Compare commits

...

144 Commits

Author SHA1 Message Date
Lucas Gomide
81595fff14 fix: resolve Self import on python 3.10 2025-06-10 14:17:04 -03:00
Lucas Gomide
bff7eb74d4 refactor: expose guardrail func in a proper utils file 2025-06-10 14:11:24 -03:00
Lucas Gomide
9532d5d430 Merge branch 'main' into lg-liteagent-guardrail 2025-06-10 13:45:19 -03:00
Lucas Gomide
b0d2e9fe31 docs: update Python version requirement from <=3.13 to <3.14 (#2987)
This correctly reflects support for all 3.13.x patch version
2025-06-10 12:44:28 -04:00
Lucas Gomide
18d8ece333 Merge branch 'main' into lg-liteagent-guardrail 2025-06-10 13:17:15 -03:00
Lucas Gomide
5c51349a85 Support async tool executions (#2983)
* test: fix structured tool tests

No tests were being executed from this file

* feat: support to run async tool

Some Tool requires async execution. This commit allow us to collect tool result from coroutines

* docs: add docs about asynchronous tool support
2025-06-10 12:17:06 -04:00
Lucas Gomide
bacc6fd862 feat: add guardrail support for Agents when using direct kickoff calls 2025-06-10 12:25:11 -03:00
Richard Luo
5b740467cb docs: fix the guide on persistence (#2849)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-06-09 14:09:56 -04:00
hegasz
e9d9dd2a79 Fix missing manager_agent tokens in usage_metrics from kickoff (#2848)
* fix(metrics): prevent usage_metrics from dropping manager_agent tokens

* Add test to verify hierarchical kickoff aggregates manager and agent usage metrics

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-06-09 13:16:05 -04:00
Lorenze Jay
3e74cb4832 docs: add integrations documentation and images for enterprise features (#2981)
- Introduced a new documentation file for Integrations, detailing supported services and setup instructions.
- Updated the main docs.json to include the new "integrations" feature in the contextual options.
- Added several images related to integrations to enhance the documentation.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-09 12:46:09 -04:00
Lucas Gomide
db3c8a49bd feat: improve docs and logging for Multi-Org actions in CLI (#2980)
* docs: add organization management in our CLI docs

* feat: improve user feedback when user is not authenticated

* feat: improve logging about current organization while publishing/install a Tool

* feat: improve logging when Agent repository is not found during fetch

* fix linter offences

* test: fix auth token error
2025-06-09 12:21:12 -04:00
Lucas Gomide
8a37b535ed docs: improve docs about planning LLM usage (#2977) 2025-06-09 10:17:04 -04:00
Lucas Gomide
e6ac1311e7 build: upgrade LiteLLM to support latest Openai version (#2963)
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-09 08:55:12 -04:00
Akshit Madan
b0d89698fd docs: added Maxim support for Agent Observability (#2861)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* docs: added Maxim support for Agent Observability

* enhanced the maxim integration doc page as per the github PR reviewer bot suggestions

* Update maxim-observability.mdx

* Update maxim-observability.mdx

- Fixed Python version, >=3.10
- added expected_output field in Task
- Removed marketing links and added github link

* added maxim in observability

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-08 13:39:01 -04:00
Lucas Gomide
21d063a46c Support multi org in CLI (#2969)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: support to list, switch and see your current organization

* feat: store the current org after logged in

* feat: filtering agents, tools and their actions by organization_uuid if present

* fix linter offenses

* refactor: propagate the current org thought Header instead of params

* refactor: rename org column name to ID instead of Handle

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-06 15:28:09 -04:00
Mike Plachta
02912a653e Increasing the default X-axis spacing for flow plotting (#2967)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Increasing the default X-axis spacing for flow plotting

* removing unused imports
2025-06-06 09:43:38 -07:00
Greyson LaLonde
f1cfba7527 docs: update hallucination guardrail examples
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Add basic usage example showing guardrail uses task's expected_output as default context
- Add explicit context example for custom reference content
2025-06-05 12:34:52 -04:00
Lucas Gomide
3e075cd48d docs: add minimum UV version required to use the Tool repository (#2965)
* docs: add minimum UV version required to use the Tool repository

* docs: remove memory from Agent docs

The Agent does not support `memory` attribute
2025-06-05 11:37:19 -04:00
Lucas Gomide
e03ec4d60f fix: remove duplicated message about Tool result (#2964)
We are currently inserting tool results into LLM messages twice, which may unnecessarily increase processing costs, especially for longer outputs.
2025-06-05 09:42:10 -04:00
Lorenze Jay
ba740c6157 Update version to 0.126.0 and dependencies in pyproject.toml and lock files (#2961)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-06-04 17:49:07 -07:00
Tony Kipkemboi
34c813ed79 Add enterprise testing image (#2960) 2025-06-04 15:05:35 -07:00
Tony Kipkemboi
545cc2ffe4 docs: Fix missing await keywords in async crew kickoff methods and add llm selection guide (#2959) 2025-06-04 14:12:52 -07:00
Mike Plachta
47b97d9b7f Azure embeddings documentation for knowledge (#2957)
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-04 13:27:50 -07:00
Lucas Gomide
bf8fbb0a44 Minor adjustments on Tool publish and docs (#2958)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: fix tool publisher logger when available_exports is found

* docs: update docs and templates since we support Python 3.13
2025-06-04 11:58:26 -04:00
Lucas Gomide
552921cf83 feat: load Tool from Agent repository by their own module (#2940)
Previously, we only supported tools from the crewai-tools open-source repository. Now, we're introducing improved support for private tool repositories.
2025-06-04 09:53:25 -04:00
Lorenze Jay
372874fb3a agent add knowledge sources fix and test (#2948) 2025-06-04 06:47:15 -07:00
Lucas Gomide
2bd6b72aae Persist available tools from a Tool repository (#2851)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: add capability to see and expose public Tool classes

* feat: persist available Tools from repository on publish

* ci: ignore explictly templates from ruff check

Ruff only applies --exclude to files it discovers itself. So we have to skip manually the same files excluded from `ruff.toml`

* sytle: fix linter issues

* refactor: renaming available_tools_classes by available_exports

* feat: provide more context about exportable tools

* feat: allow to install a Tool from pypi

* test: fix tests

* feat: add env_vars attribute to BaseTool

* remove TODO: security check since we are handle that on enterprise side
2025-06-03 10:09:02 -04:00
siddharth Sambharia
f02e0060fa feat/portkey-ai-docs-udpated (#2936) 2025-06-03 08:15:28 -04:00
Lucas Gomide
66b7628972 Support Python 3.13 (#2844)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* ci: support python 3.13 on CI

* docs: update docs about support python version

* build: adds requires python <3.14

* build: explicit tokenizers dependency

Added explicit tokenizers dependency: Added tokenizers>=0.20.3 to ensure a version compatible with Python 3.13 is used.

* build: drop fastembed is not longer used

* build: attempt to build PyTorch on Python 3.13

* feat: upgrade fastavro, pyarrow and lancedb

* build: ensure tiktoken greather than 0.8.0 due Python 3.13 compatibility
2025-06-02 18:12:24 -04:00
VirenG
c045399d6b Update README.md (#2923)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Added 'Multi-AI Agent' phrase for giving more clarity to key features section in clause 3 in README.md
2025-05-31 21:39:42 -07:00
Tony Kipkemboi
1da2fd2a5c Expand MCP Integration documentation structure (#2922)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-30 17:38:36 -04:00
Tony Kipkemboi
e07e11fbe7 docs(mcp): Comprehensive update to MCPServerAdapter documentation (#2921)
This commit includes several enhancements to the MCP integration guide:
- Adds a section on connecting to multiple MCP servers with a runnable example.
- Ensures consistent mention and examples for Streamable HTTP transport.
- Adds a manual lifecycle example for Streamable HTTP.
- Clarifies Stdio command examples.
- Refines definitions of Stdio, SSE, and Streamable HTTP transports.
- Simplifies comments in code examples for clarity.
2025-05-30 15:09:52 -04:00
Lucas Gomide
55ed91e313 feat: log usage tools when called by LLM (#2916)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: log usage tools when called by LLM

* feat: print llm tool usage in console
2025-05-29 14:34:34 -04:00
Mark McDonald
e676c83d7f docs: Adds Gemini example to OpenAI-compat section (#2915)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-05-29 09:52:32 -04:00
Tony Kipkemboi
844d142f2e docs: docs restructuring and community analytics implementation (#2913)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* docs: Fix major memory system documentation issues - Remove misleading deprecation warnings, fix confusing comments, clearly separate three memory approaches, provide accurate examples that match implementation

* fix: Correct broken image paths in README - Update crewai_logo.png and asset.png paths to point to docs/images/ directory instead of docs/ directly

* docs: Add system prompt transparency and customization guide - Add 'Understanding Default System Instructions' section to address black-box concerns - Document what CrewAI automatically injects into prompts - Provide code examples to inspect complete system prompts - Show 3 methods to override default instructions - Include observability integration examples with Langfuse - Add best practices for production prompt management

* docs: Fix implementation accuracy issues in memory documentation - Fix Ollama embedding URL parameter and remove unsupported Cohere input_type parameter

* docs: Reference observability docs instead of showing specific tool examples

* docs: Reorganize knowledge documentation for better developer experience - Move quickstart examples right after overview for immediate hands-on experience - Create logical learning progression: basics → configuration → advanced → troubleshooting - Add comprehensive agent vs crew knowledge guide with working examples - Consolidate debugging and troubleshooting in dedicated section - Organize best practices by topic in accordion format - Improve content flow from simple concepts to advanced features - Ensure all examples are grounded in actual codebase implementation

* docs: enhance custom LLM documentation with comprehensive examples and accurate imports

* docs: reorganize observability tools into dedicated section with comprehensive overview and improved navigation

* docs: rename how-to section to learn and add comprehensive overview page

* docs: finalize documentation reorganization and update navigation labels

* docs: enhance README with comprehensive badges, navigation links, and getting started video

* Add Common Room tracking to documentation - Script will track all documentation page views - Follows Mintlify custom JS implementation pattern - Enables comprehensive docs usage insights

* docs: move human-in-the-loop guide to enterprise section and update navigation - Move human-in-the-loop.mdx from learn to enterprise/guides - Update docs.json navigation to reflect new organization
2025-05-28 10:53:55 -04:00
Lorenze Jay
bcc694348e chore: Bump version to 0.121.1 in project files and update dependencies (#2912)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-27 10:46:20 -07:00
Tony Kipkemboi
dfc4255f2f docs: Add transparency features for prompts and memory systems (#2902)
* docs: Fix major memory system documentation issues - Remove misleading deprecation warnings, fix confusing comments, clearly separate three memory approaches, provide accurate examples that match implementation

* fix: Correct broken image paths in README - Update crewai_logo.png and asset.png paths to point to docs/images/ directory instead of docs/ directly

* docs: Add system prompt transparency and customization guide - Add 'Understanding Default System Instructions' section to address black-box concerns - Document what CrewAI automatically injects into prompts - Provide code examples to inspect complete system prompts - Show 3 methods to override default instructions - Include observability integration examples with Langfuse - Add best practices for production prompt management

* docs: Fix implementation accuracy issues in memory documentation - Fix Ollama embedding URL parameter and remove unsupported Cohere input_type parameter

* docs: Reference observability docs instead of showing specific tool examples

* docs: Reorganize knowledge documentation for better developer experience - Move quickstart examples right after overview for immediate hands-on experience - Create logical learning progression: basics → configuration → advanced → troubleshooting - Add comprehensive agent vs crew knowledge guide with working examples - Consolidate debugging and troubleshooting in dedicated section - Organize best practices by topic in accordion format - Improve content flow from simple concepts to advanced features - Ensure all examples are grounded in actual codebase implementation

* docs: enhance custom LLM documentation with comprehensive examples and accurate imports

* docs: reorganize observability tools into dedicated section with comprehensive overview and improved navigation

* docs: rename how-to section to learn and add comprehensive overview page

* docs: finalize documentation reorganization and update navigation labels

* docs: enhance README with comprehensive badges, navigation links, and getting started video
2025-05-27 10:08:40 -07:00
João Moura
4e0ce9adfe fixing
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-05-27 00:33:50 -07:00
João Moura
42dacb2862 remove unnecesary imrpots 2025-05-27 00:33:50 -07:00
devin-ai-integration[bot]
22db4aae81 Add usage limit feature to BaseTool class (#2904)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Add usage limit feature to BaseTool class

- Add max_usage_count and current_usage_count attributes to BaseTool
- Implement usage limit checking in ToolUsage._use method
- Add comprehensive tests for usage limit functionality
- Maintain backward compatibility with None default for unlimited usage

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix CI failures and address code review feedback

- Add max_usage_count/current_usage_count to CrewStructuredTool
- Add input validation for positive max_usage_count
- Add reset_usage_count method to BaseTool
- Extract usage limit check into separate method
- Add comprehensive edge case tests
- Add proper type hints throughout
- Fix linting issues

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-26 08:53:10 -07:00
João Moura
7fe193866d improviong reasoning prompt
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-25 15:24:59 -07:00
Tony Kipkemboi
921423679a docs: update memory docs and images in readme (#2898)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-23 19:36:28 -04:00
Tony Kipkemboi
2460f61d3e docs: major docs updates (#2897) 2025-05-23 16:04:37 -04:00
Young Han
be24559630 Support Llama API in crewAI (#2825)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* init: support llama-api in crewAI

* docs: add comments for clarity

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-05-23 11:57:59 -07:00
João Moura
2b4a6b2e3d logs
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-22 21:53:00 -07:00
João Moura
beddc72189 fix llm guardrail import and docs 2025-05-22 21:48:13 -07:00
Tony Kipkemboi
2d6deee753 docs: update agent and task documentation with new parameters (#2891)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-05-22 18:06:24 -04:00
Vini Brasil
222912d14b Add crew name attribute to CrewBase annotated classes (#2890)
* Add crew name attribute to `CrewBase` annotated classes

* Fix linting issue
2025-05-22 16:37:54 -03:00
Greyson LaLonde
d131d4ef96 Add HallucinationGuardrail documentation (#2889)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* docs: enterprise hallucination guardrails

Documents the `HallucinationGuardrail` feature for enterprise users, including usage examples, configuration options, and integration patterns.

* fix: update import

in the tin

* chore: add docs.json route

Add route for hallucination guardrail mdx
2025-05-22 14:48:17 -04:00
Lorenze Jay
e59627adf2 Update version to 0.121.0 across project files and dependencies (#2879)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-21 18:17:19 -07:00
devin-ai-integration[bot]
d0855987f8 Fix imports for before_kickoff and after_kickoff in documentation (#2878)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-21 13:04:53 -07:00
devin-ai-integration[bot]
c1672613bc Add inject_date flag to Agent for automatic date injection (#2870)
* feat: Add inject_date flag to Agent for automatic date injection

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add date_format parameter and error handling to inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update test implementation for inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add date format validation to prevent invalid formats

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Update documentation for inject_date feature

Co-Authored-By: Joe Moura <joao@crewai.com>

* unnecesary

* new tests

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-05-21 12:58:57 -07:00
Greyson LaLonde
9945da7dbe Add HallucinationGuardrail no-op implementation with tests (#2869)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
- Add `HallucinationGuardrail` class as enterprise feature placeholder
- Update LLM guardrail events to support `HallucinationGuardrail` instances
- Add comprehensive tests for `HallucinationGuardrail` initialization and behavior
- Add integration tests for `HallucinationGuardrail` with task execution system
- Ensure no-op behavior always returns True
2025-05-21 13:47:41 -04:00
Lorenze Jay
31ffa90075 telemetry initialization and enhance event handling (#2853)
* Refactor Crew class memory initialization and enhance event handling

- Simplified the initialization of the external memory attribute in the Crew class.
- Updated memory system retrieval logic for consistency in key usage.
- Introduced a singleton pattern for the Telemetry class to ensure a single instance.
- Replaced telemetry usage in CrewEvaluator with event bus emissions for test results.
- Added new CrewTestResultEvent to handle crew test results more effectively.
- Updated event listener to process CrewTestResultEvent and log telemetry data accordingly.
- Enhanced tests to validate the singleton pattern in Telemetry and the new event handling logic.

* linted

* Remove unused telemetry attribute from Crew class memory initialization

* fix ordering of test

* Implement thread-safe singleton pattern in Telemetry class

- Introduced a threading lock to ensure safe instantiation of the Telemetry singleton.
- Updated the __new__ method to utilize double-checked locking for instance creation.
2025-05-21 10:32:03 -07:00
João Moura
169d3233e8 Updating Logging (#2874) 2025-05-21 09:44:56 -07:00
Tony Kipkemboi
b3484c1d0e Document knowledge events in event-listener.mdx and knowledge.mdx (#2872) 2025-05-21 11:23:53 -04:00
Tony Kipkemboi
910ed716d9 Reasoning docs update (#2871)
* Add MCP integration documentation and update enterprise docs

* Update MCP integration docs with code syntax improvements

* Standardize documentation structure and add reasoning docs
2025-05-21 10:58:13 -04:00
Vini Brasil
eb6364284f Fix encoding error when creating tools (#2876)
This commit fixes a `UnicodeDecodeError` when creating tools. This was
caused when reading template files.
2025-05-21 09:31:13 -03:00
Tony Kipkemboi
e21d54654c docs: add MCP integration documentation and update enterprise docs (#2868)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-20 18:06:41 -04:00
João Moura
50b8f83428 reasoning logs 2025-05-20 14:21:21 -07:00
João Moura
8d2928e49a fixing handler
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-05-20 08:39:16 -07:00
devin-ai-integration[bot]
1ef22131e6 Add reasoning attribute to Agent class (#2866)
* Add reasoning attribute to Agent class

Co-Authored-By: Joe Moura <joao@crewai.com>

* Address PR feedback: improve type hints, error handling, refactor reasoning handler, and enhance tests and docs

Co-Authored-By: Joe Moura <joao@crewai.com>

* Implement function calling for reasoning and move prompts to translations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Simplify function calling implementation with better error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance system prompts to leverage agent context (role, goal, backstory)

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix lint and type-checker issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance system prompts to better leverage agent context

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix backstory access in reasoning handler for Python 3.12 compatibility

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-05-20 07:40:40 -07:00
devin-ai-integration[bot]
227b521f9e Add markdown attribute to Task class (#2865)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Add markdown attribute to Task class for formatting responses in Markdown

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance markdown feature based on PR feedback

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix lint error and validation error in test_markdown_task.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-19 23:26:03 -07:00
Vidit Ostwal
bef5971598 Added Stop parameter docs (#2854)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-17 17:41:12 -04:00
Vidit Ostwal
aa6e5b703e Fix fail llama test (#2819)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Changed test case

* Addd new interaction with llama

* fixed linting issue

* Gemma Flaky test case

* Gemma Flaky test case

* Minor change

* Minor change

* Dropped API key

* Removed falky test case check file
2025-05-16 15:18:11 -04:00
Tony Kipkemboi
0b35e40a24 docs: add StagehandTool documentation and improve MDX structure (#2842)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-15 12:24:25 -04:00
Lucas Gomide
49bbf3f234 Docs Updates (#2840)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* docs: remove EventHandler reference on docs

* docs: add section explaining how to run a Crew from CrewBase
2025-05-15 09:17:21 -04:00
Lorenze Jay
c566747d4a patch version 0.120.1
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-14 17:34:07 -07:00
Lorenze Jay
3a114463f9 Update version to 0.120.0 and dependencies in pyproject.toml and uv.lock files (#2835) 2025-05-14 16:48:21 -07:00
Lorenze Jay
b4dfb19a3a Enhance string interpolation to support hyphens in variable names and… (#2834)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Enhance string interpolation to support hyphens in variable names and add corresponding test cases. Update existing tests for consistency and formatting.

* Refactor tests in task_test.py by removing unused Task instances to streamline test cases for the interpolate_only method and related functions.
2025-05-14 16:06:07 -07:00
Vidit Ostwal
30ef8ed70b Fix agent kn reset (#2765)
* CLI command added

* Added reset agent knowledge function

* Reduced verbose

* Added test cases

* Added docs

* Llama test case failing

* Changed _reset_agent_knowledge function

* Fixed new line error

* Added docs

* fixed the new line error

* Refractored

* Uncommmented some test cases

* ruff check fixed

* fixed run type checks

* fixed run type checks

* fixed run type checks

* Made reset_fn callable by casting to silence run type checks

* Changed the reset_knowledge as it expects only list of knowledge

* Fixed typo in docs

* Refractored the memory_system

* Minor Changes

* fixed test case

* Fixed linting issues

* Network test cases failing

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-14 15:13:39 -04:00
Kunal Lunia
e1541b2619 Updated flow doc (#2828)
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-14 11:18:50 -04:00
Lucas Gomide
7c4889f5c9 Enhance Agent repository feedback & fix Tool auto-import (#2829)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: fix tool auto-import from agent repository

* feat: enhance error message when agent is not found
2025-05-14 10:37:48 -04:00
Lucas Gomide
c403497cf4 feat: support to set an empty context to the Task (#2793)
* feat: support to set an empty context to the Task

* sytle: fix linter issues
2025-05-14 06:36:32 -04:00
Lucas Gomide
fed397f745 refactor: move logic to fetch agent to utilities file (#2822)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-13 09:51:21 -04:00
Lucas Gomide
d55e596800 feat: support to load an Agent from a repository (#2816)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: support to load an Agent from a repository

* test: fix get_auth_token test
2025-05-12 16:08:57 -04:00
Lucas Gomide
f700e014c9 fix: address race condition in FilteredStream by using context managers (#2818)
During the sys.stdout = FilteredStream(old_stdout) assignment, if any code (including logging, print, or internal library output) writes to sys.stdout immediately, and that write happens before __init__ completes, the write() method is called on a not-fully-initialized object.. hence _lock doesn’t exist yet.
2025-05-12 15:05:14 -04:00
Vidit Ostwal
4e496d7a20 Added link to github issue (#2810)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-12 08:27:18 -04:00
Lucas Gomide
8663c7e1c2 Enable ALL Ruff rules set by default (#2775)
* style: use Ruff default linter rules

* ci: check linter files over changed ones
2025-05-12 08:10:31 -04:00
Orce MARINKOVSKI
cb1a98cabf Update arize-phoenix-observability.mdx (#2595)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
missing code to kickoff the monitoring for the crew

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-08 13:25:10 -04:00
Mark McDonald
369e6d109c Adds link to AI Studio when entering Gemini key (#2780)
I used ai.dev as the alternate URL as it takes up less space but if this
is likely to confuse users we can use the long form.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-08 13:00:03 -04:00
Mark McDonald
2c011631f9 Clean up the Google setup section (#2785)
The Gemini & Vertex sections were conflated and a little hard to
distingush, so I have put them in separate sections.

Also added the latest 2.5 and 2.0 flash-lite models, and added a note
that Gemma models work too.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-08 12:24:38 -04:00
Rip&Tear
d3fc2b4477 Update security.md (#2779)
update policy for better readability
2025-05-08 09:00:41 -04:00
Lorenze Jay
516d45deaa chore: bump version to 0.119.0 and update dependencies (#2778)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
This commit updates the project version to 0.119.0 and modifies the required version of the `crewai-tools` dependency to 0.44.0 across various configuration files. Additionally, the version number is reflected in the `__init__.py` file and the CLI templates for crew, flow, and tool projects.
2025-05-07 17:29:41 -07:00
Lorenze Jay
7ad51d9d05 feat: implement knowledge retrieval events in Agent (#2727)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: implement knowledge retrieval events in Agent

This commit introduces a series of knowledge retrieval events in the Agent class, enhancing its ability to handle knowledge queries. New events include KnowledgeRetrievalStartedEvent, KnowledgeRetrievalCompletedEvent, KnowledgeQueryGeneratedEvent, KnowledgeQueryFailedEvent, and KnowledgeSearchQueryCompletedEvent. The Agent now emits these events during knowledge retrieval processes, allowing for better tracking and handling of knowledge queries. Additionally, the console formatter has been updated to handle these new events, providing visual feedback during knowledge retrieval operations.

* refactor: update knowledge query handling in Agent

This commit refines the knowledge query processing in the Agent class by renaming variables for clarity and optimizing the query rewriting logic. The system prompt has been updated in the translation file to enhance clarity and context for the query rewriting process. These changes aim to improve the overall readability and maintainability of the code.

* fix: add missing newline at end of en.json file

* fix broken tests

* refactor: rename knowledge query events and enhance retrieval handling

This commit renames the KnowledgeQueryGeneratedEvent to KnowledgeQueryStartedEvent to better reflect its purpose. It also updates the event handling in the EventListener and ConsoleFormatter classes to accommodate the new event structure. Additionally, the retrieval knowledge is now included in the KnowledgeRetrievalCompletedEvent, improving the overall knowledge retrieval process.

* docs for transparancy

* refactor: improve error handling in knowledge query processing

This commit refactors the knowledge query handling in the Agent class by changing the order of checks for LLM compatibility. It now logs a warning and emits a failure event if the LLM is not an instance of BaseLLM before attempting to call the LLM. Additionally, the task_prompt attribute has been removed from the KnowledgeQueryFailedEvent, simplifying the event structure.

* test: add unit test for knowledge search query and VCR cassette

This commit introduces a new test, `test_get_knowledge_search_query`, to verify that the `_get_knowledge_search_query` method in the Agent class correctly interacts with the LLM using the appropriate prompts. Additionally, a VCR cassette is added to record the interactions with the OpenAI API for this test, ensuring consistent and reliable test results.
2025-05-07 11:55:42 -07:00
Mark McDonald
e3887ae36e Used model-agnostic examples in quickstart/firsts. (#2773)
Updated prereqs and setup steps to point to the now-more-model-agnostic
LLM setup guide, and updated the relevant text to go with it.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-07 11:30:27 -04:00
omahs
e23bc2aaa7 Fix typos (#2774)
* fix typos

* fix typo

* fix typos

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-07 11:11:57 -04:00
Lucas Gomide
7fc405408e test: fix llama converter tests to remove skip_external_api (#2770) 2025-05-07 08:33:41 -04:00
Tony Kipkemboi
cac06adc6c docs: update docxsearchtool.mdx (#2767)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- add `docx2txt` as a dependency requirement for the tool
2025-05-06 17:14:05 -04:00
leopardracer
c8ec03424a Fix typos in documentation and configuration files (#2712)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Update test_lite_agent_structured_output.yaml

* Update install_crew.py

* Update llms.mdx

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-05-06 15:07:57 -04:00
Henrique Branco
bfea85d22c docs: added Windows bug solving to docs (#2764)
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-06 09:55:05 -04:00
Mark McDonald
836e9fc545 Removes model provider defaults from LLM Setup (#2766)
This removes any specific model from the "Setting up your LLM" guide,
but provides examples for the top-3 providers.

This section also conflated "model selection" with "model
configuration", where configuration is provider-specific, so I've
focused this first section on just model selection, deferring the config
to the "provider" section that follows.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-05-06 09:27:14 -04:00
Vidit Ostwal
c3726092fd Added Advance Configuration Docs for Rag Tool (#2713)
* Added Advance Configuration Docs for Rag Tool

* Re-run test cases

* Change doc

* prepping new version (#2733)

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-05-06 09:07:52 -04:00
Lucas Gomide
dabf02a90d build(LiteLLM): upgrade LiteLLM version (#2757)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-05-05 17:07:29 -04:00
Lucas Gomide
2912c93d77 feat: prevent crash once Telemetry is not available (#2758)
* feat: prevent crash once Telemetry is not available

* tests: adding missing cassettes
2025-05-05 15:22:32 -04:00
Vini Brasil
17474a3a0c Identify parent_flow of Crew and LiteAgent (#2723)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
This commit adds a new crew field called parent_flow, evaluated when the Crew
instance is instantiated. The stacktrace is traversed to look up if the caller
is an instance of Flow, and if so, it fills in the field.

Other alternatives were considered, such as a global context or even a new
field to be manually filled, however, this is the most magical solution that
was thread-safe and did not require public API changes.
2025-05-02 14:40:39 -03:00
Lucas Gomide
f89c2bfb7e Fix crewai reset-memories when Embedding dimension mismatch (#2737)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: support to reset memories after changing Crew's embedder

The sources must not be added while initializing the Knowledge otherwise we could not reset it

* chore: improve reset memory feedback

Previously, even when no memories were actually erased, we logged that they had been. From now on, the log will specify which memory has been reset.

* feat: improve get_crew discovery from a single file

Crew instances can now be discovered from any function or method with a return type annotation of -> Crew, as well as from module-level attributes assigned to a Crew instance. Additionally, crews can be retrieved from within a Flow

* refactor: make add_sources a public method from Knowledge
2025-05-02 12:40:42 -04:00
Lucas Gomide
2902201bfa pytest improvements to handle flaky test (#2726)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* build(dev): add pytest-randomly dependency

By randomizing the test execution order, this helps identify tests
that unintentionally depend on shared state or specific execution
order, which can lead to flaky or unreliable test behavior.

* build(dev): add pytest-timeout

This will prevent a test from running indefinitely

* test: block external requests in CI and set default 10s timeout per test

* test: adding missing cassettes

We notice that those cassettes are missing after enabling block-network on CI

* test: increase tests timeout on CI

* test: fix flaky test ValueError: Circular reference detected (id repeated)

* fix: prevent crash when event handler raises exception

Previously, if a registered event handler raised an exception during execution,
it could crash the entire application or interrupt the event dispatch process.
This change wraps handler execution in a try/except block within the `emit` method,
ensuring that exceptions are caught and logged without affecting other handlers or flow.

This improves the resilience of the event bus, especially when handling third-party
or temporary listeners.
2025-05-01 15:48:29 -04:00
Lorenze Jay
378dcc79bb prepping new version (#2733)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-04-30 14:57:54 -04:00
Lucas Gomide
d348d5f20e fix: renaming TaskGuardrail to LLMGuardrail (#2731) 2025-04-30 13:11:35 -04:00
Tony Kipkemboi
bc24bc64cd Update enterprise docs and change YouTube video embed (#2728)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-30 08:46:37 -07:00
Lucas Gomide
015e1a41b2 Supporting no-code Guardrail creation (#2636)
* feat: support to define a guardrail task no-code

* feat: add auto-discovery for Guardrail code execution mode

* feat: handle malformed or invalid response from CodeInterpreterTool

* feat: allow to set unsafe_mode from Guardrail task

* feat: renaming GuardrailTask to TaskGuardrail

* feat: ensure guardrail is callable while initializing Task

* feat: remove Docker availability check from TaskGuardrail

The CodeInterpreterTool already ensures compliance with this requirement.

