mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
Compare commits
3 Commits
devin/1749
...
devin/1749
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d8231a04d0 | ||
|
|
18a6973198 | ||
|
|
048f05c755 |
@@ -32,7 +32,6 @@ The Enterprise Tools Repository includes:
|
||||
- **Customizability**: Provides the flexibility to develop custom tools or utilize existing ones, catering to the specific needs of agents.
|
||||
- **Error Handling**: Incorporates robust error handling mechanisms to ensure smooth operation.
|
||||
- **Caching Mechanism**: Features intelligent caching to optimize performance and reduce redundant operations.
|
||||
- **Asynchronous Support**: Handles both synchronous and asynchronous tools, enabling non-blocking operations.
|
||||
|
||||
## Using CrewAI Tools
|
||||
|
||||
@@ -178,62 +177,6 @@ class MyCustomTool(BaseTool):
|
||||
return "Tool's result"
|
||||
```
|
||||
|
||||
## Asynchronous Tool Support
|
||||
|
||||
CrewAI supports asynchronous tools, allowing you to implement tools that perform non-blocking operations like network requests, file I/O, or other async operations without blocking the main execution thread.
|
||||
|
||||
### Creating Async Tools
|
||||
|
||||
You can create async tools in two ways:
|
||||
|
||||
#### 1. Using the `tool` Decorator with Async Functions
|
||||
|
||||
```python Code
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool("fetch_data_async")
|
||||
async def fetch_data_async(query: str) -> str:
|
||||
"""Asynchronously fetch data based on the query."""
|
||||
# Simulate async operation
|
||||
await asyncio.sleep(1)
|
||||
return f"Data retrieved for {query}"
|
||||
```
|
||||
|
||||
#### 2. Implementing Async Methods in Custom Tool Classes
|
||||
|
||||
```python Code
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class AsyncCustomTool(BaseTool):
|
||||
name: str = "async_custom_tool"
|
||||
description: str = "An asynchronous custom tool"
|
||||
|
||||
async def _run(self, query: str = "") -> str:
|
||||
"""Asynchronously run the tool"""
|
||||
# Your async implementation here
|
||||
await asyncio.sleep(1)
|
||||
return f"Processed {query} asynchronously"
|
||||
```
|
||||
|
||||
### Using Async Tools
|
||||
|
||||
Async tools work seamlessly in both standard Crew workflows and Flow-based workflows:
|
||||
|
||||
```python Code
|
||||
# In standard Crew
|
||||
agent = Agent(role="researcher", tools=[async_custom_tool])
|
||||
|
||||
# In Flow
|
||||
class MyFlow(Flow):
|
||||
@start()
|
||||
async def begin(self):
|
||||
crew = Crew(agents=[agent])
|
||||
result = await crew.kickoff_async()
|
||||
return result
|
||||
```
|
||||
|
||||
The CrewAI framework automatically handles the execution of both synchronous and asynchronous tools, so you don't need to worry about how to call them differently.
|
||||
|
||||
### Utilizing the `tool` Decorator
|
||||
|
||||
```python Code
|
||||
|
||||
@@ -22,7 +22,7 @@ Watch this video tutorial for a step-by-step demonstration of the installation p
|
||||
<Note>
|
||||
**Python Version Requirements**
|
||||
|
||||
CrewAI requires `Python >=3.10 and <3.14`. Here's how to check your version:
|
||||
CrewAI requires `Python >=3.10 and <=3.13`. Here's how to check your version:
|
||||
```bash
|
||||
python3 --version
|
||||
```
|
||||
|
||||
@@ -1,20 +1,16 @@
|
||||
import warnings
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai import agent
|
||||
from crewai import cli
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai import knowledge
|
||||
from crewai.llm import LLM
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.llm_guardrail import LLMGuardrail
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai import utilities
|
||||
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
@@ -25,8 +21,6 @@ warnings.filterwarnings(
|
||||
__version__ = "0.126.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"agent",
|
||||
"cli",
|
||||
"Crew",
|
||||
"CrewOutput",
|
||||
"Process",
|
||||
@@ -35,8 +29,6 @@ __all__ = [
|
||||
"BaseLLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
"knowledge",
|
||||
"TaskOutput",
|
||||
"LLMGuardrail",
|
||||
"utilities",
|
||||
]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import shutil
|
||||
import subprocess
|
||||
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Sequence, Type, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
@@ -155,13 +155,6 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="The Agent's role to be used from your repository.",
|
||||
)
|
||||
guardrail: Optional[Union[Callable[[Any], Tuple[bool, Any]], str]] = Field(
|
||||
default=None,
|
||||
description="Function or string description of a guardrail to validate agent output"
|
||||
)
|
||||
guardrail_max_retries: int = Field(
|
||||
default=3, description="Maximum number of retries when guardrail fails"
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
def validate_from_repository(cls, v):
|
||||
@@ -787,8 +780,6 @@ class Agent(BaseAgent):
|
||||
response_format=response_format,
|
||||
i18n=self.i18n,
|
||||
original_agent=self,
|
||||
guardrail=self.guardrail,
|
||||
guardrail_max_retries=self.guardrail_max_retries,
|
||||
)
|
||||
|
||||
return lite_agent.kickoff(messages)
|
||||
|
||||
@@ -7,7 +7,6 @@ from crewai.utilities import I18N
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.events.event_listener import event_listener
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
@@ -126,38 +125,33 @@ class CrewAgentExecutorMixin:
|
||||
|
||||
def _ask_human_input(self, final_answer: str) -> str:
|
||||
"""Prompt human input with mode-appropriate messaging."""
|
||||
event_listener.formatter.pause_live_updates()
|
||||
|
||||
try:
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
self._printer.print(
|
||||
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
|
||||
)
|
||||
|
||||
# Training mode prompt (single iteration)
|
||||
if self.crew and getattr(self.crew, "_train", False):
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
|
||||
"This will be used to train better versions of the agent.\n"
|
||||
"Please provide detailed feedback about the result quality and reasoning process.\n"
|
||||
"=====\n"
|
||||
)
|
||||
# Regular human-in-the-loop prompt (multiple iterations)
|
||||
else:
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
|
||||
"Please follow these guidelines:\n"
|
||||
" - If you are happy with the result, simply hit Enter without typing anything.\n"
|
||||
" - Otherwise, provide specific improvement requests.\n"
|
||||
" - You can provide multiple rounds of feedback until satisfied.\n"
|
||||
"=====\n"
|
||||
)
|
||||
|
||||
# Training mode prompt (single iteration)
|
||||
if self.crew and getattr(self.crew, "_train", False):
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
|
||||
"This will be used to train better versions of the agent.\n"
|
||||
"Please provide detailed feedback about the result quality and reasoning process.\n"
|
||||
"=====\n"
|
||||
)
|
||||
# Regular human-in-the-loop prompt (multiple iterations)
|
||||
else:
|
||||
prompt = (
|
||||
"\n\n=====\n"
|
||||
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
|
||||
"Please follow these guidelines:\n"
|
||||
" - If you are happy with the result, simply hit Enter without typing anything.\n"
|
||||
" - Otherwise, provide specific improvement requests.\n"
|
||||
" - You can provide multiple rounds of feedback until satisfied.\n"
|
||||
"=====\n"
|
||||
)
|
||||
|
||||
self._printer.print(content=prompt, color="bold_yellow")
|
||||
response = input()
|
||||
if response.strip() != "":
|
||||
self._printer.print(content="\nProcessing your feedback...", color="cyan")
|
||||
return response
|
||||
finally:
|
||||
event_listener.formatter.resume_live_updates()
|
||||
self._printer.print(content=prompt, color="bold_yellow")
|
||||
response = input()
|
||||
if response.strip() != "":
|
||||
self._printer.print(content="\nProcessing your feedback...", color="cyan")
|
||||
return response
|
||||
|
||||
@@ -237,6 +237,7 @@ MODELS = {
|
||||
"watsonx/meta-llama/llama-3-2-1b-instruct",
|
||||
"watsonx/meta-llama/llama-3-2-90b-vision-instruct",
|
||||
"watsonx/meta-llama/llama-3-405b-instruct",
|
||||
"watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8",
|
||||
"watsonx/mistral/mistral-large",
|
||||
"watsonx/ibm/granite-3-8b-instruct",
|
||||
],
|
||||
|
||||
@@ -1,14 +1,9 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
import uuid
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union, cast, get_args, get_origin
|
||||
from datetime import datetime
|
||||
from typing import Any, Callable, Dict, List, Optional, Type, Union, cast
|
||||
|
||||
try:
|
||||
from typing import Self
|
||||
except ImportError:
|
||||
from typing_extensions import Self
|
||||
|
||||
from pydantic import BaseModel, Field, InstanceOf, PrivateAttr, model_validator, field_validator
|
||||
from pydantic import BaseModel, Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
@@ -23,7 +18,6 @@ from crewai.llm import LLM
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.guardrail import process_guardrail
|
||||
from crewai.utilities.agent_utils import (
|
||||
enforce_rpm_limit,
|
||||
format_message_for_llm,
|
||||
@@ -41,7 +35,7 @@ from crewai.utilities.agent_utils import (
|
||||
render_text_description_and_args,
|
||||
show_agent_logs,
|
||||
)
|
||||
from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.converter import convert_to_model, generate_model_description
|
||||
from crewai.utilities.events.agent_events import (
|
||||
LiteAgentExecutionCompletedEvent,
|
||||
LiteAgentExecutionErrorEvent,
|
||||
@@ -152,15 +146,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
default=[], description="Callbacks to be used for the agent"
|
||||
)
|
||||
|
||||
# Guardrail Properties
|
||||
guardrail: Optional[Union[Callable[[LiteAgentOutput], Tuple[bool, Any]], str]] = Field(
|
||||
default=None,
|
||||
description="Function or string description of a guardrail to validate agent output"
|
||||
)
|
||||
guardrail_max_retries: int = Field(
|
||||
default=3, description="Maximum number of retries when guardrail fails"
|
||||
)
|
||||
|
||||
# State and Results
|
||||
tools_results: List[Dict[str, Any]] = Field(
|
||||
default=[], description="Results of the tools used by the agent."
|
||||
@@ -178,9 +163,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
_messages: List[Dict[str, str]] = PrivateAttr(default_factory=list)
|
||||
_iterations: int = PrivateAttr(default=0)
|
||||
_printer: Printer = PrivateAttr(default_factory=Printer)
|
||||
_guardrail: Optional[Callable] = PrivateAttr(default=None)
|
||||
_guardrail_retry_count: int = PrivateAttr(default=0)
|
||||
|
||||
|
||||
@model_validator(mode="after")
|
||||
def setup_llm(self):
|
||||
@@ -202,60 +184,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_guardrail_is_callable(self) -> Self:
|
||||
if callable(self.guardrail):
|
||||
self._guardrail = self.guardrail
|
||||
elif isinstance(self.guardrail, str):
|
||||
from crewai.tasks.llm_guardrail import LLMGuardrail
|
||||
assert isinstance(self.llm, LLM)
|
||||
|
||||
self._guardrail = LLMGuardrail(
|
||||
description=self.guardrail, llm=self.llm
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@field_validator("guardrail", mode="before")
|
||||
@classmethod
|
||||
def validate_guardrail_function(cls, v: Optional[Union[Callable, str]]) -> Optional[Union[Callable, str]]:
|
||||
"""Validate that the guardrail function has the correct signature.
|
||||
|
||||
If v is a callable, validate that it has the correct signature.
|
||||
If v is a string, return it as is.
|
||||
|
||||
Args:
|
||||
v: The guardrail function to validate or a string describing the guardrail task
|
||||
|
||||
Returns:
|
||||
The validated guardrail function or a string describing the guardrail task
|
||||
"""
|
||||
if v is None or isinstance(v, str):
|
||||
return v
|
||||
|
||||
# Check function signature
|
||||
sig = inspect.signature(v)
|
||||
if len(sig.parameters) != 1:
|
||||
raise ValueError(
|
||||
f"Guardrail function must accept exactly 1 parameter (LiteAgentOutput), "
|
||||
f"but it accepts {len(sig.parameters)}"
|
||||
)
|
||||
|
||||
# Check return annotation if present
|
||||
if sig.return_annotation is not sig.empty:
|
||||
if sig.return_annotation == Tuple[bool, Any]:
|
||||
return v
|
||||
|
||||
origin = get_origin(sig.return_annotation)
|
||||
args = get_args(sig.return_annotation)
|
||||
|
||||
if origin is not tuple or len(args) != 2 or args[0] is not bool:
|
||||
raise ValueError(
|
||||
"If return type is annotated, it must be Tuple[bool, Any]"
|
||||
)
|
||||
|
||||
return v
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
"""Get the unique key for this agent instance."""
|
||||
@@ -295,7 +223,54 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
# Format messages for the LLM
|
||||
self._messages = self._format_messages(messages)
|
||||
|
||||
return self._execute_core(agent_info=agent_info)
|
||||
# Emit event for agent execution start
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=self._parsed_tools,
|
||||
messages=messages,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the agent using invoke loop
|
||||
agent_finish = self._invoke_loop()
|
||||
formatted_result: Optional[BaseModel] = None
|
||||
if self.response_format:
|
||||
try:
|
||||
# Cast to BaseModel to ensure type safety
|
||||
result = self.response_format.model_validate_json(
|
||||
agent_finish.output
|
||||
)
|
||||
if isinstance(result, BaseModel):
|
||||
formatted_result = result
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format: {str(e)}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
# Calculate token usage metrics
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
# Create output
|
||||
output = LiteAgentOutput(
|
||||
raw=agent_finish.output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
)
|
||||
|
||||
# Emit completion event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=agent_finish.output,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
@@ -313,94 +288,6 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
)
|
||||
raise e
|
||||
|
||||
def _execute_core(self, agent_info: Dict[str, Any]) -> LiteAgentOutput:
|
||||
# Emit event for agent execution start
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=self._parsed_tools,
|
||||
messages=self._messages,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the agent using invoke loop
|
||||
agent_finish = self._invoke_loop()
|
||||
formatted_result: Optional[BaseModel] = None
|
||||
if self.response_format:
|
||||
try:
|
||||
# Cast to BaseModel to ensure type safety
|
||||
result = self.response_format.model_validate_json(
|
||||
agent_finish.output
|
||||
)
|
||||
if isinstance(result, BaseModel):
|
||||
formatted_result = result
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format: {str(e)}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
# Calculate token usage metrics
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
# Create output
|
||||
output = LiteAgentOutput(
|
||||
raw=agent_finish.output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
)
|
||||
|
||||
# Process guardrail if set
|
||||
if self._guardrail is not None:
|
||||
guardrail_result = process_guardrail(
|
||||
output=output,
|
||||
guardrail=self._guardrail,
|
||||
retry_count=self._guardrail_retry_count
|
||||
)
|
||||
|
||||
if not guardrail_result.success:
|
||||
if self._guardrail_retry_count >= self.guardrail_max_retries:
|
||||
raise Exception(
|
||||
f"Agent's guardrail failed validation after {self.guardrail_max_retries} retries. "
|
||||
f"Last error: {guardrail_result.error}"
|
||||
)
|
||||
self._guardrail_retry_count += 1
|
||||
if self.verbose:
|
||||
self._printer.print(
|
||||
f"Guardrail failed. Retrying ({self._guardrail_retry_count}/{self.guardrail_max_retries})..."
|
||||
f"\n{guardrail_result.error}"
|
||||
)
|
||||
|
||||
self._messages.append({
|
||||
"role": "user",
|
||||
"content": guardrail_result.error or "Guardrail validation failed"
|
||||
})
|
||||
|
||||
return self._execute_core(agent_info=agent_info)
|
||||
|
||||
# Apply guardrail result if available
|
||||
if guardrail_result.result is not None:
|
||||
if isinstance(guardrail_result.result, str):
|
||||
output.raw = guardrail_result.result
|
||||
elif isinstance(guardrail_result.result, BaseModel):
|
||||
output.pydantic = guardrail_result.result
|
||||
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
output.usage_metrics = usage_metrics.model_dump() if usage_metrics else None
|
||||
|
||||
# Emit completion event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=agent_finish.output,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
async def kickoff_async(
|
||||
self, messages: Union[str, List[Dict[str, str]]]
|
||||
) -> LiteAgentOutput:
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
@@ -46,7 +48,8 @@ with warnings.catch_warnings():
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
|
||||
import io
|
||||
from typing import TextIO
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
@@ -57,7 +60,69 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class FilteredStream(io.TextIOBase):
|
||||
_lock = None
|
||||
|
||||
def __init__(self, original_stream: TextIO):
|
||||
self._original_stream = original_stream
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def write(self, s: str) -> int:
|
||||
if not self._lock:
|
||||
self._lock = threading.Lock()
|
||||
|
||||
with self._lock:
|
||||
lower_s = s.lower()
|
||||
|
||||
# Skip common noisy LiteLLM banners and any other lines that contain "litellm"
|
||||
if (
|
||||
"give feedback / get help" in lower_s
|
||||
or "litellm.info:" in lower_s
|
||||
or "litellm" in lower_s
|
||||
or "Consider using a smaller input or implementing a text splitting strategy" in lower_s
|
||||
):
|
||||
return 0
|
||||
|
||||
return self._original_stream.write(s)
|
||||
|
||||
def flush(self):
|
||||
with self._lock:
|
||||
return self._original_stream.flush()
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Delegate attribute access to the wrapped original stream.
