Compare commits

..

8 Commits

Author SHA1 Message Date
Devin AI
90afeae467 Fix macOS onnxruntime dependency conflict
- Change onnxruntime dependency from ==1.22.0 to >=1.19.0,<=1.22.0
- Allows onnxruntime 1.19.2 (supports macOS 11.0+) while maintaining compatibility with 1.22.0
- ChromaDB requires onnxruntime >= 1.14.1, so this range is fully compatible
- Add comprehensive tests to verify macOS compatibility and dependency resolution
- Fixes issue #3202 where CrewAI cannot be upgraded on macOS due to onnxruntime conflicts

Co-Authored-By: Jo\u00E3o <joao@crewai.com>
2025-07-22 00:16:41 +00:00
João Moura
2593242234 Adding Support to adhoc tool calling using the internal LLM class (#3195)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Adding Support to adhoc tool calling using the internal LLM class

* fix type
2025-07-21 19:36:48 -03:00
Greyson LaLonde
2ab6c31544 chore: add deprecation notices to UserMemory (#3201)
- Mark UserMemory and UserMemoryItem for removal in v0.156.0 or 2025-08-04
- Update all references with deprecation warnings
- Users should migrate to ExternalMemory
2025-07-21 15:26:34 -04:00
Lucas Gomide
3c55c8a22a fix: append user message when last message is from assistent when using Ollama models (#3200)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Ollama doesn't supports last message to be 'assistant'
We can drop this commit after merging https://github.com/BerriAI/litellm/pull/10917
2025-07-21 13:30:40 -04:00
Ranuga Disansa
424433ff58 docs: Add Tavily Search & Extractor tools to Search-Research suite (#3146)
* docs: Add Tavily Search and Extractor tools documentation

* docs: Add Tavily Search and Extractor tools to the documentation

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-07-21 12:01:29 -04:00
Lucas Gomide
2fd99503ed build: upgrade LiteLLM to 1.74.3 (#3199) 2025-07-21 09:58:47 -04:00
Vidit Ostwal
942014962e fixed save method, changed the test cases (#3187)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* fixed save method, changed the test cases

* Linting fixed
2025-07-18 15:10:26 -04:00
Lucas Gomide
2ab79a7dd5 feat: drop unsupported stop parameter for LLM models automatically (#3184) 2025-07-18 13:54:28 -04:00
20 changed files with 3939 additions and 3737 deletions

View File

@@ -166,7 +166,9 @@
"en/tools/search-research/websitesearchtool",
"en/tools/search-research/codedocssearchtool",
"en/tools/search-research/youtubechannelsearchtool",
"en/tools/search-research/youtubevideosearchtool"
"en/tools/search-research/youtubevideosearchtool",
"en/tools/search-research/tavilysearchtool",
"en/tools/search-research/tavilyextractortool"
]
},
{

View File

@@ -712,7 +712,7 @@ crew = Crew(
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory": {} # Required - triggers user memory initialization
"user_memory": {} # DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, use external_memory instead
},
process=Process.sequential,
verbose=True

View File

@@ -44,6 +44,14 @@ These tools enable your agents to search the web, research topics, and find info
<Card title="YouTube Video Search" icon="play" href="/en/tools/search-research/youtubevideosearchtool">
Find and analyze YouTube videos by topic, keyword, or criteria.
</Card>
<Card title="Tavily Search Tool" icon="magnifying-glass" href="/en/tools/search-research/tavilysearchtool">
Comprehensive web search using Tavily's AI-powered search API.
</Card>
<Card title="Tavily Extractor Tool" icon="file-text" href="/en/tools/search-research/tavilyextractortool">
Extract structured content from web pages using the Tavily API.
</Card>
</CardGroup>
## **Common Use Cases**
@@ -55,17 +63,19 @@ These tools enable your agents to search the web, research topics, and find info
- **Academic Research**: Find scholarly articles and technical papers
```python
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool, TavilySearchTool, TavilyExtractorTool
# Create research tools
web_search = SerperDevTool()
code_search = GitHubSearchTool()
video_research = YoutubeVideoSearchTool()
tavily_search = TavilySearchTool()
content_extractor = TavilyExtractorTool()
# Add to your agent
agent = Agent(
role="Research Analyst",
tools=[web_search, code_search, video_research],
tools=[web_search, code_search, video_research, tavily_search, content_extractor],
goal="Gather comprehensive information on any topic"
)
```

