Compare commits

..

1 Commits

Author SHA1 Message Date
Lucas Gomide
ccd98cc511 docs: update Python version requirement from <=3.13 to <3.14
This correctly reflects support for all 3.13.x patch version
2025-06-10 13:36:36 -03:00
1942 changed files with 35404 additions and 247007 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,46 +0,0 @@
name: Build uv cache
on:
push:
branches:
- main
paths:
- "uv.lock"
- "pyproject.toml"
workflow_dispatch:
permissions:
contents: read
jobs:
build-cache:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies and populate cache
run: |
echo "Building global UV cache for Python ${{ matrix.python-version }}..."
uv sync --all-groups --all-extras --no-install-project
echo "Cache populated successfully"
- name: Save uv caches
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

View File

@@ -1,102 +0,0 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL Advanced"
on:
push:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
jobs:
analyze:
name: Analyze (${{ matrix.language }})
# Runner size impacts CodeQL analysis time. To learn more, please see:
# - https://gh.io/recommended-hardware-resources-for-running-codeql
# - https://gh.io/supported-runners-and-hardware-resources
# - https://gh.io/using-larger-runners (GitHub.com only)
# Consider using larger runners or machines with greater resources for possible analysis time improvements.
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') || 'ubuntu-latest' }}
permissions:
# required for all workflows
security-events: write
# required to fetch internal or private CodeQL packs
packages: read
# only required for workflows in private repositories
actions: read
contents: read
strategy:
fail-fast: false
matrix:
include:
- language: actions
build-mode: none
- language: python
build-mode: none
# CodeQL supports the following values keywords for 'language': 'actions', 'c-cpp', 'csharp', 'go', 'java-kotlin', 'javascript-typescript', 'python', 'ruby', 'rust', 'swift'
# Use `c-cpp` to analyze code written in C, C++ or both
# Use 'java-kotlin' to analyze code written in Java, Kotlin or both
# Use 'javascript-typescript' to analyze code written in JavaScript, TypeScript or both
# To learn more about changing the languages that are analyzed or customizing the build mode for your analysis,
# see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/customizing-your-advanced-setup-for-code-scanning.
# If you are analyzing a compiled language, you can modify the 'build-mode' for that language to customize how
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Add any setup steps before running the `github/codeql-action/init` action.
# This includes steps like installing compilers or runtimes (`actions/setup-node`
# or others). This is typically only required for manual builds.
# - name: Setup runtime (example)
# uses: actions/setup-example@v1
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# For more details on CodeQL's query packs, refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# If the analyze step fails for one of the languages you are analyzing with
# "We were unable to automatically build your code", modify the matrix above
# to set the build mode to "manual" for that language. Then modify this step
# to build your code.
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
- if: matrix.build-mode == 'manual'
shell: bash
run: |
echo 'If you are using a "manual" build mode for one or more of the' \
'languages you are analyzing, replace this with the commands to build' \
'your code, for example:'
echo ' make bootstrap'
echo ' make release'
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -2,9 +2,6 @@ name: Lint
on: [pull_request]
permissions:
contents: read
jobs:
lint:
runs-on: ubuntu-latest
@@ -18,27 +15,8 @@ jobs:
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py3.11-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.11"
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras --no-install-project
- name: Install Ruff
run: pip install ruff
- name: Get Changed Python Files
id: changed-files
@@ -52,17 +30,7 @@ jobs:
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} ruff check "{}"

45
.github/workflows/mkdocs.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Deploy MkDocs
on:
release:
types: [published]
permissions:
contents: write
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Calculate requirements hash
id: req-hash
run: echo "::set-output name=hash::$(sha256sum requirements-doc.txt | awk '{print $1}')"
- name: Setup cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ steps.req-hash.outputs.hash }}
path: .cache
restore-keys: |
mkdocs-material-
- name: Install Requirements
run: |
sudo apt-get update &&
sudo apt-get install pngquant &&
pip install mkdocs-material mkdocs-material-extensions pillow cairosvg
env:
GH_TOKEN: ${{ secrets.GH_TOKEN }}
- name: Build and deploy MkDocs
run: mkdocs gh-deploy --force

View File

@@ -1,83 +0,0 @@
name: Publish to PyPI
on:
release:
types: [ published ]
workflow_dispatch:
jobs:
build:
if: github.event.release.prerelease == true
name: Build packages
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Build packages
run: |
uv build --prerelease="allow" --all-packages
rm dist/.gitignore
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
publish:
if: github.event.release.prerelease == true
name: Publish to PyPI
needs: build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/crewai
permissions:
id-token: write
contents: read
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.12"
enable-cache: false
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: dist
path: dist
- name: Publish to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}
run: |
failed=0
for package in dist/*; do
if [[ "$package" == *"crewai_devtools"* ]]; then
echo "Skipping private package: $package"
continue
fi
echo "Publishing $package"
if ! uv publish "$package"; then
echo "Failed to publish $package"
failed=1
fi
done
if [ $failed -eq 1 ]; then
echo "Some packages failed to publish"
exit 1
fi

23
.github/workflows/security-checker.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: Security Checker
on: [pull_request]
jobs:
security-check:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11.9"
- name: Install dependencies
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -3,116 +3,32 @@ name: Run Tests
on: [pull_request]
permissions:
contents: read
contents: write
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
BRAVE_API_KEY: fake-brave-key
SNOWFLAKE_USER: fake-snowflake-user
SNOWFLAKE_PASSWORD: fake-snowflake-password
SNOWFLAKE_ACCOUNT: fake-snowflake-account
SNOWFLAKE_WAREHOUSE: fake-snowflake-warehouse
SNOWFLAKE_DATABASE: fake-snowflake-database
SNOWFLAKE_SCHEMA: fake-snowflake-schema
EMBEDCHAIN_DB_URI: sqlite:///test.db
jobs:
tests:
name: tests (${{ matrix.python-version }})
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
fail-fast: true
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
group: [1, 2, 3, 4, 5, 6, 7, 8]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0 # Fetch all history for proper diff
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
uses: astral-sh/setup-uv@v3
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
enable-cache: true
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install the project
run: uv sync --all-groups --all-extras
run: uv sync --dev --all-extras
- name: Restore test durations
uses: actions/cache/restore@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Run tests (group ${{ matrix.group }} of 8)
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE="../../.test_durations_py${PYTHON_VERSION_SAFE}"
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
# DURATIONS_ARG=""
# elif git diff origin/${{ github.base_ref }}...HEAD --name-only 2>/dev/null | grep -q "^tests/.*\.py$"; then
# echo "Test files have changed, skipping cached durations to avoid mismatches"
# DURATIONS_ARG=""
# else
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
cd lib/crewai && uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
$DURATIONS_ARG \
--durations=10 \
-n auto \
--maxfail=3
- name: Run tool tests (group ${{ matrix.group }} of 8)
run: |
cd lib/crewai-tools && uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
--durations=10 \
-n auto \
--maxfail=3
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
- name: Run tests
run: uv run pytest --block-network --timeout=60 -vv

View File

@@ -3,99 +3,24 @@ name: Run Type Checks
on: [pull_request]
permissions:
contents: read
contents: write
jobs:
type-checker-matrix:
name: type-checker (${{ matrix.python-version }})
type-checker:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: "3.11.9"
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras
- name: Get changed Python files
id: changed-files
- name: Install Requirements
run: |
# Get the list of changed Python files compared to the base branch
echo "Fetching changed files..."
git diff --name-only --diff-filter=ACMRT origin/${{ github.base_ref }}...HEAD -- '*.py' > changed_files.txt
pip install mypy
# Filter for files in src/ directory only (excluding tests/)
grep -E "^src/" changed_files.txt > filtered_changed_files.txt || true
# Check if there are any changed files
if [ -s filtered_changed_files.txt ]; then
echo "Changed Python files in src/:"
cat filtered_changed_files.txt
echo "has_changes=true" >> $GITHUB_OUTPUT
# Convert newlines to spaces for mypy command
echo "files=$(cat filtered_changed_files.txt | tr '\n' ' ')" >> $GITHUB_OUTPUT
else
echo "No Python files changed in src/"
echo "has_changes=false" >> $GITHUB_OUTPUT
fi
- name: Run type checks on changed files
if: steps.changed-files.outputs.has_changes == 'true'
run: |
echo "Running mypy on changed files with Python ${{ matrix.python-version }}..."
uv run mypy ${{ steps.changed-files.outputs.files }}
- name: No files to check
if: steps.changed-files.outputs.has_changes == 'false'
run: echo "No Python files in src/ were modified - skipping type checks"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
# Summary job to provide single status for branch protection
type-checker:
name: type-checker
runs-on: ubuntu-latest
needs: type-checker-matrix
if: always()
steps:
- name: Check matrix results
run: |
if [ "${{ needs.type-checker-matrix.result }}" == "success" ] || [ "${{ needs.type-checker-matrix.result }}" == "skipped" ]; then
echo "✅ All type checks passed"
else
echo "❌ Type checks failed"
exit 1
fi
- name: Run type checks
run: mypy src

View File

@@ -1,71 +0,0 @@
name: Update Test Durations
on:
push:
branches:
- main
paths:
- 'tests/**/*.py'
workflow_dispatch:
permissions:
contents: read
jobs:
update-durations:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install the project
run: uv sync --all-groups --all-extras
- name: Run all tests and store durations
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
uv run pytest --store-durations --durations-path=.test_durations_py${PYTHON_VERSION_SAFE} -n auto
continue-on-error: true
- name: Save durations to cache
if: always()
uses: actions/cache/save@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

5
.gitignore vendored
View File

@@ -2,6 +2,7 @@
.pytest_cache
__pycache__
dist/
lib/
.env
assets/*
.idea
@@ -20,9 +21,9 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md
build_image
chromadb-*.lock
build_image

View File

@@ -1,21 +1,7 @@
repos:
- repo: local
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.8.2
hooks:
- id: ruff
name: ruff
entry: uv run ruff check
language: system
types: [python]
exclude: ^lib/crewai/
args: ["--fix"]
- id: ruff-format
name: ruff-format
entry: uv run ruff format
language: system
types: [python]
exclude: ^lib/crewai/
- id: mypy
name: mypy
entry: uv run mypy
language: system
types: [python]
exclude: ^lib/crewai/

4
.ruff.toml Normal file
View File

@@ -0,0 +1,4 @@
exclude = [
"templates",
"__init__.py",
]

View File

@@ -62,9 +62,9 @@
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI AMP Suite
# CrewAI Enterprise Suite
CrewAI AMP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
@@ -76,9 +76,9 @@ You can try one part of the suite the [Crew Control Plane for free](https://app.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AMP on-premise or in the cloud, depending on your security and compliance requirements.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI Enterprise on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI AMP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
CrewAI Enterprise is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
## Table of contents
@@ -418,10 +418,10 @@ Choose CrewAI to easily build powerful, adaptable, and production-ready AI autom
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/landing_page_generator)
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
### Quick Tutorial
@@ -429,19 +429,19 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis) or watch a video below:
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
@@ -674,9 +674,9 @@ CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/b
### Enterprise Features
- [What additional features does CrewAI AMP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AMP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AMP for free?](#q-can-i-try-crewai-amp-for-free)
- [What additional features does CrewAI Enterprise offer?](#q-what-additional-features-does-crewai-enterprise-offer)
- [Is CrewAI Enterprise available for cloud and on-premise deployments?](#q-is-crewai-enterprise-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI Enterprise for free?](#q-can-i-try-crewai-enterprise-for-free)
### Q: What exactly is CrewAI?
@@ -732,17 +732,17 @@ A: Check out practical examples in the [CrewAI-examples repository](https://gith
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI AMP offer?
### Q: What additional features does CrewAI Enterprise offer?
A: CrewAI AMP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
A: CrewAI Enterprise provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI AMP available for cloud and on-premise deployments?
### Q: Is CrewAI Enterprise available for cloud and on-premise deployments?
A: Yes, CrewAI AMP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
A: Yes, CrewAI Enterprise supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI AMP for free?
### Q: Can I try CrewAI Enterprise for free?
A: Yes, you can explore part of the CrewAI AMP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
A: Yes, you can explore part of the CrewAI Enterprise Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
@@ -762,7 +762,7 @@ A: CrewAI is highly scalable, supporting simple automations and large-scale ente
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI AMP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
A: Yes, CrewAI Enterprise includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?

View File

@@ -1,29 +1,28 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI AMP REST API"
description: "Complete reference for the CrewAI Enterprise REST API"
icon: "code"
mode: "wide"
---
# CrewAI AMP API
# CrewAI Enterprise API
Welcome to the CrewAI AMP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
Welcome to the CrewAI Enterprise API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI AMP dashboard and copy your Bearer Token from the Status tab.
Navigate to your crew's detail page in the CrewAI Enterprise dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
@@ -46,7 +45,7 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
You can find both token types in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
</Tip>
## Base URL
@@ -62,7 +61,7 @@ Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
@@ -82,12 +81,12 @@ The API uses standard HTTP status codes:
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AMP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
**Why no "Send" button?** Since each CrewAI Enterprise user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
@@ -104,7 +103,7 @@ Each endpoint page shows you:
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client

473
docs/changelog.mdx Normal file
View File

@@ -0,0 +1,473 @@
---
title: Changelog
description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2024-05-22" description="v0.121.0" tags={["Latest"]}>
## Release Highlights
<Frame>
<img src="/images/releases/v01210.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.121.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed encoding error when creating tools
- Fixed failing llama test
- Updated logging configuration for consistency
- Enhanced telemetry initialization and event handling
**New Features & Enhancements**
- Added **markdown attribute** to the Task class
- Added **reasoning attribute** to the Agent class
- Added **inject_date flag** to Agent for automatic date injection
- Implemented **HallucinationGuardrail** (no-op with test coverage)
**Documentation & Guides**
- Added documentation for **StagehandTool** and improved MDX structure
- Added documentation for **MCP integration** and updated enterprise docs
- Documented knowledge events and updated reasoning docs
- Added stop parameter documentation
- Fixed import references in doc examples (before_kickoff, after_kickoff)
- General docs updates and restructuring for clarity
</Update>
<Update label="2024-05-15" description="v0.120.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01201.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed **interpolation with hyphens**
</Update>
<Update label="2024-05-14" description="v0.120.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01200.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enabled **full Ruff rule set** by default for stricter linting
- Addressed race condition in FilteredStream using context managers
- Fixed agent knowledge reset issue
- Refactored agent fetching logic into utility module
**New Features & Enhancements**
- Added support for **loading an Agent directly from a repository**
- Enabled setting an empty context for Task
- Enhanced Agent repository feedback and fixed Tool auto-import behavior
- Introduced direct initialization of knowledge (bypassing knowledge_sources)
**Documentation & Guides**
- Updated security.md for current security practices
- Cleaned up Google setup section for clarity
- Added link to AI Studio when entering Gemini key
- Updated Arize Phoenix observability guide
- Refreshed flow documentation
</Update>
<Update label="2024-05-08" description="v0.119.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01190.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.119.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Improved test reliability by enhancing pytest handling for flaky tests
- Fixed memory reset crash when embedding dimensions mismatch
- Enabled parent flow identification for Crew and LiteAgent
- Prevented telemetry-related crashes when unavailable
- Upgraded **LiteLLM version** for better compatibility
- Fixed llama converter tests by removing skip_external_api
**New Features & Enhancements**
- Introduced **knowledge retrieval prompt re-writing** in Agent for improved tracking and debugging
- Made LLM setup and quickstart guides model-agnostic
**Documentation & Guides**
- Added advanced configuration docs for the RAG tool
- Updated Windows troubleshooting guide
- Refined documentation examples for better clarity
- Fixed typos across docs and config files
</Update>
<Update label="2024-04-28" description="v0.118.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01180.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.118.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing prompt or system templates
- Removed global logging configuration to avoid unintended overrides
- Renamed **TaskGuardrail to LLMGuardrail** for improved clarity
- Downgraded litellm to version 1.167.1 for compatibility
- Added missing init.py files to ensure proper module initialization
**New Features & Enhancements**
- Added support for **no-code Guardrail creation** to simplify AI behavior controls
**Documentation & Guides**
- Removed CrewStructuredTool from public documentation to reflect internal usage
- Updated enterprise documentation and YouTube embed for improved onboarding experience
</Update>
<Update label="2024-04-20" description="v0.117.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01170.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Added `result_as_answer` parameter support in `@tool` decorator.
- Introduced support for new language models: GPT-4.1, Gemini-2.0, and Gemini-2.5 Pro.
- Enhanced knowledge management capabilities.
- Added Huggingface provider option in CLI.
- Improved compatibility and CI support for Python 3.10+.
**Core Improvements & Fixes**
- Fixed issues with incorrect template parameters and missing inputs.
- Improved asynchronous flow handling with coroutine condition checks.
- Enhanced memory management with isolated configuration and correct memory object copying.
- Fixed initialization of lite agents with correct references.
- Addressed Python type hint issues and removed redundant imports.
- Updated event placement for improved tool usage tracking.
- Raised explicit exceptions when flows fail.
- Removed unused code and redundant comments from various modules.
- Updated GitHub App token action to v2.
**Documentation & Guides**
- Enhanced documentation structure, including enterprise deployment instructions.
- Automatically create output folders for documentation generation.
- Fixed broken link in WeaviateVectorSearchTool documentation.
- Fixed guardrail documentation usage and import paths for JSON search tools.
- Updated documentation for CodeInterpreterTool.
- Improved SEO, contextual navigation, and error handling for documentation pages.
</Update>
<Update label="2024-04-25" description="v0.117.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01171.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Upgraded **crewai-tools** to latest version
- Upgraded **liteLLM** to latest version
- Fixed **Mem0 OSS**
</Update>
<Update label="2024-04-07" description="v0.114.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01140.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.114.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Agents as an atomic unit. (`Agent(...).kickoff()`)
- Support for [Custom LLM implementations](https://docs.crewai.com/guides/advanced/custom-llm).
- Integrated External Memory and [Opik observability](https://docs.crewai.com/how-to/opik-observability).
- Enhanced YAML extraction.
- Multimodal agent validation.
- Added Secure fingerprints for agents and crews.
**Core Improvements & Fixes**
- Improved serialization, agent copying, and Python compatibility.
- Added wildcard support to `emit()`
- Added support for additional router calls and context window adjustments.
- Fixed typing issues, validation, and import statements.
- Improved method performance.
- Enhanced agent task handling, event emissions, and memory management.
- Fixed CLI issues, conditional tasks, cloning behavior, and tool outputs.
**Documentation & Guides**
- Improved documentation structure, theme, and organization.
- Added guides for Local NVIDIA NIM with WSL2, W&B Weave, and Arize Phoenix.
- Updated tool configuration examples, prompts, and observability docs.
- Guide on using singular agents within Flows.
</Update>
<Update label="2024-03-17" description="v0.108.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01080.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.108.0">View on GitHub</a>
</div>
**New Features & Enhancements**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
- Included `model_name`
- Enhanced Event Listener with rich visualization and improved logging
- Added fingerprints
**Bug Fixes**
- Fixed Mistral issues
- Fixed a bug in documentation
- Fixed type check error in fingerprint property
**Documentation Updates**
- Improved tool documentation
- Updated installation guide for the `uv` tool package
- Added instructions for upgrading crewAI with the `uv` tool
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2024-03-10" description="v0.105.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01050.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.105.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
- Enhanced memory reset functionality and fixed CLI memory commands
- Fixed type issues, tool calling properties, and telemetry decoupling
**New Features & Enhancements**
- Added Flow state export and improved state utilities
- Enhanced agent knowledge setup with optional crew embedder
- Introduced event emitter for better observability and LLM call tracking
- Added support for Python 3.10 and ChatOllama from langchain_ollama
- Integrated context window size support for the o3-mini model
- Added support for multiple router calls
**Documentation & Guides**
- Improved documentation layout and hierarchical structure
- Added QdrantVectorSearchTool guide and clarified event listener usage
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2024-02-12" description="v0.102.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01020.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.102.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
- Memory & Storage Fixes: Fixed short-term memory handling with Bedrock, ensured correct embedder initialization, and added a reset memories function in the crew class
- Training & Execution Reliability: Fixed broken training and interpolation issues with dict and list input types
**New Features & Enhancements**
- Advanced Knowledge Management: Improved naming conventions and enhanced embedding configuration with custom embedder support
- Expanded Logging & Observability: Added JSON format support for logging and integrated MLflow tracing documentation
- Data Handling Improvements: Updated excel_knowledge_source.py to process multi-tab files
- General Performance & Codebase Clean-Up: Streamlined enterprise code alignment and resolved linting issues
- Adding new tool: `QdrantVectorSearchTool`
**Documentation & Guides**
- Updated AI & Memory Docs: Improved Bedrock, Google AI, and long-term memory documentation
- Task & Workflow Clarity: Added "Human Input" row to Task Attributes, Langfuse guide, and FileWriterTool documentation
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2024-01-28" description="v0.100.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01000.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.100.0">View on GitHub</a>
</div>
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
**Fixes**
- Overall LLM connection issues
- Using safe accessors on training
- Add version check to crew_chat.py
**Documentation**
- New docs for crewai chat
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2024-01-20" description="v0.98.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0980.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.98.0">View on GitHub</a>
</div>
**Features**
- Conversation crew v1
- Add unique ID to flow states
- Add @persist decorator with FlowPersistence interface
**Integrations**
- Add SambaNova integration
- Add NVIDIA NIM provider in cli
- Introducing VoyageAI
**Fixes**
- Fix API Key Behavior and Entity Handling in Mem0 Integration
- Fixed core invoke loop logic and relevant tests
- Make tool inputs actual objects and not strings
- Add important missing parts to creating tools
- Drop litellm version to prevent windows issue
- Before kickoff if inputs are none
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2024-01-04" description="v0.95.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0950.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.95.0">View on GitHub</a>
</div>
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
- HITL multiple rounds
- Gemini 2.0 Support
- CrewAI Flows Improvements
- Add Workflow Permissions
- Add support for langfuse with litellm
- Portkey Integration with CrewAI
- Add interpolate_only method and improve error handling
- Docling Support
- Weviate Support
**Fixes**
- output_file not respecting system path
- disk I/O error when resetting short-term memory
- CrewJSONEncoder now accepts enums
- Python max version
- Interpolation for output_file in Task
- Handle coworker role name case/whitespace properly
- Add tiktoken as explicit dependency and document Rust requirement
- Include agent knowledge in planning process
- Change storage initialization to None for KnowledgeStorage
- Fix optional storage checks
- include event emitter in flows
- Docstring, Error Handling, and Type Hints Improvements
- Suppressed userWarnings from litellm pydantic issues
</Update>
<Update label="2024-12-05" description="v0.86.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0860.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.86.0">View on GitHub</a>
</div>
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
- Add knowledge demo + improve knowledge docs
- Add HITL multiple rounds of followup
- New docs about yaml crew with decorators
- Simplify template crew
</Update>
<Update label="2024-12-04" description="v0.85.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0850.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.85.0">View on GitHub</a>
</div>
**Features**
- Added knowledge to agent level
- Feat/remove langchain
- Improve typed task outputs
- Log in to Tool Repository on crewai login
**Fixes**
- Fixes issues with result as answer not properly exiting LLM loop
- Fix missing key name when running with ollama provider
- Fix spelling issue found
**Documentation**
- Update readme for running mypy
- Add knowledge to mint.json
- Update Github actions
- Update Agents docs to include two approaches for creating an agent
- Improvements to LLM Configuration and Usage
</Update>
<Update label="2024-11-25" description="v0.83.0">
**New Features**
- New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge
- Add support for retrieving user preferences and memories using Mem0
**Fixes**
- Fix Async Execution
- Upgrade chroma and adjust embedder function generator
- Update CLI Watson supported models + docs
- Reduce level for Bandit
- Fixing all tests
**Documentation**
- Update Docs
</Update>
<Update label="2024-11-13" description="v0.80.0">
**Fixes**
- Fixing Tokens callback replacement bug
- Fixing Step callback issue
- Add cached prompt tokens info on usage metrics
- Fix crew_train_success test
</Update>

View File

@@ -2,7 +2,6 @@
title: Agents
description: Detailed guide on creating and managing agents within the CrewAI framework.
icon: robot
mode: "wide"
---
## Overview of an Agent
@@ -20,7 +19,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
</Tip>
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI AMP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)
@@ -72,7 +71,7 @@ There are two ways to create agents in CrewAI: using **YAML configuration (recom
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
<Note>
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
@@ -296,11 +295,6 @@ multimodal_agent = Agent(
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)
<Note>
This runs a default Docker image. If you want to configure the docker image, the checkout the Code Interpreter Tool in the tools section.
Add the code interpreter tool as a tool in the agent as a tool parameter.
</Note>
#### Advanced Features
- `multimodal`: Enable multimodal capabilities for processing text and visual content
- `reasoning`: Enable agent to reflect and create plans before executing tasks
@@ -313,7 +307,7 @@ multimodal_agent = Agent(
<Note>
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
</Note>
</Note>
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
@@ -426,7 +420,7 @@ strict_agent = Agent(
```python Code
# Perfect for document processing
document_processor = Agent(
role="Document Analyst",
role="Document Analyst",
goal="Extract insights from large research papers",
backstory="Expert at analyzing extensive documentation",
respect_context_window=True, # Handle large documents gracefully
@@ -527,103 +521,6 @@ agent = Agent(
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
</Note>
## Direct Agent Interaction with `kickoff()`
Agents can be used directly without going through a task or crew workflow using the `kickoff()` method. This provides a simpler way to interact with an agent when you don't need the full crew orchestration capabilities.
### How `kickoff()` Works
The `kickoff()` method allows you to send messages directly to an agent and get a response, similar to how you would interact with an LLM but with all the agent's capabilities (tools, reasoning, etc.).
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool
# Create an agent
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
tools=[SerperDevTool()],
verbose=True
)
# Use kickoff() to interact directly with the agent
result = researcher.kickoff("What are the latest developments in language models?")
# Access the raw response
print(result.raw)
```
### Parameters and Return Values
| Parameter | Type | Description |
| :---------------- | :---------------------------------- | :------------------------------------------------------------------------ |
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
The method returns a `LiteAgentOutput` object with the following properties:
- `raw`: String containing the raw output text
- `pydantic`: Parsed Pydantic model (if a `response_format` was provided)
- `agent_role`: Role of the agent that produced the output
- `usage_metrics`: Token usage metrics for the execution
### Structured Output
You can get structured output by providing a Pydantic model as the `response_format`:
```python Code
from pydantic import BaseModel
from typing import List
class ResearchFindings(BaseModel):
main_points: List[str]
key_technologies: List[str]
future_predictions: str
# Get structured output
result = researcher.kickoff(
"Summarize the latest developments in AI for 2025",
response_format=ResearchFindings
)
# Access structured data
print(result.pydantic.main_points)
print(result.pydantic.future_predictions)
```
### Multiple Messages
You can also provide a conversation history as a list of message dictionaries:
```python Code
messages = [
{"role": "user", "content": "I need information about large language models"},
{"role": "assistant", "content": "I'd be happy to help with that! What specifically would you like to know?"},
{"role": "user", "content": "What are the latest developments in 2025?"}
]
result = researcher.kickoff(messages)
```
### Async Support
An asynchronous version is available via `kickoff_async()` with the same parameters:
```python Code
import asyncio
async def main():
result = await researcher.kickoff_async("What are the latest developments in AI?")
print(result.raw)
asyncio.run(main())
```
<Note>
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler execution flow while preserving all of the agent's configuration (role, goal, backstory, tools, etc.).
</Note>
## Important Considerations and Best Practices
### Security and Code Execution

View File

@@ -2,11 +2,8 @@
title: CLI
description: Learn how to use the CrewAI CLI to interact with CrewAI.
icon: terminal
mode: "wide"
---
<Warning>Since release 0.140.0, CrewAI AMP started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
## Overview
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
@@ -89,7 +86,7 @@ crewai replay [OPTIONS]
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```shell Terminal
```shell Terminal
crewai replay -t task_123456
```
@@ -135,7 +132,7 @@ crewai test [OPTIONS]
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```shell Terminal
```shell Terminal
crewai test -n 5 -m gpt-3.5-turbo
```
@@ -152,7 +149,7 @@ Starting from version 0.103.0, the `crewai run` command can be used to run both
</Note>
<Note>
Make sure to run these commands from the directory where your CrewAI project is set up.
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
@@ -186,10 +183,13 @@ def crew(self) -> Crew:
### 10. Deploy
Deploy the crew or flow to [CrewAI AMP](https://app.crewai.com).
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
- **Authentication**: You need to be authenticated to deploy to CrewAI AMP.
You can login or create an account with:
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
```shell Terminal
crewai signup
```
If you already have an account, you can login with:
```shell Terminal
crewai login
```
@@ -203,7 +203,7 @@ Deploy the crew or flow to [CrewAI AMP](https://app.crewai.com).
### 11. Organization Management
Manage your CrewAI AMP organizations.
Manage your CrewAI Enterprise organizations.
```shell Terminal
crewai org [COMMAND] [OPTIONS]
@@ -227,17 +227,17 @@ crewai org switch <organization_id>
```
<Note>
You must be authenticated to CrewAI AMP to use these organization management commands.
You must be authenticated to CrewAI Enterprise to use these organization management commands.
</Note>
- **Create a deployment** (continued):
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI AMP.
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
```shell Terminal
crewai deploy push
```
- Initiates the deployment process on the CrewAI AMP platform.
```
- Initiates the deployment process on the CrewAI Enterprise platform.
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
- **Deployment Status**: You can check the status of your deployment with:
@@ -262,7 +262,7 @@ You must be authenticated to CrewAI AMP to use these organization management com
```shell Terminal
crewai deploy remove
```
This deletes the deployment from the CrewAI AMP platform.
This deletes the deployment from the CrewAI Enterprise platform.
- **Help Command**: You can get help with the CLI with:
```shell Terminal
@@ -270,44 +270,28 @@ You must be authenticated to CrewAI AMP to use these organization management com
```
This shows the help message for the CrewAI Deploy CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI AMP](http://app.crewai.com) using the CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
<iframe
className="w-full aspect-video rounded-xl"
width="100%"
height="400"
src="https://www.youtube.com/embed/3EqSV-CYDZA"
title="CrewAI Deployment Guide"
frameBorder="0"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowFullScreen
allowfullscreen
></iframe>
### 11. Login
### 11. API Keys
Authenticate with CrewAI AMP using a secure device code flow (no email entry required).
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
```shell Terminal
crewai login
```
Once you've selected an LLM provider, you will be prompted for API keys.
What happens:
- A verification URL and short code are displayed in your terminal
- Your browser opens to the verification URL
- Enter/confirm the code to complete authentication
#### Initial API key providers
Notes:
- The OAuth2 provider and domain are configured via `crewai config` (defaults use `login.crewai.com`)
- After successful login, the CLI also attempts to authenticate to the Tool Repository automatically
- If you reset your configuration, run `crewai login` again to re-authenticate
### 12. API Keys
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
Once you've selected an LLM provider and model, you will be prompted for API keys.
#### Available LLM Providers
Here's a list of the most popular LLM providers suggested by the CLI:
The CLI will initially prompt for API keys for the following services:
* OpenAI
* Groq
@@ -315,11 +299,11 @@ Here's a list of the most popular LLM providers suggested by the CLI:
* Google Gemini
* SambaNova
When you select a provider, the CLI will then show you available models for that provider and prompt you to enter your API key.
When you select a provider, the CLI will prompt you to enter your API key.
#### Other Options
If you select "other", you will be able to select from a list of LiteLLM supported providers.
If you select option 6, you will be able to select from a list of LiteLLM supported providers.
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
@@ -327,85 +311,5 @@ See the following link for each provider's key name:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
### 13. Configuration Management
Manage CLI configuration settings for CrewAI.
```shell Terminal
crewai config [COMMAND] [OPTIONS]
```
#### Commands:
- `list`: Display all CLI configuration parameters
```shell Terminal
crewai config list
```
- `set`: Set a CLI configuration parameter
```shell Terminal
crewai config set <key> <value>
```
- `reset`: Reset all CLI configuration parameters to default values
```shell Terminal
crewai config reset
```
#### Available Configuration Parameters
- `enterprise_base_url`: Base URL of the CrewAI AMP instance
- `oauth2_provider`: OAuth2 provider used for authentication (e.g., workos, okta, auth0)
- `oauth2_audience`: OAuth2 audience value, typically used to identify the target API or resource
- `oauth2_client_id`: OAuth2 client ID issued by the provider, used during authentication requests
- `oauth2_domain`: OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens
#### Examples
Display current configuration:
```shell Terminal
crewai config list
```
Example output:
| Setting | Value | Description |
| :------------------ | :----------------------- | :---------------------------------------------------------- |
| enterprise_base_url | https://app.crewai.com | Base URL of the CrewAI AMP instance |
| org_name | Not set | Name of the currently active organization |
| org_uuid | Not set | UUID of the currently active organization |
| oauth2_provider | workos | OAuth2 provider (e.g., workos, okta, auth0) |
| oauth2_audience | client_01YYY | Audience identifying the target API/resource |
| oauth2_client_id | client_01XXX | OAuth2 client ID issued by the provider |
| oauth2_domain | login.crewai.com | Provider domain (e.g., your-org.auth0.com) |
Set the enterprise base URL:
```shell Terminal
crewai config set enterprise_base_url https://my-enterprise.crewai.com
```
Set OAuth2 provider:
```shell Terminal
crewai config set oauth2_provider auth0
```
Set OAuth2 domain:
```shell Terminal
crewai config set oauth2_domain my-company.auth0.com
```
Reset all configuration to defaults:
```shell Terminal
crewai config reset
```
<Tip>
After resetting configuration, re-run `crewai login` to authenticate again.
</Tip>
<Tip>
CrewAI CLI handles authentication to the Tool Repository automatically when adding packages to your project. Just append `crewai` before any `uv` command to use it. E.g. `crewai uv add requests`. For more information, see [Tool Repository](https://docs.crewai.com/enterprise/features/tool-repository) docs.
</Tip>
<Note>
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
</Note>

View File

@@ -2,7 +2,6 @@
title: Collaboration
description: How to enable agents to work together, delegate tasks, and communicate effectively within CrewAI teams.
icon: screen-users
mode: "wide"
---
## Overview

View File

@@ -2,7 +2,6 @@
title: Crews
description: Understanding and utilizing crews in the crewAI framework with comprehensive attributes and functionalities.
icon: people-group
mode: "wide"
---
## Overview
@@ -21,7 +20,8 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). | |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | Knowledge sources available at the crew level, accessible to all the agents. |
<Tip>
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
@@ -46,7 +45,7 @@ There are two ways to create crews in CrewAI: using **YAML configuration (recomm
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
#### Example Crew Class with Decorators
@@ -67,8 +66,8 @@ class YourCrewName:
# To see an example agent and task defined in YAML, checkout the following:
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@before_kickoff
def prepare_inputs(self, inputs):
@@ -112,7 +111,7 @@ class YourCrewName:
def crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected by the @agent decorator
tasks=self.tasks, # Automatically collected by the @task decorator.
tasks=self.tasks, # Automatically collected by the @task decorator.
process=Process.sequential,
verbose=True,
)

View File

@@ -2,7 +2,6 @@
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
icon: spinner
mode: "wide"
---
## Overview
@@ -20,7 +19,7 @@ CrewAI uses an event bus architecture to emit events throughout the execution li
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI AMP provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](/images/enterprise/traces-overview.png)
@@ -45,12 +44,12 @@ To create a custom event listener, you need to:
Here's a simple example of a custom event listener class:
```python
from crewai.events import (
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
@@ -147,7 +146,7 @@ my_project/
```python
# my_custom_listener.py
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
@@ -178,7 +177,14 @@ class MyCustomCrew:
# Your crew implementation...
```
This is how third-party event listeners are registered in the CrewAI codebase.
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Available Event Types
@@ -227,11 +233,6 @@ CrewAI provides a wide range of events that you can listen for:
- **KnowledgeQueryFailedEvent**: Emitted when a knowledge query fails
- **KnowledgeSearchQueryFailedEvent**: Emitted when a knowledge search query fails
### LLM Guardrail Events
- **LLMGuardrailStartedEvent**: Emitted when a guardrail validation starts. Contains details about the guardrail being applied and retry count.
- **LLMGuardrailCompletedEvent**: Emitted when a guardrail validation completes. Contains details about validation success/failure, results, and error messages if any.
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created
@@ -249,17 +250,6 @@ CrewAI provides a wide range of events that you can listen for:
- **LLMCallFailedEvent**: Emitted when an LLM call fails
- **LLMStreamChunkEvent**: Emitted for each chunk received during streaming LLM responses
### Memory Events
- **MemoryQueryStartedEvent**: Emitted when a memory query is started. Contains the query, limit, and optional score threshold.
- **MemoryQueryCompletedEvent**: Emitted when a memory query is completed successfully. Contains the query, results, limit, score threshold, and query execution time.
- **MemoryQueryFailedEvent**: Emitted when a memory query fails. Contains the query, limit, score threshold, and error message.
- **MemorySaveStartedEvent**: Emitted when a memory save operation is started. Contains the value to be saved, metadata, and optional agent role.
- **MemorySaveCompletedEvent**: Emitted when a memory save operation is completed successfully. Contains the saved value, metadata, agent role, and save execution time.
- **MemorySaveFailedEvent**: Emitted when a memory save operation fails. Contains the value, metadata, agent role, and error message.
- **MemoryRetrievalStartedEvent**: Emitted when memory retrieval for a task prompt starts. Contains the optional task ID.
- **MemoryRetrievalCompletedEvent**: Emitted when memory retrieval for a task prompt completes successfully. Contains the task ID, memory content, and retrieval execution time.
## Event Handler Structure
Each event handler receives two parameters:
@@ -274,13 +264,84 @@ The structure of the event object depends on the event type, but all events inhe
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.events import crewai_event_bus, CrewKickoffStartedEvent
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)

View File

@@ -2,7 +2,6 @@
title: Flows
description: Learn how to create and manage AI workflows using CrewAI Flows.
icon: arrow-progress
mode: "wide"
---
## Overview
@@ -98,13 +97,7 @@ The state's unique ID and stored data can be useful for tracking flow executions
### @start()
The `@start()` decorator marks entry points for a Flow. You can:
- Declare multiple unconditional starts: `@start()`
- Gate a start on a prior method or router label: `@start("method_or_label")`
- Provide a callable condition to control when a start should fire
All satisfied `@start()` methods will execute (often in parallel) when the Flow begins or resumes.
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
### @listen()
@@ -875,13 +868,14 @@ By exploring these examples, you can gain insights into how to leverage CrewAI F
Also, check out our YouTube video on how to use flows in CrewAI below!
<iframe
className="w-full aspect-video rounded-xl"
width="560"
height="315"
src="https://www.youtube.com/embed/MTb5my6VOT8"
title="CrewAI Flows overview"
frameBorder="0"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerPolicy="strict-origin-when-cross-origin"
allowFullScreen
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows

View File

@@ -2,7 +2,6 @@
title: Knowledge
description: What is knowledge in CrewAI and how to use it.
icon: book
mode: "wide"
---
## Overview
@@ -25,41 +24,6 @@ For file-based Knowledge Sources, make sure to place your files in a `knowledge`
Also, use relative paths from the `knowledge` directory when creating the source.
</Tip>
### Vector store (RAG) client configuration
CrewAI exposes a provider-neutral RAG client abstraction for vector stores. The default provider is ChromaDB, and Qdrant is supported as well. You can switch providers using configuration utilities.
Supported today:
- ChromaDB (default)
- Qdrant
```python Code
from crewai.rag.config.utils import set_rag_config, get_rag_client, clear_rag_config
# ChromaDB (default)
from crewai.rag.chromadb.config import ChromaDBConfig
set_rag_config(ChromaDBConfig())
chromadb_client = get_rag_client()
# Qdrant
from crewai.rag.qdrant.config import QdrantConfig
set_rag_config(QdrantConfig())
qdrant_client = get_rag_client()
# Example operations (same API for any provider)
client = qdrant_client # or chromadb_client
client.create_collection(collection_name="docs")
client.add_documents(
collection_name="docs",
documents=[{"id": "1", "content": "CrewAI enables collaborative AI agents."}],
)
results = client.search(collection_name="docs", query="collaborative agents", limit=3)
clear_rag_config() # optional reset
```
This RAG client is separate from Knowledges built-in storage. Use it when you need direct vector-store control or custom retrieval pipelines.
### Basic String Knowledge Example
```python Code
@@ -717,11 +681,11 @@ CrewAI emits events during the knowledge retrieval process that you can listen f
#### Example: Monitoring Knowledge Retrieval
```python
from crewai.events import (
from crewai.utilities.events import (
KnowledgeRetrievalStartedEvent,
KnowledgeRetrievalCompletedEvent,
BaseEventListener,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class KnowledgeMonitorListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):

View File

@@ -2,7 +2,6 @@
title: 'LLMs'
description: 'A comprehensive guide to configuring and using Large Language Models (LLMs) in your CrewAI projects'
icon: 'microchip-ai'
mode: "wide"
---
## Overview
@@ -271,7 +270,7 @@ In this section, you'll find detailed examples that help you select, configure,
from crewai import LLM
llm = LLM(
model="gemini-1.5-pro-latest", # or vertex_ai/gemini-1.5-pro-latest
model="gemini/gemini-1.5-pro-latest",
temperature=0.7,
vertex_credentials=vertex_credentials_json
)
@@ -685,28 +684,6 @@ In this section, you'll find detailed examples that help you select, configure,
- openrouter/deepseek/deepseek-chat
</Info>
</Accordion>
<Accordion title="Nebius AI Studio">
Set the following environment variables in your `.env` file:
```toml Code
NEBIUS_API_KEY=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
model="nebius/Qwen/Qwen3-30B-A3B"
)
```
<Info>
Nebius AI Studio features:
- Large collection of open source models
- Higher rate limits
- Competitive pricing
- Good balance of speed and quality
</Info>
</Accordion>
</AccordionGroup>
## Streaming Responses
@@ -734,10 +711,10 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
CrewAI emits events for each chunk received during streaming:
```python
from crewai.events import (
from crewai.utilities.events import (
LLMStreamChunkEvent
)
from crewai.events import BaseEventListener
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@@ -750,58 +727,9 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
```
<Tip>
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
<Tab title="Agent & Task Tracking">
All LLM events in CrewAI include agent and task information, allowing you to track and filter LLM interactions by specific agents or tasks:
```python
from crewai import LLM, Agent, Task, Crew
from crewai.events import LLMStreamChunkEvent
from crewai.events import BaseEventListener
class MyCustomListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(LLMStreamChunkEvent)
def on_llm_stream_chunk(source, event):
if researcher.id == event.agent_id:
print("\n==============\n Got event:", event, "\n==============\n")
my_listener = MyCustomListener()
llm = LLM(model="gpt-4o-mini", temperature=0, stream=True)
researcher = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
llm=llm,
)
search = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[search])
result = crew.kickoff(
inputs={"question": "..."}
)
```
<Info>
This feature is particularly useful for:
- Debugging specific agent behaviors
- Logging LLM usage by task type
- Auditing which agents are making what types of LLM calls
- Performance monitoring of specific tasks
</Info>
</Tab>
</Tabs>
## Structured LLM Calls
@@ -897,7 +825,7 @@ Learn how to get the most out of your LLM configuration:
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
</Info>
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:

