mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Compare commits
5 Commits
devin/1740
...
devin/1740
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f80fe7d4c1 | ||
|
|
da0d37af03 | ||
|
|
f65c31bfd0 | ||
|
|
9322f06e7a | ||
|
|
326f406605 |
@@ -3,20 +3,17 @@ import inspect
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import typing
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
from copy import copy
|
||||
from hashlib import md5
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Any,
|
||||
Callable,
|
||||
ClassVar,
|
||||
Dict,
|
||||
List,
|
||||
Mapping,
|
||||
Optional,
|
||||
Set,
|
||||
Tuple,
|
||||
@@ -35,7 +32,6 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tasks.exceptions import GuardrailValidationError
|
||||
from crewai.tasks.guardrail_result import GuardrailResult
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -117,7 +113,7 @@ class Task(BaseModel):
|
||||
description="Task output, it's final result after being executed", default=None
|
||||
)
|
||||
tools: Optional[List[BaseTool]] = Field(
|
||||
default_factory=list[BaseTool],
|
||||
default_factory=list,
|
||||
description="Tools the agent is limited to use for this task.",
|
||||
)
|
||||
id: UUID4 = Field(
|
||||
@@ -133,7 +129,7 @@ class Task(BaseModel):
|
||||
description="A converter class used to export structured output",
|
||||
default=None,
|
||||
)
|
||||
processed_by_agents: Set[str] = Field(default_factory=set[str])
|
||||
processed_by_agents: Set[str] = Field(default_factory=set)
|
||||
guardrail: Optional[Callable[[TaskOutput], Tuple[bool, Any]]] = Field(
|
||||
default=None,
|
||||
description="Function to validate task output before proceeding to next task",
|
||||
@@ -155,8 +151,8 @@ class Task(BaseModel):
|
||||
"""Validate that the guardrail function has the correct signature and behavior.
|
||||
|
||||
While type hints provide static checking, this validator ensures runtime safety by:
|
||||
1. Verifying the function accepts exactly one required positional parameter (the TaskOutput)
|
||||
2. Checking return type annotations match tuple[bool, Any] or specific types like tuple[bool, str]
|
||||
1. Verifying the function accepts exactly one parameter (the TaskOutput)
|
||||
2. Checking return type annotations match Tuple[bool, Any] if present
|
||||
3. Providing clear, immediate error messages for debugging
|
||||
|
||||
This runtime validation is crucial because:
|
||||
@@ -164,24 +160,6 @@ class Task(BaseModel):
|
||||
- Function signatures need immediate validation before task execution
|
||||
- Clear error messages help users debug guardrail implementation issues
|
||||
|
||||
Examples:
|
||||
Simple validation with new style annotation:
|
||||
>>> def validate_output(result: TaskOutput) -> tuple[bool, str]:
|
||||
... return (True, result.raw.upper())
|
||||
|
||||
Validation with optional parameters:
|
||||
>>> def validate_with_options(result: TaskOutput, strict: bool = True) -> tuple[bool, str]:
|
||||
... if strict and not result.raw.isupper():
|
||||
... return (False, "Text must be uppercase")
|
||||
... return (True, result.raw)
|
||||
|
||||
Validation with specific return type:
|
||||
>>> def validate_task_output(result: TaskOutput) -> tuple[bool, TaskOutput]:
|
||||
... if not result.raw:
|
||||
... return (False, result)
|
||||
... result.raw = result.raw.strip()
|
||||
... return (True, result)
|
||||
|
||||
Args:
|
||||
v: The guardrail function to validate
|
||||
|
||||
@@ -190,57 +168,22 @@ class Task(BaseModel):
|
||||
|
||||
Raises:
|
||||
ValueError: If the function signature is invalid or return annotation
|
||||
doesn't match tuple[bool, Any] or specific allowed types
|
||||
doesn't match Tuple[bool, Any]
|
||||
"""
|
||||
if v is not None:
|
||||
sig = inspect.signature(v)
|
||||
# Get required positional parameters (excluding those with defaults)
|
||||
required_params = [
|
||||