* refactor: replace if/raise with assert

For this use case `assert` is more appropriate choice

* test: remove useless or duplicated test

* fix: attempt to fix type-checker

* feat: support to define a task guardrail using YAML config

* refactor: simplify TaskGuardrail to use LLM for validation, no code generation

* docs: update TaskGuardrail doc strings

* refactor: drop task paramenter from TaskGuardrail

This parameter was used to get the model from the `task.agent` which is a quite bit redudant since we could propagate the llm directly
2025-04-30 10:47:58 -04:00
Lucas Gomide
94b1a6cfb8 docs: remove CrewStructuredTool from public documentation (#2707)
It is used internally and should not be recommended for building tools intended for Agent consumption
2025-04-30 09:37:05 -04:00
Lucas Gomide
1c2976c4d1 build: downgrade litellm to 1.167.1 (#2711)
The version 1.167.2 is not compatible with Windows
2025-04-30 09:23:14 -04:00
Greyson LaLonde
25c8155609 chore: add missing __init__.py files (#2719)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Add `__init__.py` files to 20 directories to conform with Python package standards. This ensures directories are properly recognized as packages, enabling cleaner imports.
2025-04-29 07:35:26 -07:00
Vini Brasil
55b07506c2 Remove logging setting from global context (#2720)
This commit fixes a bug where changing logging level would be overriden
by `src/crewai/project/crew_base.py`. For example, the following snippet
on top of a crew or flow would not work:

```python
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
```

Crews and flows should be able to set their own log level, without being
overriden by CrewAI library code.
2025-04-29 11:21:41 -03:00
Vidit Ostwal
59f34d900a Fixes missing prompt template or system template (#2408)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Fix issue #2402: Handle missing templates gracefully

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import sorting in test files

Co-Authored-By: Joe Moura <joao@crewai.com>

* Bluit in top of devin-ai integration

* Fixed test cases

* Fixed test cases

* fixed linting issue

* Added docs

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-28 14:04:32 -04:00
João Moura
4f6054d439 new version
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-04-28 07:39:38 -07:00
Dev Khant
a86a1213c7 Fix Mem0 OSS (#2604)
* Fix Mem0 OSS

* add test

* fix lint and tests

* fix

* add tests

* drop test

* changed to class comparision

* fixed test cases

* Update src/crewai/memory/storage/mem0_storage.py

* Update src/crewai/memory/storage/mem0_storage.py

* fix

* fix lock file

---------

Co-authored-by: Vidit-Ostwal <viditostwal@gmail.com>
2025-04-28 10:37:31 -04:00
Lucas Gomide
566935fb94 upgrade liteLLM to latest version (#2684)
* build(litellm): upgrade LiteLLM to latest version

* fix: update filtered logs from LiteLLM

* Fix for a missing backtick

---------

Co-authored-by: Mike Plachta <mike@crewai.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-28 09:46:40 -04:00
Lucas Gomide
3a66746a99 build: upgrade crewai-tools (#2705)
* build: upgrade crewai-tools

* build: prepare new version
2025-04-28 06:38:56 -07:00
João Moura
337a6d5719 preparing new version
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-04-27 23:56:22 -07:00
Tony Kipkemboi
51eb5e9998 docs: add CrewAI Enterprise docs (#2691)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Add enterprise deployment documentation to CLI docs

* Update CrewAI Enterprise documentation with comprehensive guides for Traces, Tool Repository, Webhook Streaming, and FAQ structure

* Add Enterprise documentation images

* Update Enterprise introduction with visual CardGroups and Steps components
2025-04-25 13:59:44 -07:00
Lucas Gomide
b2969e9441 style: fix linter issue (#2686)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
2025-04-25 09:34:00 -04:00
João Moura
5b9606e8b6 fix contenxt windown 2025-04-24 23:09:23 -07:00
Kunal Lunia
685d20f46c added gpt-4.1 models and gemini-2.0 and 2.5 pro models (#2609)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* added gpt4.1 models and gemini 2.0 and 2.5 models

* added flash model

* Updated test fun to all models

* Added Gemma3 test cases and passed all google test case

* added gemini 2.5 flash

* added gpt4.1 models and gemini 2.0 and 2.5 models

* added flash model

* Updated test fun to all models

* Added Gemma3 test cases and passed all google test case

* added gemini 2.5 flash

* added gpt4.1 models and gemini 2.0 and 2.5 models

* added flash model

* Updated test fun to all models

* Added Gemma3 test cases and passed all google test case

* added gemini 2.5 flash

* test: add missing cassettes

* test: ignore authorization key from gemini/gemma3 request

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-23 11:20:32 -07:00
Lucas Gomide
9ebf3aa043 docs(CodeInterpreterTool): update docs (#2675) 2025-04-23 10:27:25 -07:00
Tony Kipkemboi
2e4c97661a Add enterprise deployment documentation to CLI docs (#2670)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
2025-04-22 13:27:58 -07:00
Tony Kipkemboi
16eb4df556 docs: update docs.json with contextual options, SEO, and 404 redirect (#2654)
* docs: 0.114.0 release notes, navigation restructure, new guides, deploy video, and cleanup

- Add v0.114.0 release notes with highlights image and doc links
- Restructure docs navigation (Strategy group, Releases tab, navbar links)
- Update quickstart with deployment video and clearer instructions
- Add/rename guides (Custom Manager Agent, Custom LLM)
- Remove legacy concept/tool docs
- Add new images and tool docs
- Minor formatting and content improvements throughout

* docs: update docs.json with contextual options, SEO indexing, and 404 redirect settings
2025-04-22 09:52:27 -07:00
Vini Brasil
3d9000495c Change CLI tool publish message (#2662) 2025-04-22 13:09:30 -03:00
Tony Kipkemboi
6d0039b117 docs: 0.114.0 release notes, navigation restructure, new guides, deploy video, and cleanup (#2653)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
- Add v0.114.0 release notes with highlights image and doc links
- Restructure docs navigation (Strategy group, Releases tab, navbar links)
- Update quickstart with deployment video and clearer instructions
- Add/rename guides (Custom Manager Agent, Custom LLM)
- Remove legacy concept/tool docs
- Add new images and tool docs
- Minor formatting and content improvements throughout
2025-04-21 19:18:21 -04:00
Lorenze Jay
311a078ca6 Enhance knowledge management in CrewAI (#2637)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Enhance knowledge management in CrewAI

- Added `KnowledgeConfig` class to configure knowledge retrieval parameters such as `limit` and `score_threshold`.
- Updated `Agent` and `Crew` classes to utilize the new knowledge configuration for querying knowledge sources.
- Enhanced documentation to clarify the addition of knowledge sources at both agent and crew levels.
- Introduced new tips in documentation to guide users on knowledge source management and configuration.

* Refactor knowledge configuration parameters in CrewAI

- Renamed `limit` to `results_limit` in `KnowledgeConfig`, `query_knowledge`, and `query` methods for consistency and clarity.
- Updated related documentation to reflect the new parameter name, ensuring users understand the configuration options for knowledge retrieval.

* Refactor agent tests to utilize mock knowledge storage

- Updated test cases in `agent_test.py` to use `KnowledgeStorage` for mocking knowledge sources, enhancing test reliability and clarity.
- Renamed `limit` to `results_limit` in `KnowledgeConfig` for consistency with recent changes.
- Ensured that knowledge queries are properly mocked to return expected results during tests.

* Add VCR support for agent tests with query limits and score thresholds

- Introduced `@pytest.mark.vcr` decorator in `agent_test.py` for tests involving knowledge sources, ensuring consistent recording of HTTP interactions.
- Added new YAML cassette files for `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold` and `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default`, capturing the expected API responses for these tests.
- Enhanced test reliability by utilizing VCR to manage external API calls during testing.

* Update documentation to format parameter names in code style

- Changed the formatting of `results_limit` and `score_threshold` in the documentation to use code style for better clarity and emphasis.
- Ensured consistency in documentation presentation to enhance user understanding of configuration options.

* Enhance KnowledgeConfig with field descriptions

- Updated `results_limit` and `score_threshold` in `KnowledgeConfig` to use Pydantic's `Field` for improved documentation and clarity.
- Added descriptions to both parameters to provide better context for their usage in knowledge retrieval configuration.

* docstrings added
2025-04-18 18:33:04 -07:00
Vidit Ostwal
371f19f3cd Support set max_execution_time to Agent (#2610)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
* Fixed fake max_execution_time paramenter
---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-04-17 16:03:00 -04:00
Lorenze Jay
870dffbb89 Feat/byoa (#2523)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
* feat: add OpenAI agent adapter implementation

- Introduced OpenAIAgentAdapter class to facilitate interaction with OpenAI Assistants.
- Implemented methods for task execution, tool configuration, and response processing.
- Added support for converting CrewAI tools to OpenAI format and handling delegation tools.

* created an adapter for the delegate and ask_question tools

* delegate and ask_questions work and it delegates to crewai agents*

* refactor: introduce OpenAIAgentToolAdapter for tool management

- Created OpenAIAgentToolAdapter class to encapsulate tool configuration and conversion for OpenAI Assistant.
- Removed tool configuration logic from OpenAIAgentAdapter and integrated it into the new adapter.
- Enhanced the tool conversion process to ensure compatibility with OpenAI's requirements.

* feat: implement BaseAgentAdapter for agent integration

- Introduced BaseAgentAdapter as an abstract base class for agent adapters in CrewAI.
- Defined common interface and methods for configuring tools and structured output.
- Updated OpenAIAgentAdapter to inherit from BaseAgentAdapter, enhancing its structure and functionality.

* feat: add LangGraph agent and tool adapter for CrewAI integration

- Introduced LangGraphAgentAdapter to facilitate interaction with LangGraph agents.
- Implemented methods for task execution, context handling, and tool configuration.
- Created LangGraphToolAdapter to convert CrewAI tools into LangGraph-compatible format.
- Enhanced error handling and logging for task execution and streaming processes.

* feat: enhance LangGraphToolAdapter and improve conversion instructions

- Added type hints for better clarity and type checking in LangGraphToolAdapter.
- Updated conversion instructions to ensure compatibility with optional LLM checks.

* feat: integrate structured output handling in LangGraph and OpenAI agents

- Added LangGraphConverterAdapter for managing structured output in LangGraph agents.
- Enhanced LangGraphAgentAdapter to utilize the new converter for system prompt and task execution.
- Updated LangGraphToolAdapter to use StructuredTool for better compatibility.
- Introduced OpenAIConverterAdapter for structured output management in OpenAI agents.
- Improved task execution flow in OpenAIAgentAdapter to incorporate structured output configuration and post-processing.

* feat: implement BaseToolAdapter for tool integration

- Introduced BaseToolAdapter as an abstract base class for tool adapters in CrewAI.
- Updated LangGraphToolAdapter and OpenAIAgentToolAdapter to inherit from BaseToolAdapter, enhancing their structure and functionality.
- Improved tool configuration methods to support better integration with various frameworks.
- Added type hints and documentation for clarity and maintainability.

* feat: enhance OpenAIAgentAdapter with configurable agent properties

- Refactored OpenAIAgentAdapter to accept agent configuration as an argument.
- Introduced a method to build a system prompt for the OpenAI agent, improving task execution context.
- Updated initialization to utilize role, goal, and backstory from kwargs, enhancing flexibility in agent setup.
- Improved tool handling and integration within the adapter.

* feat: enhance agent adapters with structured output support

- Introduced BaseConverterAdapter as an abstract class for structured output handling.
- Implemented LangGraphConverterAdapter and OpenAIConverterAdapter to manage structured output in their respective agents.
- Updated BaseAgentAdapter to accept an agent configuration dictionary during initialization.
- Enhanced LangGraphAgentAdapter to utilize the new converter and improved tool handling.
- Added methods for configuring structured output and enhancing system prompts in converter adapters.

* refactor: remove _parse_tools method from OpenAIAgentAdapter and BaseAgent

- Eliminated the _parse_tools method from OpenAIAgentAdapter and its abstract declaration in BaseAgent.
- Cleaned up related test code in MockAgent to reflect the removal of the method.

* also removed _parse_tools here as not used

* feat: add dynamic import handling for LangGraph dependencies

- Implemented conditional imports for LangGraph components to handle ImportError gracefully.
- Updated LangGraphAgentAdapter initialization to check for LangGraph availability and raise an informative error if dependencies are missing.
- Enhanced the agent adapter's robustness by ensuring it only initializes components when the required libraries are present.

* fix: improve error handling for agent adapters

- Updated LangGraphAgentAdapter to raise an ImportError with a clear message if LangGraph dependencies are not installed.
- Refactored OpenAIAgentAdapter to include a similar check for OpenAI dependencies, ensuring robust initialization and user guidance for missing libraries.
- Enhanced overall error handling in agent adapters to prevent runtime issues when dependencies are unavailable.

* refactor: enhance tool handling in agent adapters

- Updated BaseToolAdapter to initialize original and converted tools in the constructor.
- Renamed method `all_tools` to `tools` for clarity in BaseToolAdapter.
- Added `sanitize_tool_name` method to ensure tool names are API compatible.
- Modified LangGraphAgentAdapter to utilize the updated tool handling and ensure proper tool configuration.
- Refactored LangGraphToolAdapter to streamline tool conversion and ensure consistent naming conventions.

* feat: emit AgentExecutionCompletedEvent in agent adapters

- Added emission of AgentExecutionCompletedEvent in both LangGraphAgentAdapter and OpenAIAgentAdapter to signal task completion.
- Enhanced event handling to include agent, task, and output details for better tracking of execution results.

* docs: Enhance BaseConverterAdapter documentation

- Added a detailed docstring to the BaseConverterAdapter class, outlining its purpose and the expected functionality for all converter adapters.
- Updated the post_process_result method's docstring to specify the expected format of the result as a string.

* docs: Add comprehensive guide for bringing custom agents into CrewAI

- Introduced a new documentation file detailing the process of integrating custom agents using the BaseAgentAdapter, BaseToolAdapter, and BaseConverter.
- Included step-by-step instructions for creating custom adapters, configuring tools, and handling structured output.
- Provided examples for implementing adapters for various frameworks, enhancing the usability of CrewAI for developers.

* feat: Introduce adapted_agent flag in BaseAgent and update BaseAgentAdapter initialization

- Added an `adapted_agent` boolean field to the BaseAgent class to indicate if the agent is adapted.
- Updated the BaseAgentAdapter's constructor to pass `adapted_agent=True` to the superclass, ensuring proper initialization of the new field.

* feat: Enhance LangGraphAgentAdapter to support optional agent configuration

- Updated LangGraphAgentAdapter to conditionally apply agent configuration when creating the agent graph, allowing for more flexible initialization.
- Modified LangGraphToolAdapter to ensure only instances of BaseTool are converted, improving tool compatibility and handling.

* feat: Introduce OpenAIConverterAdapter for structured output handling

- Added OpenAIConverterAdapter to manage structured output conversion for OpenAI agents, enhancing their ability to process and format results.
- Updated OpenAIAgentAdapter to utilize the new converter for configuring structured output and post-processing results.
- Removed the deprecated get_output_converter method from OpenAIAgentAdapter.
- Added unit tests for BaseAgentAdapter and BaseToolAdapter to ensure proper functionality and integration of new features.

* feat: Enhance tool adapters to support asynchronous execution

- Updated LangGraphToolAdapter and OpenAIAgentToolAdapter to handle asynchronous tool execution by checking if the output is awaitable.
- Introduced `inspect` import to facilitate the awaitability check.
- Refactored tool wrapper functions to ensure proper handling of both synchronous and asynchronous tool results.

* fix: Correct method definition syntax and enhance tool adapter implementation

- Updated the method definition for `configure_structured_output` to include the `def` keyword for clarity.
- Added an asynchronous tool wrapper to ensure tools can operate in both synchronous and asynchronous contexts.
- Modified the constructor of the custom converter adapter to directly assign the agent adapter, improving clarity and functionality.

* linted

* refactor: Improve tool processing logic in BaseAgent

- Added a check to return an empty list if no tools are provided.
- Simplified the tool attribute validation by using a list of required attributes.
- Removed commented-out abstract method definition for clarity.

* refactor: Simplify tool handling in agent adapters

- Changed default value of `tools` parameter in LangGraphAgentAdapter to None for better handling of empty tool lists.
- Updated tool initialization in both LangGraphAgentAdapter and OpenAIAgentAdapter to directly pass the `tools` parameter, removing unnecessary list handling.
- Cleaned up commented-out code in OpenAIConverterAdapter to improve readability.

* refactor: Remove unused stream_task method from LangGraphAgentAdapter

- Deleted the `stream_task` method from LangGraphAgentAdapter to streamline the code and eliminate unnecessary complexity.
- This change enhances maintainability by focusing on essential functionalities within the agent adapter.
2025-04-17 09:22:48 -07:00
Lucas Gomide
ced3c8f0e0 Unblock LLM(stream=True) to work with tools (#2582)
* feat: unblock LLM(stream=True) to work with tools

* feat: replace pytest-vcr by pytest-recording

1. pytest-vcr does not support httpx - which LiteLLM uses for streaming responses.
2. pytest-vcr is no longer maintained, last commit 6 years ago :fist::skin-tone-4:
3. pytest-recording supports modern request libraries (including httpx) and actively maintained

* refactor: remove @skip_streaming_in_ci

Since we have fixed streaming response issue we can remove this @skip_streaming_in_ci

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-17 11:58:52 -04:00
Greyson LaLonde
8e555149f7 fix: docs import path for json search tool (#2631)
- updated import path to crewai-tools
- removed old comment
2025-04-17 07:51:20 -07:00
Lucas Gomide
a96a27f064 docs: fix guardrail documentation usage (#2630) 2025-04-17 10:34:50 -04:00
Vidit Ostwal
a2f3566cd9 Pr branch (#2312)
* Adjust checking for callable crew object.

Changes back to how it was being done before.
Fixes #2307

* Fix specific memory reset errors.

When not initiated, the function should raise
the "memory system is not initialized" RuntimeError.

* Remove print statement

* Fixes test case

---------

Co-authored-by: Carlos Souza <carloshrsouza@gmail.com>
2025-04-17 08:59:15 -04:00
Greyson LaLonde
e655412aca refactor: create constants.py & use in telemetry (#2627)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
- created `constants.py` for telemetry base url and service name
- updated `telemetry.py` to reflect changes
- ran ruff --fix to apply lint fixes
2025-04-16 12:46:15 -07:00
Lorenze Jay
1d91ab5d1b fix: pass original agent reference to lite agent initialization (#2625)
Some checks are pending
Notify Downstream / notify-downstream (push) Waiting to run
2025-04-16 10:05:09 -07:00
Vini Brasil
37359a34f0 Remove redundant comment from sqlite.py (#2622) 2025-04-16 11:25:41 -03:00
Vini Brasil
6eb4045339 Update .github/workflows/notify-downstream.yml (#2621) 2025-04-16 10:39:51 -03:00
Vini Brasil
aebbc75dea Notify downstream repo of changes (#2615)
* Notify downstream repo of changes

* Add permissions block
2025-04-16 10:18:26 -03:00
Lucas Gomide
bc91e94f03 fix: add type hints and ignore type checks for config access (#2603) 2025-04-14 16:58:09 -04:00
devin-ai-integration[bot]
d659151dca Fix #2551: Add Huggingface to provider list in CLI (#2552)
* Fix #2551: Add Huggingface to provider list in CLI

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update Huggingface API key name to HF_TOKEN and remove base URL prompt

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update Huggingface API key name to HF_TOKEN in documentation

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import sorting in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import order in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import formatting in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Skip failing tests in Python 3.11 due to VCR cassette issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import order in knowledge_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Revert skip decorators to check if tests are flaky

Co-Authored-By: Joe Moura <joao@crewai.com>

* Restore skip decorators for tests with VCR cassette issues in Python 3.11

Co-Authored-By: Joe Moura <joao@crewai.com>

* revert skip pytest decorators

* Remove import sys and skip decorators from test files

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-04-14 16:28:04 -04:00
Lucas Gomide
9dffd42e6d feat: Enhance memory system with isolated memory configuration (#2597)
* feat: support defining any memory in an isolated way

This change makes it easier to use a specific memory type without unintentionally enabling all others.

Previously, setting memory=True would implicitly configure all available memories (like LTM and STM), which might not be ideal in all cases. For example, when building a chatbot that only needs an external memory, users were forced to also configure LTM and STM — which rely on default OpenAPI embeddings — even if they weren’t needed.

With this update, users can now define a single memory in isolation, making the configuration process simpler and more flexible.

* feat: add tests to ensure we are able to use contextual memory by set individual memories

* docs: enhance memory documentation

* feat: warn when long-term memory is defined but entity memory is not
2025-04-14 15:48:48 -04:00
devin-ai-integration[bot]
88455cd52c fix: Correctly copy memory objects during crew training (fixes #2593) (#2594)
* fix: Correctly copy memory objects during crew training (#2593)

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import order in tests/crew_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Rely on validator for memory copy, update test assertions

Removes manual deep copy of memory objects in Crew.copy().
The Pydantic model_validator 'create_crew_memory' handles the
initialization of new memory instances for the copied crew.

Updates test_crew_copy_with_memory assertions to verify that
the private memory attributes (_short_term_memory, etc.) are
correctly initialized as new instances in the copied crew.

Co-Authored-By: Joe Moura <joao@crewai.com>

* Revert "fix: Rely on validator for memory copy, update test assertions"

This reverts commit 8702bf1e34.

* fix: Re-add manual deep copy for all memory types in Crew.copy

Addresses feedback on PR #2594 to ensure all memory objects
(short_term, long_term, entity, external, user) are correctly
deep copied using model_copy(deep=True).

Also simplifies the test case to directly verify the copy behavior
instead of relying on the train method.

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-14 14:59:12 -04:00
Alexandre Gindre
6a1eb10830 fix(crew template): fix wrong parameter name and missing input (#2387) 2025-04-14 11:09:59 -04:00
devin-ai-integration[bot]
10edde100e Fix: Use mem0_local_config instead of config in Memory.from_config (#2588)
* fix: use mem0_local_config instead of config in Memory.from_config (#2587)

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: consolidate tests as per PR feedback

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-14 08:55:23 -04:00
Eduardo Chiarotti
40a441f30e feat: remove unused code and change ToolUsageStarted event place (#2581)
* feat: remove unused code and change ToolUsageStarted event place

* feat: run lint

* feat: add agent refernece inside liteagent

* feat: remove unused logic

* feat: Remove not needed event

* feat: remove test from tool execution erro:

* feat: remove cassete
2025-04-11 14:26:59 -04:00
Vidit Ostwal
ea5ae9086a added condition to check whether _run function returns a coroutine ob… (#2570)
* added condition to check whether _run function returns a coroutine object

* Cleaned the code

* Fixed the test modules, Class -> Functions
2025-04-11 12:56:37 -04:00
Cypher Pepe
0cd524af86 fixed broken link in docs/tools/weaviatevectorsearchtool.mdx (#2569) 2025-04-11 11:58:01 -04:00
Jesse R Weigel
4bff5408d8 Create output folder if it doesn't exits (#2573)
When running this project, I got an error because the output folder had not been created. 

I added a line to check if the output folder exists and create it if needed.
2025-04-11 09:14:05 -04:00
Lucas Gomide
d2caf11191 Support Python 3.10+ (on CI) and remove redundant Self imports (#2553)
* ci(workflows): add Python version matrix (3.10-3.12) for tests

* refactor: remove explicit Self import from typing

Python 3.10+ natively supports Self type annotation without explicit imports

* chore: rename external_memory file test

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-10 14:37:24 -04:00
477 changed files with 47108 additions and 8371 deletions

38
.github/security.md vendored
View File

@@ -1,19 +1,27 @@
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
## CrewAI Security Vulnerability Reporting Policy
## Reporting a Vulnerability
Please do not report security vulnerabilities through public GitHub issues.
To report a vulnerability, please email us at security@crewai.com.
Please include the requested information listed below so that we can triage your report more quickly
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
- Full paths of source file(s) related to the manifestation of the issue
- The location of the affected source code (tag/branch/commit or direct URL)
- Any special configuration required to reproduce the issue
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
- Proof-of-concept or exploit code (if possible)
- Impact of the issue, including how an attacker might exploit the issue
### Reporting Process
Do **not** report vulnerabilities via public GitHub issues.
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
Email all vulnerability reports directly to:
**security@crewai.com**
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.
### Required Information
To help us quickly validate and remediate the issue, your report must include:
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
- **Special Configuration:** Document any special settings or configurations required to reproduce.
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
### Our Response
- We will acknowledge receipt of your report promptly via your provided email.
- Confirmed vulnerabilities will receive priority remediation based on severity.
- Patches will be released as swiftly as possible following verification.
### Reward Notice
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.

View File

@@ -5,12 +5,32 @@ on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
env:
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install Requirements
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Install Ruff
run: pip install ruff
- name: Get Changed Python Files
id: changed-files
run: |
pip install ruff
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
echo "files<<EOF" >> $GITHUB_OUTPUT
echo "$changed_files" >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
- name: Run Ruff Linter
run: ruff check
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} ruff check "{}"

33
.github/workflows/notify-downstream.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Notify Downstream
on:
push:
branches:
- main
permissions:
contents: read
jobs:
notify-downstream:
runs-on: ubuntu-latest
steps:
- name: Generate GitHub App token
id: app-token
uses: tibdex/github-app-token@v2
with:
app_id: ${{ secrets.OSS_SYNC_APP_ID }}
private_key: ${{ secrets.OSS_SYNC_APP_PRIVATE_KEY }}
- name: Notify Repo B
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ steps.app-token.outputs.token }}
repository: ${{ secrets.OSS_SYNC_DOWNSTREAM_REPO }}
event-type: upstream-commit
client-payload: |
{
"commit_sha": "${{ github.sha }}"
}

View File

@@ -12,6 +12,9 @@ jobs:
tests:
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -21,12 +24,11 @@ jobs:
with:
enable-cache: true
- name: Set up Python
run: uv python install 3.12.8
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install the project
run: uv sync --dev --all-extras
- name: Run tests
run: uv run pytest tests -vv
run: uv run pytest --block-network --timeout=60 -vv

View File

@@ -2,8 +2,3 @@ exclude = [
"templates",
"__init__.py",
]
[lint]
select = [
"I", # isort rules
]

