feat: enhance pydantic output to include field descriptions

- Update generate_model_description to include field descriptions
- Add tests for field description handling
- Maintain backward compatibility for fields without descriptions

Fixes #2188

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-21 11:40:37 +00:00
parent 96a7e8038f
commit 326f406605
2 changed files with 42 additions and 13 deletions

View File

@@ -263,32 +263,41 @@ def generate_model_description(model: Type[BaseModel]) -> str:
models.
"""
def describe_field(field_type):
def describe_field(field_type, field_info=None):
origin = get_origin(field_type)
args = get_args(field_type)
type_desc = ""
if origin is Union or (origin is None and len(args) > 0):
# Handle both Union and the new '|' syntax
non_none_args = [arg for arg in args if arg is not type(None)]
if len(non_none_args) == 1:
return f"Optional[{describe_field(non_none_args[0])}]"
type_desc = f"Optional[{describe_field(non_none_args[0])}]"
else:
return f"Optional[Union[{', '.join(describe_field(arg) for arg in non_none_args)}]]"
type_desc = f"Optional[Union[{', '.join(describe_field(arg) for arg in non_none_args)}]]"
elif origin is list:
return f"List[{describe_field(args[0])}]"
type_desc = f"List[{describe_field(args[0])}]"
elif origin is dict:
key_type = describe_field(args[0])
value_type = describe_field(args[1])
return f"Dict[{key_type}, {value_type}]"
type_desc = f"Dict[{key_type}, {value_type}]"
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
return generate_model_description(field_type)
type_desc = generate_model_description(field_type)
elif hasattr(field_type, "__name__"):
return field_type.__name__
type_desc = field_type.__name__
else:
return str(field_type)
type_desc = str(field_type)
fields = model.__annotations__
field_descriptions = [
f'"{name}": {describe_field(type_)}' for name, type_ in fields.items()
]
if field_info and field_info.description:
return {"type": type_desc, "description": field_info.description}
return type_desc
fields = model.model_fields
field_descriptions = []
for name, field in fields.items():
field_desc = describe_field(field.annotation, field)
if isinstance(field_desc, dict):
field_descriptions.append(f'"{name}": {json.dumps(field_desc)}')
else:
field_descriptions.append(f'"{name}": {field_desc}')
return "{\n " + ",\n ".join(field_descriptions) + "\n}"

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Optional
from unittest.mock import MagicMock, Mock, patch
import pytest
from pydantic import BaseModel
from pydantic import BaseModel, Field
from crewai.llm import LLM
from crewai.utilities.converter import (
@@ -328,6 +328,26 @@ def test_generate_model_description_dict_field():
assert description == expected_description
def test_generate_model_description_with_field_descriptions():
class ModelWithDescriptions(BaseModel):
name: str = Field(..., description="The user's full name")
age: int = Field(..., description="The user's age in years")
description = generate_model_description(ModelWithDescriptions)
expected = '{\n "name": {"type": "str", "description": "The user\'s full name"},\n "age": {"type": "int", "description": "The user\'s age in years"}\n}'
assert description == expected
def test_generate_model_description_mixed_fields():
class MixedModel(BaseModel):
name: str = Field(..., description="The user's name")
age: int # No description
description = generate_model_description(MixedModel)
expected = '{\n "name": {"type": "str", "description": "The user\'s name"},\n "age": int\n}'
assert description == expected
@pytest.mark.vcr(filter_headers=["authorization"])
def test_convert_with_instructions():
llm = LLM(model="gpt-4o-mini")