View File

@@ -2,15 +2,15 @@
title: Memory
description: Leveraging memory systems in the CrewAI framework to enhance agent capabilities.
icon: database
mode: "wide"
---
## Overview
The CrewAI framework provides a sophisticated memory system designed to significantly enhance AI agent capabilities. CrewAI offers **two distinct memory approaches** that serve different use cases:
The CrewAI framework provides a sophisticated memory system designed to significantly enhance AI agent capabilities. CrewAI offers **three distinct memory approaches** that serve different use cases:
1. **Basic Memory System** - Built-in short-term, long-term, and entity memory
2. **External Memory** - Standalone external memory providers
2. **User Memory** - User-specific memory with Mem0 integration (legacy approach)
3. **External Memory** - Standalone external memory providers (new approach)
## Memory System Components
@@ -19,7 +19,7 @@ The CrewAI framework provides a sophisticated memory system designed to signific
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes using `RAG`, enabling agents to recall and utilize information relevant to their current context during the current executions.|
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, `ExternalMemory` and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
## 1. Basic Memory System (Recommended)
@@ -62,7 +62,7 @@ By default, CrewAI uses the `appdirs` library to determine storage locations fol
```
~/Library/Application Support/CrewAI/{project_name}/
├── knowledge/ # Knowledge base ChromaDB files
├── short_term_memory/ # Short-term memory ChromaDB files
├── short_term_memory/ # Short-term memory ChromaDB files
├── long_term_memory/ # Long-term memory ChromaDB files
├── entities/ # Entity memory ChromaDB files
└── long_term_memory_storage.db # SQLite database
@@ -202,7 +202,7 @@ crew = Crew(
tasks=[task],
memory=True,
embedder={
"provider": "anthropic", # Match your LLM provider
"provider": "anthropic", # Match your LLM provider
"config": {
"api_key": "your-anthropic-key",
"model": "text-embedding-3-small"
@@ -252,7 +252,7 @@ chroma_path = os.path.join(storage_path, "knowledge")
if os.path.exists(chroma_path):
client = chromadb.PersistentClient(path=chroma_path)
collections = client.list_collections()
print("ChromaDB Collections:")
for collection in collections:
print(f" - {collection.name}: {collection.count()} documents")
@@ -269,7 +269,7 @@ crew = Crew(agents=[...], tasks=[...], memory=True)
# Reset specific memory types
crew.reset_memories(command_type='short') # Short-term memory
crew.reset_memories(command_type='long') # Long-term memory
crew.reset_memories(command_type='long') # Long-term memory
crew.reset_memories(command_type='entity') # Entity memory
crew.reset_memories(command_type='knowledge') # Knowledge storage
```
@@ -540,71 +540,16 @@ crew = Crew(
)
```
### Mem0 Provider
Short-Term Memory and Entity Memory both supports a tight integration with both Mem0 OSS and Mem0 Client as a provider. Here is how you can use Mem0 as a provider.
```python
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.entity_entity_memory import EntityMemory
mem0_oss_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"local_mem0_config": {
"vector_store": {"provider": "qdrant","config": {"host": "localhost", "port": 6333}},
"llm": {"provider": "openai","config": {"api_key": "your-api-key", "model": "gpt-4"}},
"embedder": {"provider": "openai","config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}}
},
"infer": True # Optional defaults to True
},
}
mem0_client_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
}
short_term_memory_mem0_oss = ShortTermMemory(embedder_config=mem0_oss_embedder_config) # Short Term Memory with Mem0 OSS
short_term_memory_mem0_client = ShortTermMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
entity_memory_mem0_oss = EntityMemory(embedder_config=mem0_oss_embedder_config) # Entity Memory with Mem0 OSS
entity_memory_mem0_client = EntityMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
crew = Crew(
memory=True,
short_term_memory=short_term_memory_mem0_oss, # or short_term_memory_mem0_client
entity_memory=entity_memory_mem0_oss # or entity_memory_mem0_client
)
```
### Choosing the Right Embedding Provider
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
Below is a comparison to help you decide:
| Provider | Best For | Pros | Cons |
| -------------- | ------------------------------ | --------------------------------- | ------------------------- |
| **OpenAI** | General use, high reliability | High quality, widely tested | Paid service, API key required |
| **Ollama** | Privacy-focused, cost savings | Free, runs locally, fully private | Requires local installation/setup |
| **Google AI** | Integration in Google ecosystem| Strong performance, good support | Google account required |
| **Azure OpenAI** | Enterprise & compliance needs| Enterprise-grade features, security | More complex setup process |
| **Cohere** | Multilingual content handling | Excellent language support | More niche use cases |
| **VoyageAI** | Information retrieval & search | Optimized for retrieval tasks | Relatively new provider |
| **Mem0** | Per-user personalization | Search-optimized embeddings | Paid service, API key required |
| Provider | Best For | Pros | Cons |
|:---------|:----------|:------|:------|
| **OpenAI** | General use, reliability | High quality, well-tested | Cost, requires API key |
| **Ollama** | Privacy, cost savings | Free, local, private | Requires local setup |
| **Google AI** | Google ecosystem | Good performance | Requires Google account |
| **Azure OpenAI** | Enterprise, compliance | Enterprise features | Complex setup |
| **Cohere** | Multilingual content | Great language support | Specialized use case |
| **VoyageAI** | Retrieval tasks | Optimized for search | Newer provider |
### Environment Variable Configuration
@@ -651,7 +596,7 @@ providers_to_test = [
{
"name": "Ollama",
"config": {
"provider": "ollama",
"provider": "ollama",
"config": {"model": "mxbai-embed-large"}
}
}
@@ -659,7 +604,7 @@ providers_to_test = [
for provider in providers_to_test:
print(f"\nTesting {provider['name']} embeddings...")
# Create crew with specific embedder
crew = Crew(
agents=[...],
@@ -667,7 +612,7 @@ for provider in providers_to_test:
memory=True,
embedder=provider['config']
)
# Run your test and measure performance
result = crew.kickoff()
print(f"{provider['name']} completed successfully")
@@ -678,7 +623,7 @@ for provider in providers_to_test:
**Model not found errors:**
```python
# Verify model availability
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.embedding_configurator import EmbeddingConfigurator
configurator = EmbeddingConfigurator()
try:
@@ -710,17 +655,17 @@ import time
def test_embedding_performance(embedder_config, test_text="This is a test document"):
start_time = time.time()
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
embedder=embedder_config
)
# Simulate memory operation
crew.kickoff()
end_time = time.time()
return end_time - start_time
@@ -731,7 +676,7 @@ openai_time = test_embedding_performance({
})
ollama_time = test_embedding_performance({
"provider": "ollama",
"provider": "ollama",
"config": {"model": "mxbai-embed-large"}
})
@@ -739,29 +684,67 @@ print(f"OpenAI: {openai_time:.2f}s")
print(f"Ollama: {ollama_time:.2f}s")
```
### Entity Memory batching behavior
## 2. User Memory with Mem0 (Legacy)
Entity Memory supports batching when saving multiple entities at once. When you pass a list of `EntityMemoryItem`, the system:
<Warning>
**Legacy Approach**: While fully functional, this approach is considered legacy. For new projects requiring user-specific memory, consider using External Memory instead.
</Warning>
- Emits a single MemorySaveStartedEvent with `entity_count`
- Saves each entity internally, collecting any partial errors
- Emits MemorySaveCompletedEvent with aggregate metadata (saved count, errors)
- Raises a partial-save exception if some entities failed (includes counts)
User Memory integrates with [Mem0](https://mem0.ai/) to provide user-specific memory that persists across sessions and integrates with the crew's contextual memory system.
This improves performance and observability when writing many entities in one operation.
### Prerequisites
```bash
pip install mem0ai
```
## 2. External Memory
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
### Basic External Memory with Mem0
### Mem0 Cloud Configuration
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
from crewai import Crew, Process
# Create external memory instance with local Mem0 Configuration
external_memory = ExternalMemory(
embedder_config={
# Set your Mem0 API key
os.environ["MEM0_API_KEY"] = "m0-your-api-key"
crew = Crew(
agents=[...],
tasks=[...],
memory=True, # Required for contextual memory integration
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory": {} # Required - triggers user memory initialization
},
process=Process.sequential,
verbose=True
)
```
### Advanced Mem0 Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
},
"user_memory": {}
}
)
```
### Local Mem0 Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
memory_config={
"provider": "mem0",
"config": {
"user_id": "john",
@@ -778,60 +761,37 @@ external_memory = ExternalMemory(
"provider": "openai",
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
}
},
"infer": True # Optional defaults to True
}
},
"user_memory": {}
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
```
### Advanced External Memory with Mem0 Client
When using Mem0 Client, you can customize the memory configuration further, by using parameters like 'includes', 'excludes', 'custom_categories', 'infer' and 'run_id' (this is only for short-term memory).
You can find more details in the [Mem0 documentation](https://docs.mem0.ai/).
## 3. External Memory (New Approach)
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
### Basic External Memory with Mem0
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
new_categories = [
{"lifestyle_management_concerns": "Tracks daily routines, habits, hobbies and interests including cooking, time management and work-life balance"},
{"seeking_structure": "Documents goals around creating routines, schedules, and organized systems in various life areas"},
{"personal_information": "Basic information about the user including name, preferences, and personality traits"}
]
os.environ["MEM0_API_KEY"] = "your-api-key"
# Create external memory instance with Mem0 Client
# Create external memory instance
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
"provider": "mem0",
"config": {"user_id": "U-123"}
}
)
crew = Crew(
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
verbose=True
)
@@ -848,8 +808,8 @@ class CustomStorage(Storage):
def save(self, value, metadata=None, agent=None):
self.memories.append({
"value": value,
"metadata": metadata,
"value": value,
"metadata": metadata,
"agent": agent
})
@@ -870,18 +830,17 @@ crew = Crew(
)
```
## 🧠 Memory System Comparison
| **Category** | **Feature** | **Basic Memory** | **External Memory** |
|---------------------|------------------------|-----------------------------|------------------------------|
| **Ease of Use** | Setup Complexity | Simple | Moderate |
| | Integration | Built-in (contextual) | Standalone |
| **Persistence** | Storage | Local files | Custom / Mem0 |
| | Cross-session Support | ✅ | ✅ |
| **Personalization** | User-specific Memory | ❌ | ✅ |
| | Custom Providers | Limited | Any provider |
| **Use Case Fit** | Recommended For | Most general use cases | Specialized / custom needs |
## Memory System Comparison
| Feature | Basic Memory | User Memory (Legacy) | External Memory |
|---------|-------------|---------------------|----------------|
| **Setup Complexity** | Simple | Medium | Medium |
| **Integration** | Built-in contextual | Contextual + User-specific | Standalone |
| **Storage** | Local files | Mem0 Cloud/Local | Custom/Mem0 |
| **Cross-session** | ✅ | ✅ | ✅ |
| **User-specific** | ❌ | ✅ | ✅ |
| **Custom providers** | Limited | Mem0 only | Any provider |
| **Recommended for** | Most use cases | Legacy projects | Specialized needs |
## Supported Embedding Providers
@@ -1027,201 +986,7 @@ crew = Crew(
- 🫡 **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
- 🧠 **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
## Memory Events
CrewAI's event system provides powerful insights into memory operations. By leveraging memory events, you can monitor, debug, and optimize your memory system's performance and behavior.
### Available Memory Events
CrewAI emits the following memory-related events:
| Event | Description | Key Properties |
| :---- | :---------- | :------------- |
| **MemoryQueryStartedEvent** | Emitted when a memory query begins | `query`, `limit`, `score_threshold` |
| **MemoryQueryCompletedEvent** | Emitted when a memory query completes successfully | `query`, `results`, `limit`, `score_threshold`, `query_time_ms` |
| **MemoryQueryFailedEvent** | Emitted when a memory query fails | `query`, `limit`, `score_threshold`, `error` |
| **MemorySaveStartedEvent** | Emitted when a memory save operation begins | `value`, `metadata`, `agent_role` |
| **MemorySaveCompletedEvent** | Emitted when a memory save operation completes successfully | `value`, `metadata`, `agent_role`, `save_time_ms` |
| **MemorySaveFailedEvent** | Emitted when a memory save operation fails | `value`, `metadata`, `agent_role`, `error` |
| **MemoryRetrievalStartedEvent** | Emitted when memory retrieval for a task prompt starts | `task_id` |
| **MemoryRetrievalCompletedEvent** | Emitted when memory retrieval completes successfully | `task_id`, `memory_content`, `retrieval_time_ms` |
### Practical Applications
#### 1. Memory Performance Monitoring
Track memory operation timing to optimize your application:
```python
from crewai.events import (
BaseEventListener,
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
import time
class MemoryPerformanceMonitor(BaseEventListener):
def __init__(self):
super().__init__()
self.query_times = []
self.save_times = []
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(MemoryQueryCompletedEvent)
def on_memory_query_completed(source, event: MemoryQueryCompletedEvent):
self.query_times.append(event.query_time_ms)
print(f"Memory query completed in {event.query_time_ms:.2f}ms. Query: '{event.query}'")
print(f"Average query time: {sum(self.query_times)/len(self.query_times):.2f}ms")
@crewai_event_bus.on(MemorySaveCompletedEvent)
def on_memory_save_completed(source, event: MemorySaveCompletedEvent):
self.save_times.append(event.save_time_ms)
print(f"Memory save completed in {event.save_time_ms:.2f}ms")
print(f"Average save time: {sum(self.save_times)/len(self.save_times):.2f}ms")
# Create an instance of your listener
memory_monitor = MemoryPerformanceMonitor()
```
#### 2. Memory Content Logging
Log memory operations for debugging and insights:
```python
from crewai.events import (
BaseEventListener,
MemorySaveStartedEvent,
MemoryQueryStartedEvent,
MemoryRetrievalCompletedEvent
)
import logging
# Configure logging
logger = logging.getLogger('memory_events')
class MemoryLogger(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(MemorySaveStartedEvent)
def on_memory_save_started(source, event: MemorySaveStartedEvent):
if event.agent_role:
logger.info(f"Agent '{event.agent_role}' saving memory: {event.value[:50]}...")
else:
logger.info(f"Saving memory: {event.value[:50]}...")
@crewai_event_bus.on(MemoryQueryStartedEvent)
def on_memory_query_started(source, event: MemoryQueryStartedEvent):
logger.info(f"Memory query started: '{event.query}' (limit: {event.limit})")
@crewai_event_bus.on(MemoryRetrievalCompletedEvent)
def on_memory_retrieval_completed(source, event: MemoryRetrievalCompletedEvent):
if event.task_id:
logger.info(f"Memory retrieved for task {event.task_id} in {event.retrieval_time_ms:.2f}ms")
else:
logger.info(f"Memory retrieved in {event.retrieval_time_ms:.2f}ms")
logger.debug(f"Memory content: {event.memory_content}")
# Create an instance of your listener
memory_logger = MemoryLogger()
```
#### 3. Error Tracking and Notifications
Capture and respond to memory errors:
```python
from crewai.events import (
BaseEventListener,
MemorySaveFailedEvent,
MemoryQueryFailedEvent
)
import logging
from typing import Optional
# Configure logging
logger = logging.getLogger('memory_errors')
class MemoryErrorTracker(BaseEventListener):
def __init__(self, notify_email: Optional[str] = None):
super().__init__()
self.notify_email = notify_email
self.error_count = 0
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(MemorySaveFailedEvent)
def on_memory_save_failed(source, event: MemorySaveFailedEvent):
self.error_count += 1
agent_info = f"Agent '{event.agent_role}'" if event.agent_role else "Unknown agent"
error_message = f"Memory save failed: {event.error}. {agent_info}"
logger.error(error_message)
if self.notify_email and self.error_count % 5 == 0:
self._send_notification(error_message)
@crewai_event_bus.on(MemoryQueryFailedEvent)
def on_memory_query_failed(source, event: MemoryQueryFailedEvent):
self.error_count += 1
error_message = f"Memory query failed: {event.error}. Query: '{event.query}'"
logger.error(error_message)
if self.notify_email and self.error_count % 5 == 0:
self._send_notification(error_message)
def _send_notification(self, message):
# Implement your notification system (email, Slack, etc.)
print(f"[NOTIFICATION] Would send to {self.notify_email}: {message}")
# Create an instance of your listener
error_tracker = MemoryErrorTracker(notify_email="admin@example.com")
```
### Integrating with Analytics Platforms
Memory events can be forwarded to analytics and monitoring platforms to track performance metrics, detect anomalies, and visualize memory usage patterns:
```python
from crewai.events import (
BaseEventListener,
MemoryQueryCompletedEvent,
MemorySaveCompletedEvent
)
class MemoryAnalyticsForwarder(BaseEventListener):
def __init__(self, analytics_client):
super().__init__()
self.client = analytics_client
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(MemoryQueryCompletedEvent)
def on_memory_query_completed(source, event: MemoryQueryCompletedEvent):
# Forward query metrics to analytics platform
self.client.track_metric({
"event_type": "memory_query",
"query": event.query,
"duration_ms": event.query_time_ms,
"result_count": len(event.results) if hasattr(event.results, "__len__") else 0,
"timestamp": event.timestamp
})
@crewai_event_bus.on(MemorySaveCompletedEvent)
def on_memory_save_completed(source, event: MemorySaveCompletedEvent):
# Forward save metrics to analytics platform
self.client.track_metric({
"event_type": "memory_save",
"agent_role": event.agent_role,
"duration_ms": event.save_time_ms,
"timestamp": event.timestamp
})
```
### Best Practices for Memory Event Listeners
1. **Keep handlers lightweight**: Avoid complex processing in event handlers to prevent performance impacts
2. **Use appropriate logging levels**: Use INFO for normal operations, DEBUG for details, ERROR for issues
3. **Batch metrics when possible**: Accumulate metrics before sending to external systems
4. **Handle exceptions gracefully**: Ensure your event handlers don't crash due to unexpected data
5. **Consider memory consumption**: Be mindful of storing large amounts of event data
## Conclusion
Integrating CrewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations,
Integrating CrewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations,
you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.

View File

@@ -2,7 +2,6 @@
title: Planning
description: Learn how to add planning to your CrewAI Crew and improve their performance.
icon: ruler-combined
mode: "wide"
---
## Overview

View File

@@ -2,7 +2,6 @@
title: Processes
description: Detailed guide on workflow management through processes in CrewAI, with updated implementation details.
icon: bars-staggered
mode: "wide"
---
## Overview

View File

@@ -2,7 +2,6 @@
title: Reasoning
description: "Learn how to enable and use agent reasoning to improve task execution."
icon: brain
mode: "wide"
---
## Overview

View File

@@ -2,7 +2,6 @@
title: Tasks
description: Detailed guide on managing and creating tasks within the CrewAI framework.
icon: list-check
mode: "wide"
---
## Overview
@@ -14,7 +13,7 @@ Tasks provide all necessary details for execution, such as a description, the ag
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI AMP includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
CrewAI Enterprise includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](/images/enterprise/crew-studio-interface.png)
@@ -55,17 +54,9 @@ crew = Crew(
| **Markdown** _(optional)_ | `markdown` | `Optional[bool]` | Whether the task should instruct the agent to return the final answer formatted in Markdown. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Create Directory** _(optional)_ | `create_directory` | `Optional[bool]` | Whether to create the directory for output_file if it doesn't exist. Defaults to True. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
<Note type="warning" title="Deprecated: max_retries">
The task attribute `max_retries` is deprecated and will be removed in v1.0.0.
Use `guardrail_max_retries` instead to control retry attempts when a guardrail fails.
</Note>
## Creating Tasks
@@ -75,7 +66,7 @@ There are two ways to create tasks in CrewAI: using **YAML configuration (recomm
Using YAML configuration provides a cleaner, more maintainable way to define tasks. We strongly recommend using this approach to define tasks in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
<Note>
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
@@ -286,7 +277,7 @@ formatted_task = Task(
When `markdown=True`, the agent will receive additional instructions to format the output using:
- `#` for headers
- `**text**` for bold text
- `**text**` for bold text
- `*text*` for italic text
- `-` or `*` for bullet points
- `` `code` `` for inline code
@@ -341,11 +332,9 @@ Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
feedback to agents when their output doesn't meet specific criteria.
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
### Using Task Guardrails
### Function-Based Guardrails
To add a function-based guardrail to a task, provide a validation function through the `guardrail` parameter:
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
```python Code
from typing import Tuple, Union, Dict, Any
@@ -383,7 +372,9 @@ blog_task = Task(
- On success: it returns a tuple of `(bool, Any)`. For example: `(True, validated_result)`
- On Failure: it returns a tuple of `(bool, str)`. For example: `(False, "Error message explain the failure")`
### LLMGuardrail
The `LLMGuardrail` class offers a robust mechanism for validating task outputs.
### Error Handling Best Practices
@@ -438,7 +429,7 @@ When a guardrail returns `(False, error)`:
2. The agent attempts to fix the issue
3. The process repeats until:
- The guardrail returns `(True, result)`
- Maximum retries are reached (`guardrail_max_retries`)
- Maximum retries are reached
Example with retry handling:
```python Code
@@ -459,7 +450,7 @@ task = Task(
expected_output="A valid JSON object",
agent=analyst,
guardrail=validate_json_output,
guardrail_max_retries=3 # Limit retry attempts
max_retries=3 # Limit retry attempts
)
```
@@ -807,103 +798,197 @@ While creating and executing tasks, certain validation mechanisms are in place t
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
## Task Guardrails
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
### Basic Usage
#### Define your own logic to validate
```python Code
from typing import Tuple, Union
from crewai import Task
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
"""Validate that the output is valid JSON."""
try:
json_data = json.loads(result)
return (True, json_data)
except json.JSONDecodeError:
return (False, "Output must be valid JSON")
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail=validate_json_output
)
```
#### Leverage a no-code approach for validation
```python Code
from crewai import Task
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail="Ensure the response is a valid JSON object"
)
```
#### Using YAML
```yaml
research_task:
...
guardrail: make sure each bullet contains a minimum of 100 words
...
```
```python Code
@CrewBase
class InternalCrew:
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
...
@task
def research_task(self):
return Task(config=self.tasks_config["research_task"]) # type: ignore[index]
...
```
#### Use custom models for code generation
```python Code
from crewai import Task
from crewai.llm import LLM
task = Task(
description="Generate JSON data",
expected_output="Valid JSON object",
guardrail=LLMGuardrail(
description="Ensure the response is a valid JSON object",
llm=LLM(model="gpt-4o-mini"),
)
)
```
### How Guardrails Work
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
- If `success` is `True`, `data` is the validated/transformed result
- If `success` is `False`, `data` is the error message
4. **Result Routing**:
- On success (`True`), the result is automatically passed to the next task
- On failure (`False`), the error is sent back to the agent to generate a new answer
### Common Use Cases
#### Data Format Validation
```python Code
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure the output contains a valid email address."""
import re
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
if re.match(email_pattern, result.strip()):
return (True, result.strip())
return (False, "Output must be a valid email address")
```
#### Content Filtering
```python Code
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
"""Remove or validate sensitive information."""
sensitive_patterns = ['SSN:', 'password:', 'secret:']
for pattern in sensitive_patterns:
if pattern.lower() in result.lower():
return (False, f"Output contains sensitive information ({pattern})")
return (True, result)
```
#### Data Transformation
```python Code
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
"""Ensure phone numbers are in a consistent format."""
import re
digits = re.sub(r'\D', '', result)
if len(digits) == 10:
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
return (True, formatted)
return (False, "Output must be a 10-digit phone number")
```
### Advanced Features
#### Chaining Multiple Validations
```python Code
def chain_validations(*validators):
"""Chain multiple validators together."""
def combined_validator(result):
for validator in validators:
success, data = validator(result)
if not success:
return (False, data)
result = data
return (True, result)
return combined_validator
# Usage
task = Task(
description="Get user contact info",
expected_output="Email and phone",
guardrail=chain_validations(
validate_email_format,
filter_sensitive_info
)
)
```
#### Custom Retry Logic
```python Code
task = Task(
description="Generate data",
expected_output="Valid data",
guardrail=validate_data,
max_retries=5 # Override default retry limit
)
```
## Creating Directories when Saving Files
The `create_directory` parameter controls whether CrewAI should automatically create directories when saving task outputs to files. This feature is particularly useful for organizing outputs and ensuring that file paths are correctly structured, especially when working with complex project hierarchies.
### Default Behavior
By default, `create_directory=True`, which means CrewAI will automatically create any missing directories in the output file path:
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
```python Code
# Default behavior - directories are created automatically
report_task = Task(
description='Generate a comprehensive market analysis report',
expected_output='A detailed market analysis with charts and insights',
agent=analyst_agent,
output_file='reports/2025/market_analysis.md', # Creates 'reports/2025/' if it doesn't exist
markdown=True
# ...
save_output_task = Task(
description='Save the summarized AI news to a file',
expected_output='File saved successfully',
agent=research_agent,
tools=[file_save_tool],
output_file='outputs/ai_news_summary.txt',
create_directory=True
)
```
### Disabling Directory Creation
If you want to prevent automatic directory creation and ensure that the directory already exists, set `create_directory=False`:
```python Code
# Strict mode - directory must already exist
strict_output_task = Task(
description='Save critical data that requires existing infrastructure',
expected_output='Data saved to pre-configured location',
agent=data_agent,
output_file='secure/vault/critical_data.json',
create_directory=False # Will raise RuntimeError if 'secure/vault/' doesn't exist
)
```
### YAML Configuration
You can also configure this behavior in your YAML task definitions:
```yaml tasks.yaml
analysis_task:
description: >
Generate quarterly financial analysis
expected_output: >
A comprehensive financial report with quarterly insights
agent: financial_analyst
output_file: reports/quarterly/q4_2024_analysis.pdf
create_directory: true # Automatically create 'reports/quarterly/' directory
audit_task:
description: >
Perform compliance audit and save to existing audit directory
expected_output: >
A compliance audit report
agent: auditor
output_file: audit/compliance_report.md
create_directory: false # Directory must already exist
```
### Use Cases
**Automatic Directory Creation (`create_directory=True`):**
- Development and prototyping environments
- Dynamic report generation with date-based folders
- Automated workflows where directory structure may vary
- Multi-tenant applications with user-specific folders
**Manual Directory Management (`create_directory=False`):**
- Production environments with strict file system controls
- Security-sensitive applications where directories must be pre-configured
- Systems with specific permission requirements
- Compliance environments where directory creation is audited
### Error Handling
When `create_directory=False` and the directory doesn't exist, CrewAI will raise a `RuntimeError`:
```python Code
try:
result = crew.kickoff()
except RuntimeError as e:
# Handle missing directory error
print(f"Directory creation failed: {e}")
# Create directory manually or use fallback location
#...
```
Check out the video below to see how to use structured outputs in CrewAI:
<iframe
className="w-full aspect-video rounded-xl"
width="560"
height="315"
src="https://www.youtube.com/embed/dNpKQk5uxHw"
title="Structured outputs in CrewAI"
frameBorder="0"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerPolicy="strict-origin-when-cross-origin"
allowFullScreen
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Conclusion

View File

@@ -2,7 +2,6 @@
title: Testing
description: Learn how to test your CrewAI Crew and evaluate their performance.
icon: vial
mode: "wide"
---
## Overview

View File

@@ -2,7 +2,6 @@
title: Tools
description: Understanding and leveraging tools within the CrewAI framework for agent collaboration and task execution.
icon: screwdriver-wrench
mode: "wide"
---
## Overview
@@ -17,7 +16,7 @@ This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/cre
enabling everything from simple searches to complex interactions and effective teamwork among agents.
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI AMP provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
CrewAI Enterprise provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems
@@ -208,7 +207,7 @@ from crewai.tools import BaseTool
class AsyncCustomTool(BaseTool):
name: str = "async_custom_tool"
description: str = "An asynchronous custom tool"
async def _run(self, query: str = "") -> str:
"""Asynchronously run the tool"""
# Your async implementation here

View File

@@ -0,0 +1,67 @@
---
title: Training
description: Learn how to train your CrewAI agents by giving them feedback early on and get consistent results.
icon: dumbbell
---
## Overview
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.
During training, CrewAI utilizes techniques to optimize the performance of your agents along with human feedback.
This helps the agents improve their understanding, decision-making, and problem-solving abilities.
### Training Your Crew Using the CLI
To use the training feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
```shell
crewai train -n <n_iterations> <filename> (optional)
```
<Tip>
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
</Tip>
### Training Your Crew Programmatically
To train your crew programmatically, use the following steps:
1. Define the number of iterations for training.
2. Specify the input parameters for the training process.
3. Execute the training command within a try-except block to handle potential errors.
```python Code
n_iterations = 2
inputs = {"topic": "CrewAI Training"}
filename = "your_model.pkl"
try:
YourCrewName_Crew().crew().train(
n_iterations=n_iterations,
inputs=inputs,
filename=filename
)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
### Key Points to Note
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
Happy training with CrewAI! 🚀

File diff suppressed because it is too large Load Diff

View File

@@ -1,8 +0,0 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
mode: "wide"
---

View File

@@ -1,8 +0,0 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
mode: "wide"
---

View File

@@ -1,8 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
mode: "wide"
---

File diff suppressed because it is too large Load Diff

View File

@@ -1,197 +0,0 @@
---
title: Training
description: Learn how to train your CrewAI agents by giving them feedback early on and get consistent results.
icon: dumbbell
mode: "wide"
---
## Overview
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI).
By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.
During training, CrewAI utilizes techniques to optimize the performance of your agents along with human feedback.
This helps the agents improve their understanding, decision-making, and problem-solving abilities.
### Training Your Crew Using the CLI
To use the training feature, follow these steps:
1. Open your terminal or command prompt.
2. Navigate to the directory where your CrewAI project is located.
3. Run the following command:
```shell
crewai train -n <n_iterations> -f <filename.pkl>
```
<Tip>
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
</Tip>
<Note>
If you omit `-f`, the output defaults to `trained_agents_data.pkl` in the current working directory. You can pass an absolute path to control where the file is written.
</Note>
### Training your Crew programmatically
To train your crew programmatically, use the following steps:
1. Define the number of iterations for training.
2. Specify the input parameters for the training process.
3. Execute the training command within a try-except block to handle potential errors.
```python Code
n_iterations = 2
inputs = {"topic": "CrewAI Training"}
filename = "your_model.pkl"
try:
YourCrewName_Crew().crew().train(
n_iterations=n_iterations,
inputs=inputs,
filename=filename
)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
## How trained data is used by agents
CrewAI uses the training artifacts in two ways: during training to incorporate your human feedback, and after training to guide agents with consolidated suggestions.
### Training data flow
```mermaid
flowchart TD
A["Start training<br/>CLI: crewai train -n -f<br/>or Python: crew.train(...)"] --> B["Setup training mode<br/>- task.human_input = true<br/>- disable delegation<br/>- init training_data.pkl + trained file"]
subgraph "Iterations"
direction LR
C["Iteration i<br/>initial_output"] --> D["User human_feedback"]
D --> E["improved_output"]
E --> F["Append to training_data.pkl<br/>by agent_id and iteration"]
end
B --> C
F --> G{"More iterations?"}
G -- "Yes" --> C
G -- "No" --> H["Evaluate per agent<br/>aggregate iterations"]
H --> I["Consolidate<br/>suggestions[] + quality + final_summary"]
I --> J["Save by agent role to trained file<br/>(default: trained_agents_data.pkl)"]
J --> K["Normal (non-training) runs"]
K --> L["Auto-load suggestions<br/>from trained_agents_data.pkl"]
L --> M["Append to prompt<br/>for consistent improvements"]
```
### During training runs
- On each iteration, the system records for every agent:
- `initial_output`: the agents first answer
- `human_feedback`: your inline feedback when prompted
- `improved_output`: the agents follow-up answer after feedback
- This data is stored in a working file named `training_data.pkl` keyed by the agents internal ID and iteration.
- While training is active, the agent automatically appends your prior human feedback to its prompt to enforce those instructions on subsequent attempts within the training session.
Training is interactive: tasks set `human_input = true`, so running in a non-interactive environment will block on user input.
### After training completes
- When `train(...)` finishes, CrewAI evaluates the collected training data per agent and produces a consolidated result containing:
- `suggestions`: clear, actionable instructions distilled from your feedback and the difference between initial/improved outputs
- `quality`: a 010 score capturing improvement
- `final_summary`: a step-by-step set of action items for future tasks
- These consolidated results are saved to the filename you pass to `train(...)` (default via CLI is `trained_agents_data.pkl`). Entries are keyed by the agents `role` so they can be applied across sessions.
- During normal (non-training) execution, each agent automatically loads its consolidated `suggestions` and appends them to the task prompt as mandatory instructions. This gives you consistent improvements without changing your agent definitions.
### File summary
- `training_data.pkl` (ephemeral, per-session):
- Structure: `agent_id -> { iteration_number: { initial_output, human_feedback, improved_output } }`
- Purpose: capture raw data and human feedback during training
- Location: saved in the current working directory (CWD)
- `trained_agents_data.pkl` (or your custom filename):
- Structure: `agent_role -> { suggestions: string[], quality: number, final_summary: string }`
- Purpose: persist consolidated guidance for future runs
- Location: written to the CWD by default; use `-f` to set a custom (including absolute) path
## Small Language Model Considerations
<Warning>
When using smaller language models (≤7B parameters) for training data evaluation, be aware that they may face challenges with generating structured outputs and following complex instructions.
</Warning>
### Limitations of Small Models in Training Evaluation
<CardGroup cols={2}>
<Card title="JSON Output Accuracy" icon="triangle-exclamation">
Smaller models often struggle with producing valid JSON responses needed for structured training evaluations, leading to parsing errors and incomplete data.
</Card>
<Card title="Evaluation Quality" icon="chart-line">
Models under 7B parameters may provide less nuanced evaluations with limited reasoning depth compared to larger models.
</Card>
<Card title="Instruction Following" icon="list-check">
Complex training evaluation criteria may not be fully followed or considered by smaller models.
</Card>
<Card title="Consistency" icon="rotate">
Evaluations across multiple training iterations may lack consistency with smaller models.
</Card>
</CardGroup>
### Recommendations for Training
<Tabs>
<Tab title="Best Practice">
For optimal training quality and reliable evaluations, we strongly recommend using models with at least 7B parameters or larger:
```python
from crewai import Agent, Crew, Task, LLM
# Recommended minimum for training evaluation
llm = LLM(model="mistral/open-mistral-7b")
# Better options for reliable training evaluation
llm = LLM(model="anthropic/claude-3-sonnet-20240229-v1:0")
llm = LLM(model="gpt-4o")
# Use this LLM with your agents
agent = Agent(
role="Training Evaluator",
goal="Provide accurate training feedback",
llm=llm
)
```
<Tip>
More powerful models provide higher quality feedback with better reasoning, leading to more effective training iterations.
</Tip>
</Tab>
<Tab title="Small Model Usage">
If you must use smaller models for training evaluation, be aware of these constraints:
```python
# Using a smaller model (expect some limitations)
llm = LLM(model="huggingface/microsoft/Phi-3-mini-4k-instruct")
```
<Warning>
While CrewAI includes optimizations for small models, expect less reliable and less nuanced evaluation results that may require more human intervention during training.
</Warning>
</Tab>
</Tabs>
### Key Points to Note
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
- Trained guidance is applied at prompt time; it does not modify your Python/YAML agent configuration.
- Agents automatically load trained suggestions from a file named `trained_agents_data.pkl` located in the current working directory. If you trained to a different filename, either rename it to `trained_agents_data.pkl` before running, or adjust the loader in code.
- You can change the output filename when calling `crewai train` with `-f/--filename`. Absolute paths are supported if you want to save outside the CWD.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.

View File

@@ -1,155 +0,0 @@
---
title: 'Agent Repositories'
description: 'Learn how to use Agent Repositories to share and reuse your agents across teams and projects'
icon: 'people-group'
mode: "wide"
---
Agent Repositories allow enterprise users to store, share, and reuse agent definitions across teams and projects. This feature enables organizations to maintain a centralized library of standardized agents, promoting consistency and reducing duplication of effort.
<Frame>
![Agent Repositories](/images/enterprise/agent-repositories.png)
</Frame>
## Benefits of Agent Repositories
- **Standardization**: Maintain consistent agent definitions across your organization
- **Reusability**: Create an agent once and use it in multiple crews and projects
- **Governance**: Implement organization-wide policies for agent configurations
- **Collaboration**: Enable teams to share and build upon each other's work
## Creating and Use Agent Repositories
1. You must have an account at CrewAI, try the [free plan](https://app.crewai.com).
2. Create agents with specific roles and goals for your workflows.
3. Configure tools and capabilities for each specialized assistant.
4. Deploy agents across projects via visual interface or API integration.
<Frame>
![Agent Repositories](/images/enterprise/create-agent-repository.png)
</Frame>
### Loading Agents from Repositories
You can load agents from repositories in your code using the `from_repository` parameter to run locally:
```python
from crewai import Agent
# Create an agent by loading it from a repository
# The agent is loaded with all its predefined configurations
researcher = Agent(
from_repository="market-research-agent"
)
```
### Overriding Repository Settings
You can override specific settings from the repository by providing them in the configuration:
```python
researcher = Agent(
from_repository="market-research-agent",
goal="Research the latest trends in AI development", # Override the repository goal
verbose=True # Add a setting not in the repository
)
```
### Example: Creating a Crew with Repository Agents
```python
from crewai import Crew, Agent, Task
# Load agents from repositories
researcher = Agent(
from_repository="market-research-agent"
)
writer = Agent(
from_repository="content-writer-agent"
)
# Create tasks
research_task = Task(
description="Research the latest trends in AI",
agent=researcher
)
writing_task = Task(
description="Write a comprehensive report based on the research",
agent=writer
)
# Create the crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
# Run the crew
result = crew.kickoff()
```
### Example: Using `kickoff()` with Repository Agents
You can also use repository agents directly with the `kickoff()` method for simpler interactions:
```python
from crewai import Agent
from pydantic import BaseModel
from typing import List
# Define a structured output format
class MarketAnalysis(BaseModel):
key_trends: List[str]
opportunities: List[str]
recommendation: str
# Load an agent from repository
analyst = Agent(
from_repository="market-analyst-agent",
verbose=True
)
# Get a free-form response
result = analyst.kickoff("Analyze the AI market in 2025")
print(result.raw) # Access the raw response
# Get structured output
structured_result = analyst.kickoff(
"Provide a structured analysis of the AI market in 2025",
response_format=MarketAnalysis
)
# Access structured data
print(f"Key Trends: {structured_result.pydantic.key_trends}")
print(f"Recommendation: {structured_result.pydantic.recommendation}")
```
## Best Practices
1. **Naming Convention**: Use clear, descriptive names for your repository agents
2. **Documentation**: Include comprehensive descriptions for each agent
3. **Tool Management**: Ensure that tools referenced by repository agents are available in your environment
4. **Access Control**: Manage permissions to ensure only authorized team members can modify repository agents
## Organization Management
To switch between organizations or see your current organization, use the CrewAI CLI:
```bash
# View current organization
crewai org current
# Switch to a different organization
crewai org switch <org_id>
# List all available organizations
crewai org list
```
<Note>
When loading agents from repositories, you must be authenticated and switched to the correct organization. If you receive errors, check your authentication status and organization settings using the CLI commands above.
</Note>

View File

@@ -1,104 +0,0 @@
---
title: Automations
description: "Manage, deploy, and monitor your live crews (automations) in one place."
icon: "rocket"
mode: "wide"
---
## Overview
Automations is the live operations hub for your deployed crews. Use it to deploy from GitHub or a ZIP file, manage environment variables, redeploy when needed, and monitor the status of each automation.
<Frame>
![Automations Overview](/images/enterprise/automations-overview.png)
</Frame>
## Deployment Methods
### Deploy from GitHub
Use this for versioncontrolled projects and continuous deployment.
<Steps>
<Step title="Connect GitHub">
Click <b>Configure GitHub</b> and authorize access.
</Step>
<Step title="Select Repository & Branch">
Choose the <b>Repository</b> and <b>Branch</b> you want to deploy from.
</Step>
<Step title="Enable Autodeploy (optional)">
Turn on <b>Automatically deploy new commits</b> to ship updates on every push.
</Step>
<Step title="Add Environment Variables">
Add secrets individually or use <b>Bulk View</b> for multiple variables.
</Step>
<Step title="Deploy">
Click <b>Deploy</b> to create your live automation.
</Step>
</Steps>
<Frame>
![GitHub Deployment](/images/enterprise/deploy-from-github.png)
</Frame>
### Deploy from ZIP
Ship quickly without Git—upload a compressed package of your project.
<Steps>
<Step title="Choose File">
Select the ZIP archive from your computer.
</Step>
<Step title="Add Environment Variables">
Provide any required variables or keys.
</Step>
<Step title="Deploy">
Click <b>Deploy</b> to create your live automation.
</Step>
</Steps>
<Frame>
![ZIP Deployment](/images/enterprise/deploy-from-zip.png)
</Frame>
## Automations Dashboard
The table lists all live automations with key details:
- **CREW**: Automation name
- **STATUS**: Online / Failed / In Progress
- **URL**: Endpoint for kickoff/status
- **TOKEN**: Automation token
- **ACTIONS**: Redeploy, delete, and more
Use the topright controls to filter and search:
- Search by name
- Filter by <b>Status</b>
- Filter by <b>Source</b> (GitHub / Studio / ZIP)
Once deployed, you can view the automation details and have the **Options** dropdown menu to `chat with this crew`, `Export React Component` and `Export as MCP`.
<Frame>
![Automations Table](/images/enterprise/automations-table.png)
</Frame>
## Best Practices
- Prefer GitHub deployments for version control and CI/CD
- Use redeploy to roll forward after code or config updates or set it to auto-deploy on every push
## Related
<CardGroup cols={3}>
<Card title="Deploy a Crew" href="/en/enterprise/guides/deploy-crew" icon="rocket">
Deploy a Crew from GitHub or ZIP file.
</Card>
<Card title="Automation Triggers" href="/en/enterprise/guides/automation-triggers" icon="trigger">
Trigger automations via webhooks or API.
</Card>
<Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="webhook">
Stream real-time events and updates to your systems.
</Card>
</CardGroup>

View File

@@ -1,88 +0,0 @@
---
title: Crew Studio
description: "Build new automations with AI assistance, a visual editor, and integrated testing."
icon: "pencil"
mode: "wide"
---
## Overview
Crew Studio is an interactive, AIassisted workspace for creating new automations from scratch using natural language and a visual workflow editor.
<Frame>
![Crew Studio Overview](/images/enterprise/crew-studio-overview.png)
</Frame>
## Promptbased Creation
- Describe the automation you want; the AI generates agents, tasks, and tools.
- Use voice input via the microphone icon if preferred.
- Start from builtin prompts for common use cases.
<Frame>
![Prompt Builder](/images/enterprise/crew-studio-prompt.png)
</Frame>
## Visual Editor
The canvas reflects the workflow as nodes and edges with three supporting panels that allow you to configure the workflow easily without writing code; a.k.a. "**vibe coding AI Agents**".
You can use the drag-and-drop functionality to add agents, tasks, and tools to the canvas or you can use the chat section to build the agents. Both approaches share state and can be used interchangeably.
- **AI Thoughts (left)**: streaming reasoning as the workflow is designed
- **Canvas (center)**: agents and tasks as connected nodes
- **Resources (right)**: draganddrop components (agents, tasks, tools)
<Frame>
![Visual Canvas](/images/enterprise/crew-studio-canvas.png)
</Frame>
## Execution & Debugging
Switch to the <b>Execution</b> view to run and observe the workflow:
- Event timeline
- Detailed logs (Details, Messages, Raw Data)
- Local test runs before publishing
<Frame>
![Execution View](/images/enterprise/crew-studio-execution.png)
</Frame>
## Publish & Export
- <b>Publish</b> to deploy a live automation
- <b>Download</b> source as a ZIP for local development or customization
<Frame>
![Publish & Download](/images/enterprise/crew-studio-publish.png)
</Frame>
Once published, you can view the automation details and have the **Options** dropdown menu to `chat with this crew`, `Export React Component` and `Export as MCP`.
<Frame>
![Published Automation](/images/enterprise/crew-studio-published.png)
</Frame>
## Best Practices
- Iterate quickly in Studio; publish only when stable
- Keep tools constrained to minimum permissions needed
- Use Traces to validate behavior and performance
## Related
<CardGroup cols={4}>
<Card title="Enable Crew Studio" href="/en/enterprise/guides/enable-crew-studio" icon="palette">
Enable Crew Studio.
</Card>
<Card title="Build a Crew" href="/en/enterprise/guides/build-crew" icon="paintbrush">
Build a Crew.
</Card>
<Card title="Deploy a Crew" href="/en/enterprise/guides/deploy-crew" icon="rocket">
Deploy a Crew from GitHub or ZIP file.
</Card>
<Card title="Export a React Component" href="/en/enterprise/guides/react-component-export" icon="download">
Export a React Component.
</Card>
</CardGroup>

View File

@@ -1,46 +0,0 @@
---
title: Marketplace
description: "Discover, install, and govern reusable assets for your enterprise crews."
icon: "store"
mode: "wide"
---
## Overview
The Marketplace provides a curated surface for discovering integrations, internal tools, and reusable assets that accelerate crew development.
<Frame>
![Marketplace Overview](/images/enterprise/marketplace-overview.png)
</Frame>
## Discoverability
- Browse by category and capability
- Search for assets by name or keyword
## Install & Enable
- Oneclick install for approved assets
- Enable or disable per crew as needed
- Configure required environment variables and scopes
<Frame>
![Install & Configure](/images/enterprise/marketplace-install.png)
</Frame>
You can also download the templates directly from the marketplace by clicking on the `Download` button so
you can use them locally or refine them to your needs.
## Related
<CardGroup cols={3}>
<Card title="Tools & Integrations" href="/en/enterprise/features/tools-and-integrations" icon="wrench">
Connect external apps and manage internal tools your agents can use.
</Card>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox">
Publish and install tools to enhance your crews' capabilities.
</Card>
<Card title="Agents Repository" href="/en/enterprise/features/agent-repositories" icon="people-group">
Store, share, and reuse agent definitions across teams and projects.
</Card>
</CardGroup>

View File

@@ -1,102 +0,0 @@
---
title: "Role-Based Access Control (RBAC)"
description: "Control access to crews, tools, and data with roles, scopes, and granular permissions."
icon: "shield"
mode: "wide"
---
## Overview
RBAC in CrewAI AMP enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI AMP" />
</Frame>
## Users and Roles
Each member in your CrewAI workspace is assigned a role, which determines their access across various features.
You can:
- Use predefined roles (Owner, Member)
- Create custom roles tailored to specific permissions
- Assign roles at any time through the settings panel
You can configure users and roles in Settings → Roles.
<Steps>
<Step title="Open Roles settings">
Go to <b>Settings → Roles</b> in CrewAI AMP.
</Step>
<Step title="Choose a role type">
Use a predefined role (<b>Owner</b>, <b>Member</b>) or click <b>Create role</b> to define a custom one.
</Step>
<Step title="Assign to members">
Select users and assign the role. You can change this anytime.
</Step>
</Steps>
### Configuration summary
| Area | Where to configure | Options |
|:---|:---|:---|
| Users & Roles | Settings → Roles | Predefined: Owner, Member; Custom roles |
| Automation visibility | Automation → Settings → Visibility | Private; Whitelist users/roles |
## Automationlevel Access Control
In addition to organizationwide roles, CrewAI Automations support finegrained visibility settings that let you restrict access to specific automations by user or role.
This is useful for:
- Keeping sensitive or experimental automations private
- Managing visibility across large teams or external collaborators
- Testing automations in isolated contexts
Deployments can be configured as private, meaning only whitelisted users and roles will be able to:
- View the deployment
- Run it or interact with its API
- Access its logs, metrics, and settings
The organization owner always has access, regardless of visibility settings.
You can configure automationlevel access control in Automation → Settings → Visibility tab.
<Steps>
<Step title="Open Visibility tab">
Navigate to <b>Automation → Settings → Visibility</b>.
</Step>
<Step title="Set visibility">
Choose <b>Private</b> to restrict access. The organization owner always retains access.
</Step>
<Step title="Whitelist access">
Add specific users and roles allowed to view, run, and access logs/metrics/settings.
</Step>
<Step title="Save and verify">
Save changes, then confirm that nonwhitelisted users cannot view or run the automation.
</Step>
</Steps>
### Private visibility: access outcomes
| Action | Owner | Whitelisted user/role | Not whitelisted |
|:---|:---|:---|:---|
| View automation | ✓ | ✓ | ✗ |
| Run automation/API | ✓ | ✓ | ✗ |
| Access logs/metrics/settings | ✓ | ✓ | ✗ |
<Tip>
The organization owner always has access. In private mode, only whitelisted users and roles can view, run, and access logs/metrics/settings.
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI AMP" />
</Frame>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with RBAC questions.
</Card>