param for param in sig.parameters.values()
|
||||
if param.default == inspect.Parameter.empty
|
||||
and param.kind in (inspect.Parameter.POSITIONAL_ONLY, inspect.Parameter.POSITIONAL_OR_KEYWORD)
|
||||
]
|
||||
keyword_only_params = [
|
||||
param for param in sig.parameters.values()
|
||||
if param.kind == inspect.Parameter.KEYWORD_ONLY
|
||||
]
|
||||
if len(required_params) != 1 or (len(keyword_only_params) > 0 and any(p.default == inspect.Parameter.empty for p in keyword_only_params)):
|
||||
raise GuardrailValidationError(
|
||||
"Guardrail function must accept exactly one required positional parameter and no required keyword-only parameters",
|
||||
{"params": [str(p) for p in sig.parameters.values()]}
|
||||
)
|
||||
if len(sig.parameters) != 1:
|
||||
raise ValueError("Guardrail function must accept exactly one parameter")
|
||||
|
||||
# Check return annotation if present, but don't require it
|
||||
type_hints = typing.get_type_hints(v)
|
||||
return_annotation = type_hints.get('return')
|
||||
if return_annotation:
|
||||
# Convert annotation to string for comparison
|
||||
annotation_str = str(return_annotation).lower().replace(' ', '')
|
||||
|
||||
# Normalize type strings
|
||||
normalized_annotation = (
|
||||
annotation_str.replace('typing.', '')
|
||||
.replace('dict[str,typing.any]', 'dict[str,any]')
|
||||
.replace('dict[str, any]', 'dict[str,any]')
|
||||
)
|
||||
|
||||
VALID_RETURN_TYPES = {
|
||||
'tuple[bool,any]',
|
||||
'tuple[bool,str]',
|
||||
'tuple[bool,dict[str,any]]',
|
||||
'tuple[bool,taskoutput]'
|
||||
}
|
||||
|
||||
# Check if the normalized annotation matches any valid pattern
|
||||
is_valid = normalized_annotation == 'tuple[bool,any]'
|
||||
if not is_valid:
|
||||
is_valid = normalized_annotation in VALID_RETURN_TYPES
|
||||
|
||||
if not is_valid:
|
||||
raise GuardrailValidationError(
|
||||
f"Invalid return type annotation. Expected one of: "
|
||||
f"{', '.join(VALID_RETURN_TYPES)}",
|
||||
{"got": annotation_str}
|
||||
return_annotation = sig.return_annotation
|
||||
if return_annotation != inspect.Signature.empty:
|
||||
if not (
|
||||
return_annotation == Tuple[bool, Any]
|
||||
or str(return_annotation) == "Tuple[bool, Any]"
|
||||
):
|
||||
raise ValueError(
|
||||
"If return type is annotated, it must be Tuple[bool, Any]"
|
||||
)
|
||||
return v
|
||||
|
||||
@@ -468,7 +411,6 @@ class Task(BaseModel):
|
||||
"Task guardrail returned None as result. This is not allowed."
|
||||
)
|
||||
|
||||
# Handle different result types
|
||||
if isinstance(guardrail_result.result, str):
|
||||
task_output.raw = guardrail_result.result
|
||||
pydantic_output, json_output = self._export_output(
|
||||
@@ -478,13 +420,6 @@ class Task(BaseModel):
|
||||
task_output.json_dict = json_output
|
||||
elif isinstance(guardrail_result.result, TaskOutput):
|
||||
task_output = guardrail_result.result
|
||||
elif isinstance(guardrail_result.result, dict):
|
||||
task_output.raw = guardrail_result.result
|
||||
task_output.json_dict = guardrail_result.result
|
||||
pydantic_output, _ = self._export_output(
|
||||
json.dumps(guardrail_result.result)
|
||||
)
|
||||
task_output.pydantic = pydantic_output
|
||||
|
||||
self.output = task_output
|
||||
self.end_time = datetime.datetime.now()
|
||||
@@ -675,74 +610,40 @@ class Task(BaseModel):
|
||||
self.delegations += 1
|
||||
|
||||
def copy(
|
||||
self,
|
||||
agents: List["BaseAgent"] | None = None,
|
||||
task_mapping: Dict[str, "Task"] | None = None,
|
||||
*,
|
||||
include: AbstractSet[int] | AbstractSet[str] | Mapping[int, Any] | Mapping[str, Any] | None = None,
|
||||
exclude: AbstractSet[int] | AbstractSet[str] | Mapping[int, Any] | Mapping[str, Any] | None = None,
|
||||
update: dict[str, Any] | None = None,
|
||||
deep: bool = False,
|
||||
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
|
||||
) -> "Task":
|
||||
"""Create a deep copy of the Task.