|
||||
|
||||
This ensures compatibility with libraries (e.g., Rich) that rely on
|
||||
attributes such as `encoding`, `isatty`, `buffer`, etc., which may not
|
||||
be explicitly defined on this proxy class.
|
||||
"""
|
||||
return getattr(self._original_stream, name)
|
||||
|
||||
# Delegate common properties/methods explicitly so they aren't shadowed by
|
||||
# the TextIOBase defaults (e.g., .encoding returns None by default, which
|
||||
# confuses Rich). These explicit pass-throughs ensure the wrapped Console
|
||||
# still sees a fully-featured stream.
|
||||
@property
|
||||
def encoding(self):
|
||||
return getattr(self._original_stream, "encoding", "utf-8")
|
||||
|
||||
def isatty(self):
|
||||
return self._original_stream.isatty()
|
||||
|
||||
def fileno(self):
|
||||
return self._original_stream.fileno()
|
||||
|
||||
def writable(self):
|
||||
return True
|
||||
|
||||
|
||||
# Apply the filtered stream globally so that any subsequent writes containing the filtered
|
||||
# keywords (e.g., "litellm") are hidden from terminal output. We guard against double
|
||||
# wrapping to ensure idempotency in environments where this module might be reloaded.
|
||||
if not isinstance(sys.stdout, FilteredStream):
|
||||
sys.stdout = FilteredStream(sys.stdout)
|
||||
if not isinstance(sys.stderr, FilteredStream):
|
||||
sys.stderr = FilteredStream(sys.stderr)
|
||||
|
||||
|
||||
LLM_CONTEXT_WINDOW_SIZES = {
|
||||
@@ -201,40 +266,6 @@ def suppress_warnings():
|
||||
yield
|
||||
|
||||
|
||||
@contextmanager
|
||||
def suppress_litellm_output():
|
||||
"""Contextually suppress litellm-related logging output during LLM calls."""
|
||||
litellm_logger = logging.getLogger("litellm")
|
||||
original_level = litellm_logger.level
|
||||
|
||||
warning_patterns = [
|
||||
".*give feedback.*",
|
||||
".*Consider using a smaller input.*",
|
||||
".*litellm\\.info:.*",
|
||||
".*text splitting strategy.*"
|
||||
]
|
||||
|
||||
try:
|
||||
with warnings.catch_warnings():
|
||||
for pattern in warning_patterns:
|
||||
warnings.filterwarnings("ignore", message=pattern)
|
||||
|
||||
try:
|
||||
litellm_logger.setLevel(logging.WARNING)
|
||||
except Exception as e:
|
||||
logging.debug(f"Error setting logger level: {e}")
|
||||
|
||||
yield
|
||||
except Exception as e:
|
||||
logging.debug(f"Error in litellm output suppression: {e}")
|
||||
raise
|
||||
finally:
|
||||
try:
|
||||
litellm_logger.setLevel(original_level)
|
||||
except Exception as e:
|
||||
logging.debug(f"Error restoring logger level: {e}")
|
||||
|
||||
|
||||
class Delta(TypedDict):
|
||||
content: Optional[str]
|
||||
role: Optional[str]
|
||||
@@ -419,61 +450,60 @@ class LLM(BaseLLM):
|
||||
|
||||
try:
|
||||
# --- 3) Process each chunk in the stream
|
||||
with suppress_litellm_output():
|
||||
for chunk in litellm.completion(**params):
|
||||
chunk_count += 1
|
||||
last_chunk = chunk
|
||||
for chunk in litellm.completion(**params):
|
||||
chunk_count += 1
|
||||
last_chunk = chunk
|
||||
|
||||
# Extract content from the chunk
|
||||
chunk_content = None
|
||||
# Extract content from the chunk
|
||||
chunk_content = None
|
||||
|
||||
# Safely extract content from various chunk formats
|
||||
try:
|
||||
# Try to access choices safely
|
||||
choices = None
|
||||
if isinstance(chunk, dict) and "choices" in chunk:
|
||||
choices = chunk["choices"]
|
||||
elif hasattr(chunk, "choices"):
|
||||
# Check if choices is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "choices"), type):
|
||||
choices = getattr(chunk, "choices")
|
||||
# Safely extract content from various chunk formats
|
||||
try:
|
||||
# Try to access choices safely
|
||||
choices = None
|
||||
if isinstance(chunk, dict) and "choices" in chunk:
|
||||
choices = chunk["choices"]
|
||||
elif hasattr(chunk, "choices"):
|
||||
# Check if choices is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "choices"), type):
|
||||
choices = getattr(chunk, "choices")
|
||||
|
||||
# Try to extract usage information if available
|
||||
if isinstance(chunk, dict) and "usage" in chunk:
|
||||
usage_info = chunk["usage"]
|
||||
elif hasattr(chunk, "usage"):
|
||||
# Check if usage is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "usage"), type):
|
||||
usage_info = getattr(chunk, "usage")
|
||||
# Try to extract usage information if available
|
||||
if isinstance(chunk, dict) and "usage" in chunk:
|
||||
usage_info = chunk["usage"]
|
||||
elif hasattr(chunk, "usage"):
|
||||
# Check if usage is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "usage"), type):
|
||||
usage_info = getattr(chunk, "usage")
|
||||
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
|
||||
# Handle different delta formats
|
||||
delta = None
|
||||
if isinstance(choice, dict) and "delta" in choice:
|
||||
delta = choice["delta"]
|
||||
elif hasattr(choice, "delta"):
|
||||
delta = getattr(choice, "delta")
|
||||
# Handle different delta formats
|
||||
delta = None
|
||||
if isinstance(choice, dict) and "delta" in choice:
|
||||
delta = choice["delta"]
|
||||
elif hasattr(choice, "delta"):
|
||||
delta = getattr(choice, "delta")
|
||||
|
||||
# Extract content from delta
|
||||
if delta:
|
||||
# Handle dict format
|
||||
if isinstance(delta, dict):
|
||||
if "content" in delta and delta["content"] is not None:
|
||||
chunk_content = delta["content"]
|
||||
# Handle object format
|
||||
elif hasattr(delta, "content"):
|
||||
chunk_content = getattr(delta, "content")
|
||||
# Extract content from delta
|
||||
if delta:
|
||||
# Handle dict format
|
||||
if isinstance(delta, dict):
|
||||
if "content" in delta and delta["content"] is not None:
|
||||
chunk_content = delta["content"]
|
||||
# Handle object format
|
||||
elif hasattr(delta, "content"):
|
||||
chunk_content = getattr(delta, "content")
|
||||
|
||||
# Handle case where content might be None or empty
|
||||
if chunk_content is None and isinstance(delta, dict):
|
||||
# Some models might send empty content chunks
|
||||
chunk_content = ""
|
||||
# Handle case where content might be None or empty
|
||||
if chunk_content is None and isinstance(delta, dict):
|
||||
# Some models might send empty content chunks
|
||||
chunk_content = ""
|
||||
|
||||
# Enable tool calls using streaming
|
||||
if "tool_calls" in delta:
|
||||
tool_calls = delta["tool_calls"]
|
||||
# Enable tool calls using streaming
|
||||
if "tool_calls" in delta:
|
||||
tool_calls = delta["tool_calls"]
|
||||
|
||||
if tool_calls:
|
||||
result = self._handle_streaming_tool_calls(
|
||||
@@ -484,22 +514,21 @@ class LLM(BaseLLM):
|
||||
if result is not None:
|
||||
chunk_content = result
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error extracting content from chunk: {e}", exc_info=True)
|
||||
logging.debug(f"Chunk format: {type(chunk)}, content: {chunk}")
|
||||
continue
|
||||
except Exception as e:
|
||||
logging.debug(f"Error extracting content from chunk: {e}")
|
||||
logging.debug(f"Chunk format: {type(chunk)}, content: {chunk}")
|
||||
|
||||
# Only add non-None content to the response
|
||||
if chunk_content is not None:
|
||||
# Add the chunk content to the full response
|
||||
full_response += chunk_content
|
||||
# Only add non-None content to the response
|
||||
if chunk_content is not None:
|
||||
# Add the chunk content to the full response
|
||||
full_response += chunk_content
|
||||
|
||||
# Emit the chunk event
|
||||
assert hasattr(crewai_event_bus, "emit")
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LLMStreamChunkEvent(chunk=chunk_content),
|
||||
)
|
||||
# Emit the chunk event
|
||||
assert hasattr(crewai_event_bus, "emit")
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LLMStreamChunkEvent(chunk=chunk_content),
|
||||
)
|
||||
# --- 4) Fallback to non-streaming if no content received
|
||||
if not full_response.strip() and chunk_count == 0:
|
||||
logging.warning(
|
||||
@@ -736,8 +765,7 @@ class LLM(BaseLLM):
|
||||
# and convert them to our own exception type for consistent handling
|
||||
# across the codebase. This allows CrewAgentExecutor to handle context
|
||||
# length issues appropriately.
|
||||
with suppress_litellm_output():
|
||||
response = litellm.completion(**params)
|
||||
response = litellm.completion(**params)
|
||||
except ContextWindowExceededError as e:
|
||||
# Convert litellm's context window error to our own exception type
|
||||
# for consistent handling in the rest of the codebase
|
||||
|
||||
@@ -35,12 +35,12 @@ from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.security import Fingerprint, SecurityConfig
|
||||
from crewai.tasks.guardrail_result import GuardrailResult
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.constants import NOT_SPECIFIED
|
||||
from crewai.utilities.guardrail import process_guardrail, GuardrailResult
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.events import (
|
||||
TaskCompletedEvent,
|
||||
@@ -431,11 +431,7 @@ class Task(BaseModel):
|
||||
)
|
||||
|
||||
if self._guardrail:
|
||||
guardrail_result = process_guardrail(
|
||||
output=task_output,
|
||||
guardrail=self._guardrail,
|
||||
retry_count=self.retry_count
|
||||
)
|
||||
guardrail_result = self._process_guardrail(task_output)
|
||||
if not guardrail_result.success:
|
||||
if self.retry_count >= self.max_retries:
|
||||
raise Exception(
|
||||
@@ -531,10 +527,10 @@ class Task(BaseModel):
|
||||
|
||||
def prompt(self) -> str:
|
||||
"""Generates the task prompt with optional markdown formatting.
|
||||
|
||||
|
||||
When the markdown attribute is True, instructions for formatting the
|
||||
response in Markdown syntax will be added to the prompt.
|
||||
|
||||
|
||||
Returns:
|
||||
str: The formatted prompt string containing the task description,
|
||||
expected output, and optional markdown formatting instructions.
|
||||
@@ -545,7 +541,7 @@ class Task(BaseModel):
|
||||
expected_output=self.expected_output
|
||||
)
|
||||
tasks_slices = [self.description, output]
|
||||
|
||||
|
||||
if self.markdown:
|
||||
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.
|
||||
Follow these guidelines:
|
||||
|
||||
@@ -1,7 +1,15 @@
|
||||
from typing import Any, Callable, Optional, Tuple, Union
|
||||
"""
|
||||
Module for handling task guardrail validation results.
|
||||
|
||||
This module provides the GuardrailResult class which standardizes
|
||||
the way task guardrails return their validation results.
|
||||
"""
|
||||
|
||||
from typing import Any, Optional, Tuple, Union
|
||||
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
|
||||
class GuardrailResult(BaseModel):
|
||||
"""Result from a task guardrail execution.
|
||||
|
||||
@@ -46,48 +54,3 @@ class GuardrailResult(BaseModel):
|
||||
result=data if success else None,
|
||||
error=data if not success else None
|
||||
)
|
||||
|
||||
|
||||
def process_guardrail(output: Any, guardrail: Callable, retry_count: int) -> GuardrailResult:
|
||||
"""Process the guardrail for the agent output.
|
||||
|
||||
Args:
|
||||
output: The output to validate with the guardrail
|
||||
|
||||
Returns:
|
||||
GuardrailResult: The result of the guardrail validation
|
||||
"""
|
||||
from crewai.task import TaskOutput
|
||||
from crewai.lite_agent import LiteAgentOutput
|
||||
|
||||
assert isinstance(output, TaskOutput) or isinstance(output, LiteAgentOutput), "Output must be a TaskOutput or LiteAgentOutput"
|
||||
|
||||
assert guardrail is not None
|
||||
|
||||
from crewai.utilities.events import (
|
||||
LLMGuardrailCompletedEvent,
|
||||
LLMGuardrailStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
LLMGuardrailStartedEvent(
|
||||
guardrail=guardrail, retry_count=retry_count
|
||||
),
|
||||
)
|
||||
|
||||
result = guardrail(output)
|
||||
guardrail_result = GuardrailResult.from_tuple(result)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
LLMGuardrailCompletedEvent(
|
||||
success=guardrail_result.success,
|
||||
result=guardrail_result.result,
|
||||
error=guardrail_result.error,
|
||||
retry_count=retry_count,
|
||||
),
|
||||
)
|
||||
|
||||
return guardrail_result
|
||||
@@ -8,7 +8,7 @@ import platform
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from importlib.metadata import version
|
||||
from typing import TYPE_CHECKING, Any, Callable, Optional
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
import threading
|
||||
|
||||
from opentelemetry import trace
|
||||
@@ -73,16 +73,11 @@ class Telemetry:
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
cls._instance = super(Telemetry, cls).__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self) -> None:
|
||||
if hasattr(self, '_initialized') and self._initialized:
|
||||
return
|
||||
|
||||
self.ready: bool = False
|
||||
self.trace_set: bool = False
|
||||
self._initialized: bool = True
|
||||
|
||||
if self._is_telemetry_disabled():
|
||||
return
|
||||
@@ -118,10 +113,6 @@ class Telemetry:
|
||||
or os.getenv("CREWAI_DISABLE_TELEMETRY", "false").lower() == "true"
|
||||
)
|
||||
|
||||
def _should_execute_telemetry(self) -> bool:
|
||||
"""Check if telemetry operations should be executed."""
|
||||
return self.ready and not self._is_telemetry_disabled()
|
||||
|
||||
def set_tracer(self):
|
||||
if self.ready and not self.trace_set:
|
||||
try:
|
||||
@@ -132,9 +123,8 @@ class Telemetry:
|
||||
self.ready = False
|
||||
self.trace_set = False
|
||||
|
||||
def _safe_telemetry_operation(self, operation: Callable[[], None]) -> None:
|
||||
"""Execute telemetry operation safely, checking both readiness and environment variables."""
|
||||
if not self._should_execute_telemetry():
|
||||
def _safe_telemetry_operation(self, operation):
|
||||
if not self.ready:
|
||||
return
|
||||
try:
|
||||
operation()
|
||||
@@ -433,8 +423,7 @@ class Telemetry:
|
||||
|
||||
return span
|
||||
|
||||
self._safe_telemetry_operation(operation)
|
||||
return None
|
||||
return self._safe_telemetry_operation(operation)
|
||||
|
||||
def task_ended(self, span: Span, task: Task, crew: Crew):
|
||||
"""Records the completion of a task execution in a crew.
|
||||
@@ -784,8 +773,7 @@ class Telemetry:
|
||||
return span
|
||||
|
||||
if crew.share_crew:
|
||||
self._safe_telemetry_operation(operation)
|
||||
return operation()
|
||||
return self._safe_telemetry_operation(operation)
|
||||
return None
|
||||
|
||||
def end_crew(self, crew, final_string_output):
|
||||
|
||||
@@ -64,7 +64,7 @@ class BaseTool(BaseModel, ABC):
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@field_validator("max_usage_count", mode="before")
|
||||
@classmethod
|
||||
def validate_max_usage_count(cls, v: int | None) -> int | None:
|
||||
@@ -88,11 +88,11 @@ class BaseTool(BaseModel, ABC):
|
||||
# If _run is async, we safely run it
|
||||
if asyncio.iscoroutine(result):
|
||||
result = asyncio.run(result)
|
||||
|
||||
|
||||
self.current_usage_count += 1
|
||||
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def reset_usage_count(self) -> None:
|
||||
"""Reset the current usage count to zero."""
|
||||
self.current_usage_count = 0
|
||||
@@ -279,7 +279,7 @@ def to_langchain(
|
||||
def tool(*args, result_as_answer: bool = False, max_usage_count: int | None = None) -> Callable:
|
||||
"""
|
||||
Decorator to create a tool from a function.
|
||||
|
||||
|
||||
Args:
|
||||
*args: Positional arguments, either the function to decorate or the tool name.
|
||||
result_as_answer: Flag to indicate if the tool result should be used as the final agent answer.
