Compare commits

...

30 Commits

Author SHA1 Message Date
Greyson Lalonde
81850350e8 Merge branch 'main' into gl/feat/pydantic-refactor-llms 2025-11-06 23:03:39 -05:00
Lorenze Jay
b2c278ed22 refactor: improve MCP tool execution handling with concurrent futures (#3854)
- Enhanced the MCP tool execution in both synchronous and asynchronous contexts by utilizing  for better event loop management.
- Updated error handling to provide clearer messages for connection issues and task cancellations.
- Added tests to validate MCP tool execution in both sync and async scenarios, ensuring robust functionality across different contexts.
2025-11-06 19:28:08 -08:00
Greyson LaLonde
f6aed9798b feat: allow non-ast plot routes 2025-11-06 21:17:29 -05:00
Greyson LaLonde
40a2d387a1 fix: keep stopwords updated 2025-11-06 21:10:25 -05:00
Lorenze Jay
6f36d7003b Lorenze/feat mcp first class support (#3850)
* WIP transport support mcp

* refactor: streamline MCP tool loading and error handling

* linted

* Self type from typing with typing_extensions in MCP transport modules

* added tests for mcp setup

* added tests for mcp setup

* docs: enhance MCP overview with detailed integration examples and structured configurations

* feat: implement MCP event handling and logging in event listener and client

- Added MCP event types and handlers for connection and tool execution events.
- Enhanced MCPClient to emit events on connection status and tool execution.
- Updated ConsoleFormatter to handle MCP event logging.
- Introduced new MCP event types for better integration and monitoring.
2025-11-06 17:45:16 -08:00
Greyson Lalonde
7404d8f198 feat: restructure llms to pydantic 2025-11-06 18:40:28 -05:00
Greyson Lalonde
138b9af274 Merge branch 'main' into gl/feat/pydantic-refactor-llms 2025-11-06 17:37:41 -05:00
Greyson LaLonde
9e5906c52f feat: add pydantic validation dunder to BaseInterceptor
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
2025-11-06 15:27:07 -05:00
Lorenze Jay
fc521839e4 Lorenze/fix duplicating doc ids for knowledge (#3840)
* fix: update document ID handling in ChromaDB utility functions to use SHA-256 hashing and include index for uniqueness

* test: add tests for hash-based ID generation in ChromaDB utility functions

* drop idx for preventing dups, upsert should handle dups

* fix: update document ID extraction logic in ChromaDB utility functions to check for doc_id at the top level of the document

* fix: enhance document ID generation in ChromaDB utility functions to deduplicate documents and ensure unique hash-based IDs without suffixes

* fix: improve error handling and document ID generation in ChromaDB utility functions to ensure robust processing and uniqueness
2025-11-06 10:59:52 -08:00
Greyson Lalonde
a5e0803f20 Merge branch 'gl/feat/add-schema-validation-to-interceptor' into gl/feat/pydantic-refactor-llms 2025-11-06 11:17:58 -05:00
Greyson Lalonde
c4279b0339 feat: add pydantic validation dunder to BaseInterceptor, improve HTTPTransport typing 2025-11-06 11:09:07 -05:00
Greyson Lalonde
965aa48ea1 feat: add pydantic validation dunder to BaseInterceptor, improve HTTPTransport typing 2025-11-06 10:48:29 -05:00
Greyson LaLonde
e4cc9a664c fix: handle unpickleable values in flow state
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-06 01:29:21 -05:00
Greyson LaLonde
7e6171d5bc fix: ensure lite agents course-correct on validation errors
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: ensure lite agents course-correct on validation errors

* chore: update cassettes and test expectations

* fix: ensure multiple guardrails propogate
2025-11-05 19:02:11 -05:00
Greyson LaLonde
61ad1fb112 feat: add support for llm message interceptor hooks 2025-11-05 11:38:44 -05:00
Greyson LaLonde
54710a8711 fix: hash callback args correctly to ensure caching works
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-11-05 07:19:09 -05:00
Lucas Gomide
5abf976373 fix: allow adding RAG source content from valid URLs (#3831)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-04 07:58:40 -05:00
Greyson LaLonde
329567153b fix: make plot node selection smoother
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-03 07:49:31 -05:00
Greyson LaLonde
60332e0b19 feat: cache i18n prompts for efficient use 2025-11-03 07:39:05 -05:00
Lorenze Jay
40932af3fa feat: bump versions to 1.3.0 (#3820)
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: bump versions to 1.3.0

* chore: update crew and flow templates to use crewai[tools] version 1.3.0
2025-10-31 18:54:02 -07:00
Greyson LaLonde
e134e5305b Gl/feat/a2a refactor (#3793)
* feat: agent metaclass, refactor a2a to wrappers

* feat: a2a schemas and utils

* chore: move agent class, update imports

* refactor: organize imports to avoid circularity, add a2a to console

* feat: pass response_model through call chain

* feat: add standard openapi spec serialization to tools and structured output

* feat: a2a events

* chore: add a2a to pyproject

* docs: minimal base for learn docs

* fix: adjust a2a conversation flow, allow llm to decide exit until max_retries

* fix: inject agent skills into initial prompt

* fix: format agent card as json in prompt

* refactor: simplify A2A agent prompt formatting and improve skill display

* chore: wide cleanup

* chore: cleanup logic, add auth cache, use json for messages in prompt

* chore: update docs

* fix: doc snippets formatting

* feat: optimize A2A agent card fetching and improve error reporting

* chore: move imports to top of file

* chore: refactor hasattr check

* chore: add httpx-auth, update lockfile

* feat: create base public api

* chore: cleanup modules, add docstrings, types

* fix: exclude extra fields in prompt

* chore: update docs

* tests: update to correct import

* chore: lint for ruff, add missing import

* fix: tweak openai streaming logic for response model

* tests: add reimport for test

* tests: add reimport for test

* fix: don't set a2a attr if not set

* fix: don't set a2a attr if not set

* chore: update cassettes

* tests: fix tests

* fix: use instructor and dont pass response_format for litellm

* chore: consolidate event listeners, add typing

* fix: address race condition in test, update cassettes

* tests: add correct mocks, rerun cassette for json

* tests: update cassette

* chore: regenerate cassette after new run

* fix: make token manager access-safe

* fix: make token manager access-safe

* merge

* chore: update test and cassete for output pydantic

* fix: tweak to disallow deadlock

* chore: linter

* fix: adjust event ordering for threading

* fix: use conditional for batch check

* tests: tweak for emission

* tests: simplify api + event check

* fix: ensure non-function calling llms see json formatted string

* tests: tweak message comparison

* fix: use internal instructor for litellm structure responses

---------

Co-authored-by: Mike Plachta <mike@crewai.com>
2025-10-31 18:42:03 -07:00
Greyson LaLonde
e229ef4e19 refactor: improve flow handling, typing, and logging; update UI and tests
fix: refine nested flow conditionals and ensure router methods and routes are fully parsed
fix: improve docstrings, typing, and logging coverage across all events
feat: update flow.plot feature with new UI enhancements
chore: apply Ruff linting, reorganize imports, and remove deprecated utilities/files
chore: split constants and utils, clean JS comments, and add typing for linters
tests: strengthen test coverage for flow execution paths and router logic
2025-10-31 21:15:06 -04:00
Greyson LaLonde
2e9eb8c32d fix: refactor use_stop_words to property, add check for stop words
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-10-29 19:14:01 +01:00
Lucas Gomide
4ebb5114ed Fix Firecrawl tools & adding tests (#3810)
* fix: fix Firecrawl Scrape tool

* fix: fix Firecrawl Search tool

* fix: fix Firecrawl Website tool

* tests: adding tests for Firecrawl
2025-10-29 13:37:57 -04:00
Daniel Barreto
70b083945f Enhance QdrantVectorSearchTool (#3806)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-28 13:42:40 -04:00
Tony Kipkemboi
410db1ff39 docs: migrate embedder→embedding_model and require vectordb across tool docs; add provider examples (en/ko/pt-BR) (#3804)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* docs(tools): migrate embedder->embedding_model, require vectordb; add Chroma/Qdrant examples across en/ko/pt-BR PDF/TXT/XML/MDX/DOCX/CSV/Directory docs

* docs(observability): apply latest Datadog tweaks in ko and pt-BR
2025-10-27 13:29:21 -04:00
Lorenze Jay
5d6b4c922b feat: bump versions to 1.2.1 (#3800)
* feat: bump versions to 1.2.1