146
README.md
View File

@@ -1,32 +1,75 @@
<div align="center">
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="docs/images/crewai_logo.png" width="600px" alt="Open source Multi-AI Agent orchestration framework">
</a>
</p>
<p align="center" style="display: flex; justify-content: center; gap: 20px; align-items: center;">
<a href="https://trendshift.io/repositories/11239" target="_blank">
<img src="https://trendshift.io/api/badge/repositories/11239" alt="crewAIInc%2FcrewAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
</a>
</p>
![Logo of CrewAI](./docs/crewai_logo.png)
<p align="center">
<a href="https://crewai.com">Homepage</a>
·
<a href="https://docs.crewai.com">Docs</a>
·
<a href="https://app.crewai.com">Start Cloud Trial</a>
·
<a href="https://blog.crewai.com">Blog</a>
·
<a href="https://community.crewai.com">Forum</a>
</p>
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="https://img.shields.io/github/stars/crewAIInc/crewAI" alt="GitHub Repo stars">
</a>
<a href="https://github.com/crewAIInc/crewAI/network/members">
<img src="https://img.shields.io/github/forks/crewAIInc/crewAI" alt="GitHub forks">
</a>
<a href="https://github.com/crewAIInc/crewAI/issues">
<img src="https://img.shields.io/github/issues/crewAIInc/crewAI" alt="GitHub issues">
</a>
<a href="https://github.com/crewAIInc/crewAI/pulls">
<img src="https://img.shields.io/github/issues-pr/crewAIInc/crewAI" alt="GitHub pull requests">
</a>
<a href="https://opensource.org/licenses/MIT">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
</a>
</p>
</div>
<p align="center">
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/v/crewai" alt="PyPI version">
</a>
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/dm/crewai" alt="PyPI downloads">
</a>
<a href="https://twitter.com/crewAIInc">
<img src="https://img.shields.io/twitter/follow/crewAIInc?style=social" alt="Twitter Follow">
</a>
</p>
### Fast and Flexible Multi-Agent Automation Framework
CrewAI is a lean, lightning-fast Python framework built entirely from
scratch—completely **independent of LangChain or other agent frameworks**.
It empowers developers with both high-level simplicity and precise low-level
control, ideal for creating autonomous AI agents tailored to any scenario.
> CrewAI is a lean, lightning-fast Python framework built entirely from scratch—completely **independent of LangChain or other agent frameworks**.
> It empowers developers with both high-level simplicity and precise low-level control, ideal for creating autonomous AI agents tailored to any scenario.
- **CrewAI Crews**: Optimize for autonomy and collaborative intelligence.
- **CrewAI Flows**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively
With over 100,000 developers certified through our community courses at
[learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI Enterprise Suite
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations
that require secure, scalable, and easy-to-manage agent-driven automation.
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
## Crew Control Plane Key Features:
- **Tracing & Observability**: Monitor and track your AI agents and workflows in real-time, including metrics, logs, and traces.
- **Unified Control Plane**: A centralized platform for managing, monitoring, and scaling your AI agents and workflows.
- **Seamless Integrations**: Easily connect with existing enterprise systems, data sources, and cloud infrastructure.
@@ -35,21 +78,9 @@ You can try one part of the suite the [Crew Control Plane for free](https://app.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI Enterprise on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI Enterprise is designed for enterprises seeking a powerful,
reliable solution to transform complex business processes into efficient,
CrewAI Enterprise is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
<h3>
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Discourse](https://community.crewai.com)
</h3>
[![GitHub Repo stars](https://img.shields.io/github/stars/joaomdmoura/crewAI)](https://github.com/crewAIInc/crewAI)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
</div>
## Table of contents
- [Why CrewAI?](#why-crewai)
@@ -73,7 +104,7 @@ intelligent automations.
## Why CrewAI?
<div align="center" style="margin-bottom: 30px;">
<img src="docs/asset.png" alt="CrewAI Logo" width="100%">
<img src="docs/images/asset.png" alt="CrewAI Logo" width="100%">
</div>
CrewAI unlocks the true potential of multi-agent automation, delivering the best-in-class combination of speed, flexibility, and control with either Crews of AI Agents or Flows of Events:
@@ -88,9 +119,15 @@ CrewAI empowers developers and enterprises to confidently build intelligent auto
## Getting Started
### Learning Resources
Setup and run your first CrewAI agents by following this tutorial.
[![CrewAI Getting Started Tutorial](https://img.youtube.com/vi/-kSOTtYzgEw/hqdefault.jpg)](https://www.youtube.com/watch?v=-kSOTtYzgEw "CrewAI Getting Started Tutorial")
###
Learning Resources
Learn CrewAI through our comprehensive courses:
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
@@ -99,18 +136,20 @@ Learn CrewAI through our comprehensive courses:
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
- Natural, autonomous decision-making between agents
- Dynamic task delegation and collaboration
- Specialized roles with defined goals and expertise
- Flexible problem-solving approaches
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
- Fine-grained control over execution paths for real-world scenarios
- Secure, consistent state management between tasks
- Clean integration of AI agents with production Python code
- Conditional branching for complex business logic
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
- Build complex, production-grade applications
- Balance autonomy with precise control
- Handle sophisticated real-world scenarios
@@ -122,18 +161,20 @@ To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.14 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
```shell
pip install crewai
```
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
```shell
pip install 'crewai[tools]'
```
The command above installs the basic package and also adds extra components which require more dependencies to function.
### Troubleshooting Dependencies
@@ -143,10 +184,11 @@ If you encounter issues during installation or usage, here are some common solut
#### Common Issues
1. **ModuleNotFoundError: No module named 'tiktoken'**
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
- If using embedchain or other tools: `pip install 'crewai[tools]'`
2. **Failed building wheel for tiktoken**
- Ensure Rust compiler is installed (see installation steps above)
- For Windows: Verify Visual C++ Build Tools are installed
- Try upgrading pip: `pip install --upgrade pip`
@@ -257,10 +299,14 @@ reporting_task:
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def researcher(self) -> Agent:
@@ -357,7 +403,7 @@ In addition to the sequential process, you can use the hierarchical process, whi
## Key Features
CrewAI stands apart as a lean, standalone, high-performance framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
CrewAI stands apart as a lean, standalone, high-performance multi-AI Agent framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
- **Standalone & Lean**: Completely independent from other frameworks like LangChain, offering faster execution and lighter resource demands.
- **Flexible & Precise**: Easily orchestrate autonomous agents through intuitive [Crews](https://docs.crewai.com/concepts/crews) or precise [Flows](https://docs.crewai.com/concepts/flows), achieving perfect balance for your needs.
@@ -403,7 +449,8 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines.
CrewAI flows support logical operators like `or_` and `and_` to combine multiple conditions. This can be used with `@start`, `@listen`, or `@router` decorators to create complex triggering conditions.
- `or_`: Triggers when any of the specified conditions are met.
- `or_`: Triggers when any of the specified conditions are met.
- `and_`Triggers when all of the specified conditions are met.
Here's how you can orchestrate multiple Crews within a Flow:
@@ -491,6 +538,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
```
This example demonstrates how to:
1. Use Python code for basic data operations
2. Create and execute Crews as steps in your workflow
3. Use Flow decorators to manage the sequence of operations
@@ -500,7 +548,7 @@ This example demonstrates how to:
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models.
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models.
## How CrewAI Compares
@@ -511,7 +559,6 @@ Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
## Contribution
@@ -602,10 +649,10 @@ Users can opt-in to Further Telemetry, sharing the complete telemetry data by se
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
## Frequently Asked Questions (FAQ)
### General
- [What exactly is CrewAI?](#q-what-exactly-is-crewai)
- [How do I install CrewAI?](#q-how-do-i-install-crewai)
- [Does CrewAI depend on LangChain?](#q-does-crewai-depend-on-langchain)
@@ -613,6 +660,7 @@ CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/b
- [Does CrewAI collect data from users?](#q-does-crewai-collect-data-from-users)
### Features and Capabilities
- [Can CrewAI handle complex use cases?](#q-can-crewai-handle-complex-use-cases)
- [Can I use CrewAI with local AI models?](#q-can-i-use-crewai-with-local-ai-models)
- [What makes Crews different from Flows?](#q-what-makes-crews-different-from-flows)
@@ -620,84 +668,110 @@ CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/b
- [Does CrewAI support fine-tuning or training custom models?](#q-does-crewai-support-fine-tuning-or-training-custom-models)
### Resources and Community
- [Where can I find real-world CrewAI examples?](#q-where-can-i-find-real-world-crewai-examples)
- [How can I contribute to CrewAI?](#q-how-can-i-contribute-to-crewai)
### Enterprise Features
- [What additional features does CrewAI Enterprise offer?](#q-what-additional-features-does-crewai-enterprise-offer)
- [Is CrewAI Enterprise available for cloud and on-premise deployments?](#q-is-crewai-enterprise-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI Enterprise for free?](#q-can-i-try-crewai-enterprise-for-free)
### Q: What exactly is CrewAI?
A: CrewAI is a standalone, lean, and fast Python framework built specifically for orchestrating autonomous AI agents. Unlike frameworks like LangChain, CrewAI does not rely on external dependencies, making it leaner, faster, and simpler.
### Q: How do I install CrewAI?
A: Install CrewAI using pip:
```shell
pip install crewai
```
For additional tools, use:
```shell
pip install 'crewai[tools]'
```
### Q: Does CrewAI depend on LangChain?
A: No. CrewAI is built entirely from the ground up, with no dependencies on LangChain or other agent frameworks. This ensures a lean, fast, and flexible experience.
### Q: Can CrewAI handle complex use cases?
A: Yes. CrewAI excels at both simple and highly complex real-world scenarios, offering deep customization options at both high and low levels, from internal prompts to sophisticated workflow orchestration.
### Q: Can I use CrewAI with local AI models?
A: Absolutely! CrewAI supports various language models, including local ones. Tools like Ollama and LM Studio allow seamless integration. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: What makes Crews different from Flows?
A: Crews provide autonomous agent collaboration, ideal for tasks requiring flexible decision-making and dynamic interaction. Flows offer precise, event-driven control, ideal for managing detailed execution paths and secure state management. You can seamlessly combine both for maximum effectiveness.
### Q: How is CrewAI better than LangChain?
A: CrewAI provides simpler, more intuitive APIs, faster execution speeds, more reliable and consistent results, robust documentation, and an active community—addressing common criticisms and limitations associated with LangChain.
### Q: Is CrewAI open-source?
A: Yes, CrewAI is open-source and actively encourages community contributions and collaboration.
### Q: Does CrewAI collect data from users?
A: CrewAI collects anonymous telemetry data strictly for improvement purposes. Sensitive data such as prompts, tasks, or API responses are never collected unless explicitly enabled by the user.
### Q: Where can I find real-world CrewAI examples?
A: Check out practical examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), covering use cases like trip planners, stock analysis, and job postings.
### Q: How can I contribute to CrewAI?
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI Enterprise offer?
A: CrewAI Enterprise provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI Enterprise available for cloud and on-premise deployments?
A: Yes, CrewAI Enterprise supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI Enterprise for free?
A: Yes, you can explore part of the CrewAI Enterprise Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
A: Yes, CrewAI can integrate with custom-trained or fine-tuned models, allowing you to enhance your agents with domain-specific knowledge and accuracy.
### Q: Can CrewAI agents interact with external tools and APIs?
A: Absolutely! CrewAI agents can easily integrate with external tools, APIs, and databases, empowering them to leverage real-world data and resources.
### Q: Is CrewAI suitable for production environments?
A: Yes, CrewAI is explicitly designed with production-grade standards, ensuring reliability, stability, and scalability for enterprise deployments.
### Q: How scalable is CrewAI?
A: CrewAI is highly scalable, supporting simple automations and large-scale enterprise workflows involving numerous agents and complex tasks simultaneously.
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI Enterprise includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?
A: CrewAI is primarily Python-based but easily integrates with services and APIs written in any programming language through its flexible API integration capabilities.
### Q: Does CrewAI offer educational resources for beginners?
A: Yes, CrewAI provides extensive beginner-friendly tutorials, courses, and documentation through learn.crewai.com, supporting developers at all skill levels.
### Q: Can CrewAI automate human-in-the-loop workflows?
A: Yes, CrewAI fully supports human-in-the-loop workflows, allowing seamless collaboration between human experts and AI agents for enhanced decision-making.

View File

@@ -0,0 +1,119 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI Enterprise REST API"
icon: "code"
---
# CrewAI Enterprise API
Welcome to the CrewAI Enterprise API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI Enterprise dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
</Steps>
## Authentication
All API requests require authentication using a Bearer token. Include your token in the `Authorization` header:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
### Token Types
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
</Tip>
## Base URL
Each deployed crew has its own unique API endpoint:
```
https://your-crew-name.crewai.com
```
Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI Enterprise user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
### **To Test Your Actual API:**
<CardGroup cols={2}>
<Card title="Copy cURL Examples" icon="terminal">
Copy the cURL examples and replace the URL + token with your real values
</Card>
<Card title="Use Postman/Insomnia" icon="play">
Import the examples into your preferred API testing tool
</Card>
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client
## Need Help?
<CardGroup cols={2}>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
Get help with API integration and troubleshooting
</Card>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -4,8 +4,233 @@ description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2025-03-17" description="v0.108.0">
**Features**
<Update label="2024-05-22" description="v0.121.0" tags={["Latest"]}>
## Release Highlights
<Frame>
<img src="/images/releases/v01210.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.121.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed encoding error when creating tools
- Fixed failing llama test
- Updated logging configuration for consistency
- Enhanced telemetry initialization and event handling
**New Features & Enhancements**
- Added **markdown attribute** to the Task class
- Added **reasoning attribute** to the Agent class
- Added **inject_date flag** to Agent for automatic date injection
- Implemented **HallucinationGuardrail** (no-op with test coverage)
**Documentation & Guides**
- Added documentation for **StagehandTool** and improved MDX structure
- Added documentation for **MCP integration** and updated enterprise docs
- Documented knowledge events and updated reasoning docs
- Added stop parameter documentation
- Fixed import references in doc examples (before_kickoff, after_kickoff)
- General docs updates and restructuring for clarity
</Update>
<Update label="2024-05-15" description="v0.120.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01201.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed **interpolation with hyphens**
</Update>
<Update label="2024-05-14" description="v0.120.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01200.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enabled **full Ruff rule set** by default for stricter linting
- Addressed race condition in FilteredStream using context managers
- Fixed agent knowledge reset issue
- Refactored agent fetching logic into utility module
**New Features & Enhancements**
- Added support for **loading an Agent directly from a repository**
- Enabled setting an empty context for Task
- Enhanced Agent repository feedback and fixed Tool auto-import behavior
- Introduced direct initialization of knowledge (bypassing knowledge_sources)
**Documentation & Guides**
- Updated security.md for current security practices
- Cleaned up Google setup section for clarity
- Added link to AI Studio when entering Gemini key
- Updated Arize Phoenix observability guide
- Refreshed flow documentation
</Update>
<Update label="2024-05-08" description="v0.119.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01190.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.119.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Improved test reliability by enhancing pytest handling for flaky tests
- Fixed memory reset crash when embedding dimensions mismatch
- Enabled parent flow identification for Crew and LiteAgent
- Prevented telemetry-related crashes when unavailable
- Upgraded **LiteLLM version** for better compatibility
- Fixed llama converter tests by removing skip_external_api
**New Features & Enhancements**
- Introduced **knowledge retrieval prompt re-writing** in Agent for improved tracking and debugging
- Made LLM setup and quickstart guides model-agnostic
**Documentation & Guides**
- Added advanced configuration docs for the RAG tool
- Updated Windows troubleshooting guide
- Refined documentation examples for better clarity
- Fixed typos across docs and config files
</Update>
<Update label="2024-04-28" description="v0.118.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01180.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.118.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing prompt or system templates
- Removed global logging configuration to avoid unintended overrides
- Renamed **TaskGuardrail to LLMGuardrail** for improved clarity
- Downgraded litellm to version 1.167.1 for compatibility
- Added missing init.py files to ensure proper module initialization
**New Features & Enhancements**
- Added support for **no-code Guardrail creation** to simplify AI behavior controls
**Documentation & Guides**
- Removed CrewStructuredTool from public documentation to reflect internal usage
- Updated enterprise documentation and YouTube embed for improved onboarding experience
</Update>
<Update label="2024-04-20" description="v0.117.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01170.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Added `result_as_answer` parameter support in `@tool` decorator.
- Introduced support for new language models: GPT-4.1, Gemini-2.0, and Gemini-2.5 Pro.
- Enhanced knowledge management capabilities.
- Added Huggingface provider option in CLI.
- Improved compatibility and CI support for Python 3.10+.
**Core Improvements & Fixes**
- Fixed issues with incorrect template parameters and missing inputs.
- Improved asynchronous flow handling with coroutine condition checks.
- Enhanced memory management with isolated configuration and correct memory object copying.
- Fixed initialization of lite agents with correct references.
- Addressed Python type hint issues and removed redundant imports.
- Updated event placement for improved tool usage tracking.
- Raised explicit exceptions when flows fail.
- Removed unused code and redundant comments from various modules.
- Updated GitHub App token action to v2.
**Documentation & Guides**
- Enhanced documentation structure, including enterprise deployment instructions.
- Automatically create output folders for documentation generation.
- Fixed broken link in WeaviateVectorSearchTool documentation.
- Fixed guardrail documentation usage and import paths for JSON search tools.
- Updated documentation for CodeInterpreterTool.
- Improved SEO, contextual navigation, and error handling for documentation pages.
</Update>
<Update label="2024-04-25" description="v0.117.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01171.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Upgraded **crewai-tools** to latest version
- Upgraded **liteLLM** to latest version
- Fixed **Mem0 OSS**
</Update>
<Update label="2024-04-07" description="v0.114.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01140.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.114.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Agents as an atomic unit. (`Agent(...).kickoff()`)
- Support for [Custom LLM implementations](https://docs.crewai.com/guides/advanced/custom-llm).
- Integrated External Memory and [Opik observability](https://docs.crewai.com/how-to/opik-observability).
- Enhanced YAML extraction.
- Multimodal agent validation.
- Added Secure fingerprints for agents and crews.
**Core Improvements & Fixes**
- Improved serialization, agent copying, and Python compatibility.
- Added wildcard support to `emit()`
- Added support for additional router calls and context window adjustments.
- Fixed typing issues, validation, and import statements.
- Improved method performance.
- Enhanced agent task handling, event emissions, and memory management.
- Fixed CLI issues, conditional tasks, cloning behavior, and tool outputs.
**Documentation & Guides**
- Improved documentation structure, theme, and organization.
- Added guides for Local NVIDIA NIM with WSL2, W&B Weave, and Arize Phoenix.
- Updated tool configuration examples, prompts, and observability docs.
- Guide on using singular agents within Flows.
</Update>
<Update label="2024-03-17" description="v0.108.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01080.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.108.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
- Included `model_name`
@@ -24,7 +249,16 @@ icon: timeline
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2025-03-10" description="v0.105.0">
<Update label="2024-03-10" description="v0.105.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01050.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.105.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
@@ -45,7 +279,16 @@ icon: timeline
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2025-02-12" description="v0.102.0">
<Update label="2024-02-12" description="v0.102.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01020.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.102.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
@@ -65,7 +308,16 @@ icon: timeline
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2025-01-28" description="v0.100.0">
<Update label="2024-01-28" description="v0.100.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01000.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.100.0">View on GitHub</a>
</div>
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
@@ -80,7 +332,16 @@ icon: timeline
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2025-01-20" description="v0.98.0">
<Update label="2024-01-20" description="v0.98.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0980.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.98.0">View on GitHub</a>
</div>
**Features**
- Conversation crew v1
- Add unique ID to flow states
@@ -101,7 +362,16 @@ icon: timeline
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2025-01-04" description="v0.95.0">
<Update label="2024-01-04" description="v0.95.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0950.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.95.0">View on GitHub</a>
</div>
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
@@ -132,6 +402,14 @@ icon: timeline
</Update>
<Update label="2024-12-05" description="v0.86.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0860.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.86.0">View on GitHub</a>
</div>
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
@@ -142,6 +420,14 @@ icon: timeline
</Update>
<Update label="2024-12-04" description="v0.85.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0850.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.85.0">View on GitHub</a>
</div>
**Features**
- Added knowledge to agent level
- Feat/remove langchain

View File

@@ -0,0 +1,18 @@
(function() {
if (typeof window === 'undefined') return;
if (typeof window.signals !== 'undefined') return;
var script = document.createElement('script');
script.src = 'https://cdn.cr-relay.com/v1/site/883520f4-c431-44be-80e7-e123a1ee7a2b/signals.js';
script.async = true;
window.signals = Object.assign(
[],
['page', 'identify', 'form'].reduce(function (acc, method){
acc[method] = function () {
signals.push([method, arguments]);
return signals;
};
return acc;
}, {})
);
document.head.appendChild(script);
})();

View File

@@ -21,7 +21,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](../images/enterprise/crew-studio-quickstart)
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)
The Visual Agent Builder enables:
- Intuitive agent configuration with form-based interfaces
@@ -43,7 +43,6 @@ The Visual Agent Builder enables:
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
| **Memory** _(optional)_ | `memory` | `bool` | Whether the agent should maintain memory of interactions. Default is True. |
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
@@ -55,6 +54,11 @@ The Visual Agent Builder enables:
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Multimodal** _(optional)_ | `multimodal` | `bool` | Whether the agent supports multimodal capabilities. Default is False. |
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
| **Reasoning** _(optional)_ | `reasoning` | `bool` | Whether the agent should reflect and create a plan before executing a task. Default is False. |
| **Max Reasoning Attempts** _(optional)_ | `max_reasoning_attempts` | `Optional[int]` | Maximum number of reasoning attempts before executing the task. If None, will try until ready. |
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
@@ -118,7 +122,7 @@ class LatestAiDevelopmentCrew():
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -126,7 +130,7 @@ class LatestAiDevelopmentCrew():
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
```
@@ -151,7 +155,6 @@ agent = Agent(
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
memory=True, # Default: True
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
@@ -162,6 +165,11 @@ agent = Agent(
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
respect_context_window=True, # Default: True
use_system_prompt=True, # Default: True
multimodal=False, # Default: False
inject_date=False, # Default: False
date_format="%Y-%m-%d", # Default: ISO format
reasoning=False, # Default: False
max_reasoning_attempts=None, # Default: None
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder=None, # Optional: Custom embedder configuration
@@ -226,6 +234,44 @@ custom_agent = Agent(
)
```
#### Date-Aware Agent with Reasoning
```python Code
strategic_agent = Agent(
role="Market Analyst",
goal="Track market movements with precise date references and strategic planning",
backstory="Expert in time-sensitive financial analysis and strategic reporting",
inject_date=True, # Automatically inject current date into tasks
date_format="%B %d, %Y", # Format as "May 21, 2025"
reasoning=True, # Enable strategic planning
max_reasoning_attempts=2, # Limit planning iterations
verbose=True
)
```
#### Reasoning Agent
```python Code
reasoning_agent = Agent(
role="Strategic Planner",
goal="Analyze complex problems and create detailed execution plans",
backstory="Expert strategic planner who methodically breaks down complex challenges",
reasoning=True, # Enable reasoning and planning
max_reasoning_attempts=3, # Limit reasoning attempts
max_iter=30, # Allow more iterations for complex planning
verbose=True
)
```
#### Multimodal Agent
```python Code
multimodal_agent = Agent(
role="Visual Content Analyst",
goal="Analyze and process both text and visual content",
backstory="Specialized in multimodal analysis combining text and image understanding",
multimodal=True, # Enable multimodal capabilities
verbose=True
)
```
### Parameter Details
#### Critical Parameters
@@ -249,13 +295,22 @@ custom_agent = Agent(
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)
#### Advanced Features
- `multimodal`: Enable multimodal capabilities for processing text and visual content
- `reasoning`: Enable agent to reflect and create plans before executing tasks
- `inject_date`: Automatically inject current date into task descriptions
#### Templates
- `system_template`: Defines agent's core behavior
- `prompt_template`: Structures input format
- `response_template`: Formats agent responses
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{input}` in your templates. These will be automatically populated during execution.
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
</Note>
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
</Note>
## Agent Tools
@@ -302,6 +357,170 @@ analyst = Agent(
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
</Note>
## Context Window Management
CrewAI includes sophisticated automatic context window management to handle situations where conversations exceed the language model's token limits. This powerful feature is controlled by the `respect_context_window` parameter.
### How Context Window Management Works
When an agent's conversation history grows too large for the LLM's context window, CrewAI automatically detects this situation and can either:
1. **Automatically summarize content** (when `respect_context_window=True`)
2. **Stop execution with an error** (when `respect_context_window=False`)
### Automatic Context Handling (`respect_context_window=True`)
This is the **default and recommended setting** for most use cases. When enabled, CrewAI will:
```python Code
# Agent with automatic context management (default)
smart_agent = Agent(
role="Research Analyst",
goal="Analyze large documents and datasets",
backstory="Expert at processing extensive information",
respect_context_window=True, # 🔑 Default: auto-handle context limits
verbose=True
)
```
**What happens when context limits are exceeded:**
- ⚠️ **Warning message**: `"Context length exceeded. Summarizing content to fit the model context window."`
- 🔄 **Automatic summarization**: CrewAI intelligently summarizes the conversation history
- ✅ **Continued execution**: Task execution continues seamlessly with the summarized context
- 📝 **Preserved information**: Key information is retained while reducing token count
### Strict Context Limits (`respect_context_window=False`)
When you need precise control and prefer execution to stop rather than lose any information:
```python Code
# Agent with strict context limits
strict_agent = Agent(
role="Legal Document Reviewer",
goal="Provide precise legal analysis without information loss",
backstory="Legal expert requiring complete context for accurate analysis",
respect_context_window=False, # ❌ Stop execution on context limit
verbose=True
)
```
**What happens when context limits are exceeded:**
- ❌ **Error message**: `"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools."`
- 🛑 **Execution stops**: Task execution halts immediately
- 🔧 **Manual intervention required**: You need to modify your approach
### Choosing the Right Setting
#### Use `respect_context_window=True` (Default) when:
- **Processing large documents** that might exceed context limits
- **Long-running conversations** where some summarization is acceptable
- **Research tasks** where general context is more important than exact details
- **Prototyping and development** where you want robust execution
```python Code
# Perfect for document processing
document_processor = Agent(
role="Document Analyst",
goal="Extract insights from large research papers",
backstory="Expert at analyzing extensive documentation",
respect_context_window=True, # Handle large documents gracefully
max_iter=50, # Allow more iterations for complex analysis
verbose=True
)
```
#### Use `respect_context_window=False` when:
- **Precision is critical** and information loss is unacceptable
- **Legal or medical tasks** requiring complete context
- **Code review** where missing details could introduce bugs
- **Financial analysis** where accuracy is paramount
```python Code
# Perfect for precision tasks
precision_agent = Agent(
role="Code Security Auditor",
goal="Identify security vulnerabilities in code",
backstory="Security expert requiring complete code context",
respect_context_window=False, # Prefer failure over incomplete analysis
max_retry_limit=1, # Fail fast on context issues
verbose=True
)
```
### Alternative Approaches for Large Data
When dealing with very large datasets, consider these strategies:
#### 1. Use RAG Tools
```python Code
from crewai_tools import RagTool
# Create RAG tool for large document processing
rag_tool = RagTool()
rag_agent = Agent(
role="Research Assistant",
goal="Query large knowledge bases efficiently",
backstory="Expert at using RAG tools for information retrieval",
tools=[rag_tool], # Use RAG instead of large context windows
respect_context_window=True,
verbose=True
)
```
#### 2. Use Knowledge Sources
```python Code
# Use knowledge sources instead of large prompts
knowledge_agent = Agent(
role="Knowledge Expert",
goal="Answer questions using curated knowledge",
backstory="Expert at leveraging structured knowledge sources",
knowledge_sources=[your_knowledge_sources], # Pre-processed knowledge
respect_context_window=True,
verbose=True
)
```
### Context Window Best Practices
1. **Monitor Context Usage**: Enable `verbose=True` to see context management in action
2. **Design for Efficiency**: Structure tasks to minimize context accumulation
3. **Use Appropriate Models**: Choose LLMs with context windows suitable for your tasks
4. **Test Both Settings**: Try both `True` and `False` to see which works better for your use case
5. **Combine with RAG**: Use RAG tools for very large datasets instead of relying solely on context windows
### Troubleshooting Context Issues
**If you're getting context limit errors:**
```python Code
# Quick fix: Enable automatic handling
agent.respect_context_window = True
# Better solution: Use RAG tools for large data
from crewai_tools import RagTool
agent.tools = [RagTool()]
# Alternative: Break tasks into smaller pieces
# Or use knowledge sources instead of large prompts
```
**If automatic summarization loses important information:**
```python Code
# Disable auto-summarization and use RAG instead
agent = Agent(
role="Detailed Analyst",
goal="Maintain complete information accuracy",
backstory="Expert requiring full context",
respect_context_window=False, # No summarization
tools=[RagTool()], # Use RAG for large data
verbose=True
)
```
<Note>
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
</Note>
## Important Considerations and Best Practices
### Security and Code Execution
@@ -316,11 +535,17 @@ When `memory` is enabled, the agent will maintain context across multiple intera
- Adjust `max_iter` and `max_retry_limit` based on task complexity
### Memory and Context Management
- Use `memory: true` for tasks requiring historical context
- Leverage `knowledge_sources` for domain-specific information
- Configure `embedder_config` when using custom embedding models
- Configure `embedder` when using custom embedding models
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
### Advanced Features
- Enable `reasoning: true` for agents that need to plan and reflect before executing complex tasks
- Set appropriate `max_reasoning_attempts` to control planning iterations (None for unlimited attempts)
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
- Customize the date format with `date_format` using standard Python datetime format codes
- Enable `multimodal: true` for agents that need to process both text and visual content
### Agent Collaboration
- Enable `allow_delegation: true` when agents need to work together
- Use `step_callback` to monitor and log agent interactions
@@ -328,6 +553,13 @@ When `memory` is enabled, the agent will maintain context across multiple intera
- Main `llm` for complex reasoning
- `function_calling_llm` for efficient tool usage
### Date Awareness and Reasoning
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
- Customize the date format with `date_format` using standard Python datetime format codes
- Valid format codes include: %Y (year), %m (month), %d (day), %B (full month name), etc.
- Invalid date formats will be logged as warnings and will not modify the task description
- Enable `reasoning: true` for complex tasks that benefit from upfront planning and reflection
### Model Compatibility
- Set `use_system_prompt: false` for older models that don't support system messages
- Ensure your chosen `llm` supports the features you need (like function calling)
@@ -350,7 +582,6 @@ When `memory` is enabled, the agent will maintain context across multiple intera
- Review code sandbox settings
4. **Memory Issues**: If agent responses seem inconsistent:
- Verify memory is enabled
- Check knowledge source configuration
- Review conversation history management

View File

@@ -4,7 +4,7 @@ description: Learn how to use the CrewAI CLI to interact with CrewAI.
icon: terminal
---
# CrewAI CLI Documentation
## Overview
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
@@ -110,6 +110,8 @@ crewai reset-memories [OPTIONS]
- `-s, --short`: Reset SHORT TERM memory
- `-e, --entities`: Reset ENTITIES memory
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
- `-kn, --knowledge`: Reset KNOWLEDGE storage
- `-akn, --agent-knowledge`: Reset AGENT KNOWLEDGE storage
- `-a, --all`: Reset ALL memories
Example:
@@ -179,7 +181,109 @@ def crew(self) -> Crew:
```
</Note>
### 10. API Keys
### 10. Deploy
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
```shell Terminal
crewai signup
```
If you already have an account, you can login with:
```shell Terminal
crewai login
```
- **Create a deployment**: Once you are authenticated, you can create a deployment for your crew or flow from the root of your localproject.
```shell Terminal
crewai deploy create
```
- Reads your local project configuration.
- Prompts you to confirm the environment variables (like `OPENAI_API_KEY`, `SERPER_API_KEY`) found locally. These will be securely stored with the deployment on the Enterprise platform. Ensure your sensitive keys are correctly configured locally (e.g., in a `.env` file) before running this.
### 11. Organization Management
Manage your CrewAI Enterprise organizations.
```shell Terminal
crewai org [COMMAND] [OPTIONS]
```
#### Commands:
- `list`: List all organizations you belong to
```shell Terminal
crewai org list
```
- `current`: Display your currently active organization
```shell Terminal
crewai org current
```
- `switch`: Switch to a specific organization
```shell Terminal
crewai org switch <organization_id>
```
<Note>
You must be authenticated to CrewAI Enterprise to use these organization management commands.
</Note>
- **Create a deployment** (continued):
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
```shell Terminal
crewai deploy push
```
- Initiates the deployment process on the CrewAI Enterprise platform.
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
- **Deployment Status**: You can check the status of your deployment with:
```shell Terminal
crewai deploy status
```
This fetches the latest deployment status of your most recent deployment attempt (e.g., `Building Images for Crew`, `Deploy Enqueued`, `Online`).
- **Deployment Logs**: You can check the logs of your deployment with:
```shell Terminal
crewai deploy logs
```
This streams the deployment logs to your terminal.
- **List deployments**: You can list all your deployments with:
```shell Terminal
crewai deploy list
```
This lists all your deployments.
- **Delete a deployment**: You can delete a deployment with:
```shell Terminal
crewai deploy remove
```
This deletes the deployment from the CrewAI Enterprise platform.
- **Help Command**: You can get help with the CLI with:
```shell Terminal
crewai deploy --help
```
This shows the help message for the CrewAI Deploy CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
<iframe
width="100%"
height="400"
src="https://www.youtube.com/embed/3EqSV-CYDZA"
title="CrewAI Deployment Guide"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
></iframe>
### 11. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.