View File

@@ -1,249 +0,0 @@
---
title: Tools & Integrations
description: "Connect external apps and manage internal tools your agents can use."
icon: "wrench"
mode: "wide"
---
## Overview
Tools & Integrations is the central hub for connecting thirdparty apps and managing internal tools that your agents can use at runtime.
<Frame>
![Tools & Integrations Overview](/images/enterprise/crew_connectors.png)
</Frame>
## Explore
<Tabs>
<Tab title="Integrations" icon="plug">
## Agent Apps (Integrations)
Connect enterprisegrade applications (e.g., Gmail, Google Drive, HubSpot, Slack) via OAuth to enable agent actions.
<Steps>
<Step title="Connect">
Click <b>Connect</b> on an app and complete OAuth.
</Step>
<Step title="Configure">
Optionally adjust scopes, triggers, and action availability.
</Step>
<Step title="Use in Agents">
Connected services become available as tools for your agents.
</Step>
</Steps>
<Frame>
![Integrations Grid](/images/enterprise/agent-apps.png)
</Frame>
### Connect your Account
1. Go to <Link href="https://app.crewai.com/crewai_plus/connectors">Integrations</Link>
2. Click <b>Connect</b> on the desired service
3. Complete the OAuth flow and grant scopes
4. Copy your Enterprise Token from the <b>Integration</b> tab
<Frame>
![Enterprise Token](/images/enterprise/enterprise_action_auth_token.png)
</Frame>
### Install Integration Tools
To use the integrations locally, you need to install the latest `crewai-tools` package.
```bash
uv add crewai-tools
```
### Usage Example
<Tip>
All services you have authenticated will be available as tools. Add `CrewaiEnterpriseTools` to your agent and youre set.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tool will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# print the tools
print(enterprise_tools)
# Create an agent with Gmail capabilities
email_agent = Agent(
role="Email Manager",
goal="Manage and organize email communications",
backstory="An AI assistant specialized in email management and communication.",
tools=enterprise_tools
)
# Task to send an email
email_task = Task(
description="Draft and send a follow-up email to john@example.com about the project update",
agent=email_agent,
expected_output="Confirmation that email was sent successfully"
)
# Run the task
crew = Crew(
agents=[email_agent],
tasks=[email_task]
)
# Run the crew
crew.kickoff()
```
### Filtering Tools
```python
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
)
gmail_tool = enterprise_tools["gmail_find_email"]
gmail_agent = Agent(
role="Gmail Manager",
goal="Manage gmail communications and notifications",
backstory="An AI assistant that helps coordinate gmail communications.",
tools=[gmail_tool]
)
notification_task = Task(
description="Find the email from john@example.com",
agent=gmail_agent,
expected_output="Email found from john@example.com"
)
crew = Crew(
agents=[gmail_agent],
tasks=[notification_task]
)
```
On a deployed crew, you can specify which actions are available for each integration from the service settings page.
<Frame>
![Filter Actions](/images/enterprise/filtering_enterprise_action_tools.png)
</Frame>
### Scoped Deployments (multiuser orgs)
You can scope each integration to a specific user. For example, a crew that connects to Google can use a specific users Gmail account.
<Tip>
Useful when different teams/users must keep data access separated.
</Tip>
Use the `user_bearer_token` to scope authentication to the requesting user. If the user isnt logged in, the crew wont use connected integrations. Otherwise it falls back to the default bearer token configured for the deployment.
<Frame>
![User Bearer Token](/images/enterprise/user_bearer_token.png)
</Frame>
<div id="catalog"></div>
### Catalog
#### Communication & Collaboration
- Gmail — Manage emails and drafts
- Slack — Workspace notifications and alerts
- Microsoft — Office 365 and Teams integration
#### Project Management
- Jira — Issue tracking and project management
- ClickUp — Task and productivity management
- Asana — Team task and project coordination
- Notion — Page and database management
- Linear — Software project and bug tracking
- GitHub — Repository and issue management
#### Customer Relationship Management
- Salesforce — CRM account and opportunity management
- HubSpot — Sales pipeline and contact management
- Zendesk — Customer support ticket management
#### Business & Finance
- Stripe — Payment processing and customer management
- Shopify — Ecommerce store and product management
#### Productivity & Storage
- Google Sheets — Spreadsheet data synchronization
- Google Calendar — Event and schedule management
- Box — File storage and document management
…and more to come!
</Tab>
<Tab title="Internal Tools" icon="toolbox">
## Internal Tools
Create custom tools locally, publish them on CrewAI AMP Tool Repository and use them in your agents.
<Tip>
Before running the commands below, make sure you log in to your CrewAI AMP account by running this command:
```bash
crewai login
```
</Tip>
<Frame>
![Internal Tool Detail](/images/enterprise/tools-integrations-internal.png)
</Frame>
<Steps>
<Step title="Create">
Create a new tool locally.
```bash
crewai tool create your-tool
```
</Step>
<Step title="Publish">
Publish the tool to the CrewAI AMP Tool Repository.
```bash
crewai tool publish
```
</Step>
<Step title="Install">
Install the tool from the CrewAI AMP Tool Repository.
```bash
crewai tool install your-tool
```
</Step>
</Steps>
Manage:
- Name and description
- Visibility (Private / Public)
- Required environment variables
- Version history and downloads
- Team and role access
<Frame>
![Internal Tool Detail](/images/enterprise/tool-configs.png)
</Frame>
</Tab>
</Tabs>
## Related
<CardGroup cols={2}>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox">
Create, publish, and version custom tools for your organization.
</Card>
<Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="bolt">
Automate workflows and integrate with external platforms and services.
</Card>
</CardGroup>

View File

@@ -1,168 +0,0 @@
---
title: Webhook Streaming
description: "Using Webhook Streaming to stream events to your webhook"
icon: "webhook"
mode: "wide"
---
## Overview
Enterprise Event Streaming lets you receive real-time webhook updates about your crews and flows deployed to
CrewAI AMP, such as model calls, tool usage, and flow steps.
## Usage
When using the Kickoff API, include a `webhooks` object to your request, for example:
```json
{
"inputs": {"foo": "bar"},
"webhooks": {
"events": ["crew_kickoff_started", "llm_call_started"],
"url": "https://your.endpoint/webhook",
"realtime": false,
"authentication": {
"strategy": "bearer",
"token": "my-secret-token"
}
}
}
```
If `realtime` is set to `true`, each event is delivered individually and immediately, at the cost of crew/flow performance.
## Webhook Format
Each webhook sends a list of events:
```json
{
"events": [
{
"id": "event-id",
"execution_id": "crew-run-id",
"timestamp": "2025-02-16T10:58:44.965Z",
"type": "llm_call_started",
"data": {
"model": "gpt-4",
"messages": [
{"role": "system", "content": "You are an assistant."},
{"role": "user", "content": "Summarize this article."}
]
}
}
]
}
```
The `data` object structure varies by event type. Refer to the [event list](https://github.com/crewAIInc/crewAI/tree/main/src/crewai/utilities/events) on GitHub.
As requests are sent over HTTP, the order of events can't be guaranteed. If you need ordering, use the `timestamp` field.
## Supported Events
CrewAI supports both system events and custom events in Enterprise Event Streaming. These events are sent to your configured webhook endpoint during crew and flow execution.
### Flow Events:
- `flow_created`
- `flow_started`
- `flow_finished`
- `flow_plot`
- `method_execution_started`
- `method_execution_finished`
- `method_execution_failed`
### Agent Events:
- `agent_execution_started`
- `agent_execution_completed`
- `agent_execution_error`
- `lite_agent_execution_started`
- `lite_agent_execution_completed`
- `lite_agent_execution_error`
- `agent_logs_started`
- `agent_logs_execution`
- `agent_evaluation_started`
- `agent_evaluation_completed`
- `agent_evaluation_failed`
### Crew Events:
- `crew_kickoff_started`
- `crew_kickoff_completed`
- `crew_kickoff_failed`
- `crew_train_started`
- `crew_train_completed`
- `crew_train_failed`
- `crew_test_started`
- `crew_test_completed`
- `crew_test_failed`
- `crew_test_result`
### Task Events:
- `task_started`
- `task_completed`
- `task_failed`
- `task_evaluation`
### Tool Usage Events:
- `tool_usage_started`
- `tool_usage_finished`
- `tool_usage_error`
- `tool_validate_input_error`
- `tool_selection_error`
- `tool_execution_error`
### LLM Events:
- `llm_call_started`
- `llm_call_completed`
- `llm_call_failed`
- `llm_stream_chunk`
### LLM Guardrail Events:
- `llm_guardrail_started`
- `llm_guardrail_completed`
### Memory Events:
- `memory_query_started`
- `memory_query_completed`
- `memory_query_failed`
- `memory_save_started`
- `memory_save_completed`
- `memory_save_failed`
- `memory_retrieval_started`
- `memory_retrieval_completed`
### Knowledge Events:
- `knowledge_search_query_started`
- `knowledge_search_query_completed`
- `knowledge_search_query_failed`
- `knowledge_query_started`
- `knowledge_query_completed`
- `knowledge_query_failed`
### Reasoning Events:
- `agent_reasoning_started`
- `agent_reasoning_completed`
- `agent_reasoning_failed`
Event names match the internal event bus. See GitHub for the full list of events.
You can emit your own custom events, and they will be delivered through the webhook stream alongside system events.
<CardGroup>
<Card title="GitHub" icon="github" href="https://github.com/crewAIInc/crewAI/tree/main/src/crewai/utilities/events">
Full list of events
</Card>
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with webhook integration or troubleshooting.
</Card>
</CardGroup>

View File

@@ -1,255 +0,0 @@
---
title: "Triggers Overview"
description: "Understand how CrewAI AMP triggers work, how to manage them, and where to find integration-specific playbooks"
icon: "face-smile"
mode: "wide"
---
CrewAI AMP triggers connect your automations to real-time events across the tools your teams already use. Instead of polling systems or relying on manual kickoffs, triggers listen for changes—new emails, calendar updates, CRM status changes—and immediately launch the crew or flow you specify.
<Frame>
![Automation Triggers Overview](/images/enterprise/crew_connectors.png)
</Frame>
### Integration Playbooks
Deep-dive guides walk through setup and sample workflows for each integration:
<CardGroup cols={2}>
<Card title="Gmail Trigger" icon="envelope">
<a href="/en/enterprise/guides/gmail-trigger">Enable crews when emails arrive or threads update.</a>
</Card>
<Card title="Google Calendar Trigger" icon="calendar-days">
<a href="/en/enterprise/guides/google-calendar-trigger">React to calendar events as they are created, updated, or cancelled.</a>
</Card>
<Card title="Google Drive Trigger" icon="folder-open">
<a href="/en/enterprise/guides/google-drive-trigger">Handle Drive file uploads, edits, and deletions.</a>
</Card>
<Card title="Outlook Trigger" icon="envelope-open">
<a href="/en/enterprise/guides/outlook-trigger">Automate responses to new Outlook messages and calendar updates.</a>
</Card>
<Card title="OneDrive Trigger" icon="cloud">
<a href="/en/enterprise/guides/onedrive-trigger">Audit file activity and sharing changes in OneDrive.</a>
</Card>
<Card title="Microsoft Teams Trigger" icon="comments">
<a href="/en/enterprise/guides/microsoft-teams-trigger">Kick off workflows when new Teams chats start.</a>
</Card>
<Card title="HubSpot Trigger" icon="hubspot">
<a href="/en/enterprise/guides/hubspot-trigger">Launch automations from HubSpot workflows and lifecycle events.</a>
</Card>
<Card title="Salesforce Trigger" icon="salesforce">
<a href="/en/enterprise/guides/salesforce-trigger">Connect Salesforce processes to CrewAI for CRM automation.</a>
</Card>
<Card title="Slack Trigger" icon="slack">
<a href="/en/enterprise/guides/slack-trigger">Start crews directly from Slack slash commands.</a>
</Card>
<Card title="Zapier Trigger" icon="bolt">
<a href="/en/enterprise/guides/zapier-trigger">Bridge CrewAI with thousands of Zapier-supported apps.</a>
</Card>
</CardGroup>
## Trigger Capabilities
With triggers, you can:
- **Respond to real-time events** - Automatically execute workflows when specific conditions are met
- **Integrate with external systems** - Connect with platforms like Gmail, Outlook, OneDrive, JIRA, Slack, Stripe and more
- **Scale your automation** - Handle high-volume events without manual intervention
- **Maintain context** - Access trigger data within your crews and flows
## Managing Triggers
### Viewing Available Triggers
To access and manage your automation triggers:
1. Navigate to your deployment in the CrewAI dashboard
2. Click on the **Triggers** tab to view all available trigger integrations
<Frame caption="Example of available automation triggers for a Gmail deployment">
<img src="/images/enterprise/list-available-triggers.png" alt="List of available automation triggers" />
</Frame>
This view shows all the trigger integrations available for your deployment, along with their current connection status.
### Enabling and Disabling Triggers
Each trigger can be easily enabled or disabled using the toggle switch:
<Frame caption="Enable or disable triggers with toggle">
<img src="/images/enterprise/trigger-selected.png" alt="Enable or disable triggers with toggle" />
</Frame>
- **Enabled (blue toggle)**: The trigger is active and will automatically execute your deployment when the specified events occur
- **Disabled (gray toggle)**: The trigger is inactive and will not respond to events
Simply click the toggle to change the trigger state. Changes take effect immediately.
### Monitoring Trigger Executions
Track the performance and history of your triggered executions:
<Frame caption="List of executions triggered by automation">
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Building Trigger-Driven Automations
Before building your automation, it's helpful to understand the structure of trigger payloads that your crews and flows will receive.
### Trigger Setup Checklist
Before wiring a trigger into production, make sure you:
- Connect the integration under **Tools & Integrations** and complete any OAuth or API key steps
- Enable the trigger toggle on the deployment that should respond to events
- Provide any required environment variables (API tokens, tenant IDs, shared secrets)
- Create or update tasks that can parse the incoming payload within the first crew task or flow step
- Decide whether to pass trigger context automatically using `allow_crewai_trigger_context`
- Set up monitoring—webhook logs, CrewAI execution history, and optional external alerting
### Payload & Crew Examples Repository
We maintain a comprehensive repository with end-to-end trigger examples to help you build and test your automations:
This repository contains:
- **Realistic payload samples** for every supported trigger integration
- **Ready-to-run crew implementations** that parse each payload and turn it into a business workflow
- **Multiple scenarios per integration** (e.g., new events, updates, deletions) so you can match the shape of your data
| Integration | When it fires | Payload Samples | Crew Examples |
| :-- | :-- | :-- | :-- |
| Gmail | New messages, thread updates | [New alerts, thread updates](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail) | [`new-email-crew.py`, `gmail-alert-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail) |
| Google Calendar | Event created / updated / started / ended / cancelled | [Event lifecycle payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_calendar) | [`calendar-event-crew.py`, `calendar-meeting-crew.py`, `calendar-working-location-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_calendar) |
| Google Drive | File created / updated / deleted | [File lifecycle payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_drive) | [`drive-file-crew.py`, `drive-file-deletion-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_drive) |
| Outlook | New email, calendar event removed | [Outlook payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/outlook) | [`outlook-message-crew.py`, `outlook-event-removal-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/outlook) |
| OneDrive | File operations (create, update, share, delete) | [OneDrive payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/onedrive) | [`onedrive-file-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/onedrive) |
| HubSpot | Record created / updated (contacts, companies, deals) | [HubSpot payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/hubspot) | [`hubspot-company-crew.py`, `hubspot-contact-crew.py`, `hubspot-record-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/hubspot) |
| Microsoft Teams | Chat thread created | [Teams chat payload](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/microsoft-teams) | [`teams-chat-created-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/microsoft-teams) |
Use these samples to understand payload shape, copy the matching crew, and then replace the test payload with your live trigger data.
### Triggers with Crew
Your existing crew definitions work seamlessly with triggers, you just need to have a task to parse the received payload:
```python
@CrewBase
class MyAutomatedCrew:
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
)
@task
def parse_trigger_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_trigger_payload'],
agent=self.researcher(),
)
@task
def analyze_trigger_content(self) -> Task:
return Task(
config=self.tasks_config['analyze_trigger_data'],
agent=self.researcher(),
)
```
The crew will automatically receive and can access the trigger payload through the standard CrewAI context mechanisms.
<Note>
Crew and Flow inputs can include `crewai_trigger_payload`. CrewAI automatically injects this payload:
- Tasks: appended to the first task's description by default ("Trigger Payload: {crewai_trigger_payload}")
- Control via `allow_crewai_trigger_context`: set `True` to always inject, `False` to never inject
- Flows: any `@start()` method that accepts a `crewai_trigger_payload` parameter will receive it
</Note>
### Integration with Flows
For flows, you have more control over how trigger data is handled:
#### Accessing Trigger Payload
All `@start()` methods in your flows will accept an additional parameter called `crewai_trigger_payload`:
```python
from crewai.flow import Flow, start, listen
class MyAutomatedFlow(Flow):
@start()
def handle_trigger(self, crewai_trigger_payload: dict = None):
"""
This start method can receive trigger data
"""
if crewai_trigger_payload:
# Process the trigger data
trigger_id = crewai_trigger_payload.get('id')
event_data = crewai_trigger_payload.get('payload', {})
# Store in flow state for use by other methods
self.state.trigger_id = trigger_id
self.state.trigger_type = event_data
return event_data
# Handle manual execution
return None
@listen(handle_trigger)
def process_data(self, trigger_data):
"""
Process the data from the trigger
"""
# ... process the trigger
```
#### Triggering Crews from Flows
When kicking off a crew within a flow that was triggered, pass the trigger payload as it:
```python
@start()
def delegate_to_crew(self, crewai_trigger_payload: dict = None):
"""
Delegate processing to a specialized crew
"""
crew = MySpecializedCrew()
# Pass the trigger payload to the crew
result = crew.crew().kickoff(
inputs={
'a_custom_parameter': "custom_value",
'crewai_trigger_payload': crewai_trigger_payload
},
)
return result
```
## Troubleshooting
**Trigger not firing:**
- Verify the trigger is enabled
- Check integration connection status
**Execution failures:**
- Check the execution logs for error details
- If you are developing, make sure the inputs include the `crewai_trigger_payload` parameter with the correct payload
Automation triggers transform your CrewAI deployments into responsive, event-driven systems that can seamlessly integrate with your existing business processes and tools.
<Card title="CrewAI AMP Trigger Examples" href="https://github.com/crewAIInc/crewai-enterprise-trigger-examples" icon="github">
Check them out on GitHub!
</Card>

View File

@@ -1,85 +0,0 @@
---
title: "Gmail Trigger"
description: "Trigger automations when Gmail events occur (e.g., new emails, labels)."
icon: "envelope"
mode: "wide"
---
## Overview
Use the Gmail Trigger to kick off your deployed crews when Gmail events happen in connected accounts, such as receiving a new email or messages matching a label/filter.
<Tip>
Make sure Gmail is connected in Tools & Integrations and the trigger is enabled for your deployment.
</Tip>
## Enabling the Gmail Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **Gmail** and switch the toggle to enable
<Frame>
<img src="/images/enterprise/trigger-selected.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Process new emails
When a new email arrives, the Gmail Trigger will send the payload to your Crew or Flow. Below is a Crew example that parses and processes the trigger payload.
```python
@CrewBase
class GmailProcessingCrew:
@agent
def parser(self) -> Agent:
return Agent(
config=self.agents_config['parser'],
)
@task
def parse_gmail_payload(self) -> Task:
return Task(
config=self.tasks_config['parse_gmail_payload'],
agent=self.parser(),
)
@task
def act_on_email(self) -> Task:
return Task(
config=self.tasks_config['act_on_email'],
agent=self.parser(),
)
```
The Gmail payload will be available via the standard context mechanisms. See the payload samples repository for structure and fields.
### Sample payloads & crews
The [CrewAI AMP Trigger Examples repository](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail) includes:
- `new-email-payload-1.json` / `new-email-payload-2.json` — production-style new message alerts with matching crews in `new-email-crew.py`
- `thread-updated-sample-1.json` — follow-up messages on an existing thread, processed by `gmail-alert-crew.py`
Use these samples to validate your parsing logic locally before wiring the trigger to your live Gmail accounts.
## Monitoring Executions
Track history and performance of triggered runs:
<Frame>
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Payload Reference
See the sample payloads and field descriptions:
<Card title="Gmail samples in Trigger Examples Repo" href="https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail" icon="envelopes-bulk">
Gmail samples in Trigger Examples Repo
</Card>
## Troubleshooting
- Ensure Gmail is connected in Tools & Integrations
- Verify the Gmail Trigger is enabled on the Triggers tab
- Check the execution logs and confirm the payload is passed as `crewai_trigger_payload`

View File

@@ -1,65 +0,0 @@
---
title: "Google Calendar Trigger"
description: "Kick off crews when Google Calendar events are created, updated, or cancelled"
icon: "calendar"
mode: "wide"
---
## Overview
Use the Google Calendar trigger to launch automations whenever calendar events change. Common use cases include briefing a team before a meeting, notifying stakeholders when a critical event is cancelled, or summarizing daily schedules.
<Tip>
Make sure Google Calendar is connected in **Tools & Integrations** and enabled for the deployment you want to automate.
</Tip>
## Enabling the Google Calendar Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **Google Calendar** and switch the toggle to enable
<Frame>
<img src="/images/enterprise/calendar-trigger.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Summarize meeting details
The snippet below mirrors the `calendar-event-crew.py` example in the trigger repository. It parses the payload, analyses the attendees and timing, and produces a meeting brief for downstream tools.
```python
from calendar_event_crew import GoogleCalendarEventTrigger
crew = GoogleCalendarEventTrigger().crew()
result = crew.kickoff({
"crewai_trigger_payload": calendar_payload,
})
print(result.raw)
```
Use `crewai_trigger_payload` exactly as it is delivered by the trigger so the crew can extract the proper fields.
## Sample payloads & crews
The [Google Calendar examples](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_calendar) show how to handle multiple event types:
- `new-event.json` → standard event creation handled by `calendar-event-crew.py`
- `event-updated.json` / `event-started.json` / `event-ended.json` → in-flight updates processed by `calendar-meeting-crew.py`
- `event-canceled.json` → cancellation workflow that alerts attendees via `calendar-meeting-crew.py`
- Working location events use `calendar-working-location-crew.py` to extract on-site schedules
Each crew transforms raw event metadata (attendees, rooms, working locations) into the summaries your teams need.
## Monitoring Executions
The **Executions** list in the deployment dashboard tracks every triggered run and surfaces payload metadata, output summaries, and errors.
<Frame>
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Troubleshooting
- Ensure the correct Google account is connected and the trigger is enabled
- Confirm your workflow handles all-day events (payloads use `start.date` and `end.date` instead of timestamps)
- Check execution logs if reminders or attendee arrays are missing—calendar permissions can limit fields in the payload

View File

@@ -1,61 +0,0 @@
---
title: "Google Drive Trigger"
description: "Respond to Google Drive file events with automated crews"
icon: "folder"
mode: "wide"
---
## Overview
Trigger your automations when files are created, updated, or removed in Google Drive. Typical workflows include summarizing newly uploaded content, enforcing sharing policies, or notifying owners when critical files change.
<Tip>
Connect Google Drive in **Tools & Integrations** and confirm the trigger is enabled for the automation you want to monitor.
</Tip>
## Enabling the Google Drive Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **Google Drive** and switch the toggle to enable
<Frame>
<img src="/images/enterprise/gdrive-trigger.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Summarize file activity
The drive example crews parse the payload to extract file metadata, evaluate permissions, and publish a summary.
```python
from drive_file_crew import GoogleDriveFileTrigger
crew = GoogleDriveFileTrigger().crew()
crew.kickoff({
"crewai_trigger_payload": drive_payload,
})
```
## Sample payloads & crews
Explore the [Google Drive examples](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_drive) to cover different operations:
- `new-file.json` → new uploads processed by `drive-file-crew.py`
- `updated-file.json` → file edits and metadata changes handled by `drive-file-crew.py`
- `deleted-file.json` → deletion events routed through `drive-file-deletion-crew.py`
Each crew highlights the file name, operation type, owner, permissions, and security considerations so downstream systems can respond appropriately.
## Monitoring Executions
Track history and performance of triggered runs with the **Executions** list in the deployment dashboard.
<Frame>
<img src="/images/enterprise/list-executions.png" alt="List of executions triggered by automation" />
</Frame>
## Troubleshooting
- Verify Google Drive is connected and the trigger toggle is enabled
- If a payload is missing permission data, ensure the connected account has access to the file or folder
- The trigger sends file IDs only; use the Drive API if you need to fetch binary content during the crew run

View File

@@ -1,52 +0,0 @@
---
title: "Microsoft Teams Trigger"
description: "Kick off crews from Microsoft Teams chat activity"
icon: "microsoft"
mode: "wide"
---
## Overview
Use the Microsoft Teams trigger to start automations whenever a new chat is created. Common patterns include summarizing inbound requests, routing urgent messages to support teams, or creating follow-up tasks in other systems.
<Tip>
Confirm Microsoft Teams is connected under **Tools & Integrations** and enabled in the **Triggers** tab for your deployment.
</Tip>
## Enabling the Microsoft Teams Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **Microsoft Teams** and switch the toggle to enable
<Frame caption="Microsoft Teams trigger connection">
<img src="/images/enterprise/msteams-trigger.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Summarize a new chat thread
```python
from teams_chat_created_crew import MicrosoftTeamsChatTrigger
crew = MicrosoftTeamsChatTrigger().crew()
result = crew.kickoff({
"crewai_trigger_payload": teams_payload,
})
print(result.raw)
```
The crew parses thread metadata (subject, created time, roster) and generates an action plan for the receiving team.
## Sample payloads & crews
The [Microsoft Teams examples](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/microsoft-teams) include:
- `chat-created.json` → chat creation payload processed by `teams-chat-created-crew.py`
The crew demonstrates how to extract participants, initial messages, tenant information, and compliance metadata from the Microsoft Graph webhook payload.
## Troubleshooting
- Ensure the Teams connection is active; it must be refreshed if the tenant revokes permissions
- Confirm the webhook subscription in Microsoft 365 is still valid if payloads stop arriving
- Review execution logs for payload shape mismatches—Graph notifications may omit fields when a chat is private or restricted

View File

@@ -1,53 +0,0 @@
---
title: "OneDrive Trigger"
description: "Automate responses to OneDrive file activity"
icon: "cloud"
mode: "wide"
---
## Overview
Start automations when files change inside OneDrive. You can generate audit summaries, notify security teams about external sharing, or update downstream line-of-business systems with new document metadata.
<Tip>
Connect OneDrive in **Tools & Integrations** and toggle the trigger on for your deployment.
</Tip>
## Enabling the OneDrive Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **OneDrive** and switch the toggle to enable
<Frame caption="Microsoft OneDrive trigger connection">
<img src="/images/enterprise/onedrive-trigger.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Audit file permissions
```python
from onedrive_file_crew import OneDriveFileTrigger
crew = OneDriveFileTrigger().crew()
crew.kickoff({
"crewai_trigger_payload": onedrive_payload,
})
```
The crew inspects file metadata, user activity, and permission changes to produce a compliance-friendly summary.
## Sample payloads & crews
The [OneDrive examples](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/onedrive) showcase how to:
- Parse file metadata, size, and folder paths
- Track who created and last modified the file
- Highlight permission and external sharing changes
`onedrive-file-crew.py` bundles the analysis and summarization tasks so you can add remediation steps as needed.
## Troubleshooting
- Ensure the connected account has permission to read the file metadata included in the webhook
- If the trigger fires but the payload is missing `permissions`, confirm the site-level sharing settings allow Graph to return this field
- For large tenants, filter notifications upstream so the crew only runs on relevant directories

View File

@@ -1,52 +0,0 @@
---
title: "Outlook Trigger"
description: "Launch automations from Outlook emails and calendar updates"
icon: "microsoft"
mode: "wide"
---
## Overview
Automate responses when Outlook delivers a new message or when an event is removed from the calendar. Teams commonly route escalations, file tickets, or alert attendees of cancellations.
<Tip>
Connect Outlook in **Tools & Integrations** and ensure the trigger is enabled for your deployment.
</Tip>
## Enabling the Outlook Trigger
1. Open your deployment in CrewAI AMP
2. Go to the **Triggers** tab
3. Locate **Outlook** and switch the toggle to enable
<Frame caption="Microsoft Outlook trigger connection">
<img src="/images/enterprise/outlook-trigger.png" alt="Enable or disable triggers with toggle" />
</Frame>
## Example: Summarize a new email
```python
from outlook_message_crew import OutlookMessageTrigger
crew = OutlookMessageTrigger().crew()
crew.kickoff({
"crewai_trigger_payload": outlook_payload,
})
```
The crew extracts sender details, subject, body preview, and attachments before generating a structured response.
## Sample payloads & crews
Review the [Outlook examples](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/outlook) for two common scenarios:
- `new-message.json` → new mail notifications parsed by `outlook-message-crew.py`
- `event-removed.json` → calendar cleanup handled by `outlook-event-removal-crew.py`
Each crew demonstrates how to handle Microsoft Graph payloads, normalize headers, and keep humans in-the-loop with concise summaries.
## Troubleshooting
- Verify the Outlook connector is still authorized; the subscription must be renewed periodically
- If attachments are missing, confirm the webhook subscription includes the `includeResourceData` flag
- Review execution logs when events fail to match—cancellation payloads lack attendee lists by design and the crew should account for that

View File

@@ -1,254 +0,0 @@
---
title: Asana Integration
description: "Team task and project coordination with Asana integration for CrewAI."
icon: "circle"
mode: "wide"
---
## Overview
Enable your agents to manage tasks, projects, and team coordination through Asana. Create tasks, update project status, manage assignments, and streamline your team's workflow with AI-powered automation.
## Prerequisites
Before using the Asana integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- An Asana account with appropriate permissions
- Connected your Asana account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Asana Integration
### 1. Connect Your Asana Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Asana** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for task and project management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="ASANA_CREATE_COMMENT">
**Description:** Create a comment in Asana.
**Parameters:**
- `task` (string, required): Task ID - The ID of the Task the comment will be added to. The comment will be authored by the currently authenticated user.
- `text` (string, required): Text (example: "This is a comment.").
</Accordion>
<Accordion title="ASANA_CREATE_PROJECT">
**Description:** Create a project in Asana.
**Parameters:**
- `name` (string, required): Name (example: "Stuff to buy").
- `workspace` (string, required): Workspace - Use Connect Portal Workflow Settings to allow users to select which Workspace to create Projects in. Defaults to the user's first Workspace if left blank.
- `team` (string, optional): Team - Use Connect Portal Workflow Settings to allow users to select which Team to share this Project with. Defaults to the user's first Team if left blank.
- `notes` (string, optional): Notes (example: "These are things we need to purchase.").
</Accordion>
<Accordion title="ASANA_GET_PROJECTS">
**Description:** Get a list of projects in Asana.
**Parameters:**
- `archived` (string, optional): Archived - Choose "true" to show archived projects, "false" to display only active projects, or "default" to show both archived and active projects.
- Options: `default`, `true`, `false`
</Accordion>
<Accordion title="ASANA_GET_PROJECT_BY_ID">
**Description:** Get a project by ID in Asana.
**Parameters:**
- `projectFilterId` (string, required): Project ID.
</Accordion>
<Accordion title="ASANA_CREATE_TASK">
**Description:** Create a task in Asana.
**Parameters:**
- `name` (string, required): Name (example: "Task Name").
- `workspace` (string, optional): Workspace - Use Connect Portal Workflow Settings to allow users to select which Workspace to create Tasks in. Defaults to the user's first Workspace if left blank..
- `project` (string, optional): Project - Use Connect Portal Workflow Settings to allow users to select which Project to create this Task in.
- `notes` (string, optional): Notes.
- `dueOnDate` (string, optional): Due On - The date on which this task is due. Cannot be used together with Due At. (example: "YYYY-MM-DD").
- `dueAtDate` (string, optional): Due At - The date and time (ISO timestamp) at which this task is due. Cannot be used together with Due On. (example: "2019-09-15T02:06:58.147Z").
- `assignee` (string, optional): Assignee - The ID of the Asana user this task will be assigned to. Use Connect Portal Workflow Settings to allow users to select an Assignee.
- `gid` (string, optional): External ID - An ID from your application to associate this task with. You can use this ID to sync updates to this task later.
</Accordion>
<Accordion title="ASANA_UPDATE_TASK">
**Description:** Update a task in Asana.
**Parameters:**
- `taskId` (string, required): Task ID - The ID of the Task that will be updated.
- `completeStatus` (string, optional): Completed Status.
- Options: `true`, `false`
- `name` (string, optional): Name (example: "Task Name").
- `notes` (string, optional): Notes.
- `dueOnDate` (string, optional): Due On - The date on which this task is due. Cannot be used together with Due At. (example: "YYYY-MM-DD").
- `dueAtDate` (string, optional): Due At - The date and time (ISO timestamp) at which this task is due. Cannot be used together with Due On. (example: "2019-09-15T02:06:58.147Z").
- `assignee` (string, optional): Assignee - The ID of the Asana user this task will be assigned to. Use Connect Portal Workflow Settings to allow users to select an Assignee.
- `gid` (string, optional): External ID - An ID from your application to associate this task with. You can use this ID to sync updates to this task later.
</Accordion>
<Accordion title="ASANA_GET_TASKS">
**Description:** Get a list of tasks in Asana.
**Parameters:**
- `workspace` (string, optional): Workspace - The ID of the Workspace to filter tasks on. Use Connect Portal Workflow Settings to allow users to select a Workspace.
- `project` (string, optional): Project - The ID of the Project to filter tasks on. Use Connect Portal Workflow Settings to allow users to select a Project.
- `assignee` (string, optional): Assignee - The ID of the assignee to filter tasks on. Use Connect Portal Workflow Settings to allow users to select an Assignee.
- `completedSince` (string, optional): Completed since - Only return tasks that are either incomplete or that have been completed since this time (ISO or Unix timestamp). (example: "2014-04-25T16:15:47-04:00").
</Accordion>
<Accordion title="ASANA_GET_TASKS_BY_ID">
**Description:** Get a list of tasks by ID in Asana.
**Parameters:**
- `taskId` (string, required): Task ID.
</Accordion>
<Accordion title="ASANA_GET_TASK_BY_EXTERNAL_ID">
**Description:** Get a task by external ID in Asana.
**Parameters:**
- `gid` (string, required): External ID - The ID that this task is associated or synced with, from your application.
</Accordion>
<Accordion title="ASANA_ADD_TASK_TO_SECTION">
**Description:** Add a task to a section in Asana.
**Parameters:**
- `sectionId` (string, required): Section ID - The ID of the section to add this task to.
- `taskId` (string, required): Task ID - The ID of the task. (example: "1204619611402340").
- `beforeTaskId` (string, optional): Before Task ID - The ID of a task in this section that this task will be inserted before. Cannot be used with After Task ID. (example: "1204619611402340").
- `afterTaskId` (string, optional): After Task ID - The ID of a task in this section that this task will be inserted after. Cannot be used with Before Task ID. (example: "1204619611402340").
</Accordion>
<Accordion title="ASANA_GET_TEAMS">
**Description:** Get a list of teams in Asana.
**Parameters:**
- `workspace` (string, required): Workspace - Returns the teams in this workspace visible to the authorized user.
</Accordion>
<Accordion title="ASANA_GET_WORKSPACES">
**Description:** Get a list of workspaces in Asana.
**Parameters:** None required.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Asana Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Asana tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Asana capabilities
asana_agent = Agent(
role="Project Manager",
goal="Manage tasks and projects in Asana efficiently",
backstory="An AI assistant specialized in project management and task coordination.",
tools=[enterprise_tools]
)
# Task to create a new project
create_project_task = Task(
description="Create a new project called 'Q1 Marketing Campaign' in the Marketing workspace",
agent=asana_agent,
expected_output="Confirmation that the project was created successfully with project ID"
)
# Run the task
crew = Crew(
agents=[asana_agent],
tasks=[create_project_task]
)
crew.kickoff()
```
### Filtering Specific Asana Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Asana tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["asana_create_task", "asana_update_task", "asana_get_tasks"]
)
task_manager_agent = Agent(
role="Task Manager",
goal="Create and manage tasks efficiently",
backstory="An AI assistant that focuses on task creation and management.",
tools=enterprise_tools
)
# Task to create and assign a task
task_management = Task(
description="Create a task called 'Review quarterly reports' and assign it to the appropriate team member",
agent=task_manager_agent,
expected_output="Task created and assigned successfully"
)
crew = Crew(
agents=[task_manager_agent],
tasks=[task_management]
)
crew.kickoff()
```
### Advanced Project Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
project_coordinator = Agent(
role="Project Coordinator",
goal="Coordinate project activities and track progress",
backstory="An experienced project coordinator who ensures projects run smoothly.",
tools=[enterprise_tools]
)
# Complex task involving multiple Asana operations
coordination_task = Task(
description="""
1. Get all active projects in the workspace
2. For each project, get the list of incomplete tasks
3. Create a summary report task in the 'Management Reports' project
4. Add comments to overdue tasks to request status updates
""",
agent=project_coordinator,
expected_output="Summary report created and status update requests sent for overdue tasks"
)
crew = Crew(
agents=[project_coordinator],
tasks=[coordination_task]
)
crew.kickoff()
```

View File

@@ -1,269 +0,0 @@
---
title: Box Integration
description: "File storage and document management with Box integration for CrewAI."
icon: "box"
mode: "wide"
---
## Overview
Enable your agents to manage files, folders, and documents through Box. Upload files, organize folder structures, search content, and streamline your team's document management with AI-powered automation.
## Prerequisites
Before using the Box integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Box account with appropriate permissions
- Connected your Box account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Box Integration
### 1. Connect Your Box Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Box** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for file and folder management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="BOX_SAVE_FILE">
**Description:** Save a file from URL in Box.
**Parameters:**
- `fileAttributes` (object, required): Attributes - File metadata including name, parent folder, and timestamps.
```json
{
"content_created_at": "2012-12-12T10:53:43-08:00",
"content_modified_at": "2012-12-12T10:53:43-08:00",
"name": "qwerty.png",
"parent": { "id": "1234567" }
}
```
- `file` (string, required): File URL - Files must be smaller than 50MB in size. (example: "https://picsum.photos/200/300").
</Accordion>
<Accordion title="BOX_SAVE_FILE_FROM_OBJECT">
**Description:** Save a file in Box.
**Parameters:**
- `file` (string, required): File - Accepts a File Object containing file data. Files must be smaller than 50MB in size.
- `fileName` (string, required): File Name (example: "qwerty.png").
- `folder` (string, optional): Folder - Use Connect Portal Workflow Settings to allow users to select the File's Folder destination. Defaults to the user's root folder if left blank.
</Accordion>
<Accordion title="BOX_GET_FILE_BY_ID">
**Description:** Get a file by ID in Box.
**Parameters:**
- `fileId` (string, required): File ID - The unique identifier that represents a file. (example: "12345").
</Accordion>
<Accordion title="BOX_LIST_FILES">
**Description:** List files in Box.
**Parameters:**
- `folderId` (string, required): Folder ID - The unique identifier that represents a folder. (example: "0").
- `filterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "direction",
"operator": "$stringExactlyMatches",
"value": "ASC"
}
]
}
]
}
```
</Accordion>
<Accordion title="BOX_CREATE_FOLDER">
**Description:** Create a folder in Box.
**Parameters:**
- `folderName` (string, required): Name - The name for the new folder. (example: "New Folder").
- `folderParent` (object, required): Parent Folder - The parent folder where the new folder will be created.
```json
{
"id": "123456"
}
```
</Accordion>
<Accordion title="BOX_MOVE_FOLDER">
**Description:** Move a folder in Box.
**Parameters:**
- `folderId` (string, required): Folder ID - The unique identifier that represents a folder. (example: "0").
- `folderName` (string, required): Name - The name for the folder. (example: "New Folder").
- `folderParent` (object, required): Parent Folder - The new parent folder destination.
```json
{
"id": "123456"
}
```
</Accordion>
<Accordion title="BOX_GET_FOLDER_BY_ID">
**Description:** Get a folder by ID in Box.
**Parameters:**
- `folderId` (string, required): Folder ID - The unique identifier that represents a folder. (example: "0").
</Accordion>
<Accordion title="BOX_SEARCH_FOLDERS">
**Description:** Search folders in Box.
**Parameters:**
- `folderId` (string, required): Folder ID - The folder to search within.
- `filterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "sort",
"operator": "$stringExactlyMatches",
"value": "name"
}
]
}
]
}
```
</Accordion>
<Accordion title="BOX_DELETE_FOLDER">
**Description:** Delete a folder in Box.
**Parameters:**
- `folderId` (string, required): Folder ID - The unique identifier that represents a folder. (example: "0").
- `recursive` (boolean, optional): Recursive - Delete a folder that is not empty by recursively deleting the folder and all of its content.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Box Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Box tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Box capabilities
box_agent = Agent(
role="Document Manager",
goal="Manage files and folders in Box efficiently",
backstory="An AI assistant specialized in document management and file organization.",
tools=[enterprise_tools]
)
# Task to create a folder structure
create_structure_task = Task(
description="Create a folder called 'Project Files' in the root directory and upload a document from URL",
agent=box_agent,
expected_output="Folder created and file uploaded successfully"
)
# Run the task
crew = Crew(
agents=[box_agent],
tasks=[create_structure_task]
)
crew.kickoff()
```
### Filtering Specific Box Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Box tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["box_create_folder", "box_save_file", "box_list_files"]
)
file_organizer_agent = Agent(
role="File Organizer",
goal="Organize and manage file storage efficiently",
backstory="An AI assistant that focuses on file organization and storage management.",
tools=enterprise_tools
)
# Task to organize files
organization_task = Task(
description="Create a folder structure for the marketing team and organize existing files",
agent=file_organizer_agent,
expected_output="Folder structure created and files organized"
)
crew = Crew(
agents=[file_organizer_agent],
tasks=[organization_task]
)
crew.kickoff()
```
### Advanced File Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
file_manager = Agent(
role="File Manager",
goal="Maintain organized file structure and manage document lifecycle",
backstory="An experienced file manager who ensures documents are properly organized and accessible.",
tools=[enterprise_tools]
)
# Complex task involving multiple Box operations
management_task = Task(
description="""
1. List all files in the root folder
2. Create monthly archive folders for the current year
3. Move old files to appropriate archive folders
4. Generate a summary report of the file organization
""",
agent=file_manager,
expected_output="Files organized into archive structure with summary report"
)
crew = Crew(
agents=[file_manager],
tasks=[management_task]
)
crew.kickoff()
```

View File

@@ -1,294 +0,0 @@
---
title: ClickUp Integration
description: "Task and productivity management with ClickUp integration for CrewAI."
icon: "list-check"
mode: "wide"
---
## Overview
Enable your agents to manage tasks, projects, and productivity workflows through ClickUp. Create and update tasks, organize projects, manage team assignments, and streamline your productivity management with AI-powered automation.
## Prerequisites
Before using the ClickUp integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A ClickUp account with appropriate permissions
- Connected your ClickUp account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up ClickUp Integration
### 1. Connect Your ClickUp Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **ClickUp** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for task and project management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="CLICKUP_SEARCH_TASKS">
**Description:** Search for tasks in ClickUp using advanced filters.
**Parameters:**
- `taskFilterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "statuses%5B%5D",
"operator": "$stringExactlyMatches",
"value": "open"
}
]
}
]
}
```
Available fields: `space_ids%5B%5D`, `project_ids%5B%5D`, `list_ids%5B%5D`, `statuses%5B%5D`, `include_closed`, `assignees%5B%5D`, `tags%5B%5D`, `due_date_gt`, `due_date_lt`, `date_created_gt`, `date_created_lt`, `date_updated_gt`, `date_updated_lt`
</Accordion>
<Accordion title="CLICKUP_GET_TASK_IN_LIST">
**Description:** Get tasks in a specific list in ClickUp.
**Parameters:**
- `listId` (string, required): List - Select a List to get tasks from. Use Connect Portal User Settings to allow users to select a ClickUp List.
- `taskFilterFormula` (string, optional): Search for tasks that match specified filters. For example: name=task1.
</Accordion>
<Accordion title="CLICKUP_CREATE_TASK">
**Description:** Create a task in ClickUp.
**Parameters:**
- `listId` (string, required): List - Select a List to create this task in. Use Connect Portal User Settings to allow users to select a ClickUp List.
- `name` (string, required): Name - The task name.
- `description` (string, optional): Description - Task description.
- `status` (string, optional): Status - Select a Status for this task. Use Connect Portal User Settings to allow users to select a ClickUp Status.
- `assignees` (string, optional): Assignees - Select a Member (or an array of member IDs) to be assigned to this task. Use Connect Portal User Settings to allow users to select a ClickUp Member.
- `dueDate` (string, optional): Due Date - Specify a date for this task to be due on.
- `additionalFields` (string, optional): Additional Fields - Specify additional fields to include on this task as JSON.
</Accordion>
<Accordion title="CLICKUP_UPDATE_TASK">
**Description:** Update a task in ClickUp.
**Parameters:**
- `taskId` (string, required): Task ID - The ID of the task to update.
- `listId` (string, required): List - Select a List to create this task in. Use Connect Portal User Settings to allow users to select a ClickUp List.
- `name` (string, optional): Name - The task name.
- `description` (string, optional): Description - Task description.
- `status` (string, optional): Status - Select a Status for this task. Use Connect Portal User Settings to allow users to select a ClickUp Status.
- `assignees` (string, optional): Assignees - Select a Member (or an array of member IDs) to be assigned to this task. Use Connect Portal User Settings to allow users to select a ClickUp Member.
- `dueDate` (string, optional): Due Date - Specify a date for this task to be due on.
- `additionalFields` (string, optional): Additional Fields - Specify additional fields to include on this task as JSON.
</Accordion>
<Accordion title="CLICKUP_DELETE_TASK">
**Description:** Delete a task in ClickUp.
**Parameters:**
- `taskId` (string, required): Task ID - The ID of the task to delete.
</Accordion>
<Accordion title="CLICKUP_GET_LIST">
**Description:** Get List information in ClickUp.
**Parameters:**
- `spaceId` (string, required): Space ID - The ID of the space containing the lists.
</Accordion>
<Accordion title="CLICKUP_GET_CUSTOM_FIELDS_IN_LIST">
**Description:** Get Custom Fields in a List in ClickUp.
**Parameters:**
- `listId` (string, required): List ID - The ID of the list to get custom fields from.
</Accordion>
<Accordion title="CLICKUP_GET_ALL_FIELDS_IN_LIST">
**Description:** Get All Fields in a List in ClickUp.
**Parameters:**
- `listId` (string, required): List ID - The ID of the list to get all fields from.
</Accordion>
<Accordion title="CLICKUP_GET_SPACE">
**Description:** Get Space information in ClickUp.
**Parameters:**
- `spaceId` (string, optional): Space ID - The ID of the space to retrieve.
</Accordion>
<Accordion title="CLICKUP_GET_FOLDERS">
**Description:** Get Folders in ClickUp.
**Parameters:**
- `spaceId` (string, required): Space ID - The ID of the space containing the folders.
</Accordion>
<Accordion title="CLICKUP_GET_MEMBER">
**Description:** Get Member information in ClickUp.
**Parameters:** None required.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic ClickUp Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (ClickUp tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with ClickUp capabilities
clickup_agent = Agent(
role="Task Manager",
goal="Manage tasks and projects in ClickUp efficiently",
backstory="An AI assistant specialized in task management and productivity coordination.",
tools=[enterprise_tools]
)
# Task to create a new task
create_task = Task(
description="Create a task called 'Review Q1 Reports' in the Marketing list with high priority",
agent=clickup_agent,
expected_output="Task created successfully with task ID"
)
# Run the task
crew = Crew(
agents=[clickup_agent],
tasks=[create_task]
)
crew.kickoff()
```
### Filtering Specific ClickUp Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific ClickUp tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["clickup_create_task", "clickup_update_task", "clickup_search_tasks"]
)
task_coordinator = Agent(
role="Task Coordinator",
goal="Create and manage tasks efficiently",
backstory="An AI assistant that focuses on task creation and status management.",
tools=enterprise_tools
)
# Task to manage task workflow
task_workflow = Task(
description="Create a task for project planning and assign it to the development team",
agent=task_coordinator,
expected_output="Task created and assigned successfully"
)
crew = Crew(
agents=[task_coordinator],
tasks=[task_workflow]
)
crew.kickoff()
```
### Advanced Project Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
project_manager = Agent(
role="Project Manager",
goal="Coordinate project activities and track team productivity",
backstory="An experienced project manager who ensures projects are delivered on time.",
tools=[enterprise_tools]
)
# Complex task involving multiple ClickUp operations
project_coordination = Task(
description="""
1. Get all open tasks in the current space
2. Identify overdue tasks and update their status
3. Create a weekly report task summarizing project progress
4. Assign the report task to the team lead
""",
agent=project_manager,
expected_output="Project status updated and weekly report task created and assigned"
)
crew = Crew(
agents=[project_manager],
tasks=[project_coordination]
)
crew.kickoff()
```
### Task Search and Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
task_analyst = Agent(
role="Task Analyst",
goal="Analyze task patterns and optimize team productivity",
backstory="An AI assistant that analyzes task data to improve team efficiency.",
tools=[enterprise_tools]
)
# Task to analyze and optimize task distribution
task_analysis = Task(
description="""
Search for all tasks assigned to team members in the last 30 days,
analyze completion patterns, and create optimization recommendations
""",
agent=task_analyst,
expected_output="Task analysis report with optimization recommendations"
)
crew = Crew(
agents=[task_analyst],
tasks=[task_analysis]
)
crew.kickoff()
```
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with ClickUp integration setup or troubleshooting.
</Card>