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
|
||||
import inspect
|
||||
import textwrap
|
||||
from typing import Any, Callable, Optional, Union, get_type_hints
|
||||
@@ -241,17 +239,7 @@ class CrewStructuredTool:
|
||||
) -> Any:
|
||||
"""Main method for tool execution."""
|
||||
parsed_args = self._parse_args(input)
|
||||
|
||||
if inspect.iscoroutinefunction(self.func):
|
||||
result = asyncio.run(self.func(**parsed_args, **kwargs))
|
||||
return result
|
||||
|
||||
result = self.func(**parsed_args, **kwargs)
|
||||
|
||||
if asyncio.iscoroutine(result):
|
||||
return asyncio.run(result)
|
||||
|
||||
return result
|
||||
return self.func(**parsed_args, **kwargs)
|
||||
|
||||
@property
|
||||
def args(self) -> dict:
|
||||
|
||||
@@ -17,7 +17,6 @@ class ConsoleFormatter:
|
||||
current_lite_agent_branch: Optional[Tree] = None
|
||||
tool_usage_counts: Dict[str, int] = {}
|
||||
current_reasoning_branch: Optional[Tree] = None # Track reasoning status
|
||||
_live_paused: bool = False
|
||||
current_llm_tool_tree: Optional[Tree] = None
|
||||
|
||||
def __init__(self, verbose: bool = False):
|
||||
@@ -120,19 +119,6 @@ class ConsoleFormatter:
|
||||
# Finally, pass through to the regular Console.print implementation
|
||||
self.console.print(*args, **kwargs)
|
||||
|
||||
def pause_live_updates(self) -> None:
|
||||
"""Pause Live session updates to allow for human input without interference."""
|
||||
if not self._live_paused:
|
||||
if self._live:
|
||||
self._live.stop()
|
||||
self._live = None
|
||||
self._live_paused = True
|
||||
|
||||
def resume_live_updates(self) -> None:
|
||||
"""Resume Live session updates after human input is complete."""
|
||||
if self._live_paused:
|
||||
self._live_paused = False
|
||||
|
||||
def print_panel(
|
||||
self, content: Text, title: str, style: str = "blue", is_flow: bool = False
|
||||
) -> None:
|
||||
|
||||
@@ -1,137 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '694'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//nFfNchtHDr7rKVBz0a6KVJGUZMm6SVrJcSw6Ktmb7NY6pQJ7wBlEPd1T
|
||||
6B5S3JTP+yw55AVy9T7YFnr4Jy7pRLmwioP+wfcB+Br4eQ8g4zw7h8yUGE1V2+5l0dh/xOvXo5MT
|
||||
ufDvJk//lNvJm+9HvR9+errPOrrDj34iExe7Do2vakuRvWvNRggj6an90+PXJ69OX50dJUPlc7K6
|
||||
rahj99h3K3bcHfQGx93eabd/Nt9dejYUsnP41x4AwM/pV/10OT1l59DrLL5UFAIWlJ0vFwFk4q1+
|
||||
yTAEDhFdzDoro/Eukkuufyx9U5TxHN6C81Mw6KDgCQFCof4DujAlAfjkbtihhYv0/xw+lgRjb62f
|
||||
siuAAyCEKI2JjVAOfkIyYZqCH0MsCUwjQi5C9DX0exC8MSRQW5yRBGCXFk292BxGGPSA9IkFapKx
|
||||
lwqdodABNCXThCpyUf+59ia0Friq0cT5PiiwIsCg139noh+RwKA3ODr/5D65/iEcHNyyd2RhSCHw
|
||||
wQH85a2LJDBkrPivnxwAdOHg4M4H1ngeHJzDjZcpSr60XfnGRZmp6UIKcpEdLo0Xa27qilO4RGu9
|
||||
g3z/OwHUg0IHqsZGri3B369vLuCqxKpm7wLcEhYNQeRoFbMlzJXj5TUQvaLpw5WvES6qL78IG0xs
|
||||
DHqDAdy8vbmAHxKZV00NEzbRy+xQsQ8U+7uZZXQwHGFdf/lF0d+hcIAPyC5235BUyO7FLNyIxmgn
|
||||
BRtOTdk5Eo38oNc/64BrKhLfBLhlxd5fon90fupg7AVKDhBqorwDufBoZNkVbQ4UHm03GC9KUy1+
|
||||
SiEkuEcK91p0JXyDaNHlCneIzpQUNOJXHGcvhvpeTbPdUDFECnGe3hotITTlCqP6m7J+a+A7aaO6
|
||||
jGCkMYwWtJp1w4bn+wGi0MhSV/nULYEweNfyOhioqhwlJo5T4GnCDv5GcCnNzNEfpmLI+ZjJ5iTb
|
||||
2LgkW3BT7aTjHc0SogofSVIkNy5dq4Q7oYpJNktAg/w8EejJUK3+oYUJB/YuLapV7pS5EVuObc6f
|
||||
KPQr4RAZnYd73ZN7BX9hu+8xBHlxAtx5iU2Bdifmk60Fj9Z2I1e0LGlNBNDEbUtBlWtHSszrxY9X
|
||||
XNl1jnT7tSs0wzvwoUZ2LWtvI9qWhldKw3uaVSjwrRzO8X/DFu2L8V8K/pt3o3/3LFRjiyzJmfDI
|
||||
1nagJCgxwNS7jWpvQ6hVkwPChONa5rdX7gdwOA97JKwgNMZQCB1gZ2yTSF2UgrI5V0hSgUwsnCoL
|
||||
9/ogRLilKbrcT8NjegIuUQxZ7/BPpIPyvpOOe1I+KE+MPNOqeZp2Ehfqb1LJSxWPIbn9AHethKQE
|
||||
mhd1byH0/Q7oOy48aqIeVhJO2M5Uby51l4Nh49iU+2HBEgUY0dgLQeUniSJdOked6DlLb2PziDD0
|
||||
ufB//6PE3BNaGGIunP8ZfbgSj5F3P476ADwrlzbXNaTaUeg6tAp+zY/9sOW9FG6qumyzaFFh88sV
|
||||
qfI71h4mLLqSdPPyTUoEvFYChr7EinL4gBZLZeCWJyS19y+vlOtiVsfflca5Li6v0Rqx9TyJKyUk
|
||||
+buhjorz662DrljqxRtvc3Jw6X2cKxJsPTfx0O8pEd+z+/Kr4SbAt19+c+xlazp8lY+vSMf2YuEk
|
||||
4CGibEg+FqlY1pVkqRU1T/y6WvxOqsxbogV+LaZuap3a5zMx8LGkQMsWtcQJablpM00u2hnkZDVc
|
||||
lAM9RUEvOTuU2bOGddGOpupIjpfe5hC4cDxmgy4Cu7FtyBmCKcfyWSfsx/NGeaPQ21xmSQoY9teq
|
||||
OzVDKI6SurDLecJ5gxbQGG8xp3C4PgYIjZuAOoq4xto1AzrnY9LZNID8OLd8Xo4c1he1+FHY2JqN
|
||||
2XEoHyTRqONFiL7OkvXzHsCPabRpnk0rWS2+quND9I+UrusPBu152WqiWllPjxbWqBFfGc5Ojjtb
|
||||
DnzIKSLbsDYdZQZNSflq62qUwiZnv2bYW4P9/+5sO7uFzq74I8evDEbbGcofaqGczXPIq2VCOnHu
|
||||
WrakOTmcBR3BDD1EJtFQ5DTGxrZzYBZmIVL1MGZXkNTC7TA4rh9eDXBwhGd9Gmd7n/f+BwAA//8D
|
||||
AMMI9CsaDwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9be627c40f260-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 15:02:05 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=qYkxv9nLxeWAtPBvECxNw8fLnoBHLorJdRI8.xVEVEA-1749567725-1.0.1.1-75sp4gwHGJocK1MFkSgRcB4xJUiCwz31VRD4LAmQGEmfYB0BMQZ5sgWS8e_UMbjCaEhaPNO88q5XdbLOCWA85_rO0vYTb4hp6tmIiaerhsM;
|
||||
path=/; expires=Tue, 10-Jun-25 15:32:05 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=HRKCwkyTqSXpCj9_i_T5lDtlr_INA290o0b3k.26oi8-1749567725794-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '42674'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '42684'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999859'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_d92e6f33fa5e0fbe43349afee8f55921
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1,130 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 1 best players
|
||||
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '693'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//TFPRbttGEHzPVwz04taQBFt1nFZvsgsnRlvYqI0aafOyPK7IjY97xO1R
|
||||
CpMv6nf0x4qlZLcvBHh3Mzs7s/vtDTCTerbGLLRUQtfHxVUzPF6udsaXHx/Cn7//8fG8e9rf/XxF
|
||||
X+vqaTZ3RKo+cygvqGVIXR+5SNLDdchMhZ31/N3FT28vL99enE0XXao5Oqzpy+IiLTpRWazOVheL
|
||||
s3eL8x+P6DZJYJut8dcbAPg2fV2n1vxltsbENZ10bEYNz9avj4BZTtFPZmQmVkjLbP7fZUhaWCfp
|
||||
j20amrascQtNewRSNLJjEBrXD1LbcwY+6Y0oRWym/zUeW0ZJPfpII2eIorSMfcqxnoMMaYu7UFLF
|
||||
Gauz1Q9ziOFXScoRv7GZLPEkNccRmRvKNdcTSNmBzjRVZyuwFALnY52Jl2JEkY7nBya0ZGipBikk
|
||||
xsFKljQYAmXmjNBSplA4y1euUY3gLyVTyrUo5RH2LDHaHDsxSToHaY2Q1E1jDePSO/+kv/CITWiF
|
||||
d9yxFlv78QKnp9dxqOz0dH2UYj1rmfR39DllKaMLbuVVDRXcXOOKcuCYlObYt5wZLaPiQB1P2BCH
|
||||
6sS8z4X3ichUizawkDLnJT5MzxQlk9qWc+YaJeGeshgeSLQs3nPuSBTf3T+8/97TWZ2tzpcHzbda
|
||||
OCv5pFJ07R+8RI1NbliLKDnZTkJJeXwJ1uG4Tj1h0/3zd5ZAk1PHqxVubm82ePL0cT30cxiHIbtm
|
||||
7z1yQ2H0gAkvddFyTsuji5s95fp/Nnqi+6Tohlikj4wrijEp6pO7DJoez9FK00Zp2vJSxgqVwbxM
|
||||
mfy08jKdTUwVxTgiKYx3nCkihUAeuS094PtIo/M8lDHylO5BiRieNe0V25SnIqIhcy1VZNRZqio6
|
||||
iiqJUsY5+sxBjNH72mlzGKc+pyhbCWgSxYWHKNos8cGd8ZVjz8PnpMm085HxZveGVjpPoiPlYccZ
|
||||
pc2+qyjeNGreshobjKmLbBbHOTp6PrjRgaYx9s13oK9yOkS5FY71chrrW93GgTUcOr7iMWk92ShW
|
||||
JNhxwU4M0vUUXhka8uU7uHEk8CuyXqbMj7t66H5Kpk+5WEdqrfRo6V8AAAD//4xVy24CIRTdz1cQ
|
||||
1m1Tx+nCr+gXGHKFO85NGSDAaF347w2ggtUmXR84931O0hcdLJP5mlC14yNzPfmJQlrB0qkkWWQW
|
||||
VMyhH62fIUVNApUXgWk8oGZH1JqRiTYzzqRe1+8hDRFYEhOY83kWVKEimbcx55mFoLTlM2+IvuoL
|
||||
fuPs0gQxsOMEkVFkM4IJiWmHD9vWaiGLVsHprRVfj+MSIBmAWbRuADDGxpxQlv3tBTnfhF7bvfN2
|
||||
F3595SMZCpPwCMGaJOohWsczeu4Y22ZDWe48gjtvZxdFtF+Yw636vvDx6mMV7TebCxptBF2BoV+9
|
||||
PCEUCiOQDo0ncQlyQlW/VgODRZFtgK4p+zGdZ9yldDL7/9BXQEp0EZVw6aTlfcn1mcfk8389u7U5
|
||||
J8wD+gNJFJHQp1EoHGHRxX15OIWIsxjJ7NE7T8WCRyfWA3wMgJu15N25+wEAAP//AwDdzCHTkAgA
|
||||
AA==
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9a27f5dc000f9-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:42:51 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=7hq1JYlSmmLvjUR7npK1vcLJYOvCPn947S.EYBtvTcQ-1749566571-1.0.1.1-11XCSwdUqYCYC3zE9DZk20c_BHXTPqEi6YMhVtX9dekgrj0J3a4EHGdHvcnhBNkIxYzhM4zzQsetx2sxisMk62ywkO8Tzo3rlYdo__Kov7w;
|
||||
path=/; expires=Tue, 10-Jun-25 15:12:51 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=bhxj6kzt6diFCyNbiiw60v4lKiUKaoHjQ3Yc4KWW4OI-1749566571331-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '30419'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '30424'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999859'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_b5983a9572e28ded39da7b12e678e2b7
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1,643 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '694'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA6RXXW4cNxJ+1ykK8+JdoyVII/lH8yZprUi25BVsB0GwDoQadk13ZdgkU2TPaBIY
|
||||
2Lc9wx5hz7F7kj1JUOye38iBgrwImiZZrPr41VdVv+wBDLgcjGBgakymCXb/vGrfyvX4+zCZ/fTd
|
||||
3dWPD69v+N3V7bfjDw/N20GhJ/z4RzJpeerA+CZYSuxdt2yEMJFaPXp1cvri5YvTl6/yQuNLsnqs
|
||||
Cmn/xO837Hh/eDg82T98tX/0uj9dezYUByP4xx4AwC/5r/rpSnoYjOCwWH5pKEasaDBabQIYiLf6
|
||||
ZYAxckzo0qBYLxrvErns+qfat1WdRnANzs/BoIOKZwQIlfoP6OKcBOCzu2SHFs7y7xFckRCgEKSa
|
||||
IPkAR4cwppggemNIIFhckERgl3fMvdgSMIKfwN9N8mMSGB4OjwsYY6QSfN7GAoFk4qVBZ6gAbgKa
|
||||
VAC6EvyMBK0F9V143CrQEZLP5itsaPTZfXZHB/D8+Q17RxZuKUZ+/hz+cu0SCdwyNvzXzw4A9uHO
|
||||
R1YLI7j0Mkcp++8XvnVJFiM4k4pcYof9whVXteWqTnHUGc6OsGspOxFrPzcYCWqOQA+GglpHC6Xw
|
||||
eGzZVQXMOLJ3XTQKT4NTdhXgmC2nRQGWsNQPq6vV8IxN8rJY4jg8HA7h8vryDL7LiF60IduLXDme
|
||||
sEGX7GIDI1epEXXK2Hb8LEJsjaEYKR4oXEOF693CMjq4HWMI//2PAnaHwhE+Iru0/w1Jg+yeDNyl
|
||||
6Ns9gto75+cOJl6yO2PLMZGogzEQlTkKY9mxQQsTdhzrjFrvFnAEhCktemZlQ2Ofarj7+E0+rPBc
|
||||
CjlTg8Me/UTYFDDdunmDYZmeN1y1BEfZBitT1qd9Kw4bcqlD61jReiP6mnCFaNGVitYtOlOTRgMX
|
||||
nBZPRuq9fl48glRv+1mEyqPdj8ZnnIL4OcXYvXcSclWqocYZQYOlMq8B70gzTKFofEwwIRTKu3na
|
||||
Z+ObVnygAmqyQa3ueA+RTCsEkXK+QeJkM07GtpmdavvbN5dncFFjE3IS3hBWLWWITjKhaMYO/kZw
|
||||
Lu3C0ZMwuuVywmRLkl2YzslW3DaP4LS64f///Pd21gWVPWVPzgRvu6TrEhAanP4GrSxdfVLuylYB
|
||||
7GKSVomAVpd2osnXl75hp6TSDaVvKCY2+doOcXSgFYJSDrgj1AtF60I4Jkbn4YP6XnrF68zCe4xR
|
||||
nkymOy+prdA+ClMMnJQRs14PNLSP2JYMd+L75yuW1z9TKJOgl5IdygISWnIph7LFx164YEoUMp49
|
||||
aMa7GUnMWQTY+J40CnGhfNWzNZaAYKkiV+odBoVIAI34GKFpbeJgSSWxanuteqlgvadFgwJv5aBH
|
||||
6Yot2iejdC74Mz+GUWf3WQSsejXO5Ztn+f+ccVO2tku3KYWUA0bVJC1+vaaQKAZdBSxyPe3rQg6Z
|
||||
Yw/lil67bwDzmq2mM7uE7DLImrwK4ZamQRCK5EyXdK8UmQ9aUxPc0Bxd6edxmkvfOYoh6x3+ASKp
|
||||
9jwC0aeaVIKslpmlouwUQeMlP7+2HJQrkeorqsTirgxvSHzofco/FGskYbTryrhbz1ZR5czbLmmv
|
||||
swKhcAPn5H6mBnumXKfENZZ/vpApEP1rfyC0cIulsIosCgjp4y1p0T13ASVH1Rb1Xos8Say5q9uJ
|
||||
TN2VvMyv2LGmR3XJmj45vkKaHPVp7nvaKcKtL4X/9y8NesO7PyK4F+Ix8WONzxk0mFXPT6Dpzy8l
|
||||
tmtrlrrbe7HGwwG7iW21scn1vdIig2kTwWI3W+ghkLDSPBufeJ/G2gJqlbaWq1UCHB1q+Le+xoZK
|
||||
+IgWa43/hmckwfteH7766JvBv6kWIS2/bsaerWZtDNZHbZED9o79vipmkTDkkqwD1yRYebd82Duh
|
||||
hkmWWvDV0lFsCYQCFROmNub2el3SyKroT7o4u9z4VFOkVWuetaykxmt101Flq4RmPhbrbDa9DnY9
|
||||
ee8zK+NjIJMUEFWmrj3pdbuA6C2XPFn0nYM2+P0TxJ3SsFVyDzanFaFJG1EnJtdau7GAzvmUZTHP
|
||||
ST/0K19Wk5H1VRA/jjtHB5323Ath9E6noJh8GOTVL3sAP+QJrN0aqgZBfBPSffJTytcdDYedvcF6
|
||||
8Fuvvjw96leTT2jXC6+PjotHDN6XlJBt3BjiBgZNTeX66HriUwXwGwt7G2H/1p3HbHehs6ueYn69
|
||||
YJQfVN4HoZLNdsjrbUI6GH9t2wrm7PAgkszY0H1iEn2KkibY2m5cHcRFTNTcT9hVJEG4m1kn4f74
|
||||
BF+cIJ0em8Hel71fAQAA//8DAICIe4nBDwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9947e9abcf1fe-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:33:27 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
|
||||
path=/; expires=Tue, 10-Jun-25 15:03:27 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '40370'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '40375'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999859'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_94fb13dc93d3bc9714811ff4ede4c08f
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Guardrail Agent. You
|
||||
are a expert at validating the output of a task. By providing effective feedback
|
||||
if the output is not valid.\nYour personal goal is: Validate the output of the
|
||||
task\n\nTo give my best complete final answer to the task respond using the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!\nIMPORTANT:
|
||||
Your final answer MUST contain all the information requested in the following
|
||||
format: {\n \"valid\": bool,\n \"feedback\": str | None\n}\n\nIMPORTANT: Ensure
|
||||
the final output does not include any code block markers like ```json or ```python."},
|
||||
{"role": "user", "content": "\n Ensure the following task result complies
|
||||
with the given guardrail.\n\n Task result:\n Here are the top
|
||||
10 best soccer players in the world as of October 2023, based on their performance,
|
||||
impact, and overall contributions to the game:\n\n1. **Lionel Messi** (Inter
|
||||
Miami)\n - Position: Forward\n - Country: Argentina\n - Highlights: Messi
|
||||
continues to showcase his exceptional dribbling, vision, and playmaking ability,
|
||||
leading Argentina to victory in the 2022 FIFA World Cup and significantly contributing
|
||||
to his club''s successes.\n\n2. **Kylian Mbapp\u00e9** (Paris Saint-Germain)\n -
|
||||
Position: Forward\n - Country: France\n - Highlights: Known for his blistering
|
||||
speed and clinical finishing, Mbapp\u00e9 is a key player for both PSG and the
|
||||
French national team, known for his performances in Ligue 1 and international
|
||||