View File

@@ -0,0 +1,139 @@
---
title: "Tavily Extractor Tool"
description: "Extract structured content from web pages using the Tavily API"
icon: "file-text"
---
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
## Installation
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
You also need to set your Tavily API key as an environment variable:
```bash
export TAVILY_API_KEY='your-tavily-api-key'
```
## Example Usage
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilyExtractorTool
# Ensure TAVILY_API_KEY is set in your environment
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
# Initialize the tool
tavily_tool = TavilyExtractorTool()
# Create an agent that uses the tool
extractor_agent = Agent(
role='Web Content Extractor',
goal='Extract key information from specified web pages',
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
tools=[tavily_tool],
verbose=True
)
# Define a task for the agent
extract_task = Task(
description='Extract the main content from the URL https://example.com using basic extraction depth.',
expected_output='A JSON string containing the extracted content from the URL.',
agent=extractor_agent
)
# Create and run the crew
crew = Crew(
agents=[extractor_agent],
tasks=[extract_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilyExtractorTool` accepts the following arguments:
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
## Advanced Usage
### Multiple URLs with Advanced Extraction
```python
# Example with multiple URLs and advanced extraction
multi_extract_task = Task(
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
expected_output='A JSON string containing the extracted content from both URLs.',
agent=extractor_agent
)
# Configure the tool with custom parameters
custom_extractor = TavilyExtractorTool(
extract_depth='advanced',
include_images=True,
timeout=120
)
agent_with_custom_tool = Agent(
role="Advanced Content Extractor",
goal="Extract comprehensive content with images",
tools=[custom_extractor]
)
```
### Tool Parameters
You can customize the tool's behavior by setting parameters during initialization:
```python
# Initialize with custom configuration
extractor_tool = TavilyExtractorTool(
extract_depth='advanced', # More comprehensive extraction
include_images=True, # Include image results
timeout=90 # Custom timeout
)
```
## Features
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
- **Image Support**: Optionally include images in the extraction results
- **Structured Output**: Returns well-formatted JSON containing the extracted content
- **Error Handling**: Robust handling of network timeouts and extraction errors
## Response Format
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
Common response elements include:
- **Title**: The page title
- **Content**: Main text content of the page
- **Images**: Image URLs and metadata (when `include_images=True`)
- **Metadata**: Additional page information like author, description, etc.
## Use Cases
- **Content Analysis**: Extract and analyze content from competitor websites
- **Research**: Gather structured data from multiple sources for analysis
- **Content Migration**: Extract content from existing websites for migration
- **Monitoring**: Regular extraction of content for change detection
- **Data Collection**: Systematic extraction of information from web sources
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.

View File

@@ -0,0 +1,122 @@
---
title: "Tavily Search Tool"
description: "Perform comprehensive web searches using the Tavily Search API"
icon: "magnifying-glass"
---
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
## Installation
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
## Environment Variables
Ensure your Tavily API key is set as an environment variable:
```bash
export TAVILY_API_KEY='your_tavily_api_key'
```
## Example Usage
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilySearchTool
# Ensure the TAVILY_API_KEY environment variable is set
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
# Initialize the tool
tavily_tool = TavilySearchTool()
# Create an agent that uses the tool
researcher = Agent(
role='Market Researcher',
goal='Find information about the latest AI trends',
backstory='An expert market researcher specializing in technology.',
tools=[tavily_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description='Search for the top 3 AI trends in 2024.',
expected_output='A JSON report summarizing the top 3 AI trends found.',
agent=researcher
)
# Form the crew and kick it off
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
- `query` (str): **Required**. The search query string.
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
## Advanced Usage
You can configure the tool with custom parameters:
```python
# Example: Initialize with specific parameters
custom_tavily_tool = TavilySearchTool(
search_depth='advanced',
max_results=10,
include_answer=True
)
# The agent will use these defaults
agent_with_custom_tool = Agent(
role="Advanced Researcher",
goal="Conduct detailed research with comprehensive results",
tools=[custom_tavily_tool]
)
```
## Features
- **Comprehensive Search**: Access to Tavily's powerful search index
- **Configurable Depth**: Choose between basic and advanced search modes
- **Topic Filtering**: Focus searches on general, news, or finance topics
- **Time Range Control**: Limit results to specific time periods
- **Domain Control**: Include or exclude specific domains
- **Direct Answers**: Get synthesized answers from search results
- **Content Filtering**: Prevent context window issues with automatic content truncation
## Response Format
The tool returns search results as a JSON string containing:
- Search results with titles, URLs, and content snippets
- Optional direct answers to queries
- Optional image results
- Optional raw HTML content (when enabled)
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.

