feat: enable custom LLM support for Crew.test()

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 22:17:44 +00:00
parent 409892d65f
commit 2a5a1250fb
3 changed files with 57 additions and 9 deletions

View File

@@ -1076,18 +1076,36 @@ class Crew(BaseModel):
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
llm: Optional[Union[str, LLM]] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
Args:
n_iterations: Number of test iterations to run
openai_model_name: (Deprecated) OpenAI model name for backward compatibility
llm: LLM instance or model name to use for evaluation
inputs: Optional inputs for the crew
"""
test_crew = self.copy()
# Convert string to LLM instance if needed
if isinstance(llm, str):
llm = LLM(model=llm)
# Maintain backward compatibility
if openai_model_name and not llm:
llm = LLM(model=openai_model_name)
elif not llm:
raise ValueError("Either llm or openai_model_name must be provided")
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
getattr(llm, "model", None),
)
evaluator = CrewEvaluator(test_crew, llm)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -1,4 +1,5 @@
from collections import defaultdict
from typing import Union
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
@@ -6,6 +7,7 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -32,9 +34,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, llm: Union[str, LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +53,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(

View File

@@ -14,6 +14,7 @@ from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
@@ -662,6 +663,33 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
assert isinstance(researcher_with_delegation.tools[0], TestTool)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_test_with_custom_llm():
tasks = [
Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
]
crew = Crew(agents=[researcher], tasks=tasks)
# Test with LLM instance
custom_llm = LLM(model="gpt-4o")
crew.test(n_iterations=1, llm=custom_llm)
# Test with model name string
crew.test(n_iterations=1, llm="gpt-4o")
# Test backward compatibility
crew.test(n_iterations=1, openai_model_name="gpt-4o")
# Test error when no LLM provided
with pytest.raises(ValueError):
crew.test(n_iterations=1)
def test_crew_verbose_output(capsys):
tasks = [
Task(
@@ -1123,7 +1151,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headeruvs=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -3125,4 +3153,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response