mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Compare commits
6 Commits
1.6.1
...
devin/1741
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ad785baa16 | ||
|
|
81e48947fb | ||
|
|
b13590a359 | ||
|
|
541fa13df7 | ||
|
|
5e29ac5f7b | ||
|
|
583ac5711f |
151
docs/concepts/custom_memory_storage.mdx
Normal file
151
docs/concepts/custom_memory_storage.mdx
Normal file
@@ -0,0 +1,151 @@
|
||||
# Custom Memory Storage
|
||||
|
||||
CrewAI supports custom memory storage implementations for different memory types. You can provide your own storage implementation by extending the `Storage` interface and passing it to the memory instances or through the `memory_config` parameter.
|
||||
|
||||
## Implementing a Custom Storage
|
||||
|
||||
To create a custom storage implementation, you need to extend the `Storage` interface and implement the required methods:
|
||||
|
||||
```python
|
||||
from typing import Any, Dict, List
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
class CustomStorage(Storage):
|
||||
"""Custom storage implementation."""
|
||||
|
||||
def __init__(self):
|
||||
# Initialize your storage backend
|
||||
self.data = []
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
"""Save a value with metadata to the storage."""
|
||||
# Implement your save logic
|
||||
self.data.append({"value": value, "metadata": metadata})
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[Any]:
|
||||
"""Search for values in the storage."""
|
||||
# Implement your search logic
|
||||
return [{"context": item["value"], "metadata": item["metadata"]} for item in self.data]
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset the storage."""
|
||||
# Implement your reset logic
|
||||
self.data = []
|
||||
```
|
||||
|
||||
## Using Custom Storage
|
||||
|
||||
There are two ways to provide custom storage implementations to CrewAI:
|
||||
|
||||
### 1. Pass Custom Storage to Memory Instances
|
||||
|
||||
You can create memory instances with custom storage and pass them to the Crew:
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
|
||||
# Create custom storage instances
|
||||
short_term_storage = CustomStorage()
|
||||
long_term_storage = CustomStorage()
|
||||
entity_storage = CustomStorage()
|
||||
user_storage = CustomStorage()
|
||||
|
||||
# Create memory instances with custom storage
|
||||
short_term_memory = ShortTermMemory(storage=short_term_storage)
|
||||
long_term_memory = LongTermMemory(storage=long_term_storage)
|
||||
entity_memory = EntityMemory(storage=entity_storage)
|
||||
user_memory = UserMemory(storage=user_storage)
|
||||
|
||||
# Create a crew with custom memory instances
|
||||
crew = Crew(
|
||||
agents=[Agent(role="researcher", goal="research", backstory="I am a researcher")],
|
||||
memory=True,
|
||||
short_term_memory=short_term_memory,
|
||||
long_term_memory=long_term_memory,
|
||||
entity_memory=entity_memory,
|
||||
memory_config={"user_memory": user_memory},
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Pass Custom Storage through Memory Config
|
||||
|
||||
You can also provide custom storage implementations through the `memory_config` parameter:
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent
|
||||
|
||||
# Create a crew with custom storage in memory_config
|
||||
crew = Crew(
|
||||
agents=[Agent(role="researcher", goal="research", backstory="I am a researcher")],
|
||||
memory=True,
|
||||
memory_config={
|
||||
"storage": {
|
||||
"short_term": CustomStorage(),
|
||||
"long_term": CustomStorage(),
|
||||
"entity": CustomStorage(),
|
||||
"user": CustomStorage(),
|
||||
}
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
## Example: Redis Storage
|
||||
|
||||
Here's an example of a custom storage implementation using Redis:
|
||||
|
||||
```python
|
||||
import json
|
||||
import redis
|
||||
from typing import Any, Dict, List
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
class RedisStorage(Storage):
|
||||
"""Redis-based storage implementation."""
|
||||
|
||||
def __init__(self, redis_url="redis://localhost:6379/0", prefix="crewai"):
|
||||
self.redis = redis.from_url(redis_url)
|
||||
self.prefix = prefix
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
"""Save a value with metadata to Redis."""
