Compare commits

...

10 Commits

Author SHA1 Message Date
Brandon Hancock
45efae8ebb Clean up chat 2025-01-27 12:00:41 -05:00
Brandon Hancock
f8f3b10588 working but need to clean up 2025-01-27 11:37:54 -05:00
Brandon Hancock
ccd37801aa crewai chat improvements 2025-01-26 18:42:17 -05:00
Brandon Hancock
1ef2033396 Improve chat calling messages 2025-01-25 16:53:44 -05:00
Brandon Hancock (bhancock_ai)
ad3ddc9a1b Merge branch 'main' into bugfix/litellm-plus-generic-excpetions 2025-01-24 17:05:23 -05:00
Brandon Hancock
a367a96ab9 clean up test 2025-01-24 15:04:06 -05:00
Brandon Hancock
63ce0c91f9 Fix error 2025-01-24 14:58:04 -05:00
Brandon Hancock
e125b136b9 More clean up 2025-01-24 12:06:50 -05:00
Brandon Hancock
63fcc74faf Merge branch 'main' into bugfix/litellm-plus-generic-excpetions 2025-01-24 11:54:47 -05:00
Brandon Hancock
0cba344976 wip 2025-01-24 11:54:05 -05:00
5 changed files with 198 additions and 65 deletions

View File

@@ -1,15 +1,12 @@
import os
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Union
from litellm import AuthenticationError as LiteLLMAuthenticationError
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
@@ -262,8 +259,8 @@ class Agent(BaseAgent):
}
)["output"]
except Exception as e:
if isinstance(e, LiteLLMAuthenticationError):
# Do not retry on authentication errors
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:

View File

@@ -3,8 +3,6 @@ import re
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
from litellm.exceptions import AuthenticationError as LiteLLMAuthenticationError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import (
@@ -103,7 +101,12 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
try:
formatted_answer = self._invoke_loop()
except Exception as e:
raise e
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
self._handle_unknown_error(e)
raise e
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
@@ -146,6 +149,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._handle_output_parser_exception(e)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if self._is_context_length_exceeded(e):
self._handle_context_length()
continue

View File

@@ -350,7 +350,10 @@ def chat():
Start a conversation with the Crew, collecting user-supplied inputs,
and using the Chat LLM to generate responses.
"""
click.echo("Starting a conversation with the Crew")
click.secho(
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
)
run_chat()

View File

@@ -1,6 +1,9 @@
import json
import platform
import re
import sys
import threading
import time
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple
@@ -18,27 +21,29 @@ from crewai.utilities.llm_utils import create_llm
MIN_REQUIRED_VERSION = "0.98.0"
def check_conversational_crews_version(crewai_version: str, pyproject_data: dict) -> bool:
def check_conversational_crews_version(
crewai_version: str, pyproject_data: dict
) -> bool:
"""
Check if the installed crewAI version supports conversational crews.
Args:
crewai_version: The current version of crewAI
pyproject_data: Dictionary containing pyproject.toml data
crewai_version: The current version of crewAI.
pyproject_data: Dictionary containing pyproject.toml data.
Returns:
bool: True if version check passes, False otherwise
bool: True if version check passes, False otherwise.
"""
try:
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
click.secho(
"You are using an older version of crewAI that doesn't support conversational crews. "
"Run 'uv upgrade crewai' to get the latest version.",
fg="red"
fg="red",
)
return False
except version.InvalidVersion:
click.secho("Invalid crewAI version format detected", fg="red")
click.secho("Invalid crewAI version format detected.", fg="red")
return False
return True
@@ -54,20 +59,42 @@ def run_chat():
if not check_conversational_crews_version(crewai_version, pyproject_data):
return
crew, crew_name = load_crew_and_name()
chat_llm = initialize_chat_llm(crew)
if not chat_llm:
return
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
# Indicate that the crew is being analyzed
click.secho(
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
"depending on the complexity of your crew.",
fg="white",
)
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
# Start loading indicator
loading_complete = threading.Event()
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
loading_thread.start()
try:
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
)
finally:
# Stop loading indicator
loading_complete.set()
loading_thread.join()
# Indicate that the analysis is complete
click.secho("\nFinished analyzing crew.\n", fg="white")
click.secho(f"Assistant: {introductory_message}\n", fg="green")
messages = [
{"role": "system", "content": system_message},
@@ -78,15 +105,17 @@ def run_chat():
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
}
click.secho(
"\nEntering an interactive chat loop with function-calling.\n"
"Type 'exit' or Ctrl+C to quit.\n",
fg="cyan",
)
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
def show_loading(event: threading.Event):
"""Display animated loading dots while processing."""
while not event.is_set():
print(".", end="", flush=True)
time.sleep(1)
print()
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
@@ -120,7 +149,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
"Please keep your responses concise and friendly. "
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
f"\nCrew Name: {crew_chat_inputs.crew_name}"
@@ -137,25 +166,33 @@ def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
return run_crew_tool_with_messages
def flush_input():
"""Flush any pending input from the user."""
if platform.system() == "Windows":
# Windows platform
import msvcrt
while msvcrt.kbhit():
msvcrt.getch()
else:
# Unix-like platforms (Linux, macOS)
import termios
termios.tcflush(sys.stdin, termios.TCIFLUSH)
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
"""Main chat loop for interacting with the user."""
while True:
try:
user_input = click.prompt("You", type=str)
if user_input.strip().lower() in ["exit", "quit"]:
click.echo("Exiting chat. Goodbye!")
break
# Flush any pending input before accepting new input
flush_input()
messages.append({"role": "user", "content": user_input})
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
user_input = get_user_input()
handle_user_input(
user_input, chat_llm, messages, crew_tool_schema, available_functions
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
except KeyboardInterrupt:
click.echo("\nExiting chat. Goodbye!")
break
@@ -164,6 +201,55 @@ def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
break
def get_user_input() -> str:
"""Collect multi-line user input with exit handling."""
click.secho(
"\nYou (type your message below. Press 'Enter' twice when you're done):",
fg="blue",
)
user_input_lines = []
while True:
line = input()
if line.strip().lower() == "exit":
return "exit"
if line == "":
break
user_input_lines.append(line)
return "\n".join(user_input_lines)
def handle_user_input(
user_input: str,
chat_llm: LLM,
messages: List[Dict[str, str]],
crew_tool_schema: Dict[str, Any],
available_functions: Dict[str, Any],
) -> None:
if user_input.strip().lower() == "exit":
click.echo("Exiting chat. Goodbye!")
return
if not user_input.strip():
click.echo("Empty message. Please provide input or type 'exit' to quit.")
return
messages.append({"role": "user", "content": user_input})
# Indicate that assistant is processing
click.echo()
click.secho("Assistant is processing your input. Please wait...", fg="green")
# Process assistant's response
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
"""
Dynamically build a Littellm 'function' schema for the given crew.
@@ -358,10 +444,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
):
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
@@ -372,10 +458,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
or f"{{{input_name}}}" in agent.backstory
):
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
@@ -416,18 +502,20 @@ def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
for task in crew.tasks:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")

