mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Compare commits
12 Commits
1.2.0
...
brandon/cr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
84bb5be5f5 | ||
|
|
40248aadec | ||
|
|
9a41206a0d | ||
|
|
9790fb54ee | ||
|
|
40f6bdbea1 | ||
|
|
a9eaf63c34 | ||
|
|
b747d66c52 | ||
|
|
7c7c3f88ad | ||
|
|
534477bc6f | ||
|
|
6b3c5d28e2 | ||
|
|
15fa69a7e1 | ||
|
|
775fea180b |
@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
|
||||
|
||||
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
|
||||
|
||||
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
|
||||
|
||||
```python Code
|
||||
### Passing Inputs to Flows
|
||||
|
||||
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
|
||||
|
||||
#### Structured State Management
|
||||
|
||||
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from dotenv import load_dotenv
|
||||
from litellm import completion
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
class ExampleFlow(Flow):
|
||||
model = "gpt-4o-mini"
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
@start()
|
||||
def generate_city(self):
|
||||
print("Starting flow")
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Return the name of a random city in the world.",
|
||||
},
|
||||
],
|
||||
)
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 10})
|
||||
```
|
||||
|
||||
random_city = response["choices"][0]["message"]["content"]
|
||||
print(f"Random City: {random_city}")
|
||||
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
|
||||
|
||||
return random_city
|
||||
#### Unstructured State Management
|
||||
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
response = completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Tell me a fun fact about {random_city}",
|
||||
},
|
||||
],
|
||||
)
|
||||
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
|
||||
|
||||
fun_fact = response["choices"][0]["message"]["content"]
|
||||
return fun_fact
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
@start()
|
||||
def first_method(self):
|
||||
# Implementation
|
||||
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
|
||||
```
|
||||
|
||||
flow = ExampleFlow()
|
||||
result = flow.kickoff()
|
||||
Here, both `counter` and `message` are updated based on the provided inputs.
|
||||
|
||||
print(f"Generated fun fact: {result}")
|
||||
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
|
||||
|
||||
### Example Flow
|
||||
|
||||
```python
|
||||
# Existing example code
|
||||
```
|
||||
|
||||
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
|
||||
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
|
||||
|
||||
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
@listen("generate_city")
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
```
|
||||
|
||||
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
|
||||
```python Code
|
||||
```python
|
||||
@listen(generate_city)
|
||||
def generate_fun_fact(self, random_city):
|
||||
# Implementation
|
||||
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
|
||||
Here's how you can access the final output:
|
||||
|
||||
<CodeGroup>
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class OutputExampleFlow(Flow):
|
||||
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
|
||||
def second_method(self, first_output):
|
||||
return f"Second method received: {first_output}"
|
||||
|
||||
|
||||
flow = OutputExampleFlow()
|
||||
final_output = flow.kickoff()
|
||||
|
||||
print("---- Final Output ----")
|
||||
print(final_output)
|
||||
````
|
||||
```
|
||||
|
||||
``` text Output
|
||||
```text
|
||||
---- Final Output ----
|
||||
Second method received: Output from first_method
|
||||
````
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -184,7 +186,7 @@ print("Final State:")
|
||||
print(flow.state)
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Final Output: Hello from first_method - updated by second_method
|
||||
Final State:
|
||||
counter=2 message='Hello from first_method - updated by second_method'
|
||||
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
|
||||
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
|
||||
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
class UntructuredExampleFlow(Flow):
|
||||
class UnstructuredExampleFlow(Flow):
|
||||
|
||||
@start()
|
||||
def first_method(self):
|
||||
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = UntructuredExampleFlow()
|
||||
flow = UnstructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
@@ -245,16 +246,14 @@ flow.kickoff()
|
||||
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
|
||||
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ExampleState(BaseModel):
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