|
||||
key = f"{self.prefix}:{len(self.redis.keys(f'{self.prefix}:*'))}"
|
||||
data = {"value": value, "metadata": metadata}
|
||||
self.redis.set(key, json.dumps(data))
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[Any]:
|
||||
"""Search for values in Redis."""
|
||||
# This is a simple implementation that returns all values
|
||||
# In a real implementation, you would use Redis search capabilities
|
||||
results = []
|
||||
for key in self.redis.keys(f"{self.prefix}:*"):
|
||||
data = json.loads(self.redis.get(key))
|
||||
results.append({"context": data["value"], "metadata": data["metadata"]})
|
||||
if len(results) >= limit:
|
||||
break
|
||||
return results
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset the Redis storage."""
|
||||
for key in self.redis.keys(f"{self.prefix}:*"):
|
||||
self.redis.delete(key)
|
||||
```
|
||||
|
||||
## Benefits of Custom Storage
|
||||
|
||||
Using custom storage implementations allows you to:
|
||||
|
||||
1. Store memory data in external databases or services
|
||||
2. Implement custom search algorithms
|
||||
3. Share memory between different crews or applications
|
||||
4. Persist memory across application restarts
|
||||
5. Implement custom memory retention policies
|
||||
|
||||
By extending the `Storage` interface, you can integrate CrewAI with any storage backend that suits your needs.
|
||||
@@ -262,8 +262,19 @@ class Crew(BaseModel):
|
||||
def create_crew_memory(self) -> "Crew":
|
||||
"""Set private attributes."""
|
||||
if self.memory:
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
# Create default storage instances for each memory type if needed
|
||||
long_term_storage = RAGStorage(type="long_term", crew=self, embedder_config=self.embedder)
|
||||
short_term_storage = RAGStorage(type="short_term", crew=self, embedder_config=self.embedder)
|
||||
entity_storage = RAGStorage(type="entity", crew=self, embedder_config=self.embedder)
|
||||
|
||||
self._long_term_memory = (
|
||||
self.long_term_memory if self.long_term_memory else LongTermMemory()
|
||||
self.long_term_memory if self.long_term_memory else LongTermMemory(
|
||||
crew=self,
|
||||
embedder_config=self.embedder,
|
||||
storage=long_term_storage
|
||||
)
|
||||
)
|
||||
self._short_term_memory = (
|
||||
self.short_term_memory
|
||||
@@ -271,12 +282,17 @@ class Crew(BaseModel):
|
||||
else ShortTermMemory(
|
||||
crew=self,
|
||||
embedder_config=self.embedder,
|
||||
storage=short_term_storage
|
||||
)
|
||||
)
|
||||
self._entity_memory = (
|
||||
self.entity_memory
|
||||
if self.entity_memory
|
||||
else EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
else EntityMemory(
|
||||
crew=self,
|
||||
embedder_config=self.embedder,
|
||||
storage=entity_storage
|
||||
)
|
||||
)
|
||||
if (
|
||||
self.memory_config and "user_memory" in self.memory_config
|
||||
|
||||
@@ -47,7 +47,7 @@ class ContextualMemory:
|
||||
stm_results = self.stm.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
f"- {result.get('memory', result.get('context', ''))}"
|
||||
for result in stm_results
|
||||
]
|
||||
)
|
||||
@@ -58,7 +58,7 @@ class ContextualMemory:
|
||||
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
|
||||
formatted as bullet points.
