["MemorySaveCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task', 'agent': 'test_agent'},
'agent_role': "test_agent",
'save_time_ms': ANY
"timestamp": ANY,
"type": "memory_save_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task", "agent": "test_agent"},
"agent_role": "test_agent",
"save_time_ms": ANY,
}
def test_save_and_search(short_term_memory):
memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value

View File

@@ -1,4 +1,5 @@
import os
import threading
from unittest.mock import patch
import pytest
@@ -11,12 +12,16 @@ from opentelemetry import trace
@pytest.fixture(autouse=True)
def cleanup_telemetry():
"""Automatically clean up Telemetry singleton between tests."""
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
yield
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
@@ -36,6 +41,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -44,6 +50,7 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
@patch("crewai.telemetry.telemetry.logger.error")
@patch(
"opentelemetry.exporter.otlp.proto.http.trace_exporter.OTLPSpanExporter.export",
@@ -76,6 +83,7 @@ def test_telemetry_fails_due_connect_timeout(export_mock, logger_mock):
logger_mock.assert_called_once_with(error)
@pytest.mark.telemetry
def test_telemetry_singleton_pattern():
"""Test that Telemetry uses the singleton pattern correctly."""
Telemetry._instance = None

View File

@@ -14,14 +14,18 @@ def cleanup_telemetry():
Telemetry._instance = None
@pytest.mark.parametrize("env_var,value,expected_ready", [
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
])
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
],
)
def test_telemetry_environment_variables(env_var, value, expected_ready):
"""Test telemetry state with different environment variable configurations."""
with patch.dict(os.environ, {env_var: value}):
@@ -30,6 +34,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -38,57 +43,60 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
def test_telemetry_disable_after_singleton_creation():
"""Test that telemetry operations are disabled when env var is set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_disable_with_multiple_instances():
"""Test that multiple telemetry instances respect dynamically changed env vars."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry1 = Telemetry()
assert telemetry1.ready is True
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry2 = Telemetry()
assert telemetry2 is telemetry1
assert telemetry2.ready is True
mock_operation = MagicMock()
telemetry2._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_otel_sdk_disabled_after_creation():
"""Test that OTEL_SDK_DISABLED also works when set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['OTEL_SDK_DISABLED'] = 'true'
os.environ["OTEL_SDK_DISABLED"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()

View File

@@ -2,8 +2,9 @@ import os
import pytest
from unittest.mock import patch, MagicMock
# Remove the module-level patch
from crewai import Agent, Task, Crew
from crewai.flow.flow import Flow, start
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
@@ -284,29 +285,110 @@ class TestTraceListenerSetup:
f"Found {len(trace_handlers)} trace handlers when tracing should be disabled"
)
def test_trace_listener_setup_correctly(self):
def test_trace_listener_setup_correctly_for_crew(self):
"""Test that trace listener is set up correctly when enabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
trace_listener = TraceCollectionListener()
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
with patch.object(
TraceCollectionListener, "setup_listeners"
) as mock_listener_setup:
Crew(agents=[agent], tasks=[task], verbose=True)
assert mock_listener_setup.call_count >= 1
assert trace_listener.trace_enabled is True
assert trace_listener.batch_manager is not None
def test_trace_listener_setup_correctly_for_flow(self):
"""Test that trace listener is set up correctly when enabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
class FlowExample(Flow):
@start()
def start(self):
pass
with patch.object(
TraceCollectionListener, "setup_listeners"
) as mock_listener_setup:
FlowExample()
assert mock_listener_setup.call_count >= 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_setup_correctly_with_tracing_flag(self):
"""Test that trace listener is set up correctly when enabled"""
agent = Agent(role="Test Agent", goal="Test goal", backstory="Test backstory")
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True, tracing=True)
crew.kickoff()
trace_listener = TraceCollectionListener(tracing=True)
assert trace_listener.trace_enabled is True
assert trace_listener.batch_manager is not None
def test_trace_listener_ephemeral_batch(self):
"""Test that trace listener properly handles ephemeral batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_listener.TraceCollectionListener._check_authenticated",
return_value=False,
),
):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], tracing=True)
with patch.object(TraceBatchManager, "initialize_batch") as mock_initialize:
crew.kickoff()
assert mock_initialize.call_count >= 1
assert mock_initialize.call_args_list[0][1]["use_ephemeral"] is True
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_with_authenticated_user(self):
"""Test that trace listener properly handles authenticated batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_batch_manager.PlusAPI"
) as mock_plus_api_class,
):
mock_plus_api_instance = MagicMock()
mock_plus_api_class.return_value = mock_plus_api_instance
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
with (
patch.object(TraceBatchManager, "initialize_batch") as mock_initialize,
patch.object(
TraceBatchManager, "finalize_batch"
) as mock_finalize_backend_batch,
):
crew = Crew(agents=[agent], tasks=[task], tracing=True)
crew.kickoff()
mock_plus_api_class.assert_called_with(api_key="mock_token_12345")
assert mock_initialize.call_count >= 1
mock_finalize_backend_batch.assert_called_with()
assert mock_finalize_backend_batch.call_count >= 1
# Helper method to ensure cleanup
def teardown_method(self):