@start()
|
||||
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
|
||||
|
||||
print(f"State after third_method: {self.state}")
|
||||
|
||||
|
||||
flow = StructuredExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, or_, start
|
||||
|
||||
class OrExampleFlow(Flow):
|
||||
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
|
||||
def logger(self, result):
|
||||
print(f"Logger: {result}")
|
||||
|
||||
|
||||
|
||||
flow = OrExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Logger: Hello from the start method
|
||||
Logger: Hello from the second method
|
||||
```
|
||||
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
from crewai.flow.flow import Flow, and_, listen, start
|
||||
|
||||
class AndExampleFlow(Flow):
|
||||
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
---- Logger ----
|
||||
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
|
||||
```
|
||||
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python Code
|
||||
```python
|
||||
import random
|
||||
from crewai.flow.flow import Flow, listen, router, start
|
||||
from pydantic import BaseModel
|
||||
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
|
||||
def fourth_method(self):
|
||||
print("Fourth method running")
|
||||
|
||||
|
||||
flow = RouterFlow()
|
||||
flow.kickoff()
|
||||
```
|
||||
|
||||
```text Output
|
||||
```text
|
||||
Starting the structured flow
|
||||
Third method running
|
||||
Fourth method running
|
||||
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
|
||||
|
||||
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
|
||||
|
||||
```python Code
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
from random import randint
|
||||
|
||||
@@ -612,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
|
||||
|
||||
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
|
||||
|
||||
```python Code
|
||||
```python
|
||||
# Assuming you have a flow instance
|
||||
flow.plot("my_flow_plot")
|
||||
```
|
||||
|
||||
@@ -8,6 +8,7 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
@@ -131,8 +132,12 @@ class Agent(BaseAgent):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# If it's None, use environment variables or default
|
||||
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
|
||||
# Determine the model name from environment variables or use default
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or "gpt-4o-mini"
|
||||
)
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
@@ -141,9 +146,39 @@ class Agent(BaseAgent):
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
# Iterate over all environment variables to find matching API keys or use defaults
|
||||
for provider, env_vars in ENV_VARS.items():
|
||||
for env_var in env_vars:
|
||||
# Check if the environment variable is set
|
||||
if "key_name" in env_var:
|
||||
env_value = os.environ.get(env_var["key_name"])
|
||||
if env_value:
|
||||
# Map key names containing "API_KEY" to "api_key"
|
||||
key_name = (
|
||||
"api_key"
|
||||
if "API_KEY" in env_var["key_name"]
|
||||
else env_var["key_name"]
|
||||
)
|
||||
# Map key names containing "API_BASE" to "api_base"
|
||||
key_name = (
|
||||
"api_base"
|
||||
if "API_BASE" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
# Map key names containing "API_VERSION" to "api_version"
|
||||
key_name = (
|
||||
"api_version"
|
||||
if "API_VERSION" in env_var["key_name"]
|
||||
else key_name
|
||||
)
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
for key, value in env_var.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
# Only add default if the key is already set in os.environ
|
||||
if key in os.environ:
|
||||
llm_params[key] = value
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
|
||||
@@ -1,19 +1,168 @@
|
||||
ENV_VARS = {
|
||||
'openai': ['OPENAI_API_KEY'],
|
||||
'anthropic': ['ANTHROPIC_API_KEY'],
|
||||
'gemini': ['GEMINI_API_KEY'],
|
||||
'groq': ['GROQ_API_KEY'],
|
||||
'ollama': ['FAKE_KEY'],
|
||||
"openai": [
|
||||
{
|
||||
"prompt": "Enter your OPENAI API key (press Enter to skip)",
|
||||
"key_name": "OPENAI_API_KEY",
|
||||
}
|
||||
],
|
||||
"anthropic": [
|
||||
{
|
||||
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
|
||||
"key_name": "ANTHROPIC_API_KEY",
|
||||
}
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
"groq": [
|
||||
{
|
||||
"prompt": "Enter your GROQ API key (press Enter to skip)",
|
||||
"key_name": "GROQ_API_KEY",
|
||||
}
|
||||
],
|
||||
"watson": [
|
||||
{
|
||||
"prompt": "Enter your WATSONX URL (press Enter to skip)",
|
||||
"key_name": "WATSONX_URL",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
|
||||
"key_name": "WATSONX_APIKEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
|
||||
"key_name": "WATSONX_PROJECT_ID",