View File

@@ -1,324 +0,0 @@
---
title: GitHub Integration
description: "Repository and issue management with GitHub integration for CrewAI."
icon: "github"
mode: "wide"
---
## Overview
Enable your agents to manage repositories, issues, and releases through GitHub. Create and update issues, manage releases, track project development, and streamline your software development workflow with AI-powered automation.
## Prerequisites
Before using the GitHub integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A GitHub account with appropriate repository permissions
- Connected your GitHub account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up GitHub Integration
### 1. Connect Your GitHub Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **GitHub** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for repository and issue management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="GITHUB_CREATE_ISSUE">
**Description:** Create an issue in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Issue. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Issue.
- `title` (string, required): Issue Title - Specify the title of the issue to create.
- `body` (string, optional): Issue Body - Specify the body contents of the issue to create.
- `assignees` (string, optional): Assignees - Specify the assignee(s)' GitHub login as an array of strings for this issue. (example: `["octocat"]`).
</Accordion>
<Accordion title="GITHUB_UPDATE_ISSUE">
**Description:** Update an issue in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Issue. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Issue.
- `issue_number` (string, required): Issue Number - Specify the number of the issue to update.
- `title` (string, required): Issue Title - Specify the title of the issue to update.
- `body` (string, optional): Issue Body - Specify the body contents of the issue to update.
- `assignees` (string, optional): Assignees - Specify the assignee(s)' GitHub login as an array of strings for this issue. (example: `["octocat"]`).
- `state` (string, optional): State - Specify the updated state of the issue.
- Options: `open`, `closed`
</Accordion>
<Accordion title="GITHUB_GET_ISSUE_BY_NUMBER">
**Description:** Get an issue by number in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Issue. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Issue.
- `issue_number` (string, required): Issue Number - Specify the number of the issue to fetch.
</Accordion>
<Accordion title="GITHUB_LOCK_ISSUE">
**Description:** Lock an issue in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Issue. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Issue.
- `issue_number` (string, required): Issue Number - Specify the number of the issue to lock.
- `lock_reason` (string, required): Lock Reason - Specify a reason for locking the issue or pull request conversation.
- Options: `off-topic`, `too heated`, `resolved`, `spam`
</Accordion>
<Accordion title="GITHUB_SEARCH_ISSUE">
**Description:** Search for issues in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Issue. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Issue.
- `filter` (object, required): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "assignee",
"operator": "$stringExactlyMatches",
"value": "octocat"
}
]
}
]
}
```
Available fields: `assignee`, `creator`, `mentioned`, `labels`
</Accordion>
<Accordion title="GITHUB_CREATE_RELEASE">
**Description:** Create a release in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Release. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Release.
- `tag_name` (string, required): Name - Specify the name of the release tag to be created. (example: "v1.0.0").
- `target_commitish` (string, optional): Target - Specify the target of the release. This can either be a branch name or a commit SHA. Defaults to the main branch. (example: "master").
- `body` (string, optional): Body - Specify a description for this release.
- `draft` (string, optional): Draft - Specify whether the created release should be a draft (unpublished) release.
- Options: `true`, `false`
- `prerelease` (string, optional): Prerelease - Specify whether the created release should be a prerelease.
- Options: `true`, `false`
- `discussion_category_name` (string, optional): Discussion Category Name - If specified, a discussion of the specified category is created and linked to the release. The value must be a category that already exists in the repository.
- `generate_release_notes` (string, optional): Release Notes - Specify whether the created release should automatically create release notes using the provided name and body specified.
- Options: `true`, `false`
</Accordion>
<Accordion title="GITHUB_UPDATE_RELEASE">
**Description:** Update a release in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Release. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Release.
- `id` (string, required): Release ID - Specify the ID of the release to update.
- `tag_name` (string, optional): Name - Specify the name of the release tag to be updated. (example: "v1.0.0").
- `target_commitish` (string, optional): Target - Specify the target of the release. This can either be a branch name or a commit SHA. Defaults to the main branch. (example: "master").
- `body` (string, optional): Body - Specify a description for this release.
- `draft` (string, optional): Draft - Specify whether the created release should be a draft (unpublished) release.
- Options: `true`, `false`
- `prerelease` (string, optional): Prerelease - Specify whether the created release should be a prerelease.
- Options: `true`, `false`
- `discussion_category_name` (string, optional): Discussion Category Name - If specified, a discussion of the specified category is created and linked to the release. The value must be a category that already exists in the repository.
- `generate_release_notes` (string, optional): Release Notes - Specify whether the created release should automatically create release notes using the provided name and body specified.
- Options: `true`, `false`
</Accordion>
<Accordion title="GITHUB_GET_RELEASE_BY_ID">
**Description:** Get a release by ID in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Release. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Release.
- `id` (string, required): Release ID - Specify the release ID of the release to fetch.
</Accordion>
<Accordion title="GITHUB_GET_RELEASE_BY_TAG_NAME">
**Description:** Get a release by tag name in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Release. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Release.
- `tag_name` (string, required): Name - Specify the tag of the release to fetch. (example: "v1.0.0").
</Accordion>
<Accordion title="GITHUB_DELETE_RELEASE">
**Description:** Delete a release in GitHub.
**Parameters:**
- `owner` (string, required): Owner - Specify the name of the account owner of the associated repository for this Release. (example: "abc").
- `repo` (string, required): Repository - Specify the name of the associated repository for this Release.
- `id` (string, required): Release ID - Specify the ID of the release to delete.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic GitHub Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (GitHub tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with GitHub capabilities
github_agent = Agent(
role="Repository Manager",
goal="Manage GitHub repositories, issues, and releases efficiently",
backstory="An AI assistant specialized in repository management and issue tracking.",
tools=[enterprise_tools]
)
# Task to create a new issue
create_issue_task = Task(
description="Create a bug report issue for the login functionality in the main repository",
agent=github_agent,
expected_output="Issue created successfully with issue number"
)
# Run the task
crew = Crew(
agents=[github_agent],
tasks=[create_issue_task]
)
crew.kickoff()
```
### Filtering Specific GitHub Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific GitHub tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["github_create_issue", "github_update_issue", "github_search_issue"]
)
issue_manager = Agent(
role="Issue Manager",
goal="Create and manage GitHub issues efficiently",
backstory="An AI assistant that focuses on issue tracking and management.",
tools=enterprise_tools
)
# Task to manage issue workflow
issue_workflow = Task(
description="Create a feature request issue and assign it to the development team",
agent=issue_manager,
expected_output="Feature request issue created and assigned successfully"
)
crew = Crew(
agents=[issue_manager],
tasks=[issue_workflow]
)
crew.kickoff()
```
### Release Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
release_manager = Agent(
role="Release Manager",
goal="Manage software releases and versioning",
backstory="An experienced release manager who handles version control and release processes.",
tools=[enterprise_tools]
)
# Task to create a new release
release_task = Task(
description="""
Create a new release v2.1.0 for the project with:
- Auto-generated release notes
- Target the main branch
- Include a description of new features and bug fixes
""",
agent=release_manager,
expected_output="Release v2.1.0 created successfully with release notes"
)
crew = Crew(
agents=[release_manager],
tasks=[release_task]
)
crew.kickoff()
```
### Issue Tracking and Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
project_coordinator = Agent(
role="Project Coordinator",
goal="Track and coordinate project issues and development progress",
backstory="An AI assistant that helps coordinate development work and track project progress.",
tools=[enterprise_tools]
)
# Complex task involving multiple GitHub operations
coordination_task = Task(
description="""
1. Search for all open issues assigned to the current milestone
2. Identify overdue issues and update their priority labels
3. Create a weekly progress report issue
4. Lock resolved issues that have been inactive for 30 days
""",
agent=project_coordinator,
expected_output="Project coordination completed with progress report and issue management"
)
crew = Crew(
agents=[project_coordinator],
tasks=[coordination_task]
)
crew.kickoff()
```
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with GitHub integration setup or troubleshooting.
</Card>

View File

@@ -1,357 +0,0 @@
---
title: Gmail Integration
description: "Email and contact management with Gmail integration for CrewAI."
icon: "envelope"
mode: "wide"
---
## Overview
Enable your agents to manage emails, contacts, and drafts through Gmail. Send emails, search messages, manage contacts, create drafts, and streamline your email communications with AI-powered automation.
## Prerequisites
Before using the Gmail integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Gmail account with appropriate permissions
- Connected your Gmail account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Gmail Integration
### 1. Connect Your Gmail Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Gmail** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for email and contact management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="GMAIL_SEND_EMAIL">
**Description:** Send an email in Gmail.
**Parameters:**
- `toRecipients` (array, required): To - Specify the recipients as either a single string or a JSON array.
```json
[
"recipient1@domain.com",
"recipient2@domain.com"
]
```
- `from` (string, required): From - Specify the email of the sender.
- `subject` (string, required): Subject - Specify the subject of the message.
- `messageContent` (string, required): Message Content - Specify the content of the email message as plain text or HTML.
- `attachments` (string, optional): Attachments - Accepts either a single file object or a JSON array of file objects.
- `additionalHeaders` (object, optional): Additional Headers - Specify any additional header fields here.
```json
{
"reply-to": "Sender Name <sender@domain.com>"
}
```
</Accordion>
<Accordion title="GMAIL_GET_EMAIL_BY_ID">
**Description:** Get an email by ID in Gmail.
**Parameters:**
- `userId` (string, required): User ID - Specify the user's email address. (example: "user@domain.com").
- `messageId` (string, required): Message ID - Specify the ID of the message to retrieve.
</Accordion>
<Accordion title="GMAIL_SEARCH_FOR_EMAIL">
**Description:** Search for emails in Gmail using advanced filters.
**Parameters:**
- `emailFilterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "from",
"operator": "$stringContains",
"value": "example@domain.com"
}
]
}
]
}
```
Available fields: `from`, `to`, `date`, `label`, `subject`, `cc`, `bcc`, `category`, `deliveredto:`, `size`, `filename`, `older_than`, `newer_than`, `list`, `is:important`, `is:unread`, `is:snoozed`, `is:starred`, `is:read`, `has:drive`, `has:document`, `has:spreadsheet`, `has:presentation`, `has:attachment`, `has:youtube`, `has:userlabels`
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "page_cursor_string"
}
```
</Accordion>
<Accordion title="GMAIL_DELETE_EMAIL">
**Description:** Delete an email in Gmail.
**Parameters:**
- `userId` (string, required): User ID - Specify the user's email address. (example: "user@domain.com").
- `messageId` (string, required): Message ID - Specify the ID of the message to trash.
</Accordion>
<Accordion title="GMAIL_CREATE_A_CONTACT">
**Description:** Create a contact in Gmail.
**Parameters:**
- `givenName` (string, required): Given Name - Specify the Given Name of the Contact to create. (example: "John").
- `familyName` (string, required): Family Name - Specify the Family Name of the Contact to create. (example: "Doe").
- `email` (string, required): Email - Specify the Email Address of the Contact to create.
- `additionalFields` (object, optional): Additional Fields - Additional contact information.
```json
{
"addresses": [
{
"streetAddress": "1000 North St.",
"city": "Los Angeles"
}
]
}
```
</Accordion>
<Accordion title="GMAIL_GET_CONTACT_BY_RESOURCE_NAME">
**Description:** Get a contact by resource name in Gmail.
**Parameters:**
- `resourceName` (string, required): Resource Name - Specify the resource name of the contact to fetch.
</Accordion>
<Accordion title="GMAIL_SEARCH_FOR_CONTACT">
**Description:** Search for a contact in Gmail.
**Parameters:**
- `searchTerm` (string, required): Term - Specify a search term to search for near or exact matches on the names, nickNames, emailAddresses, phoneNumbers, or organizations Contact properties.
</Accordion>
<Accordion title="GMAIL_DELETE_CONTACT">
**Description:** Delete a contact in Gmail.
**Parameters:**
- `resourceName` (string, required): Resource Name - Specify the resource name of the contact to delete.
</Accordion>
<Accordion title="GMAIL_CREATE_DRAFT">
**Description:** Create a draft in Gmail.
**Parameters:**
- `toRecipients` (array, optional): To - Specify the recipients as either a single string or a JSON array.
```json
[
"recipient1@domain.com",
"recipient2@domain.com"
]
```
- `from` (string, optional): From - Specify the email of the sender.
- `subject` (string, optional): Subject - Specify the subject of the message.
- `messageContent` (string, optional): Message Content - Specify the content of the email message as plain text or HTML.
- `attachments` (string, optional): Attachments - Accepts either a single file object or a JSON array of file objects.
- `additionalHeaders` (object, optional): Additional Headers - Specify any additional header fields here.
```json
{
"reply-to": "Sender Name <sender@domain.com>"
}
```
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Gmail Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Gmail capabilities
gmail_agent = Agent(
role="Email Manager",
goal="Manage email communications and contacts efficiently",
backstory="An AI assistant specialized in email management and communication.",
tools=[enterprise_tools]
)
# Task to send a follow-up email
send_email_task = Task(
description="Send a follow-up email to john@example.com about the project update meeting",
agent=gmail_agent,
expected_output="Email sent successfully with confirmation"
)
# Run the task
crew = Crew(
agents=[gmail_agent],
tasks=[send_email_task]
)
crew.kickoff()
```
### Filtering Specific Gmail Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Gmail tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["gmail_send_email", "gmail_search_for_email", "gmail_create_draft"]
)
email_coordinator = Agent(
role="Email Coordinator",
goal="Coordinate email communications and manage drafts",
backstory="An AI assistant that focuses on email coordination and draft management.",
tools=enterprise_tools
)
# Task to prepare and send emails
email_coordination = Task(
description="Search for emails from the marketing team, create a summary draft, and send it to stakeholders",
agent=email_coordinator,
expected_output="Summary email sent to stakeholders"
)
crew = Crew(
agents=[email_coordinator],
tasks=[email_coordination]
)
crew.kickoff()
```
### Contact Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
contact_manager = Agent(
role="Contact Manager",
goal="Manage and organize email contacts efficiently",
backstory="An experienced contact manager who maintains organized contact databases.",
tools=[enterprise_tools]
)
# Task to manage contacts
contact_task = Task(
description="""
1. Search for contacts from the 'example.com' domain
2. Create new contacts for recent email senders not in the contact list
3. Update contact information with recent interaction data
""",
agent=contact_manager,
expected_output="Contact database updated with new contacts and recent interactions"
)
crew = Crew(
agents=[contact_manager],
tasks=[contact_task]
)
crew.kickoff()
```
### Email Search and Analysis
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
email_analyst = Agent(
role="Email Analyst",
goal="Analyze email patterns and provide insights",
backstory="An AI assistant that analyzes email data to provide actionable insights.",
tools=[enterprise_tools]
)
# Task to analyze email patterns
analysis_task = Task(
description="""
Search for all unread emails from the last 7 days,
categorize them by sender domain,
and create a summary report of communication patterns
""",
agent=email_analyst,
expected_output="Email analysis report with communication patterns and recommendations"
)
crew = Crew(
agents=[email_analyst],
tasks=[analysis_task]
)
crew.kickoff()
```
### Automated Email Workflows
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
workflow_manager = Agent(
role="Email Workflow Manager",
goal="Automate email workflows and responses",
backstory="An AI assistant that manages automated email workflows and responses.",
tools=[enterprise_tools]
)
# Complex task involving multiple Gmail operations
workflow_task = Task(
description="""
1. Search for emails with 'urgent' in the subject from the last 24 hours
2. Create draft responses for each urgent email
3. Send automated acknowledgment emails to senders
4. Create a summary report of urgent items requiring attention
""",
agent=workflow_manager,
expected_output="Urgent emails processed with automated responses and summary report"
)
crew = Crew(
agents=[workflow_manager],
tasks=[workflow_task]
)
crew.kickoff()
```
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Gmail integration setup or troubleshooting.
</Card>

View File

@@ -1,392 +0,0 @@
---
title: Google Calendar Integration
description: "Event and schedule management with Google Calendar integration for CrewAI."
icon: "calendar"
mode: "wide"
---
## Overview
Enable your agents to manage calendar events, schedules, and availability through Google Calendar. Create and update events, manage attendees, check availability, and streamline your scheduling workflows with AI-powered automation.
## Prerequisites
Before using the Google Calendar integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Google account with Google Calendar access
- Connected your Google account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Google Calendar Integration
### 1. Connect Your Google Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Google Calendar** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for calendar and contact access
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="GOOGLE_CALENDAR_CREATE_EVENT">
**Description:** Create an event in Google Calendar.
**Parameters:**
- `eventName` (string, required): Event name.
- `startTime` (string, required): Start time - Accepts Unix timestamp or ISO8601 date formats.
- `endTime` (string, optional): End time - Defaults to one hour after the start time if left blank.
- `calendar` (string, optional): Calendar - Use Connect Portal Workflow Settings to allow users to select which calendar the event will be added to. Defaults to the user's primary calendar if left blank.
- `attendees` (string, optional): Attendees - Accepts an array of email addresses or email addresses separated by commas.
- `eventLocation` (string, optional): Event location.
- `eventDescription` (string, optional): Event description.
- `eventId` (string, optional): Event ID - An ID from your application to associate this event with. You can use this ID to sync updates to this event later.
- `includeMeetLink` (boolean, optional): Include Google Meet link? - Automatically creates Google Meet conference link for this event.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_UPDATE_EVENT">
**Description:** Update an existing event in Google Calendar.
**Parameters:**
- `eventId` (string, required): Event ID - The ID of the event to update.
- `eventName` (string, optional): Event name.
- `startTime` (string, optional): Start time - Accepts Unix timestamp or ISO8601 date formats.
- `endTime` (string, optional): End time - Defaults to one hour after the start time if left blank.
- `calendar` (string, optional): Calendar - Use Connect Portal Workflow Settings to allow users to select which calendar the event will be added to. Defaults to the user's primary calendar if left blank.
- `attendees` (string, optional): Attendees - Accepts an array of email addresses or email addresses separated by commas.
- `eventLocation` (string, optional): Event location.
- `eventDescription` (string, optional): Event description.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_LIST_EVENTS">
**Description:** List events from Google Calendar.
**Parameters:**
- `calendar` (string, optional): Calendar - Use Connect Portal Workflow Settings to allow users to select which calendar the event will be added to. Defaults to the user's primary calendar if left blank.
- `after` (string, optional): After - Filters events that start after the provided date (Unix in milliseconds or ISO timestamp). (example: "2025-04-12T10:00:00Z or 1712908800000").
- `before` (string, optional): Before - Filters events that end before the provided date (Unix in milliseconds or ISO timestamp). (example: "2025-04-12T10:00:00Z or 1712908800000").
</Accordion>
<Accordion title="GOOGLE_CALENDAR_GET_EVENT_BY_ID">
**Description:** Get a specific event by ID from Google Calendar.
**Parameters:**
- `eventId` (string, required): Event ID.
- `calendar` (string, optional): Calendar - Use Connect Portal Workflow Settings to allow users to select which calendar the event will be added to. Defaults to the user's primary calendar if left blank.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_DELETE_EVENT">
**Description:** Delete an event from Google Calendar.
**Parameters:**
- `eventId` (string, required): Event ID - The ID of the calendar event to be deleted.
- `calendar` (string, optional): Calendar - Use Connect Portal Workflow Settings to allow users to select which calendar the event will be added to. Defaults to the user's primary calendar if left blank.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_GET_CONTACTS">
**Description:** Get contacts from Google Calendar.
**Parameters:**
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "page_cursor_string"
}
```
</Accordion>
<Accordion title="GOOGLE_CALENDAR_SEARCH_CONTACTS">
**Description:** Search for contacts in Google Calendar.
**Parameters:**
- `query` (string, optional): Search query to search contacts.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_LIST_DIRECTORY_PEOPLE">
**Description:** List directory people.
**Parameters:**
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "page_cursor_string"
}
```
</Accordion>
<Accordion title="GOOGLE_CALENDAR_SEARCH_DIRECTORY_PEOPLE">
**Description:** Search directory people.
**Parameters:**
- `query` (string, required): Search query to search contacts.
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "page_cursor_string"
}
```
</Accordion>
<Accordion title="GOOGLE_CALENDAR_LIST_OTHER_CONTACTS">
**Description:** List other contacts.
**Parameters:**
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "page_cursor_string"
}
```
</Accordion>
<Accordion title="GOOGLE_CALENDAR_SEARCH_OTHER_CONTACTS">
**Description:** Search other contacts.
**Parameters:**
- `query` (string, optional): Search query to search contacts.
</Accordion>
<Accordion title="GOOGLE_CALENDAR_GET_AVAILABILITY">
**Description:** Get availability information for calendars.
**Parameters:**
- `timeMin` (string, required): The start of the interval. In ISO format.
- `timeMax` (string, required): The end of the interval. In ISO format.
- `timeZone` (string, optional): Time zone used in the response. Optional. The default is UTC.
- `items` (array, optional): List of calendars and/or groups to query. Defaults to the user default calendar.
```json
[
{
"id": "calendar_id_1"
},
{
"id": "calendar_id_2"
}
]
```
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Calendar Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Google Calendar tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Google Calendar capabilities
calendar_agent = Agent(
role="Schedule Manager",
goal="Manage calendar events and scheduling efficiently",
backstory="An AI assistant specialized in calendar management and scheduling coordination.",
tools=[enterprise_tools]
)
# Task to create a meeting
create_meeting_task = Task(
description="Create a team standup meeting for tomorrow at 9 AM with the development team",
agent=calendar_agent,
expected_output="Meeting created successfully with Google Meet link"
)
# Run the task
crew = Crew(
agents=[calendar_agent],
tasks=[create_meeting_task]
)
crew.kickoff()
```
### Filtering Specific Calendar Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Google Calendar tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["google_calendar_create_event", "google_calendar_list_events", "google_calendar_get_availability"]
)
meeting_coordinator = Agent(
role="Meeting Coordinator",
goal="Coordinate meetings and check availability",
backstory="An AI assistant that focuses on meeting scheduling and availability management.",
tools=enterprise_tools
)
# Task to schedule a meeting with availability check
schedule_meeting = Task(
description="Check availability for next week and schedule a project review meeting with stakeholders",
agent=meeting_coordinator,
expected_output="Meeting scheduled after checking availability of all participants"
)
crew = Crew(
agents=[meeting_coordinator],
tasks=[schedule_meeting]
)
crew.kickoff()
```
### Event Management and Updates
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
event_manager = Agent(
role="Event Manager",
goal="Manage and update calendar events efficiently",
backstory="An experienced event manager who handles event logistics and updates.",
tools=[enterprise_tools]
)
# Task to manage event updates
event_management = Task(
description="""
1. List all events for this week
2. Update any events that need location changes to include video conference links
3. Send calendar invitations to new team members for recurring meetings
""",
agent=event_manager,
expected_output="Weekly events updated with proper locations and new attendees added"
)
crew = Crew(
agents=[event_manager],
tasks=[event_management]
)
crew.kickoff()
```
### Contact and Availability Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
availability_coordinator = Agent(
role="Availability Coordinator",
goal="Coordinate availability and manage contacts for scheduling",
backstory="An AI assistant that specializes in availability management and contact coordination.",
tools=[enterprise_tools]
)
# Task to coordinate availability
availability_task = Task(
description="""
1. Search for contacts in the engineering department
2. Check availability for all engineers next Friday afternoon
3. Create a team meeting for the first available 2-hour slot
4. Include Google Meet link and send invitations
""",
agent=availability_coordinator,
expected_output="Team meeting scheduled based on availability with all engineers invited"
)
crew = Crew(
agents=[availability_coordinator],
tasks=[availability_task]
)
crew.kickoff()
```
### Automated Scheduling Workflows
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
scheduling_automator = Agent(
role="Scheduling Automator",
goal="Automate scheduling workflows and calendar management",
backstory="An AI assistant that automates complex scheduling scenarios and calendar workflows.",
tools=[enterprise_tools]
)
# Complex scheduling automation task
automation_task = Task(
description="""
1. List all upcoming events for the next two weeks
2. Identify any scheduling conflicts or back-to-back meetings
3. Suggest optimal meeting times by checking availability
4. Create buffer time between meetings where needed
5. Update event descriptions with agenda items and meeting links
""",
agent=scheduling_automator,
expected_output="Calendar optimized with resolved conflicts, buffer times, and updated meeting details"
)
crew = Crew(
agents=[scheduling_automator],
tasks=[automation_task]
)
crew.kickoff()
```
## Troubleshooting
### Common Issues
**Authentication Errors**
- Ensure your Google account has the necessary permissions for calendar access
- Verify that the OAuth connection includes all required scopes for Google Calendar API
- Check if calendar sharing settings allow the required access level
**Event Creation Issues**
- Verify that time formats are correct (ISO8601 or Unix timestamps)
- Ensure attendee email addresses are properly formatted
- Check that the target calendar exists and is accessible
- Verify time zones are correctly specified
**Availability and Time Conflicts**
- Use proper ISO format for time ranges when checking availability
- Ensure time zones are consistent across all operations
- Verify that calendar IDs are correct when checking multiple calendars
**Contact and People Search**
- Ensure search queries are properly formatted
- Check that directory access permissions are granted
- Verify that contact information is up to date and accessible
**Event Updates and Deletions**
- Verify that event IDs are correct and events exist
- Ensure you have edit permissions for the events
- Check that calendar ownership allows modifications
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Google Calendar integration setup or troubleshooting.
</Card>

View File

@@ -1,322 +0,0 @@
---
title: Google Sheets Integration
description: "Spreadsheet data synchronization with Google Sheets integration for CrewAI."
icon: "google"
mode: "wide"
---
## Overview
Enable your agents to manage spreadsheet data through Google Sheets. Read rows, create new entries, update existing data, and streamline your data management workflows with AI-powered automation. Perfect for data tracking, reporting, and collaborative data management.
## Prerequisites
Before using the Google Sheets integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Google account with Google Sheets access
- Connected your Google account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
- Spreadsheets with proper column headers for data operations
## Setting Up Google Sheets Integration
### 1. Connect Your Google Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Google Sheets** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for spreadsheet access
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="GOOGLE_SHEETS_GET_ROW">
**Description:** Get rows from a Google Sheets spreadsheet.
**Parameters:**
- `spreadsheetId` (string, required): Spreadsheet - Use Connect Portal Workflow Settings to allow users to select a spreadsheet. Defaults to using the first worksheet in the selected spreadsheet.
- `limit` (string, optional): Limit rows - Limit the maximum number of rows to return.
</Accordion>
<Accordion title="GOOGLE_SHEETS_CREATE_ROW">
**Description:** Create a new row in a Google Sheets spreadsheet.
**Parameters:**
- `spreadsheetId` (string, required): Spreadsheet - Use Connect Portal Workflow Settings to allow users to select a spreadsheet. Defaults to using the first worksheet in the selected spreadsheet..
- `worksheet` (string, required): Worksheet - Your worksheet must have column headers.
- `additionalFields` (object, required): Fields - Include fields to create this row with, as an object with keys of Column Names. Use Connect Portal Workflow Settings to allow users to select a Column Mapping.
```json
{
"columnName1": "columnValue1",
"columnName2": "columnValue2",
"columnName3": "columnValue3",
"columnName4": "columnValue4"
}
```
</Accordion>
<Accordion title="GOOGLE_SHEETS_UPDATE_ROW">
**Description:** Update existing rows in a Google Sheets spreadsheet.
**Parameters:**
- `spreadsheetId` (string, required): Spreadsheet - Use Connect Portal Workflow Settings to allow users to select a spreadsheet. Defaults to using the first worksheet in the selected spreadsheet.
- `worksheet` (string, required): Worksheet - Your worksheet must have column headers.
- `filterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions to identify which rows to update.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "status",
"operator": "$stringExactlyMatches",
"value": "pending"
}
]
}
]
}
```
Available operators: `$stringContains`, `$stringDoesNotContain`, `$stringExactlyMatches`, `$stringDoesNotExactlyMatch`, `$stringStartsWith`, `$stringDoesNotStartWith`, `$stringEndsWith`, `$stringDoesNotEndWith`, `$numberGreaterThan`, `$numberLessThan`, `$numberEquals`, `$numberDoesNotEqual`, `$dateTimeAfter`, `$dateTimeBefore`, `$dateTimeEquals`, `$booleanTrue`, `$booleanFalse`, `$exists`, `$doesNotExist`
- `additionalFields` (object, required): Fields - Include fields to update, as an object with keys of Column Names. Use Connect Portal Workflow Settings to allow users to select a Column Mapping.
```json
{
"columnName1": "newValue1",
"columnName2": "newValue2",
"columnName3": "newValue3",
"columnName4": "newValue4"
}
```
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Google Sheets Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Google Sheets tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Google Sheets capabilities
sheets_agent = Agent(
role="Data Manager",
goal="Manage spreadsheet data and track information efficiently",
backstory="An AI assistant specialized in data management and spreadsheet operations.",
tools=[enterprise_tools]
)
# Task to add new data to a spreadsheet
data_entry_task = Task(
description="Add a new customer record to the customer database spreadsheet with name, email, and signup date",
agent=sheets_agent,
expected_output="New customer record added successfully to the spreadsheet"
)
# Run the task
crew = Crew(
agents=[sheets_agent],
tasks=[data_entry_task]
)
crew.kickoff()
```
### Filtering Specific Google Sheets Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Google Sheets tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["google_sheets_get_row", "google_sheets_create_row"]
)
data_collector = Agent(
role="Data Collector",
goal="Collect and organize data in spreadsheets",
backstory="An AI assistant that focuses on data collection and organization.",
tools=enterprise_tools
)
# Task to collect and organize data
data_collection = Task(
description="Retrieve current inventory data and add new product entries to the inventory spreadsheet",
agent=data_collector,
expected_output="Inventory data retrieved and new products added successfully"
)
crew = Crew(
agents=[data_collector],
tasks=[data_collection]
)
crew.kickoff()
```
### Data Analysis and Reporting
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
data_analyst = Agent(
role="Data Analyst",
goal="Analyze spreadsheet data and generate insights",
backstory="An experienced data analyst who extracts insights from spreadsheet data.",
tools=[enterprise_tools]
)
# Task to analyze data and create reports
analysis_task = Task(
description="""
1. Retrieve all sales data from the current month's spreadsheet
2. Analyze the data for trends and patterns
3. Create a summary report in a new row with key metrics
""",
agent=data_analyst,
expected_output="Sales data analyzed and summary report created with key insights"
)
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task]
)
crew.kickoff()
```
### Automated Data Updates
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
data_updater = Agent(
role="Data Updater",
goal="Automatically update and maintain spreadsheet data",
backstory="An AI assistant that maintains data accuracy and updates records automatically.",
tools=[enterprise_tools]
)
# Task to update data based on conditions
update_task = Task(
description="""
1. Find all pending orders in the orders spreadsheet
2. Update their status to 'processing'
3. Add a timestamp for when the status was updated
4. Log the changes in a separate tracking sheet
""",
agent=data_updater,
expected_output="All pending orders updated to processing status with timestamps logged"
)
crew = Crew(
agents=[data_updater],
tasks=[update_task]
)
crew.kickoff()
```
### Complex Data Management Workflow
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
workflow_manager = Agent(
role="Data Workflow Manager",
goal="Manage complex data workflows across multiple spreadsheets",
backstory="An AI assistant that orchestrates complex data operations across multiple spreadsheets.",
tools=[enterprise_tools]
)
# Complex workflow task
workflow_task = Task(
description="""
1. Get all customer data from the main customer spreadsheet
2. Create monthly summary entries for active customers
3. Update customer status based on activity in the last 30 days
4. Generate a monthly report with customer metrics
5. Archive inactive customer records to a separate sheet
""",
agent=workflow_manager,
expected_output="Monthly customer workflow completed with updated statuses and generated reports"
)
crew = Crew(
agents=[workflow_manager],
tasks=[workflow_task]
)
crew.kickoff()
```
## Troubleshooting
### Common Issues
**Permission Errors**
- Ensure your Google account has edit access to the target spreadsheets
- Verify that the OAuth connection includes required scopes for Google Sheets API
- Check that spreadsheets are shared with the authenticated account
**Spreadsheet Structure Issues**
- Ensure worksheets have proper column headers before creating or updating rows
- Verify that column names in `additionalFields` match the actual column headers
- Check that the specified worksheet exists in the spreadsheet
**Data Type and Format Issues**
- Ensure data values match the expected format for each column
- Use proper date formats for date columns (ISO format recommended)
- Verify that numeric values are properly formatted for number columns
**Filter Formula Issues**
- Ensure filter formulas follow the correct JSON structure for disjunctive normal form
- Use valid field names that match actual column headers
- Test simple filters before building complex multi-condition queries
- Verify that operator types match the data types in the columns
**Row Limits and Performance**
- Be mindful of row limits when using `GOOGLE_SHEETS_GET_ROW`
- Consider pagination for large datasets
- Use specific filters to reduce the amount of data processed
**Update Operations**
- Ensure filter conditions properly identify the intended rows for updates
- Test filter conditions with small datasets before large updates
- Verify that all required fields are included in update operations
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Google Sheets integration setup or troubleshooting.
</Card>

View File

@@ -1,580 +0,0 @@
---
title: "HubSpot Integration"
description: "Manage companies and contacts in HubSpot with CrewAI."
icon: "briefcase"
mode: "wide"
---
## Overview
Enable your agents to manage companies and contacts within HubSpot. Create new records and streamline your CRM processes with AI-powered automation.
## Prerequisites
Before using the HubSpot integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription.
- A HubSpot account with appropriate permissions.
- Connected your HubSpot account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors).
## Setting Up HubSpot Integration
### 1. Connect Your HubSpot Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors).
2. Find **HubSpot** in the Authentication Integrations section.
3. Click **Connect** and complete the OAuth flow.
4. Grant the necessary permissions for company and contact management.
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account).
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="HUBSPOT_CREATE_RECORD_COMPANIES">
**Description:** Create a new company record in HubSpot.
**Parameters:**
- `name` (string, required): Name of the company.
- `domain` (string, optional): Company Domain Name.
- `industry` (string, optional): Industry. Must be one of the predefined values from HubSpot.
- `phone` (string, optional): Phone Number.
- `hubspot_owner_id` (string, optional): Company owner ID.
- `type` (string, optional): Type of the company. Available values: `PROSPECT`, `PARTNER`, `RESELLER`, `VENDOR`, `OTHER`.
- `city` (string, optional): City.
- `state` (string, optional): State/Region.
- `zip` (string, optional): Postal Code.
- `numberofemployees` (number, optional): Number of Employees.
- `annualrevenue` (number, optional): Annual Revenue.
- `timezone` (string, optional): Time Zone.
- `description` (string, optional): Description.
- `linkedin_company_page` (string, optional): LinkedIn Company Page URL.
- `company_email` (string, optional): Company Email.
- `first_name` (string, optional): First Name of a contact at the company.
- `last_name` (string, optional): Last Name of a contact at the company.
- `about_us` (string, optional): About Us.
- `hs_csm_sentiment` (string, optional): CSM Sentiment. Available values: `at_risk`, `neutral`, `healthy`.
- `closedate` (string, optional): Close Date.
- `hs_keywords` (string, optional): Company Keywords. Must be one of the predefined values.
- `country` (string, optional): Country/Region.
- `hs_country_code` (string, optional): Country/Region Code.
- `hs_employee_range` (string, optional): Employee range.
- `facebook_company_page` (string, optional): Facebook Company Page URL.
- `facebookfans` (number, optional): Number of Facebook Fans.
- `hs_gps_coordinates` (string, optional): GPS Coordinates.
- `hs_gps_error` (string, optional): GPS Error.
- `googleplus_page` (string, optional): Google Plus Page URL.
- `owneremail` (string, optional): HubSpot Owner Email.
- `ownername` (string, optional): HubSpot Owner Name.
- `hs_ideal_customer_profile` (string, optional): Ideal Customer Profile Tier. Available values: `tier_1`, `tier_2`, `tier_3`.
- `hs_industry_group` (string, optional): Industry group.
- `is_public` (boolean, optional): Is Public.
- `hs_last_metered_enrichment_timestamp` (string, optional): Last Metered Enrichment Timestamp.
- `hs_lead_status` (string, optional): Lead Status. Available values: `NEW`, `OPEN`, `IN_PROGRESS`, `OPEN_DEAL`, `UNQUALIFIED`, `ATTEMPTED_TO_CONTACT`, `CONNECTED`, `BAD_TIMING`.
- `lifecyclestage` (string, optional): Lifecycle Stage. Available values: `subscriber`, `lead`, `marketingqualifiedlead`, `salesqualifiedlead`, `opportunity`, `customer`, `evangelist`, `other`.
- `linkedinbio` (string, optional): LinkedIn Bio.
- `hs_linkedin_handle` (string, optional): LinkedIn handle.
- `hs_live_enrichment_deadline` (string, optional): Live enrichment deadline.
- `hs_logo_url` (string, optional): Logo URL.
- `hs_analytics_source` (string, optional): Original Traffic Source.
- `hs_pinned_engagement_id` (number, optional): Pinned Engagement ID.
- `hs_quick_context` (string, optional): Quick context.
- `hs_revenue_range` (string, optional): Revenue range.
- `hs_state_code` (string, optional): State/Region Code.
- `address` (string, optional): Street Address.
- `address2` (string, optional): Street Address 2.
- `hs_is_target_account` (boolean, optional): Target Account.
- `hs_target_account` (string, optional): Target Account Tier. Available values: `tier_1`, `tier_2`, `tier_3`.
- `hs_target_account_recommendation_snooze_time` (string, optional): Target Account Recommendation Snooze Time.
- `hs_target_account_recommendation_state` (string, optional): Target Account Recommendation State. Available values: `DISMISSED`, `NONE`, `SNOOZED`.
- `total_money_raised` (string, optional): Total Money Raised.
- `twitterbio` (string, optional): Twitter Bio.
- `twitterfollowers` (number, optional): Twitter Followers.
- `twitterhandle` (string, optional): Twitter Handle.
- `web_technologies` (string, optional): Web Technologies used. Must be one of the predefined values.
- `website` (string, optional): Website URL.
- `founded_year` (string, optional): Year Founded.
</Accordion>
<Accordion title="HUBSPOT_CREATE_RECORD_CONTACTS">
**Description:** Create a new contact record in HubSpot.
**Parameters:**
- `email` (string, required): Email address of the contact.
- `firstname` (string, optional): First Name.
- `lastname` (string, optional): Last Name.
- `phone` (string, optional): Phone Number.
- `hubspot_owner_id` (string, optional): Contact owner.
- `lifecyclestage` (string, optional): Lifecycle Stage. Available values: `subscriber`, `lead`, `marketingqualifiedlead`, `salesqualifiedlead`, `opportunity`, `customer`, `evangelist`, `other`.
- `hs_lead_status` (string, optional): Lead Status. Available values: `NEW`, `OPEN`, `IN_PROGRESS`, `OPEN_DEAL`, `UNQUALIFIED`, `ATTEMPTED_TO_CONTACT`, `CONNECTED`, `BAD_TIMING`.
- `annualrevenue` (string, optional): Annual Revenue.
- `hs_buying_role` (string, optional): Buying Role.
- `cc_emails` (string, optional): CC Emails.
- `ch_customer_id` (string, optional): Chargify Customer ID.
- `ch_customer_reference` (string, optional): Chargify Customer Reference.
- `chargify_sites` (string, optional): Chargify Site(s).
- `city` (string, optional): City.
- `hs_facebook_ad_clicked` (boolean, optional): Clicked Facebook ad.
- `hs_linkedin_ad_clicked` (string, optional): Clicked LinkedIn Ad.
- `hs_clicked_linkedin_ad` (string, optional): Clicked on a LinkedIn Ad.
- `closedate` (string, optional): Close Date.
- `company` (string, optional): Company Name.
- `company_size` (string, optional): Company size.
- `country` (string, optional): Country/Region.
- `hs_country_region_code` (string, optional): Country/Region Code.
- `date_of_birth` (string, optional): Date of birth.
- `degree` (string, optional): Degree.
- `hs_email_customer_quarantined_reason` (string, optional): Email address quarantine reason.
- `hs_role` (string, optional): Employment Role. Must be one of the predefined values.
- `hs_seniority` (string, optional): Employment Seniority. Must be one of the predefined values.
- `hs_sub_role` (string, optional): Employment Sub Role. Must be one of the predefined values.
- `hs_employment_change_detected_date` (string, optional): Employment change detected date.
- `hs_enriched_email_bounce_detected` (boolean, optional): Enriched Email Bounce Detected.
- `hs_facebookid` (string, optional): Facebook ID.
- `hs_facebook_click_id` (string, optional): Facebook click id.
- `fax` (string, optional): Fax Number.
- `field_of_study` (string, optional): Field of study.
- `followercount` (number, optional): Follower Count.
- `gender` (string, optional): Gender.
- `hs_google_click_id` (string, optional): Google ad click id.
- `graduation_date` (string, optional): Graduation date.
- `owneremail` (string, optional): HubSpot Owner Email (legacy).
- `ownername` (string, optional): HubSpot Owner Name (legacy).
- `industry` (string, optional): Industry.
- `hs_inferred_language_codes` (string, optional): Inferred Language Codes. Must be one of the predefined values.
- `jobtitle` (string, optional): Job Title.
- `hs_job_change_detected_date` (string, optional): Job change detected date.
- `job_function` (string, optional): Job function.
- `hs_journey_stage` (string, optional): Journey Stage. Must be one of the predefined values.
- `kloutscoregeneral` (number, optional): Klout Score.
- `hs_last_metered_enrichment_timestamp` (string, optional): Last Metered Enrichment Timestamp.
- `hs_latest_source` (string, optional): Latest Traffic Source.
- `hs_latest_source_timestamp` (string, optional): Latest Traffic Source Date.
- `hs_legal_basis` (string, optional): Legal basis for processing contact's data.
- `linkedinbio` (string, optional): LinkedIn Bio.
- `linkedinconnections` (number, optional): LinkedIn Connections.
- `hs_linkedin_url` (string, optional): LinkedIn URL.
- `hs_linkedinid` (string, optional): Linkedin ID.
- `hs_live_enrichment_deadline` (string, optional): Live enrichment deadline.
- `marital_status` (string, optional): Marital Status.
- `hs_content_membership_email` (string, optional): Member email.
- `hs_content_membership_notes` (string, optional): Membership Notes.
- `message` (string, optional): Message.
- `military_status` (string, optional): Military status.
- `mobilephone` (string, optional): Mobile Phone Number.
- `numemployees` (string, optional): Number of Employees.
- `hs_analytics_source` (string, optional): Original Traffic Source.
- `photo` (string, optional): Photo.
- `hs_pinned_engagement_id` (number, optional): Pinned engagement ID.
- `zip` (string, optional): Postal Code.
- `hs_language` (string, optional): Preferred language. Must be one of the predefined values.
- `associatedcompanyid` (number, optional): Primary Associated Company ID.
- `hs_email_optout_survey_reason` (string, optional): Reason for opting out of email.
- `relationship_status` (string, optional): Relationship Status.
- `hs_returning_to_office_detected_date` (string, optional): Returning to office detected date.
- `salutation` (string, optional): Salutation.
- `school` (string, optional): School.
- `seniority` (string, optional): Seniority.
- `hs_feedback_show_nps_web_survey` (boolean, optional): Should be shown an NPS web survey.
- `start_date` (string, optional): Start date.
- `state` (string, optional): State/Region.
- `hs_state_code` (string, optional): State/Region Code.
- `hs_content_membership_status` (string, optional): Status.
- `address` (string, optional): Street Address.
- `tax_exempt` (string, optional): Tax Exempt.
- `hs_timezone` (string, optional): Time Zone. Must be one of the predefined values.
- `twitterbio` (string, optional): Twitter Bio.
- `hs_twitterid` (string, optional): Twitter ID.
- `twitterprofilephoto` (string, optional): Twitter Profile Photo.
- `twitterhandle` (string, optional): Twitter Username.
- `vat_number` (string, optional): VAT Number.
- `ch_verified` (string, optional): Verified for ACH/eCheck Payments.
- `website` (string, optional): Website URL.
- `hs_whatsapp_phone_number` (string, optional): WhatsApp Phone Number.
- `work_email` (string, optional): Work email.
- `hs_googleplusid` (string, optional): googleplus ID.
</Accordion>
<Accordion title="HUBSPOT_CREATE_RECORD_DEALS">
**Description:** Create a new deal record in HubSpot.
**Parameters:**
- `dealname` (string, required): Name of the deal.
- `amount` (number, optional): The value of the deal.
- `dealstage` (string, optional): The pipeline stage of the deal.
- `pipeline` (string, optional): The pipeline the deal belongs to.
- `closedate` (string, optional): The date the deal is expected to close.
- `hubspot_owner_id` (string, optional): The owner of the deal.
- `dealtype` (string, optional): The type of deal. Available values: `newbusiness`, `existingbusiness`.
- `description` (string, optional): A description of the deal.
- `hs_priority` (string, optional): The priority of the deal. Available values: `low`, `medium`, `high`.
</Accordion>
<Accordion title="HUBSPOT_CREATE_RECORD_ENGAGEMENTS">
**Description:** Create a new engagement (e.g., note, email, call, meeting, task) in HubSpot.
**Parameters:**
- `engagementType` (string, required): The type of engagement. Available values: `NOTE`, `EMAIL`, `CALL`, `MEETING`, `TASK`.
- `hubspot_owner_id` (string, optional): The user the activity is assigned to.
- `hs_timestamp` (string, optional): The date and time of the activity.
- `hs_note_body` (string, optional): The body of the note. (Used for `NOTE`)
- `hs_task_subject` (string, optional): The title of the task. (Used for `TASK`)
- `hs_task_body` (string, optional): The notes for the task. (Used for `TASK`)
- `hs_task_status` (string, optional): The status of the task. (Used for `TASK`)
- `hs_meeting_title` (string, optional): The title of the meeting. (Used for `MEETING`)
- `hs_meeting_body` (string, optional): The description for the meeting. (Used for `MEETING`)
- `hs_meeting_start_time` (string, optional): The start time of the meeting. (Used for `MEETING`)
- `hs_meeting_end_time` (string, optional): The end time of the meeting. (Used for `MEETING`)
</Accordion>
<Accordion title="HUBSPOT_UPDATE_RECORD_COMPANIES">
**Description:** Update an existing company record in HubSpot.
**Parameters:**
- `recordId` (string, required): The ID of the company to update.
- `name` (string, optional): Name of the company.
- `domain` (string, optional): Company Domain Name.
- `industry` (string, optional): Industry.
- `phone` (string, optional): Phone Number.
- `city` (string, optional): City.
- `state` (string, optional): State/Region.
- `zip` (string, optional): Postal Code.
- `numberofemployees` (number, optional): Number of Employees.
- `annualrevenue` (number, optional): Annual Revenue.
- `description` (string, optional): Description.
</Accordion>
<Accordion title="HUBSPOT_CREATE_RECORD_ANY">
**Description:** Create a record for a specified object type in HubSpot.
**Parameters:**
- `recordType` (string, required): The object type ID of the custom object.
- Additional parameters depend on the custom object's schema.
</Accordion>
<Accordion title="HUBSPOT_UPDATE_RECORD_CONTACTS">
**Description:** Update an existing contact record in HubSpot.
**Parameters:**
- `recordId` (string, required): The ID of the contact to update.
- `firstname` (string, optional): First Name.
- `lastname` (string, optional): Last Name.
- `email` (string, optional): Email address.
- `phone` (string, optional): Phone Number.
- `company` (string, optional): Company Name.
- `jobtitle` (string, optional): Job Title.
- `lifecyclestage` (string, optional): Lifecycle Stage.
</Accordion>
<Accordion title="HUBSPOT_UPDATE_RECORD_DEALS">
**Description:** Update an existing deal record in HubSpot.
**Parameters:**
- `recordId` (string, required): The ID of the deal to update.
- `dealname` (string, optional): Name of the deal.
- `amount` (number, optional): The value of the deal.
- `dealstage` (string, optional): The pipeline stage of the deal.
- `pipeline` (string, optional): The pipeline the deal belongs to.
- `closedate` (string, optional): The date the deal is expected to close.
- `dealtype` (string, optional): The type of deal.
</Accordion>
<Accordion title="HUBSPOT_UPDATE_RECORD_ENGAGEMENTS">
**Description:** Update an existing engagement in HubSpot.
**Parameters:**
- `recordId` (string, required): The ID of the engagement to update.
- `hs_note_body` (string, optional): The body of the note.
- `hs_task_subject` (string, optional): The title of the task.
- `hs_task_body` (string, optional): The notes for the task.
- `hs_task_status` (string, optional): The status of the task.
</Accordion>
<Accordion title="HUBSPOT_UPDATE_RECORD_ANY">
**Description:** Update a record for a specified object type in HubSpot.
**Parameters:**
- `recordId` (string, required): The ID of the record to update.
- `recordType` (string, required): The object type ID of the custom object.
- Additional parameters depend on the custom object's schema.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORDS_COMPANIES">
**Description:** Get a list of company records from HubSpot.
**Parameters:**
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORDS_CONTACTS">
**Description:** Get a list of contact records from HubSpot.
**Parameters:**
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORDS_DEALS">
**Description:** Get a list of deal records from HubSpot.
**Parameters:**
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORDS_ENGAGEMENTS">
**Description:** Get a list of engagement records from HubSpot.
**Parameters:**
- `objectName` (string, required): The type of engagement to fetch (e.g., "notes").
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORDS_ANY">
**Description:** Get a list of records for any specified object type in HubSpot.
**Parameters:**
- `recordType` (string, required): The object type ID of the custom object.
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORD_BY_ID_COMPANIES">
**Description:** Get a single company record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the company to retrieve.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORD_BY_ID_CONTACTS">
**Description:** Get a single contact record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the contact to retrieve.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORD_BY_ID_DEALS">
**Description:** Get a single deal record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the deal to retrieve.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORD_BY_ID_ENGAGEMENTS">
**Description:** Get a single engagement record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the engagement to retrieve.
</Accordion>
<Accordion title="HUBSPOT_GET_RECORD_BY_ID_ANY">
**Description:** Get a single record of any specified object type by its ID.
**Parameters:**
- `recordType` (string, required): The object type ID of the custom object.
- `recordId` (string, required): The ID of the record to retrieve.
</Accordion>
<Accordion title="HUBSPOT_SEARCH_RECORDS_COMPANIES">
**Description:** Search for company records in HubSpot using a filter formula.
**Parameters:**
- `filterFormula` (object, optional): A filter in disjunctive normal form (OR of ANDs).
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_SEARCH_RECORDS_CONTACTS">
**Description:** Search for contact records in HubSpot using a filter formula.
**Parameters:**
- `filterFormula` (object, optional): A filter in disjunctive normal form (OR of ANDs).
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_SEARCH_RECORDS_DEALS">
**Description:** Search for deal records in HubSpot using a filter formula.
**Parameters:**
- `filterFormula` (object, optional): A filter in disjunctive normal form (OR of ANDs).
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_SEARCH_RECORDS_ENGAGEMENTS">
**Description:** Search for engagement records in HubSpot using a filter formula.
**Parameters:**
- `engagementFilterFormula` (object, optional): A filter for engagements.
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_SEARCH_RECORDS_ANY">
**Description:** Search for records of any specified object type in HubSpot.
**Parameters:**
- `recordType` (string, required): The object type ID to search.
- `filterFormula` (string, optional): The filter formula to apply.
- `paginationParameters` (object, optional): Use `pageCursor` to fetch subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_DELETE_RECORD_COMPANIES">
**Description:** Delete a company record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the company to delete.
</Accordion>
<Accordion title="HUBSPOT_DELETE_RECORD_CONTACTS">
**Description:** Delete a contact record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the contact to delete.
</Accordion>
<Accordion title="HUBSPOT_DELETE_RECORD_DEALS">
**Description:** Delete a deal record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the deal to delete.
</Accordion>
<Accordion title="HUBSPOT_DELETE_RECORD_ENGAGEMENTS">
**Description:** Delete an engagement record by its ID.
**Parameters:**
- `recordId` (string, required): The ID of the engagement to delete.
</Accordion>
<Accordion title="HUBSPOT_DELETE_RECORD_ANY">
**Description:** Delete a record of any specified object type by its ID.
**Parameters:**
- `recordType` (string, required): The object type ID of the custom object.
- `recordId` (string, required): The ID of the record to delete.
</Accordion>
<Accordion title="HUBSPOT_GET_CONTACTS_BY_LIST_ID">
**Description:** Get contacts from a specific list by its ID.
**Parameters:**
- `listId` (string, required): The ID of the list to get contacts from.
- `paginationParameters` (object, optional): Use `pageCursor` for subsequent pages.
</Accordion>
<Accordion title="HUBSPOT_DESCRIBE_ACTION_SCHEMA">
**Description:** Get the expected schema for a given object type and operation.
**Parameters:**
- `recordType` (string, required): The object type ID (e.g., 'companies').
- `operation` (string, required): The operation type (e.g., 'CREATE_RECORD').
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic HubSpot Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (HubSpot tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with HubSpot capabilities
hubspot_agent = Agent(
role="CRM Manager",
goal="Manage company and contact records in HubSpot",
backstory="An AI assistant specialized in CRM management.",
tools=[enterprise_tools]
)
# Task to create a new company
create_company_task = Task(
description="Create a new company in HubSpot with name 'Innovate Corp' and domain 'innovatecorp.com'.",
agent=hubspot_agent,
expected_output="Company created successfully with confirmation"
)
# Run the task
crew = Crew(
agents=[hubspot_agent],
tasks=[create_company_task]
)
crew.kickoff()
```
### Filtering Specific HubSpot Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only the tool to create contacts
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["hubspot_create_record_contacts"]
)
contact_creator = Agent(
role="Contact Creator",
goal="Create new contacts in HubSpot",
backstory="An AI assistant that focuses on creating new contact entries in the CRM.",
tools=[enterprise_tools]
)
# Task to create a contact
create_contact = Task(
description="Create a new contact for 'John Doe' with email 'john.doe@example.com'.",
agent=contact_creator,
expected_output="Contact created successfully in HubSpot."
)
crew = Crew(
agents=[contact_creator],
tasks=[create_contact]
)
crew.kickoff()
```
### Contact Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
crm_manager = Agent(
role="CRM Manager",
goal="Manage and organize HubSpot contacts efficiently.",
backstory="An experienced CRM manager who maintains an organized contact database.",
tools=[enterprise_tools]
)
# Task to manage contacts
contact_task = Task(
description="Create a new contact for 'Jane Smith' at 'Global Tech Inc.' with email 'jane.smith@globaltech.com'.",
agent=crm_manager,
expected_output="Contact database updated with the new contact."
)
crew = Crew(
agents=[crm_manager],
tasks=[contact_task]
)
crew.kickoff()
```
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with HubSpot integration setup or troubleshooting.
</Card>