* updated templates too
2025-10-27 09:12:04 -07:00
Lucas Gomide
b07c0fc45c docs: describe mandatory env-var to call Platform tools for each integration (#3803) 2025-10-27 10:01:41 -04:00
Sam Brenner
97853199c7 Add Datadog Integration Documentation (#3642)
* add datadog llm observability integration guide

* spacing fix

* wording changes

* alphabetize docs listing

* Update docs/en/observability/datadog.mdx

Co-authored-by: Barry Eom <31739208+barieom@users.noreply.github.com>

* add translations

* fix korean code block

---------

Co-authored-by: Barry Eom <31739208+barieom@users.noreply.github.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-27 09:48:38 -04:00
Lorenze Jay
494ed7e671 liteagent supports apps and mcps (#3794)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* liteagent supports apps and mcps

* generated cassettes for these
2025-10-24 18:42:08 -07:00
291 changed files with 38128 additions and 19388 deletions

View File

@@ -19,6 +19,7 @@ repos:
language: system
pass_filenames: true
types: [python]
exclude: ^(lib/crewai/src/crewai/cli/templates/|lib/crewai/tests/|lib/crewai-tools/tests/)
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.9.3
hooks:

View File

@@ -276,6 +276,7 @@
"en/observability/overview",
"en/observability/arize-phoenix",
"en/observability/braintrust",
"en/observability/datadog",
"en/observability/langdb",
"en/observability/langfuse",
"en/observability/langtrace",
@@ -700,6 +701,7 @@
"pt-BR/observability/overview",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/braintrust",
"pt-BR/observability/datadog",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
"pt-BR/observability/langtrace",
@@ -1132,6 +1134,7 @@
"ko/observability/overview",
"ko/observability/arize-phoenix",
"ko/observability/braintrust",
"ko/observability/datadog",
"ko/observability/langdb",
"ko/observability/langfuse",
"ko/observability/langtrace",

