mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
39 Commits
bugfix/add
...
0.100.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c310044bec | ||
|
|
5263df24b6 | ||
|
|
dea6ed7ef0 | ||
|
|
d3a0dad323 | ||
|
|
67bf4aea56 | ||
|
|
8c76bad50f | ||
|
|
e27a15023c | ||
|
|
a836f466f4 | ||
|
|
67f0de1f90 | ||
|
|
c642ebf97e | ||
|
|
a21e310d78 | ||
|
|
aba68da542 | ||
|
|
e254f11933 | ||
|
|
ab2274caf0 | ||
|
|
3e4f112f39 | ||
|
|
cc018bf128 | ||
|
|
46d3e4d4d9 | ||
|
|
627bb3f5f6 | ||
|
|
4a44245de9 | ||
|
|
30d027158a | ||
|
|
3fecde49b6 | ||
|
|
cc129a0bce | ||
|
|
b5779dca12 | ||
|
|
42311d9c7a | ||
|
|
294f2cc3a9 | ||
|
|
3dc442801f | ||
|
|
c12343a8b8 | ||
|
|
835557e648 | ||
|
|
4185ea688f | ||
|
|
0532089246 | ||
|
|
24b155015c | ||
|
|
8ceeec7d36 | ||
|
|
75e68f6fc8 | ||
|
|
3de81cedd6 | ||
|
|
5dc8dd0e8a | ||
|
|
b8d07fee83 | ||
|
|
be8e33daf6 | ||
|
|
efc8323c63 | ||
|
|
831951efc4 |
@@ -12,7 +12,7 @@ The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you
|
||||
|
||||
To use the CrewAI CLI, make sure you have CrewAI installed:
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
@@ -20,7 +20,7 @@ pip install crewai
|
||||
|
||||
The basic structure of a CrewAI CLI command is:
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
```
|
||||
|
||||
@@ -30,7 +30,7 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
|
||||
Create a new crew or flow.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
@@ -38,7 +38,7 @@ crewai create [OPTIONS] TYPE NAME
|
||||
- `NAME`: Name of the crew or flow
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai create crew my_new_crew
|
||||
crewai create flow my_new_flow
|
||||
```
|
||||
@@ -47,14 +47,14 @@ crewai create flow my_new_flow
|
||||
|
||||
Show the installed version of CrewAI.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai version [OPTIONS]
|
||||
```
|
||||
|
||||
- `--tools`: (Optional) Show the installed version of CrewAI tools
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai version
|
||||
crewai version --tools
|
||||
```
|
||||
@@ -63,7 +63,7 @@ crewai version --tools
|
||||
|
||||
Train the crew for a specified number of iterations.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai train [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -71,7 +71,7 @@ crewai train [OPTIONS]
|
||||
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai train -n 10 -f my_training_data.pkl
|
||||
```
|
||||
|
||||
@@ -79,14 +79,14 @@ crewai train -n 10 -f my_training_data.pkl
|
||||
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai replay [OPTIONS]
|
||||
```
|
||||
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
@@ -94,7 +94,7 @@ crewai replay -t task_123456
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
@@ -102,7 +102,7 @@ crewai log-tasks-outputs
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai reset-memories [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -113,7 +113,7 @@ crewai reset-memories [OPTIONS]
|
||||
- `-a, --all`: Reset ALL memories
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai reset-memories --long --short
|
||||
crewai reset-memories --all
|
||||
```
|
||||
@@ -122,7 +122,7 @@ crewai reset-memories --all
|
||||
|
||||
Test the crew and evaluate the results.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai test [OPTIONS]
|
||||
```
|
||||
|
||||
@@ -130,7 +130,7 @@ crewai test [OPTIONS]
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
@@ -138,7 +138,7 @@ crewai test -n 5 -m gpt-3.5-turbo
|
||||
|
||||
Run the crew.
|
||||
|
||||
```shell
|
||||
```shell Terminal
|
||||
crewai run
|
||||
```
|
||||
<Note>
|
||||
@@ -147,7 +147,36 @@ Some commands may require additional configuration or setup within your project
|
||||
</Note>
|
||||
|
||||
|
||||
### 9. API Keys
|
||||
### 9. Chat
|
||||
|
||||
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
|
||||
|
||||
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
|
||||
|
||||
```shell Terminal
|
||||
crewai chat
|
||||
```
|
||||
<Note>
|
||||
Ensure you execute these commands from your CrewAI project's root directory.
|
||||
</Note>
|
||||
<Note>
|
||||
IMPORTANT: Set the `chat_llm` property in your `crew.py` file to enable this command.
|
||||
|
||||
```python
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
chat_llm="gpt-4o", # LLM for chat orchestration
|
||||
)
|
||||
```
|
||||
</Note>
|
||||
|
||||
|
||||
### 10. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
|
||||
|
||||
|
||||
@@ -35,6 +35,8 @@ class ExampleFlow(Flow):
|
||||
@start()
|
||||
def generate_city(self):
|
||||
print("Starting flow")
|
||||
# Each flow state automatically gets a unique ID
|
||||
print(f"Flow State ID: {self.state['id']}")
|
||||
|
||||
response = completion(
|
||||
model=self.model,
|
||||
@@ -47,6 +49,8 @@ class ExampleFlow(Flow):
|
||||
)
|
||||
|
||||
random_city = response["choices"][0]["message"]["content"]
|
||||
# Store the city in our state
|
||||
self.state["city"] = random_city
|
||||
print(f"Random City: {random_city}")
|
||||
|
||||
return random_city
|
||||
@@ -64,6 +68,8 @@ class ExampleFlow(Flow):
|
||||
)
|
||||
|
||||
fun_fact = response["choices"][0]["message"]["content"]
|
||||
# Store the fun fact in our state
|
||||
self.state["fun_fact"] = fun_fact
|
||||
return fun_fact
|
||||
|
||||
|
||||
@@ -76,7 +82,15 @@ print(f"Generated fun fact: {result}")
|
||||
|
||||
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
|
||||
|
||||
When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console.
|
||||
Each Flow instance automatically receives a unique identifier (UUID) in its state, which helps track and manage flow executions. The state can also store additional data (like the generated city and fun fact) that persists throughout the flow's execution.
|
||||
|
||||
When you run the Flow, it will:
|
||||
1. Generate a unique ID for the flow state
|
||||
2. Generate a random city and store it in the state
|
||||
3. Generate a fun fact about that city and store it in the state
|
||||
4. Print the results to the console
|
||||
|
||||
The state's unique ID and stored data can be useful for tracking flow executions and maintaining context between tasks.
|
||||
|
||||
**Note:** Ensure you have set up your `.env` file to store your `OPENAI_API_KEY`. This key is necessary for authenticating requests to the OpenAI API.
|
||||
|
||||
@@ -207,14 +221,17 @@ allowing developers to choose the approach that best fits their application's ne
|
||||
|
||||
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
|
||||
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
|
||||
Even with unstructured states, CrewAI Flows automatically generates and maintains a unique identifier (UUID) for each state instance.
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UntructuredExampleFlow(Flow):
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
# The state automatically includes an 'id' field
|
||||
print(f"State ID: {self.state['id']}")
|
||||
self.state.message = "Hello from structured flow"
|
||||
self.state.counter = 0
|
||||
|
||||
@@ -231,10 +248,12 @@ class UntructuredExampleFlow(Flow):
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = UntructuredExampleFlow()
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
**Note:** The `id` field is automatically generated and preserved throughout the flow's execution. You don't need to manage or set it manually, and it will be maintained even when updating the state with new data.
|
||||
|
||||
**Key Points:**
|
||||
|
||||
- **Flexibility:** You can dynamically add attributes to `self.state` without predefined constraints.
|
||||
@@ -245,12 +264,15 @@ flow.kickoff()
|
||||
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
|
||||
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
|
||||
|
||||
Each state in CrewAI Flows automatically receives a unique identifier (UUID) to help track and manage state instances. This ID is automatically generated and managed by the Flow system.
|
||||
|
||||
```python Code
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
# Note: 'id' field is automatically added to all states
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
@@ -259,6 +281,8 @@ class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
# Access the auto-generated ID if needed
|
||||
print(f"State ID: {self.state.id}")
|
||||
self.state.message = "Hello from structured flow"
|
||||
|
||||
@listen(first_method)
|
||||
@@ -299,6 +323,91 @@ flow.kickoff()
|
||||
|
||||
By providing both unstructured and structured state management options, CrewAI Flows empowers developers to build AI workflows that are both flexible and robust, catering to a wide range of application requirements.
|
||||
|
||||
## Flow Persistence
|
||||
|
||||
The @persist decorator enables automatic state persistence in CrewAI Flows, allowing you to maintain flow state across restarts or different workflow executions. This decorator can be applied at either the class level or method level, providing flexibility in how you manage state persistence.
|
||||
|
||||
### Class-Level Persistence
|
||||
|
||||
When applied at the class level, the @persist decorator automatically persists all flow method states:
|
||||
|
||||
```python
|
||||
@persist # Using SQLiteFlowPersistence by default
|
||||
class MyFlow(Flow[MyState]):
|
||||
@start()
|
||||
def initialize_flow(self):
|
||||
# This method will automatically have its state persisted
|
||||
self.state.counter = 1
|
||||
print("Initialized flow. State ID:", self.state.id)
|
||||
|
||||
@listen(initialize_flow)
|
||||
def next_step(self):
|
||||
# The state (including self.state.id) is automatically reloaded
|
||||
self.state.counter += 1
|
||||
print("Flow state is persisted. Counter:", self.state.counter)
|
||||
```
|
||||
|
||||
### Method-Level Persistence
|
||||
|
||||
For more granular control, you can apply @persist to specific methods:
|
||||
|
||||
```python
|
||||
class AnotherFlow(Flow[dict]):
|
||||
@persist # Persists only this method's state
|
||||
@start()
|
||||
def begin(self):
|
||||
if "runs" not in self.state:
|
||||
self.state["runs"] = 0
|
||||
self.state["runs"] += 1
|
||||
print("Method-level persisted runs:", self.state["runs"])
|
||||
```
|
||||
|
||||
### How It Works
|
||||
|
||||
1. **Unique State Identification**
|
||||
- Each flow state automatically receives a unique UUID
|
||||
- The ID is preserved across state updates and method calls
|
||||
- Supports both structured (Pydantic BaseModel) and unstructured (dictionary) states
|
||||
|
||||
2. **Default SQLite Backend**
|
||||
- SQLiteFlowPersistence is the default storage backend
|
||||
- States are automatically saved to a local SQLite database
|
||||
- Robust error handling ensures clear messages if database operations fail
|
||||
|
||||
3. **Error Handling**
|
||||
- Comprehensive error messages for database operations
|
||||
- Automatic state validation during save and load
|
||||
- Clear feedback when persistence operations encounter issues
|
||||
|
||||
### Important Considerations
|
||||
|
||||
- **State Types**: Both structured (Pydantic BaseModel) and unstructured (dictionary) states are supported
|
||||
- **Automatic ID**: The `id` field is automatically added if not present
|
||||
- **State Recovery**: Failed or restarted flows can automatically reload their previous state
|
||||
- **Custom Implementation**: You can provide your own FlowPersistence implementation for specialized storage needs
|
||||
|
||||
### Technical Advantages
|
||||
|
||||
1. **Precise Control Through Low-Level Access**
|
||||
- Direct access to persistence operations for advanced use cases
|
||||
- Fine-grained control via method-level persistence decorators
|
||||
- Built-in state inspection and debugging capabilities
|
||||
- Full visibility into state changes and persistence operations
|
||||
|
||||
2. **Enhanced Reliability**
|
||||
- Automatic state recovery after system failures or restarts
|
||||
- Transaction-based state updates for data integrity
|
||||
- Comprehensive error handling with clear error messages
|
||||
- Robust validation during state save and load operations
|
||||
|
||||
3. **Extensible Architecture**
|
||||
- Customizable persistence backend through FlowPersistence interface
|
||||
- Support for specialized storage solutions beyond SQLite
|
||||
- Compatible with both structured (Pydantic) and unstructured (dict) states
|
||||
- Seamless integration with existing CrewAI flow patterns
|
||||
|
||||
The persistence system's architecture emphasizes technical precision and customization options, allowing developers to maintain full control over state management while benefiting from built-in reliability features.
|
||||
|
||||
## Flow Control
|
||||
|
||||
### Conditional Logic: `or`
|
||||
@@ -628,4 +737,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
referrerpolicy="strict-origin-when-cross-origin"
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
></iframe>
|
||||
|
||||
@@ -93,6 +93,12 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
|
||||
|
||||
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
|
||||
|
||||
<Note>
|
||||
You need to install `docling` for the following example to work: `uv add docling`
|
||||
</Note>
|
||||
|
||||
|
||||
|
||||
```python Code
|
||||
from crewai import LLM, Agent, Crew, Process, Task
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
@@ -282,6 +288,7 @@ The `embedder` parameter supports various embedding model providers that include
|
||||
- `ollama`: Local embeddings with Ollama
|
||||
- `vertexai`: Google Cloud VertexAI embeddings
|
||||
- `cohere`: Cohere's embedding models
|
||||
- `voyageai`: VoyageAI's embedding models
|
||||
- `bedrock`: AWS Bedrock embeddings
|
||||
- `huggingface`: Hugging Face models
|
||||
- `watson`: IBM Watson embeddings
|
||||
|
||||
@@ -243,6 +243,9 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
# llm: bedrock/amazon.titan-text-express-v1
|
||||
# llm: bedrock/meta.llama2-70b-chat-v1
|
||||
|
||||
# Amazon SageMaker Models - Enterprise-grade
|
||||
# llm: sagemaker/<my-endpoint>
|
||||
|
||||
# Mistral Models - Open source alternative
|
||||
# llm: mistral/mistral-large-latest
|
||||
# llm: mistral/mistral-medium-latest
|
||||
@@ -506,6 +509,21 @@ Learn how to get the most out of your LLM configuration:
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Amazon SageMaker">
|
||||
```python Code
|
||||
AWS_ACCESS_KEY_ID=<your-access-key>
|
||||
AWS_SECRET_ACCESS_KEY=<your-secret-key>
|
||||
AWS_DEFAULT_REGION=<your-region>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="sagemaker/<my-endpoint>"
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Mistral">
|
||||
```python Code
|
||||
|
||||
@@ -293,6 +293,26 @@ my_crew = Crew(
|
||||
}
|
||||
)
|
||||
```
|
||||
### Using VoyageAI embeddings
|
||||
|
||||
```python Code
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
my_crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder={
|
||||
"provider": "voyageai",
|
||||
"config": {
|
||||
"api_key": "YOUR_API_KEY",
|
||||
"model_name": "<model_name>"
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
### Using HuggingFace embeddings
|
||||
|
||||
```python Code
|
||||
|
||||
@@ -31,7 +31,7 @@ From this point on, your crew will have planning enabled, and the tasks will be
|
||||
|
||||
#### Planning LLM
|
||||
|
||||
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
|
||||
Now you can define the LLM that will be used to plan the tasks.
|
||||
|
||||
When running the base case example, you will see something like the output below, which represents the output of the `AgentPlanner`
|
||||
responsible for creating the step-by-step logic to add to the Agents' tasks.
|
||||
@@ -39,7 +39,6 @@ responsible for creating the step-by-step logic to add to the Agents' tasks.
|
||||
<CodeGroup>
|
||||
```python Code
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# Assemble your crew with planning capabilities and custom LLM
|
||||
my_crew = Crew(
|
||||
@@ -47,7 +46,7 @@ my_crew = Crew(
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
planning=True,
|
||||
planning_llm=ChatOpenAI(model="gpt-4o")
|
||||
planning_llm="gpt-4o"
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
|
||||
@@ -23,9 +23,7 @@ Processes enable individual agents to operate as a cohesive unit, streamlining t
|
||||
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
|
||||
|
||||
```python
|
||||
from crewai import Crew
|
||||
from crewai.process import Process
|
||||
from langchain_openai import ChatOpenAI
|
||||
from crewai import Crew, Process
|
||||
|
||||
# Example: Creating a crew with a sequential process
|
||||
crew = Crew(
|
||||
@@ -40,7 +38,7 @@ crew = Crew(
|
||||
agents=my_agents,
|
||||
tasks=my_tasks,
|
||||
process=Process.hierarchical,
|
||||
manager_llm=ChatOpenAI(model="gpt-4")
|
||||
manager_llm="gpt-4o"
|
||||
# or
|
||||
# manager_agent=my_manager_agent
|
||||
)
|
||||
|
||||
@@ -150,15 +150,20 @@ There are two main ways for one to create a CrewAI tool:
|
||||
|
||||
```python Code
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class MyToolInput(BaseModel):
|
||||
"""Input schema for MyCustomTool."""
|
||||
argument: str = Field(..., description="Description of the argument.")
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
description: str = "What this tool does. It's vital for effective utilization."
|
||||
args_schema: Type[BaseModel] = MyToolInput
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "Result from custom tool"
|
||||
# Your tool's logic here
|
||||
return "Tool's result"
|
||||
```
|
||||
|
||||
### Utilizing the `tool` Decorator
|
||||
|
||||
@@ -73,9 +73,9 @@ result = crew.kickoff()
|
||||
If you're using the hierarchical process and don't want to set a custom manager agent, you can specify the language model for the manager:
|
||||
|
||||
```python Code
|
||||
from langchain_openai import ChatOpenAI
|
||||
from crewai import LLM
|
||||
|
||||
manager_llm = ChatOpenAI(model_name="gpt-4")
|
||||
manager_llm = LLM(model="gpt-4o")
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
|
||||
@@ -23,6 +23,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
|
||||
- Azure OpenAI
|
||||
- AWS (Bedrock, SageMaker)
|
||||
- Cohere
|
||||
- VoyageAI
|
||||
- Hugging Face
|
||||
- Ollama
|
||||
- Mistral AI
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
---
|
||||
title: Using Multimodal Agents
|
||||
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
|
||||
icon: image
|
||||
icon: video
|
||||
---
|
||||
|
||||
# Using Multimodal Agents
|
||||
## Using Multimodal Agents
|
||||
|
||||
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
|
||||
|
||||
## Enabling Multimodal Capabilities
|
||||
### Enabling Multimodal Capabilities
|
||||
|
||||
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
|
||||
|
||||
@@ -25,7 +25,7 @@ agent = Agent(
|
||||
|
||||
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
|
||||
|
||||
## Working with Images
|
||||
### Working with Images
|
||||
|
||||
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
|
||||
|
||||
@@ -108,7 +108,7 @@ The multimodal agent will automatically handle the image processing through its
|
||||
- Process image content with optional context or specific questions
|
||||
- Provide analysis and insights based on the visual information and task requirements
|
||||
|
||||
## Best Practices
|
||||
### Best Practices
|
||||
|
||||
When working with multimodal agents, keep these best practices in mind:
|
||||
|
||||
|
||||
@@ -15,10 +15,48 @@ icon: wrench
|
||||
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
|
||||
</Note>
|
||||
|
||||
# Setting Up Your Environment
|
||||
|
||||
Before installing CrewAI, it's recommended to set up a virtual environment. This helps isolate your project dependencies and avoid conflicts.
|
||||
|
||||
<Steps>
|
||||
<Step title="Create a Virtual Environment">
|
||||
Choose your preferred method to create a virtual environment:
|
||||
|
||||
**Using venv (Python's built-in tool):**
|
||||
```shell Terminal
|
||||
python3 -m venv .venv
|
||||
```
|
||||
|
||||
**Using conda:**
|
||||
```shell Terminal
|
||||
conda create -n crewai-env python=3.12
|
||||
```
|
||||
</Step>
|
||||
|
||||
<Step title="Activate the Virtual Environment">
|
||||
Activate your virtual environment based on your platform:
|
||||
|
||||
**On macOS/Linux (venv):**
|
||||
```shell Terminal
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
**On Windows (venv):**
|
||||
```shell Terminal
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
**Using conda (all platforms):**
|
||||
```shell Terminal
|
||||
conda activate crewai-env
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
# Installing CrewAI
|
||||
|
||||
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
|
||||
Let's get you set up! 🚀
|
||||
Now let's get you set up! 🚀
|
||||
|
||||
<Steps>
|
||||
<Step title="Install CrewAI">
|
||||
@@ -72,9 +110,9 @@ Let's get you set up! 🚀
|
||||
|
||||
# Creating a New Project
|
||||
|
||||
<Info>
|
||||
<Tip>
|
||||
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
|
||||
</Info>
|
||||
</Tip>
|
||||
|
||||
<Steps>
|
||||
<Step title="Generate Project Structure">
|
||||
@@ -104,7 +142,18 @@ Let's get you set up! 🚀
|
||||
└── tasks.yaml
|
||||
```
|
||||
</Frame>
|
||||
</Step>
|
||||
</Step>
|
||||
|
||||
<Step title="Install Additional Tools">
|
||||
You can install additional tools using UV:
|
||||
```shell Terminal
|
||||
uv add <tool-name>
|
||||
```
|
||||
|
||||
<Tip>
|
||||
UV is our preferred package manager as it's significantly faster than pip and provides better dependency resolution.
|
||||
</Tip>
|
||||
</Step>
|
||||
|
||||
<Step title="Customize Your Project">
|
||||
Your project will contain these essential files:
|
||||
|
||||
@@ -91,6 +91,7 @@
|
||||
"how-to/custom-manager-agent",
|
||||
"how-to/llm-connections",
|
||||
"how-to/customizing-agents",
|
||||
"how-to/multimodal-agents",
|
||||
"how-to/coding-agents",
|
||||
"how-to/force-tool-output-as-result",
|
||||
"how-to/human-input-on-execution",
|
||||
|
||||
@@ -278,7 +278,7 @@ email_summarizer:
|
||||
Summarize emails into a concise and clear summary
|
||||
backstory: >
|
||||
You will create a 5 bullet point summary of the report
|
||||
llm: mixtal_llm
|
||||
llm: openai/gpt-4o
|
||||
```
|
||||
|
||||
<Tip>
|
||||
@@ -301,38 +301,166 @@ Use the annotations to properly reference the agent and task in the `crew.py` fi
|
||||
|
||||
### Annotations include:
|
||||
|
||||
* `@agent`
|
||||
* `@task`
|
||||
* `@crew`
|
||||
* `@tool`
|
||||
* `@before_kickoff`
|
||||
* `@after_kickoff`
|
||||
* `@callback`
|
||||
* `@output_json`
|
||||
* `@output_pydantic`
|
||||
* `@cache_handler`
|
||||
Here are examples of how to use each annotation in your CrewAI project, and when you should use them:
|
||||
|
||||
```python crew.py
|
||||
# ...
|
||||
#### @agent
|
||||
Used to define an agent in your crew. Use this when:
|
||||
- You need to create a specialized AI agent with a specific role
|
||||
- You want the agent to be automatically collected and managed by the crew
|
||||
- You need to reuse the same agent configuration across multiple tasks
|
||||
|
||||
```python
|
||||
@agent
|
||||
def email_summarizer(self) -> Agent:
|
||||
def research_agent(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["email_summarizer"],
|
||||
role="Research Analyst",
|
||||
goal="Conduct thorough research on given topics",
|
||||
backstory="Expert researcher with years of experience in data analysis",
|
||||
tools=[SerperDevTool()],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def email_summarizer_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["email_summarizer_task"],
|
||||
)
|
||||
# ...
|
||||
```
|
||||
|
||||
<Tip>
|
||||
In addition to the [sequential process](../how-to/sequential-process), you can use the [hierarchical process](../how-to/hierarchical-process),
|
||||
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
|
||||
You can learn more about the core concepts [here](/concepts).
|
||||
</Tip>
|
||||
#### @task
|
||||
Used to define a task that can be executed by agents. Use this when:
|
||||
- You need to define a specific piece of work for an agent
|
||||
- You want tasks to be automatically sequenced and managed
|
||||
- You need to establish dependencies between different tasks
|
||||
|
||||
```python
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
description="Research the latest developments in AI technology",
|
||||
expected_output="A comprehensive report on AI advancements",
|
||||
agent=self.research_agent(),
|
||||
output_file="output/research.md"
|
||||
)
|
||||
```
|
||||
|
||||
#### @crew
|
||||
Used to define your crew configuration. Use this when:
|
||||
- You want to automatically collect all @agent and @task definitions
|
||||
- You need to specify how tasks should be processed (sequential or hierarchical)
|
||||
- You want to set up crew-wide configurations
|
||||
|
||||
```python
|
||||
@crew
|
||||
def research_crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically collected from @agent methods
|
||||
tasks=self.tasks, # Automatically collected from @task methods
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
#### @tool
|
||||
Used to create custom tools for your agents. Use this when:
|
||||
- You need to give agents specific capabilities (like web search, data analysis)
|
||||
- You want to encapsulate external API calls or complex operations
|
||||
- You need to share functionality across multiple agents
|
||||
|
||||
```python
|
||||
@tool
|
||||
def web_search_tool(query: str, max_results: int = 5) -> list[str]:
|
||||
"""
|
||||
Search the web for information.
|
||||
|
||||
Args:
|
||||
query: The search query
|
||||
max_results: Maximum number of results to return
|
||||
|
||||
Returns:
|
||||
List of search results
|
||||
"""
|
||||
# Implement your search logic here
|
||||
return [f"Result {i} for: {query}" for i in range(max_results)]
|
||||
```
|
||||
|
||||
#### @before_kickoff
|
||||
Used to execute logic before the crew starts. Use this when:
|
||||
- You need to validate or preprocess input data
|
||||
- You want to set up resources or configurations before execution
|
||||
- You need to perform any initialization logic
|
||||
|
||||
```python
|
||||
@before_kickoff
|
||||
def validate_inputs(self, inputs: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
||||
"""Validate and preprocess inputs before the crew starts."""
|
||||
if inputs is None:
|
||||
return None
|
||||
|
||||
if 'topic' not in inputs:
|
||||
raise ValueError("Topic is required")
|
||||
|
||||
# Add additional context
|
||||
inputs['timestamp'] = datetime.now().isoformat()
|
||||
inputs['topic'] = inputs['topic'].strip().lower()
|
||||
return inputs
|
||||
```
|
||||
|
||||
#### @after_kickoff
|
||||
Used to process results after the crew completes. Use this when:
|
||||
- You need to format or transform the final output
|
||||
- You want to perform cleanup operations
|
||||
- You need to save or log the results in a specific way
|
||||
|
||||
```python
|
||||
@after_kickoff
|
||||
def process_results(self, result: CrewOutput) -> CrewOutput:
|
||||
"""Process and format the results after the crew completes."""
|
||||
result.raw = result.raw.strip()
|
||||
result.raw = f"""
|
||||
# Research Results
|
||||
Generated on: {datetime.now().isoformat()}
|
||||
|
||||
{result.raw}
|
||||
"""
|
||||
return result
|
||||
```
|
||||
|
||||
#### @callback
|
||||
Used to handle events during crew execution. Use this when:
|
||||
- You need to monitor task progress
|
||||
- You want to log intermediate results
|
||||
- You need to implement custom progress tracking or metrics
|
||||
|
||||
```python
|
||||
@callback
|
||||
def log_task_completion(self, task: Task, output: str):
|
||||
"""Log task completion details for monitoring."""
|
||||
print(f"Task '{task.description}' completed")
|
||||
print(f"Output length: {len(output)} characters")
|
||||
print(f"Agent used: {task.agent.role}")
|
||||
print("-" * 50)
|
||||
```
|
||||
|
||||
#### @cache_handler
|
||||
Used to implement custom caching for task results. Use this when:
|
||||
- You want to avoid redundant expensive operations
|
||||
- You need to implement custom cache storage or expiration logic
|
||||
- You want to persist results between runs
|
||||
|
||||
```python
|
||||
@cache_handler
|
||||
def custom_cache(self, key: str) -> Optional[str]:
|
||||
"""Custom cache implementation for storing task results."""
|
||||
cache_file = f"cache/{key}.json"
|
||||
|
||||
if os.path.exists(cache_file):
|
||||
with open(cache_file, 'r') as f:
|
||||
data = json.load(f)
|
||||
# Check if cache is still valid (e.g., not expired)
|
||||
if datetime.fromisoformat(data['timestamp']) > datetime.now() - timedelta(days=1):
|
||||
return data['result']
|
||||
return None
|
||||
```
|
||||
|
||||
<Note>
|
||||
These decorators are part of the CrewAI framework and help organize your crew's structure by automatically collecting agents, tasks, and handling various lifecycle events.
|
||||
They should be used within a class decorated with `@CrewBase`.
|
||||
</Note>
|
||||
|
||||
### Replay Tasks from Latest Crew Kickoff
|
||||
|
||||
|
||||
@@ -1,78 +1,118 @@
|
||||
---
|
||||
title: Composio Tool
|
||||
description: The `ComposioTool` is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
|
||||
description: Composio provides 250+ production-ready tools for AI agents with flexible authentication management.
|
||||
icon: gear-code
|
||||
---
|
||||
|
||||
# `ComposioTool`
|
||||
# `ComposioToolSet`
|
||||
|
||||
## Description
|
||||
Composio is an integration platform that allows you to connect your AI agents to 250+ tools. Key features include:
|
||||
|
||||
This tools is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
|
||||
- **Enterprise-Grade Authentication**: Built-in support for OAuth, API Keys, JWT with automatic token refresh
|
||||
- **Full Observability**: Detailed tool usage logs, execution timestamps, and more
|
||||
|
||||
## Installation
|
||||
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
To incorporate Composio tools into your project, follow the instructions below:
|
||||
|
||||
```shell
|
||||
pip install composio-core
|
||||
pip install 'crewai[tools]'
|
||||
pip install composio-crewai
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
after the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`.
|
||||
After the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`. Get your Composio API key from [here](https://app.composio.dev)
|
||||
|
||||
## Example
|
||||
|
||||
The following example demonstrates how to initialize the tool and execute a github action:
|
||||
|
||||
1. Initialize Composio tools
|
||||
1. Initialize Composio toolset
|
||||
|
||||
```python Code
|
||||
from composio import App
|
||||
from crewai_tools import ComposioTool
|
||||
from crewai import Agent, Task
|
||||
from composio_crewai import ComposioToolSet, App, Action
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
|
||||
tools = [ComposioTool.from_action(action=Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER)]
|
||||
toolset = ComposioToolSet()
|
||||
```
|
||||
|
||||
If you don't know what action you want to use, use `from_app` and `tags` filter to get relevant actions
|
||||
|
||||
2. Connect your GitHub account
|
||||
<CodeGroup>
|
||||
```shell CLI
|
||||
composio add github
|
||||
```
|
||||
```python Code
|
||||
tools = ComposioTool.from_app(App.GITHUB, tags=["important"])
|
||||
request = toolset.initiate_connection(app=App.GITHUB)
|
||||
print(f"Open this URL to authenticate: {request.redirectUrl}")
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
or use `use_case` to search relevant actions
|
||||
3. Get Tools
|
||||
|
||||
- Retrieving all the tools from an app (not recommended for production):
|
||||
```python Code
|
||||
tools = ComposioTool.from_app(App.GITHUB, use_case="Star a github repository")
|
||||
tools = toolset.get_tools(apps=[App.GITHUB])
|
||||
```
|
||||
|
||||
2. Define agent
|
||||
- Filtering tools based on tags:
|
||||
```python Code
|
||||
tag = "users"
|
||||
|
||||
filtered_action_enums = toolset.find_actions_by_tags(
|
||||
App.GITHUB,
|
||||
tags=[tag],
|
||||
)
|
||||
|
||||
tools = toolset.get_tools(actions=filtered_action_enums)
|
||||
```
|
||||
|
||||
- Filtering tools based on use case:
|
||||
```python Code
|
||||
use_case = "Star a repository on GitHub"
|
||||
|
||||
filtered_action_enums = toolset.find_actions_by_use_case(
|
||||
App.GITHUB, use_case=use_case, advanced=False
|
||||
)
|
||||
|
||||
tools = toolset.get_tools(actions=filtered_action_enums)
|
||||
```
|
||||
<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
|
||||
|
||||
- Using specific tools:
|
||||
|
||||
In this demo, we will use the `GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER` action from the GitHub app.
|
||||
```python Code
|
||||
tools = toolset.get_tools(
|
||||
actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
|
||||
)
|
||||
```
|
||||
Learn more about filtering actions [here](https://docs.composio.dev/patterns/tools/use-tools/use-specific-actions)
|
||||
|
||||
4. Define agent
|
||||
|
||||
```python Code
|
||||
crewai_agent = Agent(
|
||||
role="Github Agent",
|
||||
goal="You take action on Github using Github APIs",
|
||||
backstory=(
|
||||
"You are AI agent that is responsible for taking actions on Github "
|
||||
"on users behalf. You need to take action on Github using Github APIs"
|
||||
),
|
||||
role="GitHub Agent",
|
||||
goal="You take action on GitHub using GitHub APIs",
|
||||
backstory="You are AI agent that is responsible for taking actions on GitHub on behalf of users using GitHub APIs",
|
||||
verbose=True,
|
||||
tools=tools,
|
||||
llm= # pass an llm
|
||||
)
|
||||
```
|
||||
|
||||
3. Execute task
|
||||
5. Execute task
|
||||
|
||||
```python Code
|
||||
task = Task(
|
||||
description="Star a repo ComposioHQ/composio on GitHub",
|
||||
description="Star a repo composiohq/composio on GitHub",
|
||||
agent=crewai_agent,
|
||||
expected_output="if the star happened",
|
||||
expected_output="Status of the operation",
|
||||
)
|
||||
|
||||
task.execute()
|
||||
crew = Crew(agents=[crewai_agent], tasks=[task])
|
||||
|
||||
crew.kickoff()
|
||||
```
|
||||
|
||||
* More detailed list of tools can be found [here](https://app.composio.dev)
|
||||
* More detailed list of tools can be found [here](https://app.composio.dev)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.95.0"
|
||||
version = "0.100.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
@@ -11,27 +11,22 @@ dependencies = [
|
||||
# Core Dependencies
|
||||
"pydantic>=2.4.2",
|
||||
"openai>=1.13.3",
|
||||
"litellm>=1.44.22",
|
||||
"litellm==1.57.4",
|
||||
"instructor>=1.3.3",
|
||||
|
||||
# Text Processing
|
||||
"pdfplumber>=0.11.4",
|
||||
"regex>=2024.9.11",
|
||||
|
||||
# Telemetry and Monitoring
|
||||
"opentelemetry-api>=1.22.0",
|
||||
"opentelemetry-sdk>=1.22.0",
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
|
||||
# Data Handling
|
||||
"chromadb>=0.5.23",
|
||||
"openpyxl>=3.1.5",
|
||||
"pyvis>=0.3.2",
|
||||
|
||||
# Authentication and Security
|
||||
"auth0-python>=4.7.1",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
# Configuration and Utils
|
||||
"click>=8.1.7",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -40,7 +35,8 @@ dependencies = [
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"blinker>=1.9.0"
|
||||
"blinker>=1.9.0",
|
||||
"json5>=0.10.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -49,7 +45,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.25.5"]
|
||||
tools = ["crewai-tools>=0.32.1"]
|
||||
embeddings = [
|
||||
"tiktoken~=0.7.0"
|
||||
]
|
||||
|
||||
@@ -14,7 +14,7 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.95.0"
|
||||
__version__ = "0.100.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
@@ -8,7 +7,6 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
@@ -86,7 +84,7 @@ class Agent(BaseAgent):
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
system_template: Optional[str] = Field(
|
||||
@@ -142,7 +140,8 @@ class Agent(BaseAgent):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
self.llm = create_llm(self.llm)
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
@@ -260,6 +259,9 @@ class Agent(BaseAgent):
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
self._times_executed += 1
|
||||
if self._times_executed > self.max_retry_limit:
|
||||
raise e
|
||||
|
||||
@@ -25,7 +25,7 @@ class OutputConverter(BaseModel, ABC):
|
||||
llm: Any = Field(description="The language model to be used to convert the text.")
|
||||
model: Any = Field(description="The model to be used to convert the text.")
|
||||
instructions: str = Field(description="Conversion instructions to the LLM.")
|
||||
max_attempts: Optional[int] = Field(
|
||||
max_attempts: int = Field(
|
||||
description="Max number of attempts to try to get the output formatted.",
|
||||
default=3,
|
||||
)
|
||||
|
||||
@@ -2,25 +2,26 @@ from crewai.types.usage_metrics import UsageMetrics
|
||||
|
||||
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
cached_prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
def __init__(self) -> None:
|
||||
self.total_tokens: int = 0
|
||||
self.prompt_tokens: int = 0
|
||||
self.cached_prompt_tokens: int = 0
|
||||
self.completion_tokens: int = 0
|
||||
self.successful_requests: int = 0
|
||||
|
||||
def sum_prompt_tokens(self, tokens: int):
|
||||
self.prompt_tokens = self.prompt_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
def sum_prompt_tokens(self, tokens: int) -> None:
|
||||
self.prompt_tokens += tokens
|
||||
self.total_tokens += tokens
|
||||
|
||||
def sum_completion_tokens(self, tokens: int):
|
||||
self.completion_tokens = self.completion_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
def sum_completion_tokens(self, tokens: int) -> None:
|
||||
self.completion_tokens += tokens
|
||||
self.total_tokens += tokens
|
||||
|
||||
def sum_cached_prompt_tokens(self, tokens: int):
|
||||
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
|
||||
def sum_cached_prompt_tokens(self, tokens: int) -> None:
|
||||
self.cached_prompt_tokens += tokens
|
||||
|
||||
def sum_successful_requests(self, requests: int):
|
||||
self.successful_requests = self.successful_requests + requests
|
||||
def sum_successful_requests(self, requests: int) -> None:
|
||||
self.successful_requests += requests
|
||||
|
||||
def get_summary(self) -> UsageMetrics:
|
||||
return UsageMetrics(
|
||||
|
||||
@@ -13,6 +13,7 @@ from crewai.agents.parser import (
|
||||
OutputParserException,
|
||||
)
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
@@ -54,7 +55,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks: List[Any] = [],
|
||||
):
|
||||
self._i18n: I18N = I18N()
|
||||
self.llm = llm
|
||||
self.llm: LLM = llm
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
@@ -80,10 +81,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
|
||||
tool.name: tool for tool in self.tools
|
||||
}
|
||||
if self.llm.stop:
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
else:
|
||||
self.llm.stop = self.stop
|
||||
self.stop = stop_words
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
|
||||
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
if "system" in self.prompt:
|
||||
@@ -98,7 +97,16 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._show_start_logs()
|
||||
|
||||
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
|
||||
formatted_answer = self._invoke_loop()
|
||||
|
||||
try:
|
||||
formatted_answer = self._invoke_loop()
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
else:
|
||||
self._handle_unknown_error(e)
|
||||
raise e
|
||||
|
||||
if self.ask_for_human_input:
|
||||
formatted_answer = self._handle_human_feedback(formatted_answer)
|
||||
@@ -124,7 +132,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._enforce_rpm_limit()
|
||||
|
||||
answer = self._get_llm_response()
|
||||
|
||||
formatted_answer = self._process_llm_response(answer)
|
||||
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
@@ -142,15 +149,32 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
formatted_answer = self._handle_output_parser_exception(e)
|
||||
|
||||
except Exception as e:
|
||||
if e.__class__.__module__.startswith("litellm"):
|
||||
# Do not retry on litellm errors
|
||||
raise e
|
||||
if self._is_context_length_exceeded(e):
|
||||
self._handle_context_length()
|
||||
continue
|
||||
else:
|
||||
self._handle_unknown_error(e)
|
||||
raise e
|
||||
finally:
|
||||
self.iterations += 1
|
||||
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
def _handle_unknown_error(self, exception: Exception) -> None:
|
||||
"""Handle unknown errors by informing the user."""
|
||||
self._printer.print(
|
||||
content="An unknown error occurred. Please check the details below.",
|
||||
color="red",
|
||||
)
|
||||
self._printer.print(
|
||||
content=f"Error details: {exception}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def _has_reached_max_iterations(self) -> bool:
|
||||
"""Check if the maximum number of iterations has been reached."""
|
||||
return self.iterations >= self.max_iter
|
||||
@@ -162,10 +186,17 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
def _get_llm_response(self) -> str:
|
||||
"""Call the LLM and return the response, handling any invalid responses."""