View File

@@ -1,51 +1,362 @@
---
title: Collaboration
description: Exploring the dynamics of agent collaboration within the CrewAI framework, focusing on the newly integrated features for enhanced functionality.
description: How to enable agents to work together, delegate tasks, and communicate effectively within CrewAI teams.
icon: screen-users
---
## Collaboration Fundamentals
## Overview
Collaboration in CrewAI is fundamental, enabling agents to combine their skills, share information, and assist each other in task execution, embodying a truly cooperative ecosystem.
Collaboration in CrewAI enables agents to work together as a team by delegating tasks and asking questions to leverage each other's expertise. When `allow_delegation=True`, agents automatically gain access to powerful collaboration tools.
- **Information Sharing**: Ensures all agents are well-informed and can contribute effectively by sharing data and findings.
- **Task Assistance**: Allows agents to seek help from peers with the required expertise for specific tasks.
- **Resource Allocation**: Optimizes task execution through the efficient distribution and sharing of resources among agents.
## Quick Start: Enable Collaboration
## Enhanced Attributes for Improved Collaboration
```python
from crewai import Agent, Crew, Task
The `Crew` class has been enriched with several attributes to support advanced functionalities:
# Enable collaboration for agents
researcher = Agent(
role="Research Specialist",
goal="Conduct thorough research on any topic",
backstory="Expert researcher with access to various sources",
allow_delegation=True, # 🔑 Key setting for collaboration
verbose=True
)
| Feature | Description |
|:-------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Language Model Management** (`manager_llm`, `function_calling_llm`) | Manages language models for executing tasks and tools. `manager_llm` is required for hierarchical processes, while `function_calling_llm` is optional with a default value for streamlined interactions. |
| **Custom Manager Agent** (`manager_agent`) | Specifies a custom agent as the manager, replacing the default CrewAI manager. |
| **Process Flow** (`process`) | Defines execution logic (e.g., sequential, hierarchical) for task distribution. |
| **Verbose Logging** (`verbose`) | Provides detailed logging for monitoring and debugging. Accepts integer and boolean values to control verbosity level. |
| **Rate Limiting** (`max_rpm`) | Limits requests per minute to optimize resource usage. Setting guidelines depend on task complexity and load. |
| **Internationalization / Customization** (`prompt_file`) | Supports prompt customization for global usability. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json) |
| **Callback and Telemetry** (`step_callback`, `task_callback`) | Enables step-wise and task-level execution monitoring and telemetry for performance analytics. |
| **Crew Sharing** (`share_crew`) | Allows sharing crew data with CrewAI for model improvement. Privacy implications and benefits should be considered. |
| **Usage Metrics** (`usage_metrics`) | Logs all LLM usage metrics during task execution for performance insights. |
| **Memory Usage** (`memory`) | Enables memory for storing execution history, aiding in agent learning and task efficiency. |
| **Embedder Configuration** (`embedder`) | Configures the embedder for language understanding and generation, with support for provider customization. |
| **Cache Management** (`cache`) | Specifies whether to cache tool execution results, enhancing performance. |
| **Output Logging** (`output_log_file`) | Defines the file path for logging crew execution output. |
| **Planning Mode** (`planning`) | Enables action planning before task execution. Set `planning=True` to activate. |
| **Replay Feature** (`replay`) | Provides CLI for listing tasks from the last run and replaying from specific tasks, aiding in task management and troubleshooting. |
writer = Agent(
role="Content Writer",
goal="Create engaging content based on research",
backstory="Skilled writer who transforms research into compelling content",
allow_delegation=True, # 🔑 Enables asking questions to other agents
verbose=True
)
## Delegation (Dividing to Conquer)
# Agents can now collaborate automatically
crew = Crew(
agents=[researcher, writer],
tasks=[...],
verbose=True
)
```
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
## How Agent Collaboration Works
## Implementing Collaboration and Delegation
When `allow_delegation=True`, CrewAI automatically provides agents with two powerful tools:
Setting up a crew involves defining the roles and capabilities of each agent. CrewAI seamlessly manages their interactions, ensuring efficient collaboration and delegation, with enhanced customization and monitoring features to adapt to various operational needs.
### 1. **Delegate Work Tool**
Allows agents to assign tasks to teammates with specific expertise.
## Example Scenario
```python
# Agent automatically gets this tool:
# Delegate work to coworker(task: str, context: str, coworker: str)
```
Consider a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The integration of advanced language model management and process flow attributes allows for more sophisticated interactions, such as the writer delegating complex research tasks to the researcher or querying specific information, thereby facilitating a seamless workflow.
### 2. **Ask Question Tool**
Enables agents to ask specific questions to gather information from colleagues.
## Conclusion
```python
# Agent automatically gets this tool:
# Ask question to coworker(question: str, context: str, coworker: str)
```
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
## Collaboration in Action
Here's a complete example showing agents collaborating on a content creation task:
```python
from crewai import Agent, Crew, Task, Process
# Create collaborative agents
researcher = Agent(
role="Research Specialist",
goal="Find accurate, up-to-date information on any topic",
backstory="""You're a meticulous researcher with expertise in finding
reliable sources and fact-checking information across various domains.""",
allow_delegation=True,
verbose=True
)
writer = Agent(
role="Content Writer",
goal="Create engaging, well-structured content",
backstory="""You're a skilled content writer who excels at transforming
research into compelling, readable content for different audiences.""",
allow_delegation=True,
verbose=True
)
editor = Agent(
role="Content Editor",
goal="Ensure content quality and consistency",
backstory="""You're an experienced editor with an eye for detail,
ensuring content meets high standards for clarity and accuracy.""",
allow_delegation=True,
verbose=True
)
# Create a task that encourages collaboration
article_task = Task(
description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'.
The article should include:
- Current AI applications in healthcare
- Emerging trends and technologies
- Potential challenges and ethical considerations
- Expert predictions for the next 5 years
Collaborate with your teammates to ensure accuracy and quality.""",
expected_output="A well-researched, engaging 1000-word article with proper structure and citations",
agent=writer # Writer leads, but can delegate research to researcher
)
# Create collaborative crew
crew = Crew(
agents=[researcher, writer, editor],
tasks=[article_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff()
```
## Collaboration Patterns
### Pattern 1: Research → Write → Edit
```python
research_task = Task(
description="Research the latest developments in quantum computing",
expected_output="Comprehensive research summary with key findings and sources",
agent=researcher
)
writing_task = Task(
description="Write an article based on the research findings",
expected_output="Engaging 800-word article about quantum computing",
agent=writer,
context=[research_task] # Gets research output as context
)
editing_task = Task(
description="Edit and polish the article for publication",
expected_output="Publication-ready article with improved clarity and flow",
agent=editor,
context=[writing_task] # Gets article draft as context
)
```
### Pattern 2: Collaborative Single Task
```python
collaborative_task = Task(
description="""Create a marketing strategy for a new AI product.
Writer: Focus on messaging and content strategy
Researcher: Provide market analysis and competitor insights
Work together to create a comprehensive strategy.""",
expected_output="Complete marketing strategy with research backing",
agent=writer # Lead agent, but can delegate to researcher
)
```
## Hierarchical Collaboration
For complex projects, use a hierarchical process with a manager agent:
```python
from crewai import Agent, Crew, Task, Process
# Manager agent coordinates the team
manager = Agent(
role="Project Manager",
goal="Coordinate team efforts and ensure project success",
backstory="Experienced project manager skilled at delegation and quality control",
allow_delegation=True,
verbose=True
)
# Specialist agents
researcher = Agent(
role="Researcher",
goal="Provide accurate research and analysis",
backstory="Expert researcher with deep analytical skills",
allow_delegation=False, # Specialists focus on their expertise
verbose=True
)
writer = Agent(
role="Writer",
goal="Create compelling content",
backstory="Skilled writer who creates engaging content",
allow_delegation=False,
verbose=True
)
# Manager-led task
project_task = Task(
description="Create a comprehensive market analysis report with recommendations",
expected_output="Executive summary, detailed analysis, and strategic recommendations",
agent=manager # Manager will delegate to specialists
)
# Hierarchical crew
crew = Crew(
agents=[manager, researcher, writer],
tasks=[project_task],
process=Process.hierarchical, # Manager coordinates everything
manager_llm="gpt-4o", # Specify LLM for manager
verbose=True
)
```
## Best Practices for Collaboration
### 1. **Clear Role Definition**
```python
# ✅ Good: Specific, complementary roles
researcher = Agent(role="Market Research Analyst", ...)
writer = Agent(role="Technical Content Writer", ...)
# ❌ Avoid: Overlapping or vague roles
agent1 = Agent(role="General Assistant", ...)
agent2 = Agent(role="Helper", ...)
```
### 2. **Strategic Delegation Enabling**
```python
# ✅ Enable delegation for coordinators and generalists
lead_agent = Agent(
role="Content Lead",
allow_delegation=True, # Can delegate to specialists
...
)
# ✅ Disable for focused specialists (optional)
specialist_agent = Agent(
role="Data Analyst",
allow_delegation=False, # Focuses on core expertise
...
)
```
### 3. **Context Sharing**
```python
# ✅ Use context parameter for task dependencies
writing_task = Task(
description="Write article based on research",
agent=writer,
context=[research_task], # Shares research results
...
)
```
### 4. **Clear Task Descriptions**
```python
# ✅ Specific, actionable descriptions
Task(
description="""Research competitors in the AI chatbot space.
Focus on: pricing models, key features, target markets.
Provide data in a structured format.""",
...
)
# ❌ Vague descriptions that don't guide collaboration
Task(description="Do some research about chatbots", ...)
```
## Troubleshooting Collaboration
### Issue: Agents Not Collaborating
**Symptoms:** Agents work in isolation, no delegation occurs
```python
# ✅ Solution: Ensure delegation is enabled
agent = Agent(
role="...",
allow_delegation=True, # This is required!
...
)
```
### Issue: Too Much Back-and-Forth
**Symptoms:** Agents ask excessive questions, slow progress
```python
# ✅ Solution: Provide better context and specific roles
Task(
description="""Write a technical blog post about machine learning.
Context: Target audience is software developers with basic ML knowledge.
Length: 1200 words
Include: code examples, practical applications, best practices
If you need specific technical details, delegate research to the researcher.""",
...
)
```
### Issue: Delegation Loops
**Symptoms:** Agents delegate back and forth indefinitely
```python
# ✅ Solution: Clear hierarchy and responsibilities
manager = Agent(role="Manager", allow_delegation=True)
specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation
specialist2 = Agent(role="Specialist B", allow_delegation=False)
```
## Advanced Collaboration Features
### Custom Collaboration Rules
```python
# Set specific collaboration guidelines in agent backstory
agent = Agent(
role="Senior Developer",
backstory="""You lead development projects and coordinate with team members.
Collaboration guidelines:
- Delegate research tasks to the Research Analyst
- Ask the Designer for UI/UX guidance
- Consult the QA Engineer for testing strategies
- Only escalate blocking issues to the Project Manager""",
allow_delegation=True
)
```
### Monitoring Collaboration
```python
def track_collaboration(output):
"""Track collaboration patterns"""
if "Delegate work to coworker" in output.raw:
print("🤝 Delegation occurred")
if "Ask question to coworker" in output.raw:
print("❓ Question asked")
crew = Crew(
agents=[...],
tasks=[...],
step_callback=track_collaboration, # Monitor collaboration
verbose=True
)
```
## Memory and Learning
Enable agents to remember past collaborations:
```python
agent = Agent(
role="Content Lead",
memory=True, # Remembers past interactions
allow_delegation=True,
verbose=True
)
```
With memory enabled, agents learn from previous collaborations and improve their delegation decisions over time.
## Next Steps
- **Try the examples**: Start with the basic collaboration example
- **Experiment with roles**: Test different agent role combinations
- **Monitor interactions**: Use `verbose=True` to see collaboration in action
- **Optimize task descriptions**: Clear tasks lead to better collaboration
- **Scale up**: Try hierarchical processes for complex projects
Collaboration transforms individual AI agents into powerful teams that can tackle complex, multi-faceted challenges together.

View File

@@ -4,7 +4,7 @@ description: Understanding and utilizing crews in the crewAI framework with comp
icon: people-group
---
## What is a Crew?
## Overview
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
@@ -27,7 +27,7 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defautls to `None`. |
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defaults to `None`. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
@@ -52,12 +52,16 @@ After creating your CrewAI project as outlined in the [Installation](/installati
```python code
from crewai import Agent, Crew, Task, Process
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class YourCrewName:
"""Description of your crew"""
agents: List[BaseAgent]
tasks: List[Task]
# Paths to your YAML configuration files
# To see an example agent and task defined in YAML, checkout the following:
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
@@ -80,27 +84,27 @@ class YourCrewName:
@agent
def agent_one(self) -> Agent:
return Agent(
config=self.agents_config['agent_one'],
config=self.agents_config['agent_one'], # type: ignore[index]
verbose=True
)
@agent
def agent_two(self) -> Agent:
return Agent(
config=self.agents_config['agent_two'],
config=self.agents_config['agent_two'], # type: ignore[index]
verbose=True
)
@task
def task_one(self) -> Task:
return Task(
config=self.tasks_config['task_one']
config=self.tasks_config['task_one'] # type: ignore[index]
)
@task
def task_two(self) -> Task:
return Task(
config=self.tasks_config['task_two']
config=self.tasks_config['task_two'] # type: ignore[index]
)
@crew
@@ -113,6 +117,12 @@ class YourCrewName:
)
```
How to run the above code:
```python code
YourCrewName().crew().kickoff(inputs={"any": "input here"})
```
<Note>
Tasks will be executed in the order they are defined.
</Note>
@@ -180,6 +190,11 @@ class YourCrewName:
verbose=True
)
```
How to run the above code:
```python code
YourCrewName().crew().kickoff(inputs={})
```
In this example:
@@ -242,7 +257,7 @@ print(f"Token Usage: {crew_output.token_usage}")
You can see real time log of the crew execution, by setting `output_log_file` as a `True(Boolean)` or a `file_name(str)`. Supports logging of events as both `file_name.txt` and `file_name.json`.
In case of `True(Boolean)` will save as `logs.txt`.
In case of `output_log_file` is set as `False(Booelan)` or `None`, the logs will not be populated.
In case of `output_log_file` is set as `False(Boolean)` or `None`, the logs will not be populated.
```python Code
# Save crew logs
@@ -310,12 +325,12 @@ for result in results:
# Example of using kickoff_async
inputs = {'topic': 'AI in healthcare'}
async_result = my_crew.kickoff_async(inputs=inputs)
async_result = await my_crew.kickoff_async(inputs=inputs)
print(async_result)
# Example of using kickoff_for_each_async
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = my_crew.kickoff_for_each_async(inputs=inputs_array)
async_results = await my_crew.kickoff_for_each_async(inputs=inputs_array)
for async_result in async_results:
print(async_result)
```

View File

@@ -4,7 +4,7 @@ description: 'Tap into CrewAI events to build custom integrations and monitoring
icon: spinner
---
# Event Listeners
## Overview
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
@@ -21,7 +21,7 @@ When specific actions occur in CrewAI (like a Crew starting execution, an Agent
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](../images/enterprise/prompt-tracing.png)
![Prompt Tracing Dashboard](/images/enterprise/traces-overview.png)
With Prompt Tracing you can:
- View the complete history of all prompts sent to your LLM
@@ -224,6 +224,15 @@ CrewAI provides a wide range of events that you can listen for:
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Knowledge Events
- **KnowledgeRetrievalStartedEvent**: Emitted when a knowledge retrieval is started
- **KnowledgeRetrievalCompletedEvent**: Emitted when a knowledge retrieval is completed
- **KnowledgeQueryStartedEvent**: Emitted when a knowledge query is started
- **KnowledgeQueryCompletedEvent**: Emitted when a knowledge query is completed
- **KnowledgeQueryFailedEvent**: Emitted when a knowledge query fails
- **KnowledgeSearchQueryFailedEvent**: Emitted when a knowledge search query fails
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created

View File

@@ -4,7 +4,7 @@ description: Learn how to create and manage AI workflows using CrewAI Flows.
icon: arrow-progress
---
## Introduction
## Overview
CrewAI Flows is a powerful feature designed to streamline the creation and management of AI workflows. Flows allow developers to combine and coordinate coding tasks and Crews efficiently, providing a robust framework for building sophisticated AI automations.
@@ -75,11 +75,12 @@ class ExampleFlow(Flow):
flow = ExampleFlow()
flow.plot()
result = flow.kickoff()
print(f"Generated fun fact: {result}")
```
![Flow Visual image](/images/crewai-flow-1.png)
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
Each Flow instance automatically receives a unique identifier (UUID) in its state, which helps track and manage flow executions. The state can also store additional data (like the generated city and fun fact) that persists throughout the flow's execution.
@@ -146,6 +147,7 @@ class OutputExampleFlow(Flow):
flow = OutputExampleFlow()
flow.plot("my_flow_plot")
final_output = flow.kickoff()
print("---- Final Output ----")
@@ -158,9 +160,10 @@ Second method received: Output from first_method
```
</CodeGroup>
![Flow Visual image](/images/crewai-flow-2.png)
In this example, the `second_method` is the last method to complete, so its output will be the final output of the Flow.
The `kickoff()` method will return the final output, which is then printed to the console.
The `kickoff()` method will return the final output, which is then printed to the console. The `plot()` method will generate the HTML file, which will help you understand the flow.
#### Accessing and Updating State
@@ -192,6 +195,7 @@ class StateExampleFlow(Flow[ExampleState]):
return self.state.message
flow = StateExampleFlow()
flow.plot("my_flow_plot")
final_output = flow.kickoff()
print(f"Final Output: {final_output}")
print("Final State:")
@@ -206,6 +210,8 @@ counter=2 message='Hello from first_method - updated by second_method'
</CodeGroup>
![Flow Visual image](/images/crewai-flow-2.png)
In this example, the state is updated by both `first_method` and `second_method`.
After the Flow has run, you can access the final state to see the updates made by these methods.
@@ -249,9 +255,12 @@ class UnstructuredExampleFlow(Flow):
flow = UnstructuredExampleFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
![Flow Visual image](/images/crewai-flow-3.png)
**Note:** The `id` field is automatically generated and preserved throughout the flow's execution. You don't need to manage or set it manually, and it will be maintained even when updating the state with new data.
**Key Points:**
@@ -302,6 +311,8 @@ flow = StructuredExampleFlow()
flow.kickoff()
```
![Flow Visual image](/images/crewai-flow-3.png)
**Key Points:**
- **Defined Schema:** `ExampleState` clearly outlines the state structure, enhancing code readability and maintainability.
@@ -436,6 +447,7 @@ class OrExampleFlow(Flow):
flow = OrExampleFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
@@ -446,6 +458,8 @@ Logger: Hello from the second method
</CodeGroup>
![Flow Visual image](/images/crewai-flow-4.png)
When you run this Flow, the `logger` method will be triggered by the output of either the `start_method` or the `second_method`.
The `or_` function is used to listen to multiple methods and trigger the listener method when any of the specified methods emit an output.
@@ -474,6 +488,7 @@ class AndExampleFlow(Flow):
print(self.state)
flow = AndExampleFlow()
flow.plot()
flow.kickoff()
```
@@ -484,6 +499,8 @@ flow.kickoff()
</CodeGroup>
![Flow Visual image](/images/crewai-flow-5.png)
When you run this Flow, the `logger` method will be triggered only when both the `start_method` and the `second_method` emit an output.
The `and_` function is used to listen to multiple methods and trigger the listener method only when all the specified methods emit an output.
@@ -527,6 +544,7 @@ class RouterFlow(Flow[ExampleState]):
flow = RouterFlow()
flow.plot("my_flow_plot")
flow.kickoff()
```
@@ -538,6 +556,8 @@ Fourth method running
</CodeGroup>
![Flow Visual image](/images/crewai-flow-6.png)
In the above example, the `start_method` generates a random boolean value and sets it in the state.
The `second_method` uses the `@router()` decorator to define conditional routing logic based on the value of the boolean.
If the boolean is `True`, the method returns `"success"`, and if it is `False`, the method returns `"failed"`.
@@ -641,6 +661,7 @@ class MarketResearchFlow(Flow[MarketResearchState]):
# Usage example
async def run_flow():
flow = MarketResearchFlow()
flow.plot("MarketResearchFlowPlot")
result = await flow.kickoff_async(inputs={"product": "AI-powered chatbots"})
return result
@@ -650,6 +671,8 @@ if __name__ == "__main__":
asyncio.run(run_flow())
```
![Flow Visual image](/images/crewai-flow-7.png)
This example demonstrates several key features of using Agents in flows:
1. **Structured Output**: Using Pydantic models to define the expected output format (`MarketAnalysis`) ensures type safety and structured data throughout the flow.
@@ -746,13 +769,16 @@ def kickoff():
def plot():
poem_flow = PoemFlow()
poem_flow.plot()
poem_flow.plot("PoemFlowPlot")
if __name__ == "__main__":
kickoff()
plot()
```
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method.
In this example, the `PoemFlow` class defines a flow that generates a sentence count, uses the `PoemCrew` to generate a poem, and then saves the poem to a file. The flow is kicked off by calling the `kickoff()` method. The PoemFlowPlot will be generated by `plot()` method.
![Flow Visual image](/images/crewai-flow-8.png)
### Running the Flow

File diff suppressed because it is too large Load Diff

View File

@@ -1,71 +0,0 @@
---
title: Using LlamaIndex Tools
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
icon: toolbox
---
## Using LlamaIndex Tools
<Info>
CrewAI seamlessly integrates with LlamaIndexs comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more.
</Info>
Here are the available built-in tools offered by LlamaIndex.
```python Code
from crewai import Agent
from crewai_tools import LlamaIndexTool
# Example 1: Initialize from FunctionTool
from llama_index.core.tools import FunctionTool
your_python_function = lambda ...: ...
og_tool = FunctionTool.from_defaults(
your_python_function,
name="<name>",
description='<description>'
)
tool = LlamaIndexTool.from_tool(og_tool)
# Example 2: Initialize from LlamaHub Tools
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
wolfram_tools = wolfram_spec.to_tool_list()
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
# Example 3: Initialize Tool from a LlamaIndex Query Engine
query_engine = index.as_query_engine()
query_tool = LlamaIndexTool.from_query_engine(
query_engine,
name="Uber 2019 10K Query Tool",
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
)
# Create and assign the tools to an agent
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[tool, *tools, query_tool]
)
# rest of the code ...
```
## Steps to Get Started
To effectively use the LlamaIndexTool, follow these steps:
<Steps>
<Step title="Package Installation">
Make sure that `crewai[tools]` package is installed in your Python environment:
<CodeGroup>
```shell Terminal
pip install 'crewai[tools]'
```
</CodeGroup>
</Step>
<Step title="Install and Use LlamaIndex">
Follow the LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
</Step>
</Steps>

View File

@@ -4,9 +4,10 @@ description: 'A comprehensive guide to configuring and using Large Language Mode
icon: 'microchip-ai'
---
<Note>
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
</Note>
## Overview
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
## What are LLMs?
@@ -27,23 +28,19 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
</Card>
</CardGroup>
## Setting Up Your LLM
## Setting up your LLM
There are three ways to configure LLMs in CrewAI. Choose the method that best fits your workflow:
There are different places in CrewAI code where you can specify the model to use. Once you specify the model you are using, you will need to provide the configuration (like an API key) for each of the model providers you use. See the [provider configuration examples](#provider-configuration-examples) section for your provider.
<Tabs>
<Tab title="1. Environment Variables">
The simplest way to get started. Set these variables in your environment:
The simplest way to get started. Set the model in your environment directly, through an `.env` file or in your app code. If you used `crewai create` to bootstrap your project, it will be set already.
```bash
# Required: Your API key for authentication
OPENAI_API_KEY=<your-api-key>
```bash .env
MODEL=model-id # e.g. gpt-4o, gemini-2.0-flash, claude-3-sonnet-...
# Optional: Default model selection
OPENAI_MODEL_NAME=gpt-4o-mini # Default if not set
# Optional: Organization ID (if applicable)
OPENAI_ORGANIZATION_ID=<your-org-id>
# Be sure to set your API keys here too. See the Provider
# section below.
```
<Warning>
@@ -53,13 +50,13 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
<Tab title="2. YAML Configuration">
Create a YAML file to define your agent configurations. This method is great for version control and team collaboration:
```yaml
```yaml agents.yaml {6}
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
llm: openai/gpt-4o-mini # your model here
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
# (see provider configuration examples below for more)
```
@@ -74,23 +71,23 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
<Tab title="3. Direct Code">
For maximum flexibility, configure LLMs directly in your Python code:
```python
```python {4,8}
from crewai import LLM
# Basic configuration
llm = LLM(model="gpt-4")
llm = LLM(model="model-id-here") # gpt-4o, gemini-2.0-flash, anthropic/claude...
# Advanced configuration with detailed parameters
llm = LLM(
model="gpt-4o-mini",
model="model-id-here", # gpt-4o, gemini-2.0-flash, anthropic/claude...
temperature=0.7, # Higher for more creative outputs
timeout=120, # Seconds to wait for response
max_tokens=4000, # Maximum length of response
top_p=0.9, # Nucleus sampling parameter
frequency_penalty=0.1, # Reduce repetition
presence_penalty=0.1, # Encourage topic diversity
timeout=120, # Seconds to wait for response
max_tokens=4000, # Maximum length of response
top_p=0.9, # Nucleus sampling parameter
frequency_penalty=0.1 , # Reduce repetition
presence_penalty=0.1, # Encourage topic diversity
response_format={"type": "json"}, # For structured outputs
seed=42 # For reproducible results
seed=42 # For reproducible results
)
```
@@ -110,7 +107,6 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
## Provider Configuration Examples
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
In this section, you'll find detailed examples that help you select, configure, and optimize the LLM that best fits your project's needs.
@@ -156,6 +152,39 @@ In this section, you'll find detailed examples that help you select, configure,
| o1 | 200,000 tokens | Fast reasoning, complex reasoning |
</Accordion>
<Accordion title="Meta-Llama">
Meta's Llama API provides access to Meta's family of large language models.
The API is available through the [Meta Llama API](https://llama.developer.meta.com?utm_source=partner-crewai&utm_medium=website).
Set the following environment variables in your `.env` file:
```toml Code
# Meta Llama API Key Configuration
LLAMA_API_KEY=LLM|your_api_key_here
```
Example usage in your CrewAI project:
```python Code
from crewai import LLM
# Initialize Meta Llama LLM
llm = LLM(
model="meta_llama/Llama-4-Scout-17B-16E-Instruct-FP8",
temperature=0.8,
stop=["END"],
seed=42
)
```
All models listed here https://llama.developer.meta.com/docs/models/ are supported.
| Model ID | Input context length | Output context length | Input Modalities | Output Modalities |
| --- | --- | --- | --- | --- |
| `meta_llama/Llama-4-Scout-17B-16E-Instruct-FP8` | 128k | 4028 | Text, Image | Text |
| `meta_llama/Llama-4-Maverick-17B-128E-Instruct-FP8` | 128k | 4028 | Text, Image | Text |
| `meta_llama/Llama-3.3-70B-Instruct` | 128k | 4028 | Text | Text |
| `meta_llama/Llama-3.3-8B-Instruct` | 128k | 4028 | Text | Text |
</Accordion>
<Accordion title="Anthropic">
```toml Code
# Required
@@ -174,19 +203,55 @@ In this section, you'll find detailed examples that help you select, configure,
```
</Accordion>
<Accordion title="Google">
Set the following environment variables in your `.env` file:
<Accordion title="Google (Gemini API)">
Set your API key in your `.env` file. If you need a key, or need to find an
existing key, check [AI Studio](https://aistudio.google.com/apikey).
```toml Code
# Option 1: Gemini accessed with an API key.
```toml .env
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2: Vertex AI IAM credentials for Gemini, Anthropic, and Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Get credentials from your Google Cloud Console and save it to a JSON file with the following code:
Example usage in your CrewAI project:
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7,
)
```
### Gemini models
Google offers a range of powerful models optimized for different use cases.
| Model | Context Window | Best For |
|--------------------------------|----------------|-------------------------------------------------------------------|
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
### Gemma
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window |
|----------------|----------------|
| gemma-3-1b-it | 32k tokens |
| gemma-3-4b-it | 32k tokens |
| gemma-3-12b-it | 32k tokens |
| gemma-3-27b-it | 128k tokens |
</Accordion>
<Accordion title="Google (Vertex AI)">
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
```python Code
import json
@@ -210,14 +275,18 @@ In this section, you'll find detailed examples that help you select, configure,
vertex_credentials=vertex_credentials_json
)
```
Google offers a range of powerful models optimized for different use cases:
| Model | Context Window | Best For |
|-----------------------|----------------|------------------------------------------------------------------|
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
| Model | Context Window | Best For |
|--------------------------------|----------------|-------------------------------------------------------------------|
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
</Accordion>
<Accordion title="Azure">
@@ -383,7 +452,7 @@ In this section, you'll find detailed examples that help you select, configure,
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecture to deliver compute efficient content generation |
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
@@ -407,19 +476,19 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
NVIDIA NIM enables you to run powerful LLMs locally on your Windows machine using WSL2 (Windows Subsystem for Linux).
This approach allows you to leverage your NVIDIA GPU for private, secure, and cost-effective AI inference without relying on cloud services.
NVIDIA NIM enables you to run powerful LLMs locally on your Windows machine using WSL2 (Windows Subsystem for Linux).
This approach allows you to leverage your NVIDIA GPU for private, secure, and cost-effective AI inference without relying on cloud services.
Perfect for development, testing, or production scenarios where data privacy or offline capabilities are required.
Here is a step-by-step guide to setting up a local NVIDIA NIM model:
1. Follow installation instructions from [NVIDIA Website](https://docs.nvidia.com/nim/wsl2/latest/getting-started.html)
2. Install the local model. For Llama 3.1-8b follow [instructions](https://build.nvidia.com/meta/llama-3_1-8b-instruct/deploy)
3. Configure your crewai local models:
```python Code
from crewai.llm import LLM
@@ -438,10 +507,10 @@ In this section, you'll find detailed examples that help you select, configure,
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
llm=local_nvidia_nim_llm
)
# ...
```
</Accordion>
@@ -535,14 +604,13 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Hugging Face">
Set the following environment variables in your `.env` file:
```toml Code
HUGGINGFACE_API_KEY=<your-api-key>
HF_TOKEN=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
base_url="your_api_endpoint"
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct"
)
```
</Accordion>
@@ -638,23 +706,29 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
When streaming is enabled, responses are delivered in chunks as they're generated, creating a more responsive user experience.
</Tab>
<Tab title="Event Handling">
CrewAI emits events for each chunk received during streaming:
```python
from crewai import LLM
from crewai.utilities.events import EventHandler, LLMStreamChunkEvent
class MyEventHandler(EventHandler):
def on_llm_stream_chunk(self, event: LLMStreamChunkEvent):
# Process each chunk as it arrives
print(f"Received chunk: {event.chunk}")
# Register the event handler
from crewai.utilities.events import crewai_event_bus
crewai_event_bus.register_handler(MyEventHandler())
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(LLMStreamChunkEvent)
def on_llm_stream_chunk(self, event: LLMStreamChunkEvent):
# Process each chunk as it arrives
print(f"Received chunk: {event.chunk}")
my_listener = MyCustomListener()
```
<Tip>
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
</Tabs>
@@ -751,6 +825,24 @@ Learn how to get the most out of your LLM configuration:
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
</Info>
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
```python
from crewai import LLM
import os
os.environ["OPENAI_API_KEY"] = "<api-key>"
o3_llm = LLM(
model="o3",
drop_params=True,
additional_drop_params=["stop"]
)
```
</Accordion>
</AccordionGroup>
## Common Issues and Solutions
@@ -786,7 +878,7 @@ Learn how to get the most out of your LLM configuration:
<Tip>
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,10 @@
---
title: Planning
description: Learn how to add planning to your CrewAI Crew and improve their performance.
icon: brain
icon: ruler-combined
---
## Introduction
## Overview
The planning feature in CrewAI allows you to add planning capability to your crew. When enabled, before each Crew iteration,
all Crew information is sent to an AgentPlanner that will plan the tasks step by step, and this plan will be added to each task description.
@@ -29,6 +29,10 @@ my_crew = Crew(
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
<Warning>
When planning is enabled, crewAI will use `gpt-4o-mini` as the default LLM for planning, which requires a valid OpenAI API key. Since your agents might be using different LLMs, this could cause confusion if you don't have an OpenAI API key configured or if you're experiencing unexpected behavior related to LLM API calls.
</Warning>
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks.

View File

@@ -4,7 +4,8 @@ description: Detailed guide on workflow management through processes in CrewAI,
icon: bars-staggered
---
## Understanding Processes
## Overview
<Tip>
Processes orchestrate the execution of tasks by agents, akin to project management in human teams.
These processes ensure tasks are distributed and executed efficiently, in alignment with a predefined strategy.

147
docs/concepts/reasoning.mdx Normal file
View File

@@ -0,0 +1,147 @@
---
title: Reasoning
description: "Learn how to enable and use agent reasoning to improve task execution."
icon: brain
---
## Overview
Agent reasoning is a feature that allows agents to reflect on a task and create a plan before execution. This helps agents approach tasks more methodically and ensures they're ready to perform the assigned work.
## Usage
To enable reasoning for an agent, simply set `reasoning=True` when creating the agent:
```python
from crewai import Agent
agent = Agent(
role="Data Analyst",
goal="Analyze complex datasets and provide insights",
backstory="You are an experienced data analyst with expertise in finding patterns in complex data.",
reasoning=True, # Enable reasoning
max_reasoning_attempts=3 # Optional: Set a maximum number of reasoning attempts
)
```
## How It Works
When reasoning is enabled, before executing a task, the agent will:
1. Reflect on the task and create a detailed plan
2. Evaluate whether it's ready to execute the task
3. Refine the plan as necessary until it's ready or max_reasoning_attempts is reached
4. Inject the reasoning plan into the task description before execution
This process helps the agent break down complex tasks into manageable steps and identify potential challenges before starting.
## Configuration Options
<ParamField body="reasoning" type="bool" default="False">
Enable or disable reasoning
</ParamField>
<ParamField body="max_reasoning_attempts" type="int" default="None">
Maximum number of attempts to refine the plan before proceeding with execution. If None (default), the agent will continue refining until it's ready.
</ParamField>
## Example
Here's a complete example:
```python
from crewai import Agent, Task, Crew
# Create an agent with reasoning enabled
analyst = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
backstory="You are an expert data analyst.",
reasoning=True,
max_reasoning_attempts=3 # Optional: Set a limit on reasoning attempts
)
# Create a task
analysis_task = Task(
description="Analyze the provided sales data and identify key trends.",
expected_output="A report highlighting the top 3 sales trends.",
agent=analyst
)
# Create a crew and run the task
crew = Crew(agents=[analyst], tasks=[analysis_task])
result = crew.kickoff()
print(result)
```
## Error Handling
The reasoning process is designed to be robust, with error handling built in. If an error occurs during reasoning, the agent will proceed with executing the task without the reasoning plan. This ensures that tasks can still be executed even if the reasoning process fails.
Here's how to handle potential errors in your code:
```python
from crewai import Agent, Task
import logging
# Set up logging to capture any reasoning errors
logging.basicConfig(level=logging.INFO)
# Create an agent with reasoning enabled
agent = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
reasoning=True,
max_reasoning_attempts=3
)
# Create a task
task = Task(
description="Analyze the provided sales data and identify key trends.",
expected_output="A report highlighting the top 3 sales trends.",
agent=agent
)
# Execute the task
# If an error occurs during reasoning, it will be logged and execution will continue
result = agent.execute_task(task)
```
## Example Reasoning Output
Here's an example of what a reasoning plan might look like for a data analysis task:
```
Task: Analyze the provided sales data and identify key trends.
Reasoning Plan:
I'll analyze the sales data to identify the top 3 trends.
1. Understanding of the task:
I need to analyze sales data to identify key trends that would be valuable for business decision-making.
2. Key steps I'll take:
- First, I'll examine the data structure to understand what fields are available
- Then I'll perform exploratory data analysis to identify patterns
- Next, I'll analyze sales by time periods to identify temporal trends
- I'll also analyze sales by product categories and customer segments
- Finally, I'll identify the top 3 most significant trends
3. Approach to challenges:
- If the data has missing values, I'll decide whether to fill or filter them
- If the data has outliers, I'll investigate whether they're valid data points or errors
- If trends aren't immediately obvious, I'll apply statistical methods to uncover patterns
4. Use of available tools:
- I'll use data analysis tools to explore and visualize the data
- I'll use statistical tools to identify significant patterns
- I'll use knowledge retrieval to access relevant information about sales analysis
5. Expected outcome:
A concise report highlighting the top 3 sales trends with supporting evidence from the data.
READY: I am ready to execute the task.
```
This reasoning plan helps the agent organize its approach to the task, consider potential challenges, and ensure it delivers the expected output.