55
uv.lock generated
View File

@@ -34,22 +34,6 @@ resolution-markers = [
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_python_implementation == 'PyPy' and sys_platform == 'linux') or (python_full_version < '3.11' and platform_python_implementation == 'PyPy' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
[[package]]
name = "agentops"
version = "0.3.18"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
{ name = "psutil" },
{ name = "pyyaml" },
{ name = "requests" },
{ name = "termcolor" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c5/52/46bb2f29b9e5f2e1d8b124296b7794934a9048de635d9e7d6a95e791ad7b/agentops-0.3.18.tar.gz", hash = "sha256:4d509754df7be52579597cc9f53939c5218131a0379463e0ff6f6f40cde9fcc4", size = 55394, upload-time = "2024-11-19T19:06:21.306Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/97/8d/bd4cad95dad722dc2d3e4179feab1058ef846828c0e15e51e8bfaea373ee/agentops-0.3.18-py3-none-any.whl", hash = "sha256:8b48d8a1662f276653430fd541c77fa4f9a15a43e881b518ff88ea56925afcf7", size = 58032, upload-time = "2024-11-19T19:06:19.068Z" },
]
[[package]]
name = "aiohappyeyeballs"
version = "2.6.1"
@@ -744,9 +728,6 @@ dependencies = [
]
[package.optional-dependencies]
agentops = [
{ name = "agentops" },
]
aisuite = [
{ name = "aisuite" },
]
@@ -792,13 +773,12 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "agentops", marker = "extra == 'agentops'", specifier = "==0.3.18" },
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.10" },
{ name = "appdirs", specifier = ">=1.4.4" },
{ name = "blinker", specifier = ">=1.9.0" },
{ name = "chromadb", specifier = ">=0.5.23" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.60.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.62.1" },
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
{ name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = "==0.25.2" },
@@ -807,7 +787,7 @@ requires-dist = [
{ name = "litellm", specifier = "==1.74.9" },
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.94" },
{ name = "onnxruntime", specifier = "==1.22.0" },
{ name = "openai", specifier = ">=1.13.3" },
{ name = "openai", specifier = "<1.100.0" },
{ name = "openpyxl", specifier = ">=3.1.5" },
{ name = "openpyxl", marker = "extra == 'openpyxl'", specifier = ">=3.1.5" },
{ name = "opentelemetry-api", specifier = ">=1.30.0" },
@@ -828,7 +808,7 @@ requires-dist = [
{ name = "tomli-w", specifier = ">=1.1.0" },
{ name = "uv", specifier = ">=0.4.25" },
]
provides-extras = ["agentops", "aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
provides-extras = ["aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
[package.metadata.requires-dev]
dev = [
@@ -850,7 +830,7 @@ dev = [
[[package]]
name = "crewai-tools"
version = "0.60.0"
version = "0.62.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "chromadb" },
@@ -868,9 +848,9 @@ dependencies = [
{ name = "stagehand" },
{ name = "tiktoken" },
]
sdist = { url = "https://files.pythonhosted.org/packages/bb/60/04fd70a8a15eaf4147ff648ada44f1d4afd453a528cf8facd618ef32e576/crewai_tools-0.60.0.tar.gz", hash = "sha256:9234f6912b65495afe5e1bfa330abca09a40725d47fe2c71a22387bf6eeb8e72", size = 1032373, upload-time = "2025-08-06T20:27:16.003Z" }