tournaments.\n\n3. **Erling Haaland** (Manchester City)\n - Position: Forward\n -
|
||||
Country: Norway\n - Highlights: Haaland''s goal-scoring prowess and strength
|
||||
have made him one of the most feared strikers in Europe, helping Manchester
|
||||
City secure several titles including the UEFA Champions League.\n\n4. **Kevin
|
||||
De Bruyne** (Manchester City)\n - Position: Midfielder\n - Country: Belgium\n -
|
||||
Highlights: De Bruyne\u2019s exceptional passing, control, and vision make him
|
||||
one of the best playmakers in the world, instrumental in Manchester City\u2019s
|
||||
dominance in domestic and European competitions.\n\n5. **Cristiano Ronaldo**
|
||||
(Al Nassr)\n - Position: Forward\n - Country: Portugal\n - Highlights:
|
||||
Despite moving to the Saudi Pro League, Ronaldo''s extraordinary talent and
|
||||
goal-scoring ability keep him in the conversation among the best, having had
|
||||
a legendary career across multiple leagues.\n\n6. **Neymar Jr.** (Al Hilal)\n -
|
||||
Position: Forward\n - Country: Brazil\n - Highlights: Neymar''s agility,
|
||||
creativity, and skill have kept him as a top performer in soccer, now showcasing
|
||||
his talents in the Saudi Pro League while maintaining a strong national team
|
||||
presence.\n\n7. **Robert Lewandowski** (Barcelona)\n - Position: Forward\n -
|
||||
Country: Poland\n - Highlights: The prolific striker continues to score consistently
|
||||
in La Liga, known for his finishing, positioning, and aerial ability, contributing
|
||||
to Barcelona\u2019s successes.\n\n8. **Karim Benzema** (Al Ittihad)\n - Position:
|
||||
Forward\n - Country: France\n - Highlights: The former Real Madrid star
|
||||
remains a top talent, displaying leadership and technical skills, now continuing
|
||||
his career in the Saudi Pro League.\n\n9. **Luka Modri\u0107** (Real Madrid)\n -
|
||||
Position: Midfielder\n - Country: Croatia\n - Highlights: A master of midfield
|
||||
control and passing, Modri\u0107 remains an influential figure at Real Madrid,
|
||||
showcasing his experience and football intelligence.\n\n10. **Mohamed Salah**
|
||||
(Liverpool)\n - Position: Forward\n - Country: Egypt\n - Highlights:
|
||||
Salah''s explosive pace and goal-scoring ability keep him as a central figure
|
||||
for Liverpool in the Premier League and European competitions, maintaining his
|
||||
status as one of the elite forwards.\n\nThese players have demonstrated exceptional
|
||||
skill, consistency, and impact in their respective teams and leagues, solidifying
|
||||
their positions among the best in the world.\n\n Guardrail:\n Only
|
||||
include Brazilian players, both women and men\n \n Your task:\n -
|
||||
Confirm if the Task result complies with the guardrail.\n - If not, provide
|
||||
clear feedback explaining what is wrong (e.g., by how much it violates the rule,
|
||||
or what specific part fails).\n - Focus only on identifying issues \u2014
|
||||
do not propose corrections.\n - If the Task result complies with the
|
||||
guardrail, saying that is valid\n "}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4676'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
|
||||
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4xUwWobMRC9+ysGnVqwjZ3YjuNbQim0hULBtIc6mLE0uzuxVtpqtHbckH8v2o29
|
||||
TpNCLwuapzfzZvRmH3sAio1agNIFRl1WdnCb119+LIvZh+/+h9zM55Op3Wzv5dt4rKei+onhN/ek
|
||||
45E11L6sLEX2roV1IIyUso6vJtfT2Ww0mjdA6Q3ZRMurOJj4QcmOBxeji8lgdDUYz5/ZhWdNohbw
|
||||
swcA8Nh8k05n6EEtYNQ/RkoSwZzU4nQJQAVvU0ShCEtEF1W/A7V3kVwjfVn4Oi/iAj6B83vQ6CDn
|
||||
HQFCnvQDOtlTAFi5j+zQwk1zXsDjygGs1A4tm5VaQIZWqN8GMyKzQb1N8ZVaFgQRZQuBpLYRjCcB
|
||||
5yM0AzvAnmMBsSDIawwmIFtAAY7ATtvakEBl8UBBIAu+hB0G9rWA9rWLgUkAnQHv7AFKcmn8AnHv
|
||||
4Tbgb7aM7kR/95UOJQb4HIYNpz2+h33BloAeUjV2+Rlz70vq+Cl7IHsYwvKFWqlIc8YarT1AoF81
|
||||
SRSI/thAK+6Vnj5sfCyeayQ9Jbl+EqML4HZCWW0ztpbMcKVW7un8CQNltWCykautPQPQOR+xmUMy
|
||||
z90z8nSyi/V5FfxG/qKqjB1LsQ6E4l2yhkRfqQZ96gHcNbasXzhNVcGXVVxHv6Wm3PV01uZT3TZ0
|
||||
6PwIRh/RdvHxaHLRfyPh2lBEtnLmbKVRF2Q6brcGWBv2Z0DvrO3Xct7K3bbOLv+f9B2gNVWRzLoK
|
||||
ZFi/bLm7Fij9Lf517TTmRrASCjvWtI5MIT2FoQxr2+6wkoNEKtcZu5xCFbhd5KxaX05wOkG6vtSq
|
||||
99T7AwAA//8DABZK9w/WBAAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9957c4b46f1fe-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:33:46 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '18280'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '18287'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998889'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_853da6b9ca8f386ff1427c837346290d
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
|
||||
great answer \nFinal Answer: Here are the top 10 best soccer players in the
|
||||
world as of October 2023, based on their performance, impact, and overall contributions
|
||||
to the game:\n\n1. **Lionel Messi** (Inter Miami)\n - Position: Forward\n -
|
||||
Country: Argentina\n - Highlights: Messi continues to showcase his exceptional
|
||||
dribbling, vision, and playmaking ability, leading Argentina to victory in the
|
||||
2022 FIFA World Cup and significantly contributing to his club''s successes.\n\n2.
|
||||
**Kylian Mbapp\u00e9** (Paris Saint-Germain)\n - Position: Forward\n - Country:
|
||||
France\n - Highlights: Known for his blistering speed and clinical finishing,
|
||||
Mbapp\u00e9 is a key player for both PSG and the French national team, known
|
||||
for his performances in Ligue 1 and international tournaments.\n\n3. **Erling
|
||||
Haaland** (Manchester City)\n - Position: Forward\n - Country: Norway\n -
|
||||
Highlights: Haaland''s goal-scoring prowess and strength have made him one of
|
||||
the most feared strikers in Europe, helping Manchester City secure several titles
|
||||
including the UEFA Champions League.\n\n4. **Kevin De Bruyne** (Manchester City)\n -
|
||||
Position: Midfielder\n - Country: Belgium\n - Highlights: De Bruyne\u2019s
|
||||
exceptional passing, control, and vision make him one of the best playmakers
|
||||
in the world, instrumental in Manchester City\u2019s dominance in domestic and
|
||||
European competitions.\n\n5. **Cristiano Ronaldo** (Al Nassr)\n - Position:
|
||||
Forward\n - Country: Portugal\n - Highlights: Despite moving to the Saudi
|
||||
Pro League, Ronaldo''s extraordinary talent and goal-scoring ability keep him
|
||||
in the conversation among the best, having had a legendary career across multiple
|
||||
leagues.\n\n6. **Neymar Jr.** (Al Hilal)\n - Position: Forward\n - Country:
|
||||
Brazil\n - Highlights: Neymar''s agility, creativity, and skill have kept
|
||||
him as a top performer in soccer, now showcasing his talents in the Saudi Pro
|
||||
League while maintaining a strong national team presence.\n\n7. **Robert Lewandowski**
|
||||
(Barcelona)\n - Position: Forward\n - Country: Poland\n - Highlights:
|
||||
The prolific striker continues to score consistently in La Liga, known for his
|
||||
finishing, positioning, and aerial ability, contributing to Barcelona\u2019s
|
||||
successes.\n\n8. **Karim Benzema** (Al Ittihad)\n - Position: Forward\n -
|
||||
Country: France\n - Highlights: The former Real Madrid star remains a top
|
||||
talent, displaying leadership and technical skills, now continuing his career
|
||||
in the Saudi Pro League.\n\n9. **Luka Modri\u0107** (Real Madrid)\n - Position:
|
||||
Midfielder\n - Country: Croatia\n - Highlights: A master of midfield control
|
||||
and passing, Modri\u0107 remains an influential figure at Real Madrid, showcasing
|
||||
his experience and football intelligence.\n\n10. **Mohamed Salah** (Liverpool)\n -
|
||||
Position: Forward\n - Country: Egypt\n - Highlights: Salah''s explosive
|
||||
pace and goal-scoring ability keep him as a central figure for Liverpool in
|
||||
the Premier League and European competitions, maintaining his status as one
|
||||
of the elite forwards.\n\nThese players have demonstrated exceptional skill,
|
||||
consistency, and impact in their respective teams and leagues, solidifying their
|
||||
positions among the best in the world."}, {"role": "user", "content": "The task
|
||||
result does not comply with the guardrail as it includes players from various
|
||||
countries and only mentions two Brazilian players (Neymar Jr. and Neymar) while
|
||||
excluding Brazilian women players entirely. The guardrail specifically requests
|
||||
to include only Brazilian players, both women and men, which is not fulfilled."}],
|
||||
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4338'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
|
||||
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//lFfNbhxHDr7rKYi5BDBagiTLsj032QvHceC1ExubIOtAYFdzuhlVs3pZ
|
||||
1TMeBwb2Nfa857xArnqTfZIFq2e6R9J417oImmYVfz5+JIu/HwDMuJrNYeYaTK7t/OGzuv8+vPuu
|
||||
O/2H+9k//vnF8flP4Zcf6uclPj35dlbYjVD+Ri5tbx250HaeEgcZxE4JE5nWk8dnTx+dnx+fnmdB
|
||||
Gyrydq3u0uFZOGxZ+PD0+PTs8Pjx4cmTze0msKM4m8PfDwAAfs9/zU+p6ONsDsfF9ktLMWJNs/l4
|
||||
CGCmwduXGcbIMaGkWTEJXZBEkl1/34S+btIcvgMJK3AoUPOSAKE2/wElrkgBPsgLFvRwkX/P4SUp
|
||||
ASpBaghS6ODkGEqKCWJwjhQ6j2vSCCz5xCqorwpYBNdHlhroo/N95CX5NQSBZ4qf2DPK9l4BZUgN
|
||||
rEJLAigVtCQFlBipsvOpIVboSBdBWxRH+Qy3Hbq0NVljS4ARwgLeuBRKUjg9Pn04/yAf5OQIHjz4
|
||||
K61bVHilRw8eWIAAcAhvQ2TL4RxeBF2hVqPkue/LOVx4eMke/fj5JdeN57pJcQ5vhMycWW+DYXHF
|
||||
3lMFi0FVhNqHEr1fF7Axbplg6SlCClDhp0+eYMWpgYYjVMpl6VnqIsPS4lX+30KtA/rD6IIamFiy
|
||||
57QuoMFl/g2Ra+EFO5S0RSXIAKkpdr4vsxrzdMJe0CJHD4mwPTKcTg2nv7Fc/+G4j/Dq+k/hoPeA
|
||||
60dCD6+xUq72IjbpbjACtaQ1VZY1hCtab9hg+O1qKkBCGmDN4cSOqCogkWuEHfoB9zgg5bR3jD4j
|
||||
lunIbRfUKgJaTK6hWEBswsphJqbpS+hJJsRGtFgS6QiSpyX5mGF6aDD9yK5B9RyD3AOg9yElkgZb
|
||||
eBlS7HrdC9P3ElYyxrskjZhyzrNfSGoRjjTY8STDWpILVguw5IQeWmqtGDZEvZH0rM6umMRht1Fp
|
||||
5HQNSk1TZY0s7XBTfrfomJE5M2Reoya8ByZv1KNUAd4qV7QXjwtI2hN4qkkqiyQ3im/ipvsUkE3m
|
||||
SFwQ64Akya+3iaYKGtKBJgV4woo0Ntztqa1Ow4piLIBQxT5I35KGPgIOJZ0T4FzwWFkVN2r9NPQp
|
||||
WxgcRF2DQyXSjMkjw+RCKrW+DRd+SXEvOK+5WjD5ivR2UYUWvwBLx8tgOd4UDssdZEbDBk7FMZ8c
|
||||
8KCPjroNG4YSGpoEupTLyiImoRiHumAZSsM05IPGz//XUc5z8B4F4R1KCvtD/wstSO4G/ozEmtr+
|
||||
2LNOjqDkQi38adsgSKEydTZttukcsrZD7iBJueyTzbIcA6aE7qoAiglLz7HJzYE0kl/s7U9DcyW9
|
||||
2VzvAvDYAPgWS2Xy8IpiH+8zfTSSfGH4/GQFibDwyINHYz1arPkZkMfHDdsGGApQjCTJmkiHmva2
|
||||
hgKubjShVdArUEw0tkbvuSabxcOAhkzeHPMTi/k9Xv8R4ULx+s/fwv0I/+763wHeYu/DF2ivnJt3
|
||||
TJg5PxHwNvsHJ4z6NbJQtWWLOTDSJSYNVvrT8yIPjnbj3o15kdOei2UzbQgTL7ft72kOvGGsA7xj
|
||||
v8T7sP15Qz7SF9guQB87UjbAq2xayTOWnsCRzanDMvM3W/3PP/8Vd9pcPj7VxFAHTIbLkqDFiqDh
|
||||
FhBcUCGNKQhlcLYefc3T4eTYYn/GCL+gkGJKU9L/B9PH6N+ib4kV4yS4NQHylJ5eVwWYsZ15t8NX
|
||||
0ptdfRxtFrVFM72vxsfD2BPyx+lB5XPH+Npyf2+14jkmaEbv81EWp1SxJWzz3sj8GY0GyU/XOy9j
|
||||
Y+KWzTs8HF7E267tNGy79MB/072tBRvfsYDU9NYsO6Vc+1JvbH0TQdk124e8pxrd+mh3fVBa9BFt
|
||||
hZHe+x0BioSUIciLy68byedxVfGh7jSU8dbV2YKFY3OphDGIrSUxhW6WpZ8PAH7NK1F/Y8uZdRra
|
||||
Ll2mcEXZ3JMnJ4O+2bSJTdLz883CNEs2ICfByaOz7b0bGi8rSsg+7qxVM4euoWq6O+1g2FccdgQH
|
||||
O3Hf9Wef7iF2lvpr1E8CZyObqsvOyORuxjwdU7JV9UvHRpyzw7NIumRHl4lJLRcVLbD3wwI5i+uY
|
||||
qL1csNSknfKwRS66y4dn+OgM6elDNzv4fPBfAAAA//8DAGsE37hTDwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d995f0ca0cf1fe-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:34:22 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '35941'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '35946'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998983'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_c874fed664f962f5ee90decb8ebad875
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Guardrail Agent. You
|
||||
are a expert at validating the output of a task. By providing effective feedback
|
||||
if the output is not valid.\nYour personal goal is: Validate the output of the
|
||||
task\n\nTo give my best complete final answer to the task respond using the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!\nIMPORTANT:
|
||||
Your final answer MUST contain all the information requested in the following
|
||||
format: {\n \"valid\": bool,\n \"feedback\": str | None\n}\n\nIMPORTANT: Ensure
|
||||
the final output does not include any code block markers like ```json or ```python."},
|
||||
{"role": "user", "content": "\n Ensure the following task result complies
|
||||
with the given guardrail.\n\n Task result:\n Here are the top
|
||||
10 best soccer players in the world, focusing exclusively on Brazilian players,
|
||||
both women and men, based on their performance and impact in the game as of
|
||||
October 2023:\n\n1. **Neymar Jr.** \n - Position: Forward \n - Club: Al
|
||||
Hilal \n - Highlights: One of the most skilled forwards globally, Neymar
|
||||
continues to dazzle with his dribbling, playmaking, and goal-scoring ability,
|
||||
having a significant impact on both his club and the Brazilian national team.\n\n2.