View File

@@ -1,395 +0,0 @@
---
title: Jira Integration
description: "Issue tracking and project management with Jira integration for CrewAI."
icon: "bug"
mode: "wide"
---
## Overview
Enable your agents to manage issues, projects, and workflows through Jira. Create and update issues, track project progress, manage assignments, and streamline your project management with AI-powered automation.
## Prerequisites
Before using the Jira integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Jira account with appropriate project permissions
- Connected your Jira account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Jira Integration
### 1. Connect Your Jira Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Jira** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for issue and project management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="JIRA_CREATE_ISSUE">
**Description:** Create an issue in Jira.
**Parameters:**
- `summary` (string, required): Summary - A brief one-line summary of the issue. (example: "The printer stopped working").
- `project` (string, optional): Project - The project which the issue belongs to. Defaults to the user's first project if not provided. Use Connect Portal Workflow Settings to allow users to select a Project.
- `issueType` (string, optional): Issue type - Defaults to Task if not provided.
- `jiraIssueStatus` (string, optional): Status - Defaults to the project's first status if not provided.
- `assignee` (string, optional): Assignee - Defaults to the authenticated user if not provided.
- `descriptionType` (string, optional): Description Type - Select the Description Type.
- Options: `description`, `descriptionJSON`
- `description` (string, optional): Description - A detailed description of the issue. This field appears only when 'descriptionType' = 'description'.
- `additionalFields` (string, optional): Additional Fields - Specify any other fields that should be included in JSON format. Use Connect Portal Workflow Settings to allow users to select which Issue Fields to update.
```json
{
"customfield_10001": "value"
}
```
</Accordion>
<Accordion title="JIRA_UPDATE_ISSUE">
**Description:** Update an issue in Jira.
**Parameters:**
- `issueKey` (string, required): Issue Key (example: "TEST-1234").
- `summary` (string, optional): Summary - A brief one-line summary of the issue. (example: "The printer stopped working").
- `issueType` (string, optional): Issue type - Use Connect Portal Workflow Settings to allow users to select an Issue Type.
- `jiraIssueStatus` (string, optional): Status - Use Connect Portal Workflow Settings to allow users to select a Status.
- `assignee` (string, optional): Assignee - Use Connect Portal Workflow Settings to allow users to select an Assignee.
- `descriptionType` (string, optional): Description Type - Select the Description Type.
- Options: `description`, `descriptionJSON`
- `description` (string, optional): Description - A detailed description of the issue. This field appears only when 'descriptionType' = 'description'.
- `additionalFields` (string, optional): Additional Fields - Specify any other fields that should be included in JSON format.
</Accordion>
<Accordion title="JIRA_GET_ISSUE_BY_KEY">
**Description:** Get an issue by key in Jira.
**Parameters:**
- `issueKey` (string, required): Issue Key (example: "TEST-1234").
</Accordion>
<Accordion title="JIRA_FILTER_ISSUES">
**Description:** Search issues in Jira using filters.
**Parameters:**
- `jqlQuery` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "status",
"operator": "$stringExactlyMatches",
"value": "Open"
}
]
}
]
}
```
Available operators: `$stringExactlyMatches`, `$stringDoesNotExactlyMatch`, `$stringIsIn`, `$stringIsNotIn`, `$stringContains`, `$stringDoesNotContain`, `$stringGreaterThan`, `$stringLessThan`
- `limit` (string, optional): Limit results - Limit the maximum number of issues to return. Defaults to 10 if left blank.
</Accordion>
<Accordion title="JIRA_SEARCH_BY_JQL">
**Description:** Search issues by JQL in Jira.
**Parameters:**
- `jqlQuery` (string, required): JQL Query (example: "project = PROJECT").
- `paginationParameters` (object, optional): Pagination parameters for paginated results.
```json
{
"pageCursor": "cursor_string"
}
```
</Accordion>
<Accordion title="JIRA_UPDATE_ISSUE_ANY">
**Description:** Update any issue in Jira. Use DESCRIBE_ACTION_SCHEMA to get properties schema for this function.
**Parameters:** No specific parameters - use JIRA_DESCRIBE_ACTION_SCHEMA first to get the expected schema.
</Accordion>
<Accordion title="JIRA_DESCRIBE_ACTION_SCHEMA">
**Description:** Get the expected schema for an issue type. Use this function first if no other function matches the issue type you want to operate on.
**Parameters:**
- `issueTypeId` (string, required): Issue Type ID.
- `projectKey` (string, required): Project key.
- `operation` (string, required): Operation Type value, for example CREATE_ISSUE or UPDATE_ISSUE.
</Accordion>
<Accordion title="JIRA_GET_PROJECTS">
**Description:** Get Projects in Jira.
**Parameters:**
- `paginationParameters` (object, optional): Pagination Parameters.
```json
{
"pageCursor": "cursor_string"
}
```
</Accordion>
<Accordion title="JIRA_GET_ISSUE_TYPES_BY_PROJECT">
**Description:** Get Issue Types by project in Jira.
**Parameters:**
- `project` (string, required): Project key.
</Accordion>
<Accordion title="JIRA_GET_ISSUE_TYPES">
**Description:** Get all Issue Types in Jira.
**Parameters:** None required.
</Accordion>
<Accordion title="JIRA_GET_ISSUE_STATUS_BY_PROJECT">
**Description:** Get issue statuses for a given project.
**Parameters:**
- `project` (string, required): Project key.
</Accordion>
<Accordion title="JIRA_GET_ALL_ASSIGNEES_BY_PROJECT">
**Description:** Get assignees for a given project.
**Parameters:**
- `project` (string, required): Project key.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Jira Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Jira tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Jira capabilities
jira_agent = Agent(
role="Issue Manager",
goal="Manage Jira issues and track project progress efficiently",
backstory="An AI assistant specialized in issue tracking and project management.",
tools=[enterprise_tools]
)
# Task to create a bug report
create_bug_task = Task(
description="Create a bug report for the login functionality with high priority and assign it to the development team",
agent=jira_agent,
expected_output="Bug report created successfully with issue key"
)
# Run the task
crew = Crew(
agents=[jira_agent],
tasks=[create_bug_task]
)
crew.kickoff()
```
### Filtering Specific Jira Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Jira tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["jira_create_issue", "jira_update_issue", "jira_search_by_jql"]
)
issue_coordinator = Agent(
role="Issue Coordinator",
goal="Create and manage Jira issues efficiently",
backstory="An AI assistant that focuses on issue creation and management.",
tools=enterprise_tools
)
# Task to manage issue workflow
issue_workflow = Task(
description="Create a feature request issue and update the status of related issues",
agent=issue_coordinator,
expected_output="Feature request created and related issues updated"
)
crew = Crew(
agents=[issue_coordinator],
tasks=[issue_workflow]
)
crew.kickoff()
```
### Project Analysis and Reporting
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
project_analyst = Agent(
role="Project Analyst",
goal="Analyze project data and generate insights from Jira",
backstory="An experienced project analyst who extracts insights from project management data.",
tools=[enterprise_tools]
)
# Task to analyze project status
analysis_task = Task(
description="""
1. Get all projects and their issue types
2. Search for all open issues across projects
3. Analyze issue distribution by status and assignee
4. Create a summary report issue with findings
""",
agent=project_analyst,
expected_output="Project analysis completed with summary report created"
)
crew = Crew(
agents=[project_analyst],
tasks=[analysis_task]
)
crew.kickoff()
```
### Automated Issue Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
automation_manager = Agent(
role="Automation Manager",
goal="Automate issue management and workflow processes",
backstory="An AI assistant that automates repetitive issue management tasks.",
tools=[enterprise_tools]
)
# Task to automate issue management
automation_task = Task(
description="""
1. Search for all unassigned issues using JQL
2. Get available assignees for each project
3. Automatically assign issues based on workload and expertise
4. Update issue priorities based on age and type
5. Create weekly sprint planning issues
""",
agent=automation_manager,
expected_output="Issues automatically assigned and sprint planning issues created"
)
crew = Crew(
agents=[automation_manager],
tasks=[automation_task]
)
crew.kickoff()
```
### Advanced Schema-Based Operations
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
schema_specialist = Agent(
role="Schema Specialist",
goal="Handle complex Jira operations using dynamic schemas",
backstory="An AI assistant that can work with dynamic Jira schemas and custom issue types.",
tools=[enterprise_tools]
)
# Task using schema-based operations
schema_task = Task(
description="""
1. Get all projects and their custom issue types
2. For each custom issue type, describe the action schema
3. Create issues using the dynamic schema for complex custom fields
4. Update issues with custom field values based on business rules
""",
agent=schema_specialist,
expected_output="Custom issues created and updated using dynamic schemas"
)
crew = Crew(
agents=[schema_specialist],
tasks=[schema_task]
)
crew.kickoff()
```
## Troubleshooting
### Common Issues
**Permission Errors**
- Ensure your Jira account has necessary permissions for the target projects
- Verify that the OAuth connection includes required scopes for Jira API
- Check if you have create/edit permissions for issues in the specified projects
**Invalid Project or Issue Keys**
- Double-check project keys and issue keys for correct format (e.g., "PROJ-123")
- Ensure projects exist and are accessible to your account
- Verify that issue keys reference existing issues
**Issue Type and Status Issues**
- Use JIRA_GET_ISSUE_TYPES_BY_PROJECT to get valid issue types for a project
- Use JIRA_GET_ISSUE_STATUS_BY_PROJECT to get valid statuses
- Ensure issue types and statuses are available in the target project
**JQL Query Problems**
- Test JQL queries in Jira's issue search before using in API calls
- Ensure field names in JQL are spelled correctly and exist in your Jira instance
- Use proper JQL syntax for complex queries
**Custom Fields and Schema Issues**
- Use JIRA_DESCRIBE_ACTION_SCHEMA to get the correct schema for complex issue types
- Ensure custom field IDs are correct (e.g., "customfield_10001")
- Verify that custom fields are available in the target project and issue type
**Filter Formula Issues**
- Ensure filter formulas follow the correct JSON structure for disjunctive normal form
- Use valid field names that exist in your Jira configuration
- Test simple filters before building complex multi-condition queries
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Jira integration setup or troubleshooting.
</Card>

View File

@@ -1,454 +0,0 @@
---
title: Linear Integration
description: "Software project and bug tracking with Linear integration for CrewAI."
icon: "list-check"
mode: "wide"
---
## Overview
Enable your agents to manage issues, projects, and development workflows through Linear. Create and update issues, manage project timelines, organize teams, and streamline your software development process with AI-powered automation.
## Prerequisites
Before using the Linear integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Linear account with appropriate workspace permissions
- Connected your Linear account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Linear Integration
### 1. Connect Your Linear Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Linear** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for issue and project management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="LINEAR_CREATE_ISSUE">
**Description:** Create a new issue in Linear.
**Parameters:**
- `teamId` (string, required): Team ID - Specify the Team ID of the parent for this new issue. Use Connect Portal Workflow Settings to allow users to select a Team ID. (example: "a70bdf0f-530a-4887-857d-46151b52b47c").
- `title` (string, required): Title - Specify a title for this issue.
- `description` (string, optional): Description - Specify a description for this issue.
- `statusId` (string, optional): Status - Specify the state or status of this issue.
- `priority` (string, optional): Priority - Specify the priority of this issue as an integer.
- `dueDate` (string, optional): Due Date - Specify the due date of this issue in ISO 8601 format.
- `cycleId` (string, optional): Cycle ID - Specify the cycle associated with this issue.
- `additionalFields` (object, optional): Additional Fields.
```json
{
"assigneeId": "a70bdf0f-530a-4887-857d-46151b52b47c",
"labelIds": ["a70bdf0f-530a-4887-857d-46151b52b47c"]
}
```
</Accordion>
<Accordion title="LINEAR_UPDATE_ISSUE">
**Description:** Update an issue in Linear.
**Parameters:**
- `issueId` (string, required): Issue ID - Specify the Issue ID of the issue to update. (example: "90fbc706-18cd-42c9-ae66-6bd344cc8977").
- `title` (string, optional): Title - Specify a title for this issue.
- `description` (string, optional): Description - Specify a description for this issue.
- `statusId` (string, optional): Status - Specify the state or status of this issue.
- `priority` (string, optional): Priority - Specify the priority of this issue as an integer.
- `dueDate` (string, optional): Due Date - Specify the due date of this issue in ISO 8601 format.
- `cycleId` (string, optional): Cycle ID - Specify the cycle associated with this issue.
- `additionalFields` (object, optional): Additional Fields.
```json
{
"assigneeId": "a70bdf0f-530a-4887-857d-46151b52b47c",
"labelIds": ["a70bdf0f-530a-4887-857d-46151b52b47c"]
}
```
</Accordion>
<Accordion title="LINEAR_GET_ISSUE_BY_ID">
**Description:** Get an issue by ID in Linear.
**Parameters:**
- `issueId` (string, required): Issue ID - Specify the record ID of the issue to fetch. (example: "90fbc706-18cd-42c9-ae66-6bd344cc8977").
</Accordion>
<Accordion title="LINEAR_GET_ISSUE_BY_ISSUE_IDENTIFIER">
**Description:** Get an issue by issue identifier in Linear.
**Parameters:**
- `externalId` (string, required): External ID - Specify the human-readable Issue identifier of the issue to fetch. (example: "ABC-1").
</Accordion>
<Accordion title="LINEAR_SEARCH_ISSUE">
**Description:** Search issues in Linear.
**Parameters:**
- `queryTerm` (string, required): Query Term - The search term to look for.
- `issueFilterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "title",
"operator": "$stringContains",
"value": "bug"
}
]
}
]
}
```
Available fields: `title`, `number`, `project`, `createdAt`
Available operators: `$stringExactlyMatches`, `$stringDoesNotExactlyMatch`, `$stringIsIn`, `$stringIsNotIn`, `$stringStartsWith`, `$stringDoesNotStartWith`, `$stringEndsWith`, `$stringDoesNotEndWith`, `$stringContains`, `$stringDoesNotContain`, `$stringGreaterThan`, `$stringLessThan`, `$numberGreaterThanOrEqualTo`, `$numberLessThanOrEqualTo`, `$numberGreaterThan`, `$numberLessThan`, `$dateTimeAfter`, `$dateTimeBefore`
</Accordion>
<Accordion title="LINEAR_DELETE_ISSUE">
**Description:** Delete an issue in Linear.
**Parameters:**
- `issueId` (string, required): Issue ID - Specify the record ID of the issue to delete. (example: "90fbc706-18cd-42c9-ae66-6bd344cc8977").
</Accordion>
<Accordion title="LINEAR_ARCHIVE_ISSUE">
**Description:** Archive an issue in Linear.
**Parameters:**
- `issueId` (string, required): Issue ID - Specify the record ID of the issue to archive. (example: "90fbc706-18cd-42c9-ae66-6bd344cc8977").
</Accordion>
<Accordion title="LINEAR_CREATE_SUB_ISSUE">
**Description:** Create a sub-issue in Linear.
**Parameters:**
- `parentId` (string, required): Parent ID - Specify the Issue ID for the parent of this new issue.
- `teamId` (string, required): Team ID - Specify the Team ID of the parent for this new sub-issue. Use Connect Portal Workflow Settings to allow users to select a Team ID. (example: "a70bdf0f-530a-4887-857d-46151b52b47c").
- `title` (string, required): Title - Specify a title for this issue.
- `description` (string, optional): Description - Specify a description for this issue.
- `additionalFields` (object, optional): Additional Fields.
```json
{
"lead": "linear_user_id"
}
```
</Accordion>
<Accordion title="LINEAR_CREATE_PROJECT">
**Description:** Create a new project in Linear.
**Parameters:**
- `teamIds` (object, required): Team ID - Specify the team ID(s) this project is associated with as a string or a JSON array. Use Connect Portal User Settings to allow your user to select a Team ID.
```json
[
"a70bdf0f-530a-4887-857d-46151b52b47c",
"4ac7..."
]
```
- `projectName` (string, required): Project Name - Specify the name of the project. (example: "My Linear Project").
- `description` (string, optional): Project Description - Specify a description for this project.
- `additionalFields` (object, optional): Additional Fields.
```json
{
"state": "planned",
"description": ""
}
```
</Accordion>
<Accordion title="LINEAR_UPDATE_PROJECT">
**Description:** Update a project in Linear.
**Parameters:**
- `projectId` (string, required): Project ID - Specify the ID of the project to update. (example: "a6634484-6061-4ac7-9739-7dc5e52c796b").
- `projectName` (string, optional): Project Name - Specify the name of the project to update. (example: "My Linear Project").
- `description` (string, optional): Project Description - Specify a description for this project.
- `additionalFields` (object, optional): Additional Fields.
```json
{
"state": "planned",
"description": ""
}
```
</Accordion>
<Accordion title="LINEAR_GET_PROJECT_BY_ID">
**Description:** Get a project by ID in Linear.
**Parameters:**
- `projectId` (string, required): Project ID - Specify the Project ID of the project to fetch. (example: "a6634484-6061-4ac7-9739-7dc5e52c796b").
</Accordion>
<Accordion title="LINEAR_DELETE_PROJECT">
**Description:** Delete a project in Linear.
**Parameters:**
- `projectId` (string, required): Project ID - Specify the Project ID of the project to delete. (example: "a6634484-6061-4ac7-9739-7dc5e52c796b").
</Accordion>
<Accordion title="LINEAR_SEARCH_TEAMS">
**Description:** Search teams in Linear.
**Parameters:**
- `teamFilterFormula` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "name",
"operator": "$stringContains",
"value": "Engineering"
}
]
}
]
}
```
Available fields: `id`, `name`
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Linear Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Linear tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Linear capabilities
linear_agent = Agent(
role="Development Manager",
goal="Manage Linear issues and track development progress efficiently",
backstory="An AI assistant specialized in software development project management.",
tools=[enterprise_tools]
)
# Task to create a bug report
create_bug_task = Task(
description="Create a high-priority bug report for the authentication system and assign it to the backend team",
agent=linear_agent,
expected_output="Bug report created successfully with issue ID"
)
# Run the task
crew = Crew(
agents=[linear_agent],
tasks=[create_bug_task]
)
crew.kickoff()
```
### Filtering Specific Linear Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Linear tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["linear_create_issue", "linear_update_issue", "linear_search_issue"]
)
issue_manager = Agent(
role="Issue Manager",
goal="Create and manage Linear issues efficiently",
backstory="An AI assistant that focuses on issue creation and lifecycle management.",
tools=enterprise_tools
)
# Task to manage issue workflow
issue_workflow = Task(
description="Create a feature request issue and update the status of related issues to reflect current progress",
agent=issue_manager,
expected_output="Feature request created and related issues updated"
)
crew = Crew(
agents=[issue_manager],
tasks=[issue_workflow]
)
crew.kickoff()
```
### Project and Team Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
project_coordinator = Agent(
role="Project Coordinator",
goal="Coordinate projects and teams in Linear efficiently",
backstory="An experienced project coordinator who manages development cycles and team workflows.",
tools=[enterprise_tools]
)
# Task to coordinate project setup
project_coordination = Task(
description="""
1. Search for engineering teams in Linear
2. Create a new project for Q2 feature development
3. Associate the project with relevant teams
4. Create initial project milestones as issues
""",
agent=project_coordinator,
expected_output="Q2 project created with teams assigned and initial milestones established"
)
crew = Crew(
agents=[project_coordinator],
tasks=[project_coordination]
)
crew.kickoff()
```
### Issue Hierarchy and Sub-task Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
task_organizer = Agent(
role="Task Organizer",
goal="Organize complex issues into manageable sub-tasks",
backstory="An AI assistant that breaks down complex development work into organized sub-tasks.",
tools=[enterprise_tools]
)
# Task to create issue hierarchy
hierarchy_task = Task(
description="""
1. Search for large feature issues that need to be broken down
2. For each complex issue, create sub-issues for different components
3. Update the parent issues with proper descriptions and links to sub-issues
4. Assign sub-issues to appropriate team members based on expertise
""",
agent=task_organizer,
expected_output="Complex issues broken down into manageable sub-tasks with proper assignments"
)
crew = Crew(
agents=[task_organizer],
tasks=[hierarchy_task]
)
crew.kickoff()
```
### Automated Development Workflow
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
workflow_automator = Agent(
role="Workflow Automator",
goal="Automate development workflow processes in Linear",
backstory="An AI assistant that automates repetitive development workflow tasks.",
tools=[enterprise_tools]
)
# Complex workflow automation task
automation_task = Task(
description="""
1. Search for issues that have been in progress for more than 7 days
2. Update their priorities based on due dates and project importance
3. Create weekly sprint planning issues for each team
4. Archive completed issues from the previous cycle
5. Generate project status reports as new issues
""",
agent=workflow_automator,
expected_output="Development workflow automated with updated priorities, sprint planning, and status reports"
)
crew = Crew(
agents=[workflow_automator],
tasks=[automation_task]
)
crew.kickoff()
```
## Troubleshooting
### Common Issues
**Permission Errors**
- Ensure your Linear account has necessary permissions for the target workspace
- Verify that the OAuth connection includes required scopes for Linear API
- Check if you have create/edit permissions for issues and projects in the workspace
**Invalid IDs and References**
- Double-check team IDs, issue IDs, and project IDs for correct UUID format
- Ensure referenced entities (teams, projects, cycles) exist and are accessible
- Verify that issue identifiers follow the correct format (e.g., "ABC-1")
**Team and Project Association Issues**
- Use LINEAR_SEARCH_TEAMS to get valid team IDs before creating issues or projects
- Ensure teams exist and are active in your workspace
- Verify that team IDs are properly formatted as UUIDs
**Issue Status and Priority Problems**
- Check that status IDs reference valid workflow states for the team
- Ensure priority values are within the valid range for your Linear configuration
- Verify that custom fields and labels exist before referencing them
**Date and Time Format Issues**
- Use ISO 8601 format for due dates and timestamps
- Ensure time zones are handled correctly for due date calculations
- Verify that date values are valid and in the future for due dates
**Search and Filter Issues**
- Ensure search queries are properly formatted and not empty
- Use valid field names in filter formulas: `title`, `number`, `project`, `createdAt`
- Test simple filters before building complex multi-condition queries
- Verify that operator types match the data types of the fields being filtered
**Sub-issue Creation Problems**
- Ensure parent issue IDs are valid and accessible
- Verify that the team ID for sub-issues matches or is compatible with the parent issue's team
- Check that parent issues are not already archived or deleted
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Linear integration setup or troubleshooting.
</Card>

View File

@@ -1,510 +0,0 @@
---
title: Notion Integration
description: "Page and database management with Notion integration for CrewAI."
icon: "book"
mode: "wide"
---
## Overview
Enable your agents to manage pages, databases, and content through Notion. Create and update pages, manage content blocks, organize knowledge bases, and streamline your documentation workflows with AI-powered automation.
## Prerequisites
Before using the Notion integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Notion account with appropriate workspace permissions
- Connected your Notion account through the [Integrations page](https://app.crewai.com/crewai_plus/connectors)
## Setting Up Notion Integration
### 1. Connect Your Notion Account
1. Navigate to [CrewAI AMP Integrations](https://app.crewai.com/crewai_plus/connectors)
2. Find **Notion** in the Authentication Integrations section
3. Click **Connect** and complete the OAuth flow
4. Grant the necessary permissions for page and database management
5. Copy your Enterprise Token from [Account Settings](https://app.crewai.com/crewai_plus/settings/account)
### 2. Install Required Package
```bash
uv add crewai-tools
```
## Available Actions
<AccordionGroup>
<Accordion title="NOTION_CREATE_PAGE">
**Description:** Create a page in Notion.
**Parameters:**
- `parent` (object, required): Parent - The parent page or database where the new page is inserted, represented as a JSON object with a page_id or database_id key.
```json
{
"database_id": "DATABASE_ID"
}
```
- `properties` (object, required): Properties - The values of the page's properties. If the parent is a database, then the schema must match the parent database's properties.
```json
{
"title": [
{
"text": {
"content": "My Page"
}
}
]
}
```
- `icon` (object, required): Icon - The page icon.
```json
{
"emoji": "🥬"
}
```
- `children` (object, optional): Children - Content blocks to add to the page.
```json
[
{
"object": "block",
"type": "heading_2",
"heading_2": {
"rich_text": [
{
"type": "text",
"text": {
"content": "Lacinato kale"
}
}
]
}
}
]
```
- `cover` (object, optional): Cover - The page cover image.
```json
{
"external": {
"url": "https://upload.wikimedia.org/wikipedia/commons/6/62/Tuscankale.jpg"
}
}
```
</Accordion>
<Accordion title="NOTION_UPDATE_PAGE">
**Description:** Update a page in Notion.
**Parameters:**
- `pageId` (string, required): Page ID - Specify the ID of the Page to Update. (example: "59833787-2cf9-4fdf-8782-e53db20768a5").
- `icon` (object, required): Icon - The page icon.
```json
{
"emoji": "🥬"
}
```
- `archived` (boolean, optional): Archived - Whether the page is archived (deleted). Set to true to archive a page. Set to false to un-archive (restore) a page.
- `properties` (object, optional): Properties - The property values to update for the page.
```json
{
"title": [
{
"text": {
"content": "My Updated Page"
}
}
]
}
```
- `cover` (object, optional): Cover - The page cover image.
```json
{
"external": {
"url": "https://upload.wikimedia.org/wikipedia/commons/6/62/Tuscankale.jpg"
}
}
```
</Accordion>
<Accordion title="NOTION_GET_PAGE_BY_ID">
**Description:** Get a page by ID in Notion.
**Parameters:**
- `pageId` (string, required): Page ID - Specify the ID of the Page to Get. (example: "59833787-2cf9-4fdf-8782-e53db20768a5").
</Accordion>
<Accordion title="NOTION_ARCHIVE_PAGE">
**Description:** Archive a page in Notion.
**Parameters:**
- `pageId` (string, required): Page ID - Specify the ID of the Page to Archive. (example: "59833787-2cf9-4fdf-8782-e53db20768a5").
</Accordion>
<Accordion title="NOTION_SEARCH_PAGES">
**Description:** Search pages in Notion using filters.
**Parameters:**
- `searchByTitleFilterSearch` (object, optional): A filter in disjunctive normal form - OR of AND groups of single conditions.
```json
{
"operator": "OR",
"conditions": [
{
"operator": "AND",
"conditions": [
{
"field": "query",
"operator": "$stringExactlyMatches",
"value": "meeting notes"
}
]
}
]
}
```
Available fields: `query`, `filter.value`, `direction`, `page_size`
</Accordion>
<Accordion title="NOTION_GET_PAGE_CONTENT">
**Description:** Get page content (blocks) in Notion.
**Parameters:**
- `blockId` (string, required): Page ID - Specify a Block or Page ID to receive all of its block's children in order. (example: "59833787-2cf9-4fdf-8782-e53db20768a5").
</Accordion>
<Accordion title="NOTION_UPDATE_BLOCK">
**Description:** Update a block in Notion.
**Parameters:**
- `blockId` (string, required): Block ID - Specify the ID of the Block to Update. (example: "9bc30ad4-9373-46a5-84ab-0a7845ee52e6").
- `archived` (boolean, optional): Archived - Set to true to archive (delete) a block. Set to false to un-archive (restore) a block.
- `paragraph` (object, optional): Paragraph content.
```json
{
"rich_text": [
{
"type": "text",
"text": {
"content": "Lacinato kale",
"link": null
}
}
],
"color": "default"
}
```
- `image` (object, optional): Image block.
```json
{
"type": "external",
"external": {
"url": "https://website.domain/images/image.png"
}
}
```
- `bookmark` (object, optional): Bookmark block.
```json
{
"caption": [],
"url": "https://companywebsite.com"
}
```
- `code` (object, optional): Code block.
```json
{
"rich_text": [
{
"type": "text",
"text": {
"content": "const a = 3"
}
}
],
"language": "javascript"
}
```
- `pdf` (object, optional): PDF block.
```json
{
"type": "external",
"external": {
"url": "https://website.domain/files/doc.pdf"
}
}
```
- `table` (object, optional): Table block.
```json
{
"table_width": 2,
"has_column_header": false,
"has_row_header": false
}
```
- `tableOfContent` (object, optional): Table of Contents block.
```json
{
"color": "default"
}
```
- `additionalFields` (object, optional): Additional block types.
```json
{
"child_page": {
"title": "Lacinato kale"
},
"child_database": {
"title": "My database"
}
}
```
</Accordion>
<Accordion title="NOTION_GET_BLOCK_BY_ID">
**Description:** Get a block by ID in Notion.
**Parameters:**
- `blockId` (string, required): Block ID - Specify the ID of the Block to Get. (example: "9bc30ad4-9373-46a5-84ab-0a7845ee52e6").
</Accordion>
<Accordion title="NOTION_DELETE_BLOCK">
**Description:** Delete a block in Notion.
**Parameters:**
- `blockId` (string, required): Block ID - Specify the ID of the Block to Delete. (example: "9bc30ad4-9373-46a5-84ab-0a7845ee52e6").
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Notion Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Notion tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Notion capabilities
notion_agent = Agent(
role="Documentation Manager",
goal="Manage documentation and knowledge base in Notion efficiently",
backstory="An AI assistant specialized in content management and documentation.",
tools=[enterprise_tools]
)
# Task to create a meeting notes page
create_notes_task = Task(
description="Create a new meeting notes page in the team database with today's date and agenda items",
agent=notion_agent,
expected_output="Meeting notes page created successfully with structured content"
)
# Run the task
crew = Crew(
agents=[notion_agent],
tasks=[create_notes_task]
)
crew.kickoff()
```
### Filtering Specific Notion Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Notion tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["notion_create_page", "notion_update_block", "notion_search_pages"]
)
content_manager = Agent(
role="Content Manager",
goal="Create and manage content pages efficiently",
backstory="An AI assistant that focuses on content creation and management.",
tools=enterprise_tools
)
# Task to manage content workflow
content_workflow = Task(
description="Create a new project documentation page and add structured content blocks for requirements and specifications",
agent=content_manager,
expected_output="Project documentation created with organized content sections"
)
crew = Crew(
agents=[content_manager],
tasks=[content_workflow]
)
crew.kickoff()
```
### Knowledge Base Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
knowledge_curator = Agent(
role="Knowledge Curator",
goal="Curate and organize knowledge base content in Notion",
backstory="An experienced knowledge manager who organizes and maintains comprehensive documentation.",
tools=[enterprise_tools]
)
# Task to curate knowledge base
curation_task = Task(
description="""
1. Search for existing documentation pages related to our new product feature
2. Create a comprehensive feature documentation page with proper structure
3. Add code examples, images, and links to related resources
4. Update existing pages with cross-references to the new documentation
""",
agent=knowledge_curator,
expected_output="Feature documentation created and integrated with existing knowledge base"
)
crew = Crew(
agents=[knowledge_curator],
tasks=[curation_task]
)
crew.kickoff()
```
### Content Structure and Organization
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
content_organizer = Agent(
role="Content Organizer",
goal="Organize and structure content blocks for optimal readability",
backstory="An AI assistant that specializes in content structure and user experience.",
tools=[enterprise_tools]
)
# Task to organize content structure
organization_task = Task(
description="""
1. Get content from existing project pages
2. Analyze the structure and identify improvement opportunities
3. Update content blocks to use proper headings, tables, and formatting
4. Add table of contents and improve navigation between related pages
5. Create templates for future documentation consistency
""",
agent=content_organizer,
expected_output="Content reorganized with improved structure and navigation"
)
crew = Crew(
agents=[content_organizer],
tasks=[organization_task]
)
crew.kickoff()
```
### Automated Documentation Workflows
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
doc_automator = Agent(
role="Documentation Automator",
goal="Automate documentation workflows and maintenance",
backstory="An AI assistant that automates repetitive documentation tasks.",
tools=[enterprise_tools]
)
# Complex documentation automation task
automation_task = Task(
description="""
1. Search for pages that haven't been updated in the last 30 days
2. Review and update outdated content blocks
3. Create weekly team update pages with consistent formatting
4. Add status indicators and progress tracking to project pages
5. Generate monthly documentation health reports
6. Archive completed project pages and organize them in archive sections
""",
agent=doc_automator,
expected_output="Documentation automated with updated content, weekly reports, and organized archives"
)
crew = Crew(
agents=[doc_automator],
tasks=[automation_task]
)
crew.kickoff()
```
## Troubleshooting
### Common Issues
**Permission Errors**
- Ensure your Notion account has edit access to the target workspace
- Verify that the OAuth connection includes required scopes for Notion API
- Check that pages and databases are shared with the authenticated integration
**Invalid Page and Block IDs**
- Double-check page IDs and block IDs for correct UUID format
- Ensure referenced pages and blocks exist and are accessible
- Verify that parent page or database IDs are valid when creating new pages
**Property Schema Issues**
- Ensure page properties match the database schema when creating pages in databases
- Verify that property names and types are correct for the target database
- Check that required properties are included when creating or updating pages
**Content Block Structure**
- Ensure block content follows Notion's rich text format specifications
- Verify that nested block structures are properly formatted
- Check that media URLs are accessible and properly formatted
**Search and Filter Issues**
- Ensure search queries are properly formatted and not empty
- Use valid field names in filter formulas: `query`, `filter.value`, `direction`, `page_size`
- Test simple searches before building complex filter conditions
**Parent-Child Relationships**
- Verify that parent page or database exists before creating child pages
- Ensure proper permissions exist for the parent container
- Check that database schemas allow the properties you're trying to set
**Rich Text and Media Content**
- Ensure URLs for external images, PDFs, and bookmarks are accessible
- Verify that rich text formatting follows Notion's API specifications
- Check that code block language types are supported by Notion
**Archive and Deletion Operations**
- Understand the difference between archiving (reversible) and deleting (permanent)
- Verify that you have permissions to archive or delete the target content
- Be cautious with bulk operations that might affect multiple pages or blocks
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Notion integration setup or troubleshooting.
</Card>

View File

@@ -1,633 +0,0 @@
---
title: Salesforce Integration
description: "CRM and sales automation with Salesforce integration for CrewAI."
icon: "salesforce"
mode: "wide"
---
## Overview
Enable your agents to manage customer relationships, sales processes, and data through Salesforce. Create and update records, manage leads and opportunities, execute SOQL queries, and streamline your CRM workflows with AI-powered automation.
## Prerequisites
Before using the Salesforce integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Salesforce account with appropriate permissions
- Connected your Salesforce account through the [Integrations page](https://app.crewai.com/integrations)
## Available Tools
### **Record Management**
<AccordionGroup>
<Accordion title="SALESFORCE_CREATE_RECORD_CONTACT">
**Description:** Create a new Contact record in Salesforce.
**Parameters:**
- `FirstName` (string, optional): First Name
- `LastName` (string, required): Last Name - This field is required
- `accountId` (string, optional): Account ID - The Account that the Contact belongs to
- `Email` (string, optional): Email address
- `Title` (string, optional): Title of the contact, such as CEO or Vice President
- `Description` (string, optional): A description of the Contact
- `additionalFields` (object, optional): Additional fields in JSON format for custom Contact fields
</Accordion>
<Accordion title="SALESFORCE_CREATE_RECORD_LEAD">
**Description:** Create a new Lead record in Salesforce.
**Parameters:**
- `FirstName` (string, optional): First Name
- `LastName` (string, required): Last Name - This field is required
- `Company` (string, required): Company - This field is required
- `Email` (string, optional): Email address
- `Phone` (string, optional): Phone number
- `Website` (string, optional): Website URL
- `Title` (string, optional): Title of the contact, such as CEO or Vice President
- `Status` (string, optional): Lead Status - Use Connect Portal Workflow Settings to select Lead Status
- `Description` (string, optional): A description of the Lead
- `additionalFields` (object, optional): Additional fields in JSON format for custom Lead fields
</Accordion>
<Accordion title="SALESFORCE_CREATE_RECORD_OPPORTUNITY">
**Description:** Create a new Opportunity record in Salesforce.
**Parameters:**
- `Name` (string, required): The Opportunity name - This field is required
- `StageName` (string, optional): Opportunity Stage - Use Connect Portal Workflow Settings to select stage
- `CloseDate` (string, optional): Close Date in YYYY-MM-DD format - Defaults to 30 days from current date
- `AccountId` (string, optional): The Account that the Opportunity belongs to
- `Amount` (string, optional): Estimated total sale amount
- `Description` (string, optional): A description of the Opportunity
- `OwnerId` (string, optional): The Salesforce user assigned to work on this Opportunity
- `NextStep` (string, optional): Description of next task in closing Opportunity
- `additionalFields` (object, optional): Additional fields in JSON format for custom Opportunity fields
</Accordion>
<Accordion title="SALESFORCE_CREATE_RECORD_TASK">
**Description:** Create a new Task record in Salesforce.
**Parameters:**
- `whatId` (string, optional): Related to ID - The ID of the Account or Opportunity this Task is related to
- `whoId` (string, optional): Name ID - The ID of the Contact or Lead this Task is related to
- `subject` (string, required): Subject of the task
- `activityDate` (string, optional): Activity Date in YYYY-MM-DD format
- `description` (string, optional): A description of the Task
- `taskSubtype` (string, required): Task Subtype - Options: task, email, listEmail, call
- `Status` (string, optional): Status - Options: Not Started, In Progress, Completed
- `ownerId` (string, optional): Assigned To ID - The Salesforce user assigned to this Task
- `callDurationInSeconds` (string, optional): Call Duration in seconds
- `isReminderSet` (boolean, optional): Whether reminder is set
- `reminderDateTime` (string, optional): Reminder Date/Time in ISO format
- `additionalFields` (object, optional): Additional fields in JSON format for custom Task fields
</Accordion>
<Accordion title="SALESFORCE_CREATE_RECORD_ACCOUNT">
**Description:** Create a new Account record in Salesforce.
**Parameters:**
- `Name` (string, required): The Account name - This field is required
- `OwnerId` (string, optional): The Salesforce user assigned to this Account
- `Website` (string, optional): Website URL
- `Phone` (string, optional): Phone number
- `Description` (string, optional): Account description
- `additionalFields` (object, optional): Additional fields in JSON format for custom Account fields
</Accordion>
<Accordion title="SALESFORCE_CREATE_RECORD_ANY">
**Description:** Create a record of any object type in Salesforce.
**Note:** This is a flexible tool for creating records of custom or unknown object types.
</Accordion>
</AccordionGroup>
### **Record Updates**
<AccordionGroup>
<Accordion title="SALESFORCE_UPDATE_RECORD_CONTACT">
**Description:** Update an existing Contact record in Salesforce.
**Parameters:**
- `recordId` (string, required): The ID of the record to update
- `FirstName` (string, optional): First Name
- `LastName` (string, optional): Last Name
- `accountId` (string, optional): Account ID - The Account that the Contact belongs to
- `Email` (string, optional): Email address
- `Title` (string, optional): Title of the contact
- `Description` (string, optional): A description of the Contact
- `additionalFields` (object, optional): Additional fields in JSON format for custom Contact fields
</Accordion>
<Accordion title="SALESFORCE_UPDATE_RECORD_LEAD">
**Description:** Update an existing Lead record in Salesforce.
**Parameters:**
- `recordId` (string, required): The ID of the record to update
- `FirstName` (string, optional): First Name
- `LastName` (string, optional): Last Name
- `Company` (string, optional): Company name
- `Email` (string, optional): Email address
- `Phone` (string, optional): Phone number
- `Website` (string, optional): Website URL
- `Title` (string, optional): Title of the contact
- `Status` (string, optional): Lead Status
- `Description` (string, optional): A description of the Lead
- `additionalFields` (object, optional): Additional fields in JSON format for custom Lead fields
</Accordion>
<Accordion title="SALESFORCE_UPDATE_RECORD_OPPORTUNITY">
**Description:** Update an existing Opportunity record in Salesforce.
**Parameters:**
- `recordId` (string, required): The ID of the record to update
- `Name` (string, optional): The Opportunity name
- `StageName` (string, optional): Opportunity Stage
- `CloseDate` (string, optional): Close Date in YYYY-MM-DD format
- `AccountId` (string, optional): The Account that the Opportunity belongs to
- `Amount` (string, optional): Estimated total sale amount
- `Description` (string, optional): A description of the Opportunity
- `OwnerId` (string, optional): The Salesforce user assigned to work on this Opportunity
- `NextStep` (string, optional): Description of next task in closing Opportunity
- `additionalFields` (object, optional): Additional fields in JSON format for custom Opportunity fields
</Accordion>
<Accordion title="SALESFORCE_UPDATE_RECORD_TASK">
**Description:** Update an existing Task record in Salesforce.
**Parameters:**
- `recordId` (string, required): The ID of the record to update
- `whatId` (string, optional): Related to ID - The ID of the Account or Opportunity this Task is related to
- `whoId` (string, optional): Name ID - The ID of the Contact or Lead this Task is related to
- `subject` (string, optional): Subject of the task
- `activityDate` (string, optional): Activity Date in YYYY-MM-DD format
- `description` (string, optional): A description of the Task
- `Status` (string, optional): Status - Options: Not Started, In Progress, Completed
- `ownerId` (string, optional): Assigned To ID - The Salesforce user assigned to this Task
- `callDurationInSeconds` (string, optional): Call Duration in seconds
- `isReminderSet` (boolean, optional): Whether reminder is set
- `reminderDateTime` (string, optional): Reminder Date/Time in ISO format
- `additionalFields` (object, optional): Additional fields in JSON format for custom Task fields
</Accordion>
<Accordion title="SALESFORCE_UPDATE_RECORD_ACCOUNT">
**Description:** Update an existing Account record in Salesforce.
**Parameters:**
- `recordId` (string, required): The ID of the record to update
- `Name` (string, optional): The Account name
- `OwnerId` (string, optional): The Salesforce user assigned to this Account
- `Website` (string, optional): Website URL
- `Phone` (string, optional): Phone number
- `Description` (string, optional): Account description
- `additionalFields` (object, optional): Additional fields in JSON format for custom Account fields
</Accordion>
<Accordion title="SALESFORCE_UPDATE_RECORD_ANY">
**Description:** Update a record of any object type in Salesforce.
**Note:** This is a flexible tool for updating records of custom or unknown object types.
</Accordion>
</AccordionGroup>
### **Record Retrieval**
<AccordionGroup>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_CONTACT">
**Description:** Get a Contact record by its ID.
**Parameters:**
- `recordId` (string, required): Record ID of the Contact
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_LEAD">
**Description:** Get a Lead record by its ID.
**Parameters:**
- `recordId` (string, required): Record ID of the Lead
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_OPPORTUNITY">
**Description:** Get an Opportunity record by its ID.
**Parameters:**
- `recordId` (string, required): Record ID of the Opportunity
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_TASK">
**Description:** Get a Task record by its ID.
**Parameters:**
- `recordId` (string, required): Record ID of the Task
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_ACCOUNT">
**Description:** Get an Account record by its ID.
**Parameters:**
- `recordId` (string, required): Record ID of the Account
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_ID_ANY">
**Description:** Get a record of any object type by its ID.
**Parameters:**
- `recordType` (string, required): Record Type (e.g., "CustomObject__c")
- `recordId` (string, required): Record ID
</Accordion>
</AccordionGroup>
### **Record Search**
<AccordionGroup>
<Accordion title="SALESFORCE_SEARCH_RECORDS_CONTACT">
**Description:** Search for Contact records with advanced filtering.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `sortBy` (string, optional): Sort field (e.g., "CreatedDate")
- `sortDirection` (string, optional): Sort direction - Options: ASC, DESC
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_SEARCH_RECORDS_LEAD">
**Description:** Search for Lead records with advanced filtering.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `sortBy` (string, optional): Sort field (e.g., "CreatedDate")
- `sortDirection` (string, optional): Sort direction - Options: ASC, DESC
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_SEARCH_RECORDS_OPPORTUNITY">
**Description:** Search for Opportunity records with advanced filtering.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `sortBy` (string, optional): Sort field (e.g., "CreatedDate")
- `sortDirection` (string, optional): Sort direction - Options: ASC, DESC
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_SEARCH_RECORDS_TASK">
**Description:** Search for Task records with advanced filtering.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `sortBy` (string, optional): Sort field (e.g., "CreatedDate")
- `sortDirection` (string, optional): Sort direction - Options: ASC, DESC
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_SEARCH_RECORDS_ACCOUNT">
**Description:** Search for Account records with advanced filtering.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `sortBy` (string, optional): Sort field (e.g., "CreatedDate")
- `sortDirection` (string, optional): Sort direction - Options: ASC, DESC
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_SEARCH_RECORDS_ANY">
**Description:** Search for records of any object type.
**Parameters:**
- `recordType` (string, required): Record Type to search
- `filterFormula` (string, optional): Filter search criteria
- `includeAllFields` (boolean, optional): Include all fields in results
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
</AccordionGroup>
### **List View Retrieval**
<AccordionGroup>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_CONTACT">
**Description:** Get Contact records from a specific List View.
**Parameters:**
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_LEAD">
**Description:** Get Lead records from a specific List View.
**Parameters:**
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_OPPORTUNITY">
**Description:** Get Opportunity records from a specific List View.
**Parameters:**
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_TASK">
**Description:** Get Task records from a specific List View.
**Parameters:**
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_ACCOUNT">
**Description:** Get Account records from a specific List View.
**Parameters:**
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
<Accordion title="SALESFORCE_GET_RECORD_BY_VIEW_ID_ANY">
**Description:** Get records of any object type from a specific List View.
**Parameters:**
- `recordType` (string, required): Record Type
- `listViewId` (string, required): List View ID
- `paginationParameters` (object, optional): Pagination settings with pageCursor
</Accordion>
</AccordionGroup>
### **Custom Fields**
<AccordionGroup>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_CONTACT">
**Description:** Deploy custom fields for Contact objects.
**Parameters:**
- `label` (string, required): Field Label for displays and internal reference
- `type` (string, required): Field Type - Options: Checkbox, Currency, Date, Email, Number, Percent, Phone, Picklist, MultiselectPicklist, Text, TextArea, LongTextArea, Html, Time, Url
- `defaultCheckboxValue` (boolean, optional): Default value for checkbox fields
- `length` (string, required): Length for numeric/text fields
- `decimalPlace` (string, required): Decimal places for numeric fields
- `pickListValues` (string, required): Values for picklist fields (separated by new lines)
- `visibleLines` (string, required): Visible lines for multiselect/text area fields
- `description` (string, optional): Field description
- `helperText` (string, optional): Helper text shown on hover
- `defaultFieldValue` (string, optional): Default field value
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_LEAD">
**Description:** Deploy custom fields for Lead objects.
**Parameters:**
- `label` (string, required): Field Label for displays and internal reference
- `type` (string, required): Field Type - Options: Checkbox, Currency, Date, Email, Number, Percent, Phone, Picklist, MultiselectPicklist, Text, TextArea, LongTextArea, Html, Time, Url
- `defaultCheckboxValue` (boolean, optional): Default value for checkbox fields
- `length` (string, required): Length for numeric/text fields
- `decimalPlace` (string, required): Decimal places for numeric fields
- `pickListValues` (string, required): Values for picklist fields (separated by new lines)
- `visibleLines` (string, required): Visible lines for multiselect/text area fields
- `description` (string, optional): Field description
- `helperText` (string, optional): Helper text shown on hover
- `defaultFieldValue` (string, optional): Default field value
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_OPPORTUNITY">
**Description:** Deploy custom fields for Opportunity objects.
**Parameters:**
- `label` (string, required): Field Label for displays and internal reference
- `type` (string, required): Field Type - Options: Checkbox, Currency, Date, Email, Number, Percent, Phone, Picklist, MultiselectPicklist, Text, TextArea, LongTextArea, Html, Time, Url
- `defaultCheckboxValue` (boolean, optional): Default value for checkbox fields
- `length` (string, required): Length for numeric/text fields
- `decimalPlace` (string, required): Decimal places for numeric fields
- `pickListValues` (string, required): Values for picklist fields (separated by new lines)
- `visibleLines` (string, required): Visible lines for multiselect/text area fields
- `description` (string, optional): Field description
- `helperText` (string, optional): Helper text shown on hover
- `defaultFieldValue` (string, optional): Default field value
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_TASK">
**Description:** Deploy custom fields for Task objects.
**Parameters:**
- `label` (string, required): Field Label for displays and internal reference
- `type` (string, required): Field Type - Options: Checkbox, Currency, Date, Email, Number, Percent, Phone, Picklist, MultiselectPicklist, Text, TextArea, Time, Url
- `defaultCheckboxValue` (boolean, optional): Default value for checkbox fields
- `length` (string, required): Length for numeric/text fields
- `decimalPlace` (string, required): Decimal places for numeric fields
- `pickListValues` (string, required): Values for picklist fields (separated by new lines)
- `visibleLines` (string, required): Visible lines for multiselect fields
- `description` (string, optional): Field description
- `helperText` (string, optional): Helper text shown on hover
- `defaultFieldValue` (string, optional): Default field value
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_ACCOUNT">
**Description:** Deploy custom fields for Account objects.
**Parameters:**
- `label` (string, required): Field Label for displays and internal reference
- `type` (string, required): Field Type - Options: Checkbox, Currency, Date, Email, Number, Percent, Phone, Picklist, MultiselectPicklist, Text, TextArea, LongTextArea, Html, Time, Url
- `defaultCheckboxValue` (boolean, optional): Default value for checkbox fields
- `length` (string, required): Length for numeric/text fields
- `decimalPlace` (string, required): Decimal places for numeric fields
- `pickListValues` (string, required): Values for picklist fields (separated by new lines)
- `visibleLines` (string, required): Visible lines for multiselect/text area fields
- `description` (string, optional): Field description
- `helperText` (string, optional): Helper text shown on hover
- `defaultFieldValue` (string, optional): Default field value
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_FIELD_ANY">
**Description:** Deploy custom fields for any object type.
**Note:** This is a flexible tool for creating custom fields on custom or unknown object types.
</Accordion>
</AccordionGroup>
### **Advanced Operations**
<AccordionGroup>
<Accordion title="SALESFORCE_WRITE_SOQL_QUERY">
**Description:** Execute custom SOQL queries against your Salesforce data.
**Parameters:**
- `query` (string, required): SOQL Query (e.g., "SELECT Id, Name FROM Account WHERE Name = 'Example'")
</Accordion>
<Accordion title="SALESFORCE_CREATE_CUSTOM_OBJECT">
**Description:** Deploy a new custom object in Salesforce.
**Parameters:**
- `label` (string, required): Object Label for tabs, page layouts, and reports
- `pluralLabel` (string, required): Plural Label (e.g., "Accounts")
- `description` (string, optional): A description of the Custom Object
- `recordName` (string, required): Record Name that appears in layouts and searches (e.g., "Account Name")
</Accordion>
<Accordion title="SALESFORCE_DESCRIBE_ACTION_SCHEMA">
**Description:** Get the expected schema for operations on specific object types.
**Parameters:**
- `recordType` (string, required): Record Type to describe
- `operation` (string, required): Operation Type (e.g., "CREATE_RECORD" or "UPDATE_RECORD")
**Note:** Use this function first when working with custom objects to understand their schema before performing operations.
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Salesforce Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Salesforce tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Salesforce capabilities
salesforce_agent = Agent(
role="CRM Manager",
goal="Manage customer relationships and sales processes efficiently",
backstory="An AI assistant specialized in CRM operations and sales automation.",
tools=[enterprise_tools]
)
# Task to create a new lead
create_lead_task = Task(
description="Create a new lead for John Doe from Example Corp with email john.doe@example.com",
agent=salesforce_agent,
expected_output="Lead created successfully with lead ID"
)
# Run the task
crew = Crew(
agents=[salesforce_agent],
tasks=[create_lead_task]
)
crew.kickoff()
```
### Filtering Specific Salesforce Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Salesforce tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["salesforce_create_record_lead", "salesforce_update_record_opportunity", "salesforce_search_records_contact"]
)
sales_manager = Agent(
role="Sales Manager",
goal="Manage leads and opportunities in the sales pipeline",
backstory="An experienced sales manager who handles lead qualification and opportunity management.",
tools=enterprise_tools
)
# Task to manage sales pipeline
pipeline_task = Task(
description="Create a qualified lead and convert it to an opportunity with $50,000 value",
agent=sales_manager,
expected_output="Lead created and opportunity established successfully"
)
crew = Crew(
agents=[sales_manager],
tasks=[pipeline_task]
)
crew.kickoff()
```
### Contact and Account Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
account_manager = Agent(
role="Account Manager",
goal="Manage customer accounts and maintain strong relationships",
backstory="An AI assistant that specializes in account management and customer relationship building.",
tools=[enterprise_tools]
)
# Task to manage customer accounts
account_task = Task(
description="""
1. Create a new account for TechCorp Inc.
2. Add John Doe as the primary contact for this account
3. Create a follow-up task for next week to check on their project status
""",
agent=account_manager,
expected_output="Account, contact, and follow-up task created successfully"
)
crew = Crew(
agents=[account_manager],
tasks=[account_task]
)
crew.kickoff()
```
### Advanced SOQL Queries and Reporting
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
data_analyst = Agent(
role="Sales Data Analyst",
goal="Generate insights from Salesforce data using SOQL queries",
backstory="An analytical AI that excels at extracting meaningful insights from CRM data.",
tools=[enterprise_tools]
)
# Complex task involving SOQL queries and data analysis
analysis_task = Task(
description="""
1. Execute a SOQL query to find all opportunities closing this quarter
2. Search for contacts at companies with opportunities over $100K
3. Create a summary report of the sales pipeline status
4. Update high-value opportunities with next steps
""",
agent=data_analyst,
expected_output="Comprehensive sales pipeline analysis with actionable insights"
)
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task]
)
crew.kickoff()
```
This comprehensive documentation covers all the Salesforce tools organized by functionality, making it easy for users to find the specific operations they need for their CRM automation tasks.
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Salesforce integration setup or troubleshooting.
</Card>

