mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 09:08:31 +00:00
feat: enable custom LLM support for Crew.test()
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -1076,18 +1076,36 @@ class Crew(BaseModel):
|
||||
self,
|
||||
n_iterations: int,
|
||||
openai_model_name: Optional[str] = None,
|
||||
llm: Optional[Union[str, LLM]] = None,
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
|
||||
|
||||
Args:
|
||||
n_iterations: Number of test iterations to run
|
||||
openai_model_name: (Deprecated) OpenAI model name for backward compatibility
|
||||
llm: LLM instance or model name to use for evaluation
|
||||
inputs: Optional inputs for the crew
|
||||
"""
|
||||
test_crew = self.copy()
|
||||
|
||||
# Convert string to LLM instance if needed
|
||||
if isinstance(llm, str):
|
||||
llm = LLM(model=llm)
|
||||
|
||||
# Maintain backward compatibility
|
||||
if openai_model_name and not llm:
|
||||
llm = LLM(model=openai_model_name)
|
||||
elif not llm:
|
||||
raise ValueError("Either llm or openai_model_name must be provided")
|
||||
|
||||
self._test_execution_span = test_crew._telemetry.test_execution_span(
|
||||
test_crew,
|
||||
n_iterations,
|
||||
inputs,
|
||||
openai_model_name, # type: ignore[arg-type]
|
||||
) # type: ignore[arg-type]
|
||||
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
|
||||
getattr(llm, "model", None),
|
||||
)
|
||||
evaluator = CrewEvaluator(test_crew, llm)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from collections import defaultdict
|
||||
from typing import Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
@@ -6,6 +7,7 @@ from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.llm import LLM
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -32,9 +34,9 @@ class CrewEvaluator:
|
||||
run_execution_times: defaultdict = defaultdict(list)
|
||||
iteration: int = 0
|
||||
|
||||
def __init__(self, crew, openai_model_name: str):
|
||||
def __init__(self, crew, llm: Union[str, LLM]):
|
||||
self.crew = crew
|
||||
self.openai_model_name = openai_model_name
|
||||
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
|
||||
self._telemetry = Telemetry()
|
||||
self._setup_for_evaluating()
|
||||
|
||||
@@ -51,7 +53,7 @@ class CrewEvaluator:
|
||||
),
|
||||
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
|
||||
verbose=False,
|
||||
llm=self.openai_model_name,
|
||||
llm=self.llm,
|
||||
)
|
||||
|
||||
def _evaluation_task(
|
||||
|
||||
@@ -14,6 +14,7 @@ from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
@@ -662,6 +663,33 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
|
||||
assert isinstance(researcher_with_delegation.tools[0], TestTool)
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_test_with_custom_llm():
|
||||
tasks = [
|
||||
Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=researcher,
|
||||
)
|
||||
]
|
||||
crew = Crew(agents=[researcher], tasks=tasks)
|
||||
|
||||
# Test with LLM instance
|
||||
custom_llm = LLM(model="gpt-4o")
|
||||
crew.test(n_iterations=1, llm=custom_llm)
|
||||
|
||||
# Test with model name string
|
||||
crew.test(n_iterations=1, llm="gpt-4o")
|
||||
|
||||
# Test backward compatibility
|
||||
crew.test(n_iterations=1, openai_model_name="gpt-4o")
|
||||
|
||||
# Test error when no LLM provided
|
||||
with pytest.raises(ValueError):
|
||||
crew.test(n_iterations=1)
|
||||
|
||||
|
||||
|
||||
def test_crew_verbose_output(capsys):
|
||||
tasks = [
|
||||
Task(
|
||||
@@ -1123,7 +1151,7 @@ def test_kickoff_for_each_empty_input():
|
||||
assert results == []
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.vcr(filter_headeruvs=["authorization"])
|
||||
def test_kickoff_for_each_invalid_input():
|
||||
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
|
||||
|
||||
@@ -3125,4 +3153,4 @@ def test_multimodal_agent_live_image_analysis():
|
||||
# Verify we got a meaningful response
|
||||
assert isinstance(result.raw, str)
|
||||
assert len(result.raw) > 100 # Expecting a detailed analysis
|
||||
assert "error" not in result.raw.lower() # No error messages in response
|
||||
assert "error" not in result.raw.lower() # No error messages in response
|
||||
|
||||
Reference in New Issue
Block a user