View File

@@ -1200,6 +1200,52 @@ Learn how to get the most out of your LLM configuration:
)
```
</Accordion>
<Accordion title="Transport Interceptors">
CrewAI provides message interceptors for several providers, allowing you to hook into request/response cycles at the transport layer.
**Supported Providers:**
- ✅ OpenAI
- ✅ Anthropic
**Basic Usage:**
```python
import httpx
from crewai import LLM
from crewai.llms.hooks import BaseInterceptor
class CustomInterceptor(BaseInterceptor[httpx.Request, httpx.Response]):
"""Custom interceptor to modify requests and responses."""
def on_outbound(self, request: httpx.Request) -> httpx.Request:
"""Print request before sending to the LLM provider."""
print(request)
return request
def on_inbound(self, response: httpx.Response) -> httpx.Response:
"""Process response after receiving from the LLM provider."""
print(f"Status: {response.status_code}")
print(f"Response time: {response.elapsed}")
return response
# Use the interceptor with an LLM
llm = LLM(
model="openai/gpt-4o",
interceptor=CustomInterceptor()
)
```
**Important Notes:**
- Both methods must return the received object or type of object.
- Modifying received objects may result in unexpected behavior or application crashes.
- Not all providers support interceptors - check the supported providers list above
<Info>
Interceptors operate at the transport layer. This is particularly useful for:
- Message transformation and filtering
- Debugging API interactions
</Info>
</Accordion>
</AccordionGroup>
## Common Issues and Solutions

View File

@@ -33,6 +33,22 @@ Before using the Asana integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Box integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the ClickUp integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the GitHub integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Gmail integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Google Calendar integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Google Contacts integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Google Docs integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Google Drive integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -34,6 +34,22 @@ Before using the Google Sheets integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Google Slides integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the HubSpot integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Jira integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Linear integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft Excel integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft OneDrive integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft Outlook integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft SharePoint integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft Teams integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Microsoft Word integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Before using the Notion integration, ensure you have:
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Actions
<AccordionGroup>

View File

@@ -17,6 +17,38 @@ Before using the Salesforce integration, ensure you have:
- A Salesforce account with appropriate permissions
- Connected your Salesforce account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Salesforce Integration
### 1. Connect Your Salesforce Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Salesforce** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for CRM and sales management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Record Management**

View File

@@ -17,6 +17,38 @@ Before using the Shopify integration, ensure you have:
- A Shopify store with appropriate admin permissions
- Connected your Shopify store through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Shopify Integration
### 1. Connect Your Shopify Store
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Shopify** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for store and product management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Customer Management**

View File

@@ -17,6 +17,38 @@ Before using the Slack integration, ensure you have:
- A Slack workspace with appropriate permissions
- Connected your Slack workspace through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Slack Integration
### 1. Connect Your Slack Workspace
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Slack** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for team communication
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **User Management**

View File

@@ -17,6 +17,38 @@ Before using the Stripe integration, ensure you have:
- A Stripe account with appropriate API permissions
- Connected your Stripe account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Stripe Integration
### 1. Connect Your Stripe Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Stripe** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for payment processing
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Customer Management**

View File

@@ -17,6 +17,38 @@ Before using the Zendesk integration, ensure you have:
- A Zendesk account with appropriate API permissions
- Connected your Zendesk account through the [Integrations page](https://app.crewai.com/integrations)
## Setting Up Zendesk Integration
### 1. Connect Your Zendesk Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Zendesk** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for ticket and user management
5. Copy your Enterprise Token from [Integration Settings](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Install Required Package
```bash
uv add crewai-tools
```
### 3. Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## Available Tools
### **Ticket Management**

View File

@@ -0,0 +1,291 @@
---
title: Agent-to-Agent (A2A) Protocol
description: Enable CrewAI agents to delegate tasks to remote A2A-compliant agents for specialized handling
icon: network-wired
mode: "wide"
---
## A2A Agent Delegation
CrewAI supports the Agent-to-Agent (A2A) protocol, allowing agents to delegate tasks to remote specialized agents. The agent's LLM automatically decides whether to handle a task directly or delegate to an A2A agent based on the task requirements.
<Note>
A2A delegation requires the `a2a-sdk` package. Install with: `uv add 'crewai[a2a]'` or `pip install 'crewai[a2a]'`
</Note>
## How It Works
When an agent is configured with A2A capabilities:
1. The LLM analyzes each task
2. It decides to either:
- Handle the task directly using its own capabilities
- Delegate to a remote A2A agent for specialized handling
3. If delegating, the agent communicates with the remote A2A agent through the protocol
4. Results are returned to the CrewAI workflow
## Basic Configuration
Configure an agent for A2A delegation by setting the `a2a` parameter:
```python Code
from crewai import Agent, Crew, Task
from crewai.a2a import A2AConfig
agent = Agent(
role="Research Coordinator",
goal="Coordinate research tasks efficiently",
backstory="Expert at delegating to specialized research agents",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://example.com/.well-known/agent-card.json",
timeout=120,
max_turns=10
)
)
task = Task(
description="Research the latest developments in quantum computing",
expected_output="A comprehensive research report",
agent=agent
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
result = crew.kickoff()
```
## Configuration Options
The `A2AConfig` class accepts the following parameters:
<ParamField path="endpoint" type="str" required>
The A2A agent endpoint URL (typically points to `.well-known/agent-card.json`)
</ParamField>
<ParamField path="auth" type="AuthScheme" default="None">
Authentication scheme for the A2A agent. Supports Bearer tokens, OAuth2, API keys, and HTTP authentication.
</ParamField>
<ParamField path="timeout" type="int" default="120">
Request timeout in seconds
</ParamField>
<ParamField path="max_turns" type="int" default="10">
Maximum number of conversation turns with the A2A agent
</ParamField>
<ParamField path="response_model" type="type[BaseModel]" default="None">
Optional Pydantic model for requesting structured output from an A2A agent. A2A protocol does not
enforce this, so an A2A agent does not need to honor this request.
</ParamField>
<ParamField path="fail_fast" type="bool" default="True">
Whether to raise an error immediately if agent connection fails. When `False`, the agent continues with available agents and informs the LLM about unavailable ones.
</ParamField>
## Authentication
For A2A agents that require authentication, use one of the provided auth schemes:
<Tabs>
<Tab title="Bearer Token">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import BearerTokenAuth
agent = Agent(
role="Secure Coordinator",
goal="Coordinate tasks with secured agents",
backstory="Manages secure agent communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://secure-agent.example.com/.well-known/agent-card.json",
auth=BearerTokenAuth(token="your-bearer-token"),
timeout=120
)
)
```
</Tab>
<Tab title="API Key">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import APIKeyAuth
agent = Agent(
role="API Coordinator",
goal="Coordinate with API-based agents",
backstory="Manages API-authenticated communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://api-agent.example.com/.well-known/agent-card.json",
auth=APIKeyAuth(
api_key="your-api-key",
location="header", # or "query" or "cookie"
name="X-API-Key"
),
timeout=120
)
)
```
</Tab>
<Tab title="OAuth2">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import OAuth2ClientCredentials
agent = Agent(
role="OAuth Coordinator",
goal="Coordinate with OAuth-secured agents",
backstory="Manages OAuth-authenticated communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://oauth-agent.example.com/.well-known/agent-card.json",
auth=OAuth2ClientCredentials(
token_url="https://auth.example.com/oauth/token",
client_id="your-client-id",
client_secret="your-client-secret",
scopes=["read", "write"]
),
timeout=120
)
)
```
</Tab>
<Tab title="HTTP Basic">
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import HTTPBasicAuth
agent = Agent(
role="Basic Auth Coordinator",
goal="Coordinate with basic auth agents",
backstory="Manages basic authentication communications",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://basic-agent.example.com/.well-known/agent-card.json",
auth=HTTPBasicAuth(
username="your-username",
password="your-password"
),
timeout=120
)
)
```
</Tab>
</Tabs>
## Multiple A2A Agents
Configure multiple A2A agents for delegation by passing a list:
```python Code
from crewai.a2a import A2AConfig
from crewai.a2a.auth import BearerTokenAuth
agent = Agent(
role="Multi-Agent Coordinator",
goal="Coordinate with multiple specialized agents",
backstory="Expert at delegating to the right specialist",
llm="gpt-4o",
a2a=[
A2AConfig(
endpoint="https://research.example.com/.well-known/agent-card.json",
timeout=120
),
A2AConfig(
endpoint="https://data.example.com/.well-known/agent-card.json",
auth=BearerTokenAuth(token="data-token"),
timeout=90
)
]
)
```
The LLM will automatically choose which A2A agent to delegate to based on the task requirements.