View File

@@ -11,7 +11,7 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.72.6",
"litellm==1.74.3",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
@@ -23,7 +23,7 @@ dependencies = [
# Data Handling
"chromadb>=0.5.23",
"tokenizers>=0.20.3",
"onnxruntime==1.22.0",
"onnxruntime>=1.19.0,<=1.22.0",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security

View File

@@ -161,7 +161,7 @@ class Crew(FlowTrackable, BaseModel):
)
user_memory: Optional[InstanceOf[UserMemory]] = Field(
default=None,
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
description="DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first. Use external_memory instead.",
)
external_memory: Optional[InstanceOf[ExternalMemory]] = Field(
default=None,
@@ -327,7 +327,7 @@ class Crew(FlowTrackable, BaseModel):
self._short_term_memory = self.short_term_memory
self._entity_memory = self.entity_memory
# UserMemory is gonna to be deprecated in the future, but we have to initialize a default value for now
# UserMemory will be removed in version 0.156.0 or on 2025-08-04, whichever comes first
self._user_memory = None
if self.memory:
@@ -1255,6 +1255,7 @@ class Crew(FlowTrackable, BaseModel):
if self.external_memory:
copied_data["external_memory"] = self.external_memory.model_copy(deep=True)
if self.user_memory:
# DEPRECATED: UserMemory will be removed in version 0.156.0 or on 2025-08-04
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
copied_data.pop("agents", None)

View File

@@ -25,11 +25,6 @@ class CrewOutput(BaseModel):
@property
def json(self) -> Optional[str]:
if not self.tasks_output:
raise ValueError(
"No tasks found in crew output. Please ensure the crew has completed at least one task before accessing JSON output."
)
if self.tasks_output[-1].output_format != OutputFormat.JSON:
raise ValueError(
"No JSON output found in the final task. Please make sure to set the output_json property in the final task in your crew."