sdist = { url = "https://files.pythonhosted.org/packages/e3/4b/23cd61a07105b54be8d1185e3b861b1bb2ac6050264acc060d91b22da171/crewai_tools-0.62.1.tar.gz", hash = "sha256:1819d09189e815a28f6744b6cffde703b9e9e438ef5f066c5b4dcdd75cc3c6ad", size = 1059792, upload-time = "2025-08-19T01:08:02.567Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6d/55/984f3d2d5afbcfa87c380c7c17b728804e80617b768b3748f25220b2b32c/crewai_tools-0.60.0-py3-none-any.whl", hash = "sha256:a54277c973753de4a3269da17e5a7e4995d4c70fc331eb2872189b5f92cfdaaf", size = 657128, upload-time = "2025-08-06T20:27:14.295Z" },
{ url = "https://files.pythonhosted.org/packages/34/87/a6e8d5dff4718795d806cd54bdb1cb94c637d93951d00e87c0b55d431870/crewai_tools-0.62.1-py3-none-any.whl", hash = "sha256:d8333315c8bf35bdb939b22e5b555acf9357ae676b992832f96f63de21670871", size = 677041, upload-time = "2025-08-19T01:08:00.891Z" },
]
[[package]]
@@ -4013,20 +3993,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7e/cc/7e77861000a0691aeea8f4566e5d3aa716f2b1dece4a24439437e41d3d25/protobuf-5.29.5-py3-none-any.whl", hash = "sha256:6cf42630262c59b2d8de33954443d94b746c952b01434fc58a417fdbd2e84bd5", size = 172823, upload-time = "2025-05-28T23:51:58.157Z" },
]
[[package]]
name = "psutil"
version = "5.9.8"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/90/c7/6dc0a455d111f68ee43f27793971cf03fe29b6ef972042549db29eec39a2/psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c", size = 503247, upload-time = "2024-01-19T20:47:09.517Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e7/e3/07ae864a636d70a8a6f58da27cb1179192f1140d5d1da10886ade9405797/psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81", size = 248702, upload-time = "2024-01-19T20:47:36.303Z" },
{ url = "https://files.pythonhosted.org/packages/b3/bd/28c5f553667116b2598b9cc55908ec435cb7f77a34f2bff3e3ca765b0f78/psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421", size = 285242, upload-time = "2024-01-19T20:47:39.65Z" },
{ url = "https://files.pythonhosted.org/packages/c5/4f/0e22aaa246f96d6ac87fe5ebb9c5a693fbe8877f537a1022527c47ca43c5/psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4", size = 288191, upload-time = "2024-01-19T20:47:43.078Z" },
{ url = "https://files.pythonhosted.org/packages/6e/f5/2aa3a4acdc1e5940b59d421742356f133185667dd190b166dbcfcf5d7b43/psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0", size = 251252, upload-time = "2024-01-19T20:47:52.88Z" },
{ url = "https://files.pythonhosted.org/packages/93/52/3e39d26feae7df0aa0fd510b14012c3678b36ed068f7d78b8d8784d61f0e/psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf", size = 255090, upload-time = "2024-01-19T20:47:56.019Z" },
{ url = "https://files.pythonhosted.org/packages/05/33/2d74d588408caedd065c2497bdb5ef83ce6082db01289a1e1147f6639802/psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8", size = 249898, upload-time = "2024-01-19T20:47:59.238Z" },
]
[[package]]
name = "ptyprocess"
version = "0.7.0"
@@ -5502,15 +5468,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248, upload-time = "2025-04-02T08:25:07.678Z" },
]
[[package]]
name = "termcolor"
version = "2.4.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/10/56/d7d66a84f96d804155f6ff2873d065368b25a07222a6fd51c4f24ef6d764/termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a", size = 12664, upload-time = "2023-12-01T11:04:51.66Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63", size = 7719, upload-time = "2023-12-01T11:04:50.019Z" },
]
[[package]]
name = "tifffile"
version = "2025.5.10"