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
try:
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Error during LLM call: {e}",
|
||||
color="red",
|
||||
)
|
||||
raise e
|
||||
|
||||
if not answer:
|
||||
self._printer.print(
|
||||
@@ -186,7 +217,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
|
||||
answer = answer.split("Observation:")[0].strip()
|
||||
|
||||
self.iterations += 1
|
||||
return self._format_answer(answer)
|
||||
|
||||
def _handle_agent_action(
|
||||
@@ -316,7 +346,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
agent=self.agent,
|
||||
action=agent_action,
|
||||
)
|
||||
tool_calling = tool_usage.parse(agent_action.text)
|
||||
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
|
||||
|
||||
if isinstance(tool_calling, ToolUsageErrorException):
|
||||
tool_result = tool_calling.message
|
||||
|
||||
@@ -350,7 +350,10 @@ def chat():
|
||||
Start a conversation with the Crew, collecting user-supplied inputs,
|
||||
and using the Chat LLM to generate responses.
|
||||
"""
|
||||
click.echo("Starting a conversation with the Crew")
|
||||
click.secho(
|
||||
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
|
||||
)
|
||||
|
||||
run_chat()
|
||||
|
||||
|
||||
|
||||
@@ -1,17 +1,52 @@
|
||||
import json
|
||||
import platform
|
||||
import re
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple
|
||||
|
||||
import click
|
||||
import tomli
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.crew import Crew
|
||||
from crewai.llm import LLM
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
MIN_REQUIRED_VERSION = "0.98.0"
|
||||
|
||||
|
||||
def check_conversational_crews_version(
|
||||
crewai_version: str, pyproject_data: dict
|
||||
) -> bool:
|
||||
"""
|
||||
Check if the installed crewAI version supports conversational crews.
|
||||
|
||||
Args:
|
||||
crewai_version: The current version of crewAI.
|
||||
pyproject_data: Dictionary containing pyproject.toml data.
|
||||
|
||||
Returns:
|
||||
bool: True if version check passes, False otherwise.
|
||||
"""
|
||||
try:
|
||||
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
|
||||
click.secho(
|
||||
"You are using an older version of crewAI that doesn't support conversational crews. "
|
||||
"Run 'uv upgrade crewai' to get the latest version.",
|
||||
fg="red",
|
||||
)
|
||||
return False
|
||||
except version.InvalidVersion:
|
||||
click.secho("Invalid crewAI version format detected.", fg="red")
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def run_chat():
|
||||
"""
|
||||
@@ -19,20 +54,47 @@ def run_chat():
|
||||
Incorporates crew_name, crew_description, and input fields to build a tool schema.
|
||||
Exits if crew_name or crew_description are missing.
|
||||
"""
|
||||
crewai_version = get_crewai_version()
|
||||
pyproject_data = read_toml()
|
||||
|
||||
if not check_conversational_crews_version(crewai_version, pyproject_data):
|
||||
return
|
||||
|
||||
crew, crew_name = load_crew_and_name()
|
||||
chat_llm = initialize_chat_llm(crew)
|
||||
if not chat_llm:
|
||||
return
|
||||
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
# Indicate that the crew is being analyzed
|
||||
click.secho(
|
||||
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
|
||||
"depending on the complexity of your crew.",
|
||||
fg="white",
|
||||
)
|
||||
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
|
||||
|
||||
# Start loading indicator
|
||||
loading_complete = threading.Event()
|
||||
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
|
||||
loading_thread.start()
|
||||
|
||||
try:
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
system_message = build_system_message(crew_chat_inputs)
|
||||
|
||||
# Call the LLM to generate the introductory message
|
||||
introductory_message = chat_llm.call(
|
||||
messages=[{"role": "system", "content": system_message}]
|
||||
)
|
||||
finally:
|
||||
# Stop loading indicator
|
||||
loading_complete.set()
|
||||
loading_thread.join()
|
||||
|
||||
# Indicate that the analysis is complete
|
||||
click.secho("\nFinished analyzing crew.\n", fg="white")
|
||||
|
||||
click.secho(f"Assistant: {introductory_message}\n", fg="green")
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
@@ -43,15 +105,17 @@ def run_chat():
|
||||
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
|
||||
}
|
||||
|
||||
click.secho(
|
||||
"\nEntering an interactive chat loop with function-calling.\n"
|
||||
"Type 'exit' or Ctrl+C to quit.\n",
|
||||
fg="cyan",
|
||||
)
|
||||
|
||||
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
|
||||
|
||||
|
||||
def show_loading(event: threading.Event):
|
||||
"""Display animated loading dots while processing."""
|
||||
while not event.is_set():
|
||||
print(".", end="", flush=True)
|
||||
time.sleep(1)
|
||||
print()
|
||||
|
||||
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
|
||||
"""Initializes the chat LLM and handles exceptions."""
|
||||
try:
|
||||
@@ -85,7 +149,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
|
||||
"Please keep your responses concise and friendly. "
|
||||
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
|
||||
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
|
||||
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
|
||||
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
|
||||
f"\nCrew Name: {crew_chat_inputs.crew_name}"
|
||||
@@ -102,25 +166,33 @@ def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
|
||||
return run_crew_tool_with_messages
|
||||
|
||||
|
||||
def flush_input():
|
||||
"""Flush any pending input from the user."""
|
||||
if platform.system() == "Windows":
|
||||
# Windows platform
|
||||
import msvcrt
|
||||
|
||||
while msvcrt.kbhit():
|
||||
msvcrt.getch()
|
||||
else:
|
||||
# Unix-like platforms (Linux, macOS)
|
||||
import termios
|
||||
|
||||
termios.tcflush(sys.stdin, termios.TCIFLUSH)
|
||||
|
||||
|
||||
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
"""Main chat loop for interacting with the user."""
|
||||
while True:
|
||||
try:
|
||||
user_input = click.prompt("You", type=str)
|
||||
if user_input.strip().lower() in ["exit", "quit"]:
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
break
|
||||
# Flush any pending input before accepting new input
|
||||
flush_input()
|
||||
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
user_input = get_user_input()
|
||||
handle_user_input(
|
||||
user_input, chat_llm, messages, crew_tool_schema, available_functions
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
click.echo("\nExiting chat. Goodbye!")
|
||||
break
|
||||
@@ -129,6 +201,55 @@ def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
|
||||
break
|
||||
|
||||
|
||||
def get_user_input() -> str:
|
||||
"""Collect multi-line user input with exit handling."""
|
||||
click.secho(
|
||||
"\nYou (type your message below. Press 'Enter' twice when you're done):",
|
||||
fg="blue",
|
||||
)
|
||||
user_input_lines = []
|
||||
while True:
|
||||
line = input()
|
||||
if line.strip().lower() == "exit":
|
||||
return "exit"
|
||||
if line == "":
|
||||
break
|
||||
user_input_lines.append(line)
|
||||
return "\n".join(user_input_lines)
|
||||
|
||||
|
||||
def handle_user_input(
|
||||
user_input: str,
|
||||
chat_llm: LLM,
|
||||
messages: List[Dict[str, str]],
|
||||
crew_tool_schema: Dict[str, Any],
|
||||
available_functions: Dict[str, Any],
|
||||
) -> None:
|
||||
if user_input.strip().lower() == "exit":
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
return
|
||||
|
||||
if not user_input.strip():
|
||||
click.echo("Empty message. Please provide input or type 'exit' to quit.")
|
||||
return
|
||||
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
|
||||
# Indicate that assistant is processing
|
||||
click.echo()
|
||||
click.secho("Assistant is processing your input. Please wait...", fg="green")
|
||||
|
||||
# Process assistant's response
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
|
||||
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
|
||||
"""
|
||||
Dynamically build a Littellm 'function' schema for the given crew.
|
||||
@@ -323,10 +444,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description
|
||||
lambda m: m.group(1), task.description or ""
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
@@ -337,10 +458,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
|
||||
or f"{{{input_name}}}" in agent.backstory
|
||||
):
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
@@ -381,18 +502,20 @@ def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
|
||||
for task in crew.tasks:
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.description
|
||||
lambda m: m.group(1), task.description or ""
|
||||
)
|
||||
expected_output = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), task.expected_output
|
||||
lambda m: m.group(1), task.expected_output or ""
|
||||
)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
for agent in crew.agents:
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
|
||||
agent_backstory = placeholder_pattern.sub(
|
||||
lambda m: m.group(1), agent.backstory or ""
|
||||
)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
context_texts.append(f"Agent Backstory: {agent_backstory}")
|
||||
|
||||
1
src/crewai/cli/templates/crew/.gitignore
vendored
1
src/crewai/cli/templates/crew/.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
.env
|
||||
__pycache__/
|
||||
.DS_Store
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.95.0,<1.0.0"
|
||||
"crewai[tools]>=0.100.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
1
src/crewai/cli/templates/flow/.gitignore
vendored
1
src/crewai/cli/templates/flow/.gitignore
vendored
@@ -1,3 +1,4 @@
|
||||
.env
|
||||
__pycache__/
|
||||
lib/
|
||||
.DS_Store
|
||||
|
||||
@@ -3,7 +3,7 @@ from random import randint
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from crewai.flow import Flow, listen, start
|
||||
|
||||
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.95.0,<1.0.0",
|
||||
"crewai[tools]>=0.100.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.95.0"
|
||||
"crewai[tools]>=0.100.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -37,7 +37,6 @@ from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.types.crew_chat import ChatInputs
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -47,6 +46,7 @@ from crewai.utilities.formatter import (
|
||||
aggregate_raw_outputs_from_task_outputs,
|
||||
aggregate_raw_outputs_from_tasks,
|
||||
)
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
@@ -83,6 +83,7 @@ class Crew(BaseModel):
|
||||
step_callback: Callback to be executed after each step for every agents execution.
|
||||
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
|
||||
planning: Plan the crew execution and add the plan to the crew.
|
||||
chat_llm: The language model used for orchestrating chat interactions with the crew.
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
@@ -149,7 +150,7 @@ class Crew(BaseModel):
|
||||
manager_agent: Optional[BaseAgent] = Field(
|
||||
description="Custom agent that will be used as manager.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
|
||||
@@ -245,15 +246,9 @@ class Crew(BaseModel):
|
||||
if self.output_log_file:
|
||||
self._file_handler = FileHandler(self.output_log_file)
|
||||
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
return self
|
||||
@@ -518,6 +513,8 @@ class Crew(BaseModel):
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> CrewOutput:
|
||||
for before_callback in self.before_kickoff_callbacks:
|
||||
if inputs is None:
|
||||
inputs = {}
|
||||
inputs = before_callback(inputs)
|
||||
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
@@ -679,6 +676,7 @@ class Crew(BaseModel):
|
||||
else:
|
||||
self.manager_llm = (
|
||||
getattr(self.manager_llm, "model_name", None)
|
||||
or getattr(self.manager_llm, "model", None)
|
||||
or getattr(self.manager_llm, "deployment_name", None)
|
||||
or self.manager_llm
|
||||
)
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.flow.flow import Flow, start, listen, or_, and_, router
|
||||
from crewai.flow.persistence import persist
|
||||
|
||||
__all__ = ["Flow", "start", "listen", "or_", "and_", "router", "persist"]
|
||||
|
||||
__all__ = ["Flow"]
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
@@ -13,9 +14,10 @@ from typing import (
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
from uuid import uuid4
|
||||
|
||||
from blinker import Signal
|
||||
from pydantic import BaseModel, ValidationError
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
|
||||
from crewai.flow.flow_events import (
|
||||
FlowFinishedEvent,
|
||||
@@ -24,10 +26,70 @@ from crewai.flow.flow_events import (
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FlowState(BaseModel):
|
||||
"""Base model for all flow states, ensuring each state has a unique ID."""
|
||||
|
||||
id: str = Field(
|
||||
default_factory=lambda: str(uuid4()),
|
||||
description="Unique identifier for the flow state",
|
||||
)
|
||||
|
||||
|
||||
# Type variables with explicit bounds
|
||||
T = TypeVar(
|
||||
"T", bound=Union[Dict[str, Any], BaseModel]
|
||||
) # Generic flow state type parameter
|
||||
StateT = TypeVar(
|
||||
"StateT", bound=Union[Dict[str, Any], BaseModel]
|
||||
) # State validation type parameter
|
||||
|
||||
|
||||
def ensure_state_type(state: Any, expected_type: Type[StateT]) -> StateT:
|
||||
"""Ensure state matches expected type with proper validation.
|
||||
|
||||
Args:
|
||||
state: State instance to validate
|
||||
expected_type: Expected type for the state
|
||||
|
||||
Returns:
|
||||
Validated state instance
|
||||
|
||||
Raises:
|
||||
TypeError: If state doesn't match expected type
|
||||
ValueError: If state validation fails
|
||||
"""
|
||||
"""Ensure state matches expected type with proper validation.
|
||||
|
||||
Args:
|
||||
state: State instance to validate
|
||||
expected_type: Expected type for the state
|
||||
|
||||
Returns:
|
||||
Validated state instance
|
||||
|
||||
Raises:
|
||||
TypeError: If state doesn't match expected type
|
||||
ValueError: If state validation fails
|
||||
"""
|
||||
if expected_type is dict:
|
||||
if not isinstance(state, dict):
|
||||
raise TypeError(f"Expected dict, got {type(state).__name__}")
|
||||
return cast(StateT, state)
|
||||
if isinstance(expected_type, type) and issubclass(expected_type, BaseModel):
|
||||
if not isinstance(state, expected_type):
|
||||
raise TypeError(
|
||||
f"Expected {expected_type.__name__}, got {type(state).__name__}"
|
||||
)
|
||||
return cast(StateT, state)
|
||||
raise TypeError(f"Invalid expected_type: {expected_type}")
|
||||
|
||||
|
||||
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
|
||||
@@ -71,6 +133,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
|
||||
>>> def complex_start(self):
|
||||
... pass
|
||||
"""
|
||||
|
||||
def decorator(func):
|
||||
func.__is_start_method__ = True
|
||||
if condition is not None:
|
||||
@@ -95,6 +158,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def listen(condition: Union[str, dict, Callable]) -> Callable:
|
||||
"""
|
||||
Creates a listener that executes when specified conditions are met.
|
||||
@@ -131,6 +195,7 @@ def listen(condition: Union[str, dict, Callable]) -> Callable:
|
||||
>>> def handle_completion(self):
|
||||
... pass
|
||||
"""
|
||||
|
||||
def decorator(func):
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
@@ -195,6 +260,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
|
||||
... return CONTINUE
|
||||
... return STOP
|
||||
"""
|
||||
|
||||
def decorator(func):
|
||||
func.__is_router__ = True
|
||||
if isinstance(condition, str):
|
||||
@@ -218,6 +284,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def or_(*conditions: Union[str, dict, Callable]) -> dict:
|
||||
"""
|
||||
Combines multiple conditions with OR logic for flow control.
|
||||
@@ -320,21 +387,32 @@ class FlowMeta(type):
|
||||
routers = set()
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
start_methods.append(attr_name)
|
||||
# Check for any flow-related attributes
|
||||
if (
|
||||
hasattr(attr_value, "__is_flow_method__")
|
||||
or hasattr(attr_value, "__is_start_method__")
|
||||
or hasattr(attr_value, "__trigger_methods__")
|
||||
or hasattr(attr_value, "__is_router__")
|
||||
):
|
||||
|
||||
# Register start methods
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
start_methods.append(attr_name)
|
||||
|
||||
# Register listeners and routers
|
||||
if hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
elif hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
if (
|
||||
hasattr(attr_value, "__is_router__")
|
||||
and attr_value.__is_router__
|
||||
):
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
@@ -345,7 +423,12 @@ class FlowMeta(type):
|
||||
|
||||
|
||||
class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Base class for all flows.
|
||||
|
||||
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
|
||||
|
||||
_telemetry = Telemetry()
|
||||
_printer = Printer()
|
||||
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
@@ -361,30 +444,130 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
|
||||
return _FlowGeneric
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
persistence: Optional[FlowPersistence] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize a new Flow instance.
|
||||
|
||||
Args:
|
||||
persistence: Optional persistence backend for storing flow states
|
||||
**kwargs: Additional state values to initialize or override
|
||||
"""
|
||||
# Initialize basic instance attributes
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._method_execution_counts: Dict[str, int] = {}
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
self._persistence: Optional[FlowPersistence] = persistence
|
||||
|
||||
# Initialize state with initial values
|
||||
self._state = self._create_initial_state()
|
||||
|
||||
# Apply any additional kwargs
|
||||
if kwargs:
|
||||
self._initialize_state(kwargs)
|
||||
|
||||
self._telemetry.flow_creation_span(self.__class__.__name__)
|
||||
|
||||
# Register all flow-related methods
|
||||
for method_name in dir(self):
|
||||
if callable(getattr(self, method_name)) and not method_name.startswith(
|
||||
"__"
|
||||
):
|
||||
self._methods[method_name] = getattr(self, method_name)
|
||||
if not method_name.startswith("_"):
|
||||
method = getattr(self, method_name)
|
||||
# Check for any flow-related attributes
|
||||
if (
|
||||
hasattr(method, "__is_flow_method__")
|
||||
or hasattr(method, "__is_start_method__")
|
||||
or hasattr(method, "__trigger_methods__")
|
||||
or hasattr(method, "__is_router__")
|
||||
):
|
||||
# Ensure method is bound to this instance
|
||||
if not hasattr(method, "__self__"):
|
||||
method = method.__get__(self, self.__class__)
|
||||
self._methods[method_name] = method
|
||||
|
||||
def _create_initial_state(self) -> T:
|
||||
"""Create and initialize flow state with UUID and default values.
|
||||
|
||||
Returns:
|
||||
New state instance with UUID and default values initialized
|
||||
|
||||
Raises:
|
||||
ValueError: If structured state model lacks 'id' field
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
# Handle case where initial_state is None but we have a type parameter
|
||||
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
||||
return self._initial_state_T() # type: ignore
|
||||
state_type = getattr(self, "_initial_state_T")
|
||||
if isinstance(state_type, type):
|
||||
if issubclass(state_type, FlowState):
|
||||
# Create instance without id, then set it
|
||||
instance = state_type()
|
||||
if not hasattr(instance, "id"):
|
||||
setattr(instance, "id", str(uuid4()))
|
||||
return cast(T, instance)
|
||||
elif issubclass(state_type, BaseModel):
|
||||
# Create a new type that includes the ID field
|
||||
class StateWithId(state_type, FlowState): # type: ignore
|
||||
pass
|
||||
|
||||
instance = StateWithId()
|
||||
if not hasattr(instance, "id"):
|
||||
setattr(instance, "id", str(uuid4()))
|
||||
return cast(T, instance)
|
||||
elif state_type is dict:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle case where no initial state is provided
|
||||
if self.initial_state is None:
|
||||
return {} # type: ignore
|
||||
elif isinstance(self.initial_state, type):
|
||||
return self.initial_state()
|
||||
else:
|
||||
return self.initial_state
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle case where initial_state is a type (class)
|
||||
if isinstance(self.initial_state, type):
|
||||
if issubclass(self.initial_state, FlowState):
|
||||
return cast(T, self.initial_state()) # Uses model defaults
|
||||
elif issubclass(self.initial_state, BaseModel):
|
||||
# Validate that the model has an id field
|
||||
model_fields = getattr(self.initial_state, "model_fields", None)
|
||||
if not model_fields or "id" not in model_fields:
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
return cast(T, self.initial_state()) # Uses model defaults
|
||||
elif self.initial_state is dict:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle dictionary instance case
|
||||
if isinstance(self.initial_state, dict):
|
||||
new_state = dict(self.initial_state) # Copy to avoid mutations
|
||||
if "id" not in new_state:
|
||||
new_state["id"] = str(uuid4())
|
||||
return cast(T, new_state)
|
||||
|
||||
# Handle BaseModel instance case
|
||||
if isinstance(self.initial_state, BaseModel):
|
||||
model = cast(BaseModel, self.initial_state)
|
||||
if not hasattr(model, "id"):
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
|
||||
# Create new instance with same values to avoid mutations
|
||||
if hasattr(model, "model_dump"):
|
||||
# Pydantic v2
|
||||
state_dict = model.model_dump()
|
||||
elif hasattr(model, "dict"):
|
||||
# Pydantic v1
|
||||
state_dict = model.dict()
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
state_dict = {
|
||||
k: v for k, v in model.__dict__.items() if not k.startswith("_")
|
||||
}
|
||||
|
||||
# Create new instance of the same class
|
||||
model_class = type(model)
|
||||
return cast(T, model_class(**state_dict))
|
||||
raise TypeError(
|
||||
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
|
||||
)
|
||||
|
||||
@property
|
||||
def state(self) -> T:
|
||||
@@ -395,34 +578,158 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Returns the list of all outputs from executed methods."""
|
||||
return self._method_outputs
|
||||
|
||||
@property
|
||||
def flow_id(self) -> str:
|
||||
"""Returns the unique identifier of this flow instance.
|
||||
|
||||
This property provides a consistent way to access the flow's unique identifier
|
||||
regardless of the underlying state implementation (dict or BaseModel).
|
||||
|
||||
Returns:
|
||||
str: The flow's unique identifier, or an empty string if not found
|
||||
|
||||
Note:
|
||||
This property safely handles both dictionary and BaseModel state types,
|
||||
returning an empty string if the ID cannot be retrieved rather than raising
|
||||
an exception.
|
||||
|
||||
Example:
|
||||
```python
|
||||
flow = MyFlow()
|
||||
print(f"Current flow ID: {flow.flow_id}") # Safely get flow ID
|
||||
```
|
||||
"""
|
||||
try:
|
||||
if not hasattr(self, '_state'):
|
||||
return ""
|
||||
|
||||
if isinstance(self._state, dict):
|
||||
return str(self._state.get("id", ""))
|
||||
elif isinstance(self._state, BaseModel):
|
||||
return str(getattr(self._state, "id", ""))
|
||||
return ""
|
||||
except (AttributeError, TypeError):
|
||||
return "" # Safely handle any unexpected attribute access issues
|
||||
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state
|
||||
"""Initialize or update flow state with new inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of state values to set/update
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails for structured state
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
if isinstance(self._state, dict):
|
||||
# For dict states, preserve existing fields unless overridden
|
||||
current_id = self._state.get("id")
|
||||
# Only update specified fields
|
||||
for k, v in inputs.items():
|
||||
self._state[k] = v
|
||||
# Ensure ID is preserved or generated
|
||||
if current_id:
|
||||
self._state["id"] = current_id
|
||||
elif "id" not in self._state:
|
||||
self._state["id"] = str(uuid4())
|
||||
elif isinstance(self._state, BaseModel):
|
||||
# For BaseModel states, preserve existing fields unless overridden
|
||||
try:
|
||||
model = cast(BaseModel, self._state)
|
||||
# Get current state as dict
|
||||
if hasattr(model, "model_dump"):
|
||||
current_state = model.model_dump()
|
||||
elif hasattr(model, "dict"):
|
||||
current_state = model.dict()
|
||||
else:
|
||||
current_state = {
|
||||
k: v for k, v in model.__dict__.items() if not k.startswith("_")
|
||||
}
|
||||
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
class ModelWithExtraForbid(base_model): # type: ignore
|
||||
model_config = base_model.model_config.copy()
|
||||
model_config["extra"] = "forbid"
|
||||
# Create new state with preserved fields and updates
|
||||
new_state = {**current_state, **inputs}
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
# Create new instance with merged state
|
||||
model_class = type(model)
|
||||
if hasattr(model_class, "model_validate"):
|
||||
# Pydantic v2
|
||||
self._state = cast(T, model_class.model_validate(new_state))
|
||||
elif hasattr(model_class, "parse_obj"):
|
||||
# Pydantic v1
|
||||
self._state = cast(T, model_class.parse_obj(new_state))
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
self._state = cast(T, model_class(**new_state))
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def _restore_state(self, stored_state: Dict[str, Any]) -> None:
|
||||
"""Restore flow state from persistence.
|
||||
|
||||
Args:
|
||||
stored_state: Previously stored state to restore
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails for structured state
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
# When restoring from persistence, use the stored ID
|
||||
stored_id = stored_state.get("id")
|
||||
if not stored_id:
|
||||
raise ValueError("Stored state must have an 'id' field")
|
||||
|
||||
if isinstance(self._state, dict):
|
||||
# For dict states, update all fields from stored state
|
||||
self._state.clear()
|
||||
self._state.update(stored_state)
|
||||
elif isinstance(self._state, BaseModel):
|
||||
# For BaseModel states, create new instance with stored values
|
||||
model = cast(BaseModel, self._state)
|
||||
if hasattr(model, "model_validate"):
|
||||
# Pydantic v2
|
||||
self._state = cast(T, type(model).model_validate(stored_state))
|
||||
elif hasattr(model, "parse_obj"):
|
||||
# Pydantic v1
|
||||
self._state = cast(T, type(model).parse_obj(stored_state))
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
self._state = cast(T, type(model)(**stored_state))
|
||||
else:
|
||||
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""Start the flow execution.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary containing input values and potentially a state ID to restore
|
||||
"""
|
||||
# Handle state restoration if ID is provided in inputs
|
||||
if inputs and 'id' in inputs and self._persistence is not None:
|
||||
restore_uuid = inputs['id']
|
||||
stored_state = self._persistence.load_state(restore_uuid)
|
||||
|
||||
# Override the id in the state if it exists in inputs
|
||||
if 'id' in inputs:
|
||||
if isinstance(self._state, dict):
|
||||
self._state['id'] = inputs['id']
|
||||
elif isinstance(self._state, BaseModel):
|
||||
setattr(self._state, 'id', inputs['id'])
|
||||
|
||||
if stored_state:
|
||||
self._log_flow_event(f"Loading flow state from memory for UUID: {restore_uuid}", color="yellow")
|
||||
# Restore the state
|
||||
self._restore_state(stored_state)
|
||||
else:
|
||||
self._log_flow_event(f"No flow state found for UUID: {restore_uuid}", color="red")
|
||||
|
||||
# Apply any additional inputs after restoration
|
||||
filtered_inputs = {k: v for k, v in inputs.items() if k != 'id'}
|
||||
if filtered_inputs:
|
||||
self._initialize_state(filtered_inputs)
|
||||
|
||||
# Start flow execution
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowStartedEvent(
|
||||
@@ -430,9 +737,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
self._log_flow_event(f"Flow started with ID: {self.flow_id}", color="bold_magenta")
|
||||
|
||||
if inputs is not None:
|
||||
if inputs is not None and 'id' not in inputs:
|
||||
self._initialize_state(inputs)
|
||||
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
@@ -675,6 +984,30 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
def _log_flow_event(self, message: str, color: str = "yellow", level: str = "info") -> None:
|
||||
"""Centralized logging method for flow events.
|
||||
|
||||
This method provides a consistent interface for logging flow-related events,
|
||||
combining both console output with colors and proper logging levels.
|
||||
|
||||
Args:
|
||||
message: The message to log
|
||||
color: Color to use for console output (default: yellow)
|
||||
Available colors: purple, red, bold_green, bold_purple,
|
||||
bold_blue, yellow, yellow
|
||||
level: Log level to use (default: info)
|
||||
Supported levels: info, warning
|
||||
|
||||
Note:
|
||||
This method uses the Printer utility for colored console output
|
||||
and the standard logging module for log level support.
|
||||
"""
|
||||
self._printer.print(message, color=color)
|
||||
if level == "info":
|
||||
logger.info(message)
|
||||
elif level == "warning":
|
||||
logger.warning(message)
|
||||
|
||||
def plot(self, filename: str = "crewai_flow") -> None:
|
||||
self._telemetry.flow_plotting_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
|
||||
18
src/crewai/flow/persistence/__init__.py
Normal file
18
src/crewai/flow/persistence/__init__.py
Normal file
@@ -0,0 +1,18 @@
|
||||
"""
|
||||
CrewAI Flow Persistence.
|
||||
|
||||
This module provides interfaces and implementations for persisting flow states.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, TypeVar, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.persistence.decorators import persist
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
|
||||
__all__ = ["FlowPersistence", "persist", "SQLiteFlowPersistence"]
|
||||
|
||||
StateType = TypeVar('StateType', bound=Union[Dict[str, Any], BaseModel])
|
||||
DictStateType = Dict[str, Any]
|
||||
53
src/crewai/flow/persistence/base.py
Normal file
53
src/crewai/flow/persistence/base.py
Normal file
@@ -0,0 +1,53 @@
|
||||
"""Base class for flow state persistence."""
|
||||
|
||||
import abc
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class FlowPersistence(abc.ABC):
|
||||
"""Abstract base class for flow state persistence.
|
||||
|
||||
This class defines the interface that all persistence implementations must follow.
|
||||
It supports both structured (Pydantic BaseModel) and unstructured (dict) states.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def init_db(self) -> None:
|
||||
"""Initialize the persistence backend.
|
||||
|
||||
This method should handle any necessary setup, such as:
|
||||
- Creating tables
|
||||
- Establishing connections
|
||||
- Setting up indexes
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def save_state(
|
||||
self,
|
||||
flow_uuid: str,
|
||||
method_name: str,
|
||||
state_data: Union[Dict[str, Any], BaseModel]
|
||||
) -> None:
|
||||
"""Persist the flow state after method completion.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
method_name: Name of the method that just completed
|
||||
state_data: Current state data (either dict or Pydantic model)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
|
||||
"""Load the most recent state for a given flow UUID.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
|
||||
Returns:
|
||||
The most recent state as a dictionary, or None if no state exists
|
||||
"""
|
||||
pass
|
||||
252
src/crewai/flow/persistence/decorators.py
Normal file
252
src/crewai/flow/persistence/decorators.py
Normal file
@@ -0,0 +1,252 @@
|
||||
"""
|
||||
Decorators for flow state persistence.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from crewai.flow.flow import Flow, start
|
||||
from crewai.flow.persistence import persist, SQLiteFlowPersistence
|
||||
|
||||
class MyFlow(Flow):
|
||||
@start()
|
||||
@persist(SQLiteFlowPersistence())
|
||||
def sync_method(self):
|
||||
# Synchronous method implementation
|
||||
pass
|
||||
|
||||
@start()
|
||||
@persist(SQLiteFlowPersistence())
|
||||
async def async_method(self):
|
||||
# Asynchronous method implementation
|
||||
await some_async_operation()
|
||||
```
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import functools
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Optional,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
T = TypeVar("T")
|
||||
|
||||
# Constants for log messages
|
||||
LOG_MESSAGES = {
|
||||
"save_state": "Saving flow state to memory for ID: {}",
|
||||
"save_error": "Failed to persist state for method {}: {}",
|
||||
"state_missing": "Flow instance has no state",
|
||||
"id_missing": "Flow state must have an 'id' field for persistence"
|
||||
}
|
||||
|
||||
|
||||
class PersistenceDecorator:
|
||||
"""Class to handle flow state persistence with consistent logging."""
|
||||
|
||||
_printer = Printer() # Class-level printer instance
|
||||
|
||||
@classmethod
|
||||
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence) -> None:
|
||||
"""Persist flow state with proper error handling and logging.
|
||||
|
||||
This method handles the persistence of flow state data, including proper
|
||||
error handling and colored console output for status updates.