View File

@@ -1,383 +0,0 @@
---
title: Shopify Integration
description: "E-commerce and online store management with Shopify integration for CrewAI."
icon: "shopify"
mode: "wide"
---
## Overview
Enable your agents to manage e-commerce operations through Shopify. Handle customers, orders, products, inventory, and store analytics to streamline your online business with AI-powered automation.
## Prerequisites
Before using the Shopify integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Shopify store with appropriate admin permissions
- Connected your Shopify store through the [Integrations page](https://app.crewai.com/integrations)
## Available Tools
### **Customer Management**
<AccordionGroup>
<Accordion title="SHOPIFY_GET_CUSTOMERS">
**Description:** Retrieve a list of customers from your Shopify store.
**Parameters:**
- `customerIds` (string, optional): Comma-separated list of customer IDs to filter by (example: "207119551, 207119552")
- `createdAtMin` (string, optional): Only return customers created after this date (ISO or Unix timestamp)
- `createdAtMax` (string, optional): Only return customers created before this date (ISO or Unix timestamp)
- `updatedAtMin` (string, optional): Only return customers updated after this date (ISO or Unix timestamp)
- `updatedAtMax` (string, optional): Only return customers updated before this date (ISO or Unix timestamp)
- `limit` (string, optional): Maximum number of customers to return (defaults to 250)
</Accordion>
<Accordion title="SHOPIFY_SEARCH_CUSTOMERS">
**Description:** Search for customers using advanced filtering criteria.
**Parameters:**
- `filterFormula` (object, optional): Advanced filter in disjunctive normal form with field-specific operators
- `limit` (string, optional): Maximum number of customers to return (defaults to 250)
</Accordion>
<Accordion title="SHOPIFY_CREATE_CUSTOMER">
**Description:** Create a new customer in your Shopify store.
**Parameters:**
- `firstName` (string, required): Customer's first name
- `lastName` (string, required): Customer's last name
- `email` (string, required): Customer's email address
- `company` (string, optional): Company name
- `streetAddressLine1` (string, optional): Street address
- `streetAddressLine2` (string, optional): Street address line 2
- `city` (string, optional): City
- `state` (string, optional): State or province code
- `country` (string, optional): Country
- `zipCode` (string, optional): Zip code
- `phone` (string, optional): Phone number
- `tags` (string, optional): Tags as array or comma-separated list
- `note` (string, optional): Customer note
- `sendEmailInvite` (boolean, optional): Whether to send email invitation
- `metafields` (object, optional): Additional metafields in JSON format
</Accordion>
<Accordion title="SHOPIFY_UPDATE_CUSTOMER">
**Description:** Update an existing customer in your Shopify store.
**Parameters:**
- `customerId` (string, required): The ID of the customer to update
- `firstName` (string, optional): Customer's first name
- `lastName` (string, optional): Customer's last name
- `email` (string, optional): Customer's email address
- `company` (string, optional): Company name
- `streetAddressLine1` (string, optional): Street address
- `streetAddressLine2` (string, optional): Street address line 2
- `city` (string, optional): City
- `state` (string, optional): State or province code
- `country` (string, optional): Country
- `zipCode` (string, optional): Zip code
- `phone` (string, optional): Phone number
- `tags` (string, optional): Tags as array or comma-separated list
- `note` (string, optional): Customer note
- `sendEmailInvite` (boolean, optional): Whether to send email invitation
- `metafields` (object, optional): Additional metafields in JSON format
</Accordion>
</AccordionGroup>
### **Order Management**
<AccordionGroup>
<Accordion title="SHOPIFY_GET_ORDERS">
**Description:** Retrieve a list of orders from your Shopify store.
**Parameters:**
- `orderIds` (string, optional): Comma-separated list of order IDs to filter by (example: "450789469, 450789470")
- `createdAtMin` (string, optional): Only return orders created after this date (ISO or Unix timestamp)
- `createdAtMax` (string, optional): Only return orders created before this date (ISO or Unix timestamp)
- `updatedAtMin` (string, optional): Only return orders updated after this date (ISO or Unix timestamp)
- `updatedAtMax` (string, optional): Only return orders updated before this date (ISO or Unix timestamp)
- `limit` (string, optional): Maximum number of orders to return (defaults to 250)
</Accordion>
<Accordion title="SHOPIFY_CREATE_ORDER">
**Description:** Create a new order in your Shopify store.
**Parameters:**
- `email` (string, required): Customer email address
- `lineItems` (object, required): Order line items in JSON format with title, price, quantity, and variant_id
- `sendReceipt` (boolean, optional): Whether to send order receipt
- `fulfillmentStatus` (string, optional): Fulfillment status - Options: fulfilled, null, partial, restocked
- `financialStatus` (string, optional): Financial status - Options: pending, authorized, partially_paid, paid, partially_refunded, refunded, voided
- `inventoryBehaviour` (string, optional): Inventory behavior - Options: bypass, decrement_ignoring_policy, decrement_obeying_policy
- `note` (string, optional): Order note
</Accordion>
<Accordion title="SHOPIFY_UPDATE_ORDER">
**Description:** Update an existing order in your Shopify store.
**Parameters:**
- `orderId` (string, required): The ID of the order to update
- `email` (string, optional): Customer email address
- `lineItems` (object, optional): Updated order line items in JSON format
- `sendReceipt` (boolean, optional): Whether to send order receipt
- `fulfillmentStatus` (string, optional): Fulfillment status - Options: fulfilled, null, partial, restocked
- `financialStatus` (string, optional): Financial status - Options: pending, authorized, partially_paid, paid, partially_refunded, refunded, voided
- `inventoryBehaviour` (string, optional): Inventory behavior - Options: bypass, decrement_ignoring_policy, decrement_obeying_policy
- `note` (string, optional): Order note
</Accordion>
<Accordion title="SHOPIFY_GET_ABANDONED_CARTS">
**Description:** Retrieve abandoned carts from your Shopify store.
**Parameters:**
- `createdWithInLast` (string, optional): Restrict results to checkouts created within specified time
- `createdAfterId` (string, optional): Restrict results to after the specified ID
- `status` (string, optional): Show checkouts with given status - Options: open, closed (defaults to open)
- `createdAtMin` (string, optional): Only return carts created after this date (ISO or Unix timestamp)
- `createdAtMax` (string, optional): Only return carts created before this date (ISO or Unix timestamp)
- `limit` (string, optional): Maximum number of carts to return (defaults to 250)
</Accordion>
</AccordionGroup>
### **Product Management (REST API)**
<AccordionGroup>
<Accordion title="SHOPIFY_GET_PRODUCTS">
**Description:** Retrieve a list of products from your Shopify store using REST API.
**Parameters:**
- `productIds` (string, optional): Comma-separated list of product IDs to filter by (example: "632910392, 632910393")
- `title` (string, optional): Filter by product title
- `productType` (string, optional): Filter by product type
- `vendor` (string, optional): Filter by vendor
- `status` (string, optional): Filter by status - Options: active, archived, draft
- `createdAtMin` (string, optional): Only return products created after this date (ISO or Unix timestamp)
- `createdAtMax` (string, optional): Only return products created before this date (ISO or Unix timestamp)
- `updatedAtMin` (string, optional): Only return products updated after this date (ISO or Unix timestamp)
- `updatedAtMax` (string, optional): Only return products updated before this date (ISO or Unix timestamp)
- `limit` (string, optional): Maximum number of products to return (defaults to 250)
</Accordion>
<Accordion title="SHOPIFY_CREATE_PRODUCT">
**Description:** Create a new product in your Shopify store using REST API.
**Parameters:**
- `title` (string, required): Product title
- `productType` (string, required): Product type/category
- `vendor` (string, required): Product vendor
- `productDescription` (string, optional): Product description (accepts plain text or HTML)
- `tags` (string, optional): Product tags as array or comma-separated list
- `price` (string, optional): Product price
- `inventoryPolicy` (string, optional): Inventory policy - Options: deny, continue
- `imageUrl` (string, optional): Product image URL
- `isPublished` (boolean, optional): Whether product is published
- `publishToPointToSale` (boolean, optional): Whether to publish to point of sale
</Accordion>
<Accordion title="SHOPIFY_UPDATE_PRODUCT">
**Description:** Update an existing product in your Shopify store using REST API.
**Parameters:**
- `productId` (string, required): The ID of the product to update
- `title` (string, optional): Product title
- `productType` (string, optional): Product type/category
- `vendor` (string, optional): Product vendor
- `productDescription` (string, optional): Product description (accepts plain text or HTML)
- `tags` (string, optional): Product tags as array or comma-separated list
- `price` (string, optional): Product price
- `inventoryPolicy` (string, optional): Inventory policy - Options: deny, continue
- `imageUrl` (string, optional): Product image URL
- `isPublished` (boolean, optional): Whether product is published
- `publishToPointToSale` (boolean, optional): Whether to publish to point of sale
</Accordion>
</AccordionGroup>
### **Product Management (GraphQL)**
<AccordionGroup>
<Accordion title="SHOPIFY_GET_PRODUCTS_GRAPHQL">
**Description:** Retrieve products using advanced GraphQL filtering capabilities.
**Parameters:**
- `productFilterFormula` (object, optional): Advanced filter in disjunctive normal form with support for fields like id, title, vendor, status, handle, tag, created_at, updated_at, published_at
</Accordion>
<Accordion title="SHOPIFY_CREATE_PRODUCT_GRAPHQL">
**Description:** Create a new product using GraphQL API with enhanced media support.
**Parameters:**
- `title` (string, required): Product title
- `productType` (string, required): Product type/category
- `vendor` (string, required): Product vendor
- `productDescription` (string, optional): Product description (accepts plain text or HTML)
- `tags` (string, optional): Product tags as array or comma-separated list
- `media` (object, optional): Media objects with alt text, content type, and source URL
- `additionalFields` (object, optional): Additional product fields like status, requiresSellingPlan, giftCard
</Accordion>
<Accordion title="SHOPIFY_UPDATE_PRODUCT_GRAPHQL">
**Description:** Update an existing product using GraphQL API with enhanced media support.
**Parameters:**
- `productId` (string, required): The GraphQL ID of the product to update (e.g., "gid://shopify/Product/913144112")
- `title` (string, optional): Product title
- `productType` (string, optional): Product type/category
- `vendor` (string, optional): Product vendor
- `productDescription` (string, optional): Product description (accepts plain text or HTML)
- `tags` (string, optional): Product tags as array or comma-separated list
- `media` (object, optional): Updated media objects with alt text, content type, and source URL
- `additionalFields` (object, optional): Additional product fields like status, requiresSellingPlan, giftCard
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Shopify Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Shopify tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Shopify capabilities
shopify_agent = Agent(
role="E-commerce Manager",
goal="Manage online store operations and customer relationships efficiently",
backstory="An AI assistant specialized in e-commerce operations and online store management.",
tools=[enterprise_tools]
)
# Task to create a new customer
create_customer_task = Task(
description="Create a new VIP customer Jane Smith with email jane.smith@example.com and phone +1-555-0123",
agent=shopify_agent,
expected_output="Customer created successfully with customer ID"
)
# Run the task
crew = Crew(
agents=[shopify_agent],
tasks=[create_customer_task]
)
crew.kickoff()
```
### Filtering Specific Shopify Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Shopify tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["shopify_create_customer", "shopify_create_order", "shopify_get_products"]
)
store_manager = Agent(
role="Store Manager",
goal="Manage customer orders and product catalog",
backstory="An experienced store manager who handles customer relationships and inventory management.",
tools=enterprise_tools
)
# Task to manage store operations
store_task = Task(
description="Create a new customer and process their order for 2 Premium Coffee Mugs",
agent=store_manager,
expected_output="Customer created and order processed successfully"
)
crew = Crew(
agents=[store_manager],
tasks=[store_task]
)
crew.kickoff()
```
### Product Management with GraphQL
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
product_manager = Agent(
role="Product Manager",
goal="Manage product catalog and inventory with advanced GraphQL capabilities",
backstory="An AI assistant that specializes in product management and catalog optimization.",
tools=[enterprise_tools]
)
# Task to manage product catalog
catalog_task = Task(
description="""
1. Create a new product "Premium Coffee Mug" from Coffee Co vendor
2. Add high-quality product images and descriptions
3. Search for similar products from the same vendor
4. Update product tags and pricing strategy
""",
agent=product_manager,
expected_output="Product created and catalog optimized successfully"
)
crew = Crew(
agents=[product_manager],
tasks=[catalog_task]
)
crew.kickoff()
```
### Order and Customer Analytics
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
analytics_agent = Agent(
role="E-commerce Analyst",
goal="Analyze customer behavior and order patterns to optimize store performance",
backstory="An analytical AI that excels at extracting insights from e-commerce data.",
tools=[enterprise_tools]
)
# Complex task involving multiple operations
analytics_task = Task(
description="""
1. Retrieve recent customer data and order history
2. Identify abandoned carts from the last 7 days
3. Analyze product performance and inventory levels
4. Generate recommendations for customer retention
""",
agent=analytics_agent,
expected_output="Comprehensive e-commerce analytics report with actionable insights"
)
crew = Crew(
agents=[analytics_agent],
tasks=[analytics_task]
)
crew.kickoff()
```
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Shopify integration setup or troubleshooting.
</Card>

View File

@@ -1,294 +0,0 @@
---
title: Slack Integration
description: "Team communication and collaboration with Slack integration for CrewAI."
icon: "slack"
mode: "wide"
---
## Overview
Enable your agents to manage team communication through Slack. Send messages, search conversations, manage channels, and coordinate team activities to streamline your collaboration workflows with AI-powered automation.
## Prerequisites
Before using the Slack integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Slack workspace with appropriate permissions
- Connected your Slack workspace through the [Integrations page](https://app.crewai.com/integrations)
## Available Tools
### **User Management**
<AccordionGroup>
<Accordion title="SLACK_LIST_MEMBERS">
**Description:** List all members in a Slack channel.
**Parameters:**
- No parameters required - retrieves all channel members
</Accordion>
<Accordion title="SLACK_GET_USER_BY_EMAIL">
**Description:** Find a user in your Slack workspace by their email address.
**Parameters:**
- `email` (string, required): The email address of a user in the workspace
</Accordion>
<Accordion title="SLACK_GET_USERS_BY_NAME">
**Description:** Search for users by their name or display name.
**Parameters:**
- `name` (string, required): User's real name to search for
- `displayName` (string, required): User's display name to search for
- `paginationParameters` (object, optional): Pagination settings
- `pageCursor` (string, optional): Page cursor for pagination
</Accordion>
</AccordionGroup>
### **Channel Management**
<AccordionGroup>
<Accordion title="SLACK_LIST_CHANNELS">
**Description:** List all channels in your Slack workspace.
**Parameters:**
- No parameters required - retrieves all accessible channels
</Accordion>
</AccordionGroup>
### **Messaging**
<AccordionGroup>
<Accordion title="SLACK_SEND_MESSAGE">
**Description:** Send a message to a Slack channel.
**Parameters:**
- `channel` (string, required): Channel name or ID - Use Connect Portal Workflow Settings to allow users to select a channel, or enter a channel name to create a new channel
- `message` (string, required): The message text to send
- `botName` (string, required): The name of the bot that sends this message
- `botIcon` (string, required): Bot icon - Can be either an image URL or an emoji (e.g., ":dog:")
- `blocks` (object, optional): Slack Block Kit JSON for rich message formatting with attachments and interactive elements
- `authenticatedUser` (boolean, optional): If true, message appears to come from your authenticated Slack user instead of the application (defaults to false)
</Accordion>
<Accordion title="SLACK_SEND_DIRECT_MESSAGE">
**Description:** Send a direct message to a specific user in Slack.
**Parameters:**
- `memberId` (string, required): Recipient user ID - Use Connect Portal Workflow Settings to allow users to select a workspace member
- `message` (string, required): The message text to send
- `botName` (string, required): The name of the bot that sends this message
- `botIcon` (string, required): Bot icon - Can be either an image URL or an emoji (e.g., ":dog:")
- `blocks` (object, optional): Slack Block Kit JSON for rich message formatting with attachments and interactive elements
- `authenticatedUser` (boolean, optional): If true, message appears to come from your authenticated Slack user instead of the application (defaults to false)
</Accordion>
</AccordionGroup>
### **Search & Discovery**
<AccordionGroup>
<Accordion title="SLACK_SEARCH_MESSAGES">
**Description:** Search for messages across your Slack workspace.
**Parameters:**
- `query` (string, required): Search query using Slack search syntax to find messages that match specified criteria
**Search Query Examples:**
- `"project update"` - Search for messages containing "project update"
- `from:@john in:#general` - Search for messages from John in the #general channel
- `has:link after:2023-01-01` - Search for messages with links after January 1, 2023
- `in:@channel before:yesterday` - Search for messages in a specific channel before yesterday
</Accordion>
</AccordionGroup>
## Block Kit Integration
Slack's Block Kit allows you to create rich, interactive messages. Here are some examples of how to use the `blocks` parameter:
### Simple Text with Attachment
```json
[
{
"text": "I am a test message",
"attachments": [
{
"text": "And here's an attachment!"
}
]
}
]
```
### Rich Formatting with Sections
```json
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*Project Update*\nStatus: ✅ Complete"
}
},
{
"type": "divider"
},
{
"type": "section",
"text": {
"type": "plain_text",
"text": "All tasks have been completed successfully."
}
}
]
```
## Usage Examples
### Basic Slack Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Slack tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Slack capabilities
slack_agent = Agent(
role="Team Communication Manager",
goal="Facilitate team communication and coordinate collaboration efficiently",
backstory="An AI assistant specialized in team communication and workspace coordination.",
tools=[enterprise_tools]
)
# Task to send project updates
update_task = Task(
description="Send a project status update to the #general channel with current progress",
agent=slack_agent,
expected_output="Project update message sent successfully to team channel"
)
# Run the task
crew = Crew(
agents=[slack_agent],
tasks=[update_task]
)
crew.kickoff()
```
### Filtering Specific Slack Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Slack tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["slack_send_message", "slack_send_direct_message", "slack_search_messages"]
)
communication_manager = Agent(
role="Communication Coordinator",
goal="Manage team communications and ensure important messages reach the right people",
backstory="An experienced communication coordinator who handles team messaging and notifications.",
tools=enterprise_tools
)
# Task to coordinate team communication
coordination_task = Task(
description="Send task completion notifications to team members and update project channels",
agent=communication_manager,
expected_output="Team notifications sent and project channels updated successfully"
)
crew = Crew(
agents=[communication_manager],
tasks=[coordination_task]
)
crew.kickoff()
```
### Advanced Messaging with Block Kit
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
notification_agent = Agent(
role="Notification Manager",
goal="Create rich, interactive notifications and manage workspace communication",
backstory="An AI assistant that specializes in creating engaging team notifications and updates.",
tools=[enterprise_tools]
)
# Task to send rich notifications
notification_task = Task(
description="""
1. Send a formatted project completion message to #general with progress charts
2. Send direct messages to team leads with task summaries
3. Create interactive notification with action buttons for team feedback
""",
agent=notification_agent,
expected_output="Rich notifications sent with interactive elements and formatted content"
)
crew = Crew(
agents=[notification_agent],
tasks=[notification_task]
)
crew.kickoff()
```
### Message Search and Analytics
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
analytics_agent = Agent(
role="Communication Analyst",
goal="Analyze team communication patterns and extract insights from conversations",
backstory="An analytical AI that excels at understanding team dynamics through communication data.",
tools=[enterprise_tools]
)
# Complex task involving search and analysis
analysis_task = Task(
description="""
1. Search for recent project-related messages across all channels
2. Find users by email to identify team members
3. Analyze communication patterns and response times
4. Generate weekly team communication summary
""",
agent=analytics_agent,
expected_output="Comprehensive communication analysis with team insights and recommendations"
)
crew = Crew(
agents=[analytics_agent],
tasks=[analysis_task]
)
crew.kickoff()
```
## Contact Support
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with Slack integration setup or troubleshooting.
</Card>

View File

@@ -1,306 +0,0 @@
---
title: Stripe Integration
description: "Payment processing and subscription management with Stripe integration for CrewAI."
icon: "stripe"
mode: "wide"
---
## Overview
Enable your agents to manage payments, subscriptions, and customer billing through Stripe. Handle customer data, process subscriptions, manage products, and track financial transactions to streamline your payment workflows with AI-powered automation.
## Prerequisites
Before using the Stripe integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Stripe account with appropriate API permissions
- Connected your Stripe account through the [Integrations page](https://app.crewai.com/integrations)
## Available Tools
### **Customer Management**
<AccordionGroup>
<Accordion title="STRIPE_CREATE_CUSTOMER">
**Description:** Create a new customer in your Stripe account.
**Parameters:**
- `emailCreateCustomer` (string, required): Customer's email address
- `name` (string, optional): Customer's full name
- `description` (string, optional): Customer description for internal reference
- `metadataCreateCustomer` (object, optional): Additional metadata as key-value pairs (e.g., `{"field1": 1, "field2": 2}`)
</Accordion>
<Accordion title="STRIPE_GET_CUSTOMER_BY_ID">
**Description:** Retrieve a specific customer by their Stripe customer ID.
**Parameters:**
- `idGetCustomer` (string, required): The Stripe customer ID to retrieve
</Accordion>
<Accordion title="STRIPE_GET_CUSTOMERS">
**Description:** Retrieve a list of customers with optional filtering.
**Parameters:**
- `emailGetCustomers` (string, optional): Filter customers by email address
- `createdAfter` (string, optional): Filter customers created after this date (Unix timestamp)
- `createdBefore` (string, optional): Filter customers created before this date (Unix timestamp)
- `limitGetCustomers` (string, optional): Maximum number of customers to return (defaults to 10)
</Accordion>
<Accordion title="STRIPE_UPDATE_CUSTOMER">
**Description:** Update an existing customer's information.
**Parameters:**
- `customerId` (string, required): The ID of the customer to update
- `emailUpdateCustomer` (string, optional): Updated email address
- `name` (string, optional): Updated customer name
- `description` (string, optional): Updated customer description
- `metadataUpdateCustomer` (object, optional): Updated metadata as key-value pairs
</Accordion>
</AccordionGroup>
### **Subscription Management**
<AccordionGroup>
<Accordion title="STRIPE_CREATE_SUBSCRIPTION">
**Description:** Create a new subscription for a customer.
**Parameters:**
- `customerIdCreateSubscription` (string, required): The customer ID for whom the subscription will be created
- `plan` (string, required): The plan ID for the subscription - Use Connect Portal Workflow Settings to allow users to select a plan
- `metadataCreateSubscription` (object, optional): Additional metadata for the subscription
</Accordion>
<Accordion title="STRIPE_GET_SUBSCRIPTIONS">
**Description:** Retrieve subscriptions with optional filtering.
**Parameters:**
- `customerIdGetSubscriptions` (string, optional): Filter subscriptions by customer ID
- `subscriptionStatus` (string, optional): Filter by subscription status - Options: incomplete, incomplete_expired, trialing, active, past_due, canceled, unpaid
- `limitGetSubscriptions` (string, optional): Maximum number of subscriptions to return (defaults to 10)
</Accordion>
</AccordionGroup>
### **Product Management**
<AccordionGroup>
<Accordion title="STRIPE_CREATE_PRODUCT">
**Description:** Create a new product in your Stripe catalog.
**Parameters:**
- `productName` (string, required): The product name
- `description` (string, optional): Product description
- `metadataProduct` (object, optional): Additional product metadata as key-value pairs
</Accordion>
<Accordion title="STRIPE_GET_PRODUCT_BY_ID">
**Description:** Retrieve a specific product by its Stripe product ID.
**Parameters:**
- `productId` (string, required): The Stripe product ID to retrieve
</Accordion>
<Accordion title="STRIPE_GET_PRODUCTS">
**Description:** Retrieve a list of products with optional filtering.
**Parameters:**
- `createdAfter` (string, optional): Filter products created after this date (Unix timestamp)
- `createdBefore` (string, optional): Filter products created before this date (Unix timestamp)
- `limitGetProducts` (string, optional): Maximum number of products to return (defaults to 10)
</Accordion>
</AccordionGroup>
### **Financial Operations**
<AccordionGroup>
<Accordion title="STRIPE_GET_BALANCE_TRANSACTIONS">
**Description:** Retrieve balance transactions from your Stripe account.
**Parameters:**
- `balanceTransactionType` (string, optional): Filter by transaction type - Options: charge, refund, payment, payment_refund
- `paginationParameters` (object, optional): Pagination settings
- `pageCursor` (string, optional): Page cursor for pagination
</Accordion>
<Accordion title="STRIPE_GET_PLANS">
**Description:** Retrieve subscription plans from your Stripe account.
**Parameters:**
- `isPlanActive` (boolean, optional): Filter by plan status - true for active plans, false for inactive plans
- `paginationParameters` (object, optional): Pagination settings
- `pageCursor` (string, optional): Page cursor for pagination
</Accordion>
</AccordionGroup>
## Usage Examples
### Basic Stripe Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Stripe tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Stripe capabilities
stripe_agent = Agent(
role="Payment Manager",
goal="Manage customer payments, subscriptions, and billing operations efficiently",
backstory="An AI assistant specialized in payment processing and subscription management.",
tools=[enterprise_tools]
)
# Task to create a new customer
create_customer_task = Task(
description="Create a new premium customer John Doe with email john.doe@example.com",
agent=stripe_agent,
expected_output="Customer created successfully with customer ID"
)
# Run the task
crew = Crew(
agents=[stripe_agent],
tasks=[create_customer_task]
)
crew.kickoff()
```
### Filtering Specific Stripe Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Stripe tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["stripe_create_customer", "stripe_create_subscription", "stripe_get_balance_transactions"]
)
billing_manager = Agent(
role="Billing Manager",
goal="Handle customer billing, subscriptions, and payment processing",
backstory="An experienced billing manager who handles subscription lifecycle and payment operations.",
tools=enterprise_tools
)
# Task to manage billing operations
billing_task = Task(
description="Create a new customer and set up their premium subscription plan",
agent=billing_manager,
expected_output="Customer created and subscription activated successfully"
)
crew = Crew(
agents=[billing_manager],
tasks=[billing_task]
)
crew.kickoff()
```
### Subscription Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
subscription_manager = Agent(
role="Subscription Manager",
goal="Manage customer subscriptions and optimize recurring revenue",
backstory="An AI assistant that specializes in subscription lifecycle management and customer retention.",
tools=[enterprise_tools]
)
# Task to manage subscription operations
subscription_task = Task(
description="""
1. Create a new product "Premium Service Plan" with advanced features
2. Set up subscription plans with different tiers
3. Create customers and assign them to appropriate plans
4. Monitor subscription status and handle billing issues
""",
agent=subscription_manager,
expected_output="Subscription management system configured with customers and active plans"
)
crew = Crew(
agents=[subscription_manager],
tasks=[subscription_task]
)
crew.kickoff()
```
### Financial Analytics and Reporting
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
financial_analyst = Agent(
role="Financial Analyst",
goal="Analyze payment data and generate financial insights",
backstory="An analytical AI that excels at extracting insights from payment and subscription data.",
tools=[enterprise_tools]
)
# Complex task involving financial analysis
analytics_task = Task(
description="""
1. Retrieve balance transactions for the current month
2. Analyze customer payment patterns and subscription trends
3. Identify high-value customers and subscription performance
4. Generate monthly financial performance report
""",
agent=financial_analyst,
expected_output="Comprehensive financial analysis with payment insights and recommendations"
)
crew = Crew(
agents=[financial_analyst],
tasks=[analytics_task]
)
crew.kickoff()
```
## Subscription Status Reference
Understanding subscription statuses:
- **incomplete** - Subscription requires payment method or payment confirmation
- **incomplete_expired** - Subscription expired before payment was confirmed
- **trialing** - Subscription is in trial period
- **active** - Subscription is active and current
- **past_due** - Payment failed but subscription is still active
- **canceled** - Subscription has been canceled
- **unpaid** - Payment failed and subscription is no longer active
## Metadata Usage
Metadata allows you to store additional information about customers, subscriptions, and products:
```json
{
"customer_segment": "enterprise",
"acquisition_source": "google_ads",
"lifetime_value": "high",
"custom_field_1": "value1"
}
```
This integration enables comprehensive payment and subscription management automation, allowing your AI agents to handle billing operations seamlessly within your Stripe ecosystem.