## Error Handling
Control how agent connection failures are handled using the `fail_fast` parameter:
```python Code
from crewai.a2a import A2AConfig
# Fail immediately on connection errors (default)
agent = Agent(
role="Research Coordinator",
goal="Coordinate research tasks",
backstory="Expert at delegation",
llm="gpt-4o",
a2a=A2AConfig(
endpoint="https://research.example.com/.well-known/agent-card.json",
fail_fast=True
)
)
# Continue with available agents
agent = Agent(
role="Multi-Agent Coordinator",
goal="Coordinate with multiple agents",
backstory="Expert at working with available resources",
llm="gpt-4o",
a2a=[
A2AConfig(
endpoint="https://primary.example.com/.well-known/agent-card.json",
fail_fast=False
),
A2AConfig(
endpoint="https://backup.example.com/.well-known/agent-card.json",
fail_fast=False
)
]
)
```
When `fail_fast=False`:
- If some agents fail, the LLM is informed which agents are unavailable and can delegate to working agents
- If all agents fail, the LLM receives a notice about unavailable agents and handles the task directly
- Connection errors are captured and included in the context for better decision-making
## Best Practices
<CardGroup cols={2}>
<Card title="Set Appropriate Timeouts" icon="clock">
Configure timeouts based on expected A2A agent response times. Longer-running tasks may need higher timeout values.
</Card>
<Card title="Limit Conversation Turns" icon="comments">
Use `max_turns` to prevent excessive back-and-forth. The agent will automatically conclude conversations before hitting the limit.
</Card>
<Card title="Use Resilient Error Handling" icon="shield-check">
Set `fail_fast=False` for production environments with multiple agents to gracefully handle connection failures and maintain workflow continuity.
</Card>
<Card title="Secure Your Credentials" icon="lock">
Store authentication tokens and credentials as environment variables, not in code.
</Card>
<Card title="Monitor Delegation Decisions" icon="eye">
Use verbose mode to observe when the LLM chooses to delegate versus handle tasks directly.
</Card>
</CardGroup>
## Supported Authentication Methods
- **Bearer Token** - Simple token-based authentication
- **OAuth2 Client Credentials** - OAuth2 flow for machine-to-machine communication
- **OAuth2 Authorization Code** - OAuth2 flow requiring user authorization
- **API Key** - Key-based authentication (header, query param, or cookie)
- **HTTP Basic** - Username/password authentication
- **HTTP Digest** - Digest authentication (requires `httpx-auth` package)
## Learn More
For more information about the A2A protocol and reference implementations:
- [A2A Protocol Documentation](https://a2a-protocol.org)
- [A2A Sample Implementations](https://github.com/a2aproject/a2a-samples)
- [A2A Python SDK](https://github.com/a2aproject/a2a-python)

View File

@@ -11,9 +11,13 @@ The [Model Context Protocol](https://modelcontextprotocol.io/introduction) (MCP)
CrewAI offers **two approaches** for MCP integration:
### Simple DSL Integration** (Recommended)
### 🚀 **Simple DSL Integration** (Recommended)
Use the `mcps` field directly on agents for seamless MCP tool integration:
Use the `mcps` field directly on agents for seamless MCP tool integration. The DSL supports both **string references** (for quick setup) and **structured configurations** (for full control).
#### String-Based References (Quick Setup)
Perfect for remote HTTPS servers and CrewAI AMP marketplace:
```python
from crewai import Agent
@@ -32,6 +36,46 @@ agent = Agent(
# MCP tools are now automatically available to your agent!
```
#### Structured Configurations (Full Control)
For complete control over connection settings, tool filtering, and all transport types:
```python
from crewai import Agent
from crewai.mcp import MCPServerStdio, MCPServerHTTP, MCPServerSSE
from crewai.mcp.filters import create_static_tool_filter
agent = Agent(
role="Advanced Research Analyst",
goal="Research with full control over MCP connections",
backstory="Expert researcher with advanced tool access",
mcps=[
# Stdio transport for local servers
MCPServerStdio(
command="npx",
args=["-y", "@modelcontextprotocol/server-filesystem"],
env={"API_KEY": "your_key"},
tool_filter=create_static_tool_filter(
allowed_tool_names=["read_file", "list_directory"]
),
cache_tools_list=True,
),
# HTTP/Streamable HTTP transport for remote servers
MCPServerHTTP(
url="https://api.example.com/mcp",
headers={"Authorization": "Bearer your_token"},
streamable=True,
cache_tools_list=True,
),
# SSE transport for real-time streaming
MCPServerSSE(
url="https://stream.example.com/mcp/sse",
headers={"Authorization": "Bearer your_token"},
),
]
)
```
### 🔧 **Advanced: MCPServerAdapter** (For Complex Scenarios)
For advanced use cases requiring manual connection management, the `crewai-tools` library provides the `MCPServerAdapter` class.
@@ -68,12 +112,14 @@ uv pip install 'crewai-tools[mcp]'
## Quick Start: Simple DSL Integration
The easiest way to integrate MCP servers is using the `mcps` field on your agents:
The easiest way to integrate MCP servers is using the `mcps` field on your agents. You can use either string references or structured configurations.
### Quick Start with String References
```python
from crewai import Agent, Task, Crew
# Create agent with MCP tools
# Create agent with MCP tools using string references
research_agent = Agent(
role="Research Analyst",
goal="Find and analyze information using advanced search tools",
@@ -96,13 +142,53 @@ crew = Crew(agents=[research_agent], tasks=[research_task])
result = crew.kickoff()
```
### Quick Start with Structured Configurations
```python
from crewai import Agent, Task, Crew
from crewai.mcp import MCPServerStdio, MCPServerHTTP, MCPServerSSE
# Create agent with structured MCP configurations
research_agent = Agent(
role="Research Analyst",
goal="Find and analyze information using advanced search tools",
backstory="Expert researcher with access to multiple data sources",
mcps=[
# Local stdio server
MCPServerStdio(
command="python",
args=["local_server.py"],
env={"API_KEY": "your_key"},
),
# Remote HTTP server
MCPServerHTTP(
url="https://api.research.com/mcp",
headers={"Authorization": "Bearer your_token"},
),
]
)
# Create task
research_task = Task(
description="Research the latest developments in AI agent frameworks",
expected_output="Comprehensive research report with citations",
agent=research_agent
)
# Create and run crew
crew = Crew(agents=[research_agent], tasks=[research_task])
result = crew.kickoff()
```
That's it! The MCP tools are automatically discovered and available to your agent.
## MCP Reference Formats
The `mcps` field supports various reference formats for maximum flexibility:
The `mcps` field supports both **string references** (for quick setup) and **structured configurations** (for full control). You can mix both formats in the same list.
### External MCP Servers
### String-Based References
#### External MCP Servers
```python
mcps=[
@@ -117,7 +203,7 @@ mcps=[
]
```
### CrewAI AMP Marketplace
#### CrewAI AMP Marketplace
```python
mcps=[
@@ -133,17 +219,166 @@ mcps=[
]
```
### Mixed References
### Structured Configurations
#### Stdio Transport (Local Servers)
Perfect for local MCP servers that run as processes:
```python
from crewai.mcp import MCPServerStdio
from crewai.mcp.filters import create_static_tool_filter
mcps=[
"https://external-api.com/mcp", # External server
"https://weather.service.com/mcp#forecast", # Specific external tool
"crewai-amp:financial-insights", # AMP service
"crewai-amp:data-analysis#sentiment_tool" # Specific AMP tool
MCPServerStdio(
command="npx",
args=["-y", "@modelcontextprotocol/server-filesystem"],
env={"API_KEY": "your_key"},
tool_filter=create_static_tool_filter(
allowed_tool_names=["read_file", "write_file"]
),
cache_tools_list=True,
),
# Python-based server
MCPServerStdio(
command="python",
args=["path/to/server.py"],
env={"UV_PYTHON": "3.12", "API_KEY": "your_key"},
),
]
```
#### HTTP/Streamable HTTP Transport (Remote Servers)
For remote MCP servers over HTTP/HTTPS:
```python
from crewai.mcp import MCPServerHTTP
mcps=[
# Streamable HTTP (default)
MCPServerHTTP(
url="https://api.example.com/mcp",
headers={"Authorization": "Bearer your_token"},
streamable=True,
cache_tools_list=True,
),
# Standard HTTP
MCPServerHTTP(
url="https://api.example.com/mcp",
headers={"Authorization": "Bearer your_token"},
streamable=False,
),
]
```
#### SSE Transport (Real-Time Streaming)
For remote servers using Server-Sent Events:
```python
from crewai.mcp import MCPServerSSE
mcps=[
MCPServerSSE(
url="https://stream.example.com/mcp/sse",
headers={"Authorization": "Bearer your_token"},
cache_tools_list=True,
),
]
```
### Mixed References
You can combine string references and structured configurations:
```python
from crewai.mcp import MCPServerStdio, MCPServerHTTP
mcps=[
# String references
"https://external-api.com/mcp", # External server
"crewai-amp:financial-insights", # AMP service
# Structured configurations
MCPServerStdio(
command="npx",
args=["-y", "@modelcontextprotocol/server-filesystem"],
),
MCPServerHTTP(
url="https://api.example.com/mcp",
headers={"Authorization": "Bearer token"},
),
]
```
### Tool Filtering
Structured configurations support advanced tool filtering:
```python
from crewai.mcp import MCPServerStdio
from crewai.mcp.filters import create_static_tool_filter, create_dynamic_tool_filter, ToolFilterContext
# Static filtering (allow/block lists)
static_filter = create_static_tool_filter(
allowed_tool_names=["read_file", "write_file"],
blocked_tool_names=["delete_file"],
)
# Dynamic filtering (context-aware)
def dynamic_filter(context: ToolFilterContext, tool: dict) -> bool:
# Block dangerous tools for certain agent roles
if context.agent.role == "Code Reviewer":
if "delete" in tool.get("name", "").lower():
return False
return True
mcps=[
MCPServerStdio(
command="npx",
args=["-y", "@modelcontextprotocol/server-filesystem"],
tool_filter=static_filter, # or dynamic_filter
),
]
```
## Configuration Parameters
Each transport type supports specific configuration options:
### MCPServerStdio Parameters
- **`command`** (required): Command to execute (e.g., `"python"`, `"node"`, `"npx"`, `"uvx"`)
- **`args`** (optional): List of command arguments (e.g., `["server.py"]` or `["-y", "@mcp/server"]`)
- **`env`** (optional): Dictionary of environment variables to pass to the process
- **`tool_filter`** (optional): Tool filter function for filtering available tools
- **`cache_tools_list`** (optional): Whether to cache the tool list for faster subsequent access (default: `False`)
### MCPServerHTTP Parameters
- **`url`** (required): Server URL (e.g., `"https://api.example.com/mcp"`)
- **`headers`** (optional): Dictionary of HTTP headers for authentication or other purposes
- **`streamable`** (optional): Whether to use streamable HTTP transport (default: `True`)
- **`tool_filter`** (optional): Tool filter function for filtering available tools
- **`cache_tools_list`** (optional): Whether to cache the tool list for faster subsequent access (default: `False`)
### MCPServerSSE Parameters
- **`url`** (required): Server URL (e.g., `"https://api.example.com/mcp/sse"`)
- **`headers`** (optional): Dictionary of HTTP headers for authentication or other purposes