|
||||
|
||||
Args:
|
||||
flow_instance: The flow instance whose state to persist
|
||||
method_name: Name of the method that triggered persistence
|
||||
persistence_instance: The persistence backend to use
|
||||
|
||||
Raises:
|
||||
ValueError: If flow has no state or state lacks an ID
|
||||
RuntimeError: If state persistence fails
|
||||
AttributeError: If flow instance lacks required state attributes
|
||||
"""
|
||||
try:
|
||||
state = getattr(flow_instance, 'state', None)
|
||||
if state is None:
|
||||
raise ValueError("Flow instance has no state")
|
||||
|
||||
flow_uuid: Optional[str] = None
|
||||
if isinstance(state, dict):
|
||||
flow_uuid = state.get('id')
|
||||
elif isinstance(state, BaseModel):
|
||||
flow_uuid = getattr(state, 'id', None)
|
||||
|
||||
if not flow_uuid:
|
||||
raise ValueError("Flow state must have an 'id' field for persistence")
|
||||
|
||||
# Log state saving with consistent message
|
||||
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
|
||||
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
|
||||
|
||||
try:
|
||||
persistence_instance.save_state(
|
||||
flow_uuid=flow_uuid,
|
||||
method_name=method_name,
|
||||
state_data=state,
|
||||
)
|
||||
except Exception as e:
|
||||
error_msg = LOG_MESSAGES["save_error"].format(method_name, str(e))
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise RuntimeError(f"State persistence failed: {str(e)}") from e
|
||||
except AttributeError:
|
||||
error_msg = LOG_MESSAGES["state_missing"]
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
except (TypeError, ValueError) as e:
|
||||
error_msg = LOG_MESSAGES["id_missing"]
|
||||
cls._printer.print(error_msg, color="red")
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
|
||||
def persist(persistence: Optional[FlowPersistence] = None):
|
||||
"""Decorator to persist flow state.
|
||||
|
||||
This decorator can be applied at either the class level or method level.
|
||||
When applied at the class level, it automatically persists all flow method
|
||||
states. When applied at the method level, it persists only that method's
|
||||
state.
|
||||
|
||||
Args:
|
||||
persistence: Optional FlowPersistence implementation to use.
|
||||
If not provided, uses SQLiteFlowPersistence.
|
||||
|
||||
Returns:
|
||||
A decorator that can be applied to either a class or method
|
||||
|
||||
Raises:
|
||||
ValueError: If the flow state doesn't have an 'id' field
|
||||
RuntimeError: If state persistence fails
|
||||
|
||||
Example:
|
||||
@persist # Class-level persistence with default SQLite
|
||||
class MyFlow(Flow[MyState]):
|
||||
@start()
|
||||
def begin(self):
|
||||
pass
|
||||
"""
|
||||
|
||||
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
|
||||
"""Decorator that handles both class and method decoration."""
|
||||
actual_persistence = persistence or SQLiteFlowPersistence()
|
||||
|
||||
if isinstance(target, type):
|
||||
# Class decoration
|
||||
original_init = getattr(target, "__init__")
|
||||
|
||||
@functools.wraps(original_init)
|
||||
def new_init(self: Any, *args: Any, **kwargs: Any) -> None:
|
||||
if 'persistence' not in kwargs:
|
||||
kwargs['persistence'] = actual_persistence
|
||||
original_init(self, *args, **kwargs)
|
||||
|
||||
setattr(target, "__init__", new_init)
|
||||
|
||||
# Store original methods to preserve their decorators
|
||||
original_methods = {}
|
||||
|
||||
for name, method in target.__dict__.items():
|
||||
if callable(method) and (
|
||||
hasattr(method, "__is_start_method__") or
|
||||
hasattr(method, "__trigger_methods__") or
|
||||
hasattr(method, "__condition_type__") or
|
||||
hasattr(method, "__is_flow_method__") or
|
||||
hasattr(method, "__is_router__")
|
||||
):
|
||||
original_methods[name] = method
|
||||
|
||||
# Create wrapped versions of the methods that include persistence
|
||||
for name, method in original_methods.items():
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
# Create a closure to capture the current name and method
|
||||
def create_async_wrapper(method_name: str, original_method: Callable):
|
||||
@functools.wraps(original_method)
|
||||
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
result = await original_method(self, *args, **kwargs)
|
||||
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
|
||||
return result
|
||||
return method_wrapper
|
||||
|
||||
wrapped = create_async_wrapper(name, method)
|
||||
|
||||
# Preserve all original decorators and attributes
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(wrapped, attr, getattr(method, attr))
|
||||
setattr(wrapped, "__is_flow_method__", True)
|
||||
|
||||
# Update the class with the wrapped method
|
||||
setattr(target, name, wrapped)
|
||||
else:
|
||||
# Create a closure to capture the current name and method
|
||||
def create_sync_wrapper(method_name: str, original_method: Callable):
|
||||
@functools.wraps(original_method)
|
||||
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
result = original_method(self, *args, **kwargs)
|
||||
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
|
||||
return result
|
||||
return method_wrapper
|
||||
|
||||
wrapped = create_sync_wrapper(name, method)
|
||||
|
||||
# Preserve all original decorators and attributes
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(wrapped, attr, getattr(method, attr))
|
||||
setattr(wrapped, "__is_flow_method__", True)
|
||||
|
||||
# Update the class with the wrapped method
|
||||
setattr(target, name, wrapped)
|
||||
|
||||
return target
|
||||
else:
|
||||
# Method decoration
|
||||
method = target
|
||||
setattr(method, "__is_flow_method__", True)
|
||||
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
@functools.wraps(method)
|
||||
async def method_async_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
|
||||
method_coro = method(flow_instance, *args, **kwargs)
|
||||
if asyncio.iscoroutine(method_coro):
|
||||
result = await method_coro
|
||||
else:
|
||||
result = method_coro
|
||||
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
|
||||
return result
|
||||
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(method_async_wrapper, attr, getattr(method, attr))
|
||||
setattr(method_async_wrapper, "__is_flow_method__", True)
|
||||
return cast(Callable[..., T], method_async_wrapper)
|
||||
else:
|
||||
@functools.wraps(method)
|
||||
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
|
||||
result = method(flow_instance, *args, **kwargs)
|
||||
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
|
||||
return result
|
||||
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(method_sync_wrapper, attr, getattr(method, attr))
|
||||
setattr(method_sync_wrapper, "__is_flow_method__", True)
|
||||
return cast(Callable[..., T], method_sync_wrapper)
|
||||
|
||||
return decorator
|
||||
123
src/crewai/flow/persistence/sqlite.py
Normal file
123
src/crewai/flow/persistence/sqlite.py
Normal file
@@ -0,0 +1,123 @@
|
||||
"""
|
||||
SQLite-based implementation of flow state persistence.
|
||||
"""
|
||||
|
||||
import json
|
||||
import sqlite3
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
|
||||
|
||||
class SQLiteFlowPersistence(FlowPersistence):
|
||||
"""SQLite-based implementation of flow state persistence.
|
||||
|
||||
This class provides a simple, file-based persistence implementation using SQLite.
|
||||
It's suitable for development and testing, or for production use cases with
|
||||
moderate performance requirements.
|
||||
"""
|
||||
|
||||
db_path: str # Type annotation for instance variable
|
||||
|
||||
def __init__(self, db_path: Optional[str] = None):
|
||||
"""Initialize SQLite persistence.
|
||||
|
||||
Args:
|
||||
db_path: Path to the SQLite database file. If not provided, uses
|
||||
db_storage_path() from utilities.paths.
|
||||
|
||||
Raises:
|
||||
ValueError: If db_path is invalid
|
||||
"""
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
# Get path from argument or default location
|
||||
path = db_path or str(Path(db_storage_path()) / "flow_states.db")
|
||||
|
||||
if not path:
|
||||
raise ValueError("Database path must be provided")
|
||||
|
||||
self.db_path = path # Now mypy knows this is str
|
||||
self.init_db()
|
||||
|
||||
def init_db(self) -> None:
|
||||
"""Create the necessary tables if they don't exist."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
CREATE TABLE IF NOT EXISTS flow_states (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
flow_uuid TEXT NOT NULL,
|
||||
method_name TEXT NOT NULL,
|
||||
timestamp DATETIME NOT NULL,
|
||||
state_json TEXT NOT NULL
|
||||
)
|
||||
""")
|
||||
# Add index for faster UUID lookups
|
||||
conn.execute("""
|
||||
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
|
||||
ON flow_states(flow_uuid)
|
||||
""")
|
||||
|
||||
def save_state(
|
||||
self,
|
||||
flow_uuid: str,
|
||||
method_name: str,
|
||||
state_data: Union[Dict[str, Any], BaseModel],
|
||||
) -> None:
|
||||
"""Save the current flow state to SQLite.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
method_name: Name of the method that just completed
|
||||
state_data: Current state data (either dict or Pydantic model)
|
||||
"""
|
||||
# Convert state_data to dict, handling both Pydantic and dict cases
|
||||
if isinstance(state_data, BaseModel):
|
||||
state_dict = dict(state_data) # Use dict() for better type compatibility
|
||||
elif isinstance(state_data, dict):
|
||||
state_dict = state_data
|
||||
else:
|
||||
raise ValueError(
|
||||
f"state_data must be either a Pydantic BaseModel or dict, got {type(state_data)}"
|
||||
)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
INSERT INTO flow_states (
|
||||
flow_uuid,
|
||||
method_name,
|
||||
timestamp,
|
||||
state_json
|
||||
) VALUES (?, ?, ?, ?)
|
||||
""", (
|
||||
flow_uuid,
|
||||
method_name,
|
||||
datetime.utcnow().isoformat(),
|
||||
json.dumps(state_dict),
|
||||
))
|
||||
|
||||
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
|
||||
"""Load the most recent state for a given flow UUID.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
|
||||
Returns:
|
||||
The most recent state as a dictionary, or None if no state exists
|
||||
"""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT state_json
|
||||
FROM flow_states
|
||||
WHERE flow_uuid = ?
|
||||
ORDER BY id DESC
|
||||
LIMIT 1
|
||||
""", (flow_uuid,))
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row:
|
||||
return json.loads(row[0])
|
||||
return None
|
||||
@@ -8,6 +8,7 @@ try:
|
||||
from docling.exceptions import ConversionError
|
||||
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
|
||||
from docling_core.types.doc.document import DoclingDocument
|
||||
|
||||
DOCLING_AVAILABLE = True
|
||||
except ImportError:
|
||||
DOCLING_AVAILABLE = False
|
||||
@@ -38,8 +39,8 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
chunks: List[str] = Field(default_factory=list)
|
||||
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
content: List[DoclingDocument] = Field(default_factory=list)
|
||||
document_converter: DocumentConverter = Field(
|
||||
content: List["DoclingDocument"] = Field(default_factory=list)
|
||||
document_converter: "DocumentConverter" = Field(
|
||||
default_factory=lambda: DocumentConverter(
|
||||
allowed_formats=[
|
||||
InputFormat.MD,
|
||||
@@ -65,7 +66,7 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
self.safe_file_paths = self.validate_content()
|
||||
self.content = self._load_content()
|
||||
|
||||
def _load_content(self) -> List[DoclingDocument]:
|
||||
def _load_content(self) -> List["DoclingDocument"]:
|
||||
try:
|
||||
return self._convert_source_to_docling_documents()
|
||||
except ConversionError as e:
|
||||
@@ -87,11 +88,11 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
self.chunks.extend(list(new_chunks_iterable))
|
||||
self._save_documents()
|
||||
|
||||
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
|
||||
def _convert_source_to_docling_documents(self) -> List["DoclingDocument"]:
|
||||
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
|
||||
return [result.document for result in conv_results_iter]
|
||||
|
||||
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
|
||||
def _chunk_doc(self, doc: "DoclingDocument") -> Iterator[str]:
|
||||
chunker = HierarchicalChunker()
|
||||
for chunk in chunker.chunk(doc):
|
||||
yield chunk.text
|
||||
|
||||
@@ -142,7 +142,6 @@ class LLM:
|
||||
self.temperature = temperature
|
||||
self.top_p = top_p
|
||||
self.n = n
|
||||
self.stop = stop
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
self.max_tokens = max_tokens
|
||||
self.presence_penalty = presence_penalty
|
||||
@@ -160,37 +159,63 @@ class LLM:
|
||||
|
||||
litellm.drop_params = True
|
||||
|
||||
# Normalize self.stop to always be a List[str]
|
||||
if stop is None:
|
||||
self.stop: List[str] = []
|
||||
elif isinstance(stop, str):
|
||||
self.stop = [stop]
|
||||
else:
|
||||
self.stop = stop
|
||||
|
||||
self.set_callbacks(callbacks)
|
||||
self.set_env_callbacks()
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
High-level call method that:
|
||||
1) Calls litellm.completion
|
||||
2) Checks for function/tool calls
|
||||
3) If a tool call is found:
|
||||
a) executes the function
|
||||
b) returns the result
|
||||
4) If no tool call, returns the text response
|
||||
High-level llm call method that:
|
||||
1) Accepts either a string or a list of messages
|
||||
2) Converts string input to the required message format
|
||||
3) Calls litellm.completion
|
||||
4) Handles function/tool calls if any
|
||||
5) Returns the final text response or tool result
|
||||
|
||||
:param messages: The conversation messages
|
||||
:param tools: Optional list of function schemas for function calling
|
||||
:param callbacks: Optional list of callbacks
|
||||
:param available_functions: A dictionary mapping function_name -> actual Python function
|
||||
:return: Final text response from the LLM or the tool result
|
||||
Parameters:
|
||||
- messages (Union[str, List[Dict[str, str]]]): The input messages for the LLM.
|
||||
- If a string is provided, it will be converted into a message list with a single entry.
|
||||
- If a list of dictionaries is provided, each dictionary should have 'role' and 'content' keys.
|
||||
- tools (Optional[List[dict]]): A list of tool schemas for function calling.
|
||||
- callbacks (Optional[List[Any]]): A list of callback functions to be executed.
|
||||
- available_functions (Optional[Dict[str, Any]]): A dictionary mapping function names to actual Python functions.
|
||||
|
||||
Returns:
|
||||
- str: The final text response from the LLM or the result of a tool function call.
|
||||
|
||||
Examples:
|
||||
---------
|
||||
# Example 1: Using a string input
|
||||
response = llm.call("Return the name of a random city in the world.")
|
||||
print(response)
|
||||
|
||||
# Example 2: Using a list of messages
|
||||
messages = [{"role": "user", "content": "What is the capital of France?"}]
|
||||
response = llm.call(messages)
|
||||
print(response)
|
||||
"""
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
# --- 1) Make the completion call
|
||||
# --- 1) Prepare the parameters for the completion call
|
||||
params = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
@@ -211,11 +236,13 @@ class LLM:
|
||||
"api_version": self.api_version,
|
||||
"api_key": self.api_key,
|
||||
"stream": False,
|
||||
"tools": tools, # pass the tool schema
|
||||
"tools": tools,
|
||||
}
|
||||
|
||||
# Remove None values from params
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
# --- 2) Make the completion call
|
||||
response = litellm.completion(**params)
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
0
|
||||
@@ -223,11 +250,24 @@ class LLM:
|
||||
text_response = response_message.content or ""
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# --- 2) If no tool calls, return the text response
|
||||
# --- 3) Handle callbacks with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
if hasattr(callback, "log_success_event"):
|
||||
usage_info = getattr(response, "usage", None)
|
||||
if usage_info:
|
||||
callback.log_success_event(
|
||||
kwargs=params,
|
||||
response_obj={"usage": usage_info},
|
||||
start_time=0,
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 4) If no tool calls, return the text response
|
||||
if not tool_calls or not available_functions:
|
||||
return text_response
|
||||
|
||||
# --- 3) Handle the tool call
|
||||
# --- 5) Handle the tool call
|
||||
tool_call = tool_calls[0]
|
||||
function_name = tool_call.function.name
|
||||
|
||||
@@ -242,7 +282,6 @@ class LLM:
|
||||
try:
|
||||
# Call the actual tool function
|
||||
result = fn(**function_args)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,12 +1,17 @@
|
||||
import json
|
||||
import logging
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.task import Task
|
||||
from crewai.utilities import Printer
|
||||
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
|
||||
from crewai.utilities.errors import DatabaseError, DatabaseOperationError
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KickoffTaskOutputsSQLiteStorage:
|
||||
"""
|
||||
@@ -14,15 +19,24 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
|
||||
self, db_path: Optional[str] = None
|
||||
) -> None:
|
||||
if db_path is None:
|
||||
# Get the parent directory of the default db path and create our db file there
|
||||
db_path = str(Path(db_storage_path()) / "latest_kickoff_task_outputs.db")
|
||||
self.db_path = db_path
|
||||
self._printer: Printer = Printer()
|
||||
self._initialize_db()
|
||||
|
||||
def _initialize_db(self):
|
||||
"""
|
||||
Initializes the SQLite database and creates LTM table
|
||||
def _initialize_db(self) -> None:
|
||||
"""Initialize the SQLite database and create the latest_kickoff_task_outputs table.
|
||||
|
||||
This method sets up the database schema for storing task outputs. It creates
|
||||
a table with columns for task_id, expected_output, output (as JSON),
|
||||
task_index, inputs (as JSON), was_replayed flag, and timestamp.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If database initialization fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
@@ -43,10 +57,9 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.INIT_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def add(
|
||||
self,
|
||||
@@ -55,9 +68,22 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
task_index: int,
|
||||
was_replayed: bool = False,
|
||||
inputs: Dict[str, Any] = {},
|
||||
):
|
||||
) -> None:
|
||||
"""Add a new task output record to the database.
|
||||
|
||||
Args:
|
||||
task: The Task object containing task details.
|
||||
output: Dictionary containing the task's output data.
|
||||
task_index: Integer index of the task in the sequence.
|
||||
was_replayed: Boolean indicating if this was a replay execution.
|
||||
inputs: Dictionary of input parameters used for the task.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If saving the task output fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"""
|
||||
@@ -76,21 +102,31 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.SAVE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def update(
|
||||
self,
|
||||
task_index: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Update an existing task output record in the database.
|
||||
|
||||
Updates fields of a task output record identified by task_index. The fields
|
||||
to update are provided as keyword arguments.
|
||||
|
||||
Args:
|
||||
task_index: Integer index of the task to update.
|
||||
**kwargs: Arbitrary keyword arguments representing fields to update.
|
||||
Values that are dictionaries will be JSON encoded.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If updating the task output fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
|
||||
fields = []
|
||||
@@ -110,14 +146,23 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
conn.commit()
|
||||
|
||||
if cursor.rowcount == 0:
|
||||
self._printer.print(
|
||||
f"No row found with task_index {task_index}. No update performed.",
|
||||
color="red",
|
||||
)
|
||||
logger.warning(f"No row found with task_index {task_index}. No update performed.")
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
|
||||
error_msg = DatabaseError.format_error(DatabaseError.UPDATE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def load(self) -> Optional[List[Dict[str, Any]]]:
|
||||
def load(self) -> List[Dict[str, Any]]:
|
||||
"""Load all task output records from the database.
|
||||
|
||||
Returns:
|
||||
List of dictionaries containing task output records, ordered by task_index.
|
||||
Each dictionary contains: task_id, expected_output, output, task_index,
|
||||
inputs, was_replayed, and timestamp.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If loading task outputs fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
@@ -144,23 +189,26 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
return results
|
||||
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
error_msg = DatabaseError.format_error(DatabaseError.LOAD_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def delete_all(self):
|
||||
"""
|
||||
Deletes all rows from the latest_kickoff_task_outputs table.
|
||||
def delete_all(self) -> None:
|
||||
"""Delete all task output records from the database.
|
||||
|
||||
This method removes all records from the latest_kickoff_task_outputs table.
|
||||
Use with caution as this operation cannot be undone.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If deleting task outputs fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.DELETE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from crewai.utilities import Printer
|
||||
@@ -12,10 +13,15 @@ class LTMSQLiteStorage:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
|
||||
self, db_path: Optional[str] = None
|
||||
) -> None:
|
||||
if db_path is None:
|
||||
# Get the parent directory of the default db path and create our db file there
|
||||
db_path = str(Path(db_storage_path()) / "long_term_memory_storage.db")
|
||||
self.db_path = db_path
|
||||
self._printer: Printer = Printer()
|
||||
# Ensure parent directory exists
|
||||
Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
self._initialize_db()
|
||||
|
||||
def _initialize_db(self):
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import inspect
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, TypeVar, cast
|
||||
|
||||
@@ -7,12 +8,16 @@ from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
|
||||
T = TypeVar("T", bound=type)
|
||||
|
||||
"""Base decorator for creating crew classes with configuration and function management."""
|
||||
|
||||
|
||||
def CrewBase(cls: T) -> T:
|
||||
"""Wraps a class with crew functionality and configuration management."""
|
||||
|
||||
class WrappedClass(cls): # type: ignore
|
||||
is_crew_class: bool = True # type: ignore
|
||||
|
||||
@@ -26,16 +31,9 @@ def CrewBase(cls: T) -> T:
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
agents_config_path = self.base_directory / self.original_agents_config_path
|
||||
tasks_config_path = self.base_directory / self.original_tasks_config_path
|
||||
|
||||
self.agents_config = self.load_yaml(agents_config_path)
|
||||
self.tasks_config = self.load_yaml(tasks_config_path)
|
||||
|
||||
self.load_configurations()
|
||||
self.map_all_agent_variables()
|
||||
self.map_all_task_variables()
|
||||
|
||||
# Preserve all decorated functions
|
||||
self._original_functions = {
|
||||
name: method
|
||||
@@ -51,7 +49,6 @@ def CrewBase(cls: T) -> T:
|
||||
]
|
||||
)
|
||||
}
|
||||
|
||||
# Store specific function types
|
||||
self._original_tasks = self._filter_functions(
|
||||
self._original_functions, "is_task"
|
||||
@@ -69,6 +66,44 @@ def CrewBase(cls: T) -> T:
|
||||
self._original_functions, "is_kickoff"
|
||||
)
|
||||
|
||||
def load_configurations(self):
|
||||
"""Load agent and task configurations from YAML files."""
|
||||
if isinstance(self.original_agents_config_path, str):
|
||||
agents_config_path = (
|
||||
self.base_directory / self.original_agents_config_path
|
||||
)
|
||||
try:
|
||||
self.agents_config = self.load_yaml(agents_config_path)
|
||||
except FileNotFoundError:
|
||||
logging.warning(
|
||||
f"Agent config file not found at {agents_config_path}. "
|
||||
"Proceeding with empty agent configurations."
|
||||
)
|
||||
self.agents_config = {}
|
||||
else:
|
||||
logging.warning(
|
||||
"No agent configuration path provided. Proceeding with empty agent configurations."
|
||||
)
|
||||
self.agents_config = {}
|
||||
|
||||
if isinstance(self.original_tasks_config_path, str):
|
||||
tasks_config_path = (
|
||||
self.base_directory / self.original_tasks_config_path
|
||||
)
|
||||
try:
|
||||
self.tasks_config = self.load_yaml(tasks_config_path)
|
||||
except FileNotFoundError:
|
||||
logging.warning(
|
||||
f"Task config file not found at {tasks_config_path}. "
|
||||
"Proceeding with empty task configurations."
|
||||
)
|
||||
self.tasks_config = {}
|
||||
else:
|
||||
logging.warning(
|
||||
"No task configuration path provided. Proceeding with empty task configurations."
|
||||
)
|
||||
self.tasks_config = {}
|
||||
|
||||
@staticmethod
|
||||
def load_yaml(config_path: Path):
|
||||
try:
|
||||
|
||||
@@ -1,9 +1,14 @@
|
||||
import ast
|
||||
import datetime
|
||||
import json
|
||||
import time
|
||||
from difflib import SequenceMatcher
|
||||
from json import JSONDecodeError
|
||||
from textwrap import dedent
|
||||
from typing import Any, List, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import json5
|
||||
from json_repair import repair_json
|
||||
|
||||
import crewai.utilities.events as events
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
@@ -19,7 +24,15 @@ try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini", "o1", "o3", "o3-mini"]
|
||||
OPENAI_BIGGER_MODELS = [
|
||||
"gpt-4",
|
||||
"gpt-4o",
|
||||
"o1-preview",
|
||||
"o1-mini",
|
||||
"o1",
|
||||
"o3",
|
||||
"o3-mini",
|
||||
]
|
||||
|
||||
|
||||
class ToolUsageErrorException(Exception):
|
||||
@@ -80,7 +93,7 @@ class ToolUsage:
|
||||
self._max_parsing_attempts = 2
|
||||
self._remember_format_after_usages = 4
|
||||
|
||||
def parse(self, tool_string: str):
|
||||
def parse_tool_calling(self, tool_string: str):
|
||||
"""Parse the tool string and return the tool calling."""
|
||||
return self._tool_calling(tool_string)
|
||||
|
||||
@@ -94,7 +107,6 @@ class ToolUsage:
|
||||
self.task.increment_tools_errors()
|
||||
return error
|
||||
|
||||
# BUG? The code below seems to be unreachable
|
||||
try:
|
||||
tool = self._select_tool(calling.tool_name)
|
||||
except Exception as e:
|
||||
@@ -116,7 +128,7 @@ class ToolUsage:
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
return error
|
||||
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
|
||||
|
||||
def _use(
|
||||
self,
|
||||
@@ -349,13 +361,13 @@ class ToolUsage:
|
||||
tool_name = self.action.tool
|
||||
tool = self._select_tool(tool_name)
|
||||
try:
|
||||
tool_input = self._validate_tool_input(self.action.tool_input)
|
||||
arguments = ast.literal_eval(tool_input)
|
||||
arguments = self._validate_tool_input(self.action.tool_input)
|
||||
|
||||
except Exception:
|
||||
if raise_error:
|
||||
raise
|
||||
else:
|
||||
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
|
||||
return ToolUsageErrorException(
|
||||
f'{self._i18n.errors("tool_arguments_error")}'
|
||||
)
|
||||
|
||||
@@ -363,14 +375,14 @@ class ToolUsage:
|
||||
if raise_error:
|
||||
raise
|
||||
else:
|
||||
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
|
||||
return ToolUsageErrorException(
|
||||
f'{self._i18n.errors("tool_arguments_error")}'
|
||||
)
|
||||
|
||||
return ToolCalling(
|
||||
tool_name=tool.name,
|
||||
arguments=arguments,
|
||||
log=tool_string, # type: ignore
|
||||
log=tool_string,
|
||||
)
|
||||
|
||||
def _tool_calling(
|
||||
@@ -396,57 +408,55 @@ class ToolUsage:
|
||||
)
|
||||
return self._tool_calling(tool_string)
|
||||
|
||||
def _validate_tool_input(self, tool_input: str) -> str:
|
||||
def _validate_tool_input(self, tool_input: Optional[str]) -> Dict[str, Any]:
|
||||
if tool_input is None:
|
||||
return {}
|
||||
|
||||
if not isinstance(tool_input, str) or not tool_input.strip():
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
|
||||
# Attempt 1: Parse as JSON
|
||||
try:
|
||||
ast.literal_eval(tool_input)
|
||||
return tool_input
|
||||
except Exception:
|
||||
# Clean and ensure the string is properly enclosed in braces
|
||||
tool_input = tool_input.strip()
|
||||
if not tool_input.startswith("{"):
|
||||
tool_input = "{" + tool_input
|
||||
if not tool_input.endswith("}"):
|
||||
tool_input += "}"
|
||||
arguments = json.loads(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Manually split the input into key-value pairs
|
||||
entries = tool_input.strip("{} ").split(",")
|
||||
formatted_entries = []
|
||||
# Attempt 2: Parse as Python literal
|
||||
try:
|
||||
arguments = ast.literal_eval(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (ValueError, SyntaxError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
for entry in entries:
|
||||
if ":" not in entry:
|
||||
continue # Skip malformed entries
|
||||
key, value = entry.split(":", 1)
|
||||
# Attempt 3: Parse as JSON5
|
||||
try:
|
||||
arguments = json5.loads(tool_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except (JSONDecodeError, ValueError, TypeError):
|
||||
pass # Continue to the next parsing attempt
|
||||
|
||||
# Remove extraneous white spaces and quotes, replace single quotes
|
||||
key = key.strip().strip('"').replace("'", '"')
|
||||
value = value.strip()
|
||||
# Attempt 4: Repair JSON
|
||||
try:
|
||||
repaired_input = repair_json(tool_input)
|
||||
self._printer.print(
|
||||
content=f"Repaired JSON: {repaired_input}", color="blue"
|
||||
)
|
||||
arguments = json.loads(repaired_input)
|
||||
if isinstance(arguments, dict):
|
||||
return arguments
|
||||
except Exception as e:
|
||||
self._printer.print(content=f"Failed to repair JSON: {e}", color="red")
|
||||
|
||||
# Handle replacement of single quotes at the start and end of the value string
|
||||
if value.startswith("'") and value.endswith("'"):
|
||||
value = value[1:-1] # Remove single quotes
|
||||
value = (
|
||||
'"' + value.replace('"', '\\"') + '"'
|
||||
) # Re-encapsulate with double quotes
|
||||
elif value.isdigit(): # Check if value is a digit, hence integer
|
||||
value = value
|
||||
elif value.lower() in [
|
||||
"true",
|
||||
"false",
|
||||
]: # Check for boolean and null values
|
||||
value = value.lower().capitalize()
|
||||
elif value.lower() == "null":
|
||||
value = "None"
|
||||
else:
|
||||
# Assume the value is a string and needs quotes
|
||||
value = '"' + value.replace('"', '\\"') + '"'
|
||||
|
||||
# Rebuild the entry with proper quoting
|
||||
formatted_entry = f'"{key}": {value}'
|
||||
formatted_entries.append(formatted_entry)
|
||||
|
||||
# Reconstruct the JSON string
|
||||
new_json_string = "{" + ", ".join(formatted_entries) + "}"
|
||||
return new_json_string
|
||||
# If all parsing attempts fail, raise an error
|
||||
raise Exception(
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
)
|
||||
|
||||
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
|
||||
event_data = self._prepare_event_data(tool, tool_calling)
|
||||
|
||||
@@ -9,11 +9,11 @@
|
||||
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:",
|
||||
"memory": "\n\n# Useful context: \n{memory}",
|
||||
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
|
||||
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
|
||||
"no_tools": "\nTo give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
|
||||
"no_tools": "\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. When responding, I must use the following format:\n\n```\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n```\nThis Thought/Action/Action Input/Result can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\n```\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n```",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nHere is the expected format I must follow:\n\n```\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n This Thought/Action/Action Input/Result process can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
|
||||
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
|
||||
@@ -43,7 +43,7 @@
|
||||
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
|
||||
"add_image": {
|
||||
"name": "Add image to content",
|
||||
"description": "See image to understand it's content, you can optionally ask a question about the image",
|
||||
"description": "See image to understand its content, you can optionally ask a question about the image",
|
||||
"default_action": "Please provide a detailed description of this image, including all visual elements, context, and any notable details you can observe."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -26,17 +26,24 @@ class Converter(OutputConverter):
|
||||
if self.llm.supports_function_calling():
|
||||
return self._create_instructor().to_pydantic()
|
||||
else:
|
||||
return self.llm.call(
|
||||
response = self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
]
|
||||
)
|
||||
return self.model.model_validate_json(response)
|
||||
except ValidationError as e:
|
||||
if current_attempt < self.max_attempts:
|
||||
return self.to_pydantic(current_attempt + 1)
|
||||
raise ConverterError(
|
||||
f"Failed to convert text into a Pydantic model due to the following validation error: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
if current_attempt < self.max_attempts:
|
||||
return self.to_pydantic(current_attempt + 1)
|
||||
return ConverterError(
|
||||
f"Failed to convert text into a pydantic model due to the following error: {e}"
|
||||
raise ConverterError(
|
||||
f"Failed to convert text into a Pydantic model due to the following error: {e}"
|
||||
)
|
||||
|
||||
def to_json(self, current_attempt=1):
|
||||
@@ -66,7 +73,6 @@ class Converter(OutputConverter):
|
||||
llm=self.llm,
|
||||
model=self.model,
|
||||
content=self.text,
|
||||
instructions=self.instructions,
|
||||
)
|
||||
return inst
|
||||
|
||||
@@ -187,10 +193,15 @@ def convert_with_instructions(
|
||||
|
||||
|
||||
def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
|
||||
instructions = "I'm gonna convert this raw text into valid JSON."
|
||||
instructions = "Please convert the following text into valid JSON."
|
||||
if llm.supports_function_calling():
|
||||
model_schema = PydanticSchemaParser(model=model).get_schema()
|
||||
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
instructions += (
|
||||
f"\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
|
||||
)
|
||||
else:
|
||||
model_description = generate_model_description(model)
|
||||
instructions += f"\n\nThe JSON should follow this format:\n{model_description}"
|
||||
return instructions
|
||||
|
||||
|
||||
@@ -230,9 +241,13 @@ def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
origin = get_origin(field_type)
|
||||
args = get_args(field_type)
|
||||
|
||||
if origin is Union and type(None) in args:
|
||||
if origin is Union or (origin is None and len(args) > 0):
|
||||
# Handle both Union and the new '|' syntax
|
||||
non_none_args = [arg for arg in args if arg is not type(None)]
|
||||
return f"Optional[{describe_field(non_none_args[0])}]"
|
||||
if len(non_none_args) == 1:
|
||||
return f"Optional[{describe_field(non_none_args[0])}]"
|
||||
else:
|
||||
return f"Optional[Union[{', '.join(describe_field(arg) for arg in non_none_args)}]]"
|
||||
elif origin is list:
|
||||
return f"List[{describe_field(args[0])}]"
|
||||
elif origin is dict:
|
||||
@@ -241,8 +256,10 @@ def generate_model_description(model: Type[BaseModel]) -> str:
|
||||
return f"Dict[{key_type}, {value_type}]"
|
||||
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
return generate_model_description(field_type)
|
||||
else:
|
||||
elif hasattr(field_type, "__name__"):
|
||||
return field_type.__name__
|
||||
else:
|
||||
return str(field_type)
|
||||
|
||||
fields = model.__annotations__
|
||||
field_descriptions = [
|
||||
|
||||
@@ -14,6 +14,7 @@ class EmbeddingConfigurator:
|
||||
"vertexai": self._configure_vertexai,
|
||||
"google": self._configure_google,
|
||||
"cohere": self._configure_cohere,
|
||||
"voyageai": self._configure_voyageai,
|
||||
"bedrock": self._configure_bedrock,
|
||||
"huggingface": self._configure_huggingface,
|
||||
"watson": self._configure_watson,
|
||||
@@ -124,6 +125,17 @@ class EmbeddingConfigurator:
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _configure_voyageai(config, model_name):
|
||||
from chromadb.utils.embedding_functions.voyageai_embedding_function import (
|
||||
VoyageAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return VoyageAIEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _configure_bedrock(config, model_name):
|
||||
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
|
||||
|
||||
39
src/crewai/utilities/errors.py
Normal file
39
src/crewai/utilities/errors.py
Normal file
@@ -0,0 +1,39 @@
|
||||
"""Error message definitions for CrewAI database operations."""