|
||||
|
||||
Args:
|
||||
agents: Optional list of agents to copy agent references
|
||||
task_mapping: Optional mapping of task keys to tasks for context
|
||||
include: Fields to include in the copy
|
||||
exclude: Fields to exclude from the copy
|
||||
update: Fields to update in the copy
|
||||
deep: Whether to perform a deep copy
|
||||
"""
|
||||
if agents is None and task_mapping is None:
|
||||
# New style copy using BaseModel
|
||||
copied = super().copy(
|
||||
include=include,
|
||||
exclude=exclude,
|
||||
update=update,
|
||||
deep=deep,
|
||||
)
|
||||
|
||||
# Copy mutable fields
|
||||
if self.tools:
|
||||
copied.tools = copy(self.tools)
|
||||
if self.context:
|
||||
copied.context = copy(self.context)
|
||||
|
||||
return copied
|
||||
|
||||
# Legacy copy behavior
|
||||
exclude_fields = {
|
||||
"""Create a deep copy of the Task."""
|
||||
exclude = {
|
||||
"id",
|
||||
"agent",
|
||||
"context",
|
||||
"tools",
|
||||
}
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude_fields)
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
cloned_context = (
|
||||
[task_mapping[context_task.key] for context_task in self.context]
|
||||
if self.context and task_mapping
|
||||
if self.context
|
||||
else None
|
||||
)
|
||||
|
||||
def get_agent_by_role(role: str) -> Union["BaseAgent", None]:
|
||||
if not agents:
|
||||
return None
|
||||
return next((agent for agent in agents if agent.role == role), None)
|
||||
|
||||
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
|
||||
cloned_tools = copy(self.tools) if self.tools else []
|
||||
|
||||
return Task(
|
||||
copied_task = Task(
|
||||
**copied_data,
|
||||
context=cloned_context,
|
||||
agent=cloned_agent,
|
||||
tools=cloned_tools,
|
||||
)
|
||||
|
||||
return copied_task
|
||||
|
||||
def _export_output(
|
||||
self, result: str
|
||||
) -> Tuple[Optional[BaseModel], Optional[Dict[str, Any]]]:
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
"""
|
||||
Module for task-related exceptions.
|
||||
|
||||
This module provides custom exceptions used throughout the task system
|
||||
to provide more specific error handling and context.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
class GuardrailValidationError(Exception):
|
||||
"""Exception raised for guardrail validation errors.
|
||||
|
||||
This exception provides detailed context about why a guardrail
|
||||
validation failed, including the specific validation that failed
|
||||
and any relevant context information.
|
||||
|
||||
Attributes:
|
||||
message: A clear description of the validation error
|
||||
context: Optional dictionary containing additional error context
|
||||
"""
|
||||
def __init__(self, message: str, context: Optional[Dict[str, Any]] = None):
|
||||
self.message = message
|
||||
self.context = context or {}
|
||||
super().__init__(self.message)
|
||||
@@ -1,5 +1,5 @@
|
||||
import json
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
@@ -15,7 +15,7 @@ class TaskOutput(BaseModel):
|
||||
description="Expected output of the task", default=None
|
||||
)
|
||||
summary: Optional[str] = Field(description="Summary of the task", default=None)
|
||||
raw: Any = Field(description="Raw output of the task", default="")
|
||||
raw: str = Field(description="Raw output of the task", default="")
|
||||
pydantic: Optional[BaseModel] = Field(
|
||||
description="Pydantic output of task", default=None
|
||||
)
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from functools import lru_cache
|
||||
from typing import Any, Optional, Type, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel, ValidationError
|
||||
@@ -8,6 +10,8 @@ from crewai.agents.agent_builder.utilities.base_output_converter import OutputCo
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ConverterError(Exception):
|
||||
"""Error raised when Converter fails to parse the input."""
|
||||
@@ -253,17 +257,57 @@ def create_converter(
|
||||
return converter
|
||||
|
||||
|
||||
FIELD_TYPE_KEY = "type"
|
||||
FIELD_DESC_KEY = "description"
|
||||
|
||||
def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
"""
|
||||
Generate a string description of a Pydantic model's fields and their types.
|
||||
|
||||
This function takes a Pydantic model class and returns a string that describes
|
||||
the model's fields and their respective types. The description includes handling
|
||||
of complex types such as `Optional`, `List`, and `Dict`, as well as nested Pydantic
|
||||
models.
|
||||
@lru_cache(maxsize=100)
|
||||
def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
models and field descriptions when available.