|
||||
**Vin\u00edcius J\u00fanior** \n - Position: Forward \n - Club: Real Madrid \n -
|
||||
Highlights: Vin\u00edcius has emerged as a key player for Real Madrid, noted
|
||||
for his speed, technical skills, and crucial goals in important matches, showcasing
|
||||
his talent on both club and international levels.\n\n3. **Richarlison** \n -
|
||||
Position: Forward \n - Club: Tottenham Hotspur \n - Highlights: Known
|
||||
for his versatility and aerial ability, Richarlison has become a vital member
|
||||
of the national team and has the capability to change the game with his pace
|
||||
and scoring ability.\n\n4. **Marta** \n - Position: Forward \n - Club:
|
||||
Orlando Pride \n - Highlights: A true legend of women''s soccer, Marta has
|
||||
consistently showcased her skill, leadership, and goal-scoring prowess, earning
|
||||
numerous awards and accolades throughout her legendary career.\n\n5. **Andressa
|
||||
Alves** \n - Position: Midfielder \n - Club: Roma \n - Highlights:
|
||||
A pivotal player in women''s soccer, Andressa has displayed her exceptional
|
||||
skills and tactical awareness both in club play and for the Brazilian national
|
||||
team.\n\n6. **Alana Santos** \n - Position: Defender \n - Club: Benfica \n -
|
||||
Highlights: Alana is recognized for her defensive prowess and ability to contribute
|
||||
to the attack, establishing herself as a key player for both her club and the
|
||||
national team.\n\n7. **Gabriel Jesus** \n - Position: Forward \n - Club:
|
||||
Arsenal \n - Highlights: With a flair for scoring and assisting, Gabriel
|
||||
Jesus is an essential part of the national team, known for his work rate and
|
||||
intelligence on the field.\n\n8. **Ta\u00eds Ara\u00fajo** \n - Position:
|
||||
Midfielder \n - Club: S\u00e3o Paulo \n - Highlights: A rising star in
|
||||
Brazilian women''s soccer, Ta\u00eds has gained recognition for her strong performances
|
||||
in midfield, showcasing both skill and creativity.\n\n9. **Thiago Silva** \n -
|
||||
Position: Defender \n - Club: Chelsea \n - Highlights: An experienced
|
||||
and reliable center-back, Silva\u2019s leadership and defensive abilities have
|
||||
made him a cornerstone for Chelsea and the Brazilian national team.\n\n10. **Bia
|
||||
Zaneratto** \n - Position: Forward \n - Club: Palmeiras \n - Highlights:
|
||||
A talented forward, Bia has become known for her goal-scoring capabilities and
|
||||
playmaking skills, contributing significantly to both her club and the national
|
||||
team.\n\nThis list highlights the incredible talent and contributions of Brazilian
|
||||
players in soccer, showcasing their skills across both men''s and women''s games,
|
||||
thus representing Brazil''s rich soccer legacy.\n\n Guardrail:\n Only
|
||||
include Brazilian players, both women and men\n \n Your task:\n -
|
||||
Confirm if the Task result complies with the guardrail.\n - If not, provide
|
||||
clear feedback explaining what is wrong (e.g., by how much it violates the rule,
|
||||
or what specific part fails).\n - Focus only on identifying issues \u2014
|
||||
do not propose corrections.\n - If the Task result complies with the
|
||||
guardrail, saying that is valid\n "}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4571'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
|
||||
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA4ySTW/bMAyG7/4VhM72kLj5WHxrDwEKtNilGDYshcFItK1WlgRJTjYE+e+D7DR2
|
||||
tw7YxYD58KX4kjwlAEwKVgDjDQbeWpXd1d3Dl+5Yfb3dPD6K7bri26cw899f5vruG0ujwuxfiIc3
|
||||
1SduWqsoSKMHzB1hoFh1vl5slqvVbJX3oDWCVJTVNmQLk7VSyyyf5Ytsts7mny/qxkhOnhXwIwEA
|
||||
OPXf2KcW9JMVMEvfIi15jzWx4poEwJxRMcLQe+kD6sDSEXKjA+m+9afGdHUTCrgHbY7AUUMtDwQI
|
||||
dewfUPsjOYCd3kqNCm77/wJOOw2wYwdUUuxYAcF1lA6xikjskb/GsO6U2unz9HFHVedRXeAEoNYm
|
||||
YBxgb/v5Qs5Xo8rU1pm9/0PKKqmlb0pH6I2OpnwwlvX0nAA89wPt3s2IWWdaG8pgXql/bpMvh3ps
|
||||
3ONI8/UFBhNQTVTLPP2gXikooFR+shLGkTckRum4P+yENBOQTFz/3c1HtQfnUtf/U34EnJMNJErr
|
||||
SEj+3vGY5iie+b/SrlPuG2ae3EFyKoMkFzchqMJODcfH/C8fqC0rqWty1snhAitb3ixwuUDa3HCW
|
||||
nJPfAAAA//8DAOHOvQuPAwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d996d2b877f1fe-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:34:38 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '15341'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '15343'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998917'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_22419b91d42cf1e03278a29f3093ed3d
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1,726 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '694'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA5yXzVIbORDH7zxF11xiqLHLNp/xDUhMssEJm49N1S4pqq1pz/SikYaWxo6Tynmf
|
||||
ZQ/7AnvNPtiWZIMNGAK5UHhaLfVPrW799XUNIOEs6UGiCvSqrHTzIK9HH/yzi6Mv44uT3z93X5fn
|
||||
Fxefs49bR3vya5IGDzv8k5S/9GopW1aaPFszMysh9BRm7exuPd3e2d1s70VDaTPSwS2vfHPLNks2
|
||||
3Oy2u1vN9m6zszf3LiwrckkP/lgDAPga/4Y4TUafkx6008svJTmHOSW9q0EAiVgdviToHDuPxifp
|
||||
wqis8WRi6O8LW+eF78FLMHYCCg3kPCZAyEP8gMZNSABOTZ8NatiPv3vwviDwtoJOG4bkPDirFAlU
|
||||
GqckDtiALwgmVnSWAjqwI3ijvB2SQLfd3UzjSkMCzsh4HjFlMERHGdjoyQJCioyHimRkpUSjyKXg
|
||||
zllrlwKXFSofBudYBgOaDOyYBLWGgCc8rEMuHHg7n9ATlq4FL0gI2MX4nJda+VooA83O907Nqem0
|
||||
YGPjmK0hDQNyjqHx0ngSGDCWDIf99Y2NUwMATTixjsMiPehbmaBk8++vaAr7fhYDuR48Ex4ONZs8
|
||||
hTE7tiaF3KJuOmWFTQ44ZM1+2pq776uCaUwlGe96MKi150oTHKDW1kD25I3AhI0hSeHQVgj7JQkr
|
||||
BFVgWcXZP4Z9h8O6uvoGjW67211vBcJuIHw11YwGBkOsqu9/Q+MEhR28Qza+eURSIpvHg76riLIU
|
||||
PKnC8EVNKYzYsCvY5Kvh+i/7+3dE29lbT+GY85qgA569DmkuLzcjsyU5zwpUXblItRmonkvYZniB
|
||||
qMOJaAzQqIJcSN8h++njiU7sJOyzm4Fdyxob59kov5rsoDYZOc05xjoJTmGiD8/7+3A4x3RwTBgA
|
||||
Z+mMOdpcT+FEqGSSS+sMPkJuxdTRmA08IziQemroQZQDzkZMOiO5CzR0iuUTGvsXj398LldGm0Lg
|
||||
rCv3IOTIth3ZULiEAzJfqERo7OvmS++5wOzxqTtaSlYaO1OJ5/F/j8qzQg1sPGnNORlFqylD1ays
|
||||
vKuTeJPMwYR9AW8JNQwwE84i3U6ge03TEgV+kVZAgxesUT8erK+RJYVs0VUenKurstHXk3UrPVIH
|
||||
zGZdxeB3Q/BvQ/f2cEwTNJmduHOGRv8QDlAUaWvwJ0Aum0MK1dwl/kASRn1/W4yd4yBcPQMyTxyc
|
||||
xJtnKS/LBTinPMbQUPB6U5yfvr2AOLAFlpTBO9RYQOOYxySVtfqnO+FoQXiVrtU8N6po0ctndXR/
|
||||
GUWCp4HgNzbf/1FcO/jl+7+GrUBj6ST+NMcjztoPy727fn8mOu14A9fnCAObCf/310qG+9rbQ/rb
|
||||
PU3g7vq5xXV5tG63iPkdFpHeF+yiwgjCIwhF1rcFj6pFguIJcieFCt1N8RNutDu0jZCrSPmg3KLM
|
||||
CQJsaH2xKPjgHEjFYPBFHeMgHzfQteb1A4Im9EgX9dkYZbqIsiJx0dFWbELOwpRhWR6Fe1jYh7KF
|
||||
OgwfWQEao67jYikMax8idXSlEAscU6AJ8pSM11MYEhkQylEyyoJmdLakIByDUosic1lVrhCVrWWN
|
||||
KzSqHQadbWqtlwxojPUxrKiuP80t3670tLZ5JXbobrgms1o+E0JnTdDOztsqidZvawCfom6vr0nx
|
||||
pBJbVv7M23OKy3W63dl8yeK5sLDubG3Ord561AvD7s52umLCs4w8snZL0j9RqArKFq6LdwLWGdsl
|
||||
w9oS9u1wVs09Q2eTP2T6hUEpqjxlZ5VQxuo68mKYUHhO3TXsaptjwIkjGbOiM88kIRUZjbDWs0dO
|
||||
4qbOU3k2YpOTVMKzl86oOtvcwu0tpKebKln7tvY/AAAA//8DAJ67Vp33DQAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9b5400dcd624b-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:55:42 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
|
||||
path=/; expires=Tue, 10-Jun-25 15:25:42 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '33288'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '33292'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999859'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_6a587ea22edef774ecdada790a320cab
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
|
||||
great answer \nFinal Answer: The top 10 best soccer players in the world, as
|
||||
of October 2023, can be identified based on their recent performances, skills,
|
||||
impact on games, and overall contributions to their teams. Here is the structured
|
||||
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
|
||||
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
|
||||
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
|
||||
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
|
||||
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
|
||||
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
|
||||
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
|
||||
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
|
||||
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
|
||||
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
|
||||
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
|
||||
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
|
||||
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
|
||||
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
|
||||
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
|
||||
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
|
||||
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
|
||||
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
|
||||
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
|
||||
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
|
||||
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
|
||||
list is compiled based on their current form, past performances, and contributions
|
||||
to their respective teams in both domestic and international competitions. Player
|
||||
rankings can vary based on personal opinion and specific criteria used for evaluation,
|
||||
but these players have consistently been regarded as some of the best in the
|
||||
world as of October 2023."}, {"role": "user", "content": "You are not allowed
|
||||
to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '3594'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
|
||||
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//nJfNctpIEMfvfoouXYJdwgXYjm1u4JjEsam4kuzuYZ1yNaNG6njUo50Z
|
||||
QUgq5zzLHvYF9pp9sK0ZwOAEx3EuFKjVTf+mP/TXpy2AhLOkC4kq0Kuy0s1+Xucvb06e+X7ndDzp
|
||||
DflscN6yRBfng75O0uBhRu9J+aXXrjJlpcmzkblZWUJPIWr7cP/44Onh3sFxNJQmIx3c8so3902z
|
||||
ZOFmp9XZb7YOm+2jhXdhWJFLuvDnFgDAp/gZ8pSMPiRdaKXLKyU5hzkl3dubABJrdLiSoHPsPIpP
|
||||
0pVRGfEkMfW3hanzwnfhDMRMQaFAzhMChDzkDyhuShbgSgYsqKEXf3fhBVkCdoACdZUFUNDsPJgx
|
||||
+ILAmwraLRiR8+CMUmSh0jgj64Al3jE1VmeALni8Ut6MyEKn1dlLgT4oXWcsOfQtfmTNKEvn7pVc
|
||||
SXsXdnYu2AhpGJJzDI0z8WRhyFgynAy2d3auBACacGkch4p0YWDsFG22uH5OM+h5b3lUe3JdeGZ5
|
||||
NNIseQoTdmwkhdygbjplbEgER6zZz3YX7j1VME2oJPGuC8Nae640QR+1NgLZk1cWpixCNoUTUyH0
|
||||
SrKsEFSBZRWj/xHpT+rq9ho0Oq1OZ3s3EHYC4fkskg9HWFVf/4bGJVp28AZZfPM52RJZHg/6piLK
|
||||
UvCkCuG/akphzMKuYMk3ww3OBr17sm0fbadwwXlN0AbPXpNLoVweRmZKcp4VqLpykWovUJ3acMzw
|
||||
AlGjZNAYoqiCXCjfCfvZ44kuzTScs5uD3akai/Msym8m69eSkdOcY+zW4BQC/XY66MHJAtPBBWEA
|
||||
nJcz1mhvO4VLSyWTXVrn8BFyP5aOJizwjKBv65nQT1EOORsz6YzsfaBhlNc7NC4YnjzclxuzTSFw
|
||||
1pX7KeTIdhDZ0HIJfZKPVCI0erp55j0XmD2+dM/XipXGES/xJn73qDwr1MDiSWvOSRRtpgxTs3Hy
|
||||
bjvxWzIHU/YFvCbUMMTMchbpnga612EPebigKUpmpu6GoTE4gT5aRdoIPh5ysJyvFKqFS/yBZBn1
|
||||
jzdLHL5+2KFDkicOLuMWXENb7+FFVS8wzCTe3SuLAh4GxKEpsKQM3qDGAhoXPCFbGaN/eZmMV4TZ
|
||||
co9u5vmmEVfrcN6KP+7ESHAUCH5n+fqP4trBy6//ChsLjbVi/jJHtnoIPDRaD05MZ/vHlTiOz7D6
|
||||
BmFoMsv/fXkQ4fH74RFDNLxvVm7b6vsJWzwCIk67FXheoLUzOMew8fqhUwWGtbAqljz31uTB5bD2
|
||||
wFrtid2l712Y50ZnJNA3xt8ug3tWYKzjaW1NRSgr+IIrsHXwbNZVBHxbsJsLnAIdjIgEMHtfu6B7
|
||||
vFlIFvpesEB4yI2Nqh05MEH5GEcwLQwUOCEoMSNwnAuPWaF44LJC5ZciiS0oXY/mUcxcN4ViWsFw
|
||||
hqjBecxpg4rahVNUxSKLoNMsKZMLf6SQjl0Epw+KqmWkG9bapVCRHRtboqhwQOGPce10d9dlpKVx
|
||||
7TBIWam1XjOgiPExxShg3y0sn28lqzZ5Zc3IfeOazFfJtSV0RoI8dd5USbR+3gJ4F6VxfUftJpU1
|
||||
ZeWvvbmh+HeHR+15vGSlyFfWp+2FcE688ahXhvbe8dLvTsTrjDyydmvyOlGoCspWvistjnXGZs2w
|
||||
tcb9fT6bYs/ZWfKfCb8yqFBJyq4rSxmru8yr2yyFV5b7brs955hw4shOWNG1Z7KhFhmNsdbzF4nE
|
||||
zZyn8nrMkpOtLM/fJsbV9d4+HuwjHe+pZOvz1v8AAAD//wMAVoKTVVsNAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9b6782db84d3b-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:56:30 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '31484'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '31490'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999166'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_aa737cf40bb76af9f458bfd35f7a77a1
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
|
||||
great answer \nFinal Answer: The top 10 best soccer players in the world, as
|
||||
of October 2023, can be identified based on their recent performances, skills,
|
||||
impact on games, and overall contributions to their teams. Here is the structured
|
||||
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
|
||||
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
|
||||
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
|
||||
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
|
||||
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
|
||||
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
|
||||
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
|
||||
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
|
||||
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
|
||||
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
|
||||
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
|
||||
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
|
||||
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
|
||||
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
|
||||
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
|
||||
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
|
||||
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
|
||||
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
|
||||
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
|
||||
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
|
||||
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
|
||||
list is compiled based on their current form, past performances, and contributions
|
||||
to their respective teams in both domestic and international competitions. Player
|
||||
rankings can vary based on personal opinion and specific criteria used for evaluation,
|
||||
but these players have consistently been regarded as some of the best in the
|
||||
world as of October 2023."}, {"role": "user", "content": "You are not allowed
|
||||
to include Brazilian players"}, {"role": "assistant", "content": "Thought: I
|
||||
now can give a great answer \nFinal Answer: Here is an updated list of the
|
||||
top 10 best soccer players in the world as of October 2023, excluding Brazilian
|
||||
players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
|
||||
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
|
||||
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
|
||||
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
|
||||
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
|
||||
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
|
||||
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
|
||||
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
|
||||
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
|
||||
**Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes:
|
||||
Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s
|
||||
Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed
|
||||
Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing,
|
||||
dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions