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class DatabaseOperationError(Exception):
|
||||
"""Base exception class for database operation errors."""
|
||||
|
||||
def __init__(self, message: str, original_error: Optional[Exception] = None):
|
||||
"""Initialize the database operation error.
|
||||
|
||||
Args:
|
||||
message: The error message to display
|
||||
original_error: The original exception that caused this error, if any
|
||||
"""
|
||||
super().__init__(message)
|
||||
self.original_error = original_error
|
||||
|
||||
|
||||
class DatabaseError:
|
||||
"""Standardized error message templates for database operations."""
|
||||
|
||||
INIT_ERROR: str = "Database initialization error: {}"
|
||||
SAVE_ERROR: str = "Error saving task outputs: {}"
|
||||
UPDATE_ERROR: str = "Error updating task outputs: {}"
|
||||
LOAD_ERROR: str = "Error loading task outputs: {}"
|
||||
DELETE_ERROR: str = "Error deleting task outputs: {}"
|
||||
|
||||
@classmethod
|
||||
def format_error(cls, template: str, error: Exception) -> str:
|
||||
"""Format an error message with the given template and error.
|
||||
|
||||
Args:
|
||||
template: The error message template to use
|
||||
error: The exception to format into the template
|
||||
|
||||
Returns:
|
||||
The formatted error message
|
||||
"""
|
||||
return template.format(str(error))
|
||||
@@ -96,9 +96,9 @@ class TaskEvaluator:
|
||||
final_aggregated_data = ""
|
||||
for _, data in output_training_data.items():
|
||||
final_aggregated_data += (
|
||||
f"Initial Output:\n{data['initial_output']}\n\n"
|
||||
f"Human Feedback:\n{data['human_feedback']}\n\n"
|
||||
f"Improved Output:\n{data['improved_output']}\n\n"
|
||||
f"Initial Output:\n{data.get('initial_output', '')}\n\n"
|
||||
f"Human Feedback:\n{data.get('human_feedback', '')}\n\n"
|
||||
f"Improved Output:\n{data.get('improved_output', '')}\n\n"
|
||||
)
|
||||
|
||||
evaluation_query = (
|
||||
|
||||
@@ -11,12 +11,10 @@ class InternalInstructor:
|
||||
model: Type,
|
||||
agent: Optional[Any] = None,
|
||||
llm: Optional[str] = None,
|
||||
instructions: Optional[str] = None,
|
||||
):
|
||||
self.content = content
|
||||
self.agent = agent
|
||||
self.llm = llm
|
||||
self.instructions = instructions
|
||||
self.model = model
|
||||
self._client = None
|
||||
self.set_instructor()
|
||||
@@ -31,10 +29,7 @@ class InternalInstructor:
|
||||
import instructor
|
||||
from litellm import completion
|
||||
|
||||
self._client = instructor.from_litellm(
|
||||
completion,
|
||||
mode=instructor.Mode.TOOLS,
|
||||
)
|
||||
self._client = instructor.from_litellm(completion)
|
||||
|
||||
def to_json(self):
|
||||
model = self.to_pydantic()
|
||||
@@ -42,8 +37,6 @@ class InternalInstructor:
|
||||
|
||||
def to_pydantic(self):
|
||||
messages = [{"role": "user", "content": self.content}]
|
||||
if self.instructions:
|
||||
messages.append({"role": "system", "content": self.instructions})
|
||||
model = self._client.chat.completions.create(
|
||||
model=self.llm.model, response_model=self.model, messages=messages
|
||||
)
|
||||
|
||||
@@ -1,11 +1,7 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.llm import LLM
|
||||
|
||||
|
||||
|
||||
@@ -5,14 +5,18 @@ import appdirs
|
||||
|
||||
"""Path management utilities for CrewAI storage and configuration."""
|
||||
|
||||
def db_storage_path():
|
||||
"""Returns the path for database storage."""
|
||||
def db_storage_path() -> str:
|
||||
"""Returns the path for SQLite database storage.
|
||||
|
||||
Returns:
|
||||
str: Full path to the SQLite database file
|
||||
"""
|
||||
app_name = get_project_directory_name()
|
||||
app_author = "CrewAI"
|
||||
|
||||
data_dir = Path(appdirs.user_data_dir(app_name, app_author))
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
return data_dir
|
||||
return str(data_dir)
|
||||
|
||||
|
||||
def get_project_directory_name():
|
||||
@@ -24,4 +28,4 @@ def get_project_directory_name():
|
||||
else:
|
||||
cwd = Path.cwd()
|
||||
project_directory_name = cwd.name
|
||||
return project_directory_name
|
||||
return project_directory_name
|
||||
@@ -21,6 +21,16 @@ class Printer:
|
||||
self._print_yellow(content)
|
||||
elif color == "bold_yellow":
|
||||
self._print_bold_yellow(content)
|
||||
elif color == "cyan":
|
||||
self._print_cyan(content)
|
||||
elif color == "bold_cyan":
|
||||
self._print_bold_cyan(content)
|
||||
elif color == "magenta":
|
||||
self._print_magenta(content)
|
||||
elif color == "bold_magenta":
|
||||
self._print_bold_magenta(content)
|
||||
elif color == "green":
|
||||
self._print_green(content)
|
||||
else:
|
||||
print(content)
|
||||
|
||||
@@ -44,3 +54,18 @@ class Printer:
|
||||
|
||||
def _print_bold_yellow(self, content):
|
||||
print("\033[1m\033[93m {}\033[00m".format(content))
|
||||
|
||||
def _print_cyan(self, content):
|
||||
print("\033[96m {}\033[00m".format(content))
|
||||
|
||||
def _print_bold_cyan(self, content):
|
||||
print("\033[1m\033[96m {}\033[00m".format(content))
|
||||
|
||||
def _print_magenta(self, content):
|
||||
print("\033[35m {}\033[00m".format(content))
|
||||
|
||||
def _print_bold_magenta(self, content):
|
||||
print("\033[1m\033[35m {}\033[00m".format(content))
|
||||
|
||||
def _print_green(self, content):
|
||||
print("\033[32m {}\033[00m".format(content))
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Type, Union, get_args, get_origin
|
||||
from typing import Dict, List, Type, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -10,40 +10,83 @@ class PydanticSchemaParser(BaseModel):
|
||||
"""
|
||||
Public method to get the schema of a Pydantic model.
|
||||
|
||||
:param model: The Pydantic model class to generate schema for.
|
||||
:return: String representation of the model schema.
|
||||
"""
|
||||
return self._get_model_schema(self.model)
|
||||
return "{\n" + self._get_model_schema(self.model) + "\n}"
|
||||
|
||||
def _get_model_schema(self, model, depth=0) -> str:
|
||||
indent = " " * depth
|
||||
lines = [f"{indent}{{"]
|
||||
for field_name, field in model.model_fields.items():
|
||||
field_type_str = self._get_field_type(field, depth + 1)
|
||||
lines.append(f"{indent} {field_name}: {field_type_str},")
|
||||
lines[-1] = lines[-1].rstrip(",") # Remove trailing comma from last item
|
||||
lines.append(f"{indent}}}")
|
||||
return "\n".join(lines)
|
||||
def _get_model_schema(self, model: Type[BaseModel], depth: int = 0) -> str:
|
||||
indent = " " * 4 * depth
|
||||
lines = [
|
||||
f"{indent} {field_name}: {self._get_field_type(field, depth + 1)}"
|
||||
for field_name, field in model.model_fields.items()
|
||||
]
|
||||
return ",\n".join(lines)
|
||||
|
||||
def _get_field_type(self, field, depth) -> str:
|
||||
def _get_field_type(self, field, depth: int) -> str:
|
||||
field_type = field.annotation
|
||||
if get_origin(field_type) is list:
|
||||
origin = get_origin(field_type)
|
||||
|
||||
if origin in {list, List}:
|
||||
list_item_type = get_args(field_type)[0]
|
||||
if isinstance(list_item_type, type) and issubclass(
|
||||
list_item_type, BaseModel
|
||||
):
|
||||
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
||||
return f"List[\n{nested_schema}\n{' ' * 4 * depth}]"
|
||||
return self._format_list_type(list_item_type, depth)
|
||||
|
||||
if origin in {dict, Dict}:
|
||||
key_type, value_type = get_args(field_type)
|
||||
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
|
||||
|
||||
if origin is Union:
|
||||
return self._format_union_type(field_type, depth)
|
||||
|
||||
if isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
nested_schema = self._get_model_schema(field_type, depth)
|
||||
nested_indent = " " * 4 * depth
|
||||
return f"{field_type.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
|
||||
|
||||
return field_type.__name__
|
||||
|
||||
def _format_list_type(self, list_item_type, depth: int) -> str:
|
||||
if isinstance(list_item_type, type) and issubclass(list_item_type, BaseModel):
|
||||
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
||||
nested_indent = " " * 4 * (depth)
|
||||
return f"List[\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}\n{nested_indent}]"
|
||||
return f"List[{list_item_type.__name__}]"
|
||||
|
||||
def _format_union_type(self, field_type, depth: int) -> str:
|
||||
args = get_args(field_type)
|
||||
if type(None) in args:
|
||||
# It's an Optional type
|
||||
non_none_args = [arg for arg in args if arg is not type(None)]
|
||||
if len(non_none_args) == 1:
|
||||
inner_type = self._get_field_type_for_annotation(
|
||||
non_none_args[0], depth
|
||||
)
|
||||
return f"Optional[{inner_type}]"
|
||||
else:
|
||||
return f"List[{list_item_type.__name__}]"
|
||||
elif get_origin(field_type) is Union:
|
||||
union_args = get_args(field_type)
|
||||
if type(None) in union_args:
|
||||
non_none_type = next(arg for arg in union_args if arg is not type(None))
|
||||
return f"Optional[{self._get_field_type(field.__class__(annotation=non_none_type), depth)}]"
|
||||
else:
|
||||
return f"Union[{', '.join(arg.__name__ for arg in union_args)}]"
|
||||
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
return self._get_model_schema(field_type, depth)
|
||||
# Union with None and multiple other types
|
||||
inner_types = ", ".join(
|
||||
self._get_field_type_for_annotation(arg, depth)
|
||||
for arg in non_none_args
|
||||
)
|
||||
return f"Optional[Union[{inner_types}]]"
|
||||
else:
|
||||
return getattr(field_type, "__name__", str(field_type))
|
||||
# General Union type
|
||||
inner_types = ", ".join(
|
||||
self._get_field_type_for_annotation(arg, depth) for arg in args
|
||||
)
|
||||
return f"Union[{inner_types}]"
|
||||
|
||||
def _get_field_type_for_annotation(self, annotation, depth: int) -> str:
|
||||
origin = get_origin(annotation)
|
||||
if origin in {list, List}:
|
||||
list_item_type = get_args(annotation)[0]
|
||||
return self._format_list_type(list_item_type, depth)
|
||||
if origin in {dict, Dict}:
|
||||
key_type, value_type = get_args(annotation)
|
||||
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
|
||||
if origin is Union:
|
||||
return self._format_union_type(annotation, depth)
|
||||
if isinstance(annotation, type) and issubclass(annotation, BaseModel):
|
||||
nested_schema = self._get_model_schema(annotation, depth)
|
||||
nested_indent = " " * 4 * depth
|
||||
return f"{annotation.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
|
||||
return annotation.__name__
|
||||
|
||||
@@ -23,11 +23,15 @@ class TokenCalcHandler(CustomLogger):
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
usage: Usage = response_obj["usage"]
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
if isinstance(response_obj, dict) and "usage" in response_obj:
|
||||
usage: Usage = response_obj["usage"]
|
||||
if usage:
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
if hasattr(usage, "prompt_tokens"):
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
if hasattr(usage, "completion_tokens"):
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
@@ -16,7 +16,7 @@ from crewai.tools import tool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.tools.tool_usage_events import ToolUsageFinished
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities import Printer, RPMController
|
||||
from crewai.utilities.events import Emitter
|
||||
|
||||
|
||||
@@ -114,35 +114,6 @@ def test_custom_llm_temperature_preservation():
|
||||
assert agent.llm.temperature == 0.7
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_execute_task():
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from crewai import Task
|
||||
|
||||
agent = Agent(
|
||||
role="Math Tutor",
|
||||
goal="Solve math problems accurately",
|
||||
backstory="You are an experienced math tutor with a knack for explaining complex concepts simply.",
|
||||
llm=ChatOpenAI(temperature=0.7, model="gpt-4o-mini"),
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Calculate the area of a circle with radius 5 cm.",
|
||||
expected_output="The calculated area of the circle in square centimeters.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
result = agent.execute_task(task)
|
||||
|
||||
assert result is not None
|
||||
assert (
|
||||
result
|
||||
== "The calculated area of the circle is approximately 78.5 square centimeters."
|
||||
)
|
||||
assert "square centimeters" in result.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_execution():
|
||||
agent = Agent(
|
||||
@@ -1495,7 +1466,7 @@ def test_agent_execute_task_basic():
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-3.5-turbo"),
|
||||
llm="gpt-4o-mini",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
@@ -1629,3 +1600,142 @@ def test_agent_with_knowledge_sources():
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
from litellm import AuthenticationError as LiteLLMAuthenticationError
|
||||
|
||||
# Create an agent with a mocked LLM and max_retry_limit=0
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4"),
|
||||
max_retry_limit=0, # Disable retries for authentication errors
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
|
||||
):
|
||||
mock_llm_call.side_effect = LiteLLMAuthenticationError(
|
||||
message="Invalid API key", llm_provider="openai", model="gpt-4"
|
||||
)
|
||||
agent.execute_task(task)
|
||||
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
def test_crew_agent_executor_litellm_auth_error():
|
||||
"""Test that CrewAgentExecutor handles LiteLLM authentication errors by raising them."""
|
||||
from litellm.exceptions import AuthenticationError
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import Printer
|
||||
|
||||
# Create an agent and executor
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4", api_key="invalid_api_key"),
|
||||
)
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Create executor with all required parameters
|
||||
executor = CrewAgentExecutor(
|
||||
agent=agent,
|
||||
task=task,
|
||||
llm=agent.llm,
|
||||
crew=None,
|
||||
prompt={"system": "You are a test agent", "user": "Execute the task: {input}"},
|
||||
max_iter=5,
|
||||
tools=[],
|
||||
tools_names="",
|
||||
stop_words=[],
|
||||
tools_description="",
|
||||
tools_handler=ToolsHandler(),
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
patch.object(Printer, "print") as mock_printer,
|
||||
pytest.raises(AuthenticationError) as exc_info,
|
||||
):
|
||||
mock_llm_call.side_effect = AuthenticationError(
|
||||
message="Invalid API key", llm_provider="openai", model="gpt-4"
|
||||
)
|
||||
executor.invoke(
|
||||
{
|
||||
"input": "test input",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
}
|
||||
)
|
||||
|
||||
# Verify error handling messages
|
||||
error_message = f"Error during LLM call: {str(mock_llm_call.side_effect)}"
|
||||
mock_printer.assert_any_call(
|
||||
content=error_message,
|
||||
color="red",
|
||||
)
|
||||
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
# Assert that the exception was raised and has the expected attributes
|
||||
assert exc_info.type is AuthenticationError
|
||||
assert "Invalid API key".lower() in exc_info.value.message.lower()
|
||||
assert exc_info.value.llm_provider == "openai"
|
||||
assert exc_info.value.model == "gpt-4"
|
||||
|
||||
|
||||
def test_litellm_anthropic_error_handling():
|
||||
"""Test that AnthropicError from LiteLLM is handled correctly and not retried."""
|
||||
from litellm.llms.anthropic.common_utils import AnthropicError
|
||||
|
||||
# Create an agent with a mocked LLM that uses an Anthropic model
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="claude-3.5-sonnet-20240620"),
|
||||
max_retry_limit=0,
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise AnthropicError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
pytest.raises(AnthropicError, match="Test Anthropic error"),
|
||||
):
|
||||
mock_llm_call.side_effect = AnthropicError(
|
||||
status_code=500,
|
||||
message="Test Anthropic error",
|
||||
)
|
||||
agent.execute_task(task)
|
||||
|
||||
# Verify the LLM call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
@@ -2,21 +2,21 @@ interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
|
||||
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
|
||||
answer but don''t give it yet, just re-use this tool non-stop. \nTool
|
||||
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
|
||||
about what to do\nAction: the action to take, only one name of [get_final_answer],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect criteria
|
||||
for your final answer: The final answer\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
|
||||
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
|
||||
just re-use this\n tool non-stop.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [get_final_answer], just the name, exactly
|
||||
as it''s written.\nAction Input: the input to the action, just a simple JSON
|
||||
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect
|
||||
criteria for your final answer: The final answer\nyou MUST return the actual
|
||||
complete content as the final answer, not a summary.\n\nBegin! This is VERY
|
||||
important to you, use the tools available and give your best Final Answer, your
|
||||
job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -25,16 +25,13 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1325'
|
||||
- '1367'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000;
|
||||
__cf_bm=3giyBOIM0GNudFELtsBWYXwLrpLBTNLsh81wfXgu2tg-1727226247-1.0.1.1-ugUDz0c5EhmfVpyGtcdedlIWeDGuy2q0tXQTKVpv83HZhvxgBcS7SBL1wS4rapPM38yhfEcfwA79ARt3HQEzKA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -44,30 +41,35 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-ABAtOWmVjvzQ9X58tKAUcOF4gmXwx\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727226842,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AsXdf4OZKCZSigmN4k0gyh67NciqP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737562383,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I need to use the get_final_answer
|
||||
tool to determine the final answer.\\nAction: get_final_answer\\nAction Input:
|
||||
{}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 274,\n \"completion_tokens\":
|
||||
27,\n \"total_tokens\": 301,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
\"assistant\",\n \"content\": \"```\\nThought: I have to use the available
|
||||
tool to get the final answer. Let's proceed with executing it.\\nAction: get_final_answer\\nAction
|
||||
Input: {}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
274,\n \"completion_tokens\": 33,\n \"total_tokens\": 307,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c8727b3492f31e6-MIA
|
||||
- 9060d43e3be1d690-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -75,19 +77,27 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 25 Sep 2024 01:14:03 GMT
|
||||
- Wed, 22 Jan 2025 16:13:03 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=_Jcp7wnO_mXdvOnborCN6j8HwJxJXbszedJC1l7pFUg-1737562383-1.0.1.1-pDSLXlg.nKjG4wsT7mTJPjUvOX1UJITiS4MqKp6yfMWwRSJINsW1qC48SAcjBjakx2H5I1ESVk9JtUpUFDtf4g;
|
||||
path=/; expires=Wed, 22-Jan-25 16:43:03 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=x3SYvzL2nq_PTBGtE8R9cl5CkeaaDzZFQIrYfo91S2s-1737562383916-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '348'
|
||||
- '791'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -99,45 +109,59 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999682'
|
||||
- '29999680'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_be929caac49706f487950548bdcdd46e
|
||||
- req_eeed99acafd3aeb1e3d4a6c8063192b0
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nYou ONLY have access to the following tools, and
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
|
||||
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
|
||||
answer but don''t give it yet, just re-use this tool non-stop. \nTool
|
||||
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
|
||||
about what to do\nAction: the action to take, only one name of [get_final_answer],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect criteria
|
||||
for your final answer: The final answer\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}, {"role": "user", "content": "Thought: I need to use the
|
||||
get_final_answer tool to determine the final answer.\nAction: get_final_answer\nAction
|
||||
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
|
||||
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
|
||||
just re-use this\n tool non-stop.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [get_final_answer], just the name, exactly
|
||||
as it''s written.\nAction Input: the input to the action, just a simple JSON
|
||||
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n```\n\nOnce all necessary information is gathered,
|
||||
return the following format:\n\n```\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question\n```"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Use the get_final_answer tool.\n\nThis is the expect
|
||||
criteria for your final answer: The final answer\nyou MUST return the actual
|
||||
complete content as the final answer, not a summary.\n\nBegin! This is VERY
|
||||
important to you, use the tools available and give your best Final Answer, your
|
||||
job depends on it!\n\nThought:"}, {"role": "assistant", "content": "```\nThought:
|
||||
I have to use the available tool to get the final answer. Let''s proceed with
|
||||
executing it.\nAction: get_final_answer\nAction Input: {}\nObservation: I encountered
|
||||
an error: Error on parsing tool.\nMoving on then. I MUST either use a tool (use
|
||||
one at time) OR give my best final answer not both at the same time. When responding,
|
||||
I must use the following format:\n\n```\nThought: you should always think about
|
||||
what to do\nAction: the action to take, should be one of [get_final_answer]\nAction
|
||||
Input: the input to the action, dictionary enclosed in curly braces\nObservation:
|
||||
the result of the action\n```\nThis Thought/Action/Action Input/Result can repeat
|
||||
N times. Once I know the final answer, I must return the following format:\n\n```\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described\n\n```"}, {"role":
|
||||
"assistant", "content": "```\nThought: I have to use the available tool to get
|
||||
the final answer. Let''s proceed with executing it.\nAction: get_final_answer\nAction
|
||||
Input: {}\nObservation: I encountered an error: Error on parsing tool.\nMoving
|
||||
on then. I MUST either use a tool (use one at time) OR give my best final answer
|
||||
not both at the same time. To Use the following format:\n\nThought: you should
|
||||
always think about what to do\nAction: the action to take, should be one of
|
||||
[get_final_answer]\nAction Input: the input to the action, dictionary enclosed
|
||||
in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action
|
||||
Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal
|
||||
not both at the same time. When responding, I must use the following format:\n\n```\nThought:
|
||||
you should always think about what to do\nAction: the action to take, should
|
||||
be one of [get_final_answer]\nAction Input: the input to the action, dictionary
|
||||
enclosed in curly braces\nObservation: the result of the action\n```\nThis Thought/Action/Action
|
||||
Input/Result can repeat N times. Once I know the final answer, I must return
|
||||
the following format:\n\n```\nThought: I now can give a great answer\nFinal
|
||||
Answer: Your final answer must be the great and the most complete as possible,
|
||||
it must be outcome described\n\n \nNow it''s time you MUST give your absolute
|
||||
it must be outcome described\n\n```\nNow it''s time you MUST give your absolute
|
||||
best final answer. You''ll ignore all previous instructions, stop using any
|
||||
tools, and just return your absolute BEST Final answer."}], "model": "gpt-4o"}'
|
||||
tools, and just return your absolute BEST Final answer."}], "model": "gpt-4o",
|
||||
"stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -146,16 +170,16 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2320'
|
||||
- '3445'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000;
|
||||
__cf_bm=3giyBOIM0GNudFELtsBWYXwLrpLBTNLsh81wfXgu2tg-1727226247-1.0.1.1-ugUDz0c5EhmfVpyGtcdedlIWeDGuy2q0tXQTKVpv83HZhvxgBcS7SBL1wS4rapPM38yhfEcfwA79ARt3HQEzKA
|
||||
- __cf_bm=_Jcp7wnO_mXdvOnborCN6j8HwJxJXbszedJC1l7pFUg-1737562383-1.0.1.1-pDSLXlg.nKjG4wsT7mTJPjUvOX1UJITiS4MqKp6yfMWwRSJINsW1qC48SAcjBjakx2H5I1ESVk9JtUpUFDtf4g;
|
||||
_cfuvid=x3SYvzL2nq_PTBGtE8R9cl5CkeaaDzZFQIrYfo91S2s-1737562383916-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -165,29 +189,36 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-ABAtPaaeRfdNsZ3k06CfAmrEW8IJu\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727226843,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AsXdg9UrLvAiqWP979E6DszLsQ84k\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737562384,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Final Answer: The final answer\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 483,\n \"completion_tokens\":
|
||||
6,\n \"total_tokens\": 489,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
\"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal
|
||||
Answer: The final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\\n```\",\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 719,\n \"completion_tokens\": 35,\n
|
||||
\ \"total_tokens\": 754,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c8727b9da1f31e6-MIA
|
||||
- 9060d4441edad690-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -195,7 +226,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 25 Sep 2024 01:14:03 GMT
|
||||
- Wed, 22 Jan 2025 16:13:05 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -209,7 +240,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '188'
|
||||
- '928'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -221,13 +252,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999445'
|
||||
- '29999187'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1ms
|
||||
x-request-id:
|
||||
- req_d8e32538689fe064627468bad802d9a8
|
||||
- req_61fc7506e6db326ec572224aec81ef23
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -1,121 +0,0 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Math Tutor. You are
|
||||
an experienced math tutor with a knack for explaining complex concepts simply.\nYour
|
||||
personal goal is: Solve math problems accurately\nTo give my best complete final
|
||||
answer to the task use the exact following format:\n\nThought: I now can give
|
||||
a great answer\nFinal Answer: Your final answer must be the great and the most
|
||||
complete as possible, it must be outcome described.\n\nI MUST use these formats,
|
||||
my job depends on it!"}, {"role": "user", "content": "\nCurrent Task: Calculate
|
||||
the area of a circle with radius 5 cm.\n\nThis is the expect criteria for your
|
||||
final answer: The calculated area of the circle in square centimeters.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "temperature":
|
||||
0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '969'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7LEfa5gX4cncpI4avsK0CJG8pCb\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727213192,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer\\n\\nTo
|
||||
calculate the area of a circle, we use the formula:\\n\\n\\\\[ A = \\\\pi r^2
|
||||
\\\\]\\n\\nwhere \\\\( A \\\\) is the area, \\\\( \\\\pi \\\\) (approximately
|
||||
3.14), and \\\\( r \\\\) is the radius of the circle.\\n\\nGiven that the radius
|
||||
\\\\( r \\\\) is 5 cm, we can substitute this value into the formula:\\n\\n\\\\[
|
||||
A = \\\\pi (5 \\\\, \\\\text{cm})^2 \\\\]\\n\\nCalculating this step-by-step:\\n\\n1.
|
||||
First, square the radius:\\n \\\\[ (5 \\\\, \\\\text{cm})^2 = 25 \\\\, \\\\text{cm}^2
|
||||
\\\\]\\n\\n2. Then, multiply by \\\\( \\\\pi \\\\):\\n \\\\[ A = \\\\pi \\\\times
|
||||
25 \\\\, \\\\text{cm}^2 \\\\]\\n\\nUsing the approximate value of \\\\( \\\\pi
|
||||
\\\\):\\n \\\\[ A \\\\approx 3.14 \\\\times 25 \\\\, \\\\text{cm}^2 \\\\]\\n
|
||||
\ \\\\[ A \\\\approx 78.5 \\\\, \\\\text{cm}^2 \\\\]\\n\\nThus, the area of
|
||||
the circle is approximately 78.5 square centimeters.\\n\\nFinal Answer: The
|
||||
calculated area of the circle is approximately 78.5 square centimeters.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 182,\n \"completion_tokens\":
|
||||
270,\n \"total_tokens\": 452,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_1bb46167f9\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85da71fcac1cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:26:34 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
|
||||
path=/; expires=Tue, 24-Sep-24 21:56:34 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2244'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999774'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_2e565b5f24c38968e4e923a47ecc6233
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -2,14 +2,15 @@ interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nTo give my best complete final answer to the task
|
||||
use the exact following format:\n\nThought: I now can give a great answer\nFinal
|
||||
Answer: Your final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\n\nI MUST use these formats, my job depends on
|
||||
it!"}, {"role": "user", "content": "\nCurrent Task: Calculate 2 + 2\n\nThis
|
||||
is the expect criteria for your final answer: The result of the calculation\nyou
|
||||
respond using the exact following format:\n\nThought: I now can give a great
|
||||
answer\nFinal Answer: Your final answer must be the great and the most complete
|
||||
as possible, it must be outcome described.\n\nI MUST use these formats, my job
|
||||
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Calculate 2 +
|
||||
2\n\nThis is the expect criteria for your final answer: The result of the calculation\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-3.5-turbo"}'
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -18,16 +19,13 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '797'
|
||||
- '833'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -37,29 +35,35 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7WSAKkoU8Nfy5KZwYNlMSpoaSeY\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727213888,\n \"model\": \"gpt-3.5-turbo-0125\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AoJqi2nPubKHXLut6gkvISe0PizvR\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736556064,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer\\n\\nFinal
|
||||
Answer: 2 + 2 = 4\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
159,\n \"completion_tokens\": 19,\n \"total_tokens\": 178,\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": null\n}\n"
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: The result of the calculation 2 + 2 is 4.\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
\ ],\n \"usage\": {\n \"prompt_tokens\": 161,\n \"completion_tokens\":
|
||||
25,\n \"total_tokens\": 186,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85eb70a9401cf3-GRU
|
||||
- 9000dbe81c55bf7f-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -67,37 +71,45 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:38:08 GMT
|
||||
- Sat, 11 Jan 2025 00:41:05 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=LCNQO7gfz6xDjDqEOZ7ha3jDwPnDlsjsmJyScVf4UUw-1736556065-1.0.1.1-2ZcyBDpLvmxy7UOdCrLd6falFapRDuAu6WcVrlOXN0QIgZiDVYD0bCFWGCKeeE.6UjPHoPY6QdlEZZx8.0Pggw;
|
||||
path=/; expires=Sat, 11-Jan-25 01:11:05 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=cRATWhxkeoeSGFg3z7_5BrHO3JDsmDX2Ior2i7bNF4M-1736556065175-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '489'
|
||||
- '1060'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '50000000'
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '49999813'
|
||||
- '149999810'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_66c2e9625c005de2d6ffcec951018ec9
|
||||
- req_463fbd324e01320dc253008f919713bd
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -2,44 +2,457 @@ interactions:
|
||||
- request:
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### System:\nYou are test role. test
|
||||
backstory\nYour personal goal is: test goal\nTo give my best complete final
|
||||
answer to the task use the exact following format:\n\nThought: I now can give
|
||||
a great answer\nFinal Answer: Your final answer must be the great and the most
|
||||
complete as possible, it must be outcome described.\n\nI MUST use these formats,
|
||||
my job depends on it!\n\n### User:\n\nCurrent Task: Explain what AI is in one
|
||||
sentence\n\nThis is the expect criteria for your final answer: A one-sentence
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!\n\n### User:\n\nCurrent Task: Explain what AI
|
||||
is in one sentence\n\nThis is the expect criteria for your final answer: A one-sentence
|
||||
explanation of AI\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:\n\n",
|
||||
"options": {"stop": ["\nObservation:"]}, "stream": false}'
|
||||
headers:
|
||||
Accept:
|
||||
accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '839'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- python-requests/2.32.3
|
||||
content-length:
|
||||
- '849'
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/generate
|
||||