View File

@@ -1623,7 +1623,7 @@ def test_litellm_auth_error_handling():
agent=agent,
)
# Mock the LLM call to raise LiteLLMAuthenticationError
# Mock the LLM call to raise AuthenticationError
with (
patch.object(LLM, "call") as mock_llm_call,
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
@@ -1639,7 +1639,7 @@ def test_litellm_auth_error_handling():
def test_crew_agent_executor_litellm_auth_error():
"""Test that CrewAgentExecutor handles LiteLLM authentication errors by raising them."""
from litellm import AuthenticationError as LiteLLMAuthenticationError
from litellm.exceptions import AuthenticationError
from crewai.agents.tools_handler import ToolsHandler
from crewai.utilities import Printer
@@ -1672,13 +1672,13 @@ def test_crew_agent_executor_litellm_auth_error():
tools_handler=ToolsHandler(),
)
# Mock the LLM call to raise LiteLLMAuthenticationError
# Mock the LLM call to raise AuthenticationError
with (
patch.object(LLM, "call") as mock_llm_call,
patch.object(Printer, "print") as mock_printer,
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
pytest.raises(AuthenticationError) as exc_info,
):
mock_llm_call.side_effect = LiteLLMAuthenticationError(
mock_llm_call.side_effect = AuthenticationError(
message="Invalid API key", llm_provider="openai", model="gpt-4"
)
executor.invoke(
@@ -1689,14 +1689,53 @@ def test_crew_agent_executor_litellm_auth_error():
}
)
# Verify error handling
# Verify error handling messages
error_message = f"Error during LLM call: {str(mock_llm_call.side_effect)}"
mock_printer.assert_any_call(
content="An unknown error occurred. Please check the details below.",
color="red",
)
mock_printer.assert_any_call(
content="Error details: litellm.AuthenticationError: Invalid API key",
content=error_message,
color="red",
)
# Verify the call was only made once (no retries)
mock_llm_call.assert_called_once()
# Assert that the exception was raised and has the expected attributes
assert exc_info.type is AuthenticationError
assert "Invalid API key".lower() in exc_info.value.message.lower()
assert exc_info.value.llm_provider == "openai"
assert exc_info.value.model == "gpt-4"
def test_litellm_anthropic_error_handling():
"""Test that AnthropicError from LiteLLM is handled correctly and not retried."""
from litellm.llms.anthropic.common_utils import AnthropicError
# Create an agent with a mocked LLM that uses an Anthropic model
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="claude-3.5-sonnet-20240620"),
max_retry_limit=0,
)
# Create a task
task = Task(
description="Test task",
expected_output="Test output",
agent=agent,
)
# Mock the LLM call to raise AnthropicError
with (
patch.object(LLM, "call") as mock_llm_call,
pytest.raises(AnthropicError, match="Test Anthropic error"),
):
mock_llm_call.side_effect = AnthropicError(
status_code=500,
message="Test Anthropic error",
)
agent.execute_task(task)
# Verify the LLM call was only made once (no retries)
mock_llm_call.assert_called_once()