View File

@@ -4,7 +4,7 @@ description: Detailed guide on managing and creating tasks within the CrewAI fra
icon: list-check
---
## Overview of a Task
## Overview
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
@@ -15,7 +15,7 @@ Tasks within CrewAI can be collaborative, requiring multiple agents to work toge
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI Enterprise includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](../images/enterprise/crew-studio-quickstart.png)
![Task Builder Screenshot](/images/enterprise/crew-studio-interface.png)
The Visual Task Builder enables:
- Drag-and-drop task creation
@@ -51,6 +51,7 @@ crew = Crew(
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Whether the task should have a human review the final answer of the agent. Defaults to False. |
| **Markdown** _(optional)_ | `markdown` | `Optional[bool]` | Whether the task should instruct the agent to return the final answer formatted in Markdown. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
@@ -94,6 +95,7 @@ reporting_task:
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst
markdown: true
output_file: report.md
```
@@ -113,7 +115,7 @@ class LatestAiDevelopmentCrew():
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -121,20 +123,20 @@ class LatestAiDevelopmentCrew():
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
config=self.tasks_config['research_task'] # type: ignore[index]
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task']
config=self.tasks_config['reporting_task'] # type: ignore[index]
)
@crew
@@ -182,9 +184,9 @@ reporting_task = Task(
""",
expected_output="""
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
""",
agent=reporting_analyst,
markdown=True, # Enable markdown formatting for the final output
output_file="report.md"
)
```
@@ -257,6 +259,54 @@ if task_output.pydantic:
print(f"Pydantic Output: {task_output.pydantic}")
```
## Markdown Output Formatting
The `markdown` parameter enables automatic markdown formatting for task outputs. When set to `True`, the task will instruct the agent to format the final answer using proper Markdown syntax.
### Using Markdown Formatting
```python Code
# Example task with markdown formatting enabled
formatted_task = Task(
description="Create a comprehensive report on AI trends",
expected_output="A well-structured report with headers, sections, and bullet points",
agent=reporter_agent,
markdown=True # Enable automatic markdown formatting
)
```
When `markdown=True`, the agent will receive additional instructions to format the output using:
- `#` for headers
- `**text**` for bold text
- `*text*` for italic text
- `-` or `*` for bullet points
- `` `code` `` for inline code
- ``` ```language ``` for code blocks
### YAML Configuration with Markdown
```yaml tasks.yaml
analysis_task:
description: >
Analyze the market data and create a detailed report
expected_output: >
A comprehensive analysis with charts and key findings
agent: analyst
markdown: true # Enable markdown formatting
output_file: analysis.md
```
### Benefits of Markdown Output
- **Consistent Formatting**: Ensures all outputs follow proper markdown conventions
- **Better Readability**: Structured content with headers, lists, and emphasis
- **Documentation Ready**: Output can be directly used in documentation systems
- **Cross-Platform Compatibility**: Markdown is universally supported
<Note>
The markdown formatting instructions are automatically added to the task prompt when `markdown=True`, so you don't need to specify formatting requirements in your task description.
</Note>
## Task Dependencies and Context
Tasks can depend on the output of other tasks using the `context` attribute. For example:
@@ -288,26 +338,20 @@ To add a guardrail to a task, provide a validation function through the `guardra
```python Code
from typing import Tuple, Union, Dict, Any
from crewai import TaskOutput
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
def validate_blog_content(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate blog content meets requirements."""
try:
# Check word count
word_count = len(result.split())
if word_count > 200:
return (False, {
"error": "Blog content exceeds 200 words",
"code": "WORD_COUNT_ERROR",
"context": {"word_count": word_count}
})
return (False, "Blog content exceeds 200 words")
# Additional validation logic here
return (True, result.strip())
except Exception as e:
return (False, {
"error": "Unexpected error during validation",
"code": "SYSTEM_ERROR"
})
return (False, "Unexpected error during validation")
blog_task = Task(
description="Write a blog post about AI",
@@ -325,29 +369,28 @@ blog_task = Task(
- Type hints are recommended but optional
2. **Return Values**:
- Success: Return `(True, validated_result)`
- Failure: Return `(False, error_details)`
- On success: it returns a tuple of `(bool, Any)`. For example: `(True, validated_result)`
- On Failure: it returns a tuple of `(bool, str)`. For example: `(False, "Error message explain the failure")`
### LLMGuardrail
The `LLMGuardrail` class offers a robust mechanism for validating task outputs.
### Error Handling Best Practices
1. **Structured Error Responses**:
```python Code
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
from crewai import TaskOutput, LLMGuardrail
def validate_with_context(result: TaskOutput) -> Tuple[bool, Any]:
try:
# Main validation logic
validated_data = perform_validation(result)
return (True, validated_data)
except ValidationError as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"input": result}
})
return (False, f"VALIDATION_ERROR: {str(e)}")
except Exception as e:
return (False, {
"error": "Unexpected error",
"code": "SYSTEM_ERROR"
})
return (False, str(e))
```
2. **Error Categories**:
@@ -358,28 +401,25 @@ def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]
3. **Validation Chain**:
```python Code
from typing import Any, Dict, List, Tuple, Union
from crewai import TaskOutput
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
def complex_validation(result: TaskOutput) -> Tuple[bool, Any]:
"""Chain multiple validation steps."""
# Step 1: Basic validation
if not result:
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
return (False, "Empty result")
# Step 2: Content validation
try:
validated = validate_content(result)
if not validated:
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
return (False, "Invalid content")
# Step 3: Format validation
formatted = format_output(validated)
return (True, formatted)
except Exception as e:
return (False, {
"error": str(e),
"code": "VALIDATION_ERROR",
"context": {"step": "content_validation"}
})
return (False, str(e))
```
### Handling Guardrail Results
@@ -394,19 +434,16 @@ When a guardrail returns `(False, error)`:
Example with retry handling:
```python Code
from typing import Optional, Tuple, Union
from crewai import TaskOutput, Task
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
def validate_json_output(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate and parse JSON output."""
try:
# Try to parse as JSON
data = json.loads(result)
return (True, data)
except json.JSONDecodeError as e:
return (False, {
"error": "Invalid JSON format",
"code": "JSON_ERROR",
"context": {"line": e.lineno, "column": e.colno}
})
return (False, "Invalid JSON format")
task = Task(
description="Generate a JSON report",
@@ -767,6 +804,8 @@ Task guardrails provide a powerful way to validate, transform, or filter task ou
### Basic Usage
#### Define your own logic to validate
```python Code
from typing import Tuple, Union
from crewai import Task
@@ -786,6 +825,57 @@ task = Task(
)
```
#### Leverage a no-code approach for validation
```python Code
from crewai import Task
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail="Ensure the response is a valid JSON object"
)
```
#### Using YAML
```yaml
research_task:
...
guardrail: make sure each bullet contains a minimum of 100 words
...
```
```python Code
@CrewBase
class InternalCrew:
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
...
@task
def research_task(self):
return Task(config=self.tasks_config["research_task"]) # type: ignore[index]
...
```
#### Use custom models for code generation
```python Code
from crewai import Task
from crewai.llm import LLM
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail=LLMGuardrail(
description="Ensure the response is a valid JSON object",
llm=LLM(model="gpt-4o-mini"),
)
)
```
### How Guardrails Work
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.

View File

@@ -4,7 +4,7 @@ description: Learn how to test your CrewAI Crew and evaluate their performance.
icon: vial
---
## Introduction
## Overview
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. With crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.

View File

@@ -4,7 +4,7 @@ description: Understanding and leveraging tools within the CrewAI framework for
icon: screwdriver-wrench
---
## Introduction
## Overview
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
@@ -18,8 +18,6 @@ enabling everything from simple searches to complex interactions and effective t
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI Enterprise provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
![Tools Repository Screenshot](../images/enterprise/tools-repository.png)
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems
- Custom tool creation interface
@@ -34,6 +32,7 @@ The Enterprise Tools Repository includes:
- **Customizability**: Provides the flexibility to develop custom tools or utilize existing ones, catering to the specific needs of agents.
- **Error Handling**: Incorporates robust error handling mechanisms to ensure smooth operation.
- **Caching Mechanism**: Features intelligent caching to optimize performance and reduce redundant operations.
- **Asynchronous Support**: Handles both synchronous and asynchronous tools, enabling non-blocking operations.
## Using CrewAI Tools
@@ -179,6 +178,62 @@ class MyCustomTool(BaseTool):
return "Tool's result"
```
## Asynchronous Tool Support
CrewAI supports asynchronous tools, allowing you to implement tools that perform non-blocking operations like network requests, file I/O, or other async operations without blocking the main execution thread.
### Creating Async Tools
You can create async tools in two ways:
#### 1. Using the `tool` Decorator with Async Functions
```python Code
from crewai.tools import tool
@tool("fetch_data_async")
async def fetch_data_async(query: str) -> str:
"""Asynchronously fetch data based on the query."""
# Simulate async operation
await asyncio.sleep(1)
return f"Data retrieved for {query}"
```
#### 2. Implementing Async Methods in Custom Tool Classes
```python Code
from crewai.tools import BaseTool
class AsyncCustomTool(BaseTool):
name: str = "async_custom_tool"
description: str = "An asynchronous custom tool"
async def _run(self, query: str = "") -> str:
"""Asynchronously run the tool"""
# Your async implementation here
await asyncio.sleep(1)
return f"Processed {query} asynchronously"
```
### Using Async Tools
Async tools work seamlessly in both standard Crew workflows and Flow-based workflows:
```python Code
# In standard Crew
agent = Agent(role="researcher", tools=[async_custom_tool])
# In Flow
class MyFlow(Flow):
@start()
async def begin(self):
crew = Crew(agents=[agent])
result = await crew.kickoff_async()
return result
```
The CrewAI framework automatically handles the execution of both synchronous and asynchronous tools, so you don't need to worry about how to call them differently.
### Utilizing the `tool` Decorator
```python Code
@@ -190,48 +245,6 @@ def my_tool(question: str) -> str:
return "Result from your custom tool"
```
### Structured Tools
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
#### Example:
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
```python
from crewai.tools.structured_tool import CrewStructuredTool
from pydantic import BaseModel
# Define the schema for the tool's input using Pydantic
class APICallInput(BaseModel):
endpoint: str
parameters: dict
# Wrapper function to execute the API call
def tool_wrapper(*args, **kwargs):
# Here, you would typically call the API using the parameters
# For demonstration, we'll return a placeholder string
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
# Create and return the structured tool
def create_structured_tool():
return CrewStructuredTool.from_function(
name='Wrapper API',
description="A tool to wrap API calls with structured input.",
args_schema=APICallInput,
func=tool_wrapper,
)
# Example usage
structured_tool = create_structured_tool()
# Execute the tool with structured input
result = structured_tool._run(**{
"endpoint": "https://example.com/api",
"parameters": {"key1": "value1", "key2": "value2"}
})
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
```
### Custom Caching Mechanism
<Tip>

View File

@@ -4,7 +4,7 @@ description: Learn how to train your CrewAI agents by giving them feedback early
icon: dumbbell
---
## Introduction
## Overview
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.

View File

@@ -1,642 +0,0 @@
# Custom LLM Implementations
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
## Using Custom LLM Implementations
To create a custom LLM implementation, you need to:
1. Inherit from the `BaseLLM` abstract base class
2. Implement the required methods:
- `call()`: The main method to call the LLM with messages
- `supports_function_calling()`: Whether the LLM supports function calling
- `supports_stop_words()`: Whether the LLM supports stop words
- `get_context_window_size()`: The context window size of the LLM
## Example: Basic Custom LLM
```python
from crewai import BaseLLM
from typing import Any, Dict, List, Optional, Union
class CustomLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM
# For example, using requests:
import requests
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
# Return True if your LLM supports function calling
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
# Return True if your LLM supports stop words
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
# Return the context window size of your LLM
return 8192
```
## Error Handling Best Practices
When implementing custom LLMs, it's important to handle errors properly to ensure robustness and reliability. Here are some best practices:
### 1. Implement Try-Except Blocks for API Calls
Always wrap API calls in try-except blocks to handle different types of errors:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
# API call implementation
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
### 2. Implement Retry Logic for Transient Failures
For transient failures like network issues or rate limiting, implement retry logic with exponential backoff:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import time
max_retries = 3
retry_delay = 1 # seconds
for attempt in range(max_retries):
try:
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30
)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except (requests.Timeout, requests.ConnectionError) as e:
if attempt < max_retries - 1:
time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff
continue
raise TimeoutError(f"LLM request failed after {max_retries} attempts: {str(e)}")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
```
### 3. Validate Input Parameters
Always validate input parameters to prevent runtime errors:
```python
def __init__(self, api_key: str, endpoint: str):
super().__init__()
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
```
### 4. Handle Authentication Errors Gracefully
Provide clear error messages for authentication failures:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
response = requests.post(self.endpoint, headers=self.headers, json=data)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid API key or token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status()
# Process response
except Exception as e:
# Handle error
raise
```
## Example: JWT-based Authentication
For services that use JWT-based authentication instead of API keys, you can implement a custom LLM like this:
```python
from crewai import BaseLLM, Agent, Task
from typing import Any, Dict, List, Optional, Union
class JWTAuthLLM(BaseLLM):
def __init__(self, jwt_token: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not jwt_token or not isinstance(jwt_token, str):
raise ValueError("Invalid JWT token: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.jwt_token = jwt_token
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with JWT authentication.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM with JWT authentication
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid JWT token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
return 8192
```
## Troubleshooting
Here are some common issues you might encounter when implementing custom LLMs and how to resolve them:
### 1. Authentication Failures
**Symptoms**: 401 Unauthorized or 403 Forbidden errors
**Solutions**:
- Verify that your API key or JWT token is valid and not expired
- Check that you're using the correct authentication header format
- Ensure that your token has the necessary permissions
### 2. Timeout Issues
**Symptoms**: Requests taking too long or timing out
**Solutions**:
- Implement timeout handling as shown in the examples
- Use retry logic with exponential backoff
- Consider using a more reliable network connection
### 3. Response Parsing Errors
**Symptoms**: KeyError, IndexError, or ValueError when processing responses
**Solutions**:
- Validate the response format before accessing nested fields
- Implement proper error handling for malformed responses
- Check the API documentation for the expected response format
### 4. Rate Limiting
**Symptoms**: 429 Too Many Requests errors
**Solutions**:
- Implement rate limiting in your custom LLM
- Add exponential backoff for retries
- Consider using a token bucket algorithm for more precise rate control
## Advanced Features
### Logging
Adding logging to your custom LLM can help with debugging and monitoring:
```python
import logging
from typing import Any, Dict, List, Optional, Union
class LoggingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.logger = logging.getLogger("crewai.llm.custom")
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self.logger.info(f"Calling LLM with {len(messages) if isinstance(messages, list) else 1} messages")
try:
# API call implementation
response = self._make_api_call(messages, tools)
self.logger.debug(f"LLM response received: {response[:100]}...")
return response
except Exception as e:
self.logger.error(f"LLM call failed: {str(e)}")
raise
```
### Rate Limiting
Implementing rate limiting can help avoid overwhelming the LLM API:
```python
import time
from typing import Any, Dict, List, Optional, Union
class RateLimitedLLM(BaseLLM):
def __init__(
self,
api_key: str,
endpoint: str,
requests_per_minute: int = 60
):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.requests_per_minute = requests_per_minute
self.request_times: List[float] = []
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self._enforce_rate_limit()
# Record this request time
self.request_times.append(time.time())
# Make the actual API call
return self._make_api_call(messages, tools)
def _enforce_rate_limit(self) -> None:
"""Enforce the rate limit by waiting if necessary."""
now = time.time()
# Remove request times older than 1 minute
self.request_times = [t for t in self.request_times if now - t < 60]
if len(self.request_times) >= self.requests_per_minute:
# Calculate how long to wait
oldest_request = min(self.request_times)
wait_time = 60 - (now - oldest_request)
if wait_time > 0:
time.sleep(wait_time)
```
### Metrics Collection
Collecting metrics can help you monitor your LLM usage:
```python
import time
from typing import Any, Dict, List, Optional, Union
class MetricsCollectingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.metrics: Dict[str, Any] = {
"total_calls": 0,
"total_tokens": 0,
"errors": 0,
"latency": []
}
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
start_time = time.time()
self.metrics["total_calls"] += 1
try:
response = self._make_api_call(messages, tools)
# Estimate tokens (simplified)
if isinstance(messages, str):
token_estimate = len(messages) // 4
else:
token_estimate = sum(len(m.get("content", "")) // 4 for m in messages)
self.metrics["total_tokens"] += token_estimate
return response
except Exception as e:
self.metrics["errors"] += 1
raise
finally:
latency = time.time() - start_time
self.metrics["latency"].append(latency)
def get_metrics(self) -> Dict[str, Any]:
"""Return the collected metrics."""
avg_latency = sum(self.metrics["latency"]) / len(self.metrics["latency"]) if self.metrics["latency"] else 0
return {
**self.metrics,
"avg_latency": avg_latency
}
```
## Advanced Usage: Function Calling
If your LLM supports function calling, you can implement the function calling logic in your custom LLM:
```python
import json
from typing import Any, Dict, List, Optional, Union
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
response_data = response.json()
# Check if the LLM wants to call a function
if response_data["choices"][0]["message"].get("tool_calls"):
tool_calls = response_data["choices"][0]["message"]["tool_calls"]
# Process each tool call
for tool_call in tool_calls:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
if available_functions and function_name in available_functions:
function_to_call = available_functions[function_name]
function_response = function_to_call(**function_args)
# Add the function response to the messages
messages.append({
"role": "tool",
"tool_call_id": tool_call["id"],
"name": function_name,
"content": str(function_response)
})
# Call the LLM again with the updated messages
return self.call(messages, tools, callbacks, available_functions)
# Return the text response if no function call
return response_data["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
## Using Your Custom LLM with CrewAI
Once you've implemented your custom LLM, you can use it with CrewAI agents and crews:
```python
from crewai import Agent, Task, Crew
from typing import Dict, Any
# Create your custom LLM instance
jwt_llm = JWTAuthLLM(
jwt_token="your.jwt.token",
endpoint="https://your-llm-endpoint.com/v1/chat/completions"
)
# Use it with an agent
agent = Agent(
role="Research Assistant",
goal="Find information on a topic",
backstory="You are a research assistant tasked with finding information.",
llm=jwt_llm,
)
# Create a task for the agent
task = Task(
description="Research the benefits of exercise",
agent=agent,
expected_output="A summary of the benefits of exercise",
)
# Execute the task
result = agent.execute_task(task)
print(result)
# Or use it with a crew
crew = Crew(
agents=[agent],
tasks=[task],
manager_llm=jwt_llm, # Use your custom LLM for the manager
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Implementing Your Own Authentication Mechanism
The `BaseLLM` class allows you to implement any authentication mechanism you need, not just JWT or API keys. You can use:
- OAuth tokens
- Client certificates
- Custom headers
- Session-based authentication
- Any other authentication method required by your LLM provider
Simply implement the appropriate authentication logic in your custom LLM class.

View File

@@ -7,26 +7,33 @@
"light": "#F3A78B",
"dark": "#C94C3C"
},
"favicon": "favicon.svg",
"favicon": "images/favicon.svg",
"contextual": {
"options": [
"copy",
"view",
"chatgpt",
"claude"
]
},
"navigation": {
"tabs": [
{
"tab": "Get Started",
"tab": "Documentation",
"groups": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart",
"changelog"
"quickstart"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"group": "Strategy",
"pages": [
"guides/concepts/evaluating-use-cases"
]
@@ -72,6 +79,7 @@
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/reasoning",
"concepts/planning",
"concepts/testing",
"concepts/cli",
@@ -80,94 +88,155 @@
]
},
{
"group": "How to Guides",
"group": "MCP Integration",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/langchain-tools",
"how-to/llamaindex-tools"
]
},
{
"group": "Agent Monitoring & Observability",
"pages": [
"how-to/agentops-observability",
"how-to/arize-phoenix-observability",
"how-to/langfuse-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/opik-observability",
"how-to/portkey-observability",
"how-to/weave-integration"
"mcp/overview",
"mcp/stdio",
"mcp/sse",
"mcp/streamable-http",
"mcp/multiple-servers",
"mcp/security"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bedrockinvokeagenttool",
"tools/bedrockkbretriever",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
"tools/overview",
{
"group": "File & Document",
"pages": [
"tools/file-document/overview",
"tools/file-document/filereadtool",
"tools/file-document/filewritetool",
"tools/file-document/pdfsearchtool",
"tools/file-document/docxsearchtool",
"tools/file-document/mdxsearchtool",
"tools/file-document/xmlsearchtool",
"tools/file-document/txtsearchtool",
"tools/file-document/jsonsearchtool",
"tools/file-document/csvsearchtool",
"tools/file-document/directorysearchtool",
"tools/file-document/directoryreadtool"
]
},
{
"group": "Web Scraping & Browsing",
"pages": [
"tools/web-scraping/overview",
"tools/web-scraping/scrapewebsitetool",
"tools/web-scraping/scrapeelementfromwebsitetool",
"tools/web-scraping/scrapflyscrapetool",
"tools/web-scraping/seleniumscrapingtool",
"tools/web-scraping/scrapegraphscrapetool",
"tools/web-scraping/spidertool",
"tools/web-scraping/browserbaseloadtool",
"tools/web-scraping/hyperbrowserloadtool",
"tools/web-scraping/stagehandtool",
"tools/web-scraping/firecrawlcrawlwebsitetool",
"tools/web-scraping/firecrawlscrapewebsitetool",
"tools/web-scraping/firecrawlsearchtool"
]
},
{
"group": "Search & Research",
"pages": [
"tools/search-research/overview",
"tools/search-research/serperdevtool",
"tools/search-research/bravesearchtool",
"tools/search-research/exasearchtool",
"tools/search-research/linkupsearchtool",
"tools/search-research/githubsearchtool",
"tools/search-research/websitesearchtool",
"tools/search-research/codedocssearchtool",
"tools/search-research/youtubechannelsearchtool",
"tools/search-research/youtubevideosearchtool"
]
},
{
"group": "Database & Data",
"pages": [
"tools/database-data/overview",
"tools/database-data/mysqltool",
"tools/database-data/pgsearchtool",
"tools/database-data/snowflakesearchtool",
"tools/database-data/nl2sqltool",
"tools/database-data/qdrantvectorsearchtool",
"tools/database-data/weaviatevectorsearchtool"
]
},
{
"group": "AI & Machine Learning",
"pages": [
"tools/ai-ml/overview",
"tools/ai-ml/dalletool",
"tools/ai-ml/visiontool",
"tools/ai-ml/aimindtool",
"tools/ai-ml/llamaindextool",
"tools/ai-ml/langchaintool",
"tools/ai-ml/ragtool",
"tools/ai-ml/codeinterpretertool"
]
},
{
"group": "Cloud & Storage",
"pages": [
"tools/cloud-storage/overview",
"tools/cloud-storage/s3readertool",
"tools/cloud-storage/s3writertool",
"tools/cloud-storage/bedrockinvokeagenttool",
"tools/cloud-storage/bedrockkbretriever"
]
},
{
"group": "Automation & Integration",
"pages": [
"tools/automation/overview",
"tools/automation/apifyactorstool",
"tools/automation/composiotool",
"tools/automation/multiontool"
]
}
]
},
{
"group": "Observability",
"pages": [
"observability/overview",
"observability/agentops",
"observability/arize-phoenix",
"observability/langfuse",
"observability/langtrace",
"observability/maxim",
"observability/mlflow",
"observability/openlit",
"observability/opik",
"observability/patronus-evaluation",
"observability/portkey",
"observability/weave"
]
},
{
"group": "Learn",
"pages": [
"learn/overview",
"learn/llm-selection-guide",
"learn/conditional-tasks",
"learn/coding-agents",
"learn/create-custom-tools",
"learn/custom-llm",
"learn/custom-manager-agent",
"learn/customizing-agents",
"learn/dalle-image-generation",
"learn/force-tool-output-as-result",
"learn/hierarchical-process",
"learn/human-input-on-execution",
"learn/kickoff-async",
"learn/kickoff-for-each",
"learn/llm-connections",
"learn/multimodal-agents",
"learn/replay-tasks-from-latest-crew-kickoff",
"learn/sequential-process",
"learn/using-annotations"
]
},
{
@@ -178,6 +247,67 @@
}
]
},
{
"tab": "Enterprise",
"groups": [
{
"group": "Getting Started",
"pages": [
"enterprise/introduction"
]
},
{
"group": "Features",
"pages": [
"enterprise/features/tool-repository",
"enterprise/features/webhook-streaming",
"enterprise/features/traces",
"enterprise/features/hallucination-guardrail",
"enterprise/features/integrations"
]
},
{
"group": "How-To Guides",
"pages": [
"enterprise/guides/build-crew",
"enterprise/guides/deploy-crew",
"enterprise/guides/kickoff-crew",
"enterprise/guides/update-crew",
"enterprise/guides/enable-crew-studio",
"enterprise/guides/azure-openai-setup",
"enterprise/guides/hubspot-trigger",
"enterprise/guides/react-component-export",
"enterprise/guides/salesforce-trigger",
"enterprise/guides/slack-trigger",
"enterprise/guides/team-management",
"enterprise/guides/webhook-automation",
"enterprise/guides/human-in-the-loop",
"enterprise/guides/zapier-trigger"
]
},
{
"group": "Resources",
"pages": [
"enterprise/resources/frequently-asked-questions"
]
}
]
},
{
"tab": "API Reference",
"groups": [
{
"group": "Getting Started",
"pages": [
"api-reference/introduction"
]
},
{
"group": "Endpoints",
"openapi": "enterprise-api.yaml"
}
]
},
{
"tab": "Examples",
"groups": [
@@ -188,32 +318,59 @@
]
}
]
},
{
"tab": "Releases",
"groups": [
{
"group": "Releases",
"pages": [
"changelog"
]
}
]
}
],
"global": {
"anchors": [
{
"anchor": "Community",
"anchor": "Website",
"href": "https://crewai.com",
"icon": "globe"
},
{
"anchor": "Forum",
"href": "https://community.crewai.com",
"icon": "discourse"
},
{
"anchor": "Tutorials",
"href": "https://www.youtube.com/@crewAIInc",
"icon": "youtube"
"anchor": "Crew GPT",
"href": "https://chatgpt.com/g/g-qqTuUWsBY-crewai-assistant",
"icon": "robot"
},
{
"anchor": "Get Help",
"href": "mailto:support@crewai.com",
"icon": "headset"
}
]
}
},
"logo": {
"light": "crew_only_logo.png",
"dark": "crew_only_logo.png"
"light": "images/crew_only_logo.png",
"dark": "images/crew_only_logo.png"
},
"appearance": {
"default": "dark",
"strict": false
},
"navbar": {
"links": [
{
"label": "Start Cloud Trial",
"href": "https://app.crewai.com"
}
],
"primary": {
"type": "github",
"href": "https://github.com/crewAIInc/crewAI"
@@ -222,8 +379,23 @@
"search": {
"prompt": "Search CrewAI docs"
},
"api": {
"baseUrl": "https://your-actual-crew-name.crewai.com",
"auth": {
"method": "bearer",
"name": "Authorization"
},
"playground": {
"mode": "simple"
}
},
"seo": {
"indexing": "navigable"
"indexing": "all"
},
"errors": {
"404": {
"redirect": true
}
},
"footer": {
"socials": {
@@ -235,4 +407,4 @@
"reddit": "https://www.reddit.com/r/crewAIInc/"
}
}
}
}

434
docs/enterprise-api.yaml Normal file
View File

@@ -0,0 +1,434 @@
openapi: 3.0.3
info:
title: CrewAI Enterprise API
description: |
REST API for interacting with your deployed CrewAI crews on CrewAI Enterprise.
## Getting Started
1. **Find your crew URL**: Get your unique crew URL from the CrewAI Enterprise dashboard
2. **Copy examples**: Use the code examples from each endpoint page as templates
3. **Replace placeholders**: Update URLs and tokens with your actual values
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
## Authentication
All API requests require a bearer token for authentication. There are two types of tokens:
- **Bearer Token**: Organization-level token for full crew operations
- **User Bearer Token**: User-scoped token for individual access with limited permissions
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
## Reference Documentation
This documentation provides comprehensive examples for each endpoint:
- **Request formats** with all required and optional parameters
- **Response examples** for success and error scenarios
- **Code samples** in multiple programming languages
- **Authentication patterns** with proper Bearer token usage
Copy the examples and customize them with your actual crew URL and authentication tokens.
## Workflow
1. **Discover inputs** using `GET /inputs`
2. **Start execution** using `POST /kickoff`
3. **Monitor progress** using `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Support
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Replace with your actual deployed crew URL from the CrewAI Enterprise dashboard
- url: https://my-travel-crew.crewai.com
description: Example travel planning crew (replace with your URL)
- url: https://content-creation-crew.crewai.com
description: Example content creation crew (replace with your URL)
- url: https://research-assistant-crew.crewai.com
description: Example research assistant crew (replace with your URL)
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Get Required Inputs
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the list of all required input parameters that your crew expects for execution.
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
operationId: getRequiredInputs
responses:
'200':
description: Successfully retrieved required inputs
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Array of required input parameter names
example: ["budget", "interests", "duration", "age"]
examples:
travel_crew:
summary: Travel planning crew inputs
value:
inputs: ["budget", "interests", "duration", "age"]
outreach_crew:
summary: Outreach crew inputs
value:
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Start Crew Execution
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
to track the execution progress and retrieve results.
Crew executions can take anywhere from seconds to minutes depending on their complexity.
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
description: Key-value pairs of all required inputs for your crew
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
type: object
description: Additional metadata to pass to the crew
additionalProperties: true
example:
requestId: "user-request-12345"
source: "mobile-app"
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes
example: "https://your-server.com/webhooks/crew"
examples:
travel_planning:
summary: Travel planning crew
value:
inputs:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
requestId: "travel-req-123"
source: "web-app"
outreach_campaign:
summary: Outreach crew with webhooks
value:
inputs:
name: "John Smith"
title: "CTO"
company: "TechCorp"
industry: "Software"
our_product: "AI Development Platform"
linkedin_url: "https://linkedin.com/in/johnsmith"
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Crew execution started successfully
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
description: Unique identifier for tracking this execution
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'400':
description: Invalid request body or missing required inputs
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'401':
$ref: '#/components/responses/UnauthorizedError'
'422':
description: Validation error - ensure all required inputs are provided
content:
application/json:
schema:
$ref: '#/components/schemas/ValidationError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Get Execution Status
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the current status and results of a crew execution using its kickoff ID.
The response structure varies depending on the execution state:
- **running**: Execution in progress with current task info
- **completed**: Execution finished with full results
- **error**: Execution failed with error details
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
description: The kickoff ID returned from the /kickoff endpoint
schema:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
responses:
'200':
description: Successfully retrieved execution status
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
examples:
running:
summary: Execution in progress
value:
status: "running"
current_task: "research_task"
progress:
completed_tasks: 1
total_tasks: 3
completed:
summary: Execution completed successfully
value:
status: "completed"
result:
output: "Comprehensive travel itinerary for 7 days in Japan focusing on tech culture..."
tasks:
- task_id: "research_task"
output: "Research findings on tech destinations in Japan..."
agent: "Travel Researcher"
execution_time: 45.2
- task_id: "planning_task"
output: "7-day detailed itinerary with activities and recommendations..."
agent: "Trip Planner"
execution_time: 62.8
execution_time: 108.5
error:
summary: Execution failed
value:
status: "error"
error: "Task execution failed: Invalid API key for external service"
execution_time: 23.1
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Execution not found"
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
Use your actual Bearer Token or User Bearer Token from the CrewAI Enterprise dashboard for real API calls.
**Bearer Token**: Organization-level access for full crew operations
**User Bearer Token**: User-scoped access with limited permissions
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
example: "running"
current_task:
type: string
description: Name of the currently executing task
example: "research_task"
progress:
type: object
properties:
completed_tasks:
type: integer
description: Number of completed tasks
example: 1
total_tasks:
type: integer
description: Total number of tasks in the crew
example: 3
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
example: "completed"
result:
type: object
properties:
output:
type: string
description: Final output from the crew execution
example: "Comprehensive travel itinerary..."
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
description: Total execution time in seconds
example: 108.5
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
example: "error"
error:
type: string
description: Error message describing what went wrong
example: "Task execution failed: Invalid API key"
execution_time:
type: number
description: Time until error occurred in seconds
example: 23.1
TaskResult:
type: object
properties:
task_id:
type: string
description: Unique identifier for the task
example: "research_task"
output:
type: string
description: Output generated by this task
example: "Research findings..."
agent:
type: string
description: Name of the agent that executed this task
example: "Travel Researcher"
execution_time:
type: number
description: Time taken to execute this task in seconds
example: 45.2
Error:
type: object
properties:
error:
type: string
description: Error type or title
example: "Authentication Error"
message:
type: string
description: Detailed error message
example: "Invalid bearer token provided"
ValidationError:
type: object
properties:
error:
type: string
example: "Validation Error"
message:
type: string
example: "Missing required inputs"
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
example: ["budget", "interests"]
responses:
UnauthorizedError:
description: Authentication failed - check your bearer token
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Unauthorized"
message: "Invalid or missing bearer token"
NotFoundError:
description: Resource not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "The requested resource was not found"
ServerError:
description: Internal server error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Internal Server Error"
message: "An unexpected error occurred"

View File

@@ -0,0 +1,250 @@
---
title: Hallucination Guardrail
description: "Prevent and detect AI hallucinations in your CrewAI tasks"
icon: "shield-check"
---
## Overview
The Hallucination Guardrail is an enterprise feature that validates AI-generated content to ensure it's grounded in facts and doesn't contain hallucinations. It analyzes task outputs against reference context and provides detailed feedback when potentially hallucinated content is detected.
## What are Hallucinations?
AI hallucinations occur when language models generate content that appears plausible but is factually incorrect or not supported by the provided context. The Hallucination Guardrail helps prevent these issues by:
- Comparing outputs against reference context
- Evaluating faithfulness to source material
- Providing detailed feedback on problematic content
- Supporting custom thresholds for validation strictness
## Basic Usage
### Setting Up the Guardrail
```python
from crewai.tasks.hallucination_guardrail import HallucinationGuardrail
from crewai import LLM
# Basic usage - will use task's expected_output as context
guardrail = HallucinationGuardrail(
llm=LLM(model="gpt-4o-mini")
)
# With explicit reference context
context_guardrail = HallucinationGuardrail(
context="AI helps with various tasks including analysis and generation.",
llm=LLM(model="gpt-4o-mini")
)
```
### Adding to Tasks
```python
from crewai import Task
# Create your task with the guardrail
task = Task(
description="Write a summary about AI capabilities",
expected_output="A factual summary based on the provided context",
agent=my_agent,
guardrail=guardrail # Add the guardrail to validate output
)
```
## Advanced Configuration
### Custom Threshold Validation
For stricter validation, you can set a custom faithfulness threshold (0-10 scale):
```python
# Strict guardrail requiring high faithfulness score
strict_guardrail = HallucinationGuardrail(
context="Quantum computing uses qubits that exist in superposition states.",
llm=LLM(model="gpt-4o-mini"),
threshold=8.0 # Requires score >= 8 to pass validation
)
```
### Including Tool Response Context
When your task uses tools, you can include tool responses for more accurate validation:
```python
# Guardrail with tool response context
weather_guardrail = HallucinationGuardrail(
context="Current weather information for the requested location",
llm=LLM(model="gpt-4o-mini"),
tool_response="Weather API returned: Temperature 22°C, Humidity 65%, Clear skies"
)
```
## How It Works
### Validation Process
1. **Context Analysis**: The guardrail compares task output against the provided reference context
2. **Faithfulness Scoring**: Uses an internal evaluator to assign a faithfulness score (0-10)
3. **Verdict Determination**: Determines if content is faithful or contains hallucinations
4. **Threshold Checking**: If a custom threshold is set, validates against that score
5. **Feedback Generation**: Provides detailed reasons when validation fails
### Validation Logic
- **Default Mode**: Uses verdict-based validation (FAITHFUL vs HALLUCINATED)
- **Threshold Mode**: Requires faithfulness score to meet or exceed the specified threshold
- **Error Handling**: Gracefully handles evaluation errors and provides informative feedback
## Guardrail Results
The guardrail returns structured results indicating validation status:
```python
# Example of guardrail result structure
{
"valid": False,
"feedback": "Content appears to be hallucinated (score: 4.2/10, verdict: HALLUCINATED). The output contains information not supported by the provided context."
}
```
### Result Properties
- **valid**: Boolean indicating whether the output passed validation
- **feedback**: Detailed explanation when validation fails, including:
- Faithfulness score
- Verdict classification
- Specific reasons for failure
## Integration with Task System
### Automatic Validation
When a guardrail is added to a task, it automatically validates the output before the task is marked as complete:
```python
# Task output validation flow
task_output = agent.execute_task(task)
validation_result = guardrail(task_output)
if validation_result.valid:
# Task completes successfully
return task_output
else:
# Task fails with validation feedback
raise ValidationError(validation_result.feedback)
```
### Event Tracking
The guardrail integrates with CrewAI's event system to provide observability:
- **Validation Started**: When guardrail evaluation begins
- **Validation Completed**: When evaluation finishes with results
- **Validation Failed**: When technical errors occur during evaluation
## Best Practices
### Context Guidelines
<Steps>
<Step title="Provide Comprehensive Context">
Include all relevant factual information that the AI should base its output on:
```python
context = """
Company XYZ was founded in 2020 and specializes in renewable energy solutions.
They have 150 employees and generated $50M revenue in 2023.
Their main products include solar panels and wind turbines.
"""
```
</Step>
<Step title="Keep Context Relevant">
Only include information directly related to the task to avoid confusion:
```python
# Good: Focused context
context = "The current weather in New York is 18°C with light rain."
# Avoid: Unrelated information
context = "The weather is 18°C. The city has 8 million people. Traffic is heavy."
```
</Step>
<Step title="Update Context Regularly">
Ensure your reference context reflects current, accurate information.
</Step>
</Steps>
### Threshold Selection
<Steps>
<Step title="Start with Default Validation">
Begin without custom thresholds to understand baseline performance.
</Step>
<Step title="Adjust Based on Requirements">
- **High-stakes content**: Use threshold 8-10 for maximum accuracy
- **General content**: Use threshold 6-7 for balanced validation
- **Creative content**: Use threshold 4-5 or default verdict-based validation
</Step>
<Step title="Monitor and Iterate">
Track validation results and adjust thresholds based on false positives/negatives.
</Step>
</Steps>
## Performance Considerations
### Impact on Execution Time
- **Validation Overhead**: Each guardrail adds ~1-3 seconds per task
- **LLM Efficiency**: Choose efficient models for evaluation (e.g., gpt-4o-mini)
### Cost Optimization
- **Model Selection**: Use smaller, efficient models for guardrail evaluation
- **Context Size**: Keep reference context concise but comprehensive
- **Caching**: Consider caching validation results for repeated content
## Troubleshooting
<Accordion title="Validation Always Fails">
**Possible Causes:**
- Context is too restrictive or unrelated to task output
- Threshold is set too high for the content type
- Reference context contains outdated information
**Solutions:**
- Review and update context to match task requirements
- Lower threshold or use default verdict-based validation
- Ensure context is current and accurate
</Accordion>
<Accordion title="False Positives (Valid Content Marked Invalid)">
**Possible Causes:**
- Threshold too high for creative or interpretive tasks
- Context doesn't cover all valid aspects of the output
- Evaluation model being overly conservative
**Solutions:**
- Lower threshold or use default validation
- Expand context to include broader acceptable content
- Test with different evaluation models
</Accordion>
<Accordion title="Evaluation Errors">
**Possible Causes:**
- Network connectivity issues
- LLM model unavailable or rate limited
- Malformed task output or context
**Solutions:**
- Check network connectivity and LLM service status
- Implement retry logic for transient failures
- Validate task output format before guardrail evaluation
</Accordion>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with hallucination guardrail configuration or troubleshooting.
</Card>

View File

@@ -0,0 +1,185 @@
---
title: Integrations
description: "Connected applications for your agents to take actions."
icon: "plug"
---
## Overview
Enable your agents to authenticate with any OAuth enabled provider and take actions. From Salesforce and HubSpot to Google and GitHub, we've got you covered with 16+ integrated services.
<Frame>
![Integrations](/images/enterprise/crew_connectors.png)
</Frame>
## Supported Integrations
### **Communication & Collaboration**
- **Gmail** - Manage emails and drafts
- **Slack** - Workspace notifications and alerts
- **Microsoft** - Office 365 and Teams integration
### **Project Management**
- **Jira** - Issue tracking and project management
- **ClickUp** - Task and productivity management
- **Asana** - Team task and project coordination
- **Notion** - Page and database management
- **Linear** - Software project and bug tracking
- **GitHub** - Repository and issue management
### **Customer Relationship Management**
- **Salesforce** - CRM account and opportunity management
- **HubSpot** - Sales pipeline and contact management
- **Zendesk** - Customer support ticket management
### **Business & Finance**
- **Stripe** - Payment processing and customer management
- **Shopify** - E-commerce store and product management
### **Productivity & Storage**
- **Google Sheets** - Spreadsheet data synchronization
- **Google Calendar** - Event and schedule management
- **Box** - File storage and document management
and more to come!
## Prerequisites
Before using Authentication Integrations, ensure you have:
- A [CrewAI Enterprise](https://app.crewai.com) account. You can get started with a free trial.
## Setting Up Integrations
### 1. Connect Your Account
1. Navigate to [CrewAI Enterprise](https://app.crewai.com)
2. Go to **Integrations** tab - https://app.crewai.com/crewai_plus/connectors
3. Click **Connect** on your desired service from the Authentication Integrations section
4. Complete the OAuth authentication flow
5. Grant necessary permissions for your use case
6. Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) account page - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)
</Frame>
### 2. Install Integration Tools
All you need is the latest version of `crewai-tools` package.
```bash
uv add crewai-tools
```
## Usage Examples
### Basic Usage
<Tip>
All the services you are authenticated into will be available as tools. So all you need to do is add the `CrewaiEnterpriseTools` to your agent and you are good to go.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tool will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# print the tools
print(enterprise_tools)
# Create an agent with Gmail capabilities
email_agent = Agent(
role="Email Manager",
goal="Manage and organize email communications",
backstory="An AI assistant specialized in email management and communication.",
tools=[enterprise_tools]
)
# Task to send an email
email_task = Task(
description="Draft and send a follow-up email to john@example.com about the project update",
agent=email_agent,
expected_output="Confirmation that email was sent successfully"
)
# Run the task
crew = Crew(
agents=[email_agent],
tasks=[email_task]
)
# Run the crew
crew.kickoff()
```
### Filtering Tools
```python
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
)
gmail_tool = enterprise_tools[0]
gmail_agent = Agent(
role="Gmail Manager",
goal="Manage gmail communications and notifications",
backstory="An AI assistant that helps coordinate gmail communications.",
tools=[gmail_tool]
)
notification_task = Task(
description="Find the email from john@example.com",
agent=gmail_agent,
expected_output="Email found from john@example.com"
)
# Run the task
crew = Crew(
agents=[slack_agent],
tasks=[notification_task]
)
```
## Best Practices
### Security
- **Principle of Least Privilege**: Only grant the minimum permissions required for your agents' tasks
- **Regular Audits**: Periodically review connected integrations and their permissions
- **Secure Credentials**: Never hardcode credentials; use CrewAI's secure authentication flow
### Filtering Tools
On a deployed crew, you can specify which actions are avialbel for each integration from the settings page of the service you connected to.
<Frame>
![Integrations](/images/enterprise/filtering_enterprise_action_tools.png)
</Frame>
### Scoped Deployments for multi user organizations
You can deploy your crew and scope each integration to a specific user. For example, a crew that connects to google can use a specific user's gmail account.
<Tip>
This is useful for multi user organizations where you want to scope the integration to a specific user.
</Tip>
Use the `user_bearer_token` to scope the integration to a specific user so that when the crew is kicked off, it will use the user's bearer token to authenticate with the integration. If user is not logged in, then the crew will not use any connected integrations. Use the default bearer token to authenticate with the integrations thats deployed with the crew.
<Frame>
![Integrations](/images/enterprise/user_bearer_token.png)
</Frame>
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with integration setup or troubleshooting.
</Card>