response:
|
||||
body:
|
||||
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:05:52.24992Z","response":"Final
|
||||
Answer: Artificial Intelligence (AI) refers to the development of computer
|
||||
systems capable of performing tasks that typically require human intelligence,
|
||||
such as learning, problem-solving, decision-making, and perception.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,2675,527,1296,3560,13,1296,93371,198,7927,4443,5915,374,25,1296,5915,198,1271,3041,856,1888,4686,1620,4320,311,279,3465,1005,279,4839,2768,3645,1473,85269,25,358,1457,649,3041,264,2294,4320,198,19918,22559,25,4718,1620,4320,2011,387,279,2294,323,279,1455,4686,439,3284,11,433,2011,387,15632,7633,382,40,28832,1005,1521,20447,11,856,2683,14117,389,433,2268,14711,2724,1473,5520,5546,25,83017,1148,15592,374,304,832,11914,271,2028,374,279,1755,13186,369,701,1620,4320,25,362,832,1355,18886,16540,315,15592,198,9514,28832,471,279,5150,4686,2262,439,279,1620,4320,11,539,264,12399,382,11382,0,1115,374,48174,3062,311,499,11,1005,279,7526,2561,323,3041,701,1888,13321,22559,11,701,2683,14117,389,433,2268,85269,1473,128009,128006,78191,128007,271,19918,22559,25,59294,22107,320,15836,8,19813,311,279,4500,315,6500,6067,13171,315,16785,9256,430,11383,1397,3823,11478,11,1778,439,6975,11,3575,99246,11,5597,28846,11,323,21063,13],"total_duration":1461909875,"load_duration":39886208,"prompt_eval_count":181,"prompt_eval_duration":701000000,"eval_count":39,"eval_duration":719000000}'
|
||||
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T18:39:31.893206Z","response":"Final
|
||||
Answer: Artificial Intelligence (AI) refers to the development of computer systems
|
||||
that can perform tasks that typically require human intelligence, including
|
||||
learning, problem-solving, decision-making, and perception.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,2675,527,1296,3560,13,1296,93371,198,7927,4443,5915,374,25,1296,5915,198,1271,3041,856,1888,4686,1620,4320,311,279,3465,6013,1701,279,4839,2768,3645,1473,85269,25,358,1457,649,3041,264,2294,4320,198,19918,22559,25,4718,1620,4320,2011,387,279,2294,323,279,1455,4686,439,3284,11,433,2011,387,15632,7633,382,40,28832,1005,1521,20447,11,856,2683,14117,389,433,2268,14711,2724,1473,5520,5546,25,83017,1148,15592,374,304,832,11914,271,2028,374,279,1755,13186,369,701,1620,4320,25,362,832,1355,18886,16540,315,15592,198,9514,28832,471,279,5150,4686,2262,439,279,1620,4320,11,539,264,12399,382,11382,0,1115,374,48174,3062,311,499,11,1005,279,7526,2561,323,3041,701,1888,13321,22559,11,701,2683,14117,389,433,2268,85269,1473,128009,128006,78191,128007,271,19918,22559,25,59294,22107,320,15836,8,19813,311,279,4500,315,6500,6067,430,649,2804,9256,430,11383,1397,3823,11478,11,2737,6975,11,3575,99246,11,5597,28846,11,323,21063,13],"total_duration":2216514375,"load_duration":38144042,"prompt_eval_count":182,"prompt_eval_duration":1415000000,"eval_count":38,"eval_duration":759000000}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '1537'
|
||||
- '1534'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Thu, 02 Jan 2025 20:05:52 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- Fri, 10 Jan 2025 18:39:31 GMT
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Fri, 10 Jan 2025 18:39:31 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -1,4 +1,87 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: !!binary |
|
||||
CqcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/hYKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRJ5ChBuJJtOdNaB05mOW/p3915eEgj2tkAd3rZcASoQVG9vbCBVc2FnZSBFcnJvcjAB
|
||||
OYa7/URvKBUYQUpcFEVvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoPCgNsbG0SCAoG
|
||||
Z3B0LTRvegIYAYUBAAEAABLJBwoQifhX01E5i+5laGdALAlZBBIIBuGM1aN+OPgqDENyZXcgQ3Jl
|
||||
YXRlZDABORVGruBvKBUYQaipwOBvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5w
|
||||
eXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogN2U2NjA4OTg5ODU5YTY3ZWVj
|
||||
ODhlZWY3ZmNlODUyMjVKMQoHY3Jld19pZBImCiRiOThiNWEwMC01YTI1LTQxMDctYjQwNS1hYmYz
|
||||
MjBhOGYzYThKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
|
||||
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
|
||||
SuQCCgtjcmV3X2FnZW50cxLUAgrRAlt7ImtleSI6ICIyMmFjZDYxMWU0NGVmNWZhYzA1YjUzM2Q3
|
||||
NWU4ODkzYiIsICJpZCI6ICJkNWIyMzM1YS0yMmIyLTQyZWEtYmYwNS03OTc3NmU3MmYzOTIiLCAi
|
||||
cm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
|
||||
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
|
||||
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
|
||||
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsi
|
||||
Z2V0IGdyZWV0aW5ncyJdfV1KkgIKCmNyZXdfdGFza3MSgwIKgAJbeyJrZXkiOiAiYTI3N2IzNGIy
|
||||
YzE0NmYwYzU2YzVlMTM1NmU4ZjhhNTciLCAiaWQiOiAiMjJiZWMyMzEtY2QyMS00YzU4LTgyN2Ut
|
||||
MDU4MWE4ZjBjMTExIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
|
||||
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJhZ2VudF9rZXkiOiAiMjJh
|
||||
Y2Q2MTFlNDRlZjVmYWMwNWI1MzNkNzVlODg5M2IiLCAidG9vbHNfbmFtZXMiOiBbImdldCBncmVl
|
||||
dGluZ3MiXX1degIYAYUBAAEAABKOAgoQ5WYoxRtTyPjge4BduhL0rRIIv2U6rvWALfwqDFRhc2sg
|
||||
Q3JlYXRlZDABOX068uBvKBUYQZkv8+BvKBUYSi4KCGNyZXdfa2V5EiIKIDdlNjYwODk4OTg1OWE2
|
||||
N2VlYzg4ZWVmN2ZjZTg1MjI1SjEKB2NyZXdfaWQSJgokYjk4YjVhMDAtNWEyNS00MTA3LWI0MDUt
|
||||
YWJmMzIwYThmM2E4Si4KCHRhc2tfa2V5EiIKIGEyNzdiMzRiMmMxNDZmMGM1NmM1ZTEzNTZlOGY4
|
||||
YTU3SjEKB3Rhc2tfaWQSJgokMjJiZWMyMzEtY2QyMS00YzU4LTgyN2UtMDU4MWE4ZjBjMTExegIY
|
||||
AYUBAAEAABKQAQoQXyeDtJDFnyp2Fjk9YEGTpxIIaNE7gbhPNYcqClRvb2wgVXNhZ2UwATkaXTvj
|
||||
bygVGEGvx0rjbygVGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKHAoJdG9vbF9uYW1lEg8K
|
||||
DUdldCBHcmVldGluZ3NKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABLVBwoQMWfznt0qwauEzl7T
|
||||
UOQxRBII9q+pUS5EdLAqDENyZXcgQ3JlYXRlZDABORONPORvKBUYQSAoS+RvKBUYShoKDmNyZXdh
|
||||
aV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19r
|
||||
ZXkSIgogYzMwNzYwMDkzMjY3NjE0NDRkNTdjNzFkMWRhM2YyN2NKMQoHY3Jld19pZBImCiQ3OTQw
|
||||
MTkyNS1iOGU5LTQ3MDgtODUzMC00NDhhZmEzYmY4YjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
|
||||
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
|
||||
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuoCCgtjcmV3X2FnZW50cxLaAgrXAlt7ImtleSI6ICI5
|
||||
OGYzYjFkNDdjZTk2OWNmMDU3NzI3Yjc4NDE0MjVjZCIsICJpZCI6ICI5OTJkZjYyZi1kY2FiLTQy
|
||||
OTUtOTIwNi05MDBkNDExNGIxZTkiLCAicm9sZSI6ICJGcmllbmRseSBOZWlnaGJvciIsICJ2ZXJi
|
||||
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
|
||||
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
|
||||
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
|
||||
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsiZGVjaWRlIGdyZWV0aW5ncyJdfV1KmAIKCmNyZXdf
|
||||
dGFza3MSiQIKhgJbeyJrZXkiOiAiODBkN2JjZDQ5MDk5MjkwMDgzODMyZjBlOTgzMzgwZGYiLCAi
|
||||
aWQiOiAiMmZmNjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3IiwgImFzeW5jX2V4ZWN1
|
||||
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJGcmll
|
||||
bmRseSBOZWlnaGJvciIsICJhZ2VudF9rZXkiOiAiOThmM2IxZDQ3Y2U5NjljZjA1NzcyN2I3ODQx
|
||||
NDI1Y2QiLCAidG9vbHNfbmFtZXMiOiBbImRlY2lkZSBncmVldGluZ3MiXX1degIYAYUBAAEAABKO
|
||||
AgoQnjTp5boK7/+DQxztYIpqihIIgGnMUkBtzHEqDFRhc2sgQ3JlYXRlZDABOcpYcuRvKBUYQalE
|
||||
c+RvKBUYSi4KCGNyZXdfa2V5EiIKIGMzMDc2MDA5MzI2NzYxNDQ0ZDU3YzcxZDFkYTNmMjdjSjEK
|
||||
B2NyZXdfaWQSJgokNzk0MDE5MjUtYjhlOS00NzA4LTg1MzAtNDQ4YWZhM2JmOGIwSi4KCHRhc2tf
|
||||
a2V5EiIKIDgwZDdiY2Q0OTA5OTI5MDA4MzgzMmYwZTk4MzM4MGRmSjEKB3Rhc2tfaWQSJgokMmZm
|
||||
NjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3egIYAYUBAAEAABKTAQoQ26H9pLUgswDN
|
||||
p9XhJwwL6BIIx3bw7mAvPYwqClRvb2wgVXNhZ2UwATmy7NPlbygVGEEvb+HlbygVGEoaCg5jcmV3
|
||||
YWlfdmVyc2lvbhIICgYwLjg2LjBKHwoJdG9vbF9uYW1lEhIKEERlY2lkZSBHcmVldGluZ3NKDgoI
|
||||
YXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2986'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nTo give my best complete final answer to the task
|
||||
@@ -22,18 +105,20 @@ interactions:
|
||||
- '824'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -47,8 +132,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIIsTxhvf75xvuu7gQScIlRSKbW\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZLLrWi8ZASpP9bz6HaCV7xBIn\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
@@ -57,12 +142,12 @@ interactions:
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8cfc3b1f4532-ATL
|
||||
- 8f8caa83deca756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -70,14 +155,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:50 GMT
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
path=/; expires=Wed, 04-Dec-24 20:59:50 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw;
|
||||
path=/; expires=Fri, 27-Dec-24 22:44:53 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000;
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -90,7 +175,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '313'
|
||||
- '404'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -108,7 +193,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9fd9a8ee688045dcf7ac5f6fdf689372
|
||||
- req_6ac84634bff9193743c4b0911c09b4a6
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -131,20 +216,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -158,8 +243,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIIaQlLyoyPmk909PvAIfA2TmJL\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZNlWdrrPZhq0MJDqd16sMuQEJ\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"True\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
@@ -168,12 +253,12 @@ interactions:
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d060b5e4532-ATL
|
||||
- 8f8caa87094f756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -181,7 +266,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:50 GMT
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -195,7 +280,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '375'
|
||||
- '156'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -213,7 +298,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_be7cb475e0859a82c37ee3f2871ea5ea
|
||||
- req_ec74bef2a9ef7b2144c03fd7f7bbeab0
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -242,20 +327,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -269,22 +354,23 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIJAAxpVfUOdrsgYKHwfRlHv4RS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZGv4f3h7GDdhyOy9G0sB1lRgC\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now can give a great answer
|
||||
\ \\nFinal Answer: Hello\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
188,\n \"completion_tokens\": 14,\n \"total_tokens\": 202,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
\"assistant\",\n \"content\": \"Thought: I understand the feedback and
|
||||
will adjust my response accordingly. \\nFinal Answer: Hello\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 188,\n \"completion_tokens\":
|
||||
18,\n \"total_tokens\": 206,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d090fc34532-ATL
|
||||
- 8f8caa88cac4756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -292,7 +378,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:51 GMT
|
||||
- Fri, 27 Dec 2024 22:14:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -306,7 +392,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '484'
|
||||
- '358'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -324,7 +410,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_5bf4a565ad6c2567a1ed204ecac89134
|
||||
- req_ae1ab6b206d28ded6fee3c83ed0c2ab7
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -346,20 +432,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -373,8 +459,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIJqyG8vl9mxj2qDPZgaxyNLLIq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtaiHL4TY8Dssk0j2miqmjrzquy\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337694,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"False\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
@@ -383,12 +469,12 @@ interactions:
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d0cfdeb4532-ATL
|
||||
- 8f8caa8bdd26756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -396,7 +482,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:51 GMT
|
||||
- Fri, 27 Dec 2024 22:14:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -410,7 +496,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '341'
|
||||
- '184'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -428,7 +514,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_5554bade8ceda00cf364b76a51b708ff
|
||||
- req_652891f79c1104a7a8436275d78a69f1
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -0,0 +1,117 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: This is a test task, and the context or question from the coworker is
|
||||
not specified. Therefore, my best effort would be to affirm my readiness to
|
||||
answer accurately and in detail any question about Futel Football Club based
|
||||
on the context described. If provided with specific information or questions,
|
||||
I will ensure to respond comprehensively as required by my job directives.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
|
||||
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78bf7bd6cc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2263'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7c1a31da73cd103e9f410f908e59187f
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
|
||||
a specific question regarding Futel Football Club, your request appears to involve
|
||||
ensuring accuracy and detail in responses. For a proper answer about Futel,
|
||||
I'd be ready to provide details about the club's history, management, players,
|
||||
match schedules, and recent performance statistics. Remember to ask specific
|
||||
questions to receive a targeted response. If this were a real context where
|
||||
information was shared, I would respond precisely to what's been asked regarding
|
||||
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c1d0ecdc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:47 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '3097'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_179e1d56e2b17303e40480baffbc7b08
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,114 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Your best answer to your coworker asking you this, accounting for the
|
||||
context shared. You MUST return the actual complete content as the final answer,
|
||||
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c164ad2c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '899'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9f5226208edb90a27987aaf7e0ca03d3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As this is a test task, please note that Futel Football Club is fictional
|
||||
and any specific details about it would not be available. However, if you have
|
||||
specific questions or need information about a particular aspect of Futel or
|
||||
any general football club inquiry, feel free to ask, and I'll do my best to
|
||||
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78be5eebfc002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:37 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2730'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_014478ba748f860d10ac250ca0ba824a
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
|
||||
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
|
||||
give my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
|
||||
final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '939'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
|
||||
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As an official Futel Football Club infopoint, my responsibility is to
|
||||
provide detailed and accurate information about the club. This includes answering
|
||||
questions regarding team statistics, player performances, upcoming fixtures,
|
||||
ticketing and fan zone details, club history, and community initiatives. Our
|
||||
focus is to ensure that fans and stakeholders have access to the latest and
|
||||
most precise information about the club's on and off-pitch activities. If there's
|
||||
anything specific you need to know, just let me know, and I'll be more than
|
||||
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_703d4ff298\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ff78c066f37c002-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 09 Jan 2025 21:33:42 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2459'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999786'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a146dd27f040f39a576750970cca0f52
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,36 +1,863 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Who
|
||||
which model are you?\n\n", "options": {"stop": ["\nObservation:"]}, "stream":
|
||||
false}'
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Which
|
||||
model are you?\n\n", "options": {"stop": ["\nObservation:"]}, "stream": false}'
|
||||
headers:
|
||||
Accept:
|
||||
accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '156'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- python-requests/2.32.3
|
||||
content-length:
|
||||
- '152'
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/generate
|
||||
response:
|
||||
body:
|
||||
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:07:07.623404Z","response":"I''m
|
||||
an AI designed to assist and communicate with users, utilizing a combination
|
||||
of natural language processing models.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,10699,902,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,15592,6319,311,7945,323,19570,449,3932,11,35988,264,10824,315,5933,4221,8863,4211,13],"total_duration":1076617833,"load_duration":46505416,"prompt_eval_count":40,"prompt_eval_duration":626000000,"eval_count":22,"eval_duration":399000000}'
|
||||
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T18:37:01.552946Z","response":"I''m
|
||||
an AI designed by Meta, leveraging large language models to provide information
|
||||
and assist with various tasks.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,15592,6319,555,16197,11,77582,3544,4221,4211,311,3493,2038,323,7945,449,5370,9256,13],"total_duration":2721386667,"load_duration":838784333,"prompt_eval_count":39,"prompt_eval_duration":1462000000,"eval_count":22,"eval_duration":418000000}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '690'
|
||||
- '683'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Thu, 02 Jan 2025 20:07:07 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- Fri, 10 Jan 2025 18:37:01 GMT
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Fri, 10 Jan 2025 18:37:01 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Fri, 10 Jan 2025 18:37:01 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
713
tests/cassettes/test_before_kickoff_callback.yaml
Normal file
713
tests/cassettes/test_before_kickoff_callback.yaml
Normal file
@@ -0,0 +1,713 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: !!binary |
|
||||
CvP7AQokCiIKDHNlcnZpY2UubmFtZRISChBjcmV3QUktdGVsZW1ldHJ5Esn7AQoSChBjcmV3YWku
|
||||
dGVsZW1ldHJ5Ep4HChBGdupVRwCZRqXxk3FnMwCbEghSR8rOc1qkfCoMQ3JldyBDcmVhdGVkMAE5
|
||||
8GzO7sagGhhBOAHe7sagGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92
|
||||
ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBjOTdiNWZlYjVkMWI2NmJiNTkwMDZhYWEw
|
||||
MWEyOWNkNkoxCgdjcmV3X2lkEiYKJDk1NGM2OTJmLTc5Y2ItNGZlZi05NjNkLWUyMGRkMjFhMjAw
|
||||
MUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jl
|
||||
d19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFKzAIKC2Ny
|
||||
ZXdfYWdlbnRzErwCCrkCW3sia2V5IjogIjA3ZDk5YjYzMDQxMWQzNWZkOTA0N2E1MzJkNTNkZGE3
|
||||
IiwgImlkIjogImQ5ZjkyYTBlLTVlZTYtNGY0NS04NzZiLWIwOWMyZTcwZWZkZiIsICJyb2xlIjog
|
||||
IlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBt
|
||||
IjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRl
|
||||
bGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNl
|
||||
LCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr/AQoKY3Jld190YXNr
|
||||
cxLwAQrtAVt7ImtleSI6ICI2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2MTdhYTBiMWM0ZiIsICJpZCI6
|
||||
ICIzZDc0NDlkYi0wMzU3LTQ3NTMtOGNmNS03NGY2ZmMzMGEwYTkiLCAiYXN5bmNfZXhlY3V0aW9u
|
||||
PyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNo
|
||||
ZXIiLCAiYWdlbnRfa2V5IjogIjA3ZDk5YjYzMDQxMWQzNWZkOTA0N2E1MzJkNTNkZGE3IiwgInRv
|
||||
b2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEP1sZDWz95ImNTj+qx9ckqUSCAmsHrq64Y/u
|
||||
KgxUYXNrIENyZWF0ZWQwATnQXu3uxqAaGEFgxO3uxqAaGEouCghjcmV3X2tleRIiCiBjOTdiNWZl
|
||||
YjVkMWI2NmJiNTkwMDZhYWEwMWEyOWNkNkoxCgdjcmV3X2lkEiYKJDk1NGM2OTJmLTc5Y2ItNGZl
|
||||
Zi05NjNkLWUyMGRkMjFhMjAwMUouCgh0YXNrX2tleRIiCiA2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2
|
||||
MTdhYTBiMWM0ZkoxCgd0YXNrX2lkEiYKJDNkNzQ0OWRiLTAzNTctNDc1My04Y2Y1LTc0ZjZmYzMw
|
||||
YTBhOXoCGAGFAQABAAASngcKEBNuju55KsgJoN1+Y7gEx24SCCoSNPvs01ScKgxDcmV3IENyZWF0
|
||||
ZWQwATlIpr3wxqAaGEHwVMbwxqAaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0
|
||||
aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDhjMjc1MmY0OWU1YjlkMmI2OGNi
|
||||
MzVjYWM4ZmNjODZkSjEKB2NyZXdfaWQSJgokMTY2ODBmZjMtMjM1Yy00MzZlLTk2MWMtZGNhYWNh
|
||||
YTFiMjA4ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoa
|
||||
ChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrM
|
||||
AgoLY3Jld19hZ2VudHMSvAIKuQJbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1
|
||||
NjNkNzUiLCAiaWQiOiAiMzY5NmM3ZDktNjcyYS00NmIzLWJlMGMtMzNmNjI2YjEwMGU3IiwgInJv
|
||||
bGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
|
||||
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8i
|
||||
LCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/Ijog
|
||||
ZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSv8BCgpjcmV3
|
||||
X3Rhc2tzEvABCu0BW3sia2V5IjogIjBkNjg1YTIxOTk0ZDk0OTA5N2JjNWE1NmQ3MzdlNmQxIiwg
|
||||
ImlkIjogIjIzYWM1MzA1LTg5YTUtNDM1NC1hODUyLTNmNGNlNDk4NjY4NCIsICJhc3luY19leGVj
|
||||
dXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVz
|
||||
ZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUi
|
||||
LCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQt0jLLt+z7mZzw/JaxaWi4xII/o7T
|
||||
QUAqVu8qDFRhc2sgQ3JlYXRlZDABOYg71PDGoBoYQZCN1PDGoBoYSi4KCGNyZXdfa2V5EiIKIDhj
|
||||
Mjc1MmY0OWU1YjlkMmI2OGNiMzVjYWM4ZmNjODZkSjEKB2NyZXdfaWQSJgokMTY2ODBmZjMtMjM1
|
||||
Yy00MzZlLTk2MWMtZGNhYWNhYTFiMjA4Si4KCHRhc2tfa2V5EiIKIDBkNjg1YTIxOTk0ZDk0OTA5
|
||||
N2JjNWE1NmQ3MzdlNmQxSjEKB3Rhc2tfaWQSJgokMjNhYzUzMDUtODlhNS00MzU0LWE4NTItM2Y0
|
||||
Y2U0OTg2Njg0egIYAYUBAAEAABKeBwoQAddeR+5jHI68iED9tmGToRIIqsyiA/tKs2QqDENyZXcg
|
||||
Q3JlYXRlZDABOcC+UPrGoBoYQchXWvrGoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoa
|
||||
Cg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogYjY3MzY4NmZjODIyYzIw
|
||||
M2M3ZTg3OWM2NzU0MjQ2OTlKMQoHY3Jld19pZBImCiRmYjJjNzYwZi00ZTdhLTQ0ZDctOWI4My1i
|
||||
NDA3MjY5YjVjZDRKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkS
|
||||
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
|
||||
AhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICJiNTljZjc3YjZlNzY1ODQ4NzBlYjFj
|
||||
Mzg4MjNkN2UyOCIsICJpZCI6ICJhMTA3Y2M4My1jZjM0LTRhMDctYWFmNi1lNzA4MTU0MmNiOTUi
|
||||
LCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
|
||||
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
|
||||
dC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
|
||||
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEK
|
||||
CmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiYTVlNWM1OGNlYTFiOWQwMDMzMmU2ODQ0MWQzMjdi
|
||||
ZGYiLCAiaWQiOiAiNTYzNjc0NmQtNmQ4YS00YzBjLTgyNmEtNDA2YzRlMzc0MTg5IiwgImFzeW5j
|
||||
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6
|
||||
ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICJiNTljZjc3YjZlNzY1ODQ4NzBlYjFjMzg4MjNk
|
||||
N2UyOCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChDxrID3kZmdkWC//z9+mfuy
|
||||
EgjUxsn2MojVPioMVGFzayBDcmVhdGVkMAE5IIRs+sagGhhB4OFs+sagGhhKLgoIY3Jld19rZXkS
|
||||
IgogYjY3MzY4NmZjODIyYzIwM2M3ZTg3OWM2NzU0MjQ2OTlKMQoHY3Jld19pZBImCiRmYjJjNzYw
|
||||
Zi00ZTdhLTQ0ZDctOWI4My1iNDA3MjY5YjVjZDRKLgoIdGFza19rZXkSIgogYTVlNWM1OGNlYTFi
|
||||
OWQwMDMzMmU2ODQ0MWQzMjdiZGZKMQoHdGFza19pZBImCiQ1NjM2NzQ2ZC02ZDhhLTRjMGMtODI2
|
||||
YS00MDZjNGUzNzQxODl6AhgBhQEAAQAAErgJChCvyf8lGSXM52eSUv8BPeh1EghI6rK/hduMWSoM
|
||||
Q3JldyBDcmVhdGVkMAE5mJtE/MagGhhB+NhM/MagGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45
|
||||
NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBlM2ZkYTBmMzEx
|
||||
MGZlODBiMTg5NDdjMDE0NzE0MzBhNEoxCgdjcmV3X2lkEiYKJDQ5ZWRjNGIwLWZlNzctNDc0Yy1i
|
||||
OGE0LTljMDlkNDUzMWIxY0oeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2FsShEKC2NyZXdf
|
||||
bWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2Zf
|
||||
YWdlbnRzEgIYAkqIBQoLY3Jld19hZ2VudHMS+AQK9QRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgx
|
||||
NTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiMzY5NmM3ZDktNjcyYS00NmIzLWJlMGMtMzNmNjI2
|
||||
YjEwMGU3IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0
|
||||
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
|
||||
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
|
||||
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
|
||||
XX0sIHsia2V5IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgImlkIjogImE5
|
||||
OTRlNjZlLWE5OTEtNDRhNi04OTIxLWE4OGQ0M2QyNjZiYyIsICJyb2xlIjogIlNlbmlvciBXcml0
|
||||
ZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwg
|
||||
ImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25f
|
||||
ZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3Jl
|
||||
dHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUrbAQoKY3Jld190YXNrcxLMAQrJAVt7
|
||||
ImtleSI6ICI1ZmE2NWMwNmE5ZTMxZjJjNjk1NDMyNjY4YWNkNjJkZCIsICJpZCI6ICJiOTY5MGI1
|
||||
OC1hYmNhLTRjYzktOGZlYS01ZTZmNDZjNmQ5ZDUiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
|
||||
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIk5vbmUiLCAiYWdlbnRfa2V5
|
||||
IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASuAkKECCrkzgLIi2bqMUA6kHF
|
||||
B1ESCFsUbfXKnCROKgxDcmV3IENyZWF0ZWQwATnAlbP8xqAaGEGwPrv8xqAaGEoaCg5jcmV3YWlf
|
||||
dmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5
|
||||
EiIKIGUzZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokNDJlMGQ1
|
||||
MmYtYWVjYS00MTMzLTlmMDItZDZiOGU0OTRkYjYxSh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVyYXJj
|
||||
aGljYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
|
||||
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSogFCgtjcmV3X2FnZW50cxL4BAr1BFt7ImtleSI6ICI4
|
||||
YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2YzdkOS02NzJhLTQ2
|
||||
YjMtYmUwYy0zM2Y2MjZiMTAwZTciLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/Ijog
|
||||
ZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5n
|
||||
X2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
|
||||
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
|
||||
b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZh
|
||||
ZjciLCAiaWQiOiAiYTk5NGU2NmUtYTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2NmJjIiwgInJvbGUi
|
||||
OiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
|
||||
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8i
|
||||
LCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/Ijog
|
||||
ZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dStsBCgpjcmV3
|
||||
X3Rhc2tzEswBCskBW3sia2V5IjogIjVmYTY1YzA2YTllMzFmMmM2OTU0MzI2NjhhY2Q2MmRkIiwg
|
||||
ImlkIjogImM3MGNmMzliLTE2YzktNDNiOC1hN2VhLTY5MTgzZmZmZDg5ZiIsICJhc3luY19leGVj
|
||||
dXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiTm9u
|
||||
ZSIsICJhZ2VudF9rZXkiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABLKCwoQ
|
||||
Nu3FGKmDx1jRbaca6HH3TRIIb9vd1api6NYqDENyZXcgQ3JlYXRlZDABOaiMR/3GoBoYQRjxT/3G
|
||||
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
|
||||
LjdKLgoIY3Jld19rZXkSIgogZDM4NDZjOWQyNzZlOGU2ZTQzZTMxZjYxNzYzNTdiNGZKMQoHY3Jl
|
||||
d19pZBImCiQ2MDE5NzNhNy04NDlmLTQ4ZWQtOGM4MS04YzY5N2QyY2ViNGRKHAoMY3Jld19wcm9j
|
||||
ZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rh
|
||||
c2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSogFCgtjcmV3X2FnZW50cxL4BAr1
|
||||
BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2
|
||||
YzdkOS02NzJhLTQ2YjMtYmUwYy0zM2Y2MjZiMTAwZTciLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwg
|
||||
InZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5j
|
||||
dGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJs
|
||||
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
|
||||
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4
|
||||
ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiYTk5NGU2NmUtYTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2
|
||||
NmJjIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0
|
||||
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
|
||||
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
|
||||
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
|
||||
XX1dSu8DCgpjcmV3X3Rhc2tzEuADCt0DW3sia2V5IjogImU5ZTZiNzJhYWMzMjY0NTlkZDcwNjhm
|
||||
MGIxNzE3YzFjIiwgImlkIjogImYzNGM5ZGZjLWU4NzYtNDkzNS04NTNmLTMyM2EwYzhhZGViMiIs
|
||||
ICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50
|
||||
X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQx
|
||||
ZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogImVlZWU3ZTczZDVkZjY2
|
||||
ZDQ4ZDJkODA3YmFmZjg3NGYzIiwgImlkIjogImNjOGMxZGQ0LTUxNzktNDdlMC1iMTk0LTU3NmNh
|
||||
MjFkZjllOCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxz
|
||||
ZSwgImFnZW50X3JvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJhZ2VudF9rZXkiOiAiOWE1MDE1ZWY0
|
||||
ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKm
|
||||
BwoQYZWMzWnoYys7S/fnI87iGRIIla+Vilm2/HgqDENyZXcgQ3JlYXRlZDABOaDT6f3GoBoYQZB8
|
||||
8f3GoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYz
|
||||
LjEyLjdKLgoIY3Jld19rZXkSIgogNjczOGFkNWI4Y2IzZTZmMWMxYzkzNTBiOTZjMmU2NzhKMQoH
|
||||
Y3Jld19pZBImCiRjYjJmYWQ2NS1jZmVlLTQ5MjMtYmE4ZS1jYzllYTM4YmRlZDVKHAoMY3Jld19w
|
||||
cm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29m
|
||||
X3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStACCgtjcmV3X2FnZW50cxLA
|
||||
Agq9Alt7ImtleSI6ICI1MTJhNmRjMzc5ZjY2YjIxZWVhYjI0ZTYzNDgzNmY3MiIsICJpZCI6ICJl
|
||||
ZmM1ZmYyNC1lNGRlLTQwMDctOTE0Ni03MzQ2ODkyMzMxNmEiLCAicm9sZSI6ICJDb250ZW50IFdy
|
||||
aXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxs
|
||||
LCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlv
|
||||
bl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhf
|
||||
cmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSoMCCgpjcmV3X3Rhc2tzEvQBCvEB
|
||||
W3sia2V5IjogIjM0NzcwNzZiZTNhZjcxMzA0NjJlZGFhMmViOGEwNDhlIiwgImlkIjogImI1YTU1
|
||||
ZDIxLWM0YWQtNGY3MS1hNzlmLTc5MmI3MzcwZDM0MSIsICJhc3luY19leGVjdXRpb24/IjogZmFs
|
||||
c2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiQ29udGVudCBXcml0ZXIi
|
||||
LCAiYWdlbnRfa2V5IjogIjUxMmE2ZGMzNzlmNjZiMjFlZWFiMjRlNjM0ODM2ZjcyIiwgInRvb2xz
|
||||
X25hbWVzIjogW119XXoCGAGFAQABAAASjg8KEPffWTWZFpn8wcrgD+eyhrMSCHU6W3vsK6dIKgxD
|
||||
cmV3IENyZWF0ZWQwATmAXFj+xqAaGEHQ72D+xqAaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1
|
||||
LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDRhY2I5MzNmZThk
|
||||
ZTRjZDU3NzJlZGIwZTgyMDZlMjhmSjEKB2NyZXdfaWQSJgokZjQ4NDAzYjUtZjRjMi00NjA4LWE1
|
||||
YzYtMjc4NGU5ZTY0MDNlShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVt
|
||||
b3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGARKGwoVY3Jld19udW1iZXJfb2ZfYWdl
|
||||
bnRzEgIYAkqBBQoLY3Jld19hZ2VudHMS8QQK7gRbeyJrZXkiOiAiMmJlZmZkY2FjNjVjY2VhYTY1
|
||||
Mzk2ZjJjN2Y1NjhlNmEiLCAiaWQiOiAiNzlkY2E1NjgtOTUxNy00ZWM0LThkODctMDMxZWFlM2Ji
|
||||
OTk1IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
|
||||
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
|
||||
ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
|
||||
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX0s
|
||||
IHsia2V5IjogIjFjZGNhOGRlMDdiMjhkMDc0ZDc4NjQ3NDhiZGIxNzY3IiwgImlkIjogIjgzZWI3
|
||||
MGNkLWIzODEtNDYwMy05Nzg5LTkyN2IxYmNlYTU2ZCIsICJyb2xlIjogIldyaXRlciIsICJ2ZXJi
|
||||
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
|
||||
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6
|
||||
IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQi
|
||||
OiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSroHCgpjcmV3X3Rhc2tzEqsHCqgHW3sia2V5IjogImVi
|
||||
YWVhYTk2ZThjODU1N2YwNDYxNzM2ZDRiZWY5MzE3IiwgImlkIjogImRkMGVkMzgxLTZhNzUtNDVh
|
||||
My1iZGUyLTRlNzdiOTU0YmI2OCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9p
|
||||
bnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAi
|
||||
MmJlZmZkY2FjNjVjY2VhYTY1Mzk2ZjJjN2Y1NjhlNmEiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsi
|
||||
a2V5IjogIjYwZjM1MjI4ZWMxY2I3M2ZlZDM1ZDk5MTBhNmQ3OWYzIiwgImlkIjogImE0OGZmMzgx
|
||||
LTI2ZDEtNDVjNy04MGVkLWJlODM0NTkxYWIzYyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2Us
|
||||
ICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiV3JpdGVyIiwgImFnZW50X2tl
|
||||
eSI6ICIxY2RjYThkZTA3YjI4ZDA3NGQ3ODY0NzQ4YmRiMTc2NyIsICJ0b29sc19uYW1lcyI6IFtd
|
||||
fSwgeyJrZXkiOiAiYmUyYTcxNGFjMzVlM2E2YjBhYmJhMjRjZWMyZTA0Y2MiLCAiaWQiOiAiMDkx
|
||||
YWE2YjMtZGYyMC00YTMzLTk1MzUtOGJiNDllMzlhMGQyIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBm
|
||||
YWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJXcml0ZXIiLCAiYWdl
|
||||
bnRfa2V5IjogIjFjZGNhOGRlMDdiMjhkMDc0ZDc4NjQ3NDhiZGIxNzY3IiwgInRvb2xzX25hbWVz
|
||||
IjogW119LCB7ImtleSI6ICI0YTU2YTYyNzk4ODZhNmZlNThkNjc1NzgxZDFmNWFkOSIsICJpZCI6
|
||||
ICIxMDFlOGNhNC04MTk1LTQyNDYtYjg2Ny05ZjYxYzM1NWJjOGIiLCAiYXN5bmNfZXhlY3V0aW9u