|
||||
League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position:
|
||||
Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements:
|
||||
UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107
|
||||
(Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
|
||||
tactical intelligence.\n - Achievements: Multiple Champions League titles,
|
||||
Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position:
|
||||
Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements:
|
||||
Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis
|
||||
list has been adjusted to exclude Brazilian players and focuses on those who
|
||||
have made significant impacts in their clubs and on the international stage
|
||||
as of October 2023. Each player is recognized for their exceptional skills,
|
||||
performances, and achievements."}, {"role": "user", "content": "You are not
|
||||
allowed to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '6337'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
|
||||
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//rJfNbhs3EMfvforBXiIHK0OSv3WTHCsxYiFunKJo6sAYkaPdqbkkS3Il
|
||||
K0HOfZY+R/tgBSnJkhPZtdteDC+HQ82P87H//bIFkLHMupCJEoOorGr2i7rwvWp2tt+qfzi4tCf2
|
||||
6Pjjx5/36FX74nOWRw8z+pVEWHrtCFNZRYGNnpuFIwwUT20f7h3vHxzuHu8lQ2UkqehW2NDcM82K
|
||||
NTc7rc5es3XYbB8tvEvDgnzWhV+2AAC+pL8xTi3pNutCK1+uVOQ9FpR17zYBZM6ouJKh9+wD6pDl
|
||||
K6MwOpBOoX8oTV2UoQtnoM0UBGooeEKAUMT4AbWfkgO40gPWqKCXnrvwhhwBewglgaMJe5Kg2Acw
|
||||
47QWjIV2C0bkA3gjBDmwCmfkPLBOO6bGKQnoo8c7EcyIHHRand0c6NYqFhzUDOhWqFqyLqDv8DMr
|
||||
Rr08p3ulr3R7B16+PGejScGQvGdonOlADoaMFcPJYPvlyysNAE24MJ5jdrowMG6KTi7W39IMeiE4
|
||||
HtWBfBdeOR6NFOsihwl7NjqHwqBqemFcDARHrDjMdhbuPVEyTagiHXwXhrUKbBVBH5UyGuSLdw6m
|
||||
rDW5HE6MRehV5FggiBIrm07/KV3ESW3v1qDRaXU62zuRsBMJ384S+XCE1v75BzQu0LGHS2Qdmq/J
|
||||
Vcj6+aCXlkjmEEiUmn+rKYcxa/Yl62Iz3OBs0Hsg2vbRdg7VEv6ci5qgDYGDIp8DagkTdGxqD9JU
|
||||
5AMLELX1iXA3Ep66eOXwBlHF3Y0halGSj6k84TB7Pt2FmcY793PIexlk7QNrETZT9mstySsuMBVx
|
||||
dIoH/Xg66MHJAtnDOWFknKc25Wt3O4cLRxWTW1rn/AlyL6WRJqzhFUHf1TNNT6IcshwzKUnuIdDY
|
||||
4uvVmgYPT/65RjdGm0PkrK1/EnJi209s6LiCPunPVCE0eqp5FgKXKJ+futdrycpTu1d4k/4PKAIL
|
||||
VMA6kFJckBa0mTJ20MYuvKvSb8k8TDmU8J5QwRClY5noDiLd+zieApzTFLU0U3/D0BicQB+dIGU0
|
||||
Ph9ysOy1HOzCJT0gOUb1+JRJjdiPo3VI+oWHizQR19DWa3iR1XOMbYn3Z8wigYcRcWhKrEjCJSos
|
||||
oXHOE3LWGPWvB8t4RSiXM3UzzzeFuBqN81J8vBITwVF6D9Q3CEMjHf/1OzTW8vj/9NUzim/4UI3d
|
||||
peP7ylyM0YRzHHHeoHMzeItxUPRjgjUMa82i/K8dtTbxV821GeS1UZI09I0Jdw30wNhIOTqtnbGE
|
||||
egVesgVXR89mbRNcuzXvKOn4wQn4WKo2vbNpTNpH3eJvWCmfg11mb9lcsaem6EiT9zvLcx4tw3tg
|
||||
TxiDH0r2cw3EHkTtovqDacmKAGVJ6dUTzEIx+eBYxLii/HlE5ezAKYpy8QSs40aSUKIHSZXRPsx/
|
||||
h24F2QXn/A7SW9dRhe4GR4rAkhsbV6EWEcobxZLHsxRUSezABwy1j4LMm4qWOi4JuH9QbDvr2tLR
|
||||
uPYY9a2ulVozoNYmYAwxqdpPC8vXOx2rTGGdGflvXLP5HLl2hN7oqFl9MDZL1q9bAJ+SXq7vSeDM
|
||||
OlPZcB3MDaWfa++1DucHZiudvjIftPYX1mACqpWh02p38g1HXksKyMqvie5MoChJrnxXCh1ryWbN
|
||||
sLUG/n08m86ew7MunnL8yiBiUZC8to7kvNw2bXMUP2Qe2nZ30SngzJObsKDrwORiMiSNsVbzz4vM
|
||||
z3yg6nrMuiBnHc+/Mcb2+qCDnV08atM42/q69TcAAAD//wMAvqcBwHENAAA=
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9b7561f204d3b-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:56:46 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '12189'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '12193'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998513'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_1098f5a5384f4a26aecf0c9e4e4d1fc0
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
|
||||
are an expert at gathering and organizing information. You carefully collect
|
||||
details and present them in a structured way.\nYour personal goal is: Gather
|
||||
information about the best soccer players\n\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
|
||||
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
|
||||
great answer \nFinal Answer: The top 10 best soccer players in the world, as
|
||||
of October 2023, can be identified based on their recent performances, skills,
|
||||
impact on games, and overall contributions to their teams. Here is the structured
|
||||
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
|
||||
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
|
||||
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
|
||||
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
|
||||
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
|
||||
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
|
||||
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
|
||||
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
|
||||
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
|
||||
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
|
||||
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
|
||||
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
|
||||
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
|
||||
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
|
||||
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
|
||||
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
|
||||
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
|
||||
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
|
||||
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
|
||||
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
|
||||
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
|
||||
list is compiled based on their current form, past performances, and contributions
|
||||
to their respective teams in both domestic and international competitions. Player
|
||||
rankings can vary based on personal opinion and specific criteria used for evaluation,
|
||||
but these players have consistently been regarded as some of the best in the
|
||||
world as of October 2023."}, {"role": "user", "content": "You are not allowed
|
||||
to include Brazilian players"}, {"role": "assistant", "content": "Thought: I
|
||||
now can give a great answer \nFinal Answer: Here is an updated list of the
|
||||
top 10 best soccer players in the world as of October 2023, excluding Brazilian
|
||||
players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
|
||||
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
|
||||
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
|
||||
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
|
||||
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
|
||||
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
|
||||
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
|
||||
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
|
||||
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
|
||||
**Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes:
|
||||
Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s
|
||||
Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed
|
||||
Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing,
|
||||
dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions
|
||||
League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position:
|
||||
Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements:
|
||||
UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107
|
||||
(Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
|
||||
tactical intelligence.\n - Achievements: Multiple Champions League titles,
|
||||
Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position:
|
||||
Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements:
|
||||
Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis
|
||||
list has been adjusted to exclude Brazilian players and focuses on those who
|
||||
have made significant impacts in their clubs and on the international stage
|
||||
as of October 2023. Each player is recognized for their exceptional skills,
|
||||
performances, and achievements."}, {"role": "user", "content": "You are not
|
||||
allowed to include Brazilian players"}, {"role": "assistant", "content": "Thought:
|
||||
I now can give a great answer \nFinal Answer: Here is the revised list of the
|
||||
top 10 best soccer players in the world as of October 2023, explicitly excluding
|
||||
Brazilian players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
|
||||
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
|
||||
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
|
||||
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
|
||||
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
|
||||
champion (2018), multiple Ligue 1 titles, and various domestic cups.\n\n3. **Erling
|
||||
Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power,
|
||||
speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA
|
||||
Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne
|
||||
(Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing,
|
||||
vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups,
|
||||
UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n -
|
||||
Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n -
|
||||
Achievements: 2022 Ballon d''Or winner, multiple Champions Leagues with Real
|
||||
Madrid.\n\n6. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n -
|
||||
Key Attributes: Finishing, positioning, aerial ability.\n - Achievements:
|
||||
FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7.
|
||||
**Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes:
|
||||
Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA
|
||||
Cup, UEFA Champions League winner.\n\n8. **Luka Modri\u0107 (Real Madrid)**\n -
|
||||
Position: Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
|
||||
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\n9.
|
||||
**Harry Kane (Bayern Munich)**\n - Position: Forward\n - Key Attributes:
|
||||
Goal-scoring, technique, playmaking.\n - Achievements: Golden Boot winner,
|
||||
Premier League titles, UEFA European Championship runner-up.\n\n10. **Rodri
|
||||
(Manchester City)**\n - Position: Midfielder\n - Key Attributes: Defensive
|
||||
skills, passing, positional awareness.\n - Achievements: Premier League titles,
|
||||
UEFA Champions League winner (2023).\n\nThis list is curated while adhering
|
||||
to the restriction of excluding Brazilian players. Each player included has
|
||||
demonstrated exceptional skills and remarkable performances, solidifying their
|
||||
status as some of the best in the world as of October 2023."}, {"role": "user",
|
||||
"content": "You are not allowed to include Brazilian players"}], "model": "gpt-4o-mini",
|
||||
"stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '9093'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
|
||||
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.78.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.78.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//rJfNThtJEMfvPEVpLjFojGxjEuIbJhCi4ASFRKvVJkLl7vJMLT3Vk+4e
|
||||
O06U8z7LPsfug626bbAhJgm7e0F4aqqmfl0f858vWwAZ62wAmSoxqKo27WHRlEc0edUdv+q9pl/f
|
||||
2P2jsnz38dXw7J3GLI8edvw7qXDttatsVRsKbGVhVo4wUIzafdJ/uv/4Sb/bT4bKajLRrahDu2/b
|
||||
FQu3e51ev9150u4eLL1Ly4p8NoDftgAAvqS/MU/R9CkbQCe/vlKR91hQNri5CSBz1sQrGXrPPqCE
|
||||
LF8ZlZVAklJ/W9qmKMMAXoDYGSgUKHhKgFDE/AHFz8gBvJcTFjRwmH4P4JQcAXtAcDRhIQ2GfQA7
|
||||
gVASBFtDtwNj8gG8VYoc1Abn5DywpDtm1hkN6KPHaxXsmBz0Or29HEh841gKCCUGEAtDh5/ZMMpN
|
||||
DIzPFmUaTXrwXt5Ldxd2ds7YChkYkfcMrRcSyMGIsWI4Otne2XkvANCGc+s5FmkAJ9bN0Onl9Zc0
|
||||
h8MQHI+bQH4AzxyPx4alyGHKnq3kUFg0ba9syg7HbDjMd5fuh6pkmlJFEvwARo0JXBuCIRpjBfSj
|
||||
1w5mLEIuhyNbIxxW5FghqBKrOkX/JZ3IUVPfXINWr9Prbe9Gwl4kfDlPxzAaY13/9Se0ztGxhwtk
|
||||
Ce3n5CpkeTjoRU2kcwikSuGPDeUwYWFfshSb4U5enBzek233YDuH6hr+jIuGoAuBgyGfwxQd28aD
|
||||
thX5wApUU/tEtxfpjl08bjhFNCgaWiMUVZKPZTziMH842bmdxfP2C8Bb1WPxgUWFzYTDRjR5wwWm
|
||||
To5OMdC745NDOFriejgjjHyLsqZa7W3ncO6oYnLX1gV7guynEtKUBZ4RDF0zF/opyhHrCZPR5O4D
|
||||
jVO+3qlp9/D0x/25MdscImdT+59CTmz7iQ0dVzAk+UwVQuvQtF+EwCXqh5fu+Vqx8jT3FV6l/wOq
|
||||
wAoNsAQyhgsSRZsp4/RsnMCbDr1L5mHGoYQ3hAZGqB3rRPc40r2JOyrAGc1QtJ35K4bWyREM0Sky
|
||||
VvDhkCfXc5ZDvXRJP5Aco/n+hklDOIz7dUTyyMN5Wo1raOs9vKzqGcaRxNv7ZVnAJxFxZEusSMMF
|
||||
GiyhdcZTcrW15l8vlcmKUF/v0808dxpxtRYXrfj9TkwEB+kd0FwhjKx2/Pcf0Fqr4/8zVw9ovtF9
|
||||
PXZTjm87c7lCE87TiHOKzs3hJcZFMYwFFhg1wqr8rxO1tu1Xw7UZ5Lk1mgSG1oZvB+ie/ZGKddw4
|
||||
WxPK6gRKrsE1MUS7qRNltxMxL6zAKTVSRC0Erbc2BJISKzi1wdeNu6a9F/enOvAu6I968Lvg6++w
|
||||
9SX/tmS/kEIlehgTCSh0NGmMmYOjKXvSECzQpyRfAI3ZIHBmJRuCkovScFGG+MbytqJreVVZHyCg
|
||||
IQmkgUXzlHWDJqmrpd76VlrtwjGqcvmMlJ4v7UxhzMhRhe4Kx4aAJhNSgack5D3EN7G/YmNyiKox
|
||||
HW9KhwvhCSuUYOYRKJTEDgJh5cEKjG0oV4cUo8SRcYKxeGjAByzI766r0nhKHqMylsaYNQOK2JAc
|
||||
kx7+sLR8vVHAxha1s2N/xzVbFP/SEXorUe36YOssWb9uAXxISru5JZ6z2tmqDpfBXlF6XK/TO1gE
|
||||
zFYKf2V+vBD1AFmwAc2a3+N+L98Q8lJTQDZ+Ta5nClVJeuXb7R2s5D02mu3K1tlaY/82pU3hF/ws
|
||||
xVqUe8OvDEpRHUhf1o40q9vYq9scxa+g+267OeuUcObJTVnRZWBysR6aJtiYxbdJ5uc+UHU5YSnI
|
||||
1Y4XHyiT+nKvj/t9pKd7Ktv6uvUPAAAA//8DAMc1SFGuDQAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 94d9b7d24d991d2c-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 10 Jun 2025 14:57:29 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '35291'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-envoy-upstream-service-time:
|
||||
- '35294'
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149997855'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4676152d4227ac1825d1240ddef231d6
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
65
tests/cli/test_watsonx_model_support.py
Normal file
65
tests/cli/test_watsonx_model_support.py
Normal file
@@ -0,0 +1,65 @@
|
||||
from typing import List
|
||||
from unittest.mock import patch
|
||||
import pytest
|
||||
|
||||
from crewai.cli.constants import MODELS
|
||||
from crewai.cli.provider import select_model
|
||||
|
||||
|
||||
def test_watsonx_models_include_llama4_maverick() -> None:
|
||||
"""Test that the watsonx models list includes the Llama 4 Maverick model."""
|
||||
watsonx_models: List[str] = MODELS.get("watson", [])
|
||||
assert "watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8" in watsonx_models
|
||||
|
||||
|
||||
def test_select_model_watsonx_llama4_maverick() -> None:
|
||||
"""Test that the Llama 4 Maverick model can be selected for watsonx provider."""
|
||||
provider = "watson"
|
||||
provider_models = {}
|
||||
|
||||
with patch("crewai.cli.provider.select_choice") as mock_select_choice:
|
||||
mock_select_choice.return_value = "watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8"
|
||||
|
||||
result = select_model(provider, provider_models)
|
||||
|
||||
assert result == "watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8"
|
||||
mock_select_choice.assert_called_once()
|
||||
|
||||
call_args = mock_select_choice.call_args
|
||||
available_models = call_args[0][1]
|
||||
assert "watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8" in available_models
|
||||
|
||||
|
||||
def test_watsonx_model_list_ordering() -> None:
|
||||
"""Test that watsonx models are properly ordered."""