View File

@@ -760,7 +760,7 @@ class LLM(BaseLLM):
available_functions: Optional[Dict[str, Any]] = None,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
) -> str:
) -> str | Any:
"""Handle a non-streaming response from the LLM.
Args:
@@ -784,13 +784,11 @@ class LLM(BaseLLM):
# Convert litellm's context window error to our own exception type
# for consistent handling in the rest of the codebase
raise LLMContextLengthExceededException(str(e))
# --- 2) Extract response message and content
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
# --- 3) Handle callbacks with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
@@ -803,21 +801,22 @@ class LLM(BaseLLM):
start_time=0,
end_time=0,
)
# --- 4) Check for tool calls
tool_calls = getattr(response_message, "tool_calls", [])
# --- 5) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
# --- 5) If no tool calls or no available functions, return the text response directly as long as there is a text response
if (not tool_calls or not available_functions) and text_response:
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
return text_response
# --- 6) If there is no text response, no available functions, but there are tool calls, return the tool calls
elif tool_calls and not available_functions and not text_response:
return tool_calls
# --- 6) Handle tool calls if present
# --- 7) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
return text_response
@@ -952,22 +951,18 @@ class LLM(BaseLLM):
# --- 3) Convert string messages to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# --- 4) Handle O1 model special case (system messages not supported)
if "o1" in self.model.lower():
for message in messages:
if message.get("role") == "system":
message["role"] = "assistant"
# --- 5) Set up callbacks if provided
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 6) Prepare parameters for the completion call
params = self._prepare_completion_params(messages, tools)
# --- 7) Make the completion call and handle response
if self.stream:
return self._handle_streaming_response(
@@ -984,6 +979,27 @@ class LLM(BaseLLM):
# whether to summarize the content or abort based on the respect_context_window flag
raise
except Exception as e:
unsupported_stop = "Unsupported parameter" in str(e) and "'stop'" in str(e)
if unsupported_stop:
if "additional_drop_params" in self.additional_params and isinstance(self.additional_params["additional_drop_params"], list):
self.additional_params["additional_drop_params"].append("stop")
else:
self.additional_params = {"additional_drop_params": ["stop"]}
logging.info(
"Retrying LLM call without the unsupported 'stop'"
)
return self.call(
messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
)
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
@@ -1058,6 +1074,15 @@ class LLM(BaseLLM):
messages.append({"role": "user", "content": "Please continue."})
return messages
# TODO: Remove this code after merging PR https://github.com/BerriAI/litellm/pull/10917
# Ollama doesn't supports last message to be 'assistant'
if "ollama" in self.model.lower() and messages and messages[-1]["role"] == "assistant":
messages = messages.copy()
messages.append(
{"role": "user", "content": ""}
)
return messages
# Handle Anthropic models
if not self.is_anthropic:
return messages

View File

@@ -108,6 +108,7 @@ class ContextualMemory:
def _fetch_user_context(self, query: str) -> str:
"""
DEPRECATED: Will be removed in version 0.156.0 or on 2025-08-04, whichever comes first.
Fetches and formats relevant user information from User Memory.
Args:
query (str): The search query to find relevant user memories.

View File

@@ -64,6 +64,7 @@ class Mem0Storage(Storage):
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self._get_user_id()
agent_name = self._get_agent_name()
assistant_message = [{"role" : "assistant","content" : value}]
params = None
if self.memory_type == "short_term":
params = {
@@ -93,7 +94,8 @@ class Mem0Storage(Storage):
if params:
if isinstance(self.memory, MemoryClient):
params["output_format"] = "v1.1"
self.memory.add(value, **params)
self.memory.add(assistant_message, **params)
def search(
self,

View File

@@ -14,7 +14,8 @@ class UserMemory(Memory):
def __init__(self, crew=None):
warnings.warn(
"UserMemory is deprecated and will be removed in a future version. "
"UserMemory is deprecated and will be removed in version 0.156.0 "
"or on 2025-08-04, whichever comes first. "
"Please use ExternalMemory instead.",
DeprecationWarning,
stacklevel=2,

View File

@@ -1,8 +1,16 @@
import warnings
from typing import Any, Dict, Optional
class UserMemoryItem:
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
warnings.warn(
"UserMemoryItem is deprecated and will be removed in version 0.156.0 "
"or on 2025-08-04, whichever comes first. "
"Please use ExternalMemory instead.",
DeprecationWarning,
stacklevel=2,
)
self.data = data
self.user = user
self.metadata = metadata if metadata is not None else {}