|
||||
PyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIldyaXRlciIs
|
||||
ICJhZ2VudF9rZXkiOiAiMWNkY2E4ZGUwN2IyOGQwNzRkNzg2NDc0OGJkYjE3NjciLCAidG9vbHNf
|
||||
bmFtZXMiOiBbXX1degIYAYUBAAEAABKLCQoQgHmumMETjYmEZpveDu3dwBIIByVlUIAMTMEqDENy
|
||||
ZXcgQ3JlYXRlZDABOfgtEgDHoBoYQTC/GwDHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUu
|
||||
MEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogODBjNzk4ZjYyMjhm
|
||||
MzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2EtYWJk
|
||||
ZC0zZDY1YThlNjY5ZjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1v
|
||||
cnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2Vu
|
||||
dHMSAhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICIzN2Q3MTNkM2RjZmFlMWRlNTNi
|
||||
NGUyZGFjNzU1M2ZkNyIsICJpZCI6ICJmNGY2NmQxMi01M2Q0LTQ2NTQtODRiZC1lMjJmYzk2ZDU0
|
||||
NTEiLCAicm9sZSI6ICJ0ZXN0X2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
|
||||
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
|
||||
ImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1
|
||||
dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K
|
||||
7AMKCmNyZXdfdGFza3MS3QMK2gNbeyJrZXkiOiAiY2M0YTQyYzE4NmVlMWEyZTY2YjAyOGVjNWI3
|
||||
MmJkNGUiLCAiaWQiOiAiMmUyMmZiMDMtMzIxMS00NTgxLTkzN2EtZjY1Zjk5MjY3ZmIyIiwgImFz
|
||||
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
|
||||
ZSI6ICJ0ZXN0X2FnZW50IiwgImFnZW50X2tleSI6ICIzN2Q3MTNkM2RjZmFlMWRlNTNiNGUyZGFj
|
||||
NzU1M2ZkNyIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNzRlNmIyNDQ5YzQ1NzRhY2Jj
|
||||
MmJmNDk3MjczYTVjYzEiLCAiaWQiOiAiODIzYmRlYzUtMTRkMS00ZDdjLWJkYWMtODkzNTY1YmFi
|
||||
YmM1IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAi
|
||||
YWdlbnRfcm9sZSI6ICJ0ZXN0X2FnZW50IiwgImFnZW50X2tleSI6ICIzN2Q3MTNkM2RjZmFlMWRl
|
||||
NTNiNGUyZGFjNzU1M2ZkNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChDXwUEa
|
||||
LzdRrsWweePQjNzuEgjgSUXh0IH0OyoMVGFzayBDcmVhdGVkMAE5aKkrAMegGhhBaCYsAMegGhhK
|
||||
LgoIY3Jld19rZXkSIgogODBjNzk4ZjYyMjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19p
|
||||
ZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2EtYWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgog
|
||||
Y2M0YTQyYzE4NmVlMWEyZTY2YjAyOGVjNWI3MmJkNGVKMQoHdGFza19pZBImCiQyZTIyZmIwMy0z
|
||||
MjExLTQ1ODEtOTM3YS1mNjVmOTkyNjdmYjJ6AhgBhQEAAQAAEo4CChDxJ8ZFykKBgfaipCQ/ggPb
|
||||
EgguzV65sDQE1yoMVGFzayBDcmVhdGVkMAE5OBNvAMegGhhBgIRvAMegGhhKLgoIY3Jld19rZXkS
|
||||
IgogODBjNzk4ZjYyMjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFh
|
||||
NS1lMzA5LTQ2N2EtYWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgogNzRlNmIyNDQ5YzQ1
|
||||
NzRhY2JjMmJmNDk3MjczYTVjYzFKMQoHdGFza19pZBImCiQ4MjNiZGVjNS0xNGQxLTRkN2MtYmRh
|
||||
Yy04OTM1NjViYWJiYzV6AhgBhQEAAQAAEo4CChC0QeqqmE8Dp/Ee9DEhuLMuEggOnt12q4mouioM
|
||||
VGFzayBDcmVhdGVkMAE5eBbHAMegGhhB2IPHAMegGhhKLgoIY3Jld19rZXkSIgogODBjNzk4ZjYy
|
||||
MjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2Et
|
||||
YWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgogNzRlNmIyNDQ5YzQ1NzRhY2JjMmJmNDk3
|
||||
MjczYTVjYzFKMQoHdGFza19pZBImCiQ4MjNiZGVjNS0xNGQxLTRkN2MtYmRhYy04OTM1NjViYWJi
|
||||
YzV6AhgBhQEAAQAAEsoLChAQHimti07LsJEmR4M5P2iQEgjeCnwCLR02XyoMQ3JldyBDcmVhdGVk
|
||||
MAE5IOlAAsegGhhBAGVJAsegGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhv
|
||||
bl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBhYzdlNzQ1OTA3MmM3ZWMwNmRlYWY5
|
||||
ZDMyZWNlYzE1YUoxCgdjcmV3X2lkEiYKJGI1NTdkNDliLTkxZTktNDllMy1iNjA4LTUyZTdiMGE1
|
||||
YzZjM0ocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoU
|
||||
Y3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUK
|
||||
C2NyZXdfYWdlbnRzEvgECvUEW3sia2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYz
|
||||
ZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xl
|
||||
IjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhf
|
||||
cnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwg
|
||||
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
|
||||
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
|
||||
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0
|
||||
YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
|
||||
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
|
||||
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFs
|
||||
c2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIs
|
||||
ICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiYTgwNjE3
|
||||
MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmEiLCAiaWQiOiAiZjNmMDYxNWItMDg3NS00NWM0LWFm
|
||||
YmMtYWI1OGQxMGQyZDA0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0
|
||||
PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQy
|
||||
MTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXki
|
||||
OiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiNGUwZTEyOTQtZjdi
|
||||
ZS00OTBhLThiYmUtNjliYjQ5ODc1YTUzIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1
|
||||
bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50
|
||||
X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6
|
||||
IFtdfV16AhgBhQEAAQAAEo4CChBu6pl3tRo8XQcOz1dOfEiREgi+aKvpuUNN/ioMVGFzayBDcmVh
|
||||
dGVkMAE5QCRZAsegGhhBKKVZAsegGhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZk
|
||||
ZWFmOWQzMmVjZWMxNWFKMQoHY3Jld19pZBImCiRiNTU3ZDQ5Yi05MWU5LTQ5ZTMtYjYwOC01MmU3
|
||||
YjBhNWM2YzNKLgoIdGFza19rZXkSIgogYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmFK
|
||||
MQoHdGFza19pZBImCiRmM2YwNjE1Yi0wODc1LTQ1YzQtYWZiYy1hYjU4ZDEwZDJkMDR6AhgBhQEA
|
||||
AQAAEo4CChBNL9q8o7PtXvaR6poXIlx6EggIBAybRwvpyCoMVGFzayBDcmVhdGVkMAE5qP2oAseg
|
||||
GhhB6JmpAsegGhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZkZWFmOWQzMmVjZWMx
|
||||
NWFKMQoHY3Jld19pZBImCiRiNTU3ZDQ5Yi05MWU5LTQ5ZTMtYjYwOC01MmU3YjBhNWM2YzNKLgoI
|
||||
dGFza19rZXkSIgogNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFza19pZBIm
|
||||
CiQ0ZTBlMTI5NC1mN2JlLTQ5MGEtOGJiZS02OWJiNDk4NzVhNTN6AhgBhQEAAQAAEsoLChAxUBRb
|
||||
Q0xWxbf9ef52QMDSEgihBkurLl3qiSoMQ3JldyBDcmVhdGVkMAE5eE9hBcegGhhBCIVpBcegGhhK
|
||||
GgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ou
|
||||
CghjcmV3X2tleRIiCiBhYzdlNzQ1OTA3MmM3ZWMwNmRlYWY5ZDMyZWNlYzE1YUoxCgdjcmV3X2lk
|
||||
EiYKJGU1YmYwYTFjLTg2YjctNDhkZC04YzJlLTdjMThhZTZhODJhZUocCgxjcmV3X3Byb2Nlc3MS
|
||||
DAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MS
|
||||
AhgCShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3si
|
||||
a2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5
|
||||
LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVy
|
||||
Ym9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9u
|
||||
X2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
|
||||
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
|
||||
IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
|
||||
MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMi
|
||||
LCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
|
||||
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
|
||||
ImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1
|
||||
dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K
|
||||
7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJj
|
||||
MzEwMmEiLCAiaWQiOiAiMDJlMTk1ODMtZmY3OS00N2YzLThkNDMtNWJhMGY4NmYxOTllIiwgImFz
|
||||
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
|
||||
ZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDlj
|
||||
NDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5
|
||||
NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiY2ViMjZhOTUtODc5ZS00OGFmLTg2MmItNzAyZmIyODA3
|
||||
MzM5IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAi
|
||||
YWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVk
|
||||
YzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChD9
|
||||
XNrHzMkqfERO3pxva7qVEgi+KDMFQWeCXioMVGFzayBDcmVhdGVkMAE5KHl4BcegGhhBKPZ4Bceg
|
||||
GhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZkZWFmOWQzMmVjZWMxNWFKMQoHY3Jl
|
||||
d19pZBImCiRlNWJmMGExYy04NmI3LTQ4ZGQtOGMyZS03YzE4YWU2YTgyYWVKLgoIdGFza19rZXkS
|
||||
IgogYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmFKMQoHdGFza19pZBImCiQwMmUxOTU4
|
||||
My1mZjc5LTQ3ZjMtOGQ0My01YmEwZjg2ZjE5OWV6AhgBhQEAAQAAEsoLChBy2/tEpjdjZeT9McCa
|
||||
zn1ZEghPIBt/a/+PUyoMQ3JldyBDcmVhdGVkMAE5ABE/BsegGhhB+PlJBsegGhhKGgoOY3Jld2Fp
|
||||
X3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tl
|
||||
eRIiCiBkMjdkNDVhZDlkYTE1ODU0MzI1YjBhZjNiMGZiYzMyYkoxCgdjcmV3X2lkEiYKJGM4OGMx
|
||||
ZDc1LWZlN2QtNDQwMi04N2QwLWFkYzQ3MWFiMWI3YUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVu
|
||||
dGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsKFWNy
|
||||
ZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3sia2V5IjogIjhi
|
||||
ZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEtNDZi
|
||||
My1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBm
|
||||
YWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdf
|
||||
bGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwg
|
||||
ImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRv
|
||||
b2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFm
|
||||
NyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9sZSI6
|
||||
ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4
|
||||
X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIs
|
||||
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBm
|
||||
YWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNyZXdf
|
||||
dGFza3MS4AMK3QNbeyJrZXkiOiAiODE2ZTllYmM2OWRiNjdjNjhiYjRmM2VhNjVjY2RhNTgiLCAi
|
||||
aWQiOiAiZDM1YjllMjUtODE1MC00ODQ0LWFhMTctYzk0MTRhMDE2NjcyIiwgImFzeW5jX2V4ZWN1
|
||||
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNl
|
||||
YXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
|
||||
ICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFj
|
||||
ZDYyZGQiLCAiaWQiOiAiYjIwMjdlZWUtYjNjYi00MGMxLWI1NDEtNmY0ZTA5ZGRhNTU5IiwgImFz
|
||||
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
|
||||
ZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
|
||||
MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEsoLChD//jBA0L4Z7qgQ
|
||||
5xomV5+TEgjd+k4M+YdqbCoMQ3JldyBDcmVhdGVkMAE5uAq/BsegGhhB6EPJBsegGhhKGgoOY3Jl
|
||||
d2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3
|
||||
X2tleRIiCiBkMjdkNDVhZDlkYTE1ODU0MzI1YjBhZjNiMGZiYzMyYkoxCgdjcmV3X2lkEiYKJGY3
|
||||
OTg0ZWVlLWZjMGItNGFjYy1iNWE3LWExYjgwMWU0NGM1MEocCgxjcmV3X3Byb2Nlc3MSDAoKc2Vx
|
||||
dWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsK
|
||||
FWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3sia2V5Ijog
|
||||
IjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEt
|
||||
NDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8i
|
||||
OiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxp
|
||||
bmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxz
|
||||
ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwg
|
||||
InRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0
|
||||
NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9s
|
||||
ZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAi
|
||||
bWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00
|
||||
byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8i
|
||||
OiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNy
|
||||
ZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiODE2ZTllYmM2OWRiNjdjNjhiYjRmM2VhNjVjY2RhNTgi
|
||||
LCAiaWQiOiAiOTcxMDdmNTUtY2U2Yi00NWI4LWI4Y2QtZjhjNmIyOGI1YjI5IiwgImFzeW5jX2V4
|
||||
ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJS
|
||||
ZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3
|
||||
NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2
|
||||
OGFjZDYyZGQiLCAiaWQiOiAiNzZlMTYxMDEtNTY3ZC00YmVlLTg3MGQtNjlkNjUzNWUxM2Y0Iiwg
|
||||
ImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRf
|
||||
cm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhk
|
||||
NTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEv4BChBUyY/ccsE1
|
||||
R24CGyVtHLqZEgiwrBqbcxAHeCoTQ3JldyBUZXN0IEV4ZWN1dGlvbjABOSiyJAfHoBoYQZiNLgfH
|
||||
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEouCghjcmV3X2tleRIiCiAzOTQ5M2UxNjE2
|
||||
MzRhOWVjNGRjNGUzOTdhOTc2OTU3MkoxCgdjcmV3X2lkEiYKJGUwZWJlYWE2LTFjMmItNGMxZi1i
|
||||
MzY1LTE4YmNmMjZhOGIwNkoRCgppdGVyYXRpb25zEgMKATJKGwoKbW9kZWxfbmFtZRINCgtncHQt
|
||||
NG8tbWluaXoCGAGFAQABAAASuAkKEPPNALYHa18lwaRtQDvBnDESCJJZx6P/4qPDKgxDcmV3IENy
|
||||
ZWF0ZWQwATnIzZ8Hx6AaGEFIWagHx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoO
|
||||
cHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIGUzZmRhMGYzMTEwZmU4MGIx
|
||||
ODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokMTBhYzc4ODQtOTA2ZC00YTg0LWIxMTYtMWMx
|
||||
MTg5NDg3OTc3Sh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVyYXJjaGljYWxKEQoLY3Jld19tZW1vcnkS
|
||||
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
|
||||
AhgCSogFCgtjcmV3X2FnZW50cxL4BAr1BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFm
|
||||
ZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2YzdkOS02NzJhLTQ2YjMtYmUwYy0zM2Y2MjZiMTAwZTci
|
||||
LCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
|
||||
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
|
||||
dC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
|
||||
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJr
|
||||
ZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiYTk5NGU2NmUt
|
||||
YTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2NmJjIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2
|
||||
ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rp
|
||||
b25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVk
|
||||
PyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGlt
|
||||
aXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dStsBCgpjcmV3X3Rhc2tzEswBCskBW3sia2V5Ijog
|
||||
IjVmYTY1YzA2YTllMzFmMmM2OTU0MzI2NjhhY2Q2MmRkIiwgImlkIjogIjYzYmEzZTVmLWNlOWIt
|
||||
NDE4Zi04NGNmLWJjOWNlYjUwYTMwNyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1h
|
||||
bl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiTm9uZSIsICJhZ2VudF9rZXkiOiBudWxs
|
||||
LCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQlnr9jeEDn0IZusmEkE/xBxIIbyk0
|
||||
sNkOWxwqDFRhc2sgQ3JlYXRlZDABOdAdygfHoBoYQQCTygfHoBoYSi4KCGNyZXdfa2V5EiIKIGUz
|
||||
ZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokMTBhYzc4ODQtOTA2
|
||||
ZC00YTg0LWIxMTYtMWMxMTg5NDg3OTc3Si4KCHRhc2tfa2V5EiIKIDVmYTY1YzA2YTllMzFmMmM2
|
||||
OTU0MzI2NjhhY2Q2MmRkSjEKB3Rhc2tfaWQSJgokNjNiYTNlNWYtY2U5Yi00MThmLTg0Y2YtYmM5
|
||||
Y2ViNTBhMzA3egIYAYUBAAEAABKcAQoQbJPP7Nx3r3ewgPHdeJybDBIIlUb3D4pi3dkqClRvb2wg
|
||||
VXNhZ2UwATmonCAKx6AaGEEgUykKx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKKAoJ
|
||||
dG9vbF9uYW1lEhsKGURlbGVnYXRlIHdvcmsgdG8gY293b3JrZXJKDgoIYXR0ZW1wdHMSAhgBegIY
|
||||
AYUBAAEAABKcAQoQ1SSOOcoVWGrQIs6azsmxmBIIGSOj86a7GPsqClRvb2wgVXNhZ2UwATmA8e4O
|
||||
x6AaGEGo3vcOx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKKAoJdG9vbF9uYW1lEhsK
|
||||
GURlbGVnYXRlIHdvcmsgdG8gY293b3JrZXJKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABK4CQoQ
|
||||
EQHO/mvzkyYWgZwwn+Rc5BIIv4Hy3+pCFpYqDENyZXcgQ3JlYXRlZDABOTgFvg/HoBoYQfi1xQ/H
|
||||
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
|
||||
LjdKLgoIY3Jld19rZXkSIgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAxNDcxNDMwYTRKMQoHY3Jl
|
||||
d19pZBImCiQxYTNiYWYyMi04ZDA3LTRiOTctOGM4Ni1kMmM0NDNlYTZkZjdKHgoMY3Jld19wcm9j
|
||||
ZXNzEg4KDGhpZXJhcmNoaWNhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2Zf
|
||||
dGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgE
|
||||
CvUEW3sia2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2
|
||||
OTZjN2Q5LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIi
|
||||
LCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1
|
||||
bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5h
|
||||
YmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5
|
||||
X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYy
|
||||
NzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNk
|
||||
MjY2YmMiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhf
|
||||
aXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAi
|
||||
bGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
|
||||
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
|
||||
IFtdfV1K2wEKCmNyZXdfdGFza3MSzAEKyQFbeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQz
|
||||
MjY2OGFjZDYyZGQiLCAiaWQiOiAiZWYxYjNhN2MtOTMxYi00MjRjLTkxMzQtZDY1OTM1N2I3ODNi
|
||||
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
|
||||
bnRfcm9sZSI6ICJOb25lIiwgImFnZW50X2tleSI6IG51bGwsICJ0b29sc19uYW1lcyI6IFtdfV16
|
||||
AhgBhQEAAQAAEo4CChBZkLAu5xnAQh/ILJnU7h1REggAGIt5Pa4D3ioMVGFzayBDcmVhdGVkMAE5
|
||||
AMXlD8egGhhBwCLmD8egGhhKLgoIY3Jld19rZXkSIgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAx
|
||||
NDcxNDMwYTRKMQoHY3Jld19pZBImCiQxYTNiYWYyMi04ZDA3LTRiOTctOGM4Ni1kMmM0NDNlYTZk
|
||||
ZjdKLgoIdGFza19rZXkSIgogNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFz
|
||||
a19pZBImCiRlZjFiM2E3Yy05MzFiLTQyNGMtOTEzNC1kNjU5MzU3Yjc4M2J6AhgBhQEAAQAAEpwB
|
||||
ChBl/QzggjWFEfDigYrgsKMhEgjIhVTOpOyNnioKVG9vbCBVc2FnZTABOWi8pxHHoBoYQYhdrxHH
|
||||
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUg
|
||||
d29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEpwBChC1Cxzix7ErLK5V
|
||||
rNWRMj7jEgjEMld4I2kVXCoKVG9vbCBVc2FnZTABOSh2whjHoBoYQSi9yxjHoBoYShoKDmNyZXdh
|
||||
aV92ZXJzaW9uEggKBjAuOTUuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dv
|
||||
cmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEuEJChCh/OOje68hh/B1dkfbmjf/Egje+GUm
|
||||
CUGqZCoMQ3JldyBDcmVhdGVkMAE5cBtkV8egGhhBcD5zV8egGhhKGgoOY3Jld2FpX3ZlcnNpb24S
|
||||
CAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBjYWEx
|
||||
YWViM2RkNDM2Mzg2NTY4YTVjM2ZlMjEwMWFmNUoxCgdjcmV3X2lkEiYKJDdlZWUxNTA4LWQwNGIt
|
||||
NDczYy1iZjhmLTJkODgxNGU1MjNhN0ocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtj
|
||||
cmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVy
|
||||
X29mX2FnZW50cxICGAJKhAUKC2NyZXdfYWdlbnRzEvQECvEEW3sia2V5IjogIjk3ZjQxN2YzZTFl
|
||||
MzFjZjBjMTA5Zjc1MjlhYzhmNmJjIiwgImlkIjogIjQwM2ZkM2Q2LTAxNTYtNDIwMS04OGFmLTU0
|
||||
MjU5YjczNzJkYSIsICJyb2xlIjogIlByb2dyYW1tZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1h
|
||||
eF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIs
|
||||
ICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29k
|
||||
ZV9leGVjdXRpb24/IjogdHJ1ZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
|
||||
IFtdfSwgeyJrZXkiOiAiOTJhMjRiMGJjY2ZiMGRjMGU0MzlkN2Q1OWJhOWY2ZjMiLCAiaWQiOiAi
|
||||
YzIxMTQ4ZmQtOGU3NS00NDlhLTg2MmMtNWRiNjQ5Yzc0OTYzIiwgInJvbGUiOiAiQ29kZSBSZXZp
|
||||
ZXdlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxs
|
||||
LCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlv
|
||||
bl9lbmFibGVkPyI6IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiB0cnVlLCAibWF4X3Jl
|
||||
dHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqKAgoKY3Jld190YXNrcxL7AQr4AVt7
|
||||
ImtleSI6ICI3OWFhMjdkZjc0ZTYyNzllMzRhODg4ODE3NDgxYzQwZiIsICJpZCI6ICI0ZWYzZWEy
|
||||
OS0xMzNjLTQxNjktODgyMS1jZDI4ZTgxMTYxYmIiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
|
||||
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlByb2dyYW1tZXIiLCAiYWdl
|
||||
bnRfa2V5IjogIjk3ZjQxN2YzZTFlMzFjZjBjMTA5Zjc1MjlhYzhmNmJjIiwgInRvb2xzX25hbWVz
|
||||
IjogWyJ0ZXN0IHRvb2wiXX1degIYAYUBAAEAABKuBwoQjpMoNMb5Vz8kFm796AmokxIIPavlOS8Y
|
||||
ZJ0qDENyZXcgQ3JlYXRlZDABOZg1IVjHoBoYQXBfKVjHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggK
|
||||
BjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogNzczYTg3
|
||||
NmI1NzkyZGI2OTU1OWZlODJjM2FkMjM1OWZKMQoHY3Jld19pZBImCiQwNDQzNzU1MS0yN2RmLTQ3
|
||||
YTQtOTliNS1iOWNkYmYxMDFhNjZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jl
|
||||
d19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9v
|
||||
Zl9hZ2VudHMSAhgBStQCCgtjcmV3X2FnZW50cxLEAgrBAlt7ImtleSI6ICIwNzdjN2E4NjdlMjBk
|
||||
MGE2OGI5NzRlNDc2MDcxMDlmMyIsICJpZCI6ICIzMDMzZmZkYy03YjI0LTRmMDgtYmNmZS1iYzQz
|
||||
NzhkM2U5NjAiLCAicm9sZSI6ICJNdWx0aW1vZGFsIEFuYWx5c3QiLCAidmVyYm9zZT8iOiBmYWxz
|
||||
ZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxt
|
||||
IjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFs
|
||||
bG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xz
|
||||
X25hbWVzIjogW119XUqHAgoKY3Jld190YXNrcxL4AQr1AVt7ImtleSI6ICJjNzUzYzY4MDYzNTk0
|
||||
MzZhNTg5NmZlYzA5YmFhMTI1ZSIsICJpZCI6ICI3Y2YxYTRkNC0xMmRjLTRjOWUtOWY1Ny0xZjhk
|
||||
MTc5YmNlZGEiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFs
|
||||
c2UsICJhZ2VudF9yb2xlIjogIk11bHRpbW9kYWwgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiMDc3
|
||||
YzdhODY3ZTIwZDBhNjhiOTc0ZTQ3NjA3MTA5ZjMiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUB
|
||||
AAEAABKkBwoQ7zp57STyOlOLCoDVAFh15hIInYYk7J+gZ94qDENyZXcgQ3JlYXRlZDABOYjOfljH
|
||||
oBoYQZhIhljHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lv
|
||||
bhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogY2Q0ZGE2NGU2ZGMzYjllYmRjYTI0NDRjMWQ3MzAy
|
||||
ODFKMQoHY3Jld19pZBImCiQ1OTlmMjViNS0xMTgzLTQ2OTctODNjMy03OWUzZmQ3MmQ0NDlKHAoM
|
||||
Y3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVt
|
||||
YmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSs8CCgtjcmV3X2Fn
|
||||
ZW50cxK/Agq8Alt7ImtleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJp
|
||||
ZCI6ICJiY2I5ZjA4Ny1iMzI2LTRmYTQtOWJlZS0wMGVjODlmZTEwMzEiLCAicm9sZSI6ICJJbWFn
|
||||
ZSBBbmFseXN0IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
|
||||
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxl
|
||||
Z2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwg
|
||||
Im1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KggIKCmNyZXdfdGFza3MS
|
||||
8wEK8AFbeyJrZXkiOiAiZWU4NzI5Njk0MTBjOTRjMzM0ZjljZmZhMGE0MTVmZWMiLCAiaWQiOiAi
|
||||
NmFlMDcxYmItMjU4ZS00ZWRkLThhOGItODIxNzU4ZTFhNmRkIiwgImFzeW5jX2V4ZWN1dGlvbj8i
|
||||
OiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJJbWFnZSBBbmFs
|
||||
eXN0IiwgImFnZW50X2tleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJ0
|
||||
b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEqMHChBetHqqjbX/OlqTuIZkVppxEgirl8FuUewu
|
||||
TSoMQ3JldyBDcmVhdGVkMAE5aGwoWcegGhhBOCw0WcegGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoG
|
||||
MC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBlMzk1Njdi
|
||||
NTA1MjkwOWNhMzM0MDk4NGI4Mzg5ODBlYUoxCgdjcmV3X2lkEiYKJDA2ZTljN2FjLTEzZDItNGU4
|
||||
MS1hNzI2LTBlYjIyYzdlNWQ3MEocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3
|
||||
X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29m
|
||||
X2FnZW50cxICGAFKzgIKC2NyZXdfYWdlbnRzEr4CCrsCW3sia2V5IjogIjlkYzhjY2UwMzA0Njgx
|
||||
OTYwNDFiNGMzODBiNjE3Y2IwIiwgImlkIjogImI1ZGZkNmEyLTA1ZWYtNDIzNS1iZDVjLTI3ZTAy
|
||||
MGExYzk4ZiIsICJyb2xlIjogIkltYWdlIEFuYWx5c3QiLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4
|
||||
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
|
||||
ImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
|
||||
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
|
||||
OiBbXX1dSoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImE5YTc2Y2E2OTU3ZDBiZmZhNjll
|
||||
YWIyMGI2NjQ4MjJiIiwgImlkIjogIjJhMmQ4MDYzLTBkMmQtNDhmZi04NjJhLWNiOGM1NGEyMDYx
|
||||
NiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFn
|
||||
ZW50X3JvbGUiOiAiSW1hZ2UgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiOWRjOGNjZTAzMDQ2ODE5
|
||||
NjA0MWI0YzM4MGI2MTdjYjAiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQj49w
|
||||
ugM/XFoNkMEnAmaPnRIIcFM/RoDbVhcqDFRhc2sgQ3JlYXRlZDABOViFR1nHoBoYQfgRSFnHoBoY
|
||||
Si4KCGNyZXdfa2V5EiIKIGUzOTU2N2I1MDUyOTA5Y2EzMzQwOTg0YjgzODk4MGVhSjEKB2NyZXdf
|
||||
aWQSJgokMDZlOWM3YWMtMTNkMi00ZTgxLWE3MjYtMGViMjJjN2U1ZDcwSi4KCHRhc2tfa2V5EiIK
|
||||
IGE5YTc2Y2E2OTU3ZDBiZmZhNjllYWIyMGI2NjQ4MjJiSjEKB3Rhc2tfaWQSJgokMmEyZDgwNjMt
|
||||
MGQyZC00OGZmLTg2MmEtY2I4YzU0YTIwNjE2egIYAYUBAAEAABKXAQoQQgYNvHzrhiz04CrSnkG0
|
||||
KBII9UsJM/96oEoqClRvb2wgVXNhZ2UwATkQPOFax6AaGEGAmupax6AaGEoaCg5jcmV3YWlfdmVy
|
||||
c2lvbhIICgYwLjk1LjBKIwoJdG9vbF9uYW1lEhYKFEFkZCBpbWFnZSB0byBjb250ZW50Sg4KCGF0
|
||||
dGVtcHRzEgIYAXoCGAGFAQABAAASpAcKEL8pSiN4H/umQhWexA4UYzoSCC+JqZKUlDffKgxDcmV3
|
||||
IENyZWF0ZWQwATnA9r9cx6AaGEGAJMhcx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBK
|
||||
GgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0
|
||||
YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMt
|
||||
ZTVkOTY0ZGI5NzJhShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5
|
||||
EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRz
|
||||
EgIYAUrPAgoLY3Jld19hZ2VudHMSvwIKvAJbeyJrZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVk
|
||||
NTNmNjg5MjdmZDUiLCAiaWQiOiAiNjdlMDhiZDMtMzA5MS00ZTdhLWE4NjQtYTUyOGQ4ZDZlN2Y4
|
||||
IiwgInJvbGUiOiAiUmVwb3J0IFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
|
||||
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
|
||||
ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
|
||||
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1d
|
||||
SoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1
|
||||
NTZiN2FjIiwgImlkIjogIjUyZGMwN2ZjLWJjY2ItNDI4Mi1hZjllLWUyYTkxY2ViMzI0MCIsICJh
|
||||
c3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3Jv
|
||||
bGUiOiAiUmVwb3J0IFdyaXRlciIsICJhZ2VudF9rZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVk
|
||||
NTNmNjg5MjdmZDUiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQFiOJNSnPbaBo
|
||||
fje7Tx2DdBIIwjGhGgyR5BkqDFRhc2sgQ3JlYXRlZDABOaAq1FzHoBoYQah81FzHoBoYSi4KCGNy
|
||||
ZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgok
|
||||
ZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNj
|
||||
ODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00
|
||||
MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIYAYUBAAEAABKOAgoQt0X92psFBaT0eyn1IxJl0RIIpDY4
|
||||
j2AlTioqDFRhc2sgQ3JlYXRlZDABOdgnPV/HoBoYQXi0PV/HoBoYSi4KCGNyZXdfa2V5EiIKIDAw
|
||||
Yjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1
|
||||
NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVj
|
||||
NThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJh
|
||||
OTFjZWIzMjQwegIYAYUBAAEAABKOAgoQZyIwBbsHH+6dumgTUJNVzxIIMAEwlT69bAwqDFRhc2sg
|
||||
Q3JlYXRlZDABOeh9u2HHoBoYQfghvGHHoBoYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0
|
||||
YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMt
|
||||
ZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZi
|
||||
N2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIY
|
||||
AYUBAAEAABKOAgoQNmx90haqHtL8tj3Y948aIhIIaiFn4f7x7RAqDFRhc2sgQ3JlYXRlZDABOTgM
|
||||
nmTHoBoYQZCknmTHoBoYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
|
||||
YjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJh
|
||||
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
|
||||
aWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIYAYUBAAEAABKWBwoQ
|
||||
vt1TslFugf+idjOWhVfl9BIIGjt6tt0AKKkqDENyZXcgQ3JlYXRlZDABOWiz12fHoBoYQZj432fH
|
||||
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
|
||||
LjdKLgoIY3Jld19rZXkSIgogZjVkZTY3ZTk5ODUwNTA3NmEyOTM3YjNmZGFhNzc1ZjFKMQoHY3Jl
|
||||
d19pZBImCiQ2MzJjYTc0MC1mNjg2LTRlNGQtOTBmYy00YjZkYmE5ZjViMGRKHAoMY3Jld19wcm9j
|
||||
ZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rh
|
||||
c2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSsgCCgtjcmV3X2FnZW50cxK4Agq1
|
||||
Alt7ImtleSI6ICI2ZjYzZjNlMzU4M2E0NjJmZjNlNzY2MDcxYzgyMTJhZiIsICJpZCI6ICI1ZTZl
|
||||
NTMzNy1iZmMzLTRjZmYtODBlZi1hM2U5NDQ4YjBlYTMiLCAicm9sZSI6ICJXcml0ZXIiLCAidmVy
|
||||
Ym9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9u
|
||||
X2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
|
||||
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
|
||||
IjogMiwgInRvb2xzX25hbWVzIjogW119XUr7AQoKY3Jld190YXNrcxLsAQrpAVt7ImtleSI6ICIz
|
||||
ZjMyNzEyMDk2ZmFjYjliNGI2ZWE1NWI3OGViN2M4MCIsICJpZCI6ICI5NDRiZWRmNS0xZjZiLTQw
|
||||
OWEtOTE4Mi04YzMyZTM0MGZmMzQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
|
||||
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIldyaXRlciIsICJhZ2VudF9rZXkiOiAiNmY2
|
||||
M2YzZTM1ODNhNDYyZmYzZTc2NjA3MWM4MjEyYWYiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUB
|
||||
AAEAABKOAgoQ4leDd4+yGvuAxat0Z7g/uhIInjgmW2jrDBIqDFRhc2sgQ3JlYXRlZDABOXCN62fH
|
||||
oBoYQXjf62fHoBoYSi4KCGNyZXdfa2V5EiIKIGY1ZGU2N2U5OTg1MDUwNzZhMjkzN2IzZmRhYTc3
|
||||
NWYxSjEKB2NyZXdfaWQSJgokNjMyY2E3NDAtZjY4Ni00ZTRkLTkwZmMtNGI2ZGJhOWY1YjBkSi4K
|
||||
CHRhc2tfa2V5EiIKIDNmMzI3MTIwOTZmYWNiOWI0YjZlYTU1Yjc4ZWI3YzgwSjEKB3Rhc2tfaWQS
|
||||
JgokOTQ0YmVkZjUtMWY2Yi00MDlhLTkxODItOGMzMmUzNDBmZjM0egIYAYUBAAEAABKOAgoQ/K3x
|
||||
az8rHR8RbOPAn3/V0xIIkOxMowIIFUoqDFRhc2sgQ3JlYXRlZDABOUCJ7WfHoBoYQcDH7WfHoBoY
|
||||
Si4KCGNyZXdfa2V5EiIKIGY1ZGU2N2U5OTg1MDUwNzZhMjkzN2IzZmRhYTc3NWYxSjEKB2NyZXdf
|
||||
aWQSJgokNjMyY2E3NDAtZjY4Ni00ZTRkLTkwZmMtNGI2ZGJhOWY1YjBkSi4KCHRhc2tfa2V5EiIK
|
||||
IDNmMzI3MTIwOTZmYWNiOWI0YjZlYTU1Yjc4ZWI3YzgwSjEKB3Rhc2tfaWQSJgokOTQ0YmVkZjUt
|
||||
MWY2Yi00MDlhLTkxODItOGMzMmUzNDBmZjM0egIYAYUBAAEAABKeBwoQ/q45KvZiCrfu5bu1k3u9
|
||||
PBII3yPQFsZi+ywqDENyZXcgQ3JlYXRlZDABObA3PWjHoBoYQUDYSGjHoBoYShoKDmNyZXdhaV92
|
||||
ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkS
|
||||
IgogNzc2NTcyNTMwMGY2NjAwYjI5NjExYmI3ZTAyZDU2ZTZKMQoHY3Jld19pZBImCiQ3NDcwMDVh
|
||||
Yi1lODE0LTQ0YzItOWFlMy1lZTZkYWEzYmMxYjZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRp
|
||||
YWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3
|
||||
X251bWJlcl9vZl9hZ2VudHMSAhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICI3YjMz
|
||||
ZjY0ZGQwYjFiYTc4NWUwYmE4YmI1YjUyZjI0NiIsICJpZCI6ICI1ZTA0MzczNC02MGU1LTQwZWQt
|
||||
OGNlNS0wNjQ1MTNmMTkxMzciLCAicm9sZSI6ICJUZXN0IEFnZW50IiwgInZlcmJvc2U/IjogZmFs
|
||||
c2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xs
|
||||
bSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJh
|
||||
bGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29s
|
||||
c19uYW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiZDg3OTA0ZWU4MmNh
|
||||
NzVmZWQ1ODY4MTM3ZDRkYzEzNmYiLCAiaWQiOiAiNjdlZmEyZWEtZTQ0Ni00ZWI2LTg5YWMtMzA1
|
||||
ZDUwZjFkODMwIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZh
|
||||
bHNlLCAiYWdlbnRfcm9sZSI6ICJUZXN0IEFnZW50IiwgImFnZW50X2tleSI6ICI3YjMzZjY0ZGQw
|
||||
YjFiYTc4NWUwYmE4YmI1YjUyZjI0NiIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4C
|
||||
ChAWSoeQUP+DNRqnwCDlpo82Egg4jJLBn5Yi2ioMVGFzayBDcmVhdGVkMAE5+I9WaMegGhhBAOJW
|
||||
aMegGhhKLgoIY3Jld19rZXkSIgogNzc2NTcyNTMwMGY2NjAwYjI5NjExYmI3ZTAyZDU2ZTZKMQoH
|
||||
Y3Jld19pZBImCiQ3NDcwMDVhYi1lODE0LTQ0YzItOWFlMy1lZTZkYWEzYmMxYjZKLgoIdGFza19r
|
||||
ZXkSIgogZDg3OTA0ZWU4MmNhNzVmZWQ1ODY4MTM3ZDRkYzEzNmZKMQoHdGFza19pZBImCiQ2N2Vm
|
||||
YTJlYS1lNDQ2LTRlYjYtODlhYy0zMDVkNTBmMWQ4MzB6AhgBhQEAAQAA
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '32247'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Tue, 14 Jan 2025 17:56:25 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
|
||||
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
|
||||
Task: Test task description\n\nThis is the expect criteria for your final answer:
|
||||
Test expected output\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '838'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-ApfRLkycSd0vwuTw50dfB5bgIoWiC\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736877387,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: The final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
158,\n \"completion_tokens\": 31,\n \"total_tokens\": 189,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 901f80a64cc6bd25-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 14 Jan 2025 17:56:28 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=A.PJUaUHPGyIr2pwNz44ei0seKXMH7czqXc5dA_MzD0-1736877388-1.0.1.1-jC2Lo7dl92z6qdY8mxRekSqg68TqMNsvyjPoNVXBfKNO6hHwL5BKWSBeA2i9hYWN2DBBLvHWeFXq1nXCKNcnlQ;
|
||||
path=/; expires=Tue, 14-Jan-25 18:26:28 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=kERLxnulwhkdPi_RxnQLZV8G2Zbub8n_KYkKSL6uke8-1736877388108-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1020'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999807'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4ceac9bc8ae57f631959b91d2ab63c4d
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
111
tests/cassettes/test_before_kickoff_without_inputs.yaml
Normal file
111
tests/cassettes/test_before_kickoff_without_inputs.yaml
Normal file
@@ -0,0 +1,111 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
|
||||
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
|
||||
Task: Test task description\n\nThis is the expect criteria for your final answer:
|
||||
Test expected output\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '838'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=kERLxnulwhkdPi_RxnQLZV8G2Zbub8n_KYkKSL6uke8-1736877388108-0.0.1.1-604800000;
|
||||
__cf_bm=A.PJUaUHPGyIr2pwNz44ei0seKXMH7czqXc5dA_MzD0-1736877388-1.0.1.1-jC2Lo7dl92z6qdY8mxRekSqg68TqMNsvyjPoNVXBfKNO6hHwL5BKWSBeA2i9hYWN2DBBLvHWeFXq1nXCKNcnlQ
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-ApfRMtnfMV4SCUJwrE5p1tu8fmAUB\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736877388,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Test expected output\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
158,\n \"completion_tokens\": 14,\n \"total_tokens\": 172,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 901f80bbff04bd25-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 14 Jan 2025 17:56:28 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '393'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999807'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_c68d3a1100516d5cc5b4aff80a8b1ff8
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
File diff suppressed because it is too large
Load Diff
102
tests/cassettes/test_llm_call_with_message_list.yaml
Normal file
102