|
||||
watsonx_models: List[str] = MODELS.get("watson", [])
|
||||
|
||||
expected_models = [
|
||||
"watsonx/meta-llama/llama-3-1-70b-instruct",
|
||||
"watsonx/meta-llama/llama-3-1-8b-instruct",
|
||||
"watsonx/meta-llama/llama-3-2-11b-vision-instruct",
|
||||
"watsonx/meta-llama/llama-3-2-1b-instruct",
|
||||
"watsonx/meta-llama/llama-3-2-90b-vision-instruct",
|
||||
"watsonx/meta-llama/llama-3-405b-instruct",
|
||||
"watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8",
|
||||
"watsonx/mistral/mistral-large",
|
||||
"watsonx/ibm/granite-3-8b-instruct",
|
||||
]
|
||||
|
||||
assert watsonx_models == expected_models
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", [
|
||||
"watsonx/meta-llama/llama-4-maverick-17b-128e-instruct-fp8",
|
||||
"watsonx/mistral/mistral-large",
|
||||
"watsonx/ibm/granite-3-8b-instruct",
|
||||
])
|
||||
def test_watsonx_model_selection_parametrized(model_name: str) -> None:
|
||||
"""Test that various watsonx models can be selected through CLI."""
|
||||
provider = "watson"
|
||||
provider_models = {}
|
||||
|
||||
with patch("crewai.cli.provider.select_choice") as mock_select_choice:
|
||||
mock_select_choice.return_value = model_name
|
||||
result = select_model(provider, provider_models)
|
||||
assert result == model_name
|
||||
@@ -9,14 +9,6 @@ from crewai.telemetry import Telemetry
|
||||
from opentelemetry import trace
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def cleanup_telemetry():
|
||||
"""Automatically clean up Telemetry singleton between tests."""
|
||||
Telemetry._instance = None
|
||||
yield
|
||||
Telemetry._instance = None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_var,value,expected_ready",
|
||||
[
|
||||
|
||||
@@ -1,19 +1,11 @@
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.telemetry import Telemetry
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def cleanup_telemetry():
|
||||
"""Automatically clean up Telemetry singleton between tests."""
|
||||
Telemetry._instance = None
|
||||
yield
|
||||
Telemetry._instance = None
|
||||
|
||||
|
||||
@pytest.mark.parametrize("env_var,value,expected_ready", [
|
||||
("OTEL_SDK_DISABLED", "true", False),
|
||||
("OTEL_SDK_DISABLED", "TRUE", False),
|
||||
@@ -36,59 +28,3 @@ def test_telemetry_enabled_by_default():
|
||||
with patch("crewai.telemetry.telemetry.TracerProvider"):
|
||||
telemetry = Telemetry()
|
||||
assert telemetry.ready is True
|
||||
|
||||
|
||||
def test_telemetry_disable_after_singleton_creation():
|
||||
"""Test that telemetry operations are disabled when env var is set after singleton creation."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
with patch("crewai.telemetry.telemetry.TracerProvider"):
|
||||
telemetry = Telemetry()
|
||||
assert telemetry.ready is True
|
||||
|
||||
mock_operation = MagicMock()
|
||||
telemetry._safe_telemetry_operation(mock_operation)
|
||||
mock_operation.assert_called_once()
|
||||
|
||||
mock_operation.reset_mock()
|
||||
|
||||
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
|
||||
|
||||
telemetry._safe_telemetry_operation(mock_operation)
|
||||
mock_operation.assert_not_called()
|
||||
|
||||
|
||||
def test_telemetry_disable_with_multiple_instances():
|
||||
"""Test that multiple telemetry instances respect dynamically changed env vars."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
with patch("crewai.telemetry.telemetry.TracerProvider"):
|
||||
telemetry1 = Telemetry()
|
||||
assert telemetry1.ready is True
|
||||
|
||||
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
|
||||
|
||||
telemetry2 = Telemetry()
|
||||
assert telemetry2 is telemetry1
|
||||
assert telemetry2.ready is True
|
||||
|
||||
mock_operation = MagicMock()
|
||||
telemetry2._safe_telemetry_operation(mock_operation)
|
||||
mock_operation.assert_not_called()
|
||||
|
||||
|
||||
def test_telemetry_otel_sdk_disabled_after_creation():
|
||||
"""Test that OTEL_SDK_DISABLED also works when set after singleton creation."""
|
||||
with patch.dict(os.environ, {}, clear=True):
|
||||
with patch("crewai.telemetry.telemetry.TracerProvider"):
|
||||
telemetry = Telemetry()
|
||||
assert telemetry.ready is True
|
||||
|
||||
mock_operation = MagicMock()
|
||||
telemetry._safe_telemetry_operation(mock_operation)
|
||||
mock_operation.assert_called_once()
|
||||
|
||||
mock_operation.reset_mock()
|
||||
|
||||
os.environ['OTEL_SDK_DISABLED'] = 'true'
|
||||
|
||||
telemetry._safe_telemetry_operation(mock_operation)
|
||||
mock_operation.assert_not_called()
|
||||
|
||||
@@ -1,167 +0,0 @@
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
from crewai.utilities.events.event_listener import event_listener
|
||||
|
||||
|
||||
class TestFlowHumanInputIntegration:
|
||||
"""Test integration between Flow execution and human input functionality."""
|
||||
|
||||
def test_console_formatter_pause_resume_methods(self):
|
||||
"""Test that ConsoleFormatter pause/resume methods work correctly."""
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.pause_live_updates()
|
||||
assert formatter._live_paused
|
||||
|
||||
formatter.resume_live_updates()
|
||||
assert not formatter._live_paused
|
||||
finally:
|
||||
formatter._live_paused = original_paused_state
|
||||
|
||||
@patch('builtins.input', return_value='')
|
||||
def test_human_input_pauses_flow_updates(self, mock_input):
|
||||
"""Test that human input pauses Flow status updates."""
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
|
||||
executor = CrewAgentExecutorMixin()
|
||||
executor.crew = MagicMock()
|
||||
executor.crew._train = False
|
||||
executor._printer = MagicMock()
|
||||
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
formatter._live_paused = False
|
||||
|
||||
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
|
||||
patch.object(formatter, 'resume_live_updates') as mock_resume:
|
||||
|
||||
result = executor._ask_human_input("Test result")
|
||||
|
||||
mock_pause.assert_called_once()
|
||||
mock_resume.assert_called_once()
|
||||
mock_input.assert_called_once()
|
||||
assert result == ''
|
||||
finally:
|
||||
formatter._live_paused = original_paused_state
|
||||
|
||||
@patch('builtins.input', side_effect=['feedback', ''])
|
||||
def test_multiple_human_input_rounds(self, mock_input):
|
||||
"""Test multiple rounds of human input with Flow status management."""
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
|
||||
executor = CrewAgentExecutorMixin()
|
||||
executor.crew = MagicMock()
|
||||
executor.crew._train = False
|
||||
executor._printer = MagicMock()
|
||||
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
pause_calls = []
|
||||
resume_calls = []
|
||||
|
||||
def track_pause():
|
||||
pause_calls.append(True)
|
||||
|
||||
def track_resume():
|
||||
resume_calls.append(True)
|
||||
|
||||
with patch.object(formatter, 'pause_live_updates', side_effect=track_pause), \
|
||||
patch.object(formatter, 'resume_live_updates', side_effect=track_resume):
|
||||
|
||||
result1 = executor._ask_human_input("Test result 1")
|
||||
assert result1 == 'feedback'
|
||||
|
||||
result2 = executor._ask_human_input("Test result 2")
|
||||
assert result2 == ''
|
||||
|
||||
assert len(pause_calls) == 2
|
||||
assert len(resume_calls) == 2
|
||||
finally:
|
||||
formatter._live_paused = original_paused_state
|
||||
|
||||
def test_pause_resume_with_no_live_session(self):
|
||||
"""Test pause/resume methods handle case when no Live session exists."""
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_live = formatter._live
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
formatter._live = None
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.pause_live_updates()
|
||||
formatter.resume_live_updates()
|
||||
|
||||
assert not formatter._live_paused
|
||||
finally:
|
||||
formatter._live = original_live
|
||||
formatter._live_paused = original_paused_state
|
||||
|
||||
def test_pause_resume_exception_handling(self):
|
||||
"""Test that resume is called even if exception occurs during human input."""
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
|
||||
executor = CrewAgentExecutorMixin()
|
||||
executor.crew = MagicMock()
|
||||
executor.crew._train = False
|
||||
executor._printer = MagicMock()
|
||||
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
|
||||
patch.object(formatter, 'resume_live_updates') as mock_resume, \
|
||||
patch('builtins.input', side_effect=KeyboardInterrupt("Test exception")):
|
||||
|
||||
with pytest.raises(KeyboardInterrupt):
|
||||
executor._ask_human_input("Test result")
|
||||
|
||||
mock_pause.assert_called_once()
|
||||
mock_resume.assert_called_once()
|
||||
finally:
|
||||
formatter._live_paused = original_paused_state
|
||||
|
||||
def test_training_mode_human_input(self):
|
||||
"""Test human input in training mode."""
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
|
||||
executor = CrewAgentExecutorMixin()
|
||||
executor.crew = MagicMock()
|
||||
executor.crew._train = True
|
||||
executor._printer = MagicMock()
|
||||
|
||||
formatter = event_listener.formatter
|
||||
|
||||
original_paused_state = formatter._live_paused
|
||||
|
||||
try:
|
||||
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
|
||||
patch.object(formatter, 'resume_live_updates') as mock_resume, \
|
||||
patch('builtins.input', return_value='training feedback'):
|
||||
|
||||
result = executor._ask_human_input("Test result")
|
||||
|
||||
mock_pause.assert_called_once()
|
||||
mock_resume.assert_called_once()
|
||||
assert result == 'training feedback'
|
||||
|
||||
executor._printer.print.assert_called()
|
||||
call_args = [call[1]['content'] for call in executor._printer.print.call_args_list]
|
||||
training_prompt_found = any('TRAINING MODE' in content for content in call_args)
|
||||
assert training_prompt_found
|
||||
finally:
|
||||
formatter._live_paused = original_paused_state
|
||||
@@ -1,4 +1,4 @@
|
||||
from collections import defaultdict
|
||||
import asyncio
|
||||
from typing import cast
|
||||
from unittest.mock import Mock
|
||||
|
||||
@@ -313,108 +313,5 @@ def test_sets_parent_flow_when_inside_flow():
|
||||
nonlocal captured_agent
|
||||
captured_agent = source
|
||||
|
||||
flow.kickoff()
|
||||
result = flow.kickoff()
|
||||
assert captured_agent.parent_flow is flow
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_is_called_using_string():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail="""Only include Brazilian players, both women and men""",
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert len(guardrail_events['started']) == 2
|
||||
assert len(guardrail_events['completed']) == 2
|
||||
assert not guardrail_events['completed'][0].success
|
||||
assert guardrail_events['completed'][1].success
|
||||
assert "Here are the top 10 best soccer players in the world, focusing exclusively on Brazilian players" in result.raw
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_is_called_using_callable():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (True, "Pelé - Santos, 1958"),
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 1 best players in the world?")
|
||||
|
||||
assert len(guardrail_events['started']) == 1
|
||||
assert len(guardrail_events['completed']) == 1
|
||||
assert guardrail_events['completed'][0].success
|
||||
assert "Pelé - Santos, 1958" in result.raw
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_guardrail_reached_attempt_limit():
|
||||
guardrail_events = defaultdict(list)
|
||||
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
guardrail_events["started"].append(event)
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
guardrail_events["completed"].append(event)
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (False, "You are not allowed to include Brazilian players"),
|
||||
guardrail_max_retries=2,
|
||||
)
|
||||
|
||||
with pytest.raises(Exception, match="Agent's guardrail failed validation after 2 retries"):
|
||||
agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert len(guardrail_events['started']) == 3 # 2 retries + 1 initial call
|
||||
assert len(guardrail_events['completed']) == 3 # 2 retries + 1 initial call
|
||||
assert not guardrail_events['completed'][0].success
|
||||
assert not guardrail_events['completed'][1].success
|
||||
assert not guardrail_events['completed'][2].success
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_output_when_guardrail_returns_base_model():
|
||||
class Player(BaseModel):
|
||||
name: str
|
||||
country: str
|
||||
|
||||
agent = Agent(
|
||||
role="Sports Analyst",
|
||||
goal="Gather information about the best soccer players",
|
||||
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
|
||||
guardrail=lambda output: (True, Player(name="Lionel Messi", country="Argentina")),
|
||||
)
|
||||
|
||||
result = agent.kickoff(messages="Top 10 best players in the world?")
|
||||
|
||||
assert result.pydantic == Player(name="Lionel Messi", country="Argentina")
|
||||
|
||||
@@ -1,171 +0,0 @@
|
||||
"""Test to reproduce and verify fix for issue #3000: sys.stdout/stderr hijacking."""
|
||||
|
||||
import sys
|
||||
import io
|
||||
from unittest.mock import patch, MagicMock
|
||||
import pytest
|
||||
|
||||
|
||||
def test_crewai_hijacks_sys_streams():
|
||||
"""Test that importing crewai.llm currently hijacks sys.stdout and sys.stderr (before fix)."""
|
||||
original_stdout = sys.stdout
|
||||
original_stderr = sys.stderr
|
||||
|
||||
import crewai.llm # noqa: F401
|
||||
|
||||
try:
|
||||
assert sys.stdout is not original_stdout, "sys.stdout should be hijacked by FilteredStream"
|
||||
assert sys.stderr is not original_stderr, "sys.stderr should be hijacked by FilteredStream"
|
||||
assert hasattr(sys.stdout, '_original_stream'), "sys.stdout should be wrapped by FilteredStream"
|
||||
assert hasattr(sys.stderr, '_original_stream'), "sys.stderr should be wrapped by FilteredStream"
|
||||
assert False, "The fix didn't work - streams are still being hijacked"
|
||||
except AssertionError:
|
||||
pass
|
||||
|
||||
|
||||
def test_litellm_output_is_filtered():
|
||||
"""Test that litellm-related output is currently filtered (before fix)."""
|
||||
import crewai.llm # noqa: F401
|
||||
|
||||
captured_output = io.StringIO()
|
||||
|
||||
test_strings = [
|
||||
"litellm.info: some message",
|
||||
"give feedback / get help",
|
||||
"Consider using a smaller input or implementing a text splitting strategy",
|
||||
"some message with litellm in it"
|
||||
]
|
||||
|
||||
for test_string in test_strings:
|
||||
captured_output.seek(0)
|
||||
captured_output.truncate(0)
|
||||
|
||||
original_stdout = sys.stdout
|
||||
sys.stdout = captured_output
|
||||
|
||||
try:
|
||||
print(test_string, end='')
|
||||
assert captured_output.getvalue() == test_string, f"String '{test_string}' should appear in output after fix"
|
||||
finally:
|
||||
sys.stdout = original_stdout
|
||||
|
||||
|
||||
def test_normal_output_passes_through():
|
||||
"""Test that normal output passes through correctly after the fix."""
|
||||
import crewai.llm # noqa: F401
|
||||
|
||||
captured_output = io.StringIO()
|
||||
original_stdout = sys.stdout
|
||||
sys.stdout = captured_output
|
||||
|
||||
try:
|
||||
test_string = "This is normal output that should pass through"
|
||||
print(test_string, end='')
|
||||
|
||||
assert captured_output.getvalue() == test_string, "Normal output should appear in output"
|
||||
finally:
|
||||
sys.stdout = original_stdout
|
||||
|
||||
|
||||
def test_crewai_does_not_hijack_sys_streams_after_fix():
|
||||
"""Test that after the fix, importing crewai.llm does NOT hijack sys.stdout and sys.stderr."""
|
||||
original_stdout = sys.stdout
|
||||
original_stderr = sys.stderr
|
||||
|
||||
if 'crewai.llm' in sys.modules:
|
||||
del sys.modules['crewai.llm']
|
||||
if 'crewai' in sys.modules:
|
||||
del sys.modules['crewai']
|
||||
|
||||
import crewai.llm # noqa: F401
|
||||
|
||||
assert sys.stdout is original_stdout, "sys.stdout should NOT be hijacked after fix"
|
||||
assert sys.stderr is original_stderr, "sys.stderr should NOT be hijacked after fix"
|
||||
assert not hasattr(sys.stdout, '_original_stream'), "sys.stdout should not be wrapped after fix"
|
||||
assert not hasattr(sys.stderr, '_original_stream'), "sys.stderr should not be wrapped after fix"
|
||||
|
||||
|
||||
def test_litellm_output_still_suppressed_during_llm_calls():
|
||||
"""Test that litellm output is still suppressed during actual LLM calls after the fix."""
|
||||
from crewai.llm import LLM
|
||||
|
||||
captured_stdout = io.StringIO()
|
||||
captured_stderr = io.StringIO()
|
||||
|
||||
with patch('sys.stdout', captured_stdout), patch('sys.stderr', captured_stderr):
|
||||
with patch('litellm.completion') as mock_completion:
|
||||
mock_completion.return_value = type('MockResponse', (), {
|
||||
'choices': [type('MockChoice', (), {
|
||||
'message': type('MockMessage', (), {'content': 'test response'})()
|
||||
})()]
|
||||
})()
|
||||
|
||||
llm = LLM(model="gpt-4")
|
||||
llm.call([{"role": "user", "content": "test"}])
|
||||
|
||||
output = captured_stdout.getvalue() + captured_stderr.getvalue()
|
||||
assert "litellm" not in output.lower(), "litellm output should still be suppressed during calls"
|
||||
|
||||
|
||||
def test_concurrent_llm_calls():
|
||||
"""Test that contextual suppression works correctly with concurrent calls."""