|
||||
"""
|
||||
ltm_results = self.ltm.search(task, latest_n=2)
|
||||
ltm_results = self.ltm.search(query=task, limit=2)
|
||||
if not ltm_results:
|
||||
return None
|
||||
|
||||
@@ -80,9 +80,9 @@ class ContextualMemory:
|
||||
em_results = self.em.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[
|
||||
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
|
||||
f"- {result.get('memory', result.get('context', ''))}"
|
||||
for result in em_results
|
||||
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
]
|
||||
)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
@@ -99,6 +99,6 @@ class ContextualMemory:
|
||||
return ""
|
||||
|
||||
formatted_memories = "\n".join(
|
||||
f"- {result['memory']}" for result in user_memories
|
||||
f"- {result.get('memory', result.get('context', ''))}" for result in user_memories
|
||||
)
|
||||
return f"User memories/preferences:\n{formatted_memories}"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import PrivateAttr
|
||||
|
||||
@@ -17,47 +17,71 @@ class EntityMemory(Memory):
|
||||
_memory_provider: Optional[str] = PrivateAttr()
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
memory_provider = None
|
||||
memory_config = None
|
||||
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
memory_config = crew.memory_config
|
||||
memory_provider = memory_config.get("provider")
|
||||
|
||||
# If no storage is provided, try to create one
|
||||
if storage is None:
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="entities", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
embedder_config=embedder_config,
|
||||
# Try to select storage using helper method
|
||||
storage = self._select_storage(
|
||||
storage=storage,
|
||||
memory_config=memory_config,
|
||||
storage_type="entity",
|
||||
crew=crew,
|
||||
path=path,
|
||||
default_storage_factory=lambda path, crew: RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
)
|
||||
except ValueError:
|
||||
# Fallback to default storage
|
||||
storage = RAGStorage(
|
||||
type="entities",
|
||||
allow_reset=True,
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
|
||||
# Initialize with parameters
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
embedder_config=embedder_config,
|
||||
memory_provider=memory_provider
|
||||
)
|
||||
|
||||
|
||||
super().__init__(storage=storage)
|
||||
self._memory_provider = memory_provider
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
if self._memory_provider == "mem0":
|
||||
data = f"""
|
||||
Remember details about the following entity:
|
||||
Name: {item.name}
|
||||
Type: {item.type}
|
||||
Entity Description: {item.description}
|
||||
"""
|
||||
def save(
|
||||
self,
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
"""Saves an entity item or value into the storage."""
|
||||
if isinstance(value, EntityMemoryItem):
|
||||
item = value
|
||||
if self.memory_provider == "mem0":
|
||||
data = f"""
|
||||
Remember details about the following entity:
|
||||
Name: {item.name}
|
||||
Type: {item.type}
|
||||
Entity Description: {item.description}
|
||||
"""
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
# Handle regular value and metadata
|
||||
super().save(value, metadata, agent)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
@@ -14,23 +14,77 @@ class LongTermMemory(Memory):
|
||||
LongTermMemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, storage=None, path=None):
|
||||
if not storage:
|
||||
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
super().__init__(storage=storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
metadata = item.metadata
|
||||
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
|
||||
task_description=item.task,
|
||||
score=metadata["quality"],
|
||||
metadata=metadata,
|
||||
datetime=item.datetime,
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
memory_provider = None
|
||||
memory_config = None
|
||||
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_config = crew.memory_config
|
||||
memory_provider = memory_config.get("provider")
|
||||
|
||||
# Initialize with basic parameters
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
embedder_config=embedder_config,
|
||||
memory_provider=memory_provider
|
||||
)
|
||||
|
||||
try:
|
||||
# Try to select storage using helper method
|
||||
self.storage = self._select_storage(
|
||||
storage=storage,
|
||||
memory_config=memory_config,
|
||||
storage_type="long_term",
|
||||
crew=crew,
|
||||
path=path,
|
||||
default_storage_factory=lambda path, crew: LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
)
|
||||
except ValueError:
|
||||
# Fallback to default storage
|
||||
self.storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
|
||||
def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
|
||||
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
def save(
|
||||
self,
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
"""Saves a value into the memory."""
|
||||
if isinstance(value, LongTermMemoryItem):
|
||||
item = value
|
||||
item_metadata = item.metadata or {}
|
||||
item_metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
|
||||
# Handle special storage types like Mem0Storage
|
||||
if hasattr(self.storage, "save") and callable(getattr(self.storage, "save")) and hasattr(self.storage.save, "__code__") and "task_description" in self.storage.save.__code__.co_varnames:
|
||||
self.storage.save(
|
||||
task_description=item.task,
|
||||
score=item_metadata.get("quality", 0),
|
||||
metadata=item_metadata,
|
||||
datetime=item.datetime,
|
||||
)
|
||||
else:
|
||||
# Use standard storage interface
|
||||
self.storage.save(item.task, item_metadata)
|
||||
else:
|
||||
# Handle regular value and metadata
|
||||
super().save(value, metadata, agent)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
"""Search for values in the memory."""