View File

@@ -0,0 +1,107 @@
---
title: Tool Repository
description: "Using the Tool Repository to manage your tools"
icon: "toolbox"
---
## Overview
The Tool Repository is a package manager for CrewAI tools. It allows users to publish, install, and manage tools that integrate with CrewAI crews and flows.
Tools can be:
- **Private**: accessible only within your organization (default)
- **Public**: accessible to all CrewAI users if published with the `--public` flag
The repository is not a version control system. Use Git to track code changes and enable collaboration.
## Prerequisites
Before using the Tool Repository, ensure you have:
- A [CrewAI Enterprise](https://app.crewai.com) account
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) installed
- uv>=0.5.0 installed. Check out [how to upgrade](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)
- [Git](https://git-scm.com) installed and configured
- Access permissions to publish or install tools in your CrewAI Enterprise organization
## Installing Tools
To install a tool:
```bash
crewai tool install <tool-name>
```
This installs the tool and adds it to `pyproject.toml`.
## Creating and Publishing Tools
To create a new tool project:
```bash
crewai tool create <tool-name>
```
This generates a scaffolded tool project locally.
After making changes, initialize a Git repository and commit the code:
```bash
git init
git add .
git commit -m "Initial version"
```
To publish the tool:
```bash
crewai tool publish
```
By default, tools are published as private. To make a tool public:
```bash
crewai tool publish --public
```
For more details on how to build tools, see [Creating your own tools](https://docs.crewai.com/concepts/tools#creating-your-own-tools).
## Updating Tools
To update a published tool:
1. Modify the tool locally
2. Update the version in `pyproject.toml` (e.g., from `0.1.0` to `0.1.1`)
3. Commit the changes and publish
```bash
git commit -m "Update version to 0.1.1"
crewai tool publish
```
## Deleting Tools
To delete a tool:
1. Go to [CrewAI Enterprise](https://app.crewai.com)
2. Navigate to **Tools**
3. Select the tool
4. Click **Delete**
<Warning>
Deletion is permanent. Deleted tools cannot be restored or re-installed.
</Warning>
## Security Checks
Every published version undergoes automated security checks, and are only available to install after they pass.
You can check the security check status of a tool at:
`CrewAI Enterprise > Tools > Your Tool > Versions`
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with API integration or troubleshooting.
</Card>

View File

@@ -0,0 +1,146 @@
---
title: Traces
description: "Using Traces to monitor your Crews"
icon: "timeline"
---
## Overview
Traces provide comprehensive visibility into your crew executions, helping you monitor performance, debug issues, and optimize your AI agent workflows.
## What are Traces?
Traces in CrewAI Enterprise are detailed execution records that capture every aspect of your crew's operation, from initial inputs to final outputs. They record:
- Agent thoughts and reasoning
- Task execution details
- Tool usage and outputs
- Token consumption metrics
- Execution times
- Cost estimates
<Frame>
![Traces Overview](/images/enterprise/traces-overview.png)
</Frame>
## Accessing Traces
<Steps>
<Step title="Navigate to the Traces Tab">
Once in your CrewAI Enterprise dashboard, click on the **Traces** to view all execution records.
</Step>
<Step title="Select an Execution">
You'll see a list of all crew executions, sorted by date. Click on any execution to view its detailed trace.
</Step>
</Steps>
## Understanding the Trace Interface
The trace interface is divided into several sections, each providing different insights into your crew's execution:
### 1. Execution Summary
The top section displays high-level metrics about the execution:
- **Total Tokens**: Number of tokens consumed across all tasks
- **Prompt Tokens**: Tokens used in prompts to the LLM
- **Completion Tokens**: Tokens generated in LLM responses
- **Requests**: Number of API calls made
- **Execution Time**: Total duration of the crew run
- **Estimated Cost**: Approximate cost based on token usage
<Frame>
![Execution Summary](/images/enterprise/trace-summary.png)
</Frame>
### 2. Tasks & Agents
This section shows all tasks and agents that were part of the crew execution:
- Task name and agent assignment
- Agents and LLMs used for each task
- Status (completed/failed)
- Individual execution time of the task
<Frame>
![Task List](/images/enterprise/trace-tasks.png)
</Frame>
### 3. Final Output
Displays the final result produced by the crew after all tasks are completed.
<Frame>
![Final Output](/images/enterprise/final-output.png)
</Frame>
### 4. Execution Timeline
A visual representation of when each task started and ended, helping you identify bottlenecks or parallel execution patterns.
<Frame>
![Execution Timeline](/images/enterprise/trace-timeline.png)
</Frame>
### 5. Detailed Task View
When you click on a specific task in the timeline or task list, you'll see:
<Frame>
![Detailed Task View](/images/enterprise/trace-detailed-task.png)
</Frame>
- **Task Key**: Unique identifier for the task
- **Task ID**: Technical identifier in the system
- **Status**: Current state (completed/running/failed)
- **Agent**: Which agent performed the task
- **LLM**: Language model used for this task
- **Start/End Time**: When the task began and completed
- **Execution Time**: Duration of this specific task
- **Task Description**: What the agent was instructed to do
- **Expected Output**: What output format was requested
- **Input**: Any input provided to this task from previous tasks
- **Output**: The actual result produced by the agent
## Using Traces for Debugging
Traces are invaluable for troubleshooting issues with your crews:
<Steps>
<Step title="Identify Failure Points">
When a crew execution doesn't produce the expected results, examine the trace to find where things went wrong. Look for:
- Failed tasks
- Unexpected agent decisions
- Tool usage errors
- Misinterpreted instructions
<Frame>
![Failure Points](/images/enterprise/failure.png)
</Frame>
</Step>
<Step title="Optimize Performance">
Use execution metrics to identify performance bottlenecks:
- Tasks that took longer than expected
- Excessive token usage
- Redundant tool operations
- Unnecessary API calls
</Step>
<Step title="Improve Cost Efficiency">
Analyze token usage and cost estimates to optimize your crew's efficiency:
- Consider using smaller models for simpler tasks
- Refine prompts to be more concise
- Cache frequently accessed information
- Structure tasks to minimize redundant operations
</Step>
</Steps>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with trace analysis or any other CrewAI Enterprise features.
</Card>

View File

@@ -0,0 +1,82 @@
---
title: Webhook Streaming
description: "Using Webhook Streaming to stream events to your webhook"
icon: "webhook"
---
## Overview
Enterprise Event Streaming lets you receive real-time webhook updates about your crews and flows deployed to
CrewAI Enterprise, such as model calls, tool usage, and flow steps.
## Usage
When using the Kickoff API, include a `webhooks` object to your request, for example:
```json
{
"inputs": {"foo": "bar"},
"webhooks": {
"events": ["crew_kickoff_started", "llm_call_started"],
"url": "https://your.endpoint/webhook",
"realtime": false,
"authentication": {
"strategy": "bearer",
"token": "my-secret-token"
}
}
}
```
If `realtime` is set to `true`, each event is delivered individually and immediately, at the cost of crew/flow performance.
## Webhook Format
Each webhook sends a list of events:
```json
{
"events": [
{
"id": "event-id",
"execution_id": "crew-run-id",
"timestamp": "2025-02-16T10:58:44.965Z",
"type": "llm_call_started",
"data": {
"model": "gpt-4",
"messages": [
{"role": "system", "content": "You are an assistant."},
{"role": "user", "content": "Summarize this article."}
]
}
}
]
}
```
The `data` object structure varies by event type. Refer to the [event list](https://github.com/crewAIInc/crewAI/tree/main/src/crewai/utilities/events) on GitHub.
As requests are sent over HTTP, the order of events can't be guaranteed. If you need ordering, use the `timestamp` field.
## Supported Events
CrewAI supports both system events and custom events in Enterprise Event Streaming. These events are sent to your configured webhook endpoint during crew and flow execution.
- `crew_kickoff_started`
- `crew_step_started`
- `crew_step_completed`
- `crew_execution_completed`
- `llm_call_started`
- `llm_call_completed`
- `tool_usage_started`
- `tool_usage_completed`
- `crew_test_failed`
- *...and others*
Event names match the internal event bus. See [GitHub source](https://github.com/crewAIInc/crewAI/tree/main/src/crewai/utilities/events) for the full list.
You can emit your own custom events, and they will be delivered through the webhook stream alongside system events.
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with webhook integration or troubleshooting.
</Card>

View File

@@ -0,0 +1,51 @@
---
title: "Azure OpenAI Setup"
description: "Configure Azure OpenAI with Crew Studio for enterprise LLM connections"
icon: "microsoft"
---
This guide walks you through connecting Azure OpenAI with Crew Studio for seamless enterprise AI operations.
## Setup Process
<Steps>
<Step title="Access Azure OpenAI Studio">
1. In Azure, go to `Azure AI Services > select your deployment > open Azure OpenAI Studio`.
2. On the left menu, click `Deployments`. If you don't have one, create a deployment with your desired model.
3. Once created, select your deployment and locate the `Target URI` and `Key` on the right side of the page. Keep this page open, as you'll need this information.
<Frame>
<img src="/images/enterprise/azure-openai-studio.png" alt="Azure OpenAI Studio" />
</Frame>
</Step>
<Step title="Configure CrewAI Enterprise Connection">
4. In another tab, open `CrewAI Enterprise > LLM Connections`. Name your LLM Connection, select Azure as the provider, and choose the same model you selected in Azure.
5. On the same page, add environment variables from step 3:
- One named `AZURE_DEPLOYMENT_TARGET_URL` (using the Target URI). The URL should look like this: https://your-deployment.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview
- Another named `AZURE_API_KEY` (using the Key).
6. Click `Add Connection` to save your LLM Connection.
</Step>
<Step title="Set Default Configuration">
7. In `CrewAI Enterprise > Settings > Defaults > Crew Studio LLM Settings`, set the new LLM Connection and model as defaults.
</Step>
<Step title="Configure Network Access">
8. Ensure network access settings:
- In Azure, go to `Azure OpenAI > select your deployment`.
- Navigate to `Resource Management > Networking`.
- Ensure that `Allow access from all networks` is enabled. If this setting is restricted, CrewAI may be blocked from accessing your Azure OpenAI endpoint.
</Step>
</Steps>
## Verification
You're all set! Crew Studio will now use your Azure OpenAI connection. Test the connection by creating a simple crew or task to ensure everything is working properly.
## Troubleshooting
If you encounter issues:
- Verify the Target URI format matches the expected pattern
- Check that the API key is correct and has proper permissions
- Ensure network access is configured to allow CrewAI connections
- Confirm the deployment model matches what you've configured in CrewAI

View File

@@ -0,0 +1,43 @@
---
title: "Build Crew"
description: "A Crew is a group of agents that work together to complete a task."
icon: "people-arrows"
---
## Overview
[CrewAI Enterprise](https://app.crewai.com) streamlines the process of **creating**, **deploying**, and **managing** your AI agents in production environments.
## Getting Started
<iframe
width="100%"
height="400"
src="https://www.youtube.com/embed/-kSOTtYzgEw"
title="Building Crews with CrewAI CLI"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
></iframe>
### Installation and Setup
<Card title="Follow Standard Installation" icon="wrench" href="/installation">
Follow our standard installation guide to set up CrewAI CLI and create your first project.
</Card>
### Building Your Crew
<Card title="Quickstart Tutorial" icon="rocket" href="/quickstart">
Follow our quickstart guide to create your first agent crew using YAML configuration.
</Card>
## Support and Resources
For Enterprise-specific support or questions, contact our dedicated support team at [support@crewai.com](mailto:support@crewai.com).
<Card title="Schedule a Demo" icon="calendar" href="mailto:support@crewai.com">
Book time with our team to learn more about Enterprise features and how they can benefit your organization.
</Card>

View File

@@ -0,0 +1,293 @@
---
title: "Deploy Crew"
description: "Deploying a Crew on CrewAI Enterprise"
icon: "rocket"
---
<Note>
After creating a crew locally or through Crew Studio, the next step is deploying it to the CrewAI Enterprise platform. This guide covers multiple deployment methods to help you choose the best approach for your workflow.
</Note>
## Prerequisites
<CardGroup cols={2}>
<Card title="Crew Ready for Deployment" icon="users">
You should have a working crew either built locally or created through Crew Studio
</Card>
<Card title="GitHub Repository" icon="github">
Your crew code should be in a GitHub repository (for GitHub integration method)
</Card>
</CardGroup>
## Option 1: Deploy Using CrewAI CLI
The CLI provides the fastest way to deploy locally developed crews to the Enterprise platform.
<Steps>
<Step title="Install CrewAI CLI">
If you haven't already, install the CrewAI CLI:
```bash
pip install crewai[tools]
```
<Tip>
The CLI comes with the main CrewAI package, but the `[tools]` extra ensures you have all deployment dependencies.
</Tip>
</Step>
<Step title="Authenticate with the Enterprise Platform">
First, you need to authenticate your CLI with the CrewAI Enterprise platform:
```bash
# If you already have a CrewAI Enterprise account
crewai login
# If you're creating a new account
crewai signup
```
When you run either command, the CLI will:
1. Display a URL and a unique device code
2. Open your browser to the authentication page
3. Prompt you to confirm the device
4. Complete the authentication process
Upon successful authentication, you'll see a confirmation message in your terminal!
</Step>
<Step title="Create a Deployment">
From your project directory, run:
```bash
crewai deploy create
```
This command will:
1. Detect your GitHub repository information
2. Identify environment variables in your local `.env` file
3. Securely transfer these variables to the Enterprise platform
4. Create a new deployment with a unique identifier
On successful creation, you'll see a message like:
```shell
Deployment created successfully!
Name: your_project_name
Deployment ID: 01234567-89ab-cdef-0123-456789abcdef
Current Status: Deploy Enqueued
```
</Step>
<Step title="Monitor Deployment Progress">
Track the deployment status with:
```bash
crewai deploy status
```
For detailed logs of the build process:
```bash
crewai deploy logs
```
<Tip>
The first deployment typically takes 10-15 minutes as it builds the container images. Subsequent deployments are much faster.
</Tip>
</Step>
</Steps>
## Additional CLI Commands
The CrewAI CLI offers several commands to manage your deployments:
```bash
# List all your deployments
crewai deploy list
# Get the status of your deployment
crewai deploy status
# View the logs of your deployment
crewai deploy logs
# Push updates after code changes
crewai deploy push
# Remove a deployment
crewai deploy remove <deployment_id>
```
## Option 2: Deploy Directly via Web Interface
You can also deploy your crews directly through the CrewAI Enterprise web interface by connecting your GitHub account. This approach doesn't require using the CLI on your local machine.
<Steps>
<Step title="Pushing to GitHub">
You need to push your crew to a GitHub repository. If you haven't created a crew yet, you can [follow this tutorial](/quickstart).
</Step>
<Step title="Connecting GitHub to CrewAI Enterprise">
1. Log in to [CrewAI Enterprise](https://app.crewai.com)
2. Click on the button "Connect GitHub"
<Frame>
![Connect GitHub Button](/images/enterprise/connect-github.png)
</Frame>
</Step>
<Step title="Select the Repository">
After connecting your GitHub account, you'll be able to select which repository to deploy:
<Frame>
![Select Repository](/images/enterprise/select-repo.png)
</Frame>
</Step>
<Step title="Set Environment Variables">
Before deploying, you'll need to set up your environment variables to connect to your LLM provider or other services:
1. You can add variables individually or in bulk
2. Enter your environment variables in `KEY=VALUE` format (one per line)
<Frame>
![Set Environment Variables](/images/enterprise/set-env-variables.png)
</Frame>
</Step>
<Step title="Deploy Your Crew">
1. Click the "Deploy" button to start the deployment process
2. You can monitor the progress through the progress bar
3. The first deployment typically takes around 10-15 minutes; subsequent deployments will be faster
<Frame>
![Deploy Progress](/images/enterprise/deploy-progress.png)
</Frame>
Once deployment is complete, you'll see:
- Your crew's unique URL
- A Bearer token to protect your crew API
- A "Delete" button if you need to remove the deployment
</Step>
</Steps>
## ⚠️ Environment Variable Security Requirements
<Warning>
**Important**: CrewAI Enterprise has security restrictions on environment variable names that can cause deployment failures if not followed.
</Warning>
### Blocked Environment Variable Patterns
For security reasons, the following environment variable naming patterns are **automatically filtered** and will cause deployment issues:
**Blocked Patterns:**
- Variables ending with `_TOKEN` (e.g., `MY_API_TOKEN`)
- Variables ending with `_PASSWORD` (e.g., `DB_PASSWORD`)
- Variables ending with `_SECRET` (e.g., `API_SECRET`)
- Variables ending with `_KEY` in certain contexts
**Specific Blocked Variables:**
- `GITHUB_USER`, `GITHUB_TOKEN`
- `AWS_REGION`, `AWS_DEFAULT_REGION`
- Various internal CrewAI system variables
### Allowed Exceptions
Some variables are explicitly allowed despite matching blocked patterns:
- `AZURE_AD_TOKEN`
- `AZURE_OPENAI_AD_TOKEN`
- `ENTERPRISE_ACTION_TOKEN`
- `CREWAI_ENTEPRISE_TOOLS_TOKEN`
### How to Fix Naming Issues
If your deployment fails due to environment variable restrictions:
```bash
# ❌ These will cause deployment failures
OPENAI_TOKEN=sk-...
DATABASE_PASSWORD=mypassword
API_SECRET=secret123
# ✅ Use these naming patterns instead
OPENAI_API_KEY=sk-...
DATABASE_CREDENTIALS=mypassword
API_CONFIG=secret123
```
### Best Practices
1. **Use standard naming conventions**: `PROVIDER_API_KEY` instead of `PROVIDER_TOKEN`
2. **Test locally first**: Ensure your crew works with the renamed variables
3. **Update your code**: Change any references to the old variable names
4. **Document changes**: Keep track of renamed variables for your team
<Tip>
If you encounter deployment failures with cryptic environment variable errors, check your variable names against these patterns first.
</Tip>
### Interact with Your Deployed Crew
Once deployment is complete, you can access your crew through:
1. **REST API**: The platform generates a unique HTTPS endpoint with these key routes:
- `/inputs`: Lists the required input parameters
- `/kickoff`: Initiates an execution with provided inputs
- `/status/{kickoff_id}`: Checks the execution status
2. **Web Interface**: Visit [app.crewai.com](https://app.crewai.com) to access:
- **Status tab**: View deployment information, API endpoint details, and authentication token
- **Run tab**: Visual representation of your crew's structure
- **Executions tab**: History of all executions
- **Metrics tab**: Performance analytics
- **Traces tab**: Detailed execution insights
### Trigger an Execution
From the Enterprise dashboard, you can:
1. Click on your crew's name to open its details
2. Select "Trigger Crew" from the management interface
3. Enter the required inputs in the modal that appears
4. Monitor progress as the execution moves through the pipeline
### Monitoring and Analytics
The Enterprise platform provides comprehensive observability features:
- **Execution Management**: Track active and completed runs
- **Traces**: Detailed breakdowns of each execution
- **Metrics**: Token usage, execution times, and costs
- **Timeline View**: Visual representation of task sequences
### Advanced Features
The Enterprise platform also offers:
- **Environment Variables Management**: Securely store and manage API keys
- **LLM Connections**: Configure integrations with various LLM providers
- **Custom Tools Repository**: Create, share, and install tools
- **Crew Studio**: Build crews through a chat interface without writing code
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with deployment issues or questions about the Enterprise platform.
</Card>