|
||||
},
|
||||
],
|
||||
"ollama": [
|
||||
{
|
||||
"default": True,
|
||||
"API_BASE": "http://localhost:11434",
|
||||
}
|
||||
],
|
||||
"bedrock": [
|
||||
{
|
||||
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
|
||||
"key_name": "AWS_ACCESS_KEY_ID",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
|
||||
"key_name": "AWS_SECRET_ACCESS_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AWS Region Name (press Enter to skip)",
|
||||
"key_name": "AWS_REGION_NAME",
|
||||
},
|
||||
],
|
||||
"azure": [
|
||||
{
|
||||
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API key (press Enter to skip)",
|
||||
"key_name": "AZURE_API_KEY",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
|
||||
"key_name": "AZURE_API_BASE",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your AZURE API version (press Enter to skip)",
|
||||
"key_name": "AZURE_API_VERSION",
|
||||
},
|
||||
],
|
||||
"cerebras": [
|
||||
{
|
||||
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
|
||||
"key_name": "model",
|
||||
},
|
||||
{
|
||||
"prompt": "Enter your Cerebras API version (press Enter to skip)",
|
||||
"key_name": "CEREBRAS_API_KEY",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
|
||||
|
||||
PROVIDERS = [
|
||||
"openai",
|
||||
"anthropic",
|
||||
"gemini",
|
||||
"groq",
|
||||
"ollama",
|
||||
"watson",
|
||||
"bedrock",
|
||||
"azure",
|
||||
"cerebras",
|
||||
]
|
||||
|
||||
MODELS = {
|
||||
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
|
||||
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
|
||||
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
|
||||
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
|
||||
'ollama': ['llama3.1', 'mixtral'],
|
||||
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
|
||||
"anthropic": [
|
||||
"claude-3-5-sonnet-20240620",
|
||||
"claude-3-sonnet-20240229",
|
||||
"claude-3-opus-20240229",
|
||||
"claude-3-haiku-20240307",
|
||||
],
|
||||
"gemini": [
|
||||
"gemini/gemini-1.5-flash",
|
||||
"gemini/gemini-1.5-pro",
|
||||
"gemini/gemini-gemma-2-9b-it",
|
||||
"gemini/gemini-gemma-2-27b-it",
|
||||
],
|
||||
"groq": [
|
||||
"groq/llama-3.1-8b-instant",
|
||||
"groq/llama-3.1-70b-versatile",
|
||||
"groq/llama-3.1-405b-reasoning",
|
||||
"groq/gemma2-9b-it",
|
||||
"groq/gemma-7b-it",
|
||||
],
|
||||
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
|
||||
"watson": [
|
||||
"watsonx/google/flan-t5-xxl",
|
||||
"watsonx/google/flan-ul2",
|
||||
"watsonx/bigscience/mt0-xxl",
|
||||
"watsonx/eleutherai/gpt-neox-20b",
|
||||
"watsonx/ibm/mpt-7b-instruct2",
|
||||
"watsonx/bigcode/starcoder",
|
||||
"watsonx/meta-llama/llama-2-70b-chat",
|
||||
"watsonx/meta-llama/llama-2-13b-chat",
|
||||
"watsonx/ibm/granite-13b-instruct-v1",
|
||||
"watsonx/ibm/granite-13b-chat-v1",
|
||||
"watsonx/google/flan-t5-xl",
|
||||
"watsonx/ibm/granite-13b-chat-v2",
|
||||
"watsonx/ibm/granite-13b-instruct-v2",
|
||||
"watsonx/elyza/elyza-japanese-llama-2-7b-instruct",
|
||||
"watsonx/ibm-mistralai/mixtral-8x7b-instruct-v01-q",
|
||||
],
|
||||
"bedrock": [
|
||||
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
||||
"bedrock/anthropic.claude-v2:1",
|
||||
"bedrock/anthropic.claude-v2",
|
||||
"bedrock/anthropic.claude-instant-v1",
|
||||
"bedrock/meta.llama3-1-405b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-1-8b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-70b-instruct-v1:0",
|
||||
"bedrock/meta.llama3-8b-instruct-v1:0",
|
||||
"bedrock/amazon.titan-text-lite-v1",
|
||||
"bedrock/amazon.titan-text-express-v1",
|
||||
"bedrock/cohere.command-text-v14",
|
||||
"bedrock/ai21.j2-mid-v1",
|
||||
"bedrock/ai21.j2-ultra-v1",
|
||||
"bedrock/ai21.jamba-instruct-v1:0",
|
||||
"bedrock/meta.llama2-13b-chat-v1",
|
||||
"bedrock/meta.llama2-70b-chat-v1",
|
||||
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
||||
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
||||
],
|
||||
}
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
from crewai.cli.constants import ENV_VARS
|
||||
from crewai.cli.constants import ENV_VARS, MODELS
|
||||
from crewai.cli.provider import (
|
||||
PROVIDERS,
|
||||
get_provider_data,
|
||||
select_model,
|
||||
select_provider,
|
||||
@@ -29,20 +29,20 @@ def create_folder_structure(name, parent_folder=None):
|
||||
click.secho("Operation cancelled.", fg="yellow")
|
||||
sys.exit(0)
|
||||
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
|
||||
else:
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
shutil.rmtree(folder_path) # Delete the existing folder and its contents
|
||||
|
||||
if not folder_path.exists():
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
click.secho(
|
||||
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
