Compare commits

...

2 Commits

Author SHA1 Message Date
Devin AI
598702ccdb refactor: improve code quality based on PR feedback
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 22:35:14 +00:00
Devin AI
2a5a1250fb feat: enable custom LLM support for Crew.test()
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 22:17:44 +00:00
5 changed files with 120 additions and 39 deletions

View File

@@ -256,13 +256,14 @@ class BaseAgent(ABC, BaseModel):
"tools_handler",
"cache_handler",
"llm",
"crew", # Exclude crew to avoid circular reference
}
# Copy llm and clear callbacks
existing_llm = shallow_copy(self.llm)
existing_llm = shallow_copy(self.llm) if self.llm else None
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools or [])
return copied_agent

View File

@@ -1076,24 +1076,53 @@ class Crew(BaseModel):
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
llm: Optional[Union[str, LLM]] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations concurrently.
Args:
n_iterations: Number of test iterations to run
openai_model_name: (Deprecated) OpenAI model name for backward compatibility
llm: LLM instance or model name to use for evaluation
inputs: Optional inputs for the crew
"""
if openai_model_name:
warnings.warn(
"openai_model_name parameter is deprecated and will be removed in v3.0. Use llm parameter instead.",
DeprecationWarning,
stacklevel=2,
)
if not (llm or openai_model_name):
raise ValueError("Either llm or openai_model_name must be provided")
test_crew = self.copy()
# Convert string to LLM instance if needed
if isinstance(llm, str):
llm = LLM(model=llm)
elif openai_model_name and not llm:
llm = LLM(model=openai_model_name)
assert isinstance(llm, LLM), "llm must be an LLM instance"
try:
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
getattr(llm, "model", None),
)
evaluator = CrewEvaluator(test_crew, llm)
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
evaluator.print_crew_evaluation_result()
except Exception as e:
raise ValueError(f"Error during crew test execution: {str(e)}") from e
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"

View File

@@ -1,4 +1,5 @@
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Union
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
@@ -6,10 +7,14 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
if TYPE_CHECKING:
from crewai.crew import Crew
class TaskEvaluationPydanticOutput(BaseModel):
quality: float = Field(
@@ -18,23 +23,27 @@ class TaskEvaluationPydanticOutput(BaseModel):
class CrewEvaluator:
"""
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
"""Handles evaluation of Crew execution and performance.
Args:
crew: The Crew instance to evaluate
llm: Language model to use for evaluation
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
tasks_scores: Dictionary to store task scores
run_execution_times: Dictionary to store execution times
iteration: Current iteration number
crew: The crew instance being evaluated
llm: Language model used for evaluation
"""
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
tasks_scores: defaultdict[int, list[float]] = defaultdict(list)
run_execution_times: defaultdict[int, list[float]] = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew: "Crew", llm: Union[str, LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +60,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -181,7 +190,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
self.openai_model_name,
getattr(self.llm, "model", None),
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -14,6 +14,7 @@ from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
@@ -25,6 +26,9 @@ from crewai.utilities import Logger
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
TEST_MODEL = "gpt-4o"
TEST_ITERATIONS = 1
ceo = Agent(
role="CEO",
goal="Make sure the writers in your company produce amazing content.",
@@ -662,6 +666,33 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
assert isinstance(researcher_with_delegation.tools[0], TestTool)
@pytest.mark.vcr(filter_headers=["authorization"])
class TestCrewCustomLLM:
def test_crew_test_with_custom_llm(self):
tasks = [
Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
]
crew = Crew(agents=[researcher], tasks=tasks)
# Test with LLM instance
custom_llm = LLM(model=TEST_MODEL)
crew.test(n_iterations=TEST_ITERATIONS, llm=custom_llm)
# Test with model name string
crew.test(n_iterations=TEST_ITERATIONS, llm=TEST_MODEL)
# Test backward compatibility
crew.test(n_iterations=TEST_ITERATIONS, openai_model_name=TEST_MODEL)
# Test error when no LLM provided
with pytest.raises(ValueError):
crew.test(n_iterations=TEST_ITERATIONS)
def test_crew_verbose_output(capsys):
tasks = [
Task(
@@ -1123,7 +1154,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headeruvs=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -2835,14 +2866,23 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)
# Get the actual calls made to crew_evaluator
actual_calls = crew_evaluator.mock_calls
# Check that the first call was made with correct crew and either string or LLM instance
first_call = actual_calls[0]
assert first_call[0] == '', "First call should be to constructor"
assert first_call[1][0] == crew, "First argument should be crew"
assert isinstance(first_call[1][1], (str, LLM)), "Second argument should be string or LLM"
if isinstance(first_call[1][1], LLM):
assert first_call[1][1].model == "gpt-4o-mini"
else:
assert first_call[1][1] == "gpt-4o-mini"
# Check remaining calls
assert actual_calls[1] == mock.call().set_iteration(1)
assert actual_calls[2] == mock.call().set_iteration(2)
assert actual_calls[3] == mock.call().print_crew_evaluation_result()
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -3125,4 +3165,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response

View File

@@ -4,6 +4,7 @@ import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.evaluators.crew_evaluator_handler import (
@@ -23,7 +24,7 @@ class TestCrewEvaluator:
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
return CrewEvaluator(crew, llm=LLM(model="gpt-4o-mini"))
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
@@ -45,6 +46,7 @@ class TestCrewEvaluator:
== "Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed"
)
assert agent.verbose is False
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4o-mini"
def test_evaluation_task(self, crew_planner):