|
||||
# Try to use the standard storage interface first
|
||||
if hasattr(self.storage, "search") and callable(getattr(self.storage, "search")):
|
||||
return self.storage.search(query=query, limit=limit, score_threshold=score_threshold)
|
||||
# Fall back to load method for backward compatibility
|
||||
elif hasattr(self.storage, "load") and callable(getattr(self.storage, "load")):
|
||||
return self.storage.load(query, limit)
|
||||
else:
|
||||
raise AttributeError("Storage does not implement search or load method")
|
||||
|
||||
def reset(self) -> None:
|
||||
self.storage.reset()
|
||||
|
||||
@@ -1,20 +1,62 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, cast
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai.memory.storage.interface import SearchResult, Storage
|
||||
|
||||
class Memory(BaseModel):
|
||||
T = TypeVar('T', bound=Storage)
|
||||
|
||||
class Memory(BaseModel, Generic[T]):
|
||||
"""
|
||||
Base class for memory, now supporting agent tags and generic metadata.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
storage: T
|
||||
memory_provider: Optional[str] = Field(default=None, exclude=True)
|
||||
|
||||
storage: Any
|
||||
|
||||
def __init__(self, storage: Any, **data: Any):
|
||||
def __init__(self, storage: T, **data: Any):
|
||||
super().__init__(storage=storage, **data)
|
||||
|
||||
def _select_storage(
|
||||
self,
|
||||
storage: Optional[T] = None,
|
||||
memory_config: Optional[Dict[str, Any]] = None,
|
||||
storage_type: str = "",
|
||||
crew=None,
|
||||
path: Optional[str] = None,
|
||||
default_storage_factory: Optional[Callable] = None,
|
||||
) -> T:
|
||||
"""Helper method to select the appropriate storage based on configuration"""
|
||||
# Use the provided storage if available
|
||||
if storage:
|
||||
return storage
|
||||
|
||||
# Use storage from memory_config if available
|
||||
if memory_config and "storage" in memory_config:
|
||||
storage_config = memory_config.get("storage", {})
|
||||
if storage_type in storage_config and storage_config[storage_type]:
|
||||
return cast(T, storage_config[storage_type])
|
||||
|
||||
# Use Mem0Storage if specified in memory_config
|
||||
if memory_config and memory_config.get("provider") == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
return cast(T, Mem0Storage(type=storage_type, crew=crew))
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
|
||||
# Use default storage if provided
|
||||
if default_storage_factory:
|
||||
return cast(T, default_storage_factory(path=path, crew=crew))
|
||||
|
||||
# Fallback to empty storage
|
||||
raise ValueError(f"No storage available for {storage_type}")
|
||||
|
||||
def save(
|
||||
self,
|
||||
value: Any,
|
||||
@@ -25,14 +67,19 @@ class Memory(BaseModel):
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
|
||||
self.storage.save(value, metadata)
|
||||
if self.storage:
|
||||
self.storage.save(value, metadata)
|
||||
else:
|
||||
raise ValueError("Storage is not initialized")
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
) -> List[SearchResult]:
|
||||
if not self.storage:
|
||||
raise ValueError("Storage is not initialized")
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
)
|
||||
|
||||
@@ -19,32 +19,43 @@ class ShortTermMemory(Memory):
|
||||
_memory_provider: Optional[str] = PrivateAttr()
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
memory_provider = None
|
||||
memory_config = None
|
||||
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
)
|
||||
storage = Mem0Storage(type="short_term", crew=crew)
|
||||
else:
|
||||
storage = (
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
memory_config = crew.memory_config
|
||||
memory_provider = memory_config.get("provider")
|
||||
|
||||
# Initialize with basic parameters
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
embedder_config=embedder_config,
|
||||
memory_provider=memory_provider
|
||||
)
|
||||
|
||||
try:
|
||||
# Try to select storage using helper method
|
||||
self.storage = self._select_storage(
|
||||
storage=storage,
|
||||
memory_config=memory_config,
|
||||
storage_type="short_term",
|
||||
crew=crew,
|
||||
path=path,
|
||||
default_storage_factory=lambda path, crew: RAGStorage(
|
||||
type="short_term",
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
super().__init__(storage=storage)
|
||||
self._memory_provider = memory_provider
|
||||
except ValueError:
|
||||
# Fallback to default storage
|
||||
self.storage = RAGStorage(
|
||||
type="short_term",
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
|
||||
def save(
|
||||
self,
|
||||
@@ -53,7 +64,7 @@ class ShortTermMemory(Memory):
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self._memory_provider == "mem0":
|
||||
if self.memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.storage.interface import SearchResult, Storage
|
||||
|
||||
class BaseRAGStorage(ABC):
|
||||
|
||||
class BaseRAGStorage(Storage[Any], ABC):
|
||||
"""
|
||||
Base class for RAG-based Storage implementations.