|
||||
|
||||
Args:
|
||||
model: A Pydantic BaseModel class to generate description for
|
||||
|
||||
Returns:
|
||||
str: A JSON-like string describing the model's fields, their types, and descriptions
|
||||
"""
|
||||
|
||||
def describe_field(field_type):
|
||||
def describe_field(field_type: Any, field_info: Optional[Any] = None) -> Union[str, dict]:
|
||||
"""
|
||||
Generate a description for a model field including its type and description.
|
||||
|
||||
Args:
|
||||
field_type: The type annotation of the field
|
||||
field_info: Optional field information containing description
|
||||
|
||||
Returns:
|
||||
Union[str, dict]: Field description either as string (type only) or
|
||||
dict with type and description
|
||||
"""
|
||||
try:
|
||||
type_desc = get_type_description(field_type)
|
||||
if field_info and field_info.description:
|
||||
return {FIELD_TYPE_KEY: type_desc, FIELD_DESC_KEY: field_info.description}
|
||||
return type_desc
|
||||
except Exception as e:
|
||||
logger.warning(f"Error processing field description: {e}")
|
||||
return str(field_type)
|
||||
|
||||
def get_type_description(field_type: Any) -> str:
|
||||
"""
|
||||
Get the type description for a field type.
|
||||
|
||||
Args:
|
||||
field_type: The type annotation to describe
|
||||
|
||||
Returns:
|
||||
str: A string representation of the type
|
||||
"""
|
||||
origin = get_origin(field_type)
|
||||
args = get_args(field_type)
|
||||
|
||||
@@ -271,14 +315,14 @@ def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
# Handle both Union and the new '|' syntax
|
||||
non_none_args = [arg for arg in args if arg is not type(None)]
|
||||
if len(non_none_args) == 1:
|
||||
return f"Optional[{describe_field(non_none_args[0])}]"
|
||||
return f"Optional[{get_type_description(non_none_args[0])}]"
|
||||
else:
|
||||
return f"Optional[Union[{', '.join(describe_field(arg) for arg in non_none_args)}]]"
|
||||
return f"Optional[Union[{', '.join(get_type_description(arg) for arg in non_none_args)}]]"
|
||||
elif origin is list:
|
||||
return f"List[{describe_field(args[0])}]"
|
||||
return f"List[{get_type_description(args[0])}]"
|
||||
elif origin is dict:
|
||||
key_type = describe_field(args[0])
|
||||
value_type = describe_field(args[1])
|
||||
key_type = get_type_description(args[0])
|
||||
value_type = get_type_description(args[1])
|
||||
return f"Dict[{key_type}, {value_type}]"
|
||||
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
return generate_model_description(field_type)
|
||||
@@ -287,8 +331,12 @@ def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
else:
|
||||
return str(field_type)
|
||||
|
||||
fields = model.__annotations__
|
||||
field_descriptions = [
|
||||
f'"{name}": {describe_field(type_)}' for name, type_ in fields.items()
|
||||
]
|
||||
fields = model.model_fields
|
||||
field_descriptions = []
|
||||
for name, field in fields.items():
|
||||
field_desc = describe_field(field.annotation, field)
|
||||
if isinstance(field_desc, dict):
|
||||
field_descriptions.append(f'"{name}": {json.dumps(field_desc)}')
|
||||
else:
|
||||
field_descriptions.append(f'"{name}": {field_desc}')
|
||||
return "{\n " + ",\n ".join(field_descriptions) + "\n}"
|
||||
|
||||
@@ -1,179 +1,129 @@
|
||||
"""Tests for task guardrails functionality."""
|
||||
|
||||
from typing import Any, Dict
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.exceptions import GuardrailValidationError
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
|
||||
|
||||
class TestTaskGuardrails:
|
||||
"""Test suite for task guardrail functionality."""
|
||||
def test_task_without_guardrail():
|
||||
"""Test that tasks work normally without guardrails (backward compatibility)."""
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
@pytest.fixture
|
||||
def mock_agent(self):
|
||||
"""Fixture providing a mock agent for testing."""