View File

@@ -1,344 +0,0 @@
---
title: Zendesk Integration
description: "Customer support and helpdesk management with Zendesk integration for CrewAI."
icon: "headset"
mode: "wide"
---
## Overview
Enable your agents to manage customer support operations through Zendesk. Create and update tickets, manage users, track support metrics, and streamline your customer service workflows with AI-powered automation.
## Prerequisites
Before using the Zendesk integration, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account with an active subscription
- A Zendesk account with appropriate API permissions
- Connected your Zendesk account through the [Integrations page](https://app.crewai.com/integrations)
## Available Tools
### **Ticket Management**
<AccordionGroup>
<Accordion title="ZENDESK_CREATE_TICKET">
**Description:** Create a new support ticket in Zendesk.
**Parameters:**
- `ticketSubject` (string, required): Ticket subject line (e.g., "Help, my printer is on fire!")
- `ticketDescription` (string, required): First comment that appears on the ticket (e.g., "The smoke is very colorful.")
- `requesterName` (string, required): Name of the user requesting support (e.g., "Jane Customer")
- `requesterEmail` (string, required): Email of the user requesting support (e.g., "jane@example.com")
- `assigneeId` (string, optional): Zendesk Agent ID assigned to this ticket - Use Connect Portal Workflow Settings to allow users to select an assignee
- `ticketType` (string, optional): Ticket type - Options: problem, incident, question, task
- `ticketPriority` (string, optional): Priority level - Options: urgent, high, normal, low
- `ticketStatus` (string, optional): Ticket status - Options: new, open, pending, hold, solved, closed
- `ticketDueAt` (string, optional): Due date for task-type tickets (ISO 8601 timestamp)
- `ticketTags` (string, optional): Array of tags to apply (e.g., `["enterprise", "other_tag"]`)
- `ticketExternalId` (string, optional): External ID to link tickets to local records
- `ticketCustomFields` (object, optional): Custom field values in JSON format
</Accordion>
<Accordion title="ZENDESK_UPDATE_TICKET">
**Description:** Update an existing support ticket in Zendesk.
**Parameters:**
- `ticketId` (string, required): ID of the ticket to update (e.g., "35436")
- `ticketSubject` (string, optional): Updated ticket subject
- `requesterName` (string, required): Name of the user who requested this ticket
- `requesterEmail` (string, required): Email of the user who requested this ticket
- `assigneeId` (string, optional): Updated assignee ID - Use Connect Portal Workflow Settings
- `ticketType` (string, optional): Updated ticket type - Options: problem, incident, question, task
- `ticketPriority` (string, optional): Updated priority - Options: urgent, high, normal, low
- `ticketStatus` (string, optional): Updated status - Options: new, open, pending, hold, solved, closed
- `ticketDueAt` (string, optional): Updated due date (ISO 8601 timestamp)
- `ticketTags` (string, optional): Updated tags array
- `ticketExternalId` (string, optional): Updated external ID
- `ticketCustomFields` (object, optional): Updated custom field values
</Accordion>
<Accordion title="ZENDESK_GET_TICKET_BY_ID">
**Description:** Retrieve a specific ticket by its ID.
**Parameters:**
- `ticketId` (string, required): The ticket ID to retrieve (e.g., "35436")
</Accordion>
<Accordion title="ZENDESK_ADD_COMMENT_TO_TICKET">
**Description:** Add a comment or internal note to an existing ticket.
**Parameters:**
- `ticketId` (string, required): ID of the ticket to add comment to (e.g., "35436")
- `commentBody` (string, required): Comment message (accepts plain text or HTML, e.g., "Thanks for your help!")
- `isInternalNote` (boolean, optional): Set to true for internal notes instead of public replies (defaults to false)
- `isPublic` (boolean, optional): True for public comments, false for internal notes
</Accordion>
<Accordion title="ZENDESK_SEARCH_TICKETS">
**Description:** Search for tickets using various filters and criteria.
**Parameters:**
- `ticketSubject` (string, optional): Filter by text in ticket subject
- `ticketDescription` (string, optional): Filter by text in ticket description and comments
- `ticketStatus` (string, optional): Filter by status - Options: new, open, pending, hold, solved, closed
- `ticketType` (string, optional): Filter by type - Options: problem, incident, question, task, no_type
- `ticketPriority` (string, optional): Filter by priority - Options: urgent, high, normal, low, no_priority
- `requesterId` (string, optional): Filter by requester user ID
- `assigneeId` (string, optional): Filter by assigned agent ID
- `recipientEmail` (string, optional): Filter by original recipient email address
- `ticketTags` (string, optional): Filter by ticket tags
- `ticketExternalId` (string, optional): Filter by external ID
- `createdDate` (object, optional): Filter by creation date with operator (EQUALS, LESS_THAN_EQUALS, GREATER_THAN_EQUALS) and value
- `updatedDate` (object, optional): Filter by update date with operator and value
- `dueDate` (object, optional): Filter by due date with operator and value
- `sort_by` (string, optional): Sort field - Options: created_at, updated_at, priority, status, ticket_type
- `sort_order` (string, optional): Sort direction - Options: asc, desc
</Accordion>
</AccordionGroup>
### **User Management**
<AccordionGroup>
<Accordion title="ZENDESK_CREATE_USER">
**Description:** Create a new user in Zendesk.
**Parameters:**
- `name` (string, required): User's full name
- `email` (string, optional): User's email address (e.g., "jane@example.com")
- `phone` (string, optional): User's phone number
- `role` (string, optional): User role - Options: admin, agent, end-user
- `externalId` (string, optional): Unique identifier from another system
- `details` (string, optional): Additional user details
- `notes` (string, optional): Internal notes about the user
</Accordion>
<Accordion title="ZENDESK_UPDATE_USER">
**Description:** Update an existing user's information.
**Parameters:**
- `userId` (string, required): ID of the user to update
- `name` (string, optional): Updated user name
- `email` (string, optional): Updated email (adds as secondary email on update)
- `phone` (string, optional): Updated phone number
- `role` (string, optional): Updated role - Options: admin, agent, end-user
- `externalId` (string, optional): Updated external ID
- `details` (string, optional): Updated user details
- `notes` (string, optional): Updated internal notes
</Accordion>
<Accordion title="ZENDESK_GET_USER_BY_ID">
**Description:** Retrieve a specific user by their ID.
**Parameters:**
- `userId` (string, required): The user ID to retrieve
</Accordion>
<Accordion title="ZENDESK_SEARCH_USERS">
**Description:** Search for users using various criteria.
**Parameters:**
- `name` (string, optional): Filter by user name
- `email` (string, optional): Filter by user email (e.g., "jane@example.com")
- `role` (string, optional): Filter by role - Options: admin, agent, end-user
- `externalId` (string, optional): Filter by external ID
- `sort_by` (string, optional): Sort field - Options: created_at, updated_at
- `sort_order` (string, optional): Sort direction - Options: asc, desc
</Accordion>
</AccordionGroup>
### **Administrative Tools**
<AccordionGroup>
<Accordion title="ZENDESK_GET_TICKET_FIELDS">
**Description:** Retrieve all standard and custom fields available for tickets.
**Parameters:**
- `paginationParameters` (object, optional): Pagination settings
- `pageCursor` (string, optional): Page cursor for pagination
</Accordion>
<Accordion title="ZENDESK_GET_TICKET_AUDITS">
**Description:** Get audit records (read-only history) for tickets.
**Parameters:**
- `ticketId` (string, optional): Get audits for specific ticket (if empty, retrieves audits for all non-archived tickets, e.g., "1234")
- `paginationParameters` (object, optional): Pagination settings
- `pageCursor` (string, optional): Page cursor for pagination
</Accordion>
</AccordionGroup>
## Custom Fields
Custom fields allow you to store additional information specific to your organization:
```json
[
{ "id": 27642, "value": "745" },
{ "id": 27648, "value": "yes" }
]
```
## Ticket Priority Levels
Understanding priority levels:
- **urgent** - Critical issues requiring immediate attention
- **high** - Important issues that should be addressed quickly
- **normal** - Standard priority for most tickets
- **low** - Minor issues that can be addressed when convenient
## Ticket Status Workflow
Standard ticket status progression:
- **new** - Recently created, not yet assigned
- **open** - Actively being worked on
- **pending** - Waiting for customer response or external action
- **hold** - Temporarily paused
- **solved** - Issue resolved, awaiting customer confirmation
- **closed** - Ticket completed and closed
## Usage Examples
### Basic Zendesk Agent Setup
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Zendesk tools will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# Create an agent with Zendesk capabilities
zendesk_agent = Agent(
role="Support Manager",
goal="Manage customer support tickets and provide excellent customer service",
backstory="An AI assistant specialized in customer support operations and ticket management.",
tools=[enterprise_tools]
)
# Task to create a new support ticket
create_ticket_task = Task(
description="Create a high-priority support ticket for John Smith who is unable to access his account after password reset",
agent=zendesk_agent,
expected_output="Support ticket created successfully with ticket ID"
)
# Run the task
crew = Crew(
agents=[zendesk_agent],
tasks=[create_ticket_task]
)
crew.kickoff()
```
### Filtering Specific Zendesk Tools
```python
from crewai_tools import CrewaiEnterpriseTools
# Get only specific Zendesk tools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token",
actions_list=["zendesk_create_ticket", "zendesk_update_ticket", "zendesk_add_comment_to_ticket"]
)
support_agent = Agent(
role="Customer Support Agent",
goal="Handle customer inquiries and resolve support issues efficiently",
backstory="An experienced support agent who specializes in ticket resolution and customer communication.",
tools=enterprise_tools
)
# Task to manage support workflow
support_task = Task(
description="Create a ticket for login issues, add troubleshooting comments, and update status to resolved",
agent=support_agent,
expected_output="Support ticket managed through complete resolution workflow"
)
crew = Crew(
agents=[support_agent],
tasks=[support_task]
)
crew.kickoff()
```
### Advanced Ticket Management
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
ticket_manager = Agent(
role="Ticket Manager",
goal="Manage support ticket workflows and ensure timely resolution",
backstory="An AI assistant that specializes in support ticket triage and workflow optimization.",
tools=[enterprise_tools]
)
# Task to manage ticket lifecycle
ticket_workflow = Task(
description="""
1. Create a new support ticket for account access issues
2. Add internal notes with troubleshooting steps
3. Update ticket priority based on customer tier
4. Add resolution comments and close the ticket
""",
agent=ticket_manager,
expected_output="Complete ticket lifecycle managed from creation to resolution"
)
crew = Crew(
agents=[ticket_manager],
tasks=[ticket_workflow]
)
crew.kickoff()
```
### Support Analytics and Reporting
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
support_analyst = Agent(
role="Support Analyst",
goal="Analyze support metrics and generate insights for team performance",
backstory="An analytical AI that excels at extracting insights from support data and ticket patterns.",
tools=[enterprise_tools]
)
# Complex task involving analytics and reporting
analytics_task = Task(
description="""
1. Search for all open tickets from the last 30 days
2. Analyze ticket resolution times and customer satisfaction
3. Identify common issues and support patterns
4. Generate weekly support performance report
""",
agent=support_analyst,
expected_output="Comprehensive support analytics report with performance insights and recommendations"
)
crew = Crew(
agents=[support_analyst],
tasks=[analytics_task]
)
crew.kickoff()
```

View File

@@ -1,49 +0,0 @@
---
title: CrewAI Cookbooks
description: Feature-focused quickstarts and notebooks for learning patterns fast.
icon: book
mode: "wide"
---
## Quickstarts & Demos
<CardGroup cols={3}>
<Card title="Collaboration" icon="people-arrows" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Collaboration/crewai_collaboration.ipynb">
Coordinate multiple agents on shared tasks. Includes notebook with end-to-end collaboration pattern.
</Card>
<Card title="Planning" icon="timeline" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Planning/crewai_planning.ipynb">
Teach agents to reason about multi-step plans before execution using the planning toolkit.
</Card>
<Card title="Reasoning" icon="lightbulb" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Reasoning/crewai_reasoning.ipynb">
Explore self-reflection loops, critique prompts, and structured thinking patterns.
</Card>
</CardGroup>
<CardGroup cols={3}>
<Card title="Structured Guardrails" icon="shield-check" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Guardrails/task_guardrails.ipynb">
Apply task-level guardrails with retries, validation functions, and safe fallbacks.
</Card>
<Card title="Gemini Search & Grounding" icon="magnifying-glass" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Custom%20LLM/gemini_search_grounding_crewai.ipynb">
Connect CrewAI to Gemini with search grounding for factual, citation-rich outputs.
</Card>
<Card title="Gemini Video Summaries" icon="video" href="https://github.com/crewAIInc/crewAI-quickstarts/blob/main/Custom%20LLM/summarize_video_gemini_crewai.ipynb">
Generate video recaps using Gemini multimodal LLM and CrewAI orchestration.
</Card>
</CardGroup>
<CardGroup cols={2}>
<Card title="Browse Quickstarts" icon="bolt" href="https://github.com/crewAIInc/crewAI-quickstarts">
View all notebooks and feature demos showcasing specific CrewAI capabilities.
</Card>
<Card title="Request a cookbook" icon="message-plus" href="https://community.crewai.com">
Missing a pattern? Drop a request in the community forum and well expand the library.
</Card>
</CardGroup>
<Tip>
Use Cookbooks to learn a pattern quickly, then jump to Full Examples for productiongrade implementations.
</Tip>

View File

@@ -1,86 +0,0 @@
---
title: CrewAI Examples
description: Explore curated examples organized by Crews, Flows, Integrations, and Notebooks.
icon: rocket-launch
mode: "wide"
---
## Crews
<CardGroup cols={3}>
<Card title="Marketing Strategy" icon="bullhorn" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/marketing_strategy">
Multiagent marketing campaign planning.
</Card>
<Card title="Surprise Trip" icon="plane" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/surprise_trip">
Personalized surprise travel planning.
</Card>
<Card title="Match Profile to Positions" icon="id-card" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/match_profile_to_positions">
CVtojob matching with vector search.
</Card>
<Card title="Job Posting" icon="newspaper" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting">
Automated job description creation.
</Card>
<Card title="Game Builder Crew" icon="gamepad" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/game-builder-crew">
Multiagent team that designs and builds Python games.
</Card>
<Card title="Recruitment" icon="user-group" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews/recruitment">
Candidate sourcing and evaluation.
</Card>
<Card title="Browse all Crews" icon="users" href="https://github.com/crewAIInc/crewAI-examples/tree/main/crews">
See the full list of crew examples.
</Card>
</CardGroup>
## Flows
<CardGroup cols={3}>
<Card title="Content Creator Flow" icon="pen" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/content_creator_flow">
Multicrew content generation with routing.
</Card>
<Card title="Email Auto Responder" icon="envelope" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/email_auto_responder_flow">
Automated email monitoring and replies.
</Card>
<Card title="Lead Score Flow" icon="chart-line" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/lead_score_flow">
Lead qualification with humanintheloop.
</Card>
<Card title="Meeting Assistant Flow" icon="calendar" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/meeting_assistant_flow">
Notes processing with integrations.
</Card>
<Card title="Self Evaluation Loop" icon="rotate" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/self_evaluation_loop_flow">
Iterative selfimprovement workflows.
</Card>
<Card title="Write a Book (Flows)" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows/write_a_book_with_flows">
Parallel chapter generation.
</Card>
<Card title="Browse all Flows" icon="diagram-project" href="https://github.com/crewAIInc/crewAI-examples/tree/main/flows">
See the full list of flow examples.
</Card>
</CardGroup>
## Integrations
<CardGroup cols={3}>
<Card title="CrewAI ↔ LangGraph" icon="link" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/crewai-langgraph">
Integration with LangGraph framework.
</Card>
<Card title="Azure OpenAI" icon="cloud" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/azure_model">
Using CrewAI with Azure OpenAI.
</Card>
<Card title="NVIDIA Models" icon="microchip" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations/nvidia_models">
NVIDIA ecosystem integrations.
</Card>
<Card title="Browse Integrations" icon="puzzle-piece" href="https://github.com/crewAIInc/crewAI-examples/tree/main/integrations">
See all integration examples.
</Card>
</CardGroup>
## Notebooks
<CardGroup cols={2}>
<Card title="Simple QA Crew + Flow" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/Simple%20QA%20Crew%20%2B%20Flow">
Simple QA Crew + Flow.
</Card>
<Card title="All Notebooks" icon="book" href="https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks">
Interactive examples for learning and experimentation.
</Card>
</CardGroup>

View File

@@ -1,105 +0,0 @@
---
title: "CrewAI Documentation"
description: "Build collaborative AI agents, crews, and flows — production ready from day one."
icon: "house"
mode: "wide"
---
<div
style={{
display: 'flex',
flexDirection: 'column',
alignItems: 'center',
gap: 20,
textAlign: 'center',
padding: '48px 24px',
borderRadius: 16,
background: 'linear-gradient(180deg, rgba(235,102,88,0.12) 0%, rgba(201,76,60,0.08) 100%)',
border: '1px solid rgba(235,102,88,0.18)'
}}
>
<img src="/images/crew_only_logo.png" alt="CrewAI" width="250" height="100" />
<div style={{ maxWidth: 720 }}>
<h1 style={{ marginBottom: 12 }}>Ship multiagent systems with confidence</h1>
<p style={{ color: 'var(--mint-text-2)' }}>
Design agents, orchestrate crews, and automate flows with guardrails, memory, knowledge, and observability baked in.
</p>
</div>
<div style={{ display: 'flex', flexWrap: 'wrap', gap: 12, justifyContent: 'center' }}>
<a className="button button-primary" href="/en/quickstart">Get started</a>
<a className="button" href="/en/changelog">View changelog</a>
<a className="button" href="/en/api-reference/introduction">API Reference</a>
</div>
</div>
<div style={{ marginTop: 32 }} />
## Get started
<CardGroup cols={3}>
<Card title="Introduction" href="/en/introduction" icon="sparkles">
Overview of CrewAI concepts, architecture, and what you can build with agents, crews, and flows.
</Card>
<Card title="Installation" href="/en/installation" icon="wrench">
Install via `uv`, configure API keys, and set up the CLI for local development.
</Card>
<Card title="Quickstart" href="/en/quickstart" icon="rocket">
Spin up your first crew in minutes. Learn the core runtime, project layout, and dev loop.
</Card>
</CardGroup>
## Build the basics
<CardGroup cols={3}>
<Card title="Agents" href="/en/concepts/agents" icon="users">
Compose agents with tools, memory, knowledge, and structured outputs using Pydantic. Includes templates and best practices.
</Card>
<Card title="Flows" href="/en/concepts/flows" icon="arrow-progress">
Orchestrate start/listen/router steps, manage state, persist execution, and resume long-running workflows.
</Card>
<Card title="Tasks & Processes" href="/en/concepts/tasks" icon="check">
Define sequential, hierarchical, or hybrid processes with guardrails, callbacks, and human-in-the-loop triggers.
</Card>
</CardGroup>
## Enterprise journey
<CardGroup cols={3}>
<Card title="Deploy automations" href="/en/enterprise/features/automations" icon="server">
Manage environments, redeploy safely, and monitor live runs directly from the Enterprise console.
</Card>
<Card title="Triggers & Flows" href="/en/enterprise/guides/automation-triggers" icon="bolt">
Connect Gmail, Slack, Salesforce, and more. Pass trigger payloads into crews and flows automatically.
</Card>
<Card title="Team management" href="/en/enterprise/guides/team-management" icon="users-gear">
Invite teammates, configure RBAC, and control access to production automations.
</Card>
</CardGroup>
## Whats new
<CardGroup cols={2}>
<Card title="Triggers overview" href="/en/enterprise/guides/automation-triggers" icon="sparkles">
Unified overview for Gmail, Drive, Outlook, Teams, OneDrive, HubSpot, and more — now with sample payloads and crews.
</Card>
<Card title="Integration tools" href="/en/tools/integration/overview" icon="plug">
Call existing CrewAI automations or Amazon Bedrock Agents directly from your crews using the updated integration toolkit.
</Card>
</CardGroup>
<Callout title="Explore real-world patterns" icon="github">
Browse the <a href="/en/examples/cookbooks">examples and cookbooks</a> for end-to-end reference implementations across agents, flows, and enterprise automations.
</Callout>
## Stay connected
<CardGroup cols={2}>
<Card title="Star us on GitHub" href="https://github.com/crewAIInc/crewAI" icon="star">
If CrewAI helps you ship faster, give us a star and share your builds with the community.
</Card>
<Card title="Join the community" href="https://community.crewai.com" icon="comments">
Ask questions, showcase workflows, and request features alongside other builders.
</Card>
</CardGroup>

View File

@@ -1,317 +0,0 @@
---
title: 'MCP Servers as Tools in CrewAI'
description: 'Learn how to integrate MCP servers as tools in your CrewAI agents using the `crewai-tools` library.'
icon: plug
mode: "wide"
---
## Overview
The [Model Context Protocol](https://modelcontextprotocol.io/introduction) (MCP) provides a standardized way for AI agents to provide context to LLMs by communicating with external services, known as MCP Servers.
The `crewai-tools` library extends CrewAI's capabilities by allowing you to seamlessly integrate tools from these MCP servers into your agents.
This gives your crews access to a vast ecosystem of functionalities.
We currently support the following transport mechanisms:
- **Stdio**: for local servers (communication via standard input/output between processes on the same machine)
- **Server-Sent Events (SSE)**: for remote servers (unidirectional, real-time data streaming from server to client over HTTP)
- **Streamable HTTP**: for remote servers (flexible, potentially bi-directional communication over HTTP, often utilizing SSE for server-to-client streams)
## Video Tutorial
Watch this video tutorial for a comprehensive guide on MCP integration with CrewAI:
<iframe
className="w-full aspect-video rounded-xl"
src="https://www.youtube.com/embed/TpQ45lAZh48"
title="CrewAI MCP Integration Guide"
frameBorder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowFullScreen
></iframe>
## Installation
Before you start using MCP with `crewai-tools`, you need to install the `mcp` extra `crewai-tools` dependency with the following command:
```shell
uv pip install 'crewai-tools[mcp]'
```
## Key Concepts & Getting Started
The `MCPServerAdapter` class from `crewai-tools` is the primary way to connect to an MCP server and make its tools available to your CrewAI agents. It supports different transport mechanisms and simplifies connection management.
Using a Python context manager (`with` statement) is the **recommended approach** for `MCPServerAdapter`. It automatically handles starting and stopping the connection to the MCP server.
## Connection Configuration
The `MCPServerAdapter` supports several configuration options to customize the connection behavior:
- **`connect_timeout`** (optional): Maximum time in seconds to wait for establishing a connection to the MCP server. Defaults to 30 seconds if not specified. This is particularly useful for remote servers that may have variable response times.
```python
# Example with custom connection timeout
with MCPServerAdapter(server_params, connect_timeout=60) as tools:
# Connection will timeout after 60 seconds if not established
pass
```
```python
from crewai import Agent
from crewai_tools import MCPServerAdapter
from mcp import StdioServerParameters # For Stdio Server
# Example server_params (choose one based on your server type):
# 1. Stdio Server:
server_params=StdioServerParameters(
command="python3",
args=["servers/your_server.py"],
env={"UV_PYTHON": "3.12", **os.environ},
)
# 2. SSE Server:
server_params = {
"url": "http://localhost:8000/sse",
"transport": "sse"
}
# 3. Streamable HTTP Server:
server_params = {
"url": "http://localhost:8001/mcp",
"transport": "streamable-http"
}
# Example usage (uncomment and adapt once server_params is set):
with MCPServerAdapter(server_params, connect_timeout=60) as mcp_tools:
print(f"Available tools: {[tool.name for tool in mcp_tools]}")
my_agent = Agent(
role="MCP Tool User",
goal="Utilize tools from an MCP server.",
backstory="I can connect to MCP servers and use their tools.",
tools=mcp_tools, # Pass the loaded tools to your agent
reasoning=True,
verbose=True
)
# ... rest of your crew setup ...
```
This general pattern shows how to integrate tools. For specific examples tailored to each transport, refer to the detailed guides below.
## Filtering Tools
There are two ways to filter tools:
1. Accessing a specific tool using dictionary-style indexing.
2. Pass a list of tool names to the `MCPServerAdapter` constructor.
### Accessing a specific tool using dictionary-style indexing.
```python
with MCPServerAdapter(server_params, connect_timeout=60) as mcp_tools:
print(f"Available tools: {[tool.name for tool in mcp_tools]}")
my_agent = Agent(
role="MCP Tool User",
goal="Utilize tools from an MCP server.",
backstory="I can connect to MCP servers and use their tools.",
tools=[mcp_tools["tool_name"]], # Pass the loaded tools to your agent
reasoning=True,
verbose=True
)
# ... rest of your crew setup ...
```
### Pass a list of tool names to the `MCPServerAdapter` constructor.
```python
with MCPServerAdapter(server_params, "tool_name", connect_timeout=60) as mcp_tools:
print(f"Available tools: {[tool.name for tool in mcp_tools]}")
my_agent = Agent(
role="MCP Tool User",
goal="Utilize tools from an MCP server.",
backstory="I can connect to MCP servers and use their tools.",
tools=mcp_tools, # Pass the loaded tools to your agent
reasoning=True,
verbose=True
)
# ... rest of your crew setup ...
```
## Using with CrewBase
To use MCPServer tools within a CrewBase class, use the `get_mcp_tools` method. Server configurations should be provided via the `mcp_server_params` attribute. You can pass either a single configuration or a list of multiple server configurations.
```python
@CrewBase
class CrewWithMCP:
# ... define your agents and tasks config file ...
mcp_server_params = [
# Streamable HTTP Server
{
"url": "http://localhost:8001/mcp",
"transport": "streamable-http"
},
# SSE Server
{
"url": "http://localhost:8000/sse",
"transport": "sse"
},
# StdIO Server
StdioServerParameters(
command="python3",
args=["servers/your_stdio_server.py"],
env={"UV_PYTHON": "3.12", **os.environ},
)
]
@agent
def your_agent(self):
return Agent(config=self.agents_config["your_agent"], tools=self.get_mcp_tools()) # get all available tools
# ... rest of your crew setup ...
```
<Tip>
When a crew class is decorated with `@CrewBase`, the adapter lifecycle is managed for you:
- The first call to `get_mcp_tools()` lazily creates a shared `MCPServerAdapter` that is reused by every agent in the crew.
- The adapter automatically shuts down after `.kickoff()` completes thanks to an implicit after-kickoff hook injected by `@CrewBase`, so no manual cleanup is required.
- If `mcp_server_params` is not defined, `get_mcp_tools()` simply returns an empty list, allowing the same code paths to run with or without MCP configured.
This makes it safe to call `get_mcp_tools()` from multiple agent methods or selectively enable MCP per environment.
</Tip>
### Connection Timeout Configuration
You can configure the connection timeout for MCP servers by setting the `mcp_connect_timeout` class attribute. If no timeout is specified, it defaults to 30 seconds.
```python
@CrewBase
class CrewWithMCP:
mcp_server_params = [...]
mcp_connect_timeout = 60 # 60 seconds timeout for all MCP connections
@agent
def your_agent(self):
return Agent(config=self.agents_config["your_agent"], tools=self.get_mcp_tools())
```
```python
@CrewBase
class CrewWithDefaultTimeout:
mcp_server_params = [...]
# No mcp_connect_timeout specified - uses default 30 seconds
@agent
def your_agent(self):
return Agent(config=self.agents_config["your_agent"], tools=self.get_mcp_tools())
```
### Filtering Tools
You can filter which tools are available to your agent by passing a list of tool names to the `get_mcp_tools` method.
```python
@agent
def another_agent(self):
return Agent(
config=self.agents_config["your_agent"],
tools=self.get_mcp_tools("tool_1", "tool_2") # get specific tools
)
```
The timeout configuration applies to all MCP tool calls within the crew:
```python
@CrewBase
class CrewWithCustomTimeout:
mcp_server_params = [...]
mcp_connect_timeout = 90 # 90 seconds timeout for all MCP connections
@agent
def filtered_agent(self):
return Agent(
config=self.agents_config["your_agent"],
tools=self.get_mcp_tools("tool_1", "tool_2") # specific tools with custom timeout
)
```
## Explore MCP Integrations
<CardGroup cols={2}>
<Card
title="Stdio Transport"
icon="server"
href="/en/mcp/stdio"
color="#3B82F6"
>
Connect to local MCP servers via standard input/output. Ideal for scripts and local executables.
</Card>
<Card
title="SSE Transport"
icon="wifi"
href="/en/mcp/sse"
color="#10B981"
>
Integrate with remote MCP servers using Server-Sent Events for real-time data streaming.
</Card>
<Card
title="Streamable HTTP Transport"
icon="globe"
href="/en/mcp/streamable-http"
color="#F59E0B"
>
Utilize flexible Streamable HTTP for robust communication with remote MCP servers.
</Card>
<Card
title="Connecting to Multiple Servers"
icon="layer-group"
href="/en/mcp/multiple-servers"
color="#8B5CF6"
>
Aggregate tools from several MCP servers simultaneously using a single adapter.
</Card>
<Card
title="Security Considerations"
icon="lock"
href="/en/mcp/security"
color="#EF4444"
>
Review important security best practices for MCP integration to keep your agents safe.
</Card>
</CardGroup>
Checkout this repository for full demos and examples of MCP integration with CrewAI! 👇
<Card
title="GitHub Repository"
icon="github"
href="https://github.com/tonykipkemboi/crewai-mcp-demo"
target="_blank"
>
CrewAI MCP Demo
</Card>
## Staying Safe with MCP
<Warning>
Always ensure that you trust an MCP Server before using it.
</Warning>
#### Security Warning: DNS Rebinding Attacks
SSE transports can be vulnerable to DNS rebinding attacks if not properly secured.
To prevent this:
1. **Always validate Origin headers** on incoming SSE connections to ensure they come from expected sources
2. **Avoid binding servers to all network interfaces** (0.0.0.0) when running locally - bind only to localhost (127.0.0.1) instead
3. **Implement proper authentication** for all SSE connections
Without these protections, attackers could use DNS rebinding to interact with local MCP servers from remote websites.
For more details, see the [Anthropic's MCP Transport Security docs](https://modelcontextprotocol.io/docs/concepts/transports#security-considerations).
### Limitations
* **Supported Primitives**: Currently, `MCPServerAdapter` primarily supports adapting MCP `tools`.
Other MCP primitives like `prompts` or `resources` are not directly integrated as CrewAI components through this adapter at this time.
* **Output Handling**: The adapter typically processes the primary text output from an MCP tool (e.g., `.content[0].text`). Complex or multi-modal outputs might require custom handling if not fitting this pattern.

View File

@@ -1,237 +0,0 @@
---
title: Braintrust
description: Braintrust integration for CrewAI with OpenTelemetry tracing and evaluation
icon: magnifying-glass-chart
mode: "wide"
---
# Braintrust Integration
This guide demonstrates how to integrate **Braintrust** with **CrewAI** using OpenTelemetry for comprehensive tracing and evaluation. By the end of this guide, you will be able to trace your CrewAI agents, monitor their performance, and evaluate their outputs using Braintrust's powerful observability platform.
> **What is Braintrust?** [Braintrust](https://www.braintrust.dev) is an AI evaluation and observability platform that provides comprehensive tracing, evaluation, and monitoring for AI applications with built-in experiment tracking and performance analytics.
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Braintrust via OpenTelemetry for comprehensive observability and evaluation.
### Step 1: Install Dependencies
```bash
uv add braintrust[otel] crewai crewai-tools opentelemetry-instrumentation-openai opentelemetry-instrumentation-crewai python-dotenv
```
### Step 2: Set Up Environment Variables
Setup Braintrust API keys and configure OpenTelemetry to send traces to Braintrust. You'll need a Braintrust API key and your OpenAI API key.
```python
import os
from getpass import getpass
# Get your Braintrust credentials
BRAINTRUST_API_KEY = getpass("🔑 Enter your Braintrust API Key: ")
# Get API keys for services
OPENAI_API_KEY = getpass("🔑 Enter your OpenAI API key: ")
# Set environment variables
os.environ["BRAINTRUST_API_KEY"] = BRAINTRUST_API_KEY
os.environ["BRAINTRUST_PARENT"] = "project_name:crewai-demo"
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
```
### Step 3: Initialize OpenTelemetry with Braintrust
Initialize the Braintrust OpenTelemetry instrumentation to start capturing traces and send them to Braintrust.
```python
import os
from typing import Any, Dict
from braintrust.otel import BraintrustSpanProcessor
from crewai import Agent, Crew, Task
from crewai.llm import LLM
from opentelemetry import trace
from opentelemetry.instrumentation.crewai import CrewAIInstrumentor
from opentelemetry.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.sdk.trace import TracerProvider
def setup_tracing() -> None:
"""Setup OpenTelemetry tracing with Braintrust."""
current_provider = trace.get_tracer_provider()
if isinstance(current_provider, TracerProvider):
provider = current_provider
else:
provider = TracerProvider()
trace.set_tracer_provider(provider)
provider.add_span_processor(BraintrustSpanProcessor())
CrewAIInstrumentor().instrument(tracer_provider=provider)
OpenAIInstrumentor().instrument(tracer_provider=provider)
setup_tracing()
```
### Step 4: Create a CrewAI Application
We'll create a CrewAI application where two agents collaborate to research and write a blog post about AI advancements, with comprehensive tracing enabled.
```python
from crewai import Agent, Crew, Process, Task
from crewai_tools import SerperDevTool
def create_crew() -> Crew:
"""Create a crew with multiple agents for comprehensive tracing."""
llm = LLM(model="gpt-4o-mini")
search_tool = SerperDevTool()
# Define agents with specific roles
researcher = Agent(
role="Senior Research Analyst",
goal="Uncover cutting-edge developments in AI and data science",
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
allow_delegation=False,
llm=llm,
tools=[search_tool],
)
writer = Agent(
role="Tech Content Strategist",
goal="Craft compelling content on tech advancements",
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
llm=llm,
)
# Create tasks for your agents
research_task = Task(
description="""Conduct a comprehensive analysis of the latest advancements in {topic}.
Identify key trends, breakthrough technologies, and potential industry impacts.""",
expected_output="Full analysis report in bullet points",
agent=researcher,
)
writing_task = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant {topic} advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
expected_output="Full blog post of at least 4 paragraphs",
agent=writer,
context=[research_task],
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True,
process=Process.sequential
)
return crew
def run_crew():
"""Run the crew and return results."""
crew = create_crew()
result = crew.kickoff(inputs={"topic": "AI developments"})
return result
# Run your crew
if __name__ == "__main__":
# Instrumentation is already initialized above in this module
result = run_crew()
print(result)
```
### Step 5: View Traces in Braintrust
After running your crew, you can view comprehensive traces in Braintrust through different perspectives:
<Tabs>
<Tab title="Trace">
<Frame>
<img src="/images/braintrust-trace-view.png" alt="Braintrust Trace View"/>
</Frame>
</Tab>
<Tab title="Timeline">
<Frame>
<img src="/images/braintrust-timeline-view.png" alt="Braintrust Timeline View"/>
</Frame>
</Tab>
<Tab title="Thread">
<Frame>
<img src="/images/braintrust-thread-view.png" alt="Braintrust Thread View"/>
</Frame>
</Tab>
</Tabs>
### Step 6: Evaluate via SDK (Experiments)
You can also run evaluations using Braintrust's Eval SDK. This is useful for comparing versions or scoring outputs offline. Below is a Python example using the `Eval` class with the crew we created above:
```python
# eval_crew.py
from braintrust import Eval
from autoevals import Levenshtein
def evaluate_crew_task(input_data):
"""Task function that wraps our crew for evaluation."""
crew = create_crew()
result = crew.kickoff(inputs={"topic": input_data["topic"]})
return str(result)
Eval(
"AI Research Crew", # Project name
{
"data": lambda: [
{"topic": "artificial intelligence trends 2024"},
{"topic": "machine learning breakthroughs"},
{"topic": "AI ethics and governance"},
],
"task": evaluate_crew_task,
"scores": [Levenshtein],
},
)
```
Setup your API key and run:
```bash
export BRAINTRUST_API_KEY="YOUR_API_KEY"
braintrust eval eval_crew.py
```
See the [Braintrust Eval SDK guide](https://www.braintrust.dev/docs/start/eval-sdk) for more details.
### Key Features of Braintrust Integration
- **Comprehensive Tracing**: Track all agent interactions, tool usage, and LLM calls
- **Performance Monitoring**: Monitor execution times, token usage, and success rates
- **Experiment Tracking**: Compare different crew configurations and models
- **Automated Evaluation**: Set up custom evaluation metrics for crew outputs
- **Error Tracking**: Monitor and debug failures across your crew executions
- **Cost Analysis**: Track token usage and associated costs
### Version Compatibility Information
- Python 3.8+
- CrewAI >= 0.86.0
- Braintrust >= 0.1.0
- OpenTelemetry SDK >= 1.31.0
### References
- [Braintrust Documentation](https://www.braintrust.dev/docs) - Overview of the Braintrust platform
- [Braintrust CrewAI Integration](https://www.braintrust.dev/docs/integrations/crew-ai) - Official CrewAI integration guide
- [Braintrust Eval SDK](https://www.braintrust.dev/docs/start/eval-sdk) - Run experiments via the SDK
- [CrewAI Documentation](https://docs.crewai.com/) - Overview of the CrewAI framework
- [OpenTelemetry Docs](https://opentelemetry.io/docs/) - OpenTelemetry guide
- [Braintrust GitHub](https://github.com/braintrustdata/braintrust) - Source code for Braintrust SDK

View File

@@ -1,287 +0,0 @@
---
title: LangDB Integration
description: Govern, secure, and optimize your CrewAI workflows with LangDB AI Gateway—access 350+ models, automatic routing, cost optimization, and full observability.
icon: database
mode: "wide"
---
# Introduction
[LangDB AI Gateway](https://langdb.ai) provides OpenAI-compatible APIs to connect with multiple Large Language Models and serves as an observability platform that makes it effortless to trace CrewAI workflows end-to-end while providing access to 350+ language models. With a single `init()` call, all agent interactions, task executions, and LLM calls are captured, providing comprehensive observability and production-ready AI infrastructure for your applications.
<Frame caption="LangDB CrewAI Trace Example">
<img src="/images/langdb-1.png" alt="LangDB CrewAI trace example" />
</Frame>
**Checkout:** [View the live trace example](https://app.langdb.ai/sharing/threads/3becbfed-a1be-ae84-ea3c-4942867a3e22)
## Features
### AI Gateway Capabilities
- **Access to 350+ LLMs**: Connect to all major language models through a single integration
- **Virtual Models**: Create custom model configurations with specific parameters and routing rules
- **Virtual MCP**: Enable compatibility and integration with MCP (Model Context Protocol) systems for enhanced agent communication
- **Guardrails**: Implement safety measures and compliance controls for agent behavior
### Observability & Tracing
- **Automatic Tracing**: Single `init()` call captures all CrewAI interactions
- **End-to-End Visibility**: Monitor agent workflows from start to finish
- **Tool Usage Tracking**: Track which tools agents use and their outcomes
- **Model Call Monitoring**: Detailed insights into LLM interactions
- **Performance Analytics**: Monitor latency, token usage, and costs
- **Debugging Support**: Step-through execution for troubleshooting
- **Real-time Monitoring**: Live traces and metrics dashboard
## Setup Instructions
<Steps>
<Step title="Install LangDB">
Install the LangDB client with CrewAI feature flag:
```bash
pip install 'pylangdb[crewai]'
```
</Step>
<Step title="Set Environment Variables">
Configure your LangDB credentials:
```bash
export LANGDB_API_KEY="<your_langdb_api_key>"
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
```
</Step>
<Step title="Initialize Tracing">
Import and initialize LangDB before configuring your CrewAI code:
```python
from pylangdb.crewai import init
# Initialize LangDB
init()
```
</Step>
<Step title="Configure CrewAI with LangDB">
Set up your LLM with LangDB headers:
```python
from crewai import Agent, Task, Crew, LLM
import os
# Configure LLM with LangDB headers
llm = LLM(
model="openai/gpt-4o", # Replace with the model you want to use
api_key=os.getenv("LANGDB_API_KEY"),
base_url=os.getenv("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.getenv("LANGDB_PROJECT_ID")}
)
```
</Step>
</Steps>
## Quick Start Example
Here's a simple example to get you started with LangDB and CrewAI:
```python
import os
from pylangdb.crewai import init
from crewai import Agent, Task, Crew, LLM
# Initialize LangDB before any CrewAI imports
init()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
# Define your agent
researcher = Agent(
role="Research Specialist",
goal="Research topics thoroughly",
backstory="Expert researcher with skills in finding information",
llm=create_llm("openai/gpt-4o"), # Replace with the model you want to use
verbose=True
)
# Create a task
task = Task(
description="Research the given topic and provide a comprehensive summary",
agent=researcher,
expected_output="Detailed research summary with key findings"
)
# Create and run the crew
crew = Crew(agents=[researcher], tasks=[task])
result = crew.kickoff()
print(result)
```
## Complete Example: Research and Planning Agent
This comprehensive example demonstrates a multi-agent workflow with research and planning capabilities.
### Prerequisites
```bash
pip install crewai 'pylangdb[crewai]' crewai_tools setuptools python-dotenv
```
### Environment Setup
```bash
# LangDB credentials
export LANGDB_API_KEY="<your_langdb_api_key>"
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
# Additional API keys (optional)
export SERPER_API_KEY="<your_serper_api_key>" # For web search capabilities
```
### Complete Implementation
```python
#!/usr/bin/env python3
import os
import sys
from pylangdb.crewai import init
init() # Initialize LangDB before any CrewAI imports
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import SerperDevTool
load_dotenv()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
class ResearchPlanningCrew:
def researcher(self) -> Agent:
return Agent(
role="Research Specialist",
goal="Research topics thoroughly and compile comprehensive information",
backstory="Expert researcher with skills in finding and analyzing information from various sources",
tools=[SerperDevTool()],
llm=create_llm("openai/gpt-4o"),
verbose=True
)
def planner(self) -> Agent:
return Agent(
role="Strategic Planner",
goal="Create actionable plans based on research findings",
backstory="Strategic planner who breaks down complex challenges into executable plans",
reasoning=True,
max_reasoning_attempts=3,
llm=create_llm("openai/anthropic/claude-3.7-sonnet"),
verbose=True
)
def research_task(self) -> Task:
return Task(
description="Research the topic thoroughly and compile comprehensive information",
agent=self.researcher(),
expected_output="Comprehensive research report with key findings and insights"
)
def planning_task(self) -> Task:
return Task(
description="Create a strategic plan based on the research findings",
agent=self.planner(),
expected_output="Strategic execution plan with phases, goals, and actionable steps",
context=[self.research_task()]
)
def crew(self) -> Crew:
return Crew(
agents=[self.researcher(), self.planner()],
tasks=[self.research_task(), self.planning_task()],
verbose=True,
process=Process.sequential
)
def main():
topic = sys.argv[1] if len(sys.argv) > 1 else "Artificial Intelligence in Healthcare"
crew_instance = ResearchPlanningCrew()
# Update task descriptions with the specific topic
crew_instance.research_task().description = f"Research {topic} thoroughly and compile comprehensive information"
crew_instance.planning_task().description = f"Create a strategic plan for {topic} based on the research findings"
result = crew_instance.crew().kickoff()
print(result)
if __name__ == "__main__":
main()
```
### Running the Example
```bash
python main.py "Sustainable Energy Solutions"
```
## Viewing Traces in LangDB
After running your CrewAI application, you can view detailed traces in the LangDB dashboard:
<Frame caption="LangDB Trace Dashboard">
<img src="/images/langdb-2.png" alt="LangDB trace dashboard showing CrewAI workflow" />
</Frame>
### What You'll See
- **Agent Interactions**: Complete flow of agent conversations and task handoffs
- **Tool Usage**: Which tools were called, their inputs, and outputs
- **Model Calls**: Detailed LLM interactions with prompts image.pngand responses
- **Performance Metrics**: Latency, token usage, and cost tracking
- **Execution Timeline**: Step-by-step view of the entire workflow
## Troubleshooting
### Common Issues
- **No traces appearing**: Ensure `init()` is called before any CrewAI imports
- **Authentication errors**: Verify your LangDB API key and project ID
## Resources
<CardGroup cols={3}>
<Card title="LangDB Documentation" icon="book" href="https://docs.langdb.ai">
Official LangDB documentation and guides
</Card>
<Card title="LangDB Guides" icon="graduation-cap" href="https://docs.langdb.ai/guides">
Step-by-step tutorials for building AI agents
</Card>
<Card title="GitHub Examples" icon="github" href="https://github.com/langdb/langdb-samples/tree/main/examples/crewai" >
Complete CrewAI integration examples
</Card>
<Card title="LangDB Dashboard" icon="chart-line" href="https://app.langdb.ai">
Access your traces and analytics
</Card>
<Card title="Model Catalog" icon="list" href="https://app.langdb.ai/models">
Browse 350+ available language models
</Card>
<Card title="Enterprise Features" icon="building" href="https://docs.langdb.ai/enterprise">
Self-hosted options and enterprise capabilities
</Card>
</CardGroup>
## Next Steps
This guide covered the basics of integrating LangDB AI Gateway with CrewAI. To further enhance your AI workflows, explore:
- **Virtual Models**: Create custom model configurations with routing strategies
- **Guardrails & Safety**: Implement content filtering and compliance controls
- **Production Deployment**: Configure fallbacks, retries, and load balancing
For more advanced features and use cases, visit the [LangDB Documentation](https://docs.langdb.ai) or explore the [Model Catalog](https://app.langdb.ai/models) to discover all available models.

View File

@@ -1,232 +0,0 @@
---
title: "Maxim Integration"
description: "Start Agent monitoring, evaluation, and observability"
icon: "infinity"
mode: "wide"
---
# Maxim Overview
Maxim AI provides comprehensive agent monitoring, evaluation, and observability for your CrewAI applications. With Maxim's one-line integration, you can easily trace and analyse agent interactions, performance metrics, and more.
## Features
### Prompt Management
Maxim's Prompt Management capabilities enable you to create, organize, and optimize prompts for your CrewAI agents. Rather than hardcoding instructions, leverage Maxims SDK to dynamically retrieve and apply version-controlled prompts.
<Tabs>
<Tab title="Prompt Playground">
Create, refine, experiment and deploy your prompts via the playground. Organize of your prompts using folders and versions, experimenting with the real world cases by linking tools and context, and deploying based on custom logic.
Easily experiment across models by [**configuring models**](https://www.getmaxim.ai/docs/introduction/quickstart/setting-up-workspace#add-model-api-keys) and selecting the relevant model from the dropdown at the top of the prompt playground.
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_playground.png'> </img>
</Tab>
<Tab title="Prompt Versions">
As teams build their AI applications, a big part of experimentation is iterating on the prompt structure. In order to collaborate effectively and organize your changes clearly, Maxim allows prompt versioning and comparison runs across versions.
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_versions.png'> </img>
</Tab>
<Tab title="Prompt Comparisons">
Iterating on Prompts as you evolve your AI application would need experiments across models, prompt structures, etc. In order to compare versions and make informed decisions about changes, the comparison playground allows a side by side view of results.
## **Why use Prompt comparison?**
Prompt comparison combines multiple single Prompts into one view, enabling a streamlined approach for various workflows:
1. **Model comparison**: Evaluate the performance of different models on the same Prompt.
2. **Prompt optimization**: Compare different versions of a Prompt to identify the most effective formulation.
3. **Cross-Model consistency**: Ensure consistent outputs across various models for the same Prompt.
4. **Performance benchmarking**: Analyze metrics like latency, cost, and token count across different models and Prompts.
</Tab>
</Tabs>
### Observability & Evals
Maxim AI provides comprehensive observability & evaluation for your CrewAI agents, helping you understand exactly what's happening during each execution.
<Tabs>
<Tab title="Agent Tracing">
Track your agents complete lifecycle, including tool calls, agent trajectories, and decision flows effortlessly.
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_agent_tracking.png'> </img>
</Tab>
<Tab title="Analytics + Evals">
Run detailed evaluations on full traces or individual nodes with support for:
- Multi-step interactions and granular trace analysis
- Session Level Evaluations
- Simulations for real-world testing
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_trace_eval.png'> </img>
<CardGroup cols={3}>
<Card title="Auto Evals on Logs" icon="e" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/auto-evaluation">
<p>
Evaluate captured logs automatically from the UI based on filters and sampling
</p>
</Card>
<Card title="Human Evals on Logs" icon="hand" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/human-evaluation">
<p>
Use human evaluation or rating to assess the quality of your logs and evaluate them.
</p>
</Card>
<Card title="Node Level Evals" icon="road" href="https://www.getmaxim.ai/docs/observe/how-to/evaluate-logs/node-level-evaluation">
<p>
Evaluate any component of your trace or log to gain insights into your agents behavior.
</p>
</Card>
</CardGroup>
---
</Tab>
<Tab title="Alerting">
Set thresholds on **error**, **cost, token usage, user feedback, latency** and get real-time alerts via Slack or PagerDuty.
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_alerts_1.png'> </img>
</Tab>
<Tab title="Dashboards">
Visualize Traces over time, usage metrics, latency & error rates with ease.
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/maxim_dashboard_1.png'> </img>
</Tab>
</Tabs>
## Getting Started
### Prerequisites
- Python version \>=3.10
- A Maxim account ([sign up here](https://getmaxim.ai/))
- Generate Maxim API Key
- A CrewAI project
### Installation
Install the Maxim SDK via pip:
```python
pip install maxim-py
```
Or add it to your `requirements.txt`:
```
maxim-py
```
### Basic Setup
### 1. Set up environment variables
```python
### Environment Variables Setup
# Create a `.env` file in your project root:
# Maxim API Configuration
MAXIM_API_KEY=your_api_key_here
MAXIM_LOG_REPO_ID=your_repo_id_here
```
### 2. Import the required packages
```python
from crewai import Agent, Task, Crew, Process
from maxim import Maxim
from maxim.logger.crewai import instrument_crewai
```
### 3. Initialise Maxim with your API key
```python {8}
# Instrument CrewAI with just one line
instrument_crewai(Maxim().logger())
```
### 4. Create and run your CrewAI application as usual
```python
# Create your agent
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI',
backstory="You are an expert researcher at a tech think tank...",
verbose=True,
llm=llm
)
# Define the task
research_task = Task(
description="Research the latest AI advancements...",
expected_output="",
agent=researcher
)
# Configure and run the crew
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=True
)
try:
result = crew.kickoff()
finally:
maxim.cleanup() # Ensure cleanup happens even if errors occur
```
That's it\! All your CrewAI agent interactions will now be logged and available in your Maxim dashboard.
Check this Google Colab Notebook for a quick reference - [Notebook](https://colab.research.google.com/drive/1ZKIZWsmgQQ46n8TH9zLsT1negKkJA6K8?usp=sharing)
## Viewing Your Traces
After running your CrewAI application:
1. Log in to your [Maxim Dashboard](https://app.getmaxim.ai/login)
2. Navigate to your repository
3. View detailed agent traces, including:
- Agent conversations
- Tool usage patterns
- Performance metrics
- Cost analytics
<img src='https://raw.githubusercontent.com/akmadan/crewAI/docs_maxim_observability/docs/images/crewai_traces.gif'> </img>
## Troubleshooting
### Common Issues
- **No traces appearing**: Ensure your API key and repository ID are correct
- Ensure you've **`called instrument_crewai()`** **_before_** running your crew. This initializes logging hooks correctly.
- Set `debug=True` in your `instrument_crewai()` call to surface any internal errors:
```python
instrument_crewai(logger, debug=True)
```
- Configure your agents with `verbose=True` to capture detailed logs:
```python
agent = CrewAgent(..., verbose=True)
```
- Double-check that `instrument_crewai()` is called **before** creating or executing agents. This might be obvious, but it's a common oversight.
## Resources
<CardGroup cols="3">
<Card title="CrewAI Docs" icon="book" href="https://docs.crewai.com/">
Official CrewAI documentation
</Card>
<Card title="Maxim Docs" icon="book" href="https://getmaxim.ai/docs">
Official Maxim documentation
</Card>
<Card title="Maxim Github" icon="github" href="https://github.com/maximhq">
Maxim Github
</Card>
</CardGroup>

View File

@@ -1,134 +0,0 @@
---
title: Neatlogs Integration
description: Understand, debug, and share your CrewAI agent runs
icon: magnifying-glass-chart
mode: "wide"
---
# Introduction
Neatlogs helps you **see what your agent did**, **why**, and **share it**.
It captures every step: thoughts, tool calls, responses, evaluations. No raw logs. Just clear, structured traces. Great for debugging and collaboration.
## Why use Neatlogs?
CrewAI agents use multiple tools and reasoning steps. When something goes wrong, you need context — not just errors.
Neatlogs lets you:
- Follow the full decision path
- Add feedback directly on steps
- Chat with the trace using AI assistant
- Share runs publicly for feedback
- Turn insights into tasks
All in one place.
Manage your traces effortlessly
![Traces](/images/neatlogs-1.png)
![Trace Response](/images/neatlogs-2.png)
The best UX to view a CrewAI trace. Post comments anywhere you want. Use AI to debug.
![Trace Details](/images/neatlogs-3.png)
![Ai Chat Bot With A Trace](/images/neatlogs-4.png)
![Comments Drawer](/images/neatlogs-5.png)
## Core Features
- **Trace Viewer**: Track thoughts, tools, and decisions in sequence
- **Inline Comments**: Tag teammates on any trace step
- **Feedback & Evaluation**: Mark outputs as correct or incorrect
- **Error Highlighting**: Automatic flagging of API/tool failures
- **Task Conversion**: Convert comments into assigned tasks
- **Ask the Trace (AI)**: Chat with your trace using Neatlogs AI bot
- **Public Sharing**: Publish trace links to your community
## Quick Setup with CrewAI
<Steps>
<Step title="Sign Up & Get API Key">
Visit [neatlogs.com](https://neatlogs.com/?utm_source=crewAI-docs), create a project, copy the API key.
</Step>
<Step title="Install SDK">
```bash
pip install neatlogs
```
(Latest version 0.8.0, Python 3.8+; MIT license)
</Step>
<Step title="Initialize Neatlogs">
Before starting Crew agents, add:
```python
import neatlogs
neatlogs.init("YOUR_PROJECT_API_KEY")
```
Agents run as usual. Neatlogs captures everything automatically.
</Step>
</Steps>
## Under the Hood
According to GitHub, Neatlogs:
- Captures thoughts, tool calls, responses, errors, and token stats
- Supports AI-powered task generation and robust evaluation workflows
All with just two lines of code.
## Watch It Work
### 🔍 Full Demo (4min)
<iframe
className="w-full aspect-video rounded-xl"
src="https://www.youtube.com/embed/8KDme9T2I7Q?si=b8oHteaBwFNs_Duk"
title="NeatLogs overview"
frameBorder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowFullScreen
></iframe>
### ⚙️ CrewAI Integration (30s)
<iframe
className="w-full aspect-video rounded-xl"
src="https://www.loom.com/embed/9c78b552af43452bb3e4783cb8d91230?sid=e9d7d370-a91a-49b0-809e-2f375d9e801d"
title="Loom video player"
frameBorder="0"
allowFullScreen
></iframe>
## Links & Support
- 📘 [Neatlogs Docs](https://docs.neatlogs.com/)
- 🔐 [Dashboard & API Key](https://app.neatlogs.com/)
- 🐦 [Follow on Twitter](https://twitter.com/neatlogs)
- 📧 Contact: hello@neatlogs.com
- 🛠 [GitHub SDK](https://github.com/NeatLogs/neatlogs)
## TL;DR
With just:
```bash
pip install neatlogs
import neatlogs
neatlogs.init("YOUR_API_KEY")
You can now capture, understand, share, and act on your CrewAI agent runs in seconds.
No setup overhead. Full trace transparency. Full team collaboration.
```

View File

@@ -1,213 +0,0 @@
---
title: CrewAI Tracing
description: Built-in tracing for CrewAI Crews and Flows with the CrewAI AMP platform
icon: magnifying-glass-chart
mode: "wide"
---
# CrewAI Built-in Tracing
CrewAI provides built-in tracing capabilities that allow you to monitor and debug your Crews and Flows in real-time. This guide demonstrates how to enable tracing for both **Crews** and **Flows** using CrewAI's integrated observability platform.
> **What is CrewAI Tracing?** CrewAI's built-in tracing provides comprehensive observability for your AI agents, including agent decisions, task execution timelines, tool usage, and LLM calls - all accessible through the [CrewAI AMP platform](https://app.crewai.com).
![CrewAI Tracing Interface](/images/crewai-tracing.png)
## Prerequisites
Before you can use CrewAI tracing, you need:
1. **CrewAI AMP Account**: Sign up for a free account at [app.crewai.com](https://app.crewai.com)
2. **CLI Authentication**: Use the CrewAI CLI to authenticate your local environment
```bash
crewai login
```
## Setup Instructions
### Step 1: Create Your CrewAI AMP Account
Visit [app.crewai.com](https://app.crewai.com) and create your free account. This will give you access to the CrewAI AMP platform where you can view traces, metrics, and manage your crews.
### Step 2: Install CrewAI CLI and Authenticate
If you haven't already, install CrewAI with the CLI tools:
```bash
uv add crewai[tools]
```
Then authenticate your CLI with your CrewAI AMP account:
```bash
crewai login
```
This command will:
1. Open your browser to the authentication page
2. Prompt you to enter a device code
3. Authenticate your local environment with your CrewAI AMP account
4. Enable tracing capabilities for your local development
### Step 3: Enable Tracing in Your Crew
You can enable tracing for your Crew by setting the `tracing` parameter to `True`:
```python
from crewai import Agent, Crew, Process, Task
from crewai_tools import SerperDevTool
# Define your agents
researcher = Agent(
role="Senior Research Analyst",
goal="Uncover cutting-edge developments in AI and data science",
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
tools=[SerperDevTool()],
)
writer = Agent(
role="Tech Content Strategist",
goal="Craft compelling content on tech advancements",
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
)
# Create tasks for your agents
research_task = Task(
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
Identify key trends, breakthrough technologies, and potential industry impacts.""",
expected_output="Full analysis report in bullet points",
agent=researcher,
)
writing_task = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant AI advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.""",
expected_output="Full blog post of at least 4 paragraphs",
agent=writer,
)
# Enable tracing in your crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
process=Process.sequential,
tracing=True, # Enable built-in tracing
verbose=True
)
# Execute your crew
result = crew.kickoff()
```
### Step 4: Enable Tracing in Your Flow
Similarly, you can enable tracing for CrewAI Flows:
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class ExampleFlow(Flow[ExampleState]):
def __init__(self):
super().__init__(tracing=True) # Enable tracing for the flow
@start()
def first_method(self):
print("Starting the flow")
self.state.counter = 1
self.state.message = "Flow started"
return "continue"
@listen("continue")
def second_method(self):
print("Continuing the flow")
self.state.counter += 1
self.state.message = "Flow continued"
return "finish"
@listen("finish")
def final_method(self):
print("Finishing the flow")
self.state.counter += 1
self.state.message = "Flow completed"
# Create and run the flow with tracing enabled
flow = ExampleFlow(tracing=True)
result = flow.kickoff()
```
### Step 5: View Traces in the CrewAI AMP Dashboard
After running the crew or flow, you can view the traces generated by your CrewAI application in the CrewAI AMP dashboard. You should see detailed steps of the agent interactions, tool usages, and LLM calls.
Just click on the link below to view the traces or head over to the traces tab in the dashboard [here](https://app.crewai.com/crewai_plus/trace_batches)
![CrewAI Tracing Interface](/images/view-traces.png)
### Alternative: Environment Variable Configuration
You can also enable tracing globally by setting an environment variable:
```bash
export CREWAI_TRACING_ENABLED=true
```
Or add it to your `.env` file:
```env
CREWAI_TRACING_ENABLED=true
```
When this environment variable is set, all Crews and Flows will automatically have tracing enabled, even without explicitly setting `tracing=True`.
## Viewing Your Traces
### Access the CrewAI AMP Dashboard
1. Visit [app.crewai.com](https://app.crewai.com) and log in to your account
2. Navigate to your project dashboard
3. Click on the **Traces** tab to view execution details
### What You'll See in Traces
CrewAI tracing provides comprehensive visibility into:
- **Agent Decisions**: See how agents reason through tasks and make decisions
- **Task Execution Timeline**: Visual representation of task sequences and dependencies
- **Tool Usage**: Monitor which tools are called and their results
- **LLM Calls**: Track all language model interactions, including prompts and responses
- **Performance Metrics**: Execution times, token usage, and costs
- **Error Tracking**: Detailed error information and stack traces
### Trace Features
- **Execution Timeline**: Click through different stages of execution
- **Detailed Logs**: Access comprehensive logs for debugging
- **Performance Analytics**: Analyze execution patterns and optimize performance
- **Export Capabilities**: Download traces for further analysis
### Authentication Issues
If you encounter authentication problems:
1. Ensure you're logged in: `crewai login`
2. Check your internet connection
3. Verify your account at [app.crewai.com](https://app.crewai.com)
### Traces Not Appearing
If traces aren't showing up in the dashboard:
1. Confirm `tracing=True` is set in your Crew/Flow
2. Check that `CREWAI_TRACING_ENABLED=true` if using environment variables
3. Ensure you're authenticated with `crewai login`
4. Verify your crew/flow is actually executing

View File

@@ -1,147 +0,0 @@
---
title: TrueFoundry Integration
icon: chart-line
mode: "wide"
---
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) which can integrate with agentic frameworks like CrewAI and provides governance and observability for your AI Applications. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
## How TrueFoundry Integrates with CrewAI
### Installation & Setup
<Steps>
<Step title="Install CrewAI">
```bash
pip install crewai
```
</Step>
<Step title="Get TrueFoundry Access Token">
1. Sign up for a [TrueFoundry account](https://www.truefoundry.com/register)
2. Follow the steps here in [Quick start](https://docs.truefoundry.com/gateway/quick-start)
</Step>
<Step title="Configure CrewAI with TrueFoundry">
![TrueFoundry Code Configuration](/images/new-code-snippet.png)
```python
from crewai import LLM
# Create an LLM instance with TrueFoundry AI Gateway
truefoundry_llm = LLM(
model="openai-main/gpt-4o", # Similarly, you can call any model from any provider
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Use in your CrewAI agents
from crewai import Agent
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
llm=truefoundry_llm,
verbose=True
)
```
</Step>
</Steps>
### Complete CrewAI Example
```python
from crewai import Agent, Task, Crew, LLM
# Configure LLM with TrueFoundry
llm = LLM(
model="openai-main/gpt-4o",
base_url="your_truefoundry_gateway_base_url",
api_key="your_truefoundry_api_key"
)
# Create agents
researcher = Agent(
role='Research Analyst',
goal='Conduct detailed market research',
backstory='Expert market analyst with attention to detail',
llm=llm,
verbose=True
)
writer = Agent(
role='Content Writer',
goal='Create comprehensive reports',
backstory='Experienced technical writer',
llm=llm,
verbose=True
)
# Create tasks
research_task = Task(
description='Research AI market trends for 2024',
agent=researcher,
expected_output='Comprehensive research summary'
)
writing_task = Task(
description='Create a market research report',
agent=writer,
expected_output='Well-structured report with insights',
context=[research_task]
)
# Create and execute crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
result = crew.kickoff()
```
### Observability and Governance
Monitor your CrewAI agents through TrueFoundry's metrics tab:
![TrueFoundry metrics](/images/gateway-metrics.png)
With Truefoundry's AI gateway, you can monitor and analyze:
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
- **Rate limit and Load balancing**: You can set up rate limiting, load balancing and fallback for your models
## Tracing
For a more detailed understanding on tracing, please see [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started).For tracing, you can add the Traceloop SDK:
For tracing, you can add the Traceloop SDK:
```bash
pip install traceloop-sdk
```
```python
from traceloop.sdk import Traceloop
# Initialize enhanced tracing
Traceloop.init(
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
headers={
"Authorization": f"Bearer {your_truefoundry_pat_token}",
"TFY-Tracing-Project": "your_project_name",
},
)
```
This provides additional trace correlation across your entire CrewAI workflow.
![TrueFoundry CrewAI Tracing](/images/tracing_crewai.png)

View File

@@ -1,59 +0,0 @@
---
title: Zapier Actions Tool
description: The `ZapierActionsAdapter` exposes Zapier actions as CrewAI tools for automation.
icon: bolt
mode: "wide"
---
# `ZapierActionsAdapter`
## Description
Use the Zapier adapter to list and call Zapier actions as CrewAI tools. This enables agents to trigger automations across thousands of apps.
## Installation
This adapter is included with `crewai-tools`. No extra install required.
## Environment Variables
- `ZAPIER_API_KEY` (required): Zapier API key. Get one from the Zapier Actions dashboard at https://actions.zapier.com/ (create an account, then generate an API key). You can also pass `zapier_api_key` directly when constructing the adapter.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.adapters.zapier_adapter import ZapierActionsAdapter
adapter = ZapierActionsAdapter(api_key="your_zapier_api_key")
tools = adapter.tools()
agent = Agent(
role="Automator",
goal="Execute Zapier actions",
backstory="Automation specialist",
tools=tools,
verbose=True,
)
task = Task(
description="Create a new Google Sheet and add a row using Zapier actions",
expected_output="Confirmation with created resource IDs",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes & limits
- The adapter lists available actions for your key and creates `BaseTool` wrappers dynamically.
- Handle actionspecific required fields in your task instructions or tool call.
- Rate limits depend on your Zapier plan; see the Zapier Actions docs.
## Notes
- The adapter fetches available actions and generates `BaseTool` wrappers dynamically.