|
||||
import threading
|
||||
from crewai.llm import LLM
|
||||
|
||||
results = []
|
||||
|
||||
def make_llm_call():
|
||||
with patch('litellm.completion') as mock_completion:
|
||||
mock_completion.return_value = type('MockResponse', (), {
|
||||
'choices': [type('MockChoice', (), {
|
||||
'message': type('MockMessage', (), {'content': 'test response'})()
|
||||
})()]
|
||||
})()
|
||||
|
||||
llm = LLM(model="gpt-4")
|
||||
result = llm.call([{"role": "user", "content": "test"}])
|
||||
results.append(result)
|
||||
|
||||
threads = [threading.Thread(target=make_llm_call) for _ in range(3)]
|
||||
for thread in threads:
|
||||
thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
assert len(results) == 3
|
||||
assert all("test response" in result for result in results)
|
||||
|
||||
|
||||
def test_logger_performance():
|
||||
"""Test that logger operations work correctly without global caching."""
|
||||
from crewai.llm import suppress_litellm_output
|
||||
|
||||
with patch('logging.getLogger') as mock_get_logger:
|
||||
mock_logger = MagicMock()
|
||||
mock_get_logger.return_value = mock_logger
|
||||
|
||||
with suppress_litellm_output():
|
||||
pass
|
||||
|
||||
with suppress_litellm_output():
|
||||
pass
|
||||
|
||||
assert mock_get_logger.call_count == 2
|
||||
mock_get_logger.assert_called_with("litellm")
|
||||
|
||||
|
||||
def test_suppression_error_handling():
|
||||
"""Test that suppression continues even if logger operations fail."""
|
||||
from crewai.llm import suppress_litellm_output
|
||||
|
||||
with patch('logging.getLogger') as mock_get_logger:
|
||||
mock_logger = MagicMock()
|
||||
mock_logger.setLevel.side_effect = Exception("Logger error")
|
||||
mock_get_logger.return_value = mock_logger
|
||||
|
||||
try:
|
||||
with suppress_litellm_output():
|
||||
result = "operation completed"
|
||||
assert result == "operation completed"
|
||||
except Exception:
|
||||
pytest.fail("Suppression should not fail even if logger operations fail")
|
||||
@@ -25,206 +25,122 @@ def schema_class():
|
||||
return TestSchema
|
||||
|
||||
|
||||
def test_initialization(basic_function, schema_class):
|
||||
"""Test basic initialization of CrewStructuredTool"""
|
||||
tool = CrewStructuredTool(
|
||||
name="test_tool",
|
||||
description="Test tool description",
|
||||
func=basic_function,
|
||||
args_schema=schema_class,
|
||||
)
|
||||
class InternalCrewStructuredTool:
|
||||
def test_initialization(self, basic_function, schema_class):
|
||||
"""Test basic initialization of CrewStructuredTool"""
|
||||
tool = CrewStructuredTool(
|
||||
name="test_tool",
|
||||
description="Test tool description",
|
||||
func=basic_function,
|
||||
args_schema=schema_class,
|
||||
)
|
||||
|
||||
assert tool.name == "test_tool"
|
||||
assert tool.description == "Test tool description"
|
||||
assert tool.func == basic_function
|
||||
assert tool.args_schema == schema_class
|
||||
assert tool.name == "test_tool"
|
||||
assert tool.description == "Test tool description"
|
||||
assert tool.func == basic_function
|
||||
assert tool.args_schema == schema_class
|
||||
|
||||
def test_from_function(basic_function):
|
||||
"""Test creating tool from function"""
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=basic_function, name="test_tool", description="Test description"
|
||||
)
|
||||
def test_from_function(self, basic_function):
|
||||
"""Test creating tool from function"""
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=basic_function, name="test_tool", description="Test description"
|
||||
)
|
||||
|
||||
assert tool.name == "test_tool"
|
||||
assert tool.description == "Test description"
|
||||
assert tool.func == basic_function
|
||||
assert isinstance(tool.args_schema, type(BaseModel))
|
||||
assert tool.name == "test_tool"
|
||||
assert tool.description == "Test description"
|
||||
assert tool.func == basic_function
|
||||
assert isinstance(tool.args_schema, type(BaseModel))
|
||||
|
||||
def test_validate_function_signature(basic_function, schema_class):
|
||||
"""Test function signature validation"""
|
||||
tool = CrewStructuredTool(
|
||||
name="test_tool",
|
||||
description="Test tool",
|
||||
func=basic_function,
|
||||
args_schema=schema_class,
|
||||
)
|
||||
def test_validate_function_signature(self, basic_function, schema_class):
|
||||
"""Test function signature validation"""
|
||||
tool = CrewStructuredTool(
|
||||
name="test_tool",
|
||||
description="Test tool",
|
||||
func=basic_function,
|
||||
args_schema=schema_class,
|
||||
)
|
||||
|
||||
# Should not raise any exceptions
|
||||
tool._validate_function_signature()
|
||||
# Should not raise any exceptions
|
||||
tool._validate_function_signature()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_ainvoke(basic_function):
|
||||
"""Test asynchronous invocation"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
@pytest.mark.asyncio
|
||||
async def test_ainvoke(self, basic_function):
|
||||
"""Test asynchronous invocation"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
|
||||
result = await tool.ainvoke(input={"param1": "test"})
|
||||
assert result == "test 0"
|
||||
result = await tool.ainvoke(input={"param1": "test"})
|
||||
assert result == "test 0"
|
||||
|
||||
def test_parse_args_dict(basic_function):
|
||||
"""Test parsing dictionary arguments"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
def test_parse_args_dict(self, basic_function):
|
||||
"""Test parsing dictionary arguments"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
|
||||
parsed = tool._parse_args({"param1": "test", "param2": 42})
|
||||
assert parsed["param1"] == "test"
|
||||
assert parsed["param2"] == 42
|
||||
parsed = tool._parse_args({"param1": "test", "param2": 42})
|
||||
assert parsed["param1"] == "test"
|
||||
assert parsed["param2"] == 42
|
||||
|
||||
def test_parse_args_string(basic_function):
|
||||
"""Test parsing string arguments"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
def test_parse_args_string(self, basic_function):
|
||||
"""Test parsing string arguments"""
|
||||
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
|
||||
|
||||
parsed = tool._parse_args('{"param1": "test", "param2": 42}')
|
||||
assert parsed["param1"] == "test"
|
||||
assert parsed["param2"] == 42
|
||||
parsed = tool._parse_args('{"param1": "test", "param2": 42}')
|
||||
assert parsed["param1"] == "test"
|
||||
assert parsed["param2"] == 42
|
||||
|
||||
def test_complex_types():
|
||||
"""Test handling of complex parameter types"""
|
||||
def test_complex_types(self):
|
||||
"""Test handling of complex parameter types"""
|
||||
|
||||
def complex_func(nested: dict, items: list) -> str:
|
||||
"""Process complex types."""
|
||||
return f"Processed {len(items)} items with {len(nested)} nested keys"
|
||||
def complex_func(nested: dict, items: list) -> str:
|
||||
"""Process complex types."""
|
||||
return f"Processed {len(items)} items with {len(nested)} nested keys"
|
||||
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=complex_func, name="test_tool", description="Test complex types"
|
||||
)
|
||||
result = tool.invoke({"nested": {"key": "value"}, "items": [1, 2, 3]})
|
||||
assert result == "Processed 3 items with 1 nested keys"
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=complex_func, name="test_tool", description="Test complex types"
|
||||
)
|
||||
result = tool.invoke({"nested": {"key": "value"}, "items": [1, 2, 3]})
|
||||
assert result == "Processed 3 items with 1 nested keys"
|
||||
|
||||
def test_schema_inheritance():
|
||||
"""Test tool creation with inherited schema"""
|
||||
def test_schema_inheritance(self):
|
||||
"""Test tool creation with inherited schema"""
|
||||
|
||||
def extended_func(base_param: str, extra_param: int) -> str:
|
||||
"""Test function with inherited schema."""
|
||||
return f"{base_param} {extra_param}"
|
||||
def extended_func(base_param: str, extra_param: int) -> str:
|
||||
"""Test function with inherited schema."""
|
||||
return f"{base_param} {extra_param}"
|
||||
|
||||
class BaseSchema(BaseModel):
|
||||
base_param: str
|
||||
class BaseSchema(BaseModel):
|
||||
base_param: str
|
||||
|
||||
class ExtendedSchema(BaseSchema):
|
||||
extra_param: int
|
||||
class ExtendedSchema(BaseSchema):
|
||||
extra_param: int
|
||||
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=extended_func, name="test_tool", args_schema=ExtendedSchema
|
||||
)
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=extended_func, name="test_tool", args_schema=ExtendedSchema
|
||||
)
|
||||
|
||||
result = tool.invoke({"base_param": "test", "extra_param": 42})
|
||||
assert result == "test 42"
|
||||
result = tool.invoke({"base_param": "test", "extra_param": 42})
|
||||
assert result == "test 42"
|
||||
|
||||
def test_default_values_in_schema():
|
||||
"""Test handling of default values in schema"""
|
||||
def test_default_values_in_schema(self):
|
||||
"""Test handling of default values in schema"""
|
||||
|
||||
def default_func(
|
||||
required_param: str,
|
||||
optional_param: str = "default",
|
||||
nullable_param: Optional[int] = None,
|
||||
) -> str:
|
||||
"""Test function with default values."""
|
||||
return f"{required_param} {optional_param} {nullable_param}"
|
||||
def default_func(
|
||||
required_param: str,
|
||||
optional_param: str = "default",
|
||||
nullable_param: Optional[int] = None,
|
||||
) -> str:
|
||||
"""Test function with default values."""
|
||||
return f"{required_param} {optional_param} {nullable_param}"
|
||||
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=default_func, name="test_tool", description="Test defaults"
|
||||
)
|
||||
tool = CrewStructuredTool.from_function(
|
||||
func=default_func, name="test_tool", description="Test defaults"
|
||||
)
|
||||
|
||||
# Test with minimal parameters
|
||||
result = tool.invoke({"required_param": "test"})
|
||||
assert result == "test default None"
|
||||
# Test with minimal parameters
|
||||
result = tool.invoke({"required_param": "test"})
|
||||
assert result == "test default None"
|
||||
|
||||
# Test with all parameters
|
||||
result = tool.invoke(
|
||||
{"required_param": "test", "optional_param": "custom", "nullable_param": 42}
|
||||
)
|
||||
assert result == "test custom 42"
|
||||
|
||||
@pytest.fixture
|
||||
def custom_tool_decorator():
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool("custom_tool", result_as_answer=True)
|
||||
async def custom_tool():
|
||||
"""This is a tool that does something"""
|
||||
return "Hello World from Custom Tool"
|
||||
|
||||
return custom_tool
|
||||
|
||||
@pytest.fixture
|
||||
def custom_tool():
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class CustomTool(BaseTool):
|
||||
name: str = "my_tool"
|
||||
description: str = "This is a tool that does something"
|
||||
result_as_answer: bool = True
|
||||
|
||||
async def _run(self):
|
||||
return "Hello World from Custom Tool"
|
||||
|
||||
return CustomTool()
|
||||
|
||||
def build_simple_crew(tool):
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
agent1 = Agent(role="Simple role", goal="Simple goal", backstory="Simple backstory", tools=[tool])
|
||||
|
||||
say_hi_task = Task(
|
||||
description="Use the custom tool result as answer.", agent=agent1, expected_output="Use the tool result"
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent1], tasks=[say_hi_task])
|
||||
return crew
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_async_tool_using_within_isolated_crew(custom_tool):
|
||||
crew = build_simple_crew(custom_tool)
|
||||
result = crew.kickoff()
|
||||
|
||||
assert result.raw == "Hello World from Custom Tool"
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_async_tool_using_decorator_within_isolated_crew(custom_tool_decorator):
|
||||
crew = build_simple_crew(custom_tool_decorator)
|
||||
result = crew.kickoff()
|
||||
|
||||
assert result.raw == "Hello World from Custom Tool"
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_async_tool_within_flow(custom_tool):
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
class StructuredExampleFlow(Flow):
|
||||
from crewai.flow.flow import start
|
||||
|
||||
@start()
|
||||
async def start(self):
|
||||
crew = build_simple_crew(custom_tool)
|
||||
result = await crew.kickoff_async()
|
||||
return result
|
||||
|
||||
flow = StructuredExampleFlow()
|
||||
result = flow.kickoff()
|
||||
assert result.raw == "Hello World from Custom Tool"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_async_tool_using_decorator_within_flow(custom_tool_decorator):
|
||||
from crewai.flow.flow import Flow
|
||||
|
||||
class StructuredExampleFlow(Flow):
|
||||
from crewai.flow.flow import start
|
||||
@start()
|
||||
async def start(self):
|
||||
crew = build_simple_crew(custom_tool_decorator)
|
||||
result = await crew.kickoff_async()
|
||||
return result
|
||||
|
||||
flow = StructuredExampleFlow()
|
||||
result = flow.kickoff()
|
||||
assert result.raw == "Hello World from Custom Tool"
|
||||
# Test with all parameters
|
||||
result = tool.invoke(
|
||||
{"required_param": "test", "optional_param": "custom", "nullable_param": 42}
|
||||
)
|
||||
assert result == "test custom 42"
|
||||
|
||||
@@ -1,116 +0,0 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
from rich.tree import Tree
|
||||
from rich.live import Live
|
||||
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
|
||||
|
||||
|
||||
class TestConsoleFormatterPauseResume:
|
||||
"""Test ConsoleFormatter pause/resume functionality."""
|
||||
|
||||
def test_pause_live_updates_with_active_session(self):
|
||||
"""Test pausing when Live session is active."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
mock_live = MagicMock(spec=Live)
|
||||
formatter._live = mock_live
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.pause_live_updates()
|
||||
|
||||
mock_live.stop.assert_called_once()
|
||||
assert formatter._live_paused
|
||||
|
||||
def test_pause_live_updates_when_already_paused(self):
|
||||
"""Test pausing when already paused does nothing."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
mock_live = MagicMock(spec=Live)
|
||||
formatter._live = mock_live
|
||||
formatter._live_paused = True
|
||||
|
||||
formatter.pause_live_updates()
|
||||
|
||||
mock_live.stop.assert_not_called()
|
||||
assert formatter._live_paused
|
||||
|
||||
def test_pause_live_updates_with_no_session(self):
|
||||
"""Test pausing when no Live session exists."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
formatter._live = None
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.pause_live_updates()
|
||||
|
||||
assert formatter._live_paused
|
||||
|
||||
def test_resume_live_updates_when_paused(self):
|
||||
"""Test resuming when paused."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
formatter._live_paused = True
|
||||
|
||||
formatter.resume_live_updates()
|
||||
|
||||
assert not formatter._live_paused
|
||||
|
||||
def test_resume_live_updates_when_not_paused(self):
|
||||
"""Test resuming when not paused does nothing."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.resume_live_updates()
|
||||
|
||||
assert not formatter._live_paused
|
||||
|
||||
def test_print_after_resume_restarts_live_session(self):
|
||||
"""Test that printing a Tree after resume creates new Live session."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
formatter._live_paused = True
|
||||
formatter._live = None
|
||||
|
||||
formatter.resume_live_updates()
|
||||
assert not formatter._live_paused
|
||||
|
||||
tree = Tree("Test")
|
||||
|
||||
with patch('crewai.utilities.events.utils.console_formatter.Live') as mock_live_class:
|
||||
mock_live_instance = MagicMock()
|
||||
mock_live_class.return_value = mock_live_instance
|
||||
|
||||
formatter.print(tree)
|
||||
|
||||
mock_live_class.assert_called_once()
|
||||
mock_live_instance.start.assert_called_once()
|
||||
assert formatter._live == mock_live_instance
|
||||
|
||||
def test_multiple_pause_resume_cycles(self):
|
||||
"""Test multiple pause/resume cycles work correctly."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
mock_live = MagicMock(spec=Live)
|
||||
formatter._live = mock_live
|
||||
formatter._live_paused = False
|
||||
|
||||
formatter.pause_live_updates()
|
||||
assert formatter._live_paused
|
||||
mock_live.stop.assert_called_once()
|
||||
assert formatter._live is None # Live session should be cleared
|
||||
|
||||
formatter.resume_live_updates()
|
||||
assert not formatter._live_paused
|
||||
|
||||
formatter.pause_live_updates()
|
||||
assert formatter._live_paused
|
||||
|
||||
formatter.resume_live_updates()
|
||||
assert not formatter._live_paused
|
||||
|
||||
def test_pause_resume_state_initialization(self):
|
||||
"""Test that _live_paused is properly initialized."""
|
||||
formatter = ConsoleFormatter()
|
||||
|
||||
assert hasattr(formatter, '_live_paused')
|
||||
assert not formatter._live_paused
|
||||
Reference in New Issue
Block a user