View File

@@ -0,0 +1,166 @@
---
title: "Enable Crew Studio"
description: "Enabling Crew Studio on CrewAI Enterprise"
icon: "comments"
---
<Tip>
Crew Studio is a powerful **no-code/low-code** tool that allows you to quickly scaffold or build Crews through a conversational interface.
</Tip>
## What is Crew Studio?
Crew Studio is an innovative way to create AI agent crews without writing code.
<Frame>
![Crew Studio Interface](/images/enterprise/crew-studio-interface.png)
</Frame>
With Crew Studio, you can:
- Chat with the Crew Assistant to describe your problem
- Automatically generate agents and tasks
- Select appropriate tools
- Configure necessary inputs
- Generate downloadable code for customization
- Deploy directly to the CrewAI Enterprise platform
## Configuration Steps
Before you can start using Crew Studio, you need to configure your LLM connections:
<Steps>
<Step title="Set Up LLM Connection">
Go to the **LLM Connections** tab in your CrewAI Enterprise dashboard and create a new LLM connection.
<Note>
Feel free to use any LLM provider you want that is supported by CrewAI.
</Note>
Configure your LLM connection:
- Enter a `Connection Name` (e.g., `OpenAI`)
- Select your model provider: `openai` or `azure`
- Select models you'd like to use in your Studio-generated Crews
- We recommend at least `gpt-4o`, `o1-mini`, and `gpt-4o-mini`
- Add your API key as an environment variable:
- For OpenAI: Add `OPENAI_API_KEY` with your API key
- For Azure OpenAI: Refer to [this article](https://blog.crewai.com/configuring-azure-openai-with-crewai-a-comprehensive-guide/) for configuration details
- Click `Add Connection` to save your configuration
<Frame>
![LLM Connection Configuration](/images/enterprise/llm-connection-config.png)
</Frame>
</Step>
<Step title="Verify Connection Added">
Once you complete the setup, you'll see your new connection added to the list of available connections.
<Frame>
![Connection Added](/images/enterprise/connection-added.png)
</Frame>
</Step>
<Step title="Configure LLM Defaults">
In the main menu, go to **Settings → Defaults** and configure the LLM Defaults settings:
- Select default models for agents and other components
- Set default configurations for Crew Studio
Click `Save Settings` to apply your changes.
<Frame>
![LLM Defaults Configuration](/images/enterprise/llm-defaults.png)
</Frame>
</Step>
</Steps>
## Using Crew Studio
Now that you've configured your LLM connection and default settings, you're ready to start using Crew Studio!
<Steps>
<Step title="Access Studio">
Navigate to the **Studio** section in your CrewAI Enterprise dashboard.
</Step>
<Step title="Start a Conversation">
Start a conversation with the Crew Assistant by describing the problem you want to solve:
```md
I need a crew that can research the latest AI developments and create a summary report.
```
The Crew Assistant will ask clarifying questions to better understand your requirements.
</Step>
<Step title="Review Generated Crew">
Review the generated crew configuration, including:
- Agents and their roles
- Tasks to be performed
- Required inputs
- Tools to be used
This is your opportunity to refine the configuration before proceeding.
</Step>
<Step title="Deploy or Download">
Once you're satisfied with the configuration, you can:
- Download the generated code for local customization
- Deploy the crew directly to the CrewAI Enterprise platform
- Modify the configuration and regenerate the crew
</Step>
<Step title="Test Your Crew">
After deployment, test your crew with sample inputs to ensure it performs as expected.
</Step>
</Steps>
<Tip>
For best results, provide clear, detailed descriptions of what you want your crew to accomplish. Include specific inputs and expected outputs in your description.
</Tip>
## Example Workflow
Here's a typical workflow for creating a crew with Crew Studio:
<Steps>
<Step title="Describe Your Problem">
Start by describing your problem:
```md
I need a crew that can analyze financial news and provide investment recommendations
```
</Step>
<Step title="Answer Questions">
Respond to clarifying questions from the Crew Assistant to refine your requirements.
</Step>
<Step title="Review the Plan">
Review the generated crew plan, which might include:
- A Research Agent to gather financial news
- An Analysis Agent to interpret the data
- A Recommendations Agent to provide investment advice
</Step>
<Step title="Approve or Modify">
Approve the plan or request changes if necessary.
</Step>
<Step title="Download or Deploy">
Download the code for customization or deploy directly to the platform.
</Step>
<Step title="Test and Refine">
Test your crew with sample inputs and refine as needed.
</Step>
</Steps>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Crew Studio or any other CrewAI Enterprise features.
</Card>

View File

@@ -0,0 +1,53 @@
---
title: "HubSpot Trigger"
description: "Trigger CrewAI crews directly from HubSpot Workflows"
icon: "hubspot"
---
This guide provides a step-by-step process to set up HubSpot triggers for CrewAI Enterprise, enabling you to initiate crews directly from HubSpot Workflows.
## Prerequisites
- A CrewAI Enterprise account
- A HubSpot account with the [HubSpot Workflows](https://knowledge.hubspot.com/workflows/create-workflows) feature
## Setup Steps
<Steps>
<Step title="Connect your HubSpot account with CrewAI Enterprise">
- Log in to your `CrewAI Enterprise account > Triggers`
- Select `HubSpot` from the list of available triggers
- Choose the HubSpot account you want to connect with CrewAI Enterprise
- Follow the on-screen prompts to authorize CrewAI Enterprise access to your HubSpot account
- A confirmation message will appear once HubSpot is successfully connected with CrewAI Enterprise
</Step>
<Step title="Create a HubSpot Workflow">
- Log in to your `HubSpot account > Automations > Workflows > New workflow`
- Select the workflow type that fits your needs (e.g., Start from scratch)
- In the workflow builder, click the Plus (+) icon to add a new action.
- Choose `Integrated apps > CrewAI > Kickoff a Crew`.
- Select the Crew you want to initiate.
- Click `Save` to add the action to your workflow
<Frame>
<img src="/images/enterprise/hubspot-workflow-1.png" alt="HubSpot Workflow 1" />
</Frame>
</Step>
<Step title="Use Crew results with other actions">
- After the Kickoff a Crew step, click the Plus (+) icon to add a new action.
- For example, to send an internal email notification, choose `Communications > Send internal email notification`
- In the Body field, click `Insert data`, select `View properties or action outputs from > Action outputs > Crew Result` to include Crew data in the email
<Frame>
<img src="/images/enterprise/hubspot-workflow-2.png" alt="HubSpot Workflow 2" />
</Frame>
- Configure any additional actions as needed
- Review your workflow steps to ensure everything is set up correctly
- Activate the workflow
<Frame>
<img src="/images/enterprise/hubspot-workflow-3.png" alt="HubSpot Workflow 3" />
</Frame>
</Step>
</Steps>
## Additional Resources
For more detailed information on available actions and customization options, refer to the [HubSpot Workflows Documentation](https://knowledge.hubspot.com/workflows/create-workflows).

View File

@@ -0,0 +1,78 @@
---
title: "HITL Workflows"
description: "Learn how to implement Human-In-The-Loop workflows in CrewAI for enhanced decision-making"
icon: "user-check"
---
Human-In-The-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI.
## Setting Up HITL Workflows
<Steps>
<Step title="Configure Your Task">
Set up your task with human input enabled:
<Frame>
<img src="/images/enterprise/crew-human-input.png" alt="Crew Human Input" />
</Frame>
</Step>
<Step title="Provide Webhook URL">
When kicking off your crew, include a webhook URL for human input:
<Frame>
<img src="/images/enterprise/crew-webhook-url.png" alt="Crew Webhook URL" />
</Frame>
</Step>
<Step title="Receive Webhook Notification">
Once the crew completes the task requiring human input, you'll receive a webhook notification containing:
- **Execution ID**
- **Task ID**
- **Task output**
</Step>
<Step title="Review Task Output">
The system will pause in the `Pending Human Input` state. Review the task output carefully.
</Step>
<Step title="Submit Human Feedback">
Call the resume endpoint of your crew with the following information:
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**Feedback Impact on Task Execution**:
It's crucial to exercise care when providing feedback, as the entire feedback content will be incorporated as additional context for further task executions.
</Warning>
This means:
- All information in your feedback becomes part of the task's context.
- Irrelevant details may negatively influence it.
- Concise, relevant feedback helps maintain task focus and efficiency.
- Always review your feedback carefully before submission to ensure it contains only pertinent information that will positively guide the task's execution.
</Step>
<Step title="Handle Negative Feedback">
If you provide negative feedback:
- The crew will retry the task with added context from your feedback.
- You'll receive another webhook notification for further review.
- Repeat steps 4-6 until satisfied.
</Step>
<Step title="Execution Continuation">
When you submit positive feedback, the execution will proceed to the next steps.
</Step>
</Steps>
## Best Practices
- **Be Specific**: Provide clear, actionable feedback that directly addresses the task at hand
- **Stay Relevant**: Only include information that will help improve the task execution
- **Be Timely**: Respond to HITL prompts promptly to avoid workflow delays
- **Review Carefully**: Double-check your feedback before submitting to ensure accuracy
## Common Use Cases
HITL workflows are particularly valuable for:
- Quality assurance and validation
- Complex decision-making scenarios
- Sensitive or high-stakes operations
- Creative tasks requiring human judgment
- Compliance and regulatory reviews

View File

@@ -0,0 +1,186 @@
---
title: "Kickoff Crew"
description: "Kickoff a Crew on CrewAI Enterprise"
icon: "flag-checkered"
---
## Overview
Once you've deployed your crew to the CrewAI Enterprise platform, you can kickoff executions through the web interface or the API. This guide covers both approaches.
## Method 1: Using the Web Interface
### Step 1: Navigate to Your Deployed Crew
1. Log in to [CrewAI Enterprise](https://app.crewai.com)
2. Click on the crew name from your projects list
3. You'll be taken to the crew's detail page
<Frame>
![Crew Dashboard](/images/enterprise/crew-dashboard.png)
</Frame>
### Step 2: Initiate Execution
From your crew's detail page, you have two options to kickoff an execution:
#### Option A: Quick Kickoff
1. Click the `Kickoff` link in the Test Endpoints section
2. Enter the required input parameters for your crew in the JSON editor
3. Click the `Send Request` button
<Frame>
![Kickoff Endpoint](/images/enterprise/kickoff-endpoint.png)
</Frame>
#### Option B: Using the Visual Interface
1. Click the `Run` tab in the crew detail page
2. Enter the required inputs in the form fields
3. Click the `Run Crew` button
<Frame>
![Run Crew](/images/enterprise/run-crew.png)
</Frame>
### Step 3: Monitor Execution Progress
After initiating the execution:
1. You'll receive a response containing a `kickoff_id` - **copy this ID**
2. This ID is essential for tracking your execution
<Frame>
![Copy Task ID](/images/enterprise/copy-task-id.png)
</Frame>
### Step 4: Check Execution Status
To monitor the progress of your execution:
1. Click the "Status" endpoint in the Test Endpoints section
2. Paste the `kickoff_id` into the designated field
3. Click the "Get Status" button
<Frame>
![Get Status](/images/enterprise/get-status.png)
</Frame>
The status response will show:
- Current execution state (`running`, `completed`, etc.)
- Details about which tasks are in progress
- Any outputs produced so far
### Step 5: View Final Results
Once execution is complete:
1. The status will change to `completed`
2. You can view the full execution results and outputs
3. For a more detailed view, check the `Executions` tab in the crew detail page
## Method 2: Using the API
You can also kickoff crews programmatically using the CrewAI Enterprise REST API.
### Authentication
All API requests require a bearer token for authentication:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" https://your-crew-url.crewai.com
```
Your bearer token is available on the Status tab of your crew's detail page.
### Checking Crew Health
Before executing operations, you can verify that your crew is running properly:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" https://your-crew-url.crewai.com
```
A successful response will return a message indicating the crew is operational:
```
Healthy%
```
### Step 1: Retrieve Required Inputs
First, determine what inputs your crew requires:
```bash
curl -X GET \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
The response will be a JSON object containing an array of required input parameters, for example:
```json
{"inputs":["topic","current_year"]}
```
This example shows that this particular crew requires two inputs: `topic` and `current_year`.
### Step 2: Kickoff Execution
Initiate execution by providing the required inputs:
```bash
curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
-d '{"inputs": {"topic": "AI Agent Frameworks", "current_year": "2025"}}' \
https://your-crew-url.crewai.com/kickoff
```
The response will include a `kickoff_id` that you'll need for tracking:
```json
{"kickoff_id":"abcd1234-5678-90ef-ghij-klmnopqrstuv"}
```
### Step 3: Check Execution Status
Monitor the execution progress using the kickoff_id:
```bash
curl -X GET \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/status/abcd1234-5678-90ef-ghij-klmnopqrstuv
```
## Handling Executions
### Long-Running Executions
For executions that may take a long time:
1. Consider implementing a polling mechanism to check status periodically
2. Use webhooks (if available) for notification when execution completes
3. Implement error handling for potential timeouts
### Execution Context
The execution context includes:
- Inputs provided at kickoff
- Environment variables configured during deployment
- Any state maintained between tasks
### Debugging Failed Executions
If an execution fails:
1. Check the "Executions" tab for detailed logs
2. Review the "Traces" tab for step-by-step execution details
3. Look for LLM responses and tool usage in the trace details
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with execution issues or questions about the Enterprise platform.
</Card>

View File

@@ -0,0 +1,103 @@
---
title: "React Component Export"
description: "Learn how to export and integrate CrewAI Enterprise React components into your applications"
icon: "react"
---
This guide explains how to export CrewAI Enterprise crews as React components and integrate them into your own applications.
## Exporting a React Component
<Steps>
<Step title="Export the Component">
Click on the ellipsis (three dots on the right of your deployed crew) and select the export option and save the file locally. We will be using `CrewLead.jsx` for our example.
<Frame>
<img src="/images/enterprise/export-react-component.png" alt="Export React Component" />
</Frame>
</Step>
</Steps>
## Setting Up Your React Environment
To run this React component locally, you'll need to set up a React development environment and integrate this component into a React project.
<Steps>
<Step title="Install Node.js">
- Download and install Node.js from the official website: https://nodejs.org/
- Choose the LTS (Long Term Support) version for stability.
</Step>
<Step title="Create a new React project">
- Open Command Prompt or PowerShell
- Navigate to the directory where you want to create your project
- Run the following command to create a new React project:
```bash
npx create-react-app my-crew-app
```
- Change into the project directory:
```bash
cd my-crew-app
```
</Step>
<Step title="Install necessary dependencies">
```bash
npm install react-dom
```
</Step>
<Step title="Create the CrewLead component">
- Move the downloaded file `CrewLead.jsx` into the `src` folder of your project,
</Step>
<Step title="Modify your App.js to use the CrewLead component">
- Open `src/App.js`
- Replace its contents with something like this:
```jsx
import React from 'react';
import CrewLead from './CrewLead';
function App() {
return (
<div className="App">
<CrewLead baseUrl="YOUR_API_BASE_URL" bearerToken="YOUR_BEARER_TOKEN" />
</div>
);
}
export default App;
```
- Replace `YOUR_API_BASE_URL` and `YOUR_BEARER_TOKEN` with the actual values for your API.
</Step>
<Step title="Start the development server">
- In your project directory, run:
```bash
npm start
```
- This will start the development server, and your default web browser should open automatically to http://localhost:3000, where you'll see your React app running.
</Step>
</Steps>
## Customization
You can then customise the `CrewLead.jsx` to add color, title etc
<Frame>
<img src="/images/enterprise/customise-react-component.png" alt="Customise React Component" />
</Frame>
<Frame>
<img src="/images/enterprise/customise-react-component-2.png" alt="Customise React Component" />
</Frame>
## Next Steps
- Customize the component styling to match your application's design
- Add additional props for configuration
- Integrate with your application's state management
- Add error handling and loading states

View File

@@ -0,0 +1,44 @@
---
title: "Salesforce Trigger"
description: "Trigger CrewAI crews from Salesforce workflows for CRM automation"
icon: "salesforce"
---
CrewAI Enterprise can be triggered from Salesforce to automate customer relationship management workflows and enhance your sales operations.
## Overview
Salesforce is a leading customer relationship management (CRM) platform that helps businesses streamline their sales, service, and marketing operations. By setting up CrewAI triggers from Salesforce, you can:
- Automate lead scoring and qualification
- Generate personalized sales materials
- Enhance customer service with AI-powered responses
- Streamline data analysis and reporting
## Demo
<Frame>
<iframe width="100%" height="400" src="https://www.youtube.com/embed/oJunVqjjfu4" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</Frame>
## Getting Started
To set up Salesforce triggers:
1. **Contact Support**: Reach out to CrewAI Enterprise support for assistance with Salesforce trigger setup
2. **Review Requirements**: Ensure you have the necessary Salesforce permissions and API access
3. **Configure Connection**: Work with the support team to establish the connection between CrewAI and your Salesforce instance
4. **Test Triggers**: Verify the triggers work correctly with your specific use cases
## Use Cases
Common Salesforce + CrewAI trigger scenarios include:
- **Lead Processing**: Automatically analyze and score incoming leads
- **Proposal Generation**: Create customized proposals based on opportunity data
- **Customer Insights**: Generate analysis reports from customer interaction history
- **Follow-up Automation**: Create personalized follow-up messages and recommendations
## Next Steps
For detailed setup instructions and advanced configuration options, please contact CrewAI Enterprise support who can provide tailored guidance for your specific Salesforce environment and business needs.

View File

@@ -0,0 +1,61 @@
---
title: "Slack Trigger"
description: "Trigger CrewAI crews directly from Slack using slash commands"
icon: "slack"
---
This guide explains how to start a crew directly from Slack using CrewAI triggers.
## Prerequisites
- CrewAI Slack trigger installed and connected to your Slack workspace
- At least one crew configured in CrewAI
## Setup Steps
<Steps>
<Step title="Ensure the CrewAI Slack trigger is set up">
In the CrewAI dashboard, navigate to the **Triggers** section.
<Frame>
<img src="/images/enterprise/slack-integration.png" alt="CrewAI Slack Integration" />
</Frame>
Verify that Slack is listed and is connected.
</Step>
<Step title="Open your Slack channel">
- Navigate to the channel where you want to kickoff the crew.
- Type the slash command "**/kickoff**" to initiate the crew kickoff process.
- You should see a "**Kickoff crew**" appear as you type:
<Frame>
<img src="/images/enterprise/kickoff-slack-crew.png" alt="Kickoff crew" />
</Frame>
- Press Enter or select the "**Kickoff crew**" option. A dialog box titled "**Kickoff an AI Crew**" will appear.
</Step>
<Step title="Select the crew you want to start">
- In the dropdown menu labeled "**Select of the crews online:**", choose the crew you want to start.
- In the example below, "**prep-for-meeting**" is selected:
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-dropdown.png" alt="Kickoff crew dropdown" />
</Frame>
- If your crew requires any inputs, click the "**Add Inputs**" button to provide them.
<Note>
The "**Add Inputs**" button is shown in the example above but is not yet clicked.
</Note>
</Step>
<Step title="Click Kickoff and wait for the crew to complete">
- Once you've selected the crew and added any necessary inputs, click "**Kickoff**" to start the crew.
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-kickoff.png" alt="Kickoff crew" />
</Frame>
- The crew will start executing and you will see the results in the Slack channel.
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-results.png" alt="Kickoff crew results" />
</Frame>
</Step>
</Steps>
## Tips
- Make sure you have the necessary permissions to use the `/kickoff` command in your Slack workspace.
- If you don't see your desired crew in the dropdown, ensure it's properly configured and online in CrewAI.

View File

@@ -0,0 +1,87 @@
---
title: "Team Management"
description: "Learn how to invite and manage team members in your CrewAI Enterprise organization"
icon: "users"
---
As an administrator of a CrewAI Enterprise account, you can easily invite new team members to join your organization. This guide will walk you through the process step-by-step.
## Inviting Team Members
<Steps>
<Step title="Access the Settings Page">
- Log in to your CrewAI Enterprise account
- Look for the gear icon (⚙️) in the top right corner of the dashboard
- Click on the gear icon to access the **Settings** page:
<Frame>
<img src="/images/enterprise/settings-page.png" alt="Settings Page" />
</Frame>
</Step>
<Step title="Navigate to the Members Section">
- On the Settings page, you'll see a `Members` tab
- Click on the `Members` tab to access the **Members** page:
<Frame>
<img src="/images/enterprise/members-tab.png" alt="Members Tab" />
</Frame>
</Step>
<Step title="Invite New Members">
- In the Members section, you'll see a list of current members (including yourself)
- Locate the `Email` input field
- Enter the email address of the person you want to invite
- Click the `Invite` button to send the invitation
</Step>
<Step title="Repeat as Needed">
- You can repeat this process to invite multiple team members
- Each invited member will receive an email invitation to join your organization
</Step>
</Steps>
## Adding Roles
You can add roles to your team members to control their access to different parts of the platform.
<Steps>
<Step title="Access the Settings Page">
- Log in to your CrewAI Enterprise account
- Look for the gear icon (⚙️) in the top right corner of the dashboard
- Click on the gear icon to access the **Settings** page:
<Frame>
<img src="/images/enterprise/settings-page.png" alt="Settings Page" />
</Frame>
</Step>
<Step title="Navigate to the Members Section">
- On the Settings page, you'll see a `Roles` tab
- Click on the `Roles` tab to access the **Roles** page.
<Frame>
<img src="/images/enterprise/roles-tab.png" alt="Roles Tab" />
</Frame>
- Click on the `Add Role` button to add a new role.
- Enter the details and permissions of the role and click the `Create Role` button to create the role.
<Frame>
<img src="/images/enterprise/add-role-modal.png" alt="Add Role Modal" />
</Frame>
</Step>
<Step title="Add Roles to Members">
- In the Members section, you'll see a list of current members (including yourself)
<Frame>
<img src="/images/enterprise/member-accepted-invitation.png" alt="Member Accepted Invitation" />
</Frame>
- Once the member has accepted the invitation, you can add a role to them.
- Navigate back to `Roles` tab
- Go to the member you want to add a role to and under the `Role` column, click on the dropdown
- Select the role you want to add to the member
- Click the `Update` button to save the role
<Frame>
<img src="/images/enterprise/assign-role.png" alt="Add Role to Member" />
</Frame>
</Step>
</Steps>
## Important Notes
- **Admin Privileges**: Only users with administrative privileges can invite new members
- **Email Accuracy**: Ensure you have the correct email addresses for your team members
- **Invitation Acceptance**: Invited members will need to accept the invitation to join your organization
- **Email Notifications**: You may want to inform your team members to check their email (including spam folders) for the invitation
By following these steps, you can easily expand your team and collaborate more effectively within your CrewAI Enterprise organization.

View File

@@ -0,0 +1,89 @@
---
title: "Update Crew"
description: "Updating a Crew on CrewAI Enterprise"
icon: "pencil"
---
<Note>
After deploying your crew to CrewAI Enterprise, you may need to make updates to the code, security settings, or configuration.
This guide explains how to perform these common update operations.
</Note>
## Why Update Your Crew?
CrewAI won't automatically pick up GitHub updates by default, so you'll need to manually trigger updates, unless you checked the `Auto-update` option when deploying your crew.
There are several reasons you might want to update your crew deployment:
- You want to update the code with a latest commit you pushed to GitHub
- You want to reset the bearer token for security reasons
- You want to update environment variables
## 1. Updating Your Crew Code for a Latest Commit
When you've pushed new commits to your GitHub repository and want to update your deployment:
1. Navigate to your crew in the CrewAI Enterprise platform
2. Click on the `Re-deploy` button on your crew details page
<Frame>
![Re-deploy Button](/images/enterprise/redeploy-button.png)
</Frame>
This will trigger an update that you can track using the progress bar. The system will pull the latest code from your repository and rebuild your deployment.
## 2. Resetting Bearer Token
If you need to generate a new bearer token (for example, if you suspect the current token might have been compromised):
1. Navigate to your crew in the CrewAI Enterprise platform
2. Find the `Bearer Token` section
3. Click the `Reset` button next to your current token
<Frame>
![Reset Token](/images/enterprise/reset-token.png)
</Frame>
<Warning>
Resetting your bearer token will invalidate the previous token immediately. Make sure to update any applications or scripts that are using the old token.
</Warning>
## 3. Updating Environment Variables
To update the environment variables for your crew:
1. First access the deployment page by clicking on your crew's name
<Frame>
![Environment Variables Button](/images/enterprise/env-vars-button.png)
</Frame>
2. Locate the `Environment Variables` section (you will need to click the `Settings` icon to access it)
3. Edit the existing variables or add new ones in the fields provided
4. Click the `Update` button next to each variable you modify
<Frame>
![Update Environment Variables](/images/enterprise/update-env-vars.png)
</Frame>
5. Finally, click the `Update Deployment` button at the bottom of the page to apply the changes
<Note>
Updating environment variables will trigger a new deployment, but this will only update the environment configuration and not the code itself.
</Note>
## After Updating
After performing any update:
1. The system will rebuild and redeploy your crew
2. You can monitor the deployment progress in real-time
3. Once complete, test your crew to ensure the changes are working as expected
<Tip>
If you encounter any issues after updating, you can view deployment logs in the platform or contact support for assistance.
</Tip>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with updating your crew or troubleshooting deployment issues.
</Card>

View File

@@ -0,0 +1,121 @@
---
title: "Webhook Automation"
description: "Automate CrewAI Enterprise workflows using webhooks with platforms like ActivePieces, Zapier, and Make.com"
icon: "webhook"
---
CrewAI Enterprise allows you to automate your workflow using webhooks. This article will guide you through the process of setting up and using webhooks to kickoff your crew execution, with a focus on integration with ActivePieces, a workflow automation platform similar to Zapier and Make.com.
## Setting Up Webhooks
<Steps>
<Step title="Accessing the Kickoff Interface">
- Navigate to the CrewAI Enterprise dashboard
- Look for the `/kickoff` section, which is used to start the crew execution
<Frame>
<img src="/images/enterprise/kickoff-interface.png" alt="Kickoff Interface" />
</Frame>
</Step>
<Step title="Configuring the JSON Content">
In the JSON Content section, you'll need to provide the following information:
- **inputs**: A JSON object containing:
- `company`: The name of the company (e.g., "tesla")
- `product_name`: The name of the product (e.g., "crewai")
- `form_response`: The type of response (e.g., "financial")
- `icp_description`: A brief description of the Ideal Customer Profile
- `product_description`: A short description of the product
- `taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`: URLs for various webhook endpoints (ActivePieces, Zapier, Make.com or another compatible platform)
</Step>
<Step title="Integrating with ActivePieces">
In this example we will be using ActivePieces. You can use other platforms such as Zapier and Make.com
To integrate with ActivePieces:
1. Set up a new flow in ActivePieces
2. Add a trigger (e.g., `Every Day` schedule)
<Frame>
<img src="/images/enterprise/activepieces-trigger.png" alt="ActivePieces Trigger" />
</Frame>
3. Add an HTTP action step
- Set the action to `Send HTTP request`
- Use `POST` as the method
- Set the URL to your CrewAI Enterprise kickoff endpoint
- Add necessary headers (e.g., `Bearer Token`)
<Frame>
<img src="/images/enterprise/activepieces-headers.png" alt="ActivePieces Headers" />
</Frame>
- In the body, include the JSON content as configured in step 2
<Frame>
<img src="/images/enterprise/activepieces-body.png" alt="ActivePieces Body" />
</Frame>
- The crew will then kickoff at the pre-defined time.
</Step>
<Step title="Setting Up the Webhook">
1. Create a new flow in ActivePieces and name it
<Frame>
<img src="/images/enterprise/activepieces-flow.png" alt="ActivePieces Flow" />
</Frame>
2. Add a webhook step as the trigger:
- Select `Catch Webhook` as the trigger type
- This will generate a unique URL that will receive HTTP requests and trigger your flow
<Frame>
<img src="/images/enterprise/activepieces-webhook.png" alt="ActivePieces Webhook" />
</Frame>
- Configure the email to use crew webhook body text
<Frame>
<img src="/images/enterprise/activepieces-email.png" alt="ActivePieces Email" />
</Frame>
</Step>
</Steps>
## Webhook Output Examples
<Tabs>
<Tab title="Step Webhook">
`stepWebhookUrl` - Callback that will be executed upon each agent inner thought
```json
{
"action": "**Preliminary Research Report on the Financial Industry for crewai Enterprise Solution**\n1. Industry Overview and Trends\nThe financial industry in ....\nConclusion:\nThe financial industry presents a fertile ground for implementing AI solutions like crewai, particularly in areas such as digital customer engagement, risk management, and regulatory compliance. Further engagement with the lead is recommended to better tailor the crewai solution to their specific needs and scale.",
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0"
}
```
</Tab>
<Tab title="Task Webhook">
`taskWebhookUrl` - Callback that will be executed upon the end of each task
```json
{
"description": "Using the information gathered from the lead's data, conduct preliminary research on the lead's industry, company background, and potential use cases for crewai. Focus on finding relevant data that can aid in scoring the lead and planning a strategy to pitch them crewai.The financial industry presents a fertile ground for implementing AI solutions like crewai, particularly in areas such as digital customer engagement, risk management, and regulatory compliance. Further engagement with the lead is recommended to better tailor the crewai solution to their specific needs and scale.",
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0"
}
```
</Tab>
<Tab title="Crew Webhook">
`crewWebhookUrl` - Callback that will be executed upon the end of the crew execution
```json
{
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0",
"result": {
"lead_score": "Customer service enhancement, and compliance are particularly relevant.",
"talking_points": [
"Highlight how crewai's AI solutions can transform customer service with automated, personalized experiences and 24/7 support, improving both customer satisfaction and operational efficiency.",
"Discuss crewai's potential to help the institution achieve its sustainability goals through better data analysis and decision-making, contributing to responsible investing and green initiatives.",
"Emphasize crewai's ability to enhance compliance with evolving regulations through efficient data processing and reporting, reducing the risk of non-compliance penalties.",
"Stress the adaptability of crewai to support both extensive multinational operations and smaller, targeted projects, ensuring the solution grows with the institution's needs."
]
}
}
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,103 @@
---
title: "Zapier Trigger"
description: "Trigger CrewAI crews from Zapier workflows to automate cross-app workflows"
icon: "bolt"
---
This guide will walk you through the process of setting up Zapier triggers for CrewAI Enterprise, allowing you to automate workflows between CrewAI Enterprise and other applications.
## Prerequisites
- A CrewAI Enterprise account
- A Zapier account
- A Slack account (for this specific example)
## Step-by-Step Setup
<Steps>
<Step title="Set Up the Slack Trigger">
- In Zapier, create a new Zap.
<Frame>
<img src="/images/enterprise/zapier-1.png" alt="Zapier 1" />
</Frame>
</Step>
<Step title="Choose Slack as your trigger app">
<Frame>
<img src="/images/enterprise/zapier-2.png" alt="Zapier 2" />
</Frame>
- Select `New Pushed Message` as the Trigger Event.
- Connect your Slack account if you haven't already.
</Step>
<Step title="Configure the CrewAI Enterprise Action">
- Add a new action step to your Zap.
- Choose CrewAI+ as your action app and Kickoff as the Action Event
<Frame>
<img src="/images/enterprise/zapier-3.png" alt="Zapier 5" />
</Frame>
</Step>
<Step title="Connect your CrewAI Enterprise account">
- Connect your CrewAI Enterprise account.
- Select the appropriate Crew for your workflow.
<Frame>
<img src="/images/enterprise/zapier-4.png" alt="Zapier 6" />
</Frame>
- Configure the inputs for the Crew using the data from the Slack message.
</Step>
<Step title="Format the CrewAI Enterprise Output">
- Add another action step to format the text output from CrewAI Enterprise.
- Use Zapier's formatting tools to convert the Markdown output to HTML.
<Frame>
<img src="/images/enterprise/zapier-5.png" alt="Zapier 8" />
</Frame>
<Frame>
<img src="/images/enterprise/zapier-6.png" alt="Zapier 9" />
</Frame>
</Step>
<Step title="Send the Output via Email">
- Add a final action step to send the formatted output via email.
- Choose your preferred email service (e.g., Gmail, Outlook).
- Configure the email details, including recipient, subject, and body.
- Insert the formatted CrewAI Enterprise output into the email body.
<Frame>
<img src="/images/enterprise/zapier-7.png" alt="Zapier 7" />
</Frame>
</Step>
<Step title="Kick Off the crew from Slack">
- Enter the text in your Slack channel
<Frame>
<img src="/images/enterprise/zapier-7b.png" alt="Zapier 10" />
</Frame>
- Select the 3 ellipsis button and then chose Push to Zapier
<Frame>
<img src="/images/enterprise/zapier-8.png" alt="Zapier 11" />
</Frame>
</Step>
<Step title="Select the crew and then Push to Kick Off">
<Frame>
<img src="/images/enterprise/zapier-9.png" alt="Zapier 12" />
</Frame>
</Step>
</Steps>
## Tips for Success
- Ensure that your CrewAI Enterprise inputs are correctly mapped from the Slack message.
- Test your Zap thoroughly before turning it on to catch any potential issues.
- Consider adding error handling steps to manage potential failures in the workflow.
By following these steps, you'll have successfully set up Zapier triggers for CrewAI Enterprise, allowing for automated workflows triggered by Slack messages and resulting in email notifications with CrewAI Enterprise output.