- **`tool_filter`** (optional): Tool filter function for filtering available tools
- **`cache_tools_list`** (optional): Whether to cache the tool list for faster subsequent access (default: `False`)
### Common Parameters
All transport types support:
- **`tool_filter`**: Filter function to control which tools are available. Can be:
- `None` (default): All tools are available
- Static filter: Created with `create_static_tool_filter()` for allow/block lists
- Dynamic filter: Created with `create_dynamic_tool_filter()` for context-aware filtering
- **`cache_tools_list`**: When `True`, caches the tool list after first discovery to improve performance on subsequent connections
## Key Features
- 🔄 **Automatic Tool Discovery**: Tools are automatically discovered and integrated
@@ -152,26 +387,47 @@ mcps=[
- 🛡️ **Error Resilience**: Graceful handling of unavailable servers
- ⏱️ **Timeout Protection**: Built-in timeouts prevent hanging connections
- 📊 **Transparent Integration**: Works seamlessly with existing CrewAI features
- 🔧 **Full Transport Support**: Stdio, HTTP/Streamable HTTP, and SSE transports
- 🎯 **Advanced Filtering**: Static and dynamic tool filtering capabilities
- 🔐 **Flexible Authentication**: Support for headers, environment variables, and query parameters
## Error Handling
The MCP DSL integration is designed to be resilient:
The MCP DSL integration is designed to be resilient and handles failures gracefully:
```python
from crewai import Agent
from crewai.mcp import MCPServerStdio, MCPServerHTTP
agent = Agent(
role="Resilient Agent",
goal="Continue working despite server issues",
backstory="Agent that handles failures gracefully",
mcps=[
# String references
"https://reliable-server.com/mcp", # Will work
"https://unreachable-server.com/mcp", # Will be skipped gracefully
"https://slow-server.com/mcp", # Will timeout gracefully
"crewai-amp:working-service" # Will work
"crewai-amp:working-service", # Will work
# Structured configs
MCPServerStdio(
command="python",
args=["reliable_server.py"], # Will work
),
MCPServerHTTP(
url="https://slow-server.com/mcp", # Will timeout gracefully
),
]
)
# Agent will use tools from working servers and log warnings for failing ones
```
All connection errors are handled gracefully:
- **Connection failures**: Logged as warnings, agent continues with available tools
- **Timeout errors**: Connections timeout after 30 seconds (configurable)
- **Authentication errors**: Logged clearly for debugging
- **Invalid configurations**: Validation errors are raised at agent creation time
## Advanced: MCPServerAdapter
For complex scenarios requiring manual connection management, use the `MCPServerAdapter` class from `crewai-tools`. Using a Python context manager (`with` statement) is the recommended approach as it automatically handles starting and stopping the connection to the MCP server.

View File

@@ -0,0 +1,109 @@
---
title: Datadog Integration
description: Learn how to integrate Datadog with CrewAI to submit LLM Observability traces to Datadog.
icon: dog
mode: "wide"
---
# Integrate Datadog with CrewAI
This guide will demonstrate how to integrate **[Datadog LLM Observability](https://docs.datadoghq.com/llm_observability/)** with **CrewAI** using [Datadog auto-instrumentation](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python). By the end of this guide, you will be able to submit LLM Observability traces to Datadog and view your CrewAI agent runs in Datadog LLM Observability's [Agentic Execution View](https://docs.datadoghq.com/llm_observability/monitoring/agent_monitoring).
## What is Datadog LLM Observability?
[Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/) helps AI engineers, data scientists, and application developers quickly develop, evaluate, and monitor LLM applications. Confidently improve output quality, performance, costs, and overall risk with structured experiments, end-to-end tracing across AI agents, and evaluations.
## Getting Started
### Install Dependencies
```shell
pip install ddtrace crewai crewai-tools
```
### Set Environment Variables
If you do not have a Datadog API key, you can [create an account](https://www.datadoghq.com/) and [get your API key](https://docs.datadoghq.com/account_management/api-app-keys/#api-keys).
You will also need to specify an ML Application name in the following environment variables. An ML Application is a grouping of LLM Observability traces associated with a specific LLM-based application. See [ML Application Naming Guidelines](https://docs.datadoghq.com/llm_observability/instrumentation/sdk?tab=python#application-naming-guidelines) for more information on limitations with ML Application names.
```shell
export DD_API_KEY=<YOUR_DD_API_KEY>
export DD_SITE=<YOUR_DD_SITE>
export DD_LLMOBS_ENABLED=true
export DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
export DD_LLMOBS_AGENTLESS_ENABLED=true
export DD_APM_TRACING_ENABLED=false
```
Additionally, configure any LLM provider API keys
```shell
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>
export GEMINI_API_KEY=<YOUR_GEMINI_API_KEY>
...
```
### Create a CrewAI Agent Application
```python
# crewai_agent.py
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(
description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer
)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
output = crew.kickoff(dict(multiplication="2 * 2"))
```
### Run the Application with Datadog Auto-Instrumentation
With the [environment variables](#set-environment-variables) set, you can now run the application with Datadog auto-instrumentation.
```shell
ddtrace-run python crewai_agent.py
```
### View the Traces in Datadog
After running the application, you can view the traces in [Datadog LLM Observability's Traces View](https://app.datadoghq.com/llm/traces), selecting the ML Application name you chose from the top-left dropdown.
Clicking on a trace will show you the details of the trace, including total tokens used, number of LLM calls, models used, and estimated cost. Clicking into a specific span will narrow down these details, and show related input, output, and metadata.
<Frame>
<img src="/images/datadog-llm-observability-1.png" alt="Datadog LLM Observability Trace View" />
</Frame>
Additionally, you can view the execution graph view of the trace, which shows the control and data flow of the trace, which will scale with larger agents to show handoffs and relationships between LLM calls, tool calls, and agent interactions.
<Frame>
<img src="/images/datadog-llm-observability-2.png" alt="Datadog LLM Observability Agent Execution Flow View" />
</Frame>
## References
- [Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)
- [Datadog LLM Observability CrewAI Auto-Instrumentation](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python#crew-ai)

View File

@@ -23,13 +23,15 @@ Here's a minimal example of how to use the tool:
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Initialize the tool
# Initialize the tool with QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
qdrant_config=QdrantConfig(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
)
# Create an agent that uses the tool
@@ -82,7 +84,7 @@ def extract_text_from_pdf(pdf_path):
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-small"
model="text-embedding-3-large"
)
return response.data[0].embedding
@@ -90,13 +92,13 @@ def get_openai_embedding(text):
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
vectors_config=VectorParams(size=3072, distance=Distance.COSINE)
)
# Store embeddings
@@ -120,19 +122,23 @@ pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
from crewai_tools import QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
qdrant_config=QdrantConfig(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
@@ -141,7 +147,7 @@ search_agent = Agent(
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
@@ -180,21 +186,82 @@ print(result)
## Tool Parameters
### Required Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
- `qdrant_config` (QdrantConfig): Configuration object containing all Qdrant settings
### Optional Parameters
### QdrantConfig Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str, optional): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
- `limit` (int): Maximum number of results to return (default: 3)
- `score_threshold` (float): Minimum similarity score threshold (default: 0.35)
- `filter` (Any, optional): Qdrant Filter instance for advanced filtering (default: None)
### Optional Tool Parameters
- `custom_embedding_fn` (Callable[[str], list[float]]): Custom function for text vectorization
- `qdrant_package` (str): Base package path for Qdrant (default: "qdrant_client")
- `client` (Any): Pre-initialized Qdrant client (optional)
## Advanced Filtering
The QdrantVectorSearchTool supports powerful filtering capabilities to refine your search results:
### Dynamic Filtering
Use `filter_by` and `filter_value` parameters in your search to filter results on-the-fly:
```python
# Agent will use these parameters when calling the tool
# The tool schema accepts filter_by and filter_value
# Example: search with category filter
# Results will be filtered where category == "technology"
```
### Preset Filters with QdrantConfig
For complex filtering, use Qdrant Filter instances in your configuration:
```python
from qdrant_client.http import models as qmodels
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Create a filter for specific conditions
preset_filter = qmodels.Filter(
must=[
qmodels.FieldCondition(
key="category",
match=qmodels.MatchValue(value="research")
),
qmodels.FieldCondition(
key="year",
match=qmodels.MatchValue(value=2024)
)
]
)
# Initialize tool with preset filter
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
filter=preset_filter # Preset filter applied to all searches
)
)
```
### Combining Filters
The tool automatically combines preset filters from `QdrantConfig` with dynamic filters from `filter_by` and `filter_value`:
```python
# If QdrantConfig has a preset filter for category="research"
# And the search uses filter_by="year", filter_value=2024
# Both filters will be combined (AND logic)
```
## Search Parameters
The tool accepts these parameters in its schema:
- `query` (str): The search query to find similar documents
- `filter_by` (str, optional): Metadata field to filter on
- `filter_value` (str, optional): Value to filter by
- `filter_value` (Any, optional): Value to filter by
## Return Format
@@ -214,7 +281,7 @@ The tool returns results in JSON format:
## Default Embedding
By default, the tool uses OpenAI's `text-embedding-3-small` model for vectorization. This requires:
By default, the tool uses OpenAI's `text-embedding-3-large` model for vectorization. This requires:
- OpenAI API key set in environment: `OPENAI_API_KEY`
## Custom Embeddings
@@ -240,18 +307,22 @@ def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
from crewai_tools import QdrantConfig
tool = QdrantVectorSearchTool(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection"
),
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
@@ -269,4 +340,4 @@ Required environment variables:
```bash
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings
export OPENAI_API_KEY="your_openai_key" # If using default embeddings