View File

@@ -0,0 +1,209 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini", "stop": ["stop"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '115'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
headers:
CF-RAY:
- 961215744c94cb45-GIG
Connection:
- keep-alive
Content-Length:
- '196'
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:46:46 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
path=/; expires=Fri, 18-Jul-25 13:16:46 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '20'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '32'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7be4715c3ee32aa406eacb68c7cc966e
status:
code: 400
message: Bad Request
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '97'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3RSwU7jMBC95ytGPlYNakJhQ2/sgSsg7QUhFA32pJni2JHtwFao/76yC3XQwsWH
efOe35uZ9wJAsBIbELLHIIdRl78nGvaqOt/dPDxf71/fdg/9bXO3e5ETXt+LZWTY5x3J8Mk6k3YY
NQW25ghLRxgoqla/LupmXTeXqwQMVpGONFuVAxsu61W9LldXZVV/MHvLkrzYwGMBAPCe3ujRKPor
NpB0UmUg73FLYnNqAhDO6lgR6D37gCaIZQalNYFMsv2nJ5A4ckANtoMbh0YSsIfF4g4d+8XibM50
1E0eo3MzaT0D0BgbMCZPnp8+kMPJZceGfd86Qm9N/NkHO4qEHgqAp5R6+hJEjM4OY2iDfaEkW62P
ciLPOYPNJxhsQJ3rV83yG7VWUUDWfjY1IVH2pDIzjxgnxXYGFLNs/5v5TvuYm802q1yuf9TPgJQ0
BlLt6Eix/Jo4tzmKZ/hT22nIybHw5F5ZUhuYXFyEog4nfTwQ4fc+0NB2bLbkRsfpSuKui0PxDwAA
//8DAN7IUy8kAwAA
headers:
CF-RAY:
- 961216c3f9837e07-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:47:41 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1027'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '1029'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_19a0763b09f0410b9d09598078a04cd6
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,206 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini", "stop": ["stop"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '115'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"error\": {\n \"message\": \"Unsupported parameter: 'stop'
is not supported with this model.\",\n \"type\": \"invalid_request_error\",\n
\ \"param\": \"stop\",\n \"code\": \"unsupported_parameter\"\n }\n}"
headers:
CF-RAY:
- 961220323a627e05-GRU
Connection:
- keep-alive
Content-Length:
- '196'
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:54:06 GMT
Server:
- cloudflare
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '9'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '11'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e8d7880c5977029062d8487d215e5282
status:
code: 400
message: Bad Request
- request:
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
"model": "o1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '97'
content-type:
- application/json
cookie:
- __cf_bm=KwJ1K47OHX4n2TZN8bMW37yKzKyK__S4HbTiCfyWjXM-1752842806-1.0.1.1-lweHFR7Kv2v7hT5I6xxYVz_7Ruu6aBdEgpJrSWrMxi_ficAeWC0oDeQ.0w2Lr1WRejIjqqcwSgdl6RixF2qEkjJZfS0pz_Vjjqexe44ayp4;
_cfuvid=zv09c6bwcgNsYU80ah3wXzqeaIKyt_h61EAh_XRA87I-1752842806652-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.75.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.75.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3SSQW/bMAyF7/4Vgo5BXCSeV6c5bkAPPTVbMaAYCoOT6JitLAkSPbQo8t8HKWns
Yu1FB3181HsUXwshJGm5FVL1wGrwpvw2In/fXY3Pcd/sftzf9ENvnurm569dc9/IZVK4P4+o+E11
odzgDTI5e8QqIDCmruvma7Wpv1T1ZQaD02iSzK3LgSyV1aqqy9VVua5Oyt6Rwii34nchhBCv+Uwe
rcZnuRWr5dvNgDHCHuX2XCSEDM6kGwkxUmSwLJcTVM4y2mz7rkehwBODEa4T1wGsQkFRLBa3ECgu
FhdzZcBujJCc29GYGQBrHUNKnj0/nMjh7LIjS7FvA0J0Nr0c2XmZ6aEQ4iGnHt8FkT64wXPL7glz
23V9bCenOc/h5kTZMZgZuKyWH/RrNTKQibO5SQWqRz1JpyHDqMnNQDFL97+dj3ofk5Pdz5xVm08f
mIBS6Bl16wNqUu9DT2UB0yZ+Vnaec7YsI4a/pLBlwpD+QmMHoznuiIwvkXFoO7J7DD5QXpT03cWh
+AcAAP//AwAo/zsSJwMAAA==
headers:
CF-RAY:
- 961220338bd47e05-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 18 Jul 2025 12:54:08 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1280'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '1286'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999990'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b7390d46fa4e14380d42162cb22045df
status:
code: 200
message: OK
version: 1