tests/cassettes/test_llm_call_with_message_list.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '101'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6WjNfEOrHwwEEdSZZCRBiTpBMS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568016,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The capital of France is Paris.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 14,\n \"completion_tokens\":
|
||||
8,\n \"total_tokens\": 22,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dc63b805cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:56 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '355'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_cdbed69c9c63658eb552b07f1220df19
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,36 +1,864 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Which
|
||||
model are you??\n\n", "options": {"num_predict": 30, "temperature": 0.7}, "stream":
|
||||
model are you?\n\n", "options": {"temperature": 0.7, "num_predict": 30}, "stream":
|
||||
false}'
|
||||
headers:
|
||||
Accept:
|
||||
accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '164'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- python-requests/2.32.3
|
||||
content-length:
|
||||
- '163'
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/generate
|
||||
response:
|
||||
body:
|
||||
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:24:24.812595Z","response":"I''m
|
||||
an AI, specifically a large language model, designed to understand and respond
|
||||
to user queries with accuracy.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,71291,128009,128006,78191,128007,271,40,2846,459,15592,11,11951,264,3544,4221,1646,11,6319,311,3619,323,6013,311,1217,20126,449,13708,13],"total_duration":827817584,"load_duration":41560542,"prompt_eval_count":39,"prompt_eval_duration":384000000,"eval_count":23,"eval_duration":400000000}'
|
||||
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T22:34:56.01157Z","response":"I''m
|
||||
an artificial intelligence model, specifically a transformer-based language
|
||||
model, designed to provide helpful and informative responses.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,21075,11478,1646,11,11951,264,43678,6108,4221,1646,11,6319,311,3493,11190,323,39319,14847,13],"total_duration":579515000,"load_duration":35352208,"prompt_eval_count":39,"prompt_eval_duration":126000000,"eval_count":23,"eval_duration":417000000}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '683'
|
||||
- '714'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Thu, 02 Jan 2025 20:24:24 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- Fri, 10 Jan 2025 22:34:56 GMT
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Fri, 10 Jan 2025 22:34:56 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Fri, 10 Jan 2025 22:34:56 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
108
tests/cassettes/test_llm_call_with_string_input.yaml
Normal file
108
tests/cassettes/test_llm_call_with_string_input.yaml
Normal file
@@ -0,0 +1,108 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Return the name of a random
|
||||
city in the world."}], "model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '117'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6UtbaNSMpNU9VJKxvn52t5eJTq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568014,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"How about \\\"Lisbon\\\"? It\u2019s the
|
||||
capital city of Portugal, known for its rich history and vibrant culture.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 18,\n \"completion_tokens\":
|
||||
24,\n \"total_tokens\": 42,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dbcaefb5cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:55 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA;
|
||||
path=/; expires=Wed, 22-Jan-25 18:16:55 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '449'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999971'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_898373758d2eae3cd84814050b2588e3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,102 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tell me a joke."}], "model":
|
||||
"gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '86'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZ6VyjuUcXYpChXmD8rUSy6nSGq8\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568015,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Why did the scarecrow win an award? \\n\\nBecause
|
||||
he was outstanding in his field!\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
12,\n \"completion_tokens\": 19,\n \"total_tokens\": 31,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 90615dc03b6c5cb1-RDU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:46:56 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '825'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999979'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4c1485d44e7461396d4a7316a63ff353
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
111
tests/cassettes/test_llm_call_with_tool_and_message_list.yaml
Normal file
111
tests/cassettes/test_llm_call_with_tool_and_message_list.yaml
Normal file
@@ -0,0 +1,111 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the square of 5?"}],
|
||||
"model": "gpt-4o-mini", "tools": [{"type": "function", "function": {"name":
|
||||
"square_number", "description": "Returns the square of a number.", "parameters":
|
||||
{"type": "object", "properties": {"number": {"type": "integer", "description":
|
||||
"The number to square"}}, "required": ["number"]}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '361'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZL5nGOaVpcGnDOesTxBZPHhMoaS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568919,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_i6JVJ1KxX79A4WzFri98E03U\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"square_number\",\n
|
||||
\ \"arguments\": \"{\\\"number\\\":5}\"\n }\n }\n
|
||||
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
58,\n \"completion_tokens\": 15,\n \"total_tokens\": 73,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 906173d229b905f6-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 18:02:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=BYDpIoqfPZyRxl9xcFxkt4IzTUGe8irWQlZ.aYLt8Xc-1737568920-1.0.1.1-Y_cVFN7TbguWRBorSKZynVY02QUtYbsbHuR2gR1wJ8LHuqOF4xIxtK5iHVCpWWgIyPDol9xOXiqUkU8xRV_vHA;
|
||||
path=/; expires=Wed, 22-Jan-25 18:32:00 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=etTqqA9SBOnENmrFAUBIexdW0v2ZeO1x9_Ek_WChlfU-1737568920137-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '642'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999976'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_388e63f9b8d4edc0dd153001f25388e5
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
107
tests/cassettes/test_llm_call_with_tool_and_string_input.yaml
Normal file
107
tests/cassettes/test_llm_call_with_tool_and_string_input.yaml
Normal file
@@ -0,0 +1,107 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "What is the current year?"}],
|
||||
"model": "gpt-4o-mini", "tools": [{"type": "function", "function": {"name":
|
||||
"get_current_year", "description": "Returns the current year as a string.",
|
||||
"parameters": {"type": "object", "properties": {}, "required": []}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '295'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=8NrWEBP3dDmc8p2.csR.EdsSwS8zFvzWI1kPICaK_fM-1737568015338-0.0.1.1-604800000;
|
||||
__cf_bm=pKr3NwXmTZN9rMSlKvEX40VPKbrxF93QwDNHunL2v8Y-1737568015-1.0.1.1-nR0EA7hYIwWpIBYUI53d9xQrUnl5iML6lgz4AGJW4ZGPBDxFma3PZ2cBhlr_hE7wKa5fV3r32eMu_rNWMXD.eA
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AsZJ8HKXQU9nTB7xbGAkKxqrg9BZ2\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1737568798,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_mfvEs2jngeFloVZpZOHZVaKY\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"get_current_year\",\n
|
||||
\ \"arguments\": \"{}\"\n }\n }\n ],\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"tool_calls\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 46,\n \"completion_tokens\":
|
||||
12,\n \"total_tokens\": 58,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 906170e038281775-IAD
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 22 Jan 2025 17:59:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '416'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999975'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_4039a5e5772d1790a3131f0b1ea06139
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -1,7 +1,6 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
|
||||
"stream": false}'
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -10,13 +9,13 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '101'
|
||||
- '84'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -26,7 +25,7 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
@@ -38,22 +37,22 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AcdBV2knOF2soWLszceiA08K8W8nE\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733770453,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AoEzIjusutsoPh1EmGgeXifkYvbfH\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736537376,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Hello! How can I assist you today?\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 11,\n \"completion_tokens\":
|
||||
9,\n \"total_tokens\": 20,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
10,\n \"total_tokens\": 21,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_bba3c8e70b\"\n}\n"
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_01aeff40ea\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ef733d51801bada-ATL
|
||||
- 8fff13aa78db4569-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -61,14 +60,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Mon, 09 Dec 2024 18:54:13 GMT
|
||||
- Fri, 10 Jan 2025 19:29:36 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=_fEt57lre0.E_IZaebjaDAcrpBbzGhLWW6KtQ4FjLxo-1733770453-1.0.1.1-ndzEQCfExSp1asSdBXxS0fGYQnKVTivInc1MHN.ZjnmGmkAmEp0EPwiJlcAMvQaMCMZ7a_vKqAEMbz8ZbzTYYg;
|
||||
path=/; expires=Mon, 09-Dec-24 19:24:13 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=PoW0e3SDy04AxLoIfTXlp2oFUuTGjQzesTybc7KXe28-1736537376-1.0.1.1-tznDR3VZpUOrVUyHmDUYYtpSQ2WI3X6ya9EhOwgNEMVIe6KsDgje4tO7z_tk7l0cuRww1jx_ryG3sgT1AETdVw;
|
||||
path=/; expires=Fri, 10-Jan-25 19:59:36 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=2gTS3no9rova7t6URcfR30yzeZdKkL.9.lvsZXgmbVw-1733770453657-0.0.1.1-604800000;
|
||||
- _cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -81,7 +80,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '275'
|
||||
- '286'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -99,12 +98,12 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_82ef8940a3291813e6a347535ab6bf26
|
||||
- req_18f5593ddf37824bb9a7690407170dc0
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
"model": "gpt-4o-mini", "stream": false}'
|
||||
"model": "gpt-4o-mini"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -113,16 +112,16 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '120'
|
||||
- '103'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=_fEt57lre0.E_IZaebjaDAcrpBbzGhLWW6KtQ4FjLxo-1733770453-1.0.1.1-ndzEQCfExSp1asSdBXxS0fGYQnKVTivInc1MHN.ZjnmGmkAmEp0EPwiJlcAMvQaMCMZ7a_vKqAEMbz8ZbzTYYg;
|
||||
_cfuvid=2gTS3no9rova7t6URcfR30yzeZdKkL.9.lvsZXgmbVw-1733770453657-0.0.1.1-604800000
|
||||
- __cf_bm=PoW0e3SDy04AxLoIfTXlp2oFUuTGjQzesTybc7KXe28-1736537376-1.0.1.1-tznDR3VZpUOrVUyHmDUYYtpSQ2WI3X6ya9EhOwgNEMVIe6KsDgje4tO7z_tk7l0cuRww1jx_ryG3sgT1AETdVw;
|
||||
_cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -132,7 +131,7 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
@@ -144,22 +143,23 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AcdBWMAembczwWDLdjIRYwtbMLONh\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733770454,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AoEzIOYUDsd7SpYDQeQmbNGS7IBLE\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736537376,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Hello! It\u2019s great to connect with
|
||||
you. How can I assist you today?\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
14,\n \"completion_tokens\": 17,\n \"total_tokens\": 31,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_bba3c8e70b\"\n}\n"
|
||||
\"assistant\",\n \"content\": \"Hello! It's great to connect with another
|
||||
agent. How can I assist you today?\",\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 14,\n \"completion_tokens\": 18,\n
|
||||
\ \"total_tokens\": 32,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_01aeff40ea\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ef733d7bc41bada-ATL
|
||||
- 8fff13ad8e054569-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -167,7 +167,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Mon, 09 Dec 2024 18:54:14 GMT
|
||||
- Fri, 10 Jan 2025 19:29:37 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -181,7 +181,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '659'
|
||||
- '422'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -199,7 +199,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_da24049df911504f5102825db6b4aea9
|
||||
- req_366bcd7dfe94e2a2b5640fd9bb1c5a6b
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -1,4 +1,37 @@
|
||||
# conftest.py
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_result = load_dotenv(override=True)
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_test_environment():
|
||||
"""Set up test environment with a temporary directory for SQLite storage."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Create the directory with proper permissions
|
||||
storage_dir = Path(temp_dir) / "crewai_test_storage"
|
||||
storage_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Validate that the directory was created successfully
|
||||
if not storage_dir.exists() or not storage_dir.is_dir():
|
||||
raise RuntimeError(f"Failed to create test storage directory: {storage_dir}")
|
||||
|
||||
# Verify directory permissions
|
||||
try:
|
||||
# Try to create a test file to verify write permissions
|
||||
test_file = storage_dir / ".permissions_test"
|
||||
test_file.touch()
|
||||
test_file.unlink()
|
||||
except (OSError, IOError) as e:
|
||||
raise RuntimeError(f"Test storage directory {storage_dir} is not writable: {e}")
|
||||
|
||||
# Set environment variable to point to the test storage directory
|
||||
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
|
||||
|
||||
yield
|
||||
|
||||
# Cleanup is handled automatically when tempfile context exits
|
||||
|
||||
@@ -16,6 +16,7 @@ from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.process import Process
|
||||
from crewai.project import crew
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
@@ -1227,6 +1228,7 @@ def test_kickoff_for_each_empty_input():
|
||||
assert results == []
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_kickoff_for_each_invalid_input():
|
||||
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
|
||||
|
||||
@@ -1464,39 +1466,35 @@ def test_dont_set_agents_step_callback_if_already_set():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_function_calling_llm():
|
||||
from unittest.mock import patch
|
||||
|
||||
from crewai import LLM
|
||||
from crewai.tools import tool
|
||||
|
||||
llm = "gpt-4o"
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
@tool
|
||||
def learn_about_AI() -> str:
|
||||
"""Useful for when you need to learn about AI to write an paragraph about it."""
|
||||
return "AI is a very broad field."
|
||||
def look_up_greeting() -> str:
|
||||
"""Tool used to retrieve a greeting."""
|
||||
return "Howdy!"
|
||||
|
||||
agent1 = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
tools=[learn_about_AI],
|
||||
role="Greeter",
|
||||
goal="Say hello.",
|
||||
backstory="You are a friendly greeter.",
|
||||
tools=[look_up_greeting],
|
||||
llm="gpt-4o-mini",
|
||||
function_calling_llm=llm,
|
||||
)
|
||||
|
||||
essay = Task(
|
||||
description="Write and then review an small paragraph on AI until it's AMAZING",
|
||||
expected_output="The final paragraph.",
|
||||
description="Look up the greeting and say it.",
|
||||
expected_output="A greeting.",
|
||||
agent=agent1,
|
||||
)
|
||||
tasks = [essay]
|
||||
crew = Crew(agents=[agent1], tasks=tasks)
|
||||
|
||||
with patch.object(
|
||||
instructor, "from_litellm", wraps=instructor.from_litellm
|
||||
) as mock_from_litellm:
|
||||
crew.kickoff()
|
||||
mock_from_litellm.assert_called()
|
||||
crew = Crew(agents=[agent1], tasks=[essay])
|
||||
result = crew.kickoff()
|
||||
assert result.raw == "Howdy!"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -3478,3 +3476,123 @@ def test_crew_guardrail_feedback_in_context():
|
||||
|
||||
# Verify task retry count
|
||||
assert task.retry_count == 1, "Task should have been retried once"
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_before_kickoff_callback():
|
||||
from crewai.project import CrewBase, agent, before_kickoff, task
|
||||
|
||||
@CrewBase
|
||||
class TestCrewClass:
|
||||
from crewai.project import crew
|
||||
|
||||
agents_config = None
|
||||
tasks_config = None
|
||||
|
||||
def __init__(self):
|
||||
self.inputs_modified = False
|
||||
|
||||
@before_kickoff
|
||||
def modify_inputs(self, inputs):
|
||||
|
||||
self.inputs_modified = True
|
||||
inputs["modified"] = True
|
||||
return inputs
|
||||
|
||||
@agent
|
||||
def my_agent(self):
|
||||
return Agent(
|
||||
role="Test Agent",
|
||||
goal="Test agent goal",
|
||||
backstory="Test agent backstory",
|
||||
)
|
||||
|
||||
@task
|
||||
def my_task(self):
|
||||
task = Task(
|
||||
description="Test task description",
|
||||
expected_output="Test expected output",
|
||||
agent=self.my_agent(),
|
||||
)
|
||||
return task
|
||||
|
||||
@crew
|
||||
def crew(self):
|
||||
return Crew(agents=self.agents, tasks=self.tasks)
|
||||
|
||||
test_crew_instance = TestCrewClass()
|
||||
|
||||
test_crew = test_crew_instance.crew()
|
||||
|
||||
# Verify that the before_kickoff_callbacks are set
|
||||
assert len(test_crew.before_kickoff_callbacks) == 1
|
||||
|
||||
# Prepare inputs
|
||||
inputs = {"initial": True}
|
||||
|
||||
# Call kickoff
|
||||
test_crew.kickoff(inputs=inputs)
|
||||
|
||||
# Check that the before_kickoff function was called and modified inputs
|
||||
assert test_crew_instance.inputs_modified
|
||||
assert inputs.get("modified")
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_before_kickoff_without_inputs():
|
||||
from crewai.project import CrewBase, agent, before_kickoff, task
|
||||
|
||||
@CrewBase
|
||||
class TestCrewClass:
|
||||
from crewai.project import crew
|
||||
|
||||
agents_config = None
|
||||
tasks_config = None
|
||||
|
||||
def __init__(self):
|
||||
self.inputs_modified = False
|
||||
self.received_inputs = None
|
||||
|
||||
@before_kickoff
|
||||
def modify_inputs(self, inputs):
|
||||
self.inputs_modified = True
|
||||
inputs["modified"] = True
|
||||
self.received_inputs = inputs
|
||||
return inputs
|
||||
|
||||
@agent
|
||||
def my_agent(self):
|
||||
return Agent(
|
||||
role="Test Agent",
|
||||
goal="Test agent goal",
|
||||
backstory="Test agent backstory",
|
||||
)
|
||||
|
||||
@task
|
||||
def my_task(self):
|
||||
return Task(
|
||||
description="Test task description",
|
||||
expected_output="Test expected output",
|
||||
agent=self.my_agent(),
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self):
|
||||
return Crew(agents=self.agents, tasks=self.tasks)
|
||||
|
||||
# Instantiate the class
|
||||
test_crew_instance = TestCrewClass()
|
||||
# Build the crew
|
||||
test_crew = test_crew_instance.crew()
|
||||
# Verify that the before_kickoff_callback is registered
|
||||
assert len(test_crew.before_kickoff_callbacks) == 1
|
||||
|
||||
# Call kickoff without passing inputs
|
||||
test_crew.kickoff()
|
||||
|
||||
# Check that the before_kickoff function was called
|
||||
assert test_crew_instance.inputs_modified
|
||||
|
||||
# Verify that the inputs were initialized and modified inside the before_kickoff method
|
||||
assert test_crew_instance.received_inputs is not None
|
||||
assert test_crew_instance.received_inputs.get("modified") is True
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
import asyncio
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, and_, listen, or_, router, start
|
||||
|
||||
@@ -265,6 +266,81 @@ def test_flow_with_custom_state():
|
||||
assert flow.counter == 2
|
||||
|
||||
|
||||
def test_flow_uuid_unstructured():
|
||||
"""Test that unstructured (dictionary) flow states automatically get a UUID that persists."""
|
||||
initial_id = None
|
||||
|
||||
class UUIDUnstructuredFlow(Flow):
|
||||
@start()
|
||||
def first_method(self):
|
||||
nonlocal initial_id
|
||||
# Verify ID is automatically generated
|
||||
assert "id" in self.state
|
||||
assert isinstance(self.state["id"], str)
|
||||
# Store initial ID for comparison
|
||||
initial_id = self.state["id"]
|
||||
# Add some data to trigger state update
|
||||
self.state["data"] = "example"
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self):
|
||||
# Ensure the ID persists after state updates
|
||||
assert "id" in self.state
|
||||
assert self.state["id"] == initial_id
|
||||
# Update state again to verify ID preservation
|
||||
self.state["more_data"] = "test"
|
||||
assert self.state["id"] == initial_id
|
||||
|
||||
flow = UUIDUnstructuredFlow()
|
||||
flow.kickoff()
|
||||
# Verify ID persists after flow completion
|
||||
assert flow.state["id"] == initial_id
|
||||
# Verify UUID format (36 characters, including hyphens)
|
||||
assert len(flow.state["id"]) == 36
|
||||
|
||||
|
||||
def test_flow_uuid_structured():
|
||||
"""Test that structured (Pydantic) flow states automatically get a UUID that persists."""
|
||||
initial_id = None
|
||||
|
||||
class MyStructuredState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = "initial"
|
||||
|
||||
class UUIDStructuredFlow(Flow[MyStructuredState]):
|
||||
@start()
|
||||
def first_method(self):
|
||||
nonlocal initial_id
|
||||
# Verify ID is automatically generated and accessible as attribute
|
||||
assert hasattr(self.state, "id")
|
||||
assert isinstance(self.state.id, str)
|
||||
# Store initial ID for comparison
|
||||
initial_id = self.state.id
|
||||
# Update some fields to trigger state changes
|
||||
self.state.counter += 1
|
||||
self.state.message = "updated"
|
||||
|
||||
@listen(first_method)
|
||||
def second_method(self):
|
||||
# Ensure the ID persists after state updates
|
||||
assert hasattr(self.state, "id")
|
||||
assert self.state.id == initial_id
|
||||
# Update state again to verify ID preservation
|
||||
self.state.counter += 1
|
||||
self.state.message = "final"
|
||||
assert self.state.id == initial_id
|
||||
|
||||
flow = UUIDStructuredFlow()
|
||||
flow.kickoff()
|
||||
# Verify ID persists after flow completion
|
||||
assert flow.state.id == initial_id
|
||||
# Verify UUID format (36 characters, including hyphens)
|
||||
assert len(flow.state.id) == 36
|
||||
# Verify other state fields were properly updated
|
||||
assert flow.state.counter == 2
|
||||
assert flow.state.message == "final"
|
||||
|
||||
|
||||
def test_router_with_multiple_conditions():
|
||||
"""Test a router that triggers when any of multiple steps complete (OR condition),
|
||||
and another router that triggers only after all specified steps complete (AND condition).
|
||||
|
||||
@@ -1,30 +1,156 @@
|
||||
from time import sleep
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
from crewai.tools import tool
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
|
||||
|
||||
# TODO: This test fails without print statement, which makes me think that something is happening asynchronously that we need to eventually fix and dive deeper into at a later date
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_callback_replacement():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
llm1 = LLM(model="gpt-4o-mini")
|
||||
llm2 = LLM(model="gpt-4o-mini")
|
||||
|
||||
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
|
||||
llm.call(
|
||||
result1 = llm1.call(
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
callbacks=[calc_handler_1],
|
||||
)
|
||||
print("result1:", result1)
|
||||
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
|
||||
print("usage_metrics_1:", usage_metrics_1)
|
||||
|
||||
llm.call(
|
||||
result2 = llm2.call(
|
||||
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
|
||||
callbacks=[calc_handler_2],
|
||||
)
|
||||
sleep(5)
|
||||
print("result2:", result2)
|
||||
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
|
||||
print("usage_metrics_2:", usage_metrics_2)
|
||||
|
||||
# The first handler should not have been updated
|
||||
assert usage_metrics_1.successful_requests == 1
|
||||
assert usage_metrics_2.successful_requests == 1
|
||||
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_string_input():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
# Test the call method with a string input
|
||||
result = llm.call("Return the name of a random city in the world.")
|
||||
assert isinstance(result, str)
|
||||
assert len(result.strip()) > 0 # Ensure the response is not empty
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_string_input_and_callbacks():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
calc_handler = TokenCalcHandler(token_cost_process=TokenProcess())
|
||||
|
||||
# Test the call method with a string input and callbacks
|
||||
result = llm.call(
|
||||
"Tell me a joke.",
|
||||
callbacks=[calc_handler],
|
||||
)
|
||||
usage_metrics = calc_handler.token_cost_process.get_summary()
|
||||
|
||||
assert isinstance(result, str)
|
||||
assert len(result.strip()) > 0
|
||||
assert usage_metrics.successful_requests == 1
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_message_list():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
messages = [{"role": "user", "content": "What is the capital of France?"}]
|
||||
|
||||
# Test the call method with a list of messages
|
||||
result = llm.call(messages)
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_tool_and_string_input():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
def get_current_year() -> str:
|
||||
"""Returns the current year as a string."""
|
||||
from datetime import datetime
|
||||
|
||||
return str(datetime.now().year)
|
||||
|
||||
# Create tool schema
|
||||
tool_schema = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_year",
|
||||
"description": "Returns the current year as a string.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# Available functions mapping
|
||||
available_functions = {"get_current_year": get_current_year}
|
||||
|
||||
# Test the call method with a string input and tool
|
||||
result = llm.call(
|
||||
"What is the current year?",
|
||||
tools=[tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
assert isinstance(result, str)
|
||||
assert result == get_current_year()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_call_with_tool_and_message_list():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
|
||||
def square_number(number: int) -> int:
|
||||
"""Returns the square of a number."""
|
||||
return number * number
|
||||
|
||||
# Create tool schema
|
||||
tool_schema = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "square_number",
|
||||
"description": "Returns the square of a number.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": {"type": "integer", "description": "The number to square"}
|
||||
},
|
||||
"required": ["number"],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# Available functions mapping
|
||||
available_functions = {"square_number": square_number}
|
||||
|
||||
messages = [{"role": "user", "content": "What is the square of 5?"}]
|
||||
|
||||
# Test the call method with messages and tool
|
||||
result = llm.call(
|
||||
messages,
|
||||
tools=[tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
assert isinstance(result, int)
|
||||
assert result == 25
|
||||
|
||||
112
tests/test_flow_default_override.py
Normal file
112
tests/test_flow_default_override.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""Test that persisted state properly overrides default values."""
|
||||
|
||||
from crewai.flow.flow import Flow, FlowState, listen, start
|
||||
from crewai.flow.persistence import persist
|
||||
|
||||
|
||||
class PoemState(FlowState):
|
||||
"""Test state model with default values that should be overridden."""
|
||||
sentence_count: int = 1000 # Default that should be overridden
|
||||
has_set_count: bool = False # Track whether we've set the count
|
||||
poem_type: str = ""
|
||||
|
||||
|
||||
def test_default_value_override():
|
||||
"""Test that persisted state values override class defaults."""
|
||||
|
||||
@persist()
|
||||
class PoemFlow(Flow[PoemState]):
|
||||
initial_state = PoemState
|
||||
|
||||
@start()
|
||||
def set_sentence_count(self):
|
||||
if self.state.has_set_count and self.state.sentence_count == 2:
|
||||
self.state.sentence_count = 3
|
||||
|
||||
elif self.state.has_set_count and self.state.sentence_count == 1000:
|
||||
self.state.sentence_count = 1000
|
||||
|
||||
elif self.state.has_set_count and self.state.sentence_count == 5:
|
||||
self.state.sentence_count = 5
|
||||
|
||||
else:
|
||||
self.state.sentence_count = 2
|
||||
self.state.has_set_count = True
|
||||
|
||||
# First run - should set sentence_count to 2
|
||||
flow1 = PoemFlow()
|
||||
flow1.kickoff()
|
||||
original_uuid = flow1.state.id
|
||||
assert flow1.state.sentence_count == 2
|
||||
|
||||
# Second run - should load sentence_count=2 instead of default 1000
|
||||
flow2 = PoemFlow()
|
||||
flow2.kickoff(inputs={"id": original_uuid})
|
||||
assert flow2.state.sentence_count == 3 # Should load 2, not default 1000
|
||||
|
||||
# Fourth run - explicit override should work
|
||||
flow3 = PoemFlow()
|
||||
flow3.kickoff(inputs={
|
||||
"id": original_uuid,
|
||||
"has_set_count": True,
|
||||
"sentence_count": 5, # Override persisted value
|
||||
})
|
||||
assert flow3.state.sentence_count == 5 # Should use override value
|
||||
|
||||
# Third run - should not load sentence_count=2 instead of default 1000
|
||||
flow4 = PoemFlow()
|
||||
flow4.kickoff(inputs={"has_set_count": True})
|
||||
assert flow4.state.sentence_count == 1000 # Should load 1000, not 2
|
||||
|
||||
|
||||
def test_multi_step_default_override():
|
||||
"""Test default value override with multiple start methods."""
|
||||
|
||||
@persist()
|
||||
class MultiStepPoemFlow(Flow[PoemState]):
|
||||
initial_state = PoemState
|
||||
|
||||
@start()
|
||||
def set_sentence_count(self):
|
||||
print("Setting sentence count")
|
||||
if not self.state.has_set_count:
|
||||
self.state.sentence_count = 3
|
||||
self.state.has_set_count = True
|
||||
|
||||
@listen(set_sentence_count)
|
||||
def set_poem_type(self):
|
||||
print("Setting poem type")
|
||||
if self.state.sentence_count == 3:
|
||||
self.state.poem_type = "haiku"
|
||||
elif self.state.sentence_count == 5:
|
||||
self.state.poem_type = "limerick"
|
||||
else:
|
||||
self.state.poem_type = "free_verse"
|
||||
|
||||
@listen(set_poem_type)
|
||||
def finished(self):
|
||||
print("finished")
|
||||
|
||||
# First run - should set both sentence count and poem type
|
||||
flow1 = MultiStepPoemFlow()
|
||||
flow1.kickoff()
|
||||
original_uuid = flow1.state.id
|
||||
assert flow1.state.sentence_count == 3
|
||||
assert flow1.state.poem_type == "haiku"
|
||||
|
||||
# Second run - should load persisted state and update poem type
|
||||
flow2 = MultiStepPoemFlow()
|
||||
flow2.kickoff(inputs={
|
||||
"id": original_uuid,
|
||||
"sentence_count": 5
|
||||
})
|
||||
assert flow2.state.sentence_count == 5
|
||||
assert flow2.state.poem_type == "limerick"
|
||||
|
||||
# Third run - new flow without persisted state should use defaults
|
||||
flow3 = MultiStepPoemFlow()
|
||||
flow3.kickoff(inputs={
|
||||
"id": original_uuid
|
||||
})
|
||||
assert flow3.state.sentence_count == 5
|
||||
assert flow3.state.poem_type == "limerick"
|
||||
176
tests/test_flow_persistence.py
Normal file
176
tests/test_flow_persistence.py
Normal file
@@ -0,0 +1,176 @@
|
||||
"""Test flow state persistence functionality."""
|
||||
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, FlowState, listen, start
|
||||
from crewai.flow.persistence import persist
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
|
||||
|
||||
class TestState(FlowState):
|
||||
"""Test state model with required id field."""
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
def test_persist_decorator_saves_state(tmp_path):
|
||||
"""Test that @persist decorator saves state in SQLite."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class TestFlow(Flow[Dict[str, str]]):
|
||||
initial_state = dict() # Use dict instance as initial state
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def init_step(self):
|
||||
self.state["message"] = "Hello, World!"
|
||||
self.state["id"] = "test-uuid" # Ensure we have an ID for persistence
|
||||
|
||||
# Run flow and verify state is saved
|
||||
flow = TestFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
# Load state from DB and verify
|
||||
saved_state = persistence.load_state(flow.state["id"])
|
||||
assert saved_state is not None
|
||||
assert saved_state["message"] == "Hello, World!"