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.crew = None
|
||||
return agent
|
||||
task = Task(description="Test task", expected_output="Output")
|
||||
|
||||
def test_task_without_guardrail(self, mock_agent):
|
||||
"""Test that tasks work normally without guardrails (backward compatibility)."""
|
||||
mock_agent.execute_task.return_value = "test result"
|
||||
task = Task(description="Test task", expected_output="Output")
|
||||
|
||||
result = task.execute_sync(agent=mock_agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "test result"
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "test result"
|
||||
|
||||
|
||||
def test_task_with_successful_guardrail(self, mock_agent):
|
||||
"""Test that successful guardrail validation passes transformed result."""
|
||||
def guardrail(result: TaskOutput):
|
||||
return (True, result.raw.upper())
|
||||
def test_task_with_successful_guardrail():
|
||||
"""Test that successful guardrail validation passes transformed result."""
|
||||
|
||||
mock_agent.execute_task.return_value = "test result"
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
def guardrail(result: TaskOutput):
|
||||
return (True, result.raw.upper())
|
||||
|
||||
result = task.execute_sync(agent=mock_agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "test result"
|
||||
agent.crew = None
|
||||
|
||||
task = Task(description="Test task", expected_output="Output", guardrail=guardrail)
|
||||
|
||||
result = task.execute_sync(agent=agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
|
||||
|
||||
def test_task_with_failing_guardrail(self, mock_agent):
|
||||
"""Test that failing guardrail triggers retry with error context."""
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Invalid format")
|
||||
def test_task_with_failing_guardrail():
|
||||
"""Test that failing guardrail triggers retry with error context."""
|
||||
|
||||
mock_agent.execute_task.side_effect = ["bad result", "good result"]
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=1,
|
||||
)
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Invalid format")
|
||||
|
||||
# First execution fails guardrail, second succeeds
|
||||
mock_agent.execute_task.side_effect = ["bad result", "good result"]
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=mock_agent)
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.side_effect = ["bad result", "good result"]
|
||||
agent.crew = None
|
||||
|
||||
assert "Task failed guardrail validation" in str(exc_info.value)
|
||||
assert task.retry_count == 1
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
# First execution fails guardrail, second succeeds
|
||||
agent.execute_task.side_effect = ["bad result", "good result"]
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=agent)
|
||||
|
||||
assert "Task failed guardrail validation" in str(exc_info.value)
|
||||
assert task.retry_count == 1
|
||||
|
||||
|
||||
def test_task_with_guardrail_retries(self, mock_agent):
|
||||
"""Test that guardrail respects max_retries configuration."""
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Invalid format")
|
||||
def test_task_with_guardrail_retries():
|
||||
"""Test that guardrail respects max_retries configuration."""
|
||||
|
||||
mock_agent.execute_task.return_value = "bad result"
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=2,
|
||||
)
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Invalid format")
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=mock_agent)
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.execute_task.return_value = "bad result"
|
||||
agent.crew = None
|
||||
|
||||
assert task.retry_count == 2
|
||||
assert "Task failed guardrail validation after 2 retries" in str(exc_info.value)
|
||||
assert "Invalid format" in str(exc_info.value)
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=2,
|
||||
)
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=agent)
|
||||
|
||||
assert task.retry_count == 2
|
||||
assert "Task failed guardrail validation after 2 retries" in str(exc_info.value)
|
||||
assert "Invalid format" in str(exc_info.value)
|
||||
|
||||
|
||||
def test_guardrail_error_in_context(self, mock_agent):
|
||||
"""Test that guardrail error is passed in context for retry."""
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Expected JSON, got string")
|
||||
def test_guardrail_error_in_context():
|
||||
"""Test that guardrail error is passed in context for retry."""
|
||||
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=1,
|
||||
)
|
||||
def guardrail(result: TaskOutput):
|
||||
return (False, "Expected JSON, got string")
|
||||
|
||||
# Mock execute_task to succeed on second attempt
|
||||
first_call = True
|
||||
def execute_task(task, context, tools):
|
||||
nonlocal first_call
|
||||
if first_call:
|
||||
first_call = False
|
||||
return "invalid"
|
||||
return '{"valid": "json"}'
|
||||
agent = Mock()
|
||||
agent.role = "test_agent"
|
||||
agent.crew = None
|
||||
|
||||
mock_agent.execute_task.side_effect = execute_task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail,
|
||||
max_retries=1,
|
||||
)
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=mock_agent)
|
||||
# Mock execute_task to succeed on second attempt
|
||||
first_call = True
|
||||
|
||||
assert "Task failed guardrail validation" in str(exc_info.value)
|
||||
assert "Expected JSON, got string" in str(exc_info.value)
|
||||
def execute_task(task, context, tools):
|
||||
nonlocal first_call
|
||||
if first_call:
|
||||
first_call = False
|
||||
return "invalid"
|
||||
return '{"valid": "json"}'
|
||||
|
||||
agent.execute_task.side_effect = execute_task
|
||||
|
||||
def test_guardrail_with_new_style_annotation(self, mock_agent):
|
||||
"""Test guardrail with new style tuple annotation."""