|
||||
"""
|
||||
@@ -44,9 +46,8 @@ class BaseRAGStorage(ABC):
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
) -> List[SearchResult]:
|
||||
"""Search for entries in the storage."""
|
||||
pass
|
||||
|
||||
|
||||
@@ -1,16 +1,39 @@
|
||||
from typing import Any, Dict, List
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, ClassVar, Dict, Generic, List, Protocol, TypeVar, TypedDict, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
class Storage:
|
||||
class SearchResult(TypedDict, total=False):
|
||||
"""Type definition for search results"""
|
||||
context: str
|
||||
metadata: Dict[str, Any]
|
||||
score: float
|
||||
memory: str # For Mem0Storage compatibility
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
@runtime_checkable
|
||||
class StorageProtocol(Protocol):
|
||||
"""Protocol defining the storage interface"""
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None: ...
|
||||
def search(self, query: str, limit: int, score_threshold: float) -> List[Any]: ...
|
||||
def reset(self) -> None: ...
|
||||
|
||||
class Storage(ABC, Generic[T]):
|
||||
"""Abstract base class defining the storage interface"""
|
||||
|
||||
model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
@abstractmethod
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(
|
||||
self, query: str, limit: int, score_threshold: float
|
||||
) -> Dict[str, Any] | List[Any]:
|
||||
return {}
|
||||
) -> List[SearchResult]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
|
||||
@@ -111,3 +111,9 @@ class Mem0Storage(Storage):
|
||||
agents = [self._sanitize_role(agent.role) for agent in agents]
|
||||
agents = "_".join(agents)
|
||||
return agents
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset the storage by clearing all memories."""
|
||||
# Mem0 doesn't have a direct reset method, but we can implement
|
||||
# this in the future if needed. For now, we'll just pass.
|
||||
pass
|
||||
|
||||
@@ -9,6 +9,7 @@ from typing import Any, Dict, List, Optional
|
||||
from chromadb.api import ClientAPI
|
||||
|
||||
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
|
||||
from crewai.memory.storage.interface import SearchResult
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
@@ -37,7 +38,7 @@ class RAGStorage(BaseRAGStorage):
|
||||
search efficiency.
|
||||
"""
|
||||
|
||||
app: ClientAPI | None = None
|
||||
app: Optional[ClientAPI] = None
|
||||
|
||||
def __init__(
|
||||
self, type, allow_reset=True, embedder_config=None, crew=None, path=None
|
||||
@@ -112,9 +113,8 @@ class RAGStorage(BaseRAGStorage):
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Any]:
|
||||
) -> List[SearchResult]:
|
||||
if not hasattr(self, "app"):
|
||||
self._initialize_app()
|
||||
|
||||
@@ -124,8 +124,7 @@ class RAGStorage(BaseRAGStorage):
|
||||
|
||||
results = []
|
||||
for i in range(len(response["ids"][0])):
|
||||
result = {
|
||||
"id": response["ids"][0][i],
|
||||
result: SearchResult = {
|
||||
"metadata": response["metadatas"][0][i],
|
||||
"context": response["documents"][0][i],
|
||||
"score": response["distances"][0][i],
|
||||
@@ -138,7 +137,7 @@ class RAGStorage(BaseRAGStorage):
|
||||
logging.error(f"Error during {self.type} search: {str(e)}")
|
||||
return []
|
||||
|
||||
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> None: # type: ignore
|
||||
def _generate_embedding(self, text: str, metadata: Optional[Dict[str, Any]] = None) -> Any:
|
||||
if not hasattr(self, "app") or not hasattr(self, "collection"):
|
||||
self._initialize_app()
|
||||
|
||||
|
||||
@@ -11,15 +11,46 @@ class UserMemory(Memory):
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None):
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None, **kwargs):
|
||||
memory_provider = None
|
||||
memory_config = None
|
||||
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_config = crew.memory_config
|
||||
memory_provider = memory_config.get("provider")
|
||||
|
||||
# Initialize with basic parameters
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
embedder_config=embedder_config,
|
||||
memory_provider=memory_provider
|
||||
)
|
||||
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Mem0 is not installed. Please install it with `pip install mem0ai`."
