Files
crewAI/tests/llm_test.py
Brandon Hancock (bhancock_ai) a836f466f4 Updated calls and added tests to verify (#1953)
* Updated calls and added tests to verify

* Drop unused import
2025-01-22 14:36:15 -05:00

157 lines
4.9 KiB
Python

from time import sleep
import pytest
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
from crewai.tools import tool
from crewai.utilities.token_counter_callback import TokenCalcHandler
# TODO: This test fails without print statement, which makes me think that something is happening asynchronously that we need to eventually fix and dive deeper into at a later date
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_callback_replacement():
llm1 = LLM(model="gpt-4o-mini")
llm2 = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
result1 = llm1.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
print("result1:", result1)
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
print("usage_metrics_1:", usage_metrics_1)
result2 = llm2.call(
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
callbacks=[calc_handler_2],
)
sleep(5)
print("result2:", result2)
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
print("usage_metrics_2:", usage_metrics_2)
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1
assert usage_metrics_2.successful_requests == 1
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_string_input():
llm = LLM(model="gpt-4o-mini")
# Test the call method with a string input
result = llm.call("Return the name of a random city in the world.")
assert isinstance(result, str)
assert len(result.strip()) > 0 # Ensure the response is not empty
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_string_input_and_callbacks():
llm = LLM(model="gpt-4o-mini")
calc_handler = TokenCalcHandler(token_cost_process=TokenProcess())
# Test the call method with a string input and callbacks
result = llm.call(
"Tell me a joke.",
callbacks=[calc_handler],
)
usage_metrics = calc_handler.token_cost_process.get_summary()
assert isinstance(result, str)
assert len(result.strip()) > 0
assert usage_metrics.successful_requests == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_message_list():
llm = LLM(model="gpt-4o-mini")
messages = [{"role": "user", "content": "What is the capital of France?"}]
# Test the call method with a list of messages
result = llm.call(messages)
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_tool_and_string_input():
llm = LLM(model="gpt-4o-mini")
def get_current_year() -> str:
"""Returns the current year as a string."""
from datetime import datetime
return str(datetime.now().year)
# Create tool schema
tool_schema = {
"type": "function",
"function": {
"name": "get_current_year",
"description": "Returns the current year as a string.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
},
}
# Available functions mapping
available_functions = {"get_current_year": get_current_year}
# Test the call method with a string input and tool
result = llm.call(
"What is the current year?",
tools=[tool_schema],
available_functions=available_functions,
)
assert isinstance(result, str)
assert result == get_current_year()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_tool_and_message_list():
llm = LLM(model="gpt-4o-mini")
def square_number(number: int) -> int:
"""Returns the square of a number."""
return number * number
# Create tool schema
tool_schema = {
"type": "function",
"function": {
"name": "square_number",
"description": "Returns the square of a number.",
"parameters": {
"type": "object",
"properties": {
"number": {"type": "integer", "description": "The number to square"}
},
"required": ["number"],
},
},
}
# Available functions mapping
available_functions = {"square_number": square_number}
messages = [{"role": "user", "content": "What is the square of 5?"}]
# Test the call method with messages and tool
result = llm.call(
messages,
tools=[tool_schema],
available_functions=available_functions,
)
assert isinstance(result, int)
assert result == 25