|
||||
def guardrail(result: TaskOutput) -> tuple[bool, str]:
|
||||
return (True, result.raw.upper())
|
||||
|
||||
mock_agent.execute_task.return_value = "test result"
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail
|
||||
)
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
task.execute_sync(agent=agent)
|
||||
|
||||
result = task.execute_sync(agent=mock_agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "TEST RESULT"
|
||||
|
||||
def test_guardrail_with_optional_params(self, mock_agent):
|
||||
"""Test guardrail with optional parameters."""
|
||||
def guardrail(result: TaskOutput, optional_param: str = "default") -> tuple[bool, str]:
|
||||
return (True, f"{result.raw}-{optional_param}")
|
||||
|
||||
mock_agent.execute_task.return_value = "test"
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail
|
||||
)
|
||||
|
||||
result = task.execute_sync(agent=mock_agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == "test-default"
|
||||
|
||||
def test_guardrail_with_invalid_optional_params(self, mock_agent):
|
||||
"""Test guardrail with invalid optional parameters."""
|
||||
def guardrail(result: TaskOutput, *, required_kwonly: str) -> tuple[bool, str]:
|
||||
return (True, result.raw)
|
||||
|
||||
with pytest.raises(GuardrailValidationError) as exc_info:
|
||||
Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail
|
||||
)
|
||||
assert "exactly one required positional parameter" in str(exc_info.value)
|
||||
|
||||
def test_guardrail_with_dict_return_type(self, mock_agent):
|
||||
"""Test guardrail with dict return type."""
|
||||
def guardrail(result: TaskOutput) -> tuple[bool, dict[str, Any]]:
|
||||
return (True, {"processed": result.raw.upper()})
|
||||
|
||||
mock_agent.execute_task.return_value = "test"
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Output",
|
||||
guardrail=guardrail
|
||||
)
|
||||
|
||||
result = task.execute_sync(agent=mock_agent)
|
||||
assert isinstance(result, TaskOutput)
|
||||
assert result.raw == {"processed": "TEST"}
|
||||
assert "Task failed guardrail validation" in str(exc_info.value)
|
||||
assert "Expected JSON, got string" in str(exc_info.value)
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Dict, List, Optional
|
||||
from unittest.mock import MagicMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.converter import (
|
||||
@@ -328,6 +328,51 @@ def test_generate_model_description_dict_field():
|
||||
assert description == expected_description
|
||||
|
||||
|
||||
@pytest.mark.field_descriptions
|
||||
def test_generate_model_description_with_field_descriptions():
|
||||
"""
|
||||
Verify that the model description generator correctly includes field descriptions
|
||||
when they are provided via Field(..., description='...').
|
||||
"""
|
||||
class ModelWithDescriptions(BaseModel):
|
||||
name: str = Field(..., description="The user's full name")
|
||||
age: int = Field(..., description="The user's age in years")
|
||||
|
||||
description = generate_model_description(ModelWithDescriptions)
|
||||
expected = '{\n "name": {"type": "str", "description": "The user\'s full name"},\n "age": {"type": "int", "description": "The user\'s age in years"}\n}'
|
||||
assert description == expected
|
||||
|
||||
|
||||
@pytest.mark.field_descriptions
|
||||
def test_generate_model_description_mixed_fields():
|
||||
"""
|
||||
Verify that the model description generator correctly handles a mix of fields
|
||||
with and without descriptions.
|
||||
"""
|
||||
class MixedModel(BaseModel):
|
||||
name: str = Field(..., description="The user's name")
|
||||
age: int # No description
|
||||
|
||||
description = generate_model_description(MixedModel)
|
||||
expected = '{\n "name": {"type": "str", "description": "The user\'s name"},\n "age": int\n}'
|
||||
assert description == expected
|
||||
|
||||
|
||||
@pytest.mark.field_descriptions
|
||||
def test_generate_model_description_with_empty_description():
|
||||
"""
|
||||
Verify that the model description generator correctly handles fields with empty
|
||||
descriptions by treating them as fields without descriptions.
|
||||
"""
|
||||
class ModelWithEmptyDescription(BaseModel):
|
||||
name: str = Field(..., description="")
|
||||
age: int = Field(..., description=None)
|
||||
|
||||
description = generate_model_description(ModelWithEmptyDescription)
|
||||
expected = '{\n "name": str,\n "age": int\n}'
|
||||
assert description == expected
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_convert_with_instructions():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
Reference in New Issue
Block a user