|
||||
# Try to select storage using helper method
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
self.storage = self._select_storage(
|
||||
storage=storage,
|
||||
memory_config=memory_config,
|
||||
storage_type="user",
|
||||
crew=crew,
|
||||
path=path,
|
||||
default_storage_factory=lambda path, crew: RAGStorage(
|
||||
type="user",
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
except ValueError:
|
||||
# Fallback to default storage
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
self.storage = RAGStorage(
|
||||
type="user",
|
||||
crew=crew,
|
||||
embedder_config=embedder_config,
|
||||
path=path,
|
||||
)
|
||||
storage = Mem0Storage(type="user", crew=crew)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(
|
||||
self,
|
||||
@@ -43,3 +74,9 @@ class UserMemory(Memory):
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
return results
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
self.storage.reset()
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while resetting the user memory: {e}")
|
||||
|
||||
@@ -7,7 +7,31 @@ from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
@pytest.fixture
|
||||
def long_term_memory():
|
||||
"""Fixture to create a LongTermMemory instance"""
|
||||
return LongTermMemory()
|
||||
# Create a mock storage for testing
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
class MockStorage(Storage):
|
||||
def __init__(self):
|
||||
self.data = []
|
||||
|
||||
def save(self, value, metadata):
|
||||
self.data.append({"value": value, "metadata": metadata})
|
||||
|
||||
def search(self, query, limit=3, score_threshold=0.35):
|
||||
return [
|
||||
{
|
||||
"context": item["value"],
|
||||
"metadata": item["metadata"],
|
||||
"score": 0.5,
|
||||
"datetime": item["metadata"].get("datetime", "test_datetime")
|
||||
}
|
||||
for item in self.data
|
||||
]
|
||||
|
||||
def reset(self):
|
||||
self.data = []
|
||||
|
||||
return LongTermMemory(storage=MockStorage())
|
||||
|
||||
|
||||
def test_save_and_search(long_term_memory):
|
||||
@@ -20,7 +44,7 @@ def test_save_and_search(long_term_memory):
|
||||
metadata={"task": "test_task", "quality": 0.5},
|
||||
)
|
||||
long_term_memory.save(memory)
|
||||
find = long_term_memory.search("test_task", latest_n=5)[0]
|
||||
find = long_term_memory.search(query="test_task", limit=5)[0]
|
||||
assert find["score"] == 0.5
|
||||
assert find["datetime"] == "test_datetime"
|
||||
assert find["metadata"]["agent"] == "test_agent"
|
||||
|
||||
@@ -12,6 +12,8 @@ from crewai.task import Task
|
||||
@pytest.fixture
|
||||
def short_term_memory():
|
||||
"""Fixture to create a ShortTermMemory instance"""
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
agent = Agent(
|
||||
role="Researcher",
|
||||
goal="Search relevant data and provide results",
|
||||
@@ -25,7 +27,10 @@ def short_term_memory():
|
||||
expected_output="A list of relevant URLs based on the search query.",
|
||||
agent=agent,
|
||||
)
|
||||
return ShortTermMemory(crew=Crew(agents=[agent], tasks=[task]))
|
||||
|
||||
storage = RAGStorage(type="short_term")
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
return ShortTermMemory(storage=storage, crew=crew)
|
||||
|
||||
|
||||
def test_save_and_search(short_term_memory):
|
||||
|
||||
211
tests/memory/test_custom_storage.py
Normal file
211
tests/memory/test_custom_storage.py
Normal file
@@ -0,0 +1,211 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.memory.storage.interface import SearchResult, Storage
|
||||
from crewai.memory.user.user_memory import UserMemory
|
||||
|
||||
|
||||
class CustomStorage(Storage[Any]):
|
||||
"""Custom storage implementation for testing."""