View File

@@ -54,25 +54,25 @@ The following parameters can be used to customize the `CSVSearchTool`'s behavior
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = CSVSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -46,23 +46,25 @@ tool = DirectorySearchTool(directory='/path/to/directory')
The DirectorySearchTool uses OpenAI for embeddings and summarization by default. Customization options for these settings include changing the model provider and configuration, enhancing flexibility for advanced users.
```python Code
from chromadb.config import Settings
tool = DirectorySearchTool(
config=dict(
llm=dict(
provider="ollama", # Options include ollama, google, anthropic, llama2, and more
config=dict(
model="llama2",
# Additional configurations here
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -56,25 +56,25 @@ The following parameters can be used to customize the `DOCXSearchTool`'s behavio
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = DOCXSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -48,27 +48,25 @@ tool = MDXSearchTool(mdx='path/to/your/document.mdx')
The tool defaults to using OpenAI for embeddings and summarization. For customization, utilize a configuration dictionary as shown below:
```python Code
from chromadb.config import Settings
tool = MDXSearchTool(
config=dict(
llm=dict(
provider="ollama", # Options include google, openai, anthropic, llama2, etc.
config=dict(
model="llama2",
# Optional parameters can be included here.
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# Optional title for the embeddings can be added here.
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -45,28 +45,64 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows. Note: a vector database is required because generated embeddings must be stored and queried from a vectordb.
```python Code
from crewai_tools import PDFSearchTool
# - embedding_model (required): choose provider + provider-specific config
# - vectordb (required): choose vector DB and pass its config
tool = PDFSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
# Supported providers: "openai", "azure", "google-generativeai", "google-vertex",
# "voyageai", "cohere", "huggingface", "jina", "sentence-transformer",
# "text2vec", "ollama", "openclip", "instructor", "onnx", "roboflow", "watsonx", "custom"
"provider": "openai", # or: "google-generativeai", "cohere", "ollama", ...
"config": {
# Model identifier for the chosen provider. "model" will be auto-mapped to "model_name" internally.
"model": "text-embedding-3-small",
# Optional: API key. If omitted, the tool will use provider-specific env vars when available
# (e.g., OPENAI_API_KEY for provider="openai").
# "api_key": "sk-...",
# Provider-specific examples:
# --- Google Generative AI ---
# (Set provider="google-generativeai" above)
# "model": "models/embedding-001",
# "task_type": "retrieval_document",
# "title": "Embeddings",
# --- Cohere ---
# (Set provider="cohere" above)
# "model": "embed-english-v3.0",
# --- Ollama (local) ---
# (Set provider="ollama" above)
# "model": "nomic-embed-text",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# For ChromaDB: pass "settings" (chromadb.config.Settings) or rely on defaults.
# Example (uncomment and import):
# from chromadb.config import Settings
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# For Qdrant: pass "vectors_config" (qdrant_client.models.VectorParams).
# Example (uncomment and import):
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# Note: collection name is controlled by the tool (default: "rag_tool_collection"), not set here.
}
},
}
)
```