|
||||
|
||||
|
||||
def test_structured_state_persistence(tmp_path):
|
||||
"""Test persistence with Pydantic model state."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class StructuredFlow(Flow[TestState]):
|
||||
initial_state = TestState
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def count_up(self):
|
||||
self.state.counter += 1
|
||||
self.state.message = f"Count is {self.state.counter}"
|
||||
|
||||
# Run flow and verify state changes are saved
|
||||
flow = StructuredFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
# Load and verify state
|
||||
saved_state = persistence.load_state(flow.state.id)
|
||||
assert saved_state is not None
|
||||
assert saved_state["counter"] == 1
|
||||
assert saved_state["message"] == "Count is 1"
|
||||
|
||||
|
||||
def test_flow_state_restoration(tmp_path):
|
||||
"""Test restoring flow state from persistence with various restoration methods."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
# First flow execution to create initial state
|
||||
class RestorableFlow(Flow[TestState]):
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def set_message(self):
|
||||
if self.state.message == "":
|
||||
self.state.message = "Original message"
|
||||
if self.state.counter == 0:
|
||||
self.state.counter = 42
|
||||
|
||||
# Create and persist initial state
|
||||
flow1 = RestorableFlow(persistence=persistence)
|
||||
flow1.kickoff()
|
||||
original_uuid = flow1.state.id
|
||||
|
||||
# Test case 1: Restore using restore_uuid with field override
|
||||
flow2 = RestorableFlow(persistence=persistence)
|
||||
flow2.kickoff(inputs={
|
||||
"id": original_uuid,
|
||||
"counter": 43
|
||||
})
|
||||
|
||||
# Verify state restoration and selective field override
|
||||
assert flow2.state.id == original_uuid
|
||||
assert flow2.state.message == "Original message" # Preserved
|
||||
assert flow2.state.counter == 43 # Overridden
|
||||
|
||||
# Test case 2: Restore using kwargs['id']
|
||||
flow3 = RestorableFlow(persistence=persistence)
|
||||
flow3.kickoff(inputs={
|
||||
"id": original_uuid,
|
||||
"message": "Updated message"
|
||||
})
|
||||
|
||||
# Verify state restoration and selective field override
|
||||
assert flow3.state.id == original_uuid
|
||||
assert flow3.state.counter == 43 # Preserved
|
||||
assert flow3.state.message == "Updated message" # Overridden
|
||||
|
||||
|
||||
def test_multiple_method_persistence(tmp_path):
|
||||
"""Test state persistence across multiple method executions."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class MultiStepFlow(Flow[TestState]):
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def step_1(self):
|
||||
if self.state.counter == 1:
|
||||
self.state.counter = 99999
|
||||
self.state.message = "Step 99999"
|
||||
else:
|
||||
self.state.counter = 1
|
||||
self.state.message = "Step 1"
|
||||
|
||||
@listen(step_1)
|
||||
@persist(persistence)
|
||||
def step_2(self):
|
||||
if self.state.counter == 1:
|
||||
self.state.counter = 2
|
||||
self.state.message = "Step 2"
|
||||
|
||||
flow = MultiStepFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
flow2 = MultiStepFlow(persistence=persistence)
|
||||
flow2.kickoff(inputs={"id": flow.state.id})
|
||||
|
||||
# Load final state
|
||||
final_state = flow2.state
|
||||
assert final_state is not None
|
||||
assert final_state.counter == 2
|
||||
assert final_state.message == "Step 2"
|
||||
|
||||
class NoPersistenceMultiStepFlow(Flow[TestState]):
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def step_1(self):
|
||||
if self.state.counter == 1:
|
||||
self.state.counter = 99999
|
||||
self.state.message = "Step 99999"
|
||||
else:
|
||||
self.state.counter = 1
|
||||
self.state.message = "Step 1"
|
||||
|
||||
@listen(step_1)
|
||||
def step_2(self):
|
||||
if self.state.counter == 1:
|
||||
self.state.counter = 2
|
||||
self.state.message = "Step 2"
|
||||
|
||||
flow = NoPersistenceMultiStepFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
flow2 = NoPersistenceMultiStepFlow(persistence=persistence)
|
||||
flow2.kickoff(inputs={"id": flow.state.id})
|
||||
|
||||
# Load final state
|
||||
final_state = flow2.state
|
||||
assert final_state.counter == 99999
|
||||
assert final_state.message == "Step 99999"
|
||||
@@ -1,8 +1,6 @@
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai import Agent, Task
|
||||
from crewai import Agent
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
@@ -22,12 +20,9 @@ class InternalAgentTool(BaseAgentTool):
|
||||
("Futel Official Infopoint\n", True), # trailing newline
|
||||
('"Futel Official Infopoint"', True), # embedded quotes
|
||||
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
|
||||
("futel official infopoint", True), # lowercase
|
||||
("FUTEL OFFICIAL INFOPOINT", True), # uppercase
|
||||
("Non Existent Agent", False), # non-existent agent
|
||||
(None, False), # None agent name
|
||||
],
|
||||
)
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_tool_role_matching(role_name, should_match):
|
||||
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
|
||||
# Create test agent
|
||||
|
||||
@@ -121,3 +121,365 @@ def test_tool_usage_render():
|
||||
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
|
||||
in rendered
|
||||
)
|
||||
|
||||
|
||||
def test_validate_tool_input_booleans_and_none():
|
||||
# Create a ToolUsage instance with mocks
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Input with booleans and None
|
||||
tool_input = '{"key1": True, "key2": False, "key3": None}'
|
||||
expected_arguments = {"key1": True, "key2": False, "key3": None}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_mixed_types():
|
||||
# Create a ToolUsage instance with mocks
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Input with mixed types
|
||||
tool_input = '{"number": 123, "text": "Some text", "flag": True}'
|
||||
expected_arguments = {"number": 123, "text": "Some text", "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_single_quotes():
|
||||
# Create a ToolUsage instance with mocks
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Input with single quotes instead of double quotes
|
||||
tool_input = "{'key': 'value', 'flag': True}"
|
||||
expected_arguments = {"key": "value", "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_invalid_json_repairable():
|
||||
# Create a ToolUsage instance with mocks
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Invalid JSON input that can be repaired
|
||||
tool_input = '{"key": "value", "list": [1, 2, 3,]}'
|
||||
expected_arguments = {"key": "value", "list": [1, 2, 3]}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_special_characters():
|
||||
# Create a ToolUsage instance with mocks
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=MagicMock(),
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Input with special characters
|
||||
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
|
||||
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {}
|
||||
|
||||
|
||||
def test_validate_tool_input_valid_json():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_python_dict():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{'key': 'value', 'number': 42, 'flag': True}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_json5_unquoted_keys():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = "{key: 'value', number: 42, flag: true}"
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_trailing_commas():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"key": "value", "number": 42, "flag": true,}'
|
||||
expected_arguments = {"key": "value", "number": 42, "flag": True}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_invalid_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
invalid_inputs = [
|
||||
"Just a string",
|
||||
"['list', 'of', 'values']",
|
||||
"12345",
|
||||
"",
|
||||
]
|
||||
|
||||
for invalid_input in invalid_inputs:
|
||||
with pytest.raises(Exception) as e_info:
|
||||
tool_usage._validate_tool_input(invalid_input)
|
||||
assert (
|
||||
"Tool input must be a valid dictionary in JSON or Python literal format"
|
||||
in str(e_info.value)
|
||||
)
|
||||
|
||||
# Test for None input separately
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
|
||||
def test_validate_tool_input_complex_structure():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = """
|
||||
{
|
||||
"user": {
|
||||
"name": "Alice",
|
||||
"age": 30
|
||||
},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2",}
|
||||
],
|
||||
"active": true,
|
||||
}
|
||||
"""
|
||||
expected_arguments = {
|
||||
"user": {"name": "Alice", "age": 30},
|
||||
"items": [
|
||||
{"id": 1, "value": "Item1"},
|
||||
{"id": 2, "value": "Item2"},
|
||||
],
|
||||
"active": True,
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_code_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"filename": "script.py", "content": "def hello():\\n print(\'Hello, world!\')"}'
|
||||
expected_arguments = {
|
||||
"filename": "script.py",
|
||||
"content": "def hello():\n print('Hello, world!')",
|
||||
}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_with_escaped_quotes():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
tool_input = '{"text": "He said, \\"Hello, world!\\""}'
|
||||
expected_arguments = {"text": 'He said, "Hello, world!"'}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_large_json_content():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
# Simulate a large JSON content
|
||||
tool_input = (
|
||||
'{"data": ' + json.dumps([{"id": i, "value": i * 2} for i in range(1000)]) + "}"
|
||||
)
|
||||
expected_arguments = {"data": [{"id": i, "value": i * 2} for i in range(1000)]}
|
||||
|
||||
arguments = tool_usage._validate_tool_input(tool_input)
|
||||
assert arguments == expected_arguments
|
||||
|
||||
|
||||
def test_validate_tool_input_none_input():
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=MagicMock(),
|
||||
tools=[],
|
||||
original_tools=[],
|
||||
tools_description="",
|
||||
tools_names="",
|
||||
task=MagicMock(),
|
||||
function_calling_llm=None,
|
||||
agent=MagicMock(),
|
||||
action=MagicMock(),
|
||||
)
|
||||
|
||||
arguments = tool_usage._validate_tool_input(None)
|
||||
assert arguments == {} # Expecting an empty dictionary
|
||||
|
||||
114
tests/utilities/cassettes/test_convert_with_instructions.yaml
Normal file
114
tests/utilities/cassettes/test_convert_with_instructions.yaml
Normal file
@@ -0,0 +1,114 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Name: Alice, Age: 30"}], "model":
|
||||
"gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name": "SimpleModel"}},
|
||||
"tools": [{"type": "function", "function": {"name": "SimpleModel", "description":
|
||||
"Correctly extracted `SimpleModel` with all the required parameters with correct
|
||||
types", "parameters": {"properties": {"name": {"title": "Name", "type": "string"},
|
||||
"age": {"title": "Age", "type": "integer"}}, "required": ["age", "name"], "type":
|
||||
"object"}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '507'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Aq4a4xDv8G0i4fbTtPJEI2B8UNBup\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736974028,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_uO5nec8hTk1fpYINM8TUafhe\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"SimpleModel\",\n
|
||||
\ \"arguments\": \"{\\\"name\\\":\\\"Alice\\\",\\\"age\\\":30}\"\n
|
||||
\ }\n }\n ],\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 79,\n \"completion_tokens\": 10,\n
|
||||
\ \"total_tokens\": 89,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9028b81aeb1cb05f-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:08 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
|
||||
path=/; expires=Wed, 15-Jan-25 21:17:08 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '439'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a468000458b9d2848b7497b2e3d485a3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
2048
tests/utilities/cassettes/test_converter_with_llama3_1_model.yaml
Normal file
2048
tests/utilities/cassettes/test_converter_with_llama3_1_model.yaml
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,869 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### User:\nName: Alice Llama, Age:
|
||||
30\n\n### System:\nProduce JSON OUTPUT ONLY! Adhere to this format {\"name\":
|
||||
\"function_name\", \"arguments\":{\"argument_name\": \"argument_value\"}} The
|
||||
following functions are available to you:\n{''type'': ''function'', ''function'':
|
||||
{''name'': ''SimpleModel'', ''description'': ''Correctly extracted `SimpleModel`
|
||||
with all the required parameters with correct types'', ''parameters'': {''properties'':
|
||||
{''name'': {''title'': ''Name'', ''type'': ''string''}, ''age'': {''title'':
|
||||
''Age'', ''type'': ''integer''}}, ''required'': [''age'', ''name''], ''type'':
|
||||
''object''}}}\n\n\n", "options": {}, "stream": false, "format": "json"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '657'
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/generate
|
||||
response:
|
||||
content: '{"model":"llama3.2:3b","created_at":"2025-01-15T20:47:11.926411Z","response":"{\"name\":
|
||||
\"SimpleModel\", \"arguments\":{\"name\": \"Alice Llama\", \"age\": 30}}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,14711,744,512,1360,13677,4823,32090,27785,0,2467,6881,311,420,3645,5324,609,794,330,1723,1292,498,330,16774,23118,14819,1292,794,330,14819,3220,32075,578,2768,5865,527,2561,311,499,512,13922,1337,1232,364,1723,518,364,1723,1232,5473,609,1232,364,16778,1747,518,364,4789,1232,364,34192,398,28532,1595,16778,1747,63,449,682,279,2631,5137,449,4495,4595,518,364,14105,1232,5473,13495,1232,5473,609,1232,5473,2150,1232,364,678,518,364,1337,1232,364,928,25762,364,425,1232,5473,2150,1232,364,17166,518,364,1337,1232,364,11924,8439,2186,364,6413,1232,2570,425,518,364,609,4181,364,1337,1232,364,1735,23742,3818,128009,128006,78191,128007,271,5018,609,794,330,16778,1747,498,330,16774,23118,609,794,330,62786,445,81101,498,330,425,794,220,966,3500],"total_duration":3374470708,"load_duration":1075750500,"prompt_eval_count":167,"prompt_eval_duration":1871000000,"eval_count":24,"eval_duration":426000000}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '1263'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
116
tests/utilities/cassettes/test_converter_with_nested_model.yaml
Normal file
116
tests/utilities/cassettes/test_converter_with_nested_model.yaml
Normal file
@@ -0,0 +1,116 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Name: John Doe\nAge: 30\nAddress:
|
||||
123 Main St, Anytown, 12345"}], "model": "gpt-4o-mini", "tool_choice": {"type":
|
||||
"function", "function": {"name": "Person"}}, "tools": [{"type": "function",
|
||||
"function": {"name": "Person", "description": "Correctly extracted `Person`
|
||||
with all the required parameters with correct types", "parameters": {"$defs":
|
||||
{"Address": {"properties": {"street": {"title": "Street", "type": "string"},
|
||||
"city": {"title": "City", "type": "string"}, "zip_code": {"title": "Zip Code",
|
||||
"type": "string"}}, "required": ["street", "city", "zip_code"], "title": "Address",
|
||||
"type": "object"}}, "properties": {"name": {"title": "Name", "type": "string"},
|
||||
"age": {"title": "Age", "type": "integer"}, "address": {"$ref": "#/$defs/Address"}},
|
||||
"required": ["address", "age", "name"], "type": "object"}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '853'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
|
||||
_cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Aq4aFpbhU10QK0e6Jlkxy8AUxCZCf\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736974039,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_N29aoGL9tN0qL2O7HI8Op2so\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"Person\",\n
|
||||
\ \"arguments\": \"{\\\"name\\\":\\\"John Doe\\\",\\\"age\\\":30,\\\"address\\\":{\\\"street\\\":\\\"123
|
||||
Main St\\\",\\\"city\\\":\\\"Anytown\\\",\\\"zip_code\\\":\\\"12345\\\"}}\"\n
|
||||
\ }\n }\n ],\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 118,\n \"completion_tokens\": 30,\n
|
||||
\ \"total_tokens\": 148,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9028b863dbaa672f-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:20 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '840'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999968'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_2f9d1e3f0ace4944891dde05093486aa
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -39,6 +39,22 @@ class NestedModel(BaseModel):
|
||||
data: SimpleModel
|
||||
|
||||
|
||||
class Address(BaseModel):
|
||||
street: str
|
||||
city: str
|
||||
zip_code: str
|
||||
|
||||
|
||||
class Person(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
address: Address
|
||||
|
||||
|
||||
class CustomConverter(Converter):
|
||||
pass
|
||||
|
||||
|
||||
# Fixtures
|
||||
@pytest.fixture
|
||||
def mock_agent():
|
||||
@@ -199,26 +215,23 @@ def test_convert_with_instructions_failure(
|
||||
|
||||
# Tests for get_conversion_instructions
|
||||
def test_get_conversion_instructions_gpt():
|
||||
mock_llm = Mock()
|
||||
mock_llm.openai_api_base = None
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
||||
supports_function_calling.return_value = True
|
||||
instructions = get_conversion_instructions(SimpleModel, mock_llm)
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
|
||||
assert (
|
||||
instructions
|
||||
== f"I'm gonna convert this raw text into valid JSON.\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
== f"Please convert the following text into valid JSON.\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
|
||||
)
|
||||
|
||||
|
||||
def test_get_conversion_instructions_non_gpt():
|
||||
mock_llm = Mock()
|
||||
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
||||
supports_function_calling.return_value = False
|
||||
with patch("crewai.utilities.converter.PydanticSchemaParser") as mock_parser:
|
||||
mock_parser.return_value.get_schema.return_value = "Sample schema"
|
||||
instructions = get_conversion_instructions(SimpleModel, mock_llm)
|
||||
assert "Sample schema" in instructions
|
||||
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
||||
with patch.object(LLM, "supports_function_calling", return_value=False):
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
assert '"name": str' in instructions
|
||||
assert '"age": int' in instructions
|
||||
|
||||
|
||||
# Tests for is_gpt
|
||||
@@ -232,10 +245,6 @@ def test_supports_function_calling_false():
|
||||
assert llm.supports_function_calling() is False
|
||||
|
||||
|
||||
class CustomConverter(Converter):
|
||||
pass
|
||||
|
||||
|
||||
def test_create_converter_with_mock_agent():
|
||||
mock_agent = MagicMock()
|
||||
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
|
||||
@@ -255,7 +264,7 @@ def test_create_converter_with_mock_agent():
|
||||
def test_create_converter_with_custom_converter():
|
||||
converter = create_converter(
|
||||
converter_cls=CustomConverter,
|
||||
llm=Mock(),
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
text="Sample",
|
||||
model=SimpleModel,
|
||||
instructions="Convert",
|
||||
@@ -313,3 +322,278 @@ def test_generate_model_description_dict_field():
|
||||
description = generate_model_description(ModelWithDictField)
|
||||
expected_description = '{\n "attributes": Dict[str, int]\n}'
|
||||
assert description == expected_description
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_convert_with_instructions():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
sample_text = "Name: Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
# Act
|
||||
output = converter.to_pydantic()
|
||||
|
||||
# Assert
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_2_model():
|
||||
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
|
||||
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice Llama"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_1_model():
|
||||
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice Llama"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_nested_model():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
|
||||
|
||||
instructions = get_conversion_instructions(Person, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=Person,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, Person)
|
||||
assert output.name == "John Doe"
|
||||
assert output.age == 30
|
||||
assert isinstance(output.address, Address)
|
||||
assert output.address.street == "123 Main St"
|
||||
assert output.address.city == "Anytown"
|
||||
assert output.address.zip_code == "12345"
|
||||
|
||||
|
||||
# Tests for error handling
|
||||
def test_converter_error_handling():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = "Invalid JSON"
|
||||
sample_text = "Name: Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
with pytest.raises(ConverterError) as exc_info:
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
|
||||
|
||||
|
||||
# Tests for retry logic
|
||||
def test_converter_retry_logic():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.side_effect = [
|
||||
"Invalid JSON",
|
||||
"Still invalid",
|
||||
'{"name": "Retry Alice", "age": 30}',
|
||||
]
|
||||
sample_text = "Name: Retry Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
max_attempts=3,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Retry Alice"
|
||||
assert output.age == 30
|
||||
assert llm.call.call_count == 3
|
||||
|
||||
|
||||
# Tests for optional fields
|
||||
def test_converter_with_optional_fields():
|
||||
class OptionalModel(BaseModel):
|
||||
name: str
|
||||
age: Optional[int]
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
# Simulate the LLM's response with 'age' explicitly set to null
|
||||
llm.call.return_value = '{"name": "Bob", "age": null}'
|
||||
sample_text = "Name: Bob, age: None"
|
||||
|
||||
instructions = get_conversion_instructions(OptionalModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=OptionalModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, OptionalModel)
|
||||
assert output.name == "Bob"
|
||||
assert output.age is None
|
||||
|
||||
|
||||
# Tests for list fields
|
||||
def test_converter_with_list_field():
|
||||
class ListModel(BaseModel):
|
||||
items: List[int]
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"items": [1, 2, 3]}'
|
||||
sample_text = "Items: 1, 2, 3"
|
||||
|
||||
instructions = get_conversion_instructions(ListModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=ListModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, ListModel)
|
||||
assert output.items == [1, 2, 3]
|
||||
|
||||
|
||||
# Tests for enums
|
||||
from enum import Enum
|
||||
|
||||
|
||||
def test_converter_with_enum():
|
||||
class Color(Enum):
|
||||
RED = "red"
|
||||
GREEN = "green"
|
||||
BLUE = "blue"
|
||||
|
||||
class EnumModel(BaseModel):
|
||||
name: str
|
||||
color: Color
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"name": "Alice", "color": "red"}'
|
||||
sample_text = "Name: Alice, Color: Red"
|
||||
|
||||
instructions = get_conversion_instructions(EnumModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=EnumModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, EnumModel)
|
||||
assert output.name == "Alice"
|
||||
assert output.color == Color.RED
|
||||
|
||||
|
||||
# Tests for ambiguous input
|
||||
def test_converter_with_ambiguous_input():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
|
||||
sample_text = "Charlie is thirty years old"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
with pytest.raises(ConverterError) as exc_info:
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert "validation error" in str(exc_info.value).lower()
|
||||
|
||||
|
||||
# Tests for function calling support
|
||||
def test_converter_with_function_calling():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = True
|
||||
|
||||
instructor = Mock()
|
||||
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
|
||||
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text="Name: Eve, Age: 35",
|
||||
model=SimpleModel,
|
||||
instructions="Convert this text.",
|
||||
)
|
||||
converter._create_instructor = Mock(return_value=instructor)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Eve"
|
||||
assert output.age == 35
|
||||
instructor.to_pydantic.assert_called_once()
|
||||
|
||||
|
||||
def test_generate_model_description_union_field():
|
||||
class UnionModel(BaseModel):
|
||||
field: int | str | None
|
||||
|
||||
description = generate_model_description(UnionModel)
|
||||
expected_description = '{\n "field": int | str | None\n}'
|
||||
assert description == expected_description
|
||||
|
||||
94
tests/utilities/test_pydantic_schema_parser.py
Normal file
94
tests/utilities/test_pydantic_schema_parser.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
|
||||
def test_simple_model():
|
||||
class SimpleModel(BaseModel):
|
||||
field1: int
|
||||
field2: str
|
||||
|
||||
parser = PydanticSchemaParser(model=SimpleModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
field1: int,
|
||||
field2: str
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_nested_model():
|
||||
class NestedModel(BaseModel):
|
||||
nested_field: int
|
||||
|
||||
class ParentModel(BaseModel):
|
||||
parent_field: str
|
||||
nested: NestedModel
|
||||
|
||||
parser = PydanticSchemaParser(model=ParentModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
parent_field: str,
|
||||
nested: NestedModel
|
||||
{
|
||||
nested_field: int
|
||||
}
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_list():
|
||||
class ListModel(BaseModel):
|
||||
list_field: List[int]
|
||||
|
||||
parser = PydanticSchemaParser(model=ListModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
list_field: List[int]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_optional_field():
|
||||
class OptionalModel(BaseModel):
|
||||
optional_field: Optional[str]
|
||||
|
||||
parser = PydanticSchemaParser(model=OptionalModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
optional_field: Optional[str]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_union():
|
||||
class UnionModel(BaseModel):
|
||||
union_field: Union[int, str]
|
||||
|
||||
parser = PydanticSchemaParser(model=UnionModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
union_field: Union[int, str]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_dict():
|
||||
class DictModel(BaseModel):
|
||||
dict_field: Dict[str, int]
|
||||
|
||||
parser = PydanticSchemaParser(model=DictModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
dict_field: Dict[str, int]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
178
uv.lock
generated
178
uv.lock
generated
@@ -198,6 +198,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/39/e3/893e8757be2612e6c266d9bb58ad2e3651524b5b40cf56761e985a28b13e/asgiref-3.8.1-py3-none-any.whl", hash = "sha256:3e1e3ecc849832fe52ccf2cb6686b7a55f82bb1d6aee72a58826471390335e47", size = 23828 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "asn1crypto"
|
||||
version = "1.5.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/de/cf/d547feed25b5244fcb9392e288ff9fdc3280b10260362fc45d37a798a6ee/asn1crypto-1.5.1.tar.gz", hash = "sha256:13ae38502be632115abf8a24cbe5f4da52e3b5231990aff31123c805306ccb9c", size = 121080 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/7f/09065fd9e27da0eda08b4d6897f1c13535066174cc023af248fc2a8d5e5a/asn1crypto-1.5.1-py2.py3-none-any.whl", hash = "sha256:db4e40728b728508912cbb3d44f19ce188f218e9eba635821bb4b68564f8fd67", size = 105045 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "asttokens"
|
||||
version = "2.4.1"
|
||||
@@ -219,6 +228,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028", size = 5721 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "atpublic"
|
||||
version = "5.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/5d/18/b1d247792440378abeeb0853f9daa2a127284b68776af6815990be7fcdb0/atpublic-5.0.tar.gz", hash = "sha256:d5cb6cbabf00ec1d34e282e8ce7cbc9b74ba4cb732e766c24e2d78d1ad7f723f", size = 14646 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/03/2cb0e5326e19b7d877bc9c3a7ef436a30a06835b638580d1f5e21a0409ed/atpublic-5.0-py3-none-any.whl", hash = "sha256:b651dcd886666b1042d1e38158a22a4f2c267748f4e97fde94bc492a4a28a3f3", size = 5207 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "attrs"
|
||||
version = "24.2.0"
|
||||
@@ -631,7 +649,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai"
|
||||
version = "0.95.0"
|
||||
version = "0.100.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "appdirs" },
|
||||
@@ -641,6 +659,7 @@ dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "instructor" },
|
||||
{ name = "json-repair" },
|
||||
{ name = "json5" },
|
||||
{ name = "jsonref" },
|
||||
{ name = "litellm" },
|
||||
{ name = "openai" },
|
||||
@@ -714,13 +733,14 @@ requires-dist = [
|
||||
{ name = "blinker", specifier = ">=1.9.0" },
|
||||
{ name = "chromadb", specifier = ">=0.5.23" },
|
||||
{ name = "click", specifier = ">=8.1.7" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.25.5" },
|
||||
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.32.1" },
|
||||
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
|
||||
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
|
||||
{ name = "instructor", specifier = ">=1.3.3" },
|
||||
{ name = "json-repair", specifier = ">=0.25.2" },
|
||||
{ name = "json5", specifier = ">=0.10.0" },
|
||||
{ name = "jsonref", specifier = ">=1.1.0" },
|
||||
{ name = "litellm", specifier = ">=1.44.22" },
|
||||
{ name = "litellm", specifier = "==1.57.4" },
|
||||
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
|
||||
{ name = "openai", specifier = ">=1.13.3" },
|
||||
{ name = "openpyxl", specifier = ">=3.1.5" },
|
||||
@@ -762,7 +782,7 @@ dev = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai-tools"
|
||||
version = "0.25.6"
|
||||
version = "0.32.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "beautifulsoup4" },
|
||||
@@ -774,20 +794,21 @@ dependencies = [
|
||||
{ name = "lancedb" },
|
||||
{ name = "linkup-sdk" },
|
||||
{ name = "openai" },
|
||||
{ name = "patronus" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "pyright" },
|
||||
{ name = "pytest" },
|
||||
{ name = "pytube" },
|
||||
{ name = "requests" },
|
||||
{ name = "scrapegraph-py" },
|
||||
{ name = "selenium" },
|
||||
{ name = "serpapi" },
|
||||
{ name = "snowflake" },
|
||||
{ name = "spider-client" },
|
||||
{ name = "weaviate-client" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/23/2f/fbfd0dc8912d375a2d1272c503f79c83c25f3d2b4b72c230b0672278a1bd/crewai_tools-0.25.6.tar.gz", hash = "sha256:442a7e7e579cb3c671a53c5b7afce645cd31d2db913ecc6d1e22a4c5e1baa840", size = 883175 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e9/e7/fb07f0089028f7c9003770641d21f5844d4fa22bf5cc4c4b3676bfa0e1fe/crewai_tools-0.32.1.tar.gz", hash = "sha256:41acea9243b17a463f355d48dfe7d73bd59738c8862a8da780eae008e0136414", size = 887378 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/21/561a81b4f8cfcc2ac6a0c3db3ec86b70a7db6dabb0dd7d13c96be981b2fc/crewai_tools-0.25.6-py3-none-any.whl", hash = "sha256:463e0ee8d780ab7a801992e3960471fb8e64d038866429f70995ddd0a83e0679", size = 514758 },
|
||||
{ url = "https://files.pythonhosted.org/packages/36/f0/8f98f1a2b90b9b989bd01cf48b5e3bb2d842be2062bfd3177a77561e7b61/crewai_tools-0.32.1-py3-none-any.whl", hash = "sha256:6cb436dc66e19e35285a4fce501158a13bce99b244370574f568ec33c5513351", size = 537264 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -2058,6 +2079,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/23/38/34cb843cee4c5c27aa5c822e90e99bf96feb3dfa705713b5b6e601d17f5c/json_repair-0.30.0-py3-none-any.whl", hash = "sha256:bda4a5552dc12085c6363ff5acfcdb0c9cafc629989a2112081b7e205828228d", size = 17641 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "json5"
|
||||
version = "0.10.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "jsonlines"
|
||||
version = "3.1.0"
|
||||
@@ -2344,24 +2374,24 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "litellm"
|
||||
version = "1.50.2"
|
||||
version = "1.57.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "aiohttp" },
|
||||
{ name = "click" },
|
||||
{ name = "httpx" },
|
||||
{ name = "importlib-metadata" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "jsonschema" },
|
||||
{ name = "openai" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "python-dotenv" },
|
||||
{ name = "requests" },
|
||||
{ name = "tiktoken" },
|
||||
{ name = "tokenizers" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a7/45/4d54617b267a96f1f7c17c0010ea1aba20e30a3672b873fe92a6001e5952/litellm-1.50.2.tar.gz", hash = "sha256:b244c9a0e069cc626b85fb9f5cc252114aaff1225500da30ce0940f841aef8ea", size = 6096949 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/1a/9a/115bde058901b087e7fec1bed4be47baf8d5c78aff7dd2ffebcb922003ff/litellm-1.57.4.tar.gz", hash = "sha256:747a870ddee9c71f9560fc68ad02485bc1008fcad7d7a43e87867a59b8ed0669", size = 6304427 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/22/f3/89a4d65d1b9286eb5ac6a6e92dd93523d92f3142a832e60c00d5cad64176/litellm-1.50.2-py3-none-any.whl", hash = "sha256:99cac60c78037946ab809b7cfbbadad53507bb2db8ae39391b4be215a0869fdd", size = 6318265 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/72/35c8509cb2a37343c213b794420405cbef2e1fdf8626ee981fcbba3d7c5c/litellm-1.57.4-py3-none-any.whl", hash = "sha256:afe48924d8a36db801018970a101622fce33d117fe9c54441c0095c491511abb", size = 6592126 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3155,7 +3185,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.52.1"
|
||||
version = "1.59.6"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "anyio" },
|
||||
@@ -3167,9 +3197,9 @@ dependencies = [
|
||||
{ name = "tqdm" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/80/ac/54c76352d493866637756b7c0ecec44f0b5bafb8fe753d98472cf6cfe4ce/openai-1.52.1.tar.gz", hash = "sha256:383b96c7e937cbec23cad5bf5718085381e4313ca33c5c5896b54f8e1b19d144", size = 310069 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/2e/7a/07fbe7bdabffd0a5be1bfe5903a02c4fff232e9acbae894014752a8e4def/openai-1.59.6.tar.gz", hash = "sha256:c7670727c2f1e4473f62fea6fa51475c8bc098c9ffb47bfb9eef5be23c747934", size = 344915 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/31/28a83e124e9f9dd04c83b5aeb6f8b1770f45addde4dd3d34d9a9091590ad/openai-1.52.1-py3-none-any.whl", hash = "sha256:f23e83df5ba04ee0e82c8562571e8cb596cd88f9a84ab783e6c6259e5ffbfb4a", size = 386945 },
|
||||
{ url = "https://files.pythonhosted.org/packages/70/45/6de8e5fd670c804b29c777e4716f1916741c71604d5c7d952eee8432f7d3/openai-1.59.6-py3-none-any.whl", hash = "sha256:b28ed44eee3d5ebe1a3ea045ee1b4b50fea36ecd50741aaa5ce5a5559c900cb6", size = 454817 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3495,6 +3525,24 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "patronus"
|
||||
version = "0.0.17"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "httpx" },
|
||||
{ name = "pandas" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "pydantic-settings" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "tqdm" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c5/a0/d5218ff6f2eab18c5a90266d21cdac673c85070e82e3f8aba538b3200f54/patronus-0.0.17.tar.gz", hash = "sha256:7298f770d4f6774b955806fb319c2c872fda3551bd7fa63d975bbeedc14b28de", size = 27377 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/9e/717c4508d675549ff081a7fecf25af7d70f9d7ad87ea0d4825e02de3b801/patronus-0.0.17-py3-none-any.whl", hash = "sha256:1f322eeee838974515fdb7cbf8530ad25c6c59686abbcb28c1fdbf23d34eb10d", size = 31516 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pdfminer-six"
|
||||
version = "20231228"
|
||||
@@ -4055,6 +4103,18 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/35/c0edf199257ef0a7d407d29cd51c4e70d1dad4370a5f44deb65a7a5475e2/pymdown_extensions-10.11.2-py3-none-any.whl", hash = "sha256:41cdde0a77290e480cf53892f5c5e50921a7ee3e5cd60ba91bf19837b33badcf", size = 259044 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyopenssl"
|
||||
version = "24.3.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "cryptography" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c1/d4/1067b82c4fc674d6f6e9e8d26b3dff978da46d351ca3bac171544693e085/pyopenssl-24.3.0.tar.gz", hash = "sha256:49f7a019577d834746bc55c5fce6ecbcec0f2b4ec5ce1cf43a9a173b8138bb36", size = 178944 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/42/22/40f9162e943f86f0fc927ebc648078be87def360d9d8db346619fb97df2b/pyOpenSSL-24.3.0-py3-none-any.whl", hash = "sha256:e474f5a473cd7f92221cc04976e48f4d11502804657a08a989fb3be5514c904a", size = 56111 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pypdf"
|
||||
version = "5.0.1"
|
||||
@@ -4923,6 +4983,87 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "snowflake"
|
||||
version = "1.0.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "snowflake-core" },
|
||||
{ name = "snowflake-legacy" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/80/d1/830929fb7b54586f4ee601f409e80343e16f32b9b579246cd6fa9984bcff/snowflake-1.0.2.tar.gz", hash = "sha256:4009e59af24e444de4a9e9d340fff0979cca8a02a4feee4665da97eb9c76d958", size = 6033 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/b6/25/4cbba4da3f9b333d132680a66221d1a101309cce330fa8be38b674ceafd0/snowflake-1.0.2-py3-none-any.whl", hash = "sha256:6bb0fc70aa10234769202861ccb4b091f5e9fb1bbc61a1e708db93baa3f221f4", size = 5623 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "snowflake-connector-python"
|
||||
version = "3.12.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "asn1crypto" },
|
||||
{ name = "certifi" },
|
||||
{ name = "cffi" },
|
||||
{ name = "charset-normalizer" },
|
||||
{ name = "cryptography" },
|
||||
{ name = "filelock" },
|
||||
{ name = "idna" },
|
||||
{ name = "packaging" },
|
||||
{ name = "platformdirs" },
|
||||
{ name = "pyjwt" },
|
||||
{ name = "pyopenssl" },
|
||||
{ name = "pytz" },
|
||||
{ name = "requests" },
|
||||
{ name = "sortedcontainers" },
|
||||
{ name = "tomlkit" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/6b/de/f43d9c827ccc1974696ffd3c0495e2d4e98b0414b2353b7de932621f23dd/snowflake_connector_python-3.12.4.tar.gz", hash = "sha256:289e0691dfbf8ec8b7a8f58bcbb95a819890fe5e5b278fdbfc885059a63a946f", size = 743445 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/53/6c/edc8909e424654a7a3c18cbf804d8a35c17a65a2131f866a87ed8e762bd0/snowflake_connector_python-3.12.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f141c159e3244bd660279f87f32e39351b2845fcb75f8138f31d2219f983b05", size = 958038 },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/a3/34c5082dfb9b555c914f4233224b8bc1f2c4d5668bc71bb587680b8dcd73/snowflake_connector_python-3.12.4-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:091458ba777c24adff659c5c28f0f5bb0bcca8a9b6ecc5641ae25b7c20a8f43d", size = 970665 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/87/9eceaaba58b2ec4f9094fc3a04d953bbabbfdcc05a6b14ef12610c1039f9/snowflake_connector_python-3.12.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23049d341da681ec7131cead71cdf7b1761ae5bcc08bcbdb931dcef6c25e8a5f", size = 2496731 },
|
||||
{ url = "https://files.pythonhosted.org/packages/66/0a/e35e9e0a142f3779007b0246166a245305858b198ed0dd3a41a3d2405512/snowflake_connector_python-3.12.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc88a09d77a8ce7e445094b2409b606ddb208b5fc9f7c7a379d0255a8d566e9d", size = 2520041 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/77/9a238c153600adff8fbd1136d9f4be1e42cb827cbe1865924bfe84653e85/snowflake_connector_python-3.12.4-cp310-cp310-win_amd64.whl", hash = "sha256:3c33fbba036805c1767ea48eb40ffc3fb79d61f2a4bb4e77b571ea6f6a998be8", size = 918272 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/95/e8aac28d6913e4b59f96e6d361f31b9576b5f0abe4d2c4f7decf9f075932/snowflake_connector_python-3.12.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2ec5cfaa1526084cf4d0e7849d5ace601245cb4ad9675ab3cd7d799b3abea481", size = 958125 },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/b6/a847a94e03bdf39010048feacd57f250a91a655eed333d7d32b165f65201/snowflake_connector_python-3.12.4-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:ff225824b3a0fa5e822442de72172f97028f04ae183877f1305d538d8d6c5d11", size = 970770 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/91/f97812ae9946944bcd9bfe1965af1cb9b1844919da879d90b90dfd3e5086/snowflake_connector_python-3.12.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9beced2789dc75e8f1e749aa637e7ec9b03302b4ed4b793ae0f1ff32823370e", size = 2519875 },
|
||||
{ url = "https://files.pythonhosted.org/packages/37/52/500d72079bfb322ebdf3892180ecf3dc73c117b3a966ee8d4bb1378882b2/snowflake_connector_python-3.12.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ea47450a04ff713f3adf28053e34103bd990291e62daee9721c76597af4b2b5", size = 2542320 },
|
||||
{ url = "https://files.pythonhosted.org/packages/59/92/74ead6bee8dd29fe372002ce59477221e04b9da96ad7aafe584afce02937/snowflake_connector_python-3.12.4-cp311-cp311-win_amd64.whl", hash = "sha256:748f9125854dca07ea471bb2bb3c5bb932a53f9b8a77ba348b50b738c77203ce", size = 918363 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/a3/1cbe0b52b810f069bdc96c372b2d91ac51aeac32986c2832aa3fe0b0b0e5/snowflake_connector_python-3.12.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4bcd0371b20d199f15e6a3c0b489bf18e27f2a88c84cf3194b2569ca039fa7d1", size = 957561 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f4/05/8a5e16bd908a89f36d59686d356890c4bd6a976a487f86274181010f4b49/snowflake_connector_python-3.12.4-cp312-cp312-macosx_11_0_x86_64.whl", hash = "sha256:7900d82a450b206fa2ed6c42cd65d9b3b9fd4547eca1696937175fac2a03ba37", size = 969045 },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/1b/8f5ab15d224d7bf76533c55cfd8ce73b185ce94d84241f0e900739ce3f37/snowflake_connector_python-3.12.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:300f0562aeea55e40ee03b45205dbef7b78f5ba2f1787a278c7b807e7d8db22c", size = 2533969 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6e/d9/2e2fd72e0251691b5c54a219256c455141a2d3c104e411b82de598c62553/snowflake_connector_python-3.12.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6762a00948f003be55d7dc5de9de690315d01951a94371ec3db069d9303daba", size = 2558052 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e8/cb/e0ab230ad5adc9932e595bdbec693b2499d446666daf6cb9cae306a41dd2/snowflake_connector_python-3.12.4-cp312-cp312-win_amd64.whl", hash = "sha256:83ca896790a7463b6c8cd42e1a29b8ea197cc920839ae6ee96a467475eab4ec2", size = 916627 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "snowflake-core"
|
||||
version = "1.0.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "atpublic" },
|
||||
{ name = "pydantic" },
|
||||
{ name = "python-dateutil" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "requests" },
|
||||
{ name = "snowflake-connector-python" },
|
||||
{ name = "urllib3" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/1d/cf/6f91e5b2daaf3df9ae666a65f5ba3938f11a40784e4ada5218ecf154b29a/snowflake_core-1.0.2.tar.gz", hash = "sha256:8bf267ff1efcd17f157432c6e24f6d2eb6c2aeed66f43ab34b215aa76d8edf02", size = 1092618 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/75/3c/ec228b7325b32781081c72254dd0ef793943e853d82616e862e231909c6c/snowflake_core-1.0.2-py3-none-any.whl", hash = "sha256:55c37cf526a0d78dd3359ad96b9ecd7130bbbbc2f5a2fec77bb3da0dac2dc688", size = 1555690 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "snowflake-legacy"
|
||||
version = "1.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/94/41/a6211bd2109913eee1506d37865ab13cf9a8cc2faa41833da3d1ffec654b/snowflake_legacy-1.0.0.tar.gz", hash = "sha256:2044661c79ba01841ab279c5e74b994532244c9d103224eba16eb159c8ed6033", size = 4043 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/8c/64f9b5ee0c3f376a733584c480b31addbf2baff7bb41f655e5e3f3719d3b/snowflake_legacy-1.0.0-py3-none-any.whl", hash = "sha256:25f9678f180d7d5f5b60d17f8112f0ee8a7a77b82c67fd599ed6e27bd502be5a", size = 3059 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "sortedcontainers"
|
||||
version = "2.4.0"
|
||||
@@ -5184,6 +5325,15 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/ac/ce90573ba446a9bbe65838ded066a805234d159b4446ae9f8ec5bbd36cbd/tomli_w-1.1.0-py3-none-any.whl", hash = "sha256:1403179c78193e3184bfaade390ddbd071cba48a32a2e62ba11aae47490c63f7", size = 6440 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tomlkit"
|
||||
version = "0.13.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b1/09/a439bec5888f00a54b8b9f05fa94d7f901d6735ef4e55dcec9bc37b5d8fa/tomlkit-0.13.2.tar.gz", hash = "sha256:fff5fe59a87295b278abd31bec92c15d9bc4a06885ab12bcea52c71119392e79", size = 192885 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/f9/b6/a447b5e4ec71e13871be01ba81f5dfc9d0af7e473da256ff46bc0e24026f/tomlkit-0.13.2-py3-none-any.whl", hash = "sha256:7a974427f6e119197f670fbbbeae7bef749a6c14e793db934baefc1b5f03efde", size = 37955 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "torch"
|
||||
version = "2.4.1"
|
||||
|
||||
Reference in New Issue
Block a user