|
||||
|
||||
def __init__(self):
|
||||
self.data = []
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
self.data.append({"value": value, "metadata": metadata})
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[SearchResult]:
|
||||
return [{"context": item["value"], "metadata": item["metadata"], "score": 0.9} for item in self.data]
|
||||
|
||||
def reset(self) -> None:
|
||||
self.data = []
|
||||
|
||||
|
||||
def test_custom_storage_with_short_term_memory():
|
||||
"""Test that custom storage works with short term memory."""
|
||||
custom_storage = CustomStorage()
|
||||
memory = ShortTermMemory(storage=custom_storage)
|
||||
|
||||
memory.save("test value", {"key": "value"})
|
||||
results = memory.search("test")
|
||||
|
||||
assert len(results) > 0
|
||||
assert results[0]["context"] == "test value"
|
||||
assert results[0]["metadata"]["key"] == "value"
|
||||
|
||||
|
||||
def test_custom_storage_with_long_term_memory():
|
||||
"""Test that custom storage works with long term memory."""
|
||||
custom_storage = CustomStorage()
|
||||
memory = LongTermMemory(storage=custom_storage)
|
||||
|
||||
memory.save("test value", {"key": "value"})
|
||||
results = memory.search("test")
|
||||
|
||||
assert len(results) > 0
|
||||
assert results[0]["context"] == "test value"
|
||||
assert results[0]["metadata"]["key"] == "value"
|
||||
|
||||
|
||||
def test_custom_storage_with_entity_memory():
|
||||
"""Test that custom storage works with entity memory."""
|
||||
custom_storage = CustomStorage()
|
||||
memory = EntityMemory(storage=custom_storage)
|
||||
|
||||
memory.save("test value", {"key": "value"})
|
||||
results = memory.search("test")
|
||||
|
||||
assert len(results) > 0
|
||||
assert results[0]["context"] == "test value"
|
||||
assert results[0]["metadata"]["key"] == "value"
|
||||
|
||||
|
||||
def test_custom_storage_with_user_memory():
|
||||
"""Test that custom storage works with user memory."""
|
||||
custom_storage = CustomStorage()
|
||||
memory = UserMemory(storage=custom_storage)
|
||||
|
||||
memory.save("test value", {"key": "value"})
|
||||
results = memory.search("test")
|
||||
|
||||
assert len(results) > 0
|
||||
# UserMemory prepends "Remember the details about the user: " to the value
|
||||
assert "test value" in results[0]["context"]
|
||||
assert results[0]["metadata"]["key"] == "value"
|
||||
|
||||
|
||||
def test_custom_storage_with_crew():
|
||||
"""Test that custom storage works with crew."""
|
||||
short_term_storage = CustomStorage()
|
||||
long_term_storage = CustomStorage()
|
||||
entity_storage = CustomStorage()
|
||||
user_storage = CustomStorage()
|
||||
|
||||
# Create memory instances with custom storage
|
||||
short_term_memory = ShortTermMemory(storage=short_term_storage)
|
||||
long_term_memory = LongTermMemory(storage=long_term_storage)
|
||||
entity_memory = EntityMemory(storage=entity_storage)
|
||||
user_memory = UserMemory(storage=user_storage)
|
||||
|
||||
# Create a crew with custom memory instances
|
||||
crew = Crew(
|
||||
agents=[Agent(role="test", goal="test", backstory="test")],
|
||||
memory=True,
|
||||
short_term_memory=short_term_memory,
|
||||
long_term_memory=long_term_memory,
|
||||
entity_memory=entity_memory,
|
||||
memory_config={"user_memory": user_memory},
|
||||
)
|
||||
|
||||
# Test that the crew has the custom memory instances
|
||||
assert crew._short_term_memory.storage == short_term_storage
|
||||
assert crew._long_term_memory.storage == long_term_storage
|
||||
assert crew._entity_memory.storage == entity_storage
|
||||
assert crew._user_memory.storage == user_storage
|
||||
|
||||
|
||||
def test_custom_storage_with_memory_config():
|
||||
"""Test that custom storage works with memory_config."""