View File

@@ -57,25 +57,41 @@ By default, the tool uses OpenAI for both embeddings and summarization.
To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = TXTSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
# Required: embeddings provider + config
"embedding_model": {
"provider": "openai", # or google-generativeai, cohere, ollama, ...
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...", # optional if env var is set
# Provider examples:
# Google → model: "models/embedding-001", task_type: "retrieval_document"
# Cohere → model: "embed-english-v3.0"
# Ollama → model: "nomic-embed-text"
},
},
# Required: vector database config
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# Chroma settings (optional persistence)
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# Qdrant vector params example:
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# Note: collection name is controlled by the tool (default: "rag_tool_collection").
}
},
}
)
```

View File

@@ -54,25 +54,25 @@ It is an optional parameter during the tool's initialization but must be provide
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
from chromadb.config import Settings
tool = XMLSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # or "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 370 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 738 KiB

View File

@@ -33,6 +33,22 @@ Asana 연동을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Box 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ ClickUp 통합을 사용하기 전에 다음을 준비해야 합니다:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 동작
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ GitHub 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Gmail 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Google Calendar 통합을 사용하기 전에 다음을 준비해야 합니다:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Google Contacts 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Google Docs 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -17,6 +17,38 @@ Google Drive 통합을 사용하기 전에 다음 사항을 확인하세요:
- Google Drive 액세스 권한이 있는 Google 계정
- [통합 페이지](https://app.crewai.com/crewai_plus/connectors)를 통해 Google 계정 연결
## Google Drive 통합 설정
### 1. Google 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Google Drive**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 파일 및 폴더 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
자세한 매개변수 및 사용법은 [영어 문서](../../../en/enterprise/integrations/google_drive)를 참조하세요.

View File

@@ -34,6 +34,22 @@ Google Sheets 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Google Slides 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ HubSpot 통합을 사용하기 전에 다음을 확인하세요.
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Jira 통합을 사용하기 전에 다음을 준비하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Linear 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft Excel 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft OneDrive 통합을 사용하기 전에 다음 사항을 확인하세
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft Outlook 통합을 사용하기 전에 다음 사항을 확인하세요
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft SharePoint 통합을 사용하기 전에 다음 사항을 확인하세
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft Teams 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Microsoft Word 통합을 사용하기 전에 다음 사항을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 작업
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Notion 통합을 사용하기 전에 다음을 확인하세요:
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 액션
<AccordionGroup>

View File

@@ -17,6 +17,38 @@ Salesforce 통합을 사용하기 전에 다음을 확인하세요:
- 적절한 권한이 있는 Salesforce 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Salesforce 계정 연결
## Salesforce 통합 설정
### 1. Salesforce 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Salesforce**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. CRM 및 영업 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **레코드 관리**

View File

@@ -17,6 +17,38 @@ Shopify 연동을 사용하기 전에 다음을 확인하세요:
- 적절한 관리자 권한이 있는 Shopify 스토어
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Shopify 스토어 연결
## Shopify 통합 설정
### 1. Shopify 스토어 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Shopify**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 스토어 및 제품 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **고객 관리**

View File

@@ -17,6 +17,38 @@ Slack 통합을 사용하기 전에 다음을 확인하십시오:
- 적절한 권한이 있는 Slack 워크스페이스
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Slack 워크스페이스를 연결함
## Slack 통합 설정
### 1. Slack 워크스페이스 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Slack**을 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 팀 커뮤니케이션에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **사용자 관리**

View File

@@ -17,6 +17,38 @@ Stripe 통합을 사용하기 전에 다음 사항을 확인하세요:
- 적절한 API 권한이 있는 Stripe 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Stripe 계정 연결
## Stripe 통합 설정
### 1. Stripe 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Stripe**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 결제 처리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **고객 관리**

View File

@@ -17,6 +17,38 @@ Zendesk 통합을 사용하기 전에 다음을 확인하세요.
- 적절한 API 권한이 있는 Zendesk 계정
- [통합 페이지](https://app.crewai.com/integrations)를 통해 Zendesk 계정 연결
## Zendesk 통합 설정
### 1. Zendesk 계정 연결
1. [CrewAI AMP 통합](https://app.crewai.com/crewai_plus/connectors)으로 이동합니다.
2. 인증 통합 섹션에서 **Zendesk**를 찾습니다.
3. **연결**을 클릭하고 OAuth 과정을 완료합니다.
4. 티켓 및 사용자 관리에 필요한 권한을 부여합니다.
5. [통합 설정](https://app.crewai.com/crewai_plus/settings/integrations)에서 Enterprise Token을 복사합니다.
### 2. 필수 패키지 설치
```bash
uv add crewai-tools
```
### 3. 환경 변수 설정
<Note>
`Agent(apps=[])`와 함께 통합을 사용하려면 Enterprise Token으로 `CREWAI_PLATFORM_INTEGRATION_TOKEN` 환경 변수를 설정해야 합니다.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
또는 `.env` 파일에 추가하세요:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
## 사용 가능한 도구
### **티켓 관리**

View File

@@ -0,0 +1,109 @@
---
title: Datadog 통합
description: Datadog을 CrewAI와 통합하여 LLM Observability 트레이스들을 Datadog에 제출하는 방법을 알아보세요.
icon: dog
mode: "wide"
---
# Datadog을 CrewAI와 통합하기
이 가이드에서는 Datadog 자동 계측을 사용하여 **Datadog**을 **CrewAI**와 통합하는 방법을 보여드립니다. 이 가이드가 끝나면 LLM Observability 트레이스를 Datadog에 제출하고 CrewAI 에이전트 실행을 Datadog LLM Observability의 에이전트 실행 보기에서 볼 수 있게 됩니다.
## Datadog LLM Observability란 무엇인가요?
[Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)는 AI 엔지니어, 데이터 과학자, 애플리케이션 개발자가 LLM 애플리케이션을 신속하게 개발, 평가, 모니터링할 수 있도록 도와줍니다. 구조화된 실험, AI 에이전트 전반의 엔드투엔드 추적, 평가를 통해 결과물 품질, 성능, 비용, 전반적인 위험을 확실하게 개선할 수 있습니다.
## 시작하기
### 설치 종속성
```shell
pip install ddtrace crewai crewai-tools
```
### 환경 변수 설정하기
Datadog API 키가 없는 경우, [계정 만들기](https://www.datadoghq.com/) 및 [API 키 받기](https://docs.datadoghq.com/account_management/api-app-keys/#api-keys)를 할 수 있습니다.
또한 다음 환경 변수에 ML 애플리케이션 이름을 지정해야 합니다. ML 애플리케이션은 특정 LLM 기반 애플리케이션과 관련된 LLM Observability 트레이스의 그룹입니다. ML 애플리케이션 이름 제한에 대한 자세한 내용은 [ML 애플리케이션 이름 지정 가이드라인](https://docs.datadoghq.com/llm_observability/instrumentation/sdk?tab=python#application-naming-guidelines)을 참조하세요.
```shell
export DD_API_KEY=<YOUR_DD_API_KEY>
export DD_SITE=<YOUR_DD_SITE>
export DD_LLMOBS_ENABLED=true
export DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
export DD_LLMOBS_AGENTLESS_ENABLED=true
export DD_APM_TRACING_ENABLED=false
```
또한 LLM 공급자 API 키를 설정합니다.
```shell
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>
export GEMINI_API_KEY=<YOUR_GEMINI_API_KEY>
...
```
### 크루AI 에이전트 애플리케이션 생성하기
```python
# crewai_agent.py
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="작가",
goal="시를 통해 어린이들이 수학을 흥미롭고 이해하기 쉽게 설명합니다",
backstory="당신은 하이쿠를 쓰는 전문가이지만 수학은 전혀 모릅니다.",
tools=[web_rag_tool],
)
task = Task(
description=("{곱셈}이란 무엇인가요?"),
expected_output=("답을 포함하는 하이쿠를 작성하세요."),
agent=writer
)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
output = crew.kickoff(dict(곱셈="2 * 2"))
```
### Datadog 자동 계측을 사용하여 애플리케이션 실행하기
[환경 변수](#환경-변수-설정하기)를 설정하면 이제 Datadog 자동 계측을 통해 애플리케이션을 실행할 수 있습니다.
```shell
ddtrace-run python crewai_agent.py
```
### Datadog에서 트레이스 추적하기
애플리케이션을 실행한 후 왼쪽 상단 드롭다운에서 선택한 ML 애플리케이션 이름을 선택하면 [Datadog LLM Observability의 트레이스 보기](https://app.datadoghq.com/llm/traces)에서 트레이스들을 확인할 수 있습니다.
트레이스를 클릭하면 사용된 총 토큰, LLM 호출 수, 사용된 모델, 예상 비용 등 트레이스에 대한 세부 정보가 표시됩니다. 특정 스팬(span)을 클릭하면 이러한 세부 정보의 범위가 좁혀지고 관련 입력, 출력 및 메타데이터가 표시됩니다.
<Frame>
<img src="/images/datadog-llm-observability-1.png" alt="Datadog LLM 옵저버빌리티 추적 보기" />
</Frame>
또한, 트레이스의 제어 및 데이터 흐름을 보여주는 트레이스의 실행 그래프 보기를 볼 수 있으며, 이는 더 큰 에이전트로 확장하여 LLM 호출, 도구 호출 및 에이전트 상호 작용 간의 핸드오프와 관계를 보여줍니다.
<Frame>
<img src="/images/datadog-llm-observability-2.png" alt="Datadog LLM Observability 에이전트 실행 흐름 보기" />
</Frame>
## 참조
- [Datadog LLM Observability](https://www.datadoghq.com/product/llm-observability/)
- [Datadog LLM 옵저버빌리티 크루AI 자동 계측](https://docs.datadoghq.com/llm_observability/instrumentation/auto_instrumentation?tab=python#crew-ai)

View File

@@ -23,13 +23,15 @@ uv add qdrant-client
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# Initialize the tool
# QdrantConfig로 도구 초기화
qdrant_tool = QdrantVectorSearchTool(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
qdrant_config=QdrantConfig(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
)
# Create an agent that uses the tool
@@ -82,7 +84,7 @@ def extract_text_from_pdf(pdf_path):
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-small"
model="text-embedding-3-large"
)
return response.data[0].embedding
@@ -90,13 +92,13 @@ def get_openai_embedding(text):
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
vectors_config=VectorParams(size=3072, distance=Distance.COSINE)
)
# Store embeddings
@@ -120,19 +122,23 @@ pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
from crewai_tools import QdrantConfig
qdrant_tool = QdrantVectorSearchTool(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
qdrant_config=QdrantConfig(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
@@ -141,7 +147,7 @@ search_agent = Agent(
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
@@ -180,21 +186,82 @@ print(result)
## 도구 매개변수
### 필수 파라미터
- `qdrant_url` (str): Qdrant 서버의 URL
- `qdrant_api_key` (str): Qdrant 인증을 위한 API 키
- `collection_name` (str): 검색할 Qdrant 컬렉션의 이름
- `qdrant_config` (QdrantConfig): 모든 Qdrant 설정을 포함하는 구성 객체
### 선택적 매개변수
### QdrantConfig 매개변수
- `qdrant_url` (str): Qdrant 서버의 URL
- `qdrant_api_key` (str, 선택 사항): Qdrant 인증을 위한 API 키
- `collection_name` (str): 검색할 Qdrant 컬렉션의 이름
- `limit` (int): 반환할 최대 결과 수 (기본값: 3)
- `score_threshold` (float): 최소 유사도 점수 임계값 (기본값: 0.35)
- `filter` (Any, 선택 사항): 고급 필터링을 위한 Qdrant Filter 인스턴스 (기본값: None)
### 선택적 도구 매개변수
- `custom_embedding_fn` (Callable[[str], list[float]]): 텍스트 벡터화를 위한 사용자 지정 함수
- `qdrant_package` (str): Qdrant의 기본 패키지 경로 (기본값: "qdrant_client")
- `client` (Any): 사전 초기화된 Qdrant 클라이언트 (선택 사항)
## 고급 필터링
QdrantVectorSearchTool은 검색 결과를 세밀하게 조정할 수 있는 강력한 필터링 기능을 지원합니다:
### 동적 필터링
검색 시 `filter_by` 및 `filter_value` 매개변수를 사용하여 즉석에서 결과를 필터링할 수 있습니다:
```python
# 에이전트는 도구를 호출할 때 이러한 매개변수를 사용합니다
# 도구 스키마는 filter_by 및 filter_value를 허용합니다
# 예시: 카테고리 필터를 사용한 검색
# 결과는 category == "기술"인 항목으로 필터링됩니다
```
### QdrantConfig를 사용한 사전 설정 필터
복잡한 필터링의 경우 구성에서 Qdrant Filter 인스턴스를 사용하세요:
```python
from qdrant_client.http import models as qmodels
from crewai_tools import QdrantVectorSearchTool, QdrantConfig