View File

@@ -310,41 +310,6 @@ def test_crew_creation(researcher, writer):
assert result.raw == expected_string_output
def test_crew_output_json_empty_tasks():
"""Test that CrewOutput.json raises ValueError when tasks_output is empty."""
from crewai.crews.crew_output import CrewOutput
from crewai.types.usage_metrics import UsageMetrics
output = CrewOutput(
raw="Test output",
tasks_output=[],
token_usage=UsageMetrics()
)
with pytest.raises(ValueError) as excinfo:
_ = output.json
assert "No tasks found in crew output" in str(excinfo.value)
def test_crew_output_json_reproduction_case():
"""Test reproduction case from GitHub issue #3185."""
from crewai.crews.crew_output import CrewOutput
output = CrewOutput(
raw="",
pydantic=None,
json_dict={"test": "value"},
tasks_output=[],
token_usage={}
)
with pytest.raises(ValueError) as excinfo:
_ = output.json
assert "No tasks found in crew output" in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sync_task_execution(researcher, writer):
from unittest.mock import patch

View File

@@ -1,3 +1,4 @@
import logging
import os
from time import sleep
from unittest.mock import MagicMock, patch
@@ -664,3 +665,49 @@ def test_handle_streaming_tool_calls_no_tools(mock_emit):
expected_completed_llm_call=1,
expected_final_chunk_result=response,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_when_stop_is_unsupported(caplog):
llm = LLM(model="o1-mini", stop=["stop"])
with caplog.at_level(logging.INFO):
result = llm.call("What is the capital of France?")
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provided(caplog):
llm = LLM(model="o1-mini", stop=["stop"], additional_drop_params=["another_param"])
with caplog.at_level(logging.INFO):
result = llm.call("What is the capital of France?")
assert "Retrying LLM call without the unsupported 'stop'" in caplog.text
assert isinstance(result, str)
assert "Paris" in result
@pytest.fixture
def ollama_llm():
return LLM(model="ollama/llama3.2:3b")
def test_ollama_appends_dummy_user_message_when_last_is_assistant(ollama_llm):
original_messages = [
{"role": "user", "content": "Hi there"},
{"role": "assistant", "content": "Hello!"},
]
formatted = ollama_llm._format_messages_for_provider(original_messages)
assert len(formatted) == len(original_messages) + 1
assert formatted[-1]["role"] == "user"
assert formatted[-1]["content"] == ""
def test_ollama_does_not_modify_when_last_is_user(ollama_llm):
original_messages = [
{"role": "user", "content": "Tell me a joke."},
]
formatted = ollama_llm._format_messages_for_provider(original_messages)
assert formatted == original_messages

View File

@@ -1,14 +1,10 @@
import os
from unittest.mock import MagicMock, patch
import pytest
from mem0.client.main import MemoryClient
from mem0.memory.main import Memory
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.memory.storage.mem0_storage import Mem0Storage
from crewai.task import Task
# Define the class (if not already defined)
@@ -172,7 +168,7 @@ def test_save_method_with_memory_oss(mem0_storage_with_mocked_config):
mem0_storage.save(test_value, test_metadata)
mem0_storage.memory.add.assert_called_once_with(
test_value,
[{'role': 'assistant' , 'content': test_value}],
agent_id="Test_Agent",
infer=False,
metadata={"type": "short_term", "key": "value"},
@@ -191,7 +187,7 @@ def test_save_method_with_memory_client(mem0_storage_with_memory_client_using_co
mem0_storage.save(test_value, test_metadata)
mem0_storage.memory.add.assert_called_once_with(
test_value,
[{'role': 'assistant' , 'content': test_value}],
agent_id="Test_Agent",
infer=False,
metadata={"type": "short_term", "key": "value"},