|
||||
fg="green",
|
||||
bold=True,
|
||||
)
|
||||
|
||||
folder_path.mkdir(parents=True)
|
||||
(folder_path / "tests").mkdir(exist_ok=True)
|
||||
if not parent_folder:
|
||||
(folder_path / "src" / folder_name).mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
|
||||
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
|
||||
|
||||
return folder_path, folder_name, class_name
|
||||
|
||||
@@ -92,7 +92,10 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
|
||||
existing_provider = None
|
||||
for provider, env_keys in ENV_VARS.items():
|
||||
if any(key in env_vars for key in env_keys):
|
||||
if any(
|
||||
"key_name" in details and details["key_name"] in env_vars
|
||||
for details in env_keys
|
||||
):
|
||||
existing_provider = provider
|
||||
break
|
||||
|
||||
@@ -118,47 +121,48 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
|
||||
"No provider selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.", fg="red"
|
||||
)
|
||||
# Check if the selected provider has predefined models
|
||||
if selected_provider in MODELS and MODELS[selected_provider]:
|
||||
while True:
|
||||
selected_model = select_model(selected_provider, provider_models)
|
||||
if selected_model is None: # User typed 'q'
|
||||
click.secho("Exiting...", fg="yellow")
|
||||
sys.exit(0)
|
||||
if selected_model: # Valid selection
|
||||
break
|
||||
click.secho(
|
||||
"No model selected. Please try again or press 'q' to exit.",
|
||||
fg="red",
|
||||
)
|
||||
env_vars["MODEL"] = selected_model
|
||||
|
||||
if selected_provider in PROVIDERS:
|
||||
api_key_var = ENV_VARS[selected_provider][0]
|
||||
else:
|
||||
api_key_var = click.prompt(
|
||||
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
|
||||
type=str,
|
||||
default="",
|
||||
)
|
||||
# Check if the selected provider requires API keys
|
||||
if selected_provider in ENV_VARS:
|
||||
provider_env_vars = ENV_VARS[selected_provider]
|
||||
for details in provider_env_vars:
|
||||
if details.get("default", False):
|
||||
# Automatically add default key-value pairs
|
||||
for key, value in details.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
env_vars[key] = value
|
||||
elif "key_name" in details:
|
||||
# Prompt for non-default key-value pairs
|
||||
prompt = details["prompt"]
|
||||
key_name = details["key_name"]
|
||||
api_key_value = click.prompt(prompt, default="", show_default=False)
|
||||
|
||||
api_key_value = ""
|
||||
click.echo(
|
||||
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
|
||||
nl=False,
|
||||
)
|
||||
try:
|
||||
api_key_value = input()
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
api_key_value = ""
|
||||
if api_key_value.strip():
|
||||
env_vars[key_name] = api_key_value
|
||||
|
||||
if api_key_value.strip():
|
||||
env_vars = {api_key_var: api_key_value}
|
||||
if env_vars:
|
||||
write_env_file(folder_path, env_vars)
|
||||
click.secho("API key saved to .env file", fg="green")
|
||||
click.secho("API keys and model saved to .env file", fg="green")
|
||||
else:
|
||||
click.secho(
|
||||
"No API key provided. Skipping .env file creation.", fg="yellow"
|
||||
"No API keys provided. Skipping .env file creation.", fg="yellow"
|
||||
)
|
||||
|
||||
env_vars["MODEL"] = selected_model
|
||||
click.secho(f"Selected model: {selected_model}", fg="green")
|
||||
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates" / "crew"
|
||||
|
||||
@@ -48,4 +48,4 @@ class {{crew_name}}Crew():
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,7 +1,11 @@
|
||||
#!/usr/bin/env python
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from {{folder_name}}.crew import {{crew_name}}Crew
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
# This main file is intended to be a way for you to run your
|
||||
# crew locally, so refrain from adding unnecessary logic into this file.
|
||||
# Replace with inputs you want to test with, it will automatically
|
||||
|
||||
@@ -1,8 +1,20 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Generic,
|
||||
List,
|
||||
Optional,
|
||||
Set,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
@@ -191,10 +203,66 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Returns the list of all outputs from executed methods."""
|
||||
return self._method_outputs
|
||||
|
||||
def kickoff(self) -> Any:
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
try:
|
||||
M = self._state.__class__
|
||||
|
||||
# Dynamically create a new model class with 'extra' set to 'forbid'
|
||||
class ModelWithExtraForbid(M):
|
||||
model_config = M.model_config.copy()
|
||||
model_config["extra"] = "forbid"
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self) -> Any:
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user