# 특정 조건에 대한 필터 생성
preset_filter = qmodels.Filter(
must=[
qmodels.FieldCondition(
key="category",
match=qmodels.MatchValue(value="research")
),
qmodels.FieldCondition(
key="year",
match=qmodels.MatchValue(value=2024)
)
]
)
# 사전 설정 필터로 도구 초기화
qdrant_tool = QdrantVectorSearchTool(
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
filter=preset_filter # 모든 검색에 적용되는 사전 설정 필터
)
)
```
### 필터 결합
도구는 `QdrantConfig`의 사전 설정 필터와 `filter_by` 및 `filter_value`의 동적 필터를 자동으로 결합합니다:
```python
# QdrantConfig에 category="research"에 대한 사전 설정 필터가 있고
# 검색에서 filter_by="year", filter_value=2024를 사용하는 경우
# 두 필터가 모두 결합됩니다 (AND 논리)
```
## 검색 매개변수
이 도구는 스키마에서 다음과 같은 매개변수를 허용합니다:
- `query` (str): 유사한 문서를 찾기 위한 검색 쿼리
- `filter_by` (str, 선택 사항): 필터링할 메타데이터 필드
- `filter_value` (str, 선택 사항): 필터 기준 값
- `filter_value` (Any, 선택 사항): 필터 기준 값
## 반환 형식
@@ -214,7 +281,7 @@ print(result)
## 기본 임베딩
기본적으로, 이 도구는 벡터화를 위해 OpenAI의 `text-embedding-3-small` 모델을 사용합니다. 이를 위해서는 다음이 필요합니다:
기본적으로, 이 도구는 벡터화를 위해 OpenAI의 `text-embedding-3-large` 모델을 사용합니다. 이를 위해서는 다음이 필요합니다:
- 환경변수에 설정된 OpenAI API 키: `OPENAI_API_KEY`
## 커스텀 임베딩
@@ -240,18 +307,22 @@ def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
from crewai_tools import QdrantConfig
tool = QdrantVectorSearchTool(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
qdrant_config=QdrantConfig(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection"
),
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
@@ -270,4 +341,4 @@ tool = QdrantVectorSearchTool(
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings
```
```

View File

@@ -54,25 +54,25 @@ tool = CSVSearchTool()
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 사용자 지정하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = CSVSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -46,23 +46,25 @@ tool = DirectorySearchTool(directory='/path/to/directory')
DirectorySearchTool은 기본적으로 OpenAI를 사용하여 임베딩 및 요약을 수행합니다. 이 설정의 커스터마이즈 옵션에는 모델 공급자 및 구성을 변경하는 것이 포함되어 있어, 고급 사용자를 위한 유연성을 향상시킵니다.
```python Code
from chromadb.config import Settings
tool = DirectorySearchTool(
config=dict(
llm=dict(
provider="ollama", # Options include ollama, google, anthropic, llama2, and more
config=dict(
model="llama2",
# Additional configurations here
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -56,25 +56,25 @@ tool = DOCXSearchTool(docx='path/to/your/document.docx')
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = DOCXSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -48,27 +48,25 @@ tool = MDXSearchTool(mdx='path/to/your/document.mdx')
이 도구는 기본적으로 임베딩과 요약을 위해 OpenAI를 사용합니다. 커스터마이징을 위해 아래와 같이 설정 딕셔너리를 사용할 수 있습니다.
```python Code
from chromadb.config import Settings
tool = MDXSearchTool(
config=dict(
llm=dict(
provider="ollama", # 옵션에는 google, openai, anthropic, llama2 등이 있습니다.
config=dict(
model="llama2",
# 선택적 파라미터를 여기에 포함할 수 있습니다.
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # 또는 openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# 임베딩에 대한 선택적 제목을 여기에 추가할 수 있습니다.
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -45,28 +45,60 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
## 커스텀 모델 및 임베딩
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이즈하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다. 참고: 임베딩은 벡터DB에 저장되어야 하므로 vectordb 설정이 필요합니다.
```python Code
from crewai_tools import PDFSearchTool
from chromadb.config import Settings # Chroma 영속성 설정
tool = PDFSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
# 필수: 임베딩 제공자와 설정
"embedding_model": {
# 사용 가능 공급자: "openai", "azure", "google-generativeai", "google-vertex",
# "voyageai", "cohere", "huggingface", "jina", "sentence-transformer",
# "text2vec", "ollama", "openclip", "instructor", "onnx", "roboflow", "watsonx", "custom"
"provider": "openai",
"config": {
# "model" 키는 내부적으로 "model_name"으로 매핑됩니다.
"model": "text-embedding-3-small",
# 선택: API 키 (미설정 시 환경변수 사용)
# "api_key": "sk-...",
# 공급자별 예시
# --- Google ---
# (provider를 "google-generativeai"로 설정)
# "model": "models/embedding-001",
# "task_type": "retrieval_document",
# --- Cohere ---
# (provider를 "cohere"로 설정)
# "model": "embed-english-v3.0",
# --- Ollama(로컬) ---
# (provider를 "ollama"로 설정)
# "model": "nomic-embed-text",
},
},
# 필수: 벡터DB 설정
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# Chroma 설정 예시
# "settings": Settings(
# persist_directory="/content/chroma",
# allow_reset=True,
# is_persistent=True,
# ),
# Qdrant 설정 예시
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# 참고: 컬렉션 이름은 도구에서 관리합니다(기본값: "rag_tool_collection").
}
},
}
)
```

View File

@@ -57,25 +57,34 @@ tool = TXTSearchTool(txt='path/to/text/file.txt')
모델을 커스터마이징하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다:
```python Code
from chromadb.config import Settings
tool = TXTSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
# 필수: 임베딩 제공자 + 설정
"embedding_model": {
"provider": "openai", # 또는 google-generativeai, cohere, ollama 등
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...", # 환경변수 사용 시 생략 가능
# 공급자별 예시: Google → model: "models/embedding-001", task_type: "retrieval_document"
},
},
# 필수: 벡터DB 설정
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# Chroma 설정(영속성 예시)
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# Qdrant 벡터 파라미터 예시:
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
# 참고: 컬렉션 이름은 도구에서 관리합니다(기본값: "rag_tool_collection").
}
},
}
)
```

View File

@@ -54,25 +54,25 @@ tool = XMLSearchTool(xml='path/to/your/xmlfile.xml')
기본적으로 이 도구는 임베딩과 요약 모두에 OpenAI를 사용합니다. 모델을 커스터마이징하려면 다음과 같이 config 딕셔너리를 사용할 수 있습니다.
```python Code
from chromadb.config import Settings
tool = XMLSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
config={
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
# "api_key": "sk-...",
},
},
"vectordb": {
"provider": "chromadb", # 또는 "qdrant"
"config": {
# "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
# from qdrant_client.models import VectorParams, Distance
# "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
}
},
}
)
```

View File

@@ -33,6 +33,22 @@ Antes de usar a integração com o Asana, assegure-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de utilizar a integração com o ClickUp, certifique-se de que você possu
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração com o Gmail, certifique-se de que você possui:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração com o Google Calendar, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Google Contacts, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Google Docs, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Google Drive, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
Para informações detalhadas sobre parâmetros e uso, consulte a [documentação em inglês](../../../en/enterprise/integrations/google_drive).

View File

@@ -34,6 +34,22 @@ Antes de utilizar a integração com o Google Sheets, certifique-se de que você
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Google Slides, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de utilizar a integração com o HubSpot, certifique-se de que você possu
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de utilizar a integração com o Linear, certifique-se de que você possui
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft Excel, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft OneDrive, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft Outlook, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft SharePoint, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft Teams, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração Microsoft Word, certifique-se de ter:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -33,6 +33,22 @@ Antes de usar a integração com o Notion, certifique-se de que você tem:
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ações Disponíveis
<AccordionGroup>

View File

@@ -17,6 +17,38 @@ Antes de usar a integração Salesforce, certifique-se de que você possui:
- Uma conta Salesforce com permissões apropriadas
- Sua conta Salesforce conectada via a [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Salesforce
### 1. Conecte sua Conta Salesforce
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Salesforce** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para gerenciamento de CRM e vendas
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Registros**

View File

@@ -17,6 +17,38 @@ Antes de utilizar a integração com o Shopify, certifique-se de que você possu
- Uma loja Shopify com permissões administrativas adequadas
- Sua loja Shopify conectada através da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Shopify
### 1. Conecte sua Loja Shopify
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Shopify** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para gerenciamento de loja e produtos
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Clientes**

View File

@@ -17,6 +17,38 @@ Antes de usar a integração com o Slack, certifique-se de que você tenha:
- Um workspace do Slack com permissões apropriadas
- Seu workspace do Slack conectado por meio da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Slack
### 1. Conecte seu Workspace do Slack
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Slack** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para comunicação em equipe
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Usuários**

View File

@@ -17,6 +17,38 @@ Antes de usar a integração com o Stripe, certifique-se de que você tem:
- Uma conta Stripe com permissões apropriadas de API
- Sua conta Stripe conectada através da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Stripe
### 1. Conecte sua Conta Stripe
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Stripe** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para processamento de pagamentos
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Clientes**

View File

@@ -17,6 +17,38 @@ Antes de usar a integração com o Zendesk, certifique-se de que você possui:
- Uma conta Zendesk com permissões apropriadas de API
- Sua conta Zendesk conectada através da [página de Integrações](https://app.crewai.com/integrations)
## Configurando a Integração Zendesk
### 1. Conecte sua Conta Zendesk
1. Acesse [CrewAI AMP Integrações](https://app.crewai.com/crewai_plus/connectors)
2. Encontre **Zendesk** na seção Integrações de Autenticação
3. Clique em **Conectar** e complete o fluxo OAuth
4. Conceda as permissões necessárias para gerenciamento de tickets e usuários
5. Copie seu Token Enterprise em [Configurações de Integração](https://app.crewai.com/crewai_plus/settings/integrations)
### 2. Instale o Pacote Necessário
```bash
uv add crewai-tools
```
### 3. Configuração de variável de ambiente
<Note>
Para usar integrações com `Agent(apps=[])`, você deve definir a variável de ambiente `CREWAI_PLATFORM_INTEGRATION_TOKEN` com seu Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="seu_enterprise_token"
```
Ou adicione ao seu arquivo `.env`:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=seu_enterprise_token
```
## Ferramentas Disponíveis
### **Gerenciamento de Tickets**

Some files were not shown because too many files have changed in this diff Show More