|
||||
short_term_storage = CustomStorage()
|
||||
long_term_memory = LongTermMemory(storage=CustomStorage())
|
||||
entity_memory = EntityMemory(storage=CustomStorage())
|
||||
user_memory = UserMemory(storage=CustomStorage())
|
||||
|
||||
# Create a crew with custom storage in memory_config
|
||||
crew = Crew(
|
||||
agents=[Agent(role="test", goal="test", backstory="test")],
|
||||
memory=True,
|
||||
short_term_memory=ShortTermMemory(storage=short_term_storage),
|
||||
long_term_memory=long_term_memory,
|
||||
entity_memory=entity_memory,
|
||||
memory_config={
|
||||
"user_memory": user_memory
|
||||
},
|
||||
)
|
||||
|
||||
# Test that the crew has the custom storage instances
|
||||
assert crew._short_term_memory.storage == short_term_storage
|
||||
assert crew._long_term_memory == long_term_memory
|
||||
assert crew._entity_memory == entity_memory
|
||||
assert crew._user_memory == user_memory
|
||||
|
||||
|
||||
def test_custom_storage_error_handling():
|
||||
"""Test error handling with custom storage."""
|
||||
# Test exception propagation
|
||||
class ErrorStorage(Storage[Any]):
|
||||
"""Storage implementation that raises exceptions."""
|
||||
def __init__(self):
|
||||
self.data = []
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
raise ValueError("Save error")
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[SearchResult]:
|
||||
raise ValueError("Search error")
|
||||
|
||||
def reset(self) -> None:
|
||||
raise ValueError("Reset error")
|
||||
|
||||
storage = ErrorStorage()
|
||||
memory = ShortTermMemory(storage=storage)
|
||||
|
||||
with pytest.raises(ValueError, match="Save error"):
|
||||
memory.save("test", {})
|
||||
|
||||
with pytest.raises(ValueError, match="Search error"):
|
||||
memory.search("test")
|
||||
|
||||
with pytest.raises(Exception, match="An error occurred while resetting the short-term memory: Reset error"):
|
||||
memory.reset()
|
||||
|
||||
|
||||
def test_custom_storage_edge_cases():
|
||||
"""Test edge cases with custom storage."""
|
||||
class EdgeCaseStorage(Storage[Any]):
|
||||
"""Storage implementation for testing edge cases."""
|
||||
def __init__(self):
|
||||
self.data = []
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
self.data.append({"value": value, "metadata": metadata})
|
||||
|
||||
def search(
|
||||
self, query: str, limit: int = 3, score_threshold: float = 0.35
|
||||
) -> List[SearchResult]:
|
||||
return [{"context": item["value"], "metadata": item["metadata"], "score": 0.5} for item in self.data]
|
||||
|
||||
def reset(self) -> None:
|
||||
self.data = []
|
||||
|
||||
storage = EdgeCaseStorage()
|
||||
memory = ShortTermMemory(storage=storage)
|
||||
|
||||
# Test empty query
|
||||
memory.save("test value", {"key": "value"})
|
||||
results = memory.search("")
|
||||
assert len(results) > 0
|
||||
|
||||
# Test very large metadata
|
||||
large_metadata = {"key" + str(i): "value" * 100 for i in range(100)}
|
||||
memory.save("test value", large_metadata)
|
||||
results = memory.search("test")
|
||||
assert len(results) > 0
|
||||
assert results[1]["metadata"] == large_metadata
|
||||
|
||||
# Test unicode and special characters
|
||||
unicode_value = "测试值 with special chars: !@#$%^&*()"
|
||||
memory.save(unicode_value, {"key": "value"})
|
||||
results = memory.search("测试")
|
||||
assert len(results) > 0
|
||||
assert unicode_value in results[2]["context"]
|
||||
Reference in New Issue
Block a user