View File

@@ -0,0 +1,138 @@
import pytest
import platform
class TestMacOSCompatibility:
"""Test macOS compatibility, especially onnxruntime dependency resolution."""
def test_chromadb_import_success(self):
"""Test that ChromaDB can be imported successfully."""
try:
import chromadb
assert chromadb is not None
assert hasattr(chromadb, '__version__')
except ImportError as e:
pytest.fail(f"ChromaDB import failed: {e}")
def test_onnxruntime_import_success(self):
"""Test that onnxruntime can be imported successfully."""
try:
import onnxruntime
assert onnxruntime is not None
assert hasattr(onnxruntime, '__version__')
except ImportError as e:
pytest.fail(f"onnxruntime import failed: {e}")
def test_onnxruntime_version_compatibility(self):
"""Test that onnxruntime version is within expected range."""
try:
import onnxruntime
version = onnxruntime.__version__
major, minor, patch = map(int, version.split('.'))
version_tuple = (major, minor, patch)
min_version = (1, 19, 0)
max_version = (1, 22, 0)
assert version_tuple >= min_version, f"onnxruntime version {version} is below minimum {'.'.join(map(str, min_version))}"
assert version_tuple <= max_version, f"onnxruntime version {version} is above maximum {'.'.join(map(str, max_version))}"
except ImportError:
pytest.skip("onnxruntime not available for version check")
def test_chromadb_persistent_client_creation(self):
"""Test that ChromaDB PersistentClient can be created successfully."""
try:
from crewai.utilities.chromadb import create_persistent_client
import tempfile
with tempfile.TemporaryDirectory() as temp_dir:
client = create_persistent_client(path=temp_dir)
assert client is not None
except ImportError as e:
pytest.fail(f"ChromaDB utilities import failed: {e}")
except Exception as e:
pytest.fail(f"ChromaDB client creation failed: {e}")
def test_rag_storage_initialization(self):
"""Test that RAGStorage can be initialized successfully."""
try:
from crewai.memory.storage.rag_storage import RAGStorage
import tempfile
with tempfile.TemporaryDirectory() as temp_dir:
storage = RAGStorage(
type="test_memory",
allow_reset=True,
embedder_config=None,
crew=None,
path=temp_dir
)
assert storage is not None
assert hasattr(storage, 'app')
assert hasattr(storage, 'collection')
except ImportError as e:
pytest.fail(f"RAGStorage import failed: {e}")
except Exception as e:
pytest.fail(f"RAGStorage initialization failed: {e}")
@pytest.mark.skipif(platform.system() != "Darwin", reason="macOS-specific test")
def test_macos_onnxruntime_availability(self):
"""Test that onnxruntime is available on macOS with proper version."""
try:
import onnxruntime
version = onnxruntime.__version__
major, minor, patch = map(int, version.split('.'))
if (major, minor) == (1, 19):
assert patch >= 0, f"onnxruntime 1.19.x version should be >= 1.19.0, got {version}"
elif (major, minor) == (1, 20):
pass
elif (major, minor) == (1, 21):
pass
elif (major, minor) == (1, 22):
assert patch <= 0, f"onnxruntime 1.22.x version should be <= 1.22.0, got {version}"
else:
pytest.fail(f"onnxruntime version {version} is outside expected range 1.19.0-1.22.0")
except ImportError:
pytest.fail("onnxruntime should be available on macOS with the new version range")
def test_chromadb_collection_operations(self):
"""Test basic ChromaDB collection operations work with current onnxruntime."""
try:
from crewai.utilities.chromadb import create_persistent_client, sanitize_collection_name
import tempfile
import uuid
with tempfile.TemporaryDirectory() as temp_dir:
client = create_persistent_client(path=temp_dir)
collection_name = sanitize_collection_name("test_collection")
collection = client.get_or_create_collection(name=collection_name)
test_doc = "This is a test document for ChromaDB compatibility."
test_id = str(uuid.uuid4())
collection.add(
documents=[test_doc],
ids=[test_id],
metadatas=[{"test": True}]
)
results = collection.query(
query_texts=["test document"],
n_results=1
)
assert len(results["ids"][0]) > 0
assert results["documents"][0][0] == test_doc
except ImportError as e:
pytest.fail(f"ChromaDB operations import failed: {e}")
except Exception as e:
pytest.fail(f"ChromaDB operations failed: {e}")

6671
uv.lock generated

File diff suppressed because it is too large Load Diff