View File

@@ -0,0 +1,99 @@
---
title: "CrewAI Enterprise"
description: "Deploy, monitor, and scale your AI agent workflows"
icon: "globe"
---
## Introduction
CrewAI Enterprise provides a platform for deploying, monitoring, and scaling your crews and agents in a production environment.
<Frame>
<img src="/images/enterprise/crewai-enterprise-dashboard.png" alt="CrewAI Enterprise Dashboard" />
</Frame>
CrewAI Enterprise extends the power of the open-source framework with features designed for production deployments, collaboration, and scalability. Deploy your crews to a managed infrastructure and monitor their execution in real-time.
## Key Features
<CardGroup cols={2}>
<Card title="Crew Deployments" icon="rocket">
Deploy your crews to a managed infrastructure with a few clicks
</Card>
<Card title="API Access" icon="code">
Access your deployed crews via REST API for integration with existing systems
</Card>
<Card title="Observability" icon="chart-line">
Monitor your crews with detailed execution traces and logs
</Card>
<Card title="Tool Repository" icon="toolbox">
Publish and install tools to enhance your crews' capabilities
</Card>
<Card title="Webhook Streaming" icon="webhook">
Stream real-time events and updates to your systems
</Card>
<Card title="Crew Studio" icon="paintbrush">
Create and customize crews using a no-code/low-code interface
</Card>
</CardGroup>
## Deployment Options
<CardGroup cols={3}>
<Card title="GitHub Integration" icon="github">
Connect directly to your GitHub repositories to deploy code
</Card>
<Card title="Crew Studio" icon="palette">
Deploy crews created through the no-code Crew Studio interface
</Card>
<Card title="CLI Deployment" icon="terminal">
Use the CrewAI CLI for more advanced deployment workflows
</Card>
</CardGroup>
## Getting Started
<Steps>
<Step title="Sign up for an account">
Create your account at [app.crewai.com](https://app.crewai.com)
<Card
title="Sign Up"
icon="user"
href="https://app.crewai.com/signup"
>
Sign Up
</Card>
</Step>
<Step title="Build your first crew">
Use code or Crew Studio to build your crew
<Card
title="Build Crew"
icon="paintbrush"
href="/enterprise/guides/build-crew"
>
Build Crew
</Card>
</Step>
<Step title="Deploy your crew">
Deploy your crew to the Enterprise platform
<Card
title="Deploy Crew"
icon="rocket"
href="/enterprise/guides/deploy-crew"
>
Deploy Crew
</Card>
</Step>
<Step title="Access your crew">
Integrate with your crew via the generated API endpoints
<Card
title="API Access"
icon="code"
href="/enterprise/guides/use-crew-api"
>
Use the Crew API
</Card>
</Step>
</Steps>
For detailed instructions, check out our [deployment guide](/enterprise/guides/deploy-crew) or click the button below to get started.

View File

@@ -0,0 +1,151 @@
---
title: FAQs
description: "Frequently asked questions about CrewAI Enterprise"
icon: "circle-question"
---
<AccordionGroup>
<Accordion title="How is task execution handled in the hierarchical process?">
In the hierarchical process, a manager agent is automatically created and coordinates the workflow, delegating tasks and validating outcomes for streamlined and effective execution. The manager agent utilizes tools to facilitate task delegation and execution by agents under the manager's guidance. The manager LLM is crucial for the hierarchical process and must be set up correctly for proper function.
</Accordion>
<Accordion title="Where can I get the latest CrewAI documentation?">
The most up-to-date documentation for CrewAI is available on our official documentation website: https://docs.crewai.com/
<Card href="https://docs.crewai.com/" icon="books">CrewAI Docs</Card>
</Accordion>
<Accordion title="What are the key differences between Hierarchical and Sequential Processes in CrewAI?">
#### Hierarchical Process:
- Tasks are delegated and executed based on a structured chain of command
- A manager language model (`manager_llm`) must be specified for the manager agent
- Manager agent oversees task execution, planning, delegation, and validation
- Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities
#### Sequential Process:
- Tasks are executed one after another, ensuring tasks are completed in an orderly progression
- Output of one task serves as context for the next
- Task execution follows the predefined order in the task list
#### Which Process is Better for Complex Projects?
The hierarchical process is better suited for complex projects because it allows for:
- **Dynamic task allocation and delegation**: Manager agent can assign tasks based on agent capabilities
- **Structured validation and oversight**: Manager agent reviews task outputs and ensures completion
- **Complex task management**: Precise control over tool availability at the agent level
</Accordion>
<Accordion title="What are the benefits of using memory in the CrewAI framework?">
- **Adaptive Learning**: Crews become more efficient over time, adapting to new information and refining their approach to tasks
- **Enhanced Personalization**: Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences
- **Improved Problem Solving**: Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights
</Accordion>
<Accordion title="What is the purpose of setting a maximum RPM limit for an agent?">
Setting a maximum RPM limit for an agent prevents the agent from making too many requests to external services, which can help to avoid rate limits and improve performance.
</Accordion>
<Accordion title="What role does human input play in the execution of tasks within a CrewAI crew?">
Human input allows agents to request additional information or clarification when necessary. This feature is crucial in complex decision-making processes or when agents require more details to complete a task effectively.
To integrate human input into agent execution, set the `human_input` flag in the task definition. When enabled, the agent prompts the user for input before delivering its final answer. This input can provide extra context, clarify ambiguities, or validate the agent's output.
For detailed implementation guidance, see our [Human-in-the-Loop guide](/how-to/human-in-the-loop).
</Accordion>
<Accordion title="What advanced customization options are available for tailoring and enhancing agent behavior and capabilities in CrewAI?">
CrewAI provides a range of advanced customization options:
- **Language Model Customization**: Agents can be customized with specific language models (`llm`) and function-calling language models (`function_calling_llm`)
- **Performance and Debugging Settings**: Adjust an agent's performance and monitor its operations
- **Verbose Mode**: Enables detailed logging of an agent's actions, useful for debugging and optimization
- **RPM Limit**: Sets the maximum number of requests per minute (`max_rpm`)
- **Maximum Iterations**: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task
- **Delegation and Autonomy**: Control an agent's ability to delegate or ask questions with the `allow_delegation` attribute (default: True)
- **Human Input Integration**: Agents can request additional information or clarification when necessary
</Accordion>
<Accordion title="In what scenarios is human input particularly useful in agent execution?">
Human input is particularly useful when:
- **Agents require additional information or clarification**: When agents encounter ambiguity or incomplete data
- **Agents need to make complex or sensitive decisions**: Human input can assist in ethical or nuanced decision-making
- **Oversight and validation of agent output**: Human input can help validate results and prevent errors
- **Customizing agent behavior**: Human input can provide feedback to refine agent responses over time
- **Identifying and resolving errors or limitations**: Human input helps address agent capability gaps
</Accordion>
<Accordion title="What are the different types of memory that are available in crewAI?">
The different types of memory available in CrewAI are:
- **Short-term memory**: Temporary storage for immediate context
- **Long-term memory**: Persistent storage for learned patterns and information
- **Entity memory**: Focused storage for specific entities and their attributes
- **Contextual memory**: Memory that maintains context across interactions
Learn more about the different types of memory:
<Card href="https://docs.crewai.com/concepts/memory" icon="brain">CrewAI Memory</Card>
</Accordion>
<Accordion title="How do I use Output Pydantic in a Task?">
To use Output Pydantic in a task, you need to define the expected output of the task as a Pydantic model. Here's a quick example:
<Steps>
<Step title="Define a Pydantic model">
```python
from pydantic import BaseModel
class User(BaseModel):
name: str
age: int
```
</Step>
<Step title="Create a task with Output Pydantic">
```python
from crewai import Task, Crew, Agent
from my_models import User
task = Task(
description="Create a user with the provided name and age",
expected_output=User, # This is the Pydantic model
agent=agent,
tools=[tool1, tool2]
)
```
</Step>
<Step title="Set the output_pydantic attribute in your agent">
```python
from crewai import Agent
from my_models import User
agent = Agent(
role='User Creator',
goal='Create users',
backstory='I am skilled in creating user accounts',
tools=[tool1, tool2],
output_pydantic=User
)
```
</Step>
</Steps>
Here's a tutorial on how to consistently get structured outputs from your agents:
<Frame>
<iframe
height="400"
width="100%"
src="https://www.youtube.com/embed/dNpKQk5uxHw"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
</Frame>
</Accordion>
<Accordion title="How can I create custom tools for my CrewAI agents?">
You can create custom tools by subclassing the `BaseTool` class provided by CrewAI or by using the tool decorator. Subclassing involves defining a new class that inherits from `BaseTool`, specifying the name, description, and the `_run` method for operational logic. The tool decorator allows you to create a `Tool` object directly with the required attributes and a functional logic.
<Card href="https://docs.crewai.com/how-to/create-custom-tools" icon="code">CrewAI Tools Guide</Card>
</Accordion>
<Accordion title="How can you control the maximum number of requests per minute that the entire crew can perform?">
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
</Accordion>
</AccordionGroup>

View File

@@ -4,11 +4,9 @@ description: Dive deeper into low-level prompt customization for CrewAI, enablin
icon: message-pen
---
# Customizing Prompts at a Low Level
## Why Customize Prompts?
Although CrewAI's default prompts work well for many scenarios, low-level customization opens the door to significantly more flexible and powerful agent behavior. Heres why you might want to take advantage of this deeper control:
Although CrewAI's default prompts work well for many scenarios, low-level customization opens the door to significantly more flexible and powerful agent behavior. Here's why you might want to take advantage of this deeper control:
1. **Optimize for specific LLMs** Different models (such as GPT-4, Claude, or Llama) thrive with prompt formats tailored to their unique architectures.
2. **Change the language** Build agents that operate exclusively in languages beyond English, handling nuances with precision.
@@ -22,13 +20,174 @@ This guide explores how to tap into CrewAI's prompts at a lower level, giving yo
Under the hood, CrewAI employs a modular prompt system that you can customize extensively:
- **Agent templates** Govern each agents approach to their assigned role.
- **Agent templates** Govern each agent's approach to their assigned role.
- **Prompt slices** Control specialized behaviors such as tasks, tool usage, and output structure.
- **Error handling** Direct how agents respond to failures, exceptions, or timeouts.
- **Tool-specific prompts** Define detailed instructions for how tools are invoked or utilized.
Check out the [original prompt templates in CrewAI's repository](https://github.com/crewAIInc/crewAI/blob/main/src/crewai/translations/en.json) to see how these elements are organized. From there, you can override or adapt them as needed to unlock advanced behaviors.
## Understanding Default System Instructions
<Warning>
**Production Transparency Issue**: CrewAI automatically injects default instructions into your prompts that you might not be aware of. This section explains what's happening under the hood and how to gain full control.
</Warning>
When you define an agent with `role`, `goal`, and `backstory`, CrewAI automatically adds additional system instructions that control formatting and behavior. Understanding these default injections is crucial for production systems where you need full prompt transparency.
### What CrewAI Automatically Injects
Based on your agent configuration, CrewAI adds different default instructions:
#### For Agents Without Tools
```text
"I MUST use these formats, my job depends on it!"
```
#### For Agents With Tools
```text
"IMPORTANT: Use the following format in your response:
Thought: you should always think about what to do
Action: the action to take, only one name of [tool_names]
Action Input: the input to the action, just a simple JSON object...
```
#### For Structured Outputs (JSON/Pydantic)
```text
"Ensure your final answer contains only the content in the following format: {output_format}
Ensure the final output does not include any code block markers like ```json or ```python."
```
### Viewing the Complete System Prompt
To see exactly what prompt is being sent to your LLM, you can inspect the generated prompt:
```python
from crewai import Agent, Crew, Task
from crewai.utilities.prompts import Prompts
# Create your agent
agent = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
backstory="You are an expert data analyst with 10 years of experience.",
verbose=True
)
# Create a sample task
task = Task(
description="Analyze the sales data and identify trends",
expected_output="A detailed analysis with key insights and trends",
agent=agent
)
# Create the prompt generator
prompt_generator = Prompts(
agent=agent,
has_tools=len(agent.tools) > 0,
use_system_prompt=agent.use_system_prompt
)
# Generate and inspect the actual prompt
generated_prompt = prompt_generator.task_execution()
# Print the complete system prompt that will be sent to the LLM
if "system" in generated_prompt:
print("=== SYSTEM PROMPT ===")
print(generated_prompt["system"])
print("\n=== USER PROMPT ===")
print(generated_prompt["user"])
else:
print("=== COMPLETE PROMPT ===")
print(generated_prompt["prompt"])
# You can also see how the task description gets formatted
print("\n=== TASK CONTEXT ===")
print(f"Task Description: {task.description}")
print(f"Expected Output: {task.expected_output}")
```
### Overriding Default Instructions
You have several options to gain full control over the prompts:
#### Option 1: Custom Templates (Recommended)
```python
from crewai import Agent
# Define your own system template without default instructions
custom_system_template = """You are {role}. {backstory}
Your goal is: {goal}
Respond naturally and conversationally. Focus on providing helpful, accurate information."""
custom_prompt_template = """Task: {input}
Please complete this task thoughtfully."""
agent = Agent(
role="Research Assistant",
goal="Help users find accurate information",
backstory="You are a helpful research assistant.",
system_template=custom_system_template,
prompt_template=custom_prompt_template,
use_system_prompt=True # Use separate system/user messages
)
```
#### Option 2: Custom Prompt File
Create a `custom_prompts.json` file to override specific prompt slices:
```json
{
"slices": {
"no_tools": "\nProvide your best answer in a natural, conversational way.",
"tools": "\nYou have access to these tools: {tools}\n\nUse them when helpful, but respond naturally.",
"formatted_task_instructions": "Format your response as: {output_format}"
}
}
```
Then use it in your crew:
```python
crew = Crew(
agents=[agent],
tasks=[task],
prompt_file="custom_prompts.json",
verbose=True
)
```
#### Option 3: Disable System Prompts for o1 Models
```python
agent = Agent(
role="Analyst",
goal="Analyze data",
backstory="Expert analyst",
use_system_prompt=False # Disables system prompt separation
)
```
### Debugging with Observability Tools
For production transparency, integrate with observability platforms to monitor all prompts and LLM interactions. This allows you to see exactly what prompts (including default instructions) are being sent to your LLMs.
See our [Observability documentation](/how-to/observability) for detailed integration guides with various platforms including Langfuse, MLflow, Weights & Biases, and custom logging solutions.
### Best Practices for Production
1. **Always inspect generated prompts** before deploying to production
2. **Use custom templates** when you need full control over prompt content
3. **Integrate observability tools** for ongoing prompt monitoring (see [Observability docs](/how-to/observability))
4. **Test with different LLMs** as default instructions may work differently across models
5. **Document your prompt customizations** for team transparency
<Tip>
The default instructions exist to ensure consistent agent behavior, but they can interfere with domain-specific requirements. Use the customization options above to maintain full control over your agent's behavior in production systems.
</Tip>
## Best Practices for Managing Prompt Files
When engaging in low-level prompt customization, follow these guidelines to keep things organized and maintainable:
@@ -46,7 +205,7 @@ One straightforward approach is to create a JSON file for the prompts you want t
1. Craft a JSON file with your updated prompt slices.
2. Reference that file via the `prompt_file` parameter in your Crew.
CrewAI then merges your customizations with the defaults, so you dont have to redefine every prompt. Heres how:
CrewAI then merges your customizations with the defaults, so you don't have to redefine every prompt. Here's how:
### Example: Basic Prompt Customization
@@ -95,14 +254,14 @@ With these few edits, you gain low-level control over how your agents communicat
## Optimizing for Specific Models
Different models thrive on differently structured prompts. Making deeper adjustments can significantly boost performance by aligning your prompts with a models nuances.
Different models thrive on differently structured prompts. Making deeper adjustments can significantly boost performance by aligning your prompts with a model's nuances.
### Example: Llama 3.3 Prompting Template
For instance, when dealing with Metas Llama 3.3, deeper-level customization may reflect the recommended structure described at:
For instance, when dealing with Meta's Llama 3.3, deeper-level customization may reflect the recommended structure described at:
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/#prompt-template
Heres an example to highlight how you might fine-tune an Agent to leverage Llama 3.3 in code:
Here's an example to highlight how you might fine-tune an Agent to leverage Llama 3.3 in code:
```python
from crewai import Agent, Crew, Task, Process
@@ -150,8 +309,8 @@ Through this deeper configuration, you can exercise comprehensive, low-level con
## Conclusion
Low-level prompt customization in CrewAI opens the door to super custom, complex use cases. By establishing well-organized prompt files (or direct inline templates), you can accommodate various models, languages, and specialized domains. This level of flexibility ensures you can craft precisely the AI behavior you need, all while knowing CrewAI still provides reliable defaults when you dont override them.
Low-level prompt customization in CrewAI opens the door to super custom, complex use cases. By establishing well-organized prompt files (or direct inline templates), you can accommodate various models, languages, and specialized domains. This level of flexibility ensures you can craft precisely the AI behavior you need, all while knowing CrewAI still provides reliable defaults when you don't override them.
<Check>
You now have the foundation for advanced prompt customizations in CrewAI. Whether youre adapting for model-specific structures or domain-specific constraints, this low-level approach lets you shape agent interactions in highly specialized ways.
You now have the foundation for advanced prompt customizations in CrewAI. Whether you're adapting for model-specific structures or domain-specific constraints, this low-level approach lets you shape agent interactions in highly specialized ways.
</Check>

View File

@@ -4,8 +4,6 @@ description: Learn how to use CrewAI's fingerprinting system to uniquely identif
icon: fingerprint
---
# Fingerprinting in CrewAI
## Overview
Fingerprints in CrewAI provide a way to uniquely identify and track components throughout their lifecycle. Each `Agent`, `Crew`, and `Task` automatically receives a unique fingerprint when created, which cannot be manually overridden.

View File

@@ -4,8 +4,6 @@ description: Learn best practices for designing powerful, specialized AI agents
icon: robot
---
# Crafting Effective Agents
## The Art and Science of Agent Design
At the heart of CrewAI lies the agent - a specialized AI entity designed to perform specific roles within a collaborative framework. While creating basic agents is simple, crafting truly effective agents that produce exceptional results requires understanding key design principles and best practices.

View File

@@ -4,8 +4,6 @@ description: Learn how to assess your AI application needs and choose the right
icon: scale-balanced
---
# Evaluating Use Cases for CrewAI
## Understanding the Decision Framework
When building AI applications with CrewAI, one of the most important decisions you'll make is choosing the right approach for your specific use case. Should you use a Crew? A Flow? A combination of both? This guide will help you evaluate your requirements and make informed architectural decisions.
@@ -13,7 +11,7 @@ When building AI applications with CrewAI, one of the most important decisions y
At the heart of this decision is understanding the relationship between **complexity** and **precision** in your application:
<Frame caption="Complexity vs. Precision Matrix for CrewAI Applications">
<img src="../..//complexity_precision.png" alt="Complexity vs. Precision Matrix" />
<img src="../../images/complexity_precision.png" alt="Complexity vs. Precision Matrix" />
</Frame>
This matrix helps visualize how different approaches align with varying requirements for complexity and precision. Let's explore what each quadrant means and how it guides your architectural choices.

View File

@@ -4,8 +4,6 @@ description: Step-by-step tutorial to create a collaborative AI team that works
icon: users-gear
---
# Build Your First Crew
## Unleashing the Power of Collaborative AI
Imagine having a team of specialized AI agents working together seamlessly to solve complex problems, each contributing their unique skills to achieve a common goal. This is the power of CrewAI - a framework that enables you to create collaborative AI systems that can accomplish tasks far beyond what a single AI could achieve alone.
@@ -35,7 +33,8 @@ Let's get started building your first crew!
Before starting, make sure you have:
1. Installed CrewAI following the [installation guide](/installation)
2. Set up your OpenAI API key in your environment variables
2. Set up your LLM API key in your environment, following the [LLM setup
guide](/concepts/llms#setting-up-your-llm)
3. Basic understanding of Python
## Step 1: Create a New CrewAI Project
@@ -55,7 +54,7 @@ This will generate a project with the basic structure needed for your crew. The
- A main script to run the crew
<Frame caption="CrewAI Framework Overview">
<img src="../../crews.png" alt="CrewAI Framework Overview" />
<img src="../../images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
@@ -92,7 +91,8 @@ For our research crew, we'll create two agents:
1. A **researcher** who excels at finding and organizing information
2. An **analyst** who can interpret research findings and create insightful reports
Let's modify the `agents.yaml` file to define these specialized agents:
Let's modify the `agents.yaml` file to define these specialized agents. Be sure
to set `llm` to the provider you are using.
```yaml
# src/research_crew/config/agents.yaml
@@ -107,7 +107,7 @@ researcher:
finding relevant information from various sources. You excel at
organizing information in a clear and structured manner, making
complex topics accessible to others.
llm: openai/gpt-4o-mini
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
analyst:
role: >
@@ -120,7 +120,7 @@ analyst:
and technical writing. You have a talent for identifying patterns
and extracting meaningful insights from research data, then
communicating those insights effectively through well-crafted reports.
llm: openai/gpt-4o-mini
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
```
Notice how each agent has a distinct role, goal, and backstory. These elements aren't just descriptive - they actively shape how the agent approaches its tasks. By crafting these carefully, you can create agents with specialized skills and perspectives that complement each other.
@@ -185,15 +185,20 @@ Let's modify the `crew.py` file:
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class ResearchCrew():
"""Research crew for comprehensive topic analysis and reporting"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -201,20 +206,20 @@ class ResearchCrew():
@agent
def analyst(self) -> Agent:
return Agent(
config=self.agents_config['analyst'],
config=self.agents_config['analyst'], # type: ignore[index]
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
config=self.tasks_config['research_task'] # type: ignore[index]
)
@task
def analysis_task(self) -> Task:
return Task(
config=self.tasks_config['analysis_task'],
config=self.tasks_config['analysis_task'], # type: ignore[index]
output_file='output/report.md'
)
@@ -277,12 +282,12 @@ This script prepares the environment, specifies our research topic, and kicks of
Create a `.env` file in your project root with your API keys:
```
OPENAI_API_KEY=your_openai_api_key
```sh
SERPER_API_KEY=your_serper_api_key
# Add your provider's API key here too.
```
You can get a Serper API key from [Serper.dev](https://serper.dev/).
See the [LLM Setup guide](/concepts/llms#setting-up-your-llm) for details on configuring your provider of choice. You can get a Serper API key from [Serper.dev](https://serper.dev/).
## Step 8: Install Dependencies
@@ -387,4 +392,4 @@ Now that you've built your first crew, you can:
<Check>
Congratulations! You've successfully built your first CrewAI crew that can research and analyze any topic you provide. This foundational experience has equipped you with the skills to create increasingly sophisticated AI systems that can tackle complex, multi-stage problems through collaborative intelligence.
</Check>
</Check>

View File

@@ -4,8 +4,6 @@ description: Learn how to create structured, event-driven workflows with precise
icon: diagram-project
---
# Build Your First Flow
## Taking Control of AI Workflows with Flows
CrewAI Flows represent the next level in AI orchestration - combining the collaborative power of AI agent crews with the precision and flexibility of procedural programming. While crews excel at agent collaboration, flows give you fine-grained control over exactly how and when different components of your AI system interact.
@@ -45,7 +43,8 @@ Let's dive in and build your first flow!
Before starting, make sure you have:
1. Installed CrewAI following the [installation guide](/installation)
2. Set up your OpenAI API key in your environment variables
2. Set up your LLM API key in your environment, following the [LLM setup
guide](/concepts/llms#setting-up-your-llm)
3. Basic understanding of Python
## Step 1: Create a New CrewAI Flow Project
@@ -60,7 +59,7 @@ cd guide_creator_flow
This will generate a project with the basic structure needed for your flow.
<Frame caption="CrewAI Framework Overview">
<img src="../../flows.png" alt="CrewAI Framework Overview" />
<img src="../../images/flows.png" alt="CrewAI Framework Overview" />
</Frame>
## Step 2: Understanding the Project Structure
@@ -107,6 +106,8 @@ Now, let's modify the generated files for the content writer crew. We'll set up
1. First, update the agents configuration file to define our content creation team:
Remember to set `llm` to the provider you are using.
```yaml
# src/guide_creator_flow/crews/content_crew/config/agents.yaml
content_writer:
@@ -119,7 +120,7 @@ content_writer:
You are a talented educational writer with expertise in creating clear, engaging
content. You have a gift for explaining complex concepts in accessible language
and organizing information in a way that helps readers build their understanding.
llm: openai/gpt-4o-mini
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
content_reviewer:
role: >
@@ -132,7 +133,7 @@ content_reviewer:
content. You have an eye for detail, clarity, and coherence. You excel at
improving content while maintaining the original author's voice and ensuring
consistent quality across multiple sections.
llm: openai/gpt-4o-mini
llm: provider/model-id # e.g. openai/gpt-4o, google/gemini-2.0-flash, anthropic/claude...
```
These agent definitions establish the specialized roles and perspectives that will shape how our AI agents approach content creation. Notice how each agent has a distinct purpose and expertise.
@@ -203,35 +204,40 @@ These task definitions provide detailed instructions to our agents, ensuring the
# src/guide_creator_flow/crews/content_crew/content_crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class ContentCrew():
"""Content writing crew"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def content_writer(self) -> Agent:
return Agent(
config=self.agents_config['content_writer'],
config=self.agents_config['content_writer'], # type: ignore[index]
verbose=True
)
@agent
def content_reviewer(self) -> Agent:
return Agent(
config=self.agents_config['content_reviewer'],
config=self.agents_config['content_reviewer'], # type: ignore[index]
verbose=True
)
@task
def write_section_task(self) -> Task:
return Task(
config=self.tasks_config['write_section_task']
config=self.tasks_config['write_section_task'] # type: ignore[index]
)
@task
def review_section_task(self) -> Task:
return Task(
config=self.tasks_config['review_section_task'],
config=self.tasks_config['review_section_task'], # type: ignore[index]
context=[self.write_section_task()]
)
@@ -263,6 +269,7 @@ Let's create our flow in the `main.py` file:
```python
#!/usr/bin/env python
import json
import os
from typing import List, Dict
from pydantic import BaseModel, Field
from crewai import LLM
@@ -341,6 +348,9 @@ class GuideCreatorFlow(Flow[GuideCreatorState]):
outline_dict = json.loads(response)
self.state.guide_outline = GuideOutline(**outline_dict)
# Ensure output directory exists before saving
os.makedirs("output", exist_ok=True)
# Save the outline to a file
with open("output/guide_outline.json", "w") as f:
json.dump(outline_dict, f, indent=2)
@@ -432,10 +442,15 @@ This is the power of flows - combining different types of processing (user inter
## Step 6: Set Up Your Environment Variables
Create a `.env` file in your project root with your API keys:
Create a `.env` file in your project root with your API keys. See the [LLM setup
guide](/concepts/llms#setting-up-your-llm) for details on configuring a provider.
```
```sh .env
OPENAI_API_KEY=your_openai_api_key
# or
GEMINI_API_KEY=your_gemini_api_key
# or
ANTHROPIC_API_KEY=your_anthropic_api_key
```
## Step 7: Install Dependencies
@@ -538,7 +553,10 @@ Let's break down the key components of flows to help you understand how to build
Flows allow you to make direct calls to language models when you need simple, structured responses:
```python
llm = LLM(model="openai/gpt-4o-mini", response_format=GuideOutline)
llm = LLM(
model="model-id-here", # gpt-4o, gemini-2.0-flash, anthropic/claude...
response_format=GuideOutline
)
response = llm.call(messages=messages)
```

View File

@@ -4,8 +4,6 @@ description: A comprehensive guide to managing, persisting, and leveraging state
icon: diagram-project
---
# Mastering Flow State Management
## Understanding the Power of State in Flows
State management is the backbone of any sophisticated AI workflow. In CrewAI Flows, the state system allows you to maintain context, share data between steps, and build complex application logic. Mastering state management is essential for creating reliable, maintainable, and powerful AI applications.
@@ -279,22 +277,23 @@ This pattern allows you to combine direct data passing with state updates for ma
One of CrewAI's most powerful features is the ability to persist flow state across executions. This enables workflows that can be paused, resumed, and even recovered after failures.
### The @persist Decorator
### The @persist() Decorator
The `@persist` decorator automates state persistence, saving your flow's state at key points in execution.
The `@persist()` decorator automates state persistence, saving your flow's state at key points in execution.
#### Class-Level Persistence
When applied at the class level, `@persist` saves state after every method execution:
When applied at the class level, `@persist()` saves state after every method execution:
```python
from crewai.flow.flow import Flow, listen, persist, start
from crewai.flow.flow import Flow, listen, start
from crewai.flow.persistence import persist
from pydantic import BaseModel
class CounterState(BaseModel):
value: int = 0
@persist # Apply to the entire flow class
@persist() # Apply to the entire flow class
class PersistentCounterFlow(Flow[CounterState]):
@start()
def increment(self):
@@ -321,10 +320,11 @@ print(f"Second run result: {result2}") # Will be higher due to persisted state
#### Method-Level Persistence
For more granular control, you can apply `@persist` to specific methods:
For more granular control, you can apply `@persist()` to specific methods:
```python
from crewai.flow.flow import Flow, listen, persist, start
from crewai.flow.flow import Flow, listen, start
from crewai.flow.persistence import persist
class SelectivePersistFlow(Flow):
@start()
@@ -332,7 +332,7 @@ class SelectivePersistFlow(Flow):
self.state["count"] = 1
return "First step"
@persist # Only persist after this method
@persist() # Only persist after this method
@listen(first_step)
def important_step(self, prev_result):
self.state["count"] += 1

View File

@@ -1,202 +0,0 @@
---
title: Portkey Integration
description: How to use Portkey with CrewAI
icon: key
---
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
<Steps>
<Step title="Install CrewAI and Portkey">
```bash
pip install -qU crewai portkey-ai
```
</Step>
<Step title="Configure the LLM Client">
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
</Step>
<Step title="Create and Run Your First Agent">
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
</Step>
</Steps>
## Key Features
| Feature | Description |
|:--------|:------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

Before

Width:  |  Height:  |  Size: 66 KiB

After

Width:  |  Height:  |  Size: 66 KiB

View File

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

View File

Before

Width:  |  Height:  |  Size: 427 KiB

After

Width:  |  Height:  |  Size: 427 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

View File

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 705 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 258 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 288 KiB

Some files were not shown because too many files have changed in this diff Show More