View File

@@ -1,169 +0,0 @@
---
title: MongoDB Vector Search Tool
description: The `MongoDBVectorSearchTool` performs vector search on MongoDB Atlas with optional indexing helpers.
icon: "leaf"
mode: "wide"
---
# `MongoDBVectorSearchTool`
## Description
Perform vector similarity queries on MongoDB Atlas collections. Supports index creation helpers and bulk insert of embedded texts.
MongoDB Atlas supports native vector search. Learn more:
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/
## Installation
Install with the MongoDB extra:
```shell
pip install crewai-tools[mongodb]
```
or
```shell
uv add crewai-tools --extra mongodb
```
## Parameters
### Initialization
- `connection_string` (str, required)
- `database_name` (str, required)
- `collection_name` (str, required)
- `vector_index_name` (str, default `vector_index`)
- `text_key` (str, default `text`)
- `embedding_key` (str, default `embedding`)
- `dimensions` (int, default `1536`)
### Run Parameters
- `query` (str, required): Natural language query to embed and search.
## Quick start
```python Code
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
connection_string="mongodb+srv://...",
database_name="mydb",
collection_name="docs",
)
print(tool.run(query="how to create vector index"))
```
## Index creation helpers
Use `create_vector_search_index(...)` to provision an Atlas Vector Search index with the correct dimensions and similarity.
## Common issues
- Authentication failures: ensure your Atlas IP Access List allows your runner and the connection string includes credentials.
- Index not found: create the vector index first; name must match `vector_index_name`.
- Dimensions mismatch: align embedding model dimensions with `dimensions`.
## More examples
### Basic initialization
```python Code
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
)
```
### Custom query configuration
```python Code
from crewai_tools import MongoDBVectorSearchConfig, MongoDBVectorSearchTool
query_config = MongoDBVectorSearchConfig(limit=10, oversampling_factor=2)
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
query_config=query_config,
vector_index_name="my_vector_index",
)
rag_agent = Agent(
name="rag_agent",
role="You are a helpful assistant that can answer questions with the help of the MongoDBVectorSearchTool.",
goal="...",
backstory="...",
tools=[tool],
)
```
### Preloading the database and creating the index
```python Code
import os
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
database_name="example_database",
collection_name="example_collection",
connection_string="<your_mongodb_connection_string>",
)
# Load text content from a local folder and add to MongoDB
texts = []
for fname in os.listdir("knowledge"):
path = os.path.join("knowledge", fname)
if os.path.isfile(path):
with open(path, "r", encoding="utf-8") as f:
texts.append(f.read())
tool.add_texts(texts)
# Create the Atlas Vector Search index (e.g., 3072 dims for text-embedding-3-large)
tool.create_vector_search_index(dimensions=3072)
```
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import MongoDBVectorSearchTool
tool = MongoDBVectorSearchTool(
connection_string="mongodb+srv://...",
database_name="mydb",
collection_name="docs",
)
agent = Agent(
role="RAG Agent",
goal="Answer using MongoDB vector search",
backstory="Knowledge retrieval specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Find relevant content for 'indexing guidance'",
expected_output="A concise answer citing the most relevant matches",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -1,62 +0,0 @@
---
title: SingleStore Search Tool
description: The `SingleStoreSearchTool` safely executes SELECT/SHOW queries on SingleStore with pooling.
icon: circle
mode: "wide"
---
# `SingleStoreSearchTool`
## Description
Execute readonly queries (`SELECT`/`SHOW`) against SingleStore with connection pooling and input validation.
## Installation
```shell
uv add crewai-tools[singlestore]
```
## Environment Variables
Variables like `SINGLESTOREDB_HOST`, `SINGLESTOREDB_USER`, `SINGLESTOREDB_PASSWORD`, etc., can be used, or `SINGLESTOREDB_URL` as a single DSN.
Generate the API key from the SingleStore dashboard, [docs here](https://docs.singlestore.com/cloud/reference/management-api/#generate-an-api-key).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SingleStoreSearchTool
tool = SingleStoreSearchTool(
tables=["products"],
host="host",
user="user",
password="pass",
database="db",
)
agent = Agent(
role="Analyst",
goal="Query SingleStore",
tools=[tool],
verbose=True,
)
task = Task(
description="List 5 products",
expected_output="5 rows as JSON/text",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -1,90 +0,0 @@
---
title: OCR Tool
description: The `OCRTool` extracts text from local images or image URLs using an LLM with vision.
icon: image
mode: "wide"
---
# `OCRTool`
## Description
Extract text from images (local path or URL). Uses a visioncapable LLM via CrewAIs LLM interface.
## Installation
No extra install beyond `crewai-tools`. Ensure your selected LLM supports vision.
## Parameters
### Run Parameters
- `image_path_url` (str, required): Local image path or HTTP(S) URL.
## Examples
### Direct usage
```python Code
from crewai_tools import OCRTool
print(OCRTool().run(image_path_url="/tmp/receipt.png"))
```
### With an agent
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
ocr = OCRTool()
agent = Agent(
role="OCR",
goal="Extract text",
tools=[ocr],
)
task = Task(
description="Extract text from https://example.com/invoice.jpg",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Ensure the selected LLM supports image inputs.
- For large images, consider downscaling to reduce token usage.
- You can pass a specific LLM instance to the tool (e.g., `LLM(model="gpt-4o")`) if needed, matching the README guidance.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
tool = OCRTool()
agent = Agent(
role="OCR Specialist",
goal="Extract text from images",
backstory="Visionenabled analyst",
tools=[tool],
verbose=True,
)
task = Task(
description="Extract text from https://example.com/receipt.png",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```

View File

@@ -1,77 +0,0 @@
---
title: PDF Text Writing Tool
description: The `PDFTextWritingTool` writes text to specific positions in a PDF, supporting custom fonts.
icon: file-pdf
mode: "wide"
---
# `PDFTextWritingTool`
## Description
Write text at precise coordinates on a PDF page, optionally embedding a custom TrueType font.
## Parameters
### Run Parameters
- `pdf_path` (str, required): Path to the input PDF.
- `text` (str, required): Text to add.
- `position` (tuple[int, int], required): `(x, y)` coordinates.
- `font_size` (int, default `12`)
- `font_color` (str, default `"0 0 0 rg"`)
- `font_name` (str, default `"F1"`)
- `font_file` (str, optional): Path to `.ttf` file.
- `page_number` (int, default `0`)
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PDFTextWritingTool
tool = PDFTextWritingTool()
agent = Agent(
role="PDF Editor",
goal="Annotate PDFs",
backstory="Documentation specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Write 'CONFIDENTIAL' at (72, 720) on page 1 of ./sample.pdf",
expected_output="Confirmation message",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```
### Direct usage
```python Code
from crewai_tools import PDFTextWritingTool
PDFTextWritingTool().run(
pdf_path="./input.pdf",
text="CONFIDENTIAL",
position=(72, 720),
font_size=18,
page_number=0,
)
```
## Tips
- Coordinate origin is the bottomleft corner.
- If using a custom font (`font_file`), ensure it is a valid `.ttf`.

View File

@@ -1,276 +0,0 @@
---
title: CrewAI Run Automation Tool
description: Enables CrewAI agents to invoke CrewAI Platform automations and leverage external crew services within your workflows.
icon: robot
---
# `InvokeCrewAIAutomationTool`
The `InvokeCrewAIAutomationTool` provides CrewAI Platform API integration with external crew services. This tool allows you to invoke and interact with CrewAI Platform automations from within your CrewAI agents, enabling seamless integration between different crew workflows.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- CrewAI Platform API access
- Valid bearer token for authentication
- Network access to CrewAI Platform automation endpoints
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-9}
from crewai import Agent, Task, Crew
from crewai_tools import InvokeCrewAIAutomationTool
# Initialize the tool
automation_tool = InvokeCrewAIAutomationTool(
crew_api_url="https://data-analysis-crew-[...].crewai.com",
crew_bearer_token="your_bearer_token_here",
crew_name="Data Analysis Crew",
crew_description="Analyzes data and generates insights"
)
# Create a CrewAI agent that uses the tool
automation_coordinator = Agent(
role='Automation Coordinator',
goal='Coordinate and execute automated crew tasks',
backstory='I am an expert at leveraging automation tools to execute complex workflows.',
tools=[automation_tool],
verbose=True
)
# Create a task for the agent
analysis_task = Task(
description="Execute data analysis automation and provide insights",
agent=automation_coordinator,
expected_output="Comprehensive data analysis report"
)
# Create a crew with the agent
crew = Crew(
agents=[automation_coordinator],
tasks=[analysis_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:--------|:------------|
| **crew_api_url** | `str` | Yes | None | Base URL of the CrewAI Platform automation API |
| **crew_bearer_token** | `str` | Yes | None | Bearer token for API authentication |
| **crew_name** | `str` | Yes | None | Name of the crew automation |
| **crew_description** | `str` | Yes | None | Description of what the crew automation does |
| **max_polling_time** | `int` | No | 600 | Maximum time in seconds to wait for task completion |
| **crew_inputs** | `dict` | No | None | Dictionary defining custom input schema fields |
## Environment Variables
```bash
CREWAI_API_URL=https://your-crew-automation.crewai.com # Alternative to passing crew_api_url
CREWAI_BEARER_TOKEN=your_bearer_token_here # Alternative to passing crew_bearer_token
```
## Advanced Usage
### Custom Input Schema with Dynamic Parameters
```python {2, 4-15}
from crewai import Agent, Task, Crew
from crewai_tools import InvokeCrewAIAutomationTool
from pydantic import Field
# Define custom input schema
custom_inputs = {
"year": Field(..., description="Year to retrieve the report for (integer)"),
"region": Field(default="global", description="Geographic region for analysis"),
"format": Field(default="summary", description="Report format (summary, detailed, raw)")
}
# Create tool with custom inputs
market_research_tool = InvokeCrewAIAutomationTool(
crew_api_url="https://state-of-ai-report-crew-[...].crewai.com",
crew_bearer_token="your_bearer_token_here",
crew_name="State of AI Report",
crew_description="Retrieves a comprehensive report on state of AI for a given year and region",
crew_inputs=custom_inputs,
max_polling_time=15 * 60 # 15 minutes timeout
)
# Create an agent with the tool
research_agent = Agent(
role="Research Coordinator",
goal="Coordinate and execute market research tasks",
backstory="You are an expert at coordinating research tasks and leveraging automation tools.",
tools=[market_research_tool],
verbose=True
)
# Create and execute a task with custom parameters
research_task = Task(
description="Conduct market research on AI tools market for 2024 in North America with detailed format",
agent=research_agent,
expected_output="Comprehensive market research report"
)
crew = Crew(
agents=[research_agent],
tasks=[research_task]
)
result = crew.kickoff()
```
### Multi-Stage Automation Workflow
```python {2, 4-35}
from crewai import Agent, Task, Crew, Process
from crewai_tools import InvokeCrewAIAutomationTool
# Initialize different automation tools
data_collection_tool = InvokeCrewAIAutomationTool(
crew_api_url="https://data-collection-crew-[...].crewai.com",
crew_bearer_token="your_bearer_token_here",
crew_name="Data Collection Automation",
crew_description="Collects and preprocesses raw data"
)
analysis_tool = InvokeCrewAIAutomationTool(
crew_api_url="https://analysis-crew-[...].crewai.com",
crew_bearer_token="your_bearer_token_here",
crew_name="Analysis Automation",
crew_description="Performs advanced data analysis and modeling"
)
reporting_tool = InvokeCrewAIAutomationTool(
crew_api_url="https://reporting-crew-[...].crewai.com",
crew_bearer_token="your_bearer_token_here",
crew_name="Reporting Automation",
crew_description="Generates comprehensive reports and visualizations"
)
# Create specialized agents
data_collector = Agent(
role='Data Collection Specialist',
goal='Gather and preprocess data from various sources',
backstory='I specialize in collecting and cleaning data from multiple sources.',
tools=[data_collection_tool]
)
data_analyst = Agent(
role='Data Analysis Expert',
goal='Perform advanced analysis on collected data',
backstory='I am an expert in statistical analysis and machine learning.',
tools=[analysis_tool]
)
report_generator = Agent(
role='Report Generation Specialist',
goal='Create comprehensive reports and visualizations',
backstory='I excel at creating clear, actionable reports from complex data.',
tools=[reporting_tool]
)
# Create sequential tasks
collection_task = Task(
description="Collect market data for Q4 2024 analysis",
agent=data_collector
)
analysis_task = Task(
description="Analyze collected data to identify trends and patterns",
agent=data_analyst
)
reporting_task = Task(
description="Generate executive summary report with key insights and recommendations",
agent=report_generator
)
# Create a crew with sequential processing
crew = Crew(
agents=[data_collector, data_analyst, report_generator],
tasks=[collection_task, analysis_task, reporting_task],
process=Process.sequential,
verbose=2
)
result = crew.kickoff()
```
## Use Cases
### Distributed Crew Orchestration
- Coordinate multiple specialized crew automations to handle complex, multi-stage workflows
- Enable seamless handoffs between different automation services for comprehensive task execution
- Scale processing by distributing workloads across multiple CrewAI Platform automations
### Cross-Platform Integration
- Bridge CrewAI agents with CrewAI Platform automations for hybrid local-cloud workflows
- Leverage specialized automations while maintaining local control and orchestration
- Enable secure collaboration between local agents and cloud-based automation services
### Enterprise Automation Pipelines
- Create enterprise-grade automation pipelines that combine local intelligence with cloud processing power
- Implement complex business workflows that span multiple automation services
- Enable scalable, repeatable processes for data analysis, reporting, and decision-making
### Dynamic Workflow Composition
- Dynamically compose workflows by chaining different automation services based on task requirements
- Enable adaptive processing where the choice of automation depends on data characteristics or business rules
- Create flexible, reusable automation components that can be combined in various ways
### Specialized Domain Processing
- Access domain-specific automations (financial analysis, legal research, technical documentation) from general-purpose agents
- Leverage pre-built, specialized crew automations without rebuilding complex domain logic
- Enable agents to access expert-level capabilities through targeted automation services
## Custom Input Schema
When defining `crew_inputs`, use Pydantic Field objects to specify the input parameters:
```python
from pydantic import Field
crew_inputs = {
"required_param": Field(..., description="This parameter is required"),
"optional_param": Field(default="default_value", description="This parameter is optional"),
"typed_param": Field(..., description="Integer parameter", ge=1, le=100) # With validation
}
```
## Error Handling
The tool provides comprehensive error handling for common scenarios:
- **API Connection Errors**: Network connectivity issues with CrewAI Platform
- **Authentication Errors**: Invalid or expired bearer tokens
- **Timeout Errors**: Tasks that exceed the maximum polling time
- **Task Failures**: Crew automations that fail during execution
- **Input Validation Errors**: Invalid parameters passed to automation endpoints
## API Endpoints
The tool interacts with two main API endpoints:
- `POST {crew_api_url}/kickoff`: Starts a new crew automation task
- `GET {crew_api_url}/status/{crew_id}`: Checks the status of a running task
## Notes
- The tool automatically polls the status endpoint every second until completion or timeout
- Successful tasks return the result directly, while failed tasks return error information
- Bearer tokens should be kept secure and not hardcoded in production environments
- Consider using environment variables for sensitive configuration like bearer tokens
- Custom input schemas must be compatible with the target crew automation's expected parameters

View File

@@ -1,72 +0,0 @@
---
title: "Overview"
description: "Connect CrewAI agents with external automations and managed AI services"
icon: "face-smile"
mode: "wide"
---
Integration tools let your agents hand off work to other automation platforms and managed AI services. Use them when a workflow needs to invoke an existing CrewAI deployment or delegate specialised tasks to providers such as Amazon Bedrock.
## **Available Tools**
<CardGroup cols={2}>
<Card title="CrewAI Run Automation Tool" icon="robot" href="/en/tools/integration/crewaiautomationtool">
Invoke live CrewAI Platform automations, pass custom inputs, and poll for results directly from your agent.
</Card>
<Card title="Bedrock Invoke Agent Tool" icon="aws" href="/en/tools/integration/bedrockinvokeagenttool">
Call Amazon Bedrock Agents from your crews, reuse AWS guardrails, and stream responses back into the workflow.
</Card>
</CardGroup>
## **Common Use Cases**
- **Chain automations**: Kick off an existing CrewAI deployment from within another crew or flow
- **Enterprise hand-off**: Route tasks to Bedrock Agents that already encapsulate company logic and guardrails
- **Hybrid workflows**: Combine CrewAI reasoning with downstream systems that expose their own agent APIs
- **Long-running jobs**: Poll external automations and merge the final results back into the current run
## **Quick Start Example**
```python
from crewai import Agent, Task, Crew
from crewai_tools import InvokeCrewAIAutomationTool
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# External automation
analysis_automation = InvokeCrewAIAutomationTool(
crew_api_url="https://analysis-crew.acme.crewai.com",
crew_bearer_token="YOUR_BEARER_TOKEN",
crew_name="Analysis Automation",
crew_description="Runs the production-grade analysis pipeline",
)
# Managed agent on Bedrock
knowledge_router = BedrockInvokeAgentTool(
agent_id="bedrock-agent-id",
agent_alias_id="prod",
)
automation_strategist = Agent(
role="Automation Strategist",
goal="Orchestrate external automations and summarise their output",
backstory="You coordinate enterprise workflows and know when to delegate tasks to specialised services.",
tools=[analysis_automation, knowledge_router],
verbose=True,
)
execute_playbook = Task(
description="Run the analysis automation and ask the Bedrock agent for executive talking points.",
agent=automation_strategist,
)
Crew(agents=[automation_strategist], tasks=[execute_playbook]).kickoff()
```
## **Best Practices**
- **Secure credentials**: Store API keys and bearer tokens in environment variables or a secrets manager
- **Plan for latency**: External automations may take longer—set appropriate polling intervals and timeouts
- **Reuse sessions**: Bedrock Agents support session IDs so you can maintain context across multiple tool calls
- **Validate responses**: Normalise remote output (JSON, text, status codes) before forwarding it to downstream tasks
- **Monitor usage**: Track audit logs in CrewAI Platform or AWS CloudWatch to stay ahead of quota limits and failures

View File

@@ -1,113 +0,0 @@
---
title: Arxiv Paper Tool
description: The `ArxivPaperTool` searches arXiv for papers matching a query and optionally downloads PDFs.
icon: box-archive
mode: "wide"
---
# `ArxivPaperTool`
## Description
The `ArxivPaperTool` queries the arXiv API for academic papers and returns compact, readable results. It can also optionally download PDFs to disk.
## Installation
This tool has no special installation beyond `crewai-tools`.
```shell
uv add crewai-tools
```
No API key is required. This tool uses the public arXiv Atom API.
## Steps to Get Started
1. Initialize the tool.
2. Provide a `search_query` (e.g., "transformer neural network").
3. Optionally set `max_results` (1100) and enable PDF downloads in the constructor.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ArxivPaperTool
tool = ArxivPaperTool(
download_pdfs=False,
save_dir="./arxiv_pdfs",
use_title_as_filename=True,
)
agent = Agent(
role="Researcher",
goal="Find relevant arXiv papers",
backstory="Expert at literature discovery",
tools=[tool],
verbose=True,
)
task = Task(
description="Search arXiv for 'transformer neural network' and list top 5 results.",
expected_output="A concise list of 5 relevant papers with titles, links, and summaries.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
### Direct usage (without Agent)
```python Code
from crewai_tools import ArxivPaperTool
tool = ArxivPaperTool(
download_pdfs=True,
save_dir="./arxiv_pdfs",
)
print(tool.run(search_query="mixture of experts", max_results=3))
```
## Parameters
### Initialization Parameters
- `download_pdfs` (bool, default `False`): Whether to download PDFs.
- `save_dir` (str, default `./arxiv_pdfs`): Directory to save PDFs.
- `use_title_as_filename` (bool, default `False`): Use paper titles for filenames.
### Run Parameters
- `search_query` (str, required): The arXiv search query.
- `max_results` (int, default `5`, range 1100): Number of results.
## Output format
The tool returns a humanreadable list of papers with:
- Title
- Link (abs page)
- Snippet/summary (truncated)
When `download_pdfs=True`, PDFs are saved to disk and the summary mentions saved files.
## Usage Notes
- The tool returns formatted text with key metadata and links.
- When `download_pdfs=True`, PDFs will be stored in `save_dir`.
## Troubleshooting
- If you receive a network timeout, retry or reduce `max_results`.
- Invalid XML errors indicate an arXiv response parse issue; try a simpler query.
- File system errors (e.g., permission denied) may occur when saving PDFs; ensure `save_dir` is writable.
## Related links
- arXiv API docs: https://info.arxiv.org/help/api/index.html
## Error Handling
- Network issues, invalid XML, and OS errors are handled with informative messages.

View File

@@ -1,81 +0,0 @@
---
title: Databricks SQL Query Tool
description: The `DatabricksQueryTool` executes SQL queries against Databricks workspace tables.
icon: trowel-bricks
mode: "wide"
---
# `DatabricksQueryTool`
## Description
Run SQL against Databricks workspace tables with either CLI profile or direct host/token authentication.
## Installation
```shell
uv add crewai-tools[databricks-sdk]
```
## Environment Variables
- `DATABRICKS_CONFIG_PROFILE` or (`DATABRICKS_HOST` + `DATABRICKS_TOKEN`)
Create a personal access token and find host details in the Databricks workspace under User Settings → Developer.
Docs: https://docs.databricks.com/en/dev-tools/auth/pat.html
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import DatabricksQueryTool
tool = DatabricksQueryTool(
default_catalog="main",
default_schema="default",
)
agent = Agent(
role="Data Analyst",
goal="Query Databricks",
tools=[tool],
verbose=True,
)
task = Task(
description="SELECT * FROM my_table LIMIT 10",
expected_output="10 rows",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
## Parameters
- `query` (required): SQL query to execute
- `catalog` (optional): Override default catalog
- `db_schema` (optional): Override default schema
- `warehouse_id` (optional): Override default SQL warehouse
- `row_limit` (optional): Maximum rows to return (default: 1000)
## Defaults on initialization
- `default_catalog`
- `default_schema`
- `default_warehouse_id`
### Error handling & tips
- Authentication errors: verify `DATABRICKS_HOST` begins with `https://` and token is valid.
- Permissions: ensure your SQL warehouse and schema are accessible by your token.
- Limits: longrunning queries should be avoided in agent loops; add filters/limits.

View File

@@ -1,94 +0,0 @@
---
title: "Overview"
description: "Perform web searches, find repositories, and research information across the internet"
icon: "face-smile"
mode: "wide"
---
These tools enable your agents to search the web, research topics, and find information across various platforms including search engines, GitHub, and YouTube.
## **Available Tools**
<CardGroup cols={2}>
<Card title="Serper Dev Tool" icon="google" href="/en/tools/search-research/serperdevtool">
Google search API integration for comprehensive web search capabilities.
</Card>
<Card title="Brave Search Tool" icon="shield" href="/en/tools/search-research/bravesearchtool">
Privacy-focused search with Brave's independent search index.
</Card>
<Card title="Exa Search Tool" icon="magnifying-glass" href="/en/tools/search-research/exasearchtool">
AI-powered search for finding specific and relevant content.
</Card>
<Card title="LinkUp Search Tool" icon="link" href="/en/tools/search-research/linkupsearchtool">
Real-time web search with fresh content indexing.
</Card>
<Card title="GitHub Search Tool" icon="github" href="/en/tools/search-research/githubsearchtool">
Search GitHub repositories, code, issues, and documentation.
</Card>
<Card title="Website Search Tool" icon="globe" href="/en/tools/search-research/websitesearchtool">
Search within specific websites and domains.
</Card>
<Card title="Code Docs Search Tool" icon="code" href="/en/tools/search-research/codedocssearchtool">
Search through code documentation and technical resources.
</Card>
<Card title="YouTube Channel Search" icon="youtube" href="/en/tools/search-research/youtubechannelsearchtool">
Search YouTube channels for specific content and creators.
</Card>
<Card title="YouTube Video Search" icon="play" href="/en/tools/search-research/youtubevideosearchtool">
Find and analyze YouTube videos by topic, keyword, or criteria.
</Card>
<Card title="Tavily Search Tool" icon="magnifying-glass" href="/en/tools/search-research/tavilysearchtool">
Comprehensive web search using Tavily's AI-powered search API.
</Card>
<Card title="Tavily Extractor Tool" icon="file-text" href="/en/tools/search-research/tavilyextractortool">
Extract structured content from web pages using the Tavily API.
</Card>
<Card title="Arxiv Paper Tool" icon="box-archive" href="/en/tools/search-research/arxivpapertool">
Search arXiv and optionally download PDFs.
</Card>
<Card title="SerpApi Google Search" icon="search" href="/en/tools/search-research/serpapi-googlesearchtool">
Google search via SerpApi with structured results.
</Card>
<Card title="SerpApi Google Shopping" icon="cart-shopping" href="/en/tools/search-research/serpapi-googleshoppingtool">
Google Shopping queries via SerpApi.
</Card>
</CardGroup>
## **Common Use Cases**
- **Market Research**: Search for industry trends and competitor analysis
- **Content Discovery**: Find relevant articles, videos, and resources
- **Code Research**: Search repositories and documentation for solutions
- **Lead Generation**: Research companies and individuals
- **Academic Research**: Find scholarly articles and technical papers
```python
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool, TavilySearchTool, TavilyExtractorTool
# Create research tools
web_search = SerperDevTool()
code_search = GitHubSearchTool()
video_research = YoutubeVideoSearchTool()
tavily_search = TavilySearchTool()
content_extractor = TavilyExtractorTool()
# Add to your agent
agent = Agent(
role="Research Analyst",
tools=[web_search, code_search, video_research, tavily_search, content_extractor],
goal="Gather comprehensive information on any topic"
)
```

View File

@@ -1,66 +0,0 @@
---
title: SerpApi Google Search Tool
description: The `SerpApiGoogleSearchTool` performs Google searches using the SerpApi service.
icon: google
mode: "wide"
---
# `SerpApiGoogleSearchTool`
## Description
Use the `SerpApiGoogleSearchTool` to run Google searches with SerpApi and retrieve structured results. Requires a SerpApi API key.
## Installation
```shell
uv add crewai-tools[serpapi]
```
## Environment Variables
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SerpApiGoogleSearchTool
tool = SerpApiGoogleSearchTool()
agent = Agent(
role="Researcher",
goal="Answer questions using Google search",
backstory="Search specialist",
tools=[tool],
verbose=True,
)
task = Task(
description="Search for the latest CrewAI releases",
expected_output="A concise list of relevant results with titles and links",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
- See also Google Shopping via SerpApi: `/en/tools/search-research/serpapi-googleshoppingtool`
## Parameters
### Run Parameters
- `search_query` (str, required): The Google query.
- `location` (str, optional): Geographic location parameter.
## Notes
- This tool wraps SerpApi and returns structured search results.

View File

@@ -1,62 +0,0 @@
---
title: SerpApi Google Shopping Tool
description: The `SerpApiGoogleShoppingTool` searches Google Shopping results using SerpApi.
icon: cart-shopping
mode: "wide"
---
# `SerpApiGoogleShoppingTool`
## Description
Leverage `SerpApiGoogleShoppingTool` to query Google Shopping via SerpApi and retrieve product-oriented results.
## Installation
```shell
uv add crewai-tools[serpapi]
```
## Environment Variables
- `SERPAPI_API_KEY` (required): API key for SerpApi. Create one at https://serpapi.com/ (free tier available).
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SerpApiGoogleShoppingTool
tool = SerpApiGoogleShoppingTool()
agent = Agent(
role="Shopping Researcher",
goal="Find relevant products",
backstory="Expert in product search",
tools=[tool],
verbose=True,
)
task = Task(
description="Search Google Shopping for 'wireless noise-canceling headphones'",
expected_output="Top relevant products with titles and links",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Set `SERPAPI_API_KEY` in the environment. Create a key at https://serpapi.com/
- See also Google Web Search via SerpApi: `/en/tools/search-research/serpapi-googlesearchtool`
## Parameters
### Run Parameters
- `search_query` (str, required): Product search query.
- `location` (str, optional): Geographic location parameter.

View File

@@ -1,140 +0,0 @@
---
title: "Tavily Extractor Tool"
description: "Extract structured content from web pages using the Tavily API"
icon: square-poll-horizontal
mode: "wide"
---
The `TavilyExtractorTool` allows CrewAI agents to extract structured content from web pages using the Tavily API. It can process single URLs or lists of URLs and provides options for controlling the extraction depth and including images.
## Installation
To use the `TavilyExtractorTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
You also need to set your Tavily API key as an environment variable:
```bash
export TAVILY_API_KEY='your-tavily-api-key'
```
## Example Usage
Here's how to initialize and use the `TavilyExtractorTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilyExtractorTool
# Ensure TAVILY_API_KEY is set in your environment
# os.environ["TAVILY_API_KEY"] = "YOUR_API_KEY"
# Initialize the tool
tavily_tool = TavilyExtractorTool()
# Create an agent that uses the tool
extractor_agent = Agent(
role='Web Content Extractor',
goal='Extract key information from specified web pages',
backstory='You are an expert at extracting relevant content from websites using the Tavily API.',
tools=[tavily_tool],
verbose=True
)
# Define a task for the agent
extract_task = Task(
description='Extract the main content from the URL https://example.com using basic extraction depth.',
expected_output='A JSON string containing the extracted content from the URL.',
agent=extractor_agent
)
# Create and run the crew
crew = Crew(
agents=[extractor_agent],
tasks=[extract_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilyExtractorTool` accepts the following arguments:
- `urls` (Union[List[str], str]): **Required**. A single URL string or a list of URL strings to extract data from.
- `include_images` (Optional[bool]): Whether to include images in the extraction results. Defaults to `False`.
- `extract_depth` (Literal["basic", "advanced"]): The depth of extraction. Use `"basic"` for faster, surface-level extraction or `"advanced"` for more comprehensive extraction. Defaults to `"basic"`.
- `timeout` (int): The maximum time in seconds to wait for the extraction request to complete. Defaults to `60`.
## Advanced Usage
### Multiple URLs with Advanced Extraction
```python
# Example with multiple URLs and advanced extraction
multi_extract_task = Task(
description='Extract content from https://example.com and https://anotherexample.org using advanced extraction.',
expected_output='A JSON string containing the extracted content from both URLs.',
agent=extractor_agent
)
# Configure the tool with custom parameters
custom_extractor = TavilyExtractorTool(
extract_depth='advanced',
include_images=True,
timeout=120
)
agent_with_custom_tool = Agent(
role="Advanced Content Extractor",
goal="Extract comprehensive content with images",
tools=[custom_extractor]
)
```
### Tool Parameters
You can customize the tool's behavior by setting parameters during initialization:
```python
# Initialize with custom configuration
extractor_tool = TavilyExtractorTool(
extract_depth='advanced', # More comprehensive extraction
include_images=True, # Include image results
timeout=90 # Custom timeout
)
```
## Features
- **Single or Multiple URLs**: Extract content from one URL or process multiple URLs in a single request
- **Configurable Depth**: Choose between basic (fast) and advanced (comprehensive) extraction modes
- **Image Support**: Optionally include images in the extraction results
- **Structured Output**: Returns well-formatted JSON containing the extracted content
- **Error Handling**: Robust handling of network timeouts and extraction errors
## Response Format
The tool returns a JSON string representing the structured data extracted from the provided URL(s). The exact structure depends on the content of the pages and the `extract_depth` used.
Common response elements include:
- **Title**: The page title
- **Content**: Main text content of the page
- **Images**: Image URLs and metadata (when `include_images=True`)
- **Metadata**: Additional page information like author, description, etc.
## Use Cases
- **Content Analysis**: Extract and analyze content from competitor websites
- **Research**: Gather structured data from multiple sources for analysis
- **Content Migration**: Extract content from existing websites for migration
- **Monitoring**: Regular extraction of content for change detection
- **Data Collection**: Systematic extraction of information from web sources
Refer to the [Tavily API documentation](https://docs.tavily.com/docs/tavily-api/python-sdk#extract) for detailed information about the response structure and available options.

View File

@@ -1,125 +0,0 @@
---
title: "Tavily Search Tool"
description: "Perform comprehensive web searches using the Tavily Search API"
icon: "magnifying-glass"
mode: "wide"
---
The `TavilySearchTool` provides an interface to the Tavily Search API, enabling CrewAI agents to perform comprehensive web searches. It allows for specifying search depth, topics, time ranges, included/excluded domains, and whether to include direct answers, raw content, or images in the results.
## Installation
To use the `TavilySearchTool`, you need to install the `tavily-python` library:
```shell
pip install 'crewai[tools]' tavily-python
```
## Environment Variables
Ensure your Tavily API key is set as an environment variable:
```bash
export TAVILY_API_KEY='your_tavily_api_key'
```
Get an API key at https://app.tavily.com/ (sign up, then create a key).
## Example Usage
Here's how to initialize and use the `TavilySearchTool` within a CrewAI agent:
```python
import os
from crewai import Agent, Task, Crew
from crewai_tools import TavilySearchTool
# Ensure the TAVILY_API_KEY environment variable is set
# os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
# Initialize the tool
tavily_tool = TavilySearchTool()
# Create an agent that uses the tool
researcher = Agent(
role='Market Researcher',
goal='Find information about the latest AI trends',
backstory='An expert market researcher specializing in technology.',
tools=[tavily_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description='Search for the top 3 AI trends in 2024.',
expected_output='A JSON report summarizing the top 3 AI trends found.',
agent=researcher
)
# Form the crew and kick it off
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## Configuration Options
The `TavilySearchTool` accepts the following arguments during initialization or when calling the `run` method:
- `query` (str): **Required**. The search query string.
- `search_depth` (Literal["basic", "advanced"], optional): The depth of the search. Defaults to `"basic"`.
- `topic` (Literal["general", "news", "finance"], optional): The topic to focus the search on. Defaults to `"general"`.
- `time_range` (Literal["day", "week", "month", "year"], optional): The time range for the search. Defaults to `None`.
- `days` (int, optional): The number of days to search back. Relevant if `time_range` is not set. Defaults to `7`.
- `max_results` (int, optional): The maximum number of search results to return. Defaults to `5`.
- `include_domains` (Sequence[str], optional): A list of domains to prioritize in the search. Defaults to `None`.
- `exclude_domains` (Sequence[str], optional): A list of domains to exclude from the search. Defaults to `None`.
- `include_answer` (Union[bool, Literal["basic", "advanced"]], optional): Whether to include a direct answer synthesized from the search results. Defaults to `False`.
- `include_raw_content` (bool, optional): Whether to include the raw HTML content of the searched pages. Defaults to `False`.
- `include_images` (bool, optional): Whether to include image results. Defaults to `False`.
- `timeout` (int, optional): The request timeout in seconds. Defaults to `60`.
## Advanced Usage
You can configure the tool with custom parameters:
```python
# Example: Initialize with specific parameters
custom_tavily_tool = TavilySearchTool(
search_depth='advanced',
max_results=10,
include_answer=True
)
# The agent will use these defaults
agent_with_custom_tool = Agent(
role="Advanced Researcher",
goal="Conduct detailed research with comprehensive results",
tools=[custom_tavily_tool]
)
```
## Features
- **Comprehensive Search**: Access to Tavily's powerful search index
- **Configurable Depth**: Choose between basic and advanced search modes
- **Topic Filtering**: Focus searches on general, news, or finance topics
- **Time Range Control**: Limit results to specific time periods
- **Domain Control**: Include or exclude specific domains
- **Direct Answers**: Get synthesized answers from search results
- **Content Filtering**: Prevent context window issues with automatic content truncation
## Response Format
The tool returns search results as a JSON string containing:
- Search results with titles, URLs, and content snippets
- Optional direct answers to queries
- Optional image results
- Optional raw HTML content (when enabled)
Content for each result is automatically truncated to prevent context window issues while maintaining the most relevant information.

View File

@@ -1,31 +0,0 @@
---
title: Overview
description: Integrations for deploying and automating crews with external platforms
icon: face-smile
mode: "wide"
---
## Available Integrations
<CardGroup cols={2}>
<Card
title="Bedrock Invoke Agent Tool"
icon="cloud"
href="/en/tools/tool-integrations/bedrockinvokeagenttool"
color="#0891B2"
>
Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services.
</Card>
<Card
title="CrewAI Automation Tool"
icon="bolt"
href="/en/tools/tool-integrations/crewaiautomationtool"
color="#7C3AED"
>
Automate deployment and operations by integrating CrewAI with external platforms and workflows.
</Card>
</CardGroup>
Use these integrations to connect CrewAI with your infrastructure and workflows.

View File

@@ -1,112 +0,0 @@
---
title: Bright Data Tools
description: Bright Data integrations for SERP search, Web Unlocker scraping, and Dataset API.
icon: spider
mode: "wide"
---
# Bright Data Tools
This set of tools integrates Bright Data services for web extraction.
## Installation
```shell
uv add crewai-tools requests aiohttp
```
## Environment Variables
- `BRIGHT_DATA_API_KEY` (required)
- `BRIGHT_DATA_ZONE` (for SERP/Web Unlocker)
Create credentials at https://brightdata.com/ (sign up, then create an API token and zone).
See their docs: https://developers.brightdata.com/
## Included Tools
- `BrightDataSearchTool`: SERP search (Google/Bing/Yandex) with geo/language/device options.
- `BrightDataWebUnlockerTool`: Scrape pages with anti-bot bypass and rendering.
- `BrightDataDatasetTool`: Run Dataset API jobs and fetch results.
## Examples
### SERP Search
```python Code
from crewai_tools import BrightDataSearchTool
tool = BrightDataSearchTool(
query="CrewAI",
country="us",
)
print(tool.run())
```
### Web Unlocker
```python Code
from crewai_tools import BrightDataWebUnlockerTool
tool = BrightDataWebUnlockerTool(
url="https://example.com",
format="markdown",
)
print(tool.run(url="https://example.com"))
```
### Dataset API
```python Code
from crewai_tools import BrightDataDatasetTool
tool = BrightDataDatasetTool(
dataset_type="ecommerce",
url="https://example.com/product",
)
print(tool.run())
```
## Troubleshooting
- 401/403: verify `BRIGHT_DATA_API_KEY` and `BRIGHT_DATA_ZONE`.
- Empty/blocked content: enable rendering or try a different zone.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import BrightDataSearchTool
tool = BrightDataSearchTool(
query="CrewAI",
country="us",
)
agent = Agent(
role="Web Researcher",
goal="Search with Bright Data",
backstory="Finds reliable results",
tools=[tool],
verbose=True,
)
task = Task(
description="Search for CrewAI and summarize top results",
expected_output="Short summary with links",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
```

View File

@@ -1,237 +0,0 @@
---
title: Oxylabs Scrapers
description: >
Oxylabs Scrapers allow to easily access the information from the respective sources. Please see the list of available sources below:
- `Amazon Product`
- `Amazon Search`
- `Google Seach`
- `Universal`
icon: globe
mode: "wide"
---
## Installation
Get the credentials by creating an Oxylabs Account [here](https://oxylabs.io).
```shell
pip install 'crewai[tools]' oxylabs
```
Check [Oxylabs Documentation](https://developers.oxylabs.io/scraping-solutions/web-scraper-api/targets) to get more information about API parameters.
# `OxylabsAmazonProductScraperTool`
### Example
```python
from crewai_tools import OxylabsAmazonProductScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsAmazonProductScraperTool()
result = tool.run(query="AAAAABBBBCC")
print(result)
```
### Parameters
- `query` - 10-symbol ASIN code.
- `domain` - domain localization for Amazon.
- `geo_location` - the _Deliver to_ location.
- `user_agent_type` - device type and browser.
- `render` - enables JavaScript rendering when set to `html`.
- `callback_url` - URL to your callback endpoint.
- `context` - Additional advanced settings and controls for specialized requirements.
- `parse` - returns parsed data when set to true.
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
### Advanced example
```python
from crewai_tools import OxylabsAmazonProductScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsAmazonProductScraperTool(
config={
"domain": "com",
"parse": True,
"context": [
{
"key": "autoselect_variant",
"value": True
}
]
}
)
result = tool.run(query="AAAAABBBBCC")
print(result)
```
# `OxylabsAmazonSearchScraperTool`
### Example
```python
from crewai_tools import OxylabsAmazonSearchScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsAmazonSearchScraperTool()
result = tool.run(query="headsets")
print(result)
```
### Parameters
- `query` - Amazon search term.
- `domain` - Domain localization for Bestbuy.
- `start_page` - starting page number.
- `pages` - number of pages to retrieve.
- `geo_location` - the _Deliver to_ location.
- `user_agent_type` - device type and browser.
- `render` - enables JavaScript rendering when set to `html`.
- `callback_url` - URL to your callback endpoint.
- `context` - Additional advanced settings and controls for specialized requirements.
- `parse` - returns parsed data when set to true.
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
### Advanced example
```python
from crewai_tools import OxylabsAmazonSearchScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsAmazonSearchScraperTool(
config={
"domain": 'nl',
"start_page": 2,
"pages": 2,
"parse": True,
"context": [
{'key': 'category_id', 'value': 16391693031}
],
}
)
result = tool.run(query='nirvana tshirt')
print(result)
```
# `OxylabsGoogleSearchScraperTool`
### Example
```python
from crewai_tools import OxylabsGoogleSearchScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsGoogleSearchScraperTool()
result = tool.run(query="iPhone 16")
print(result)
```
### Parameters
- `query` - search keyword.
- `domain` - domain localization for Google.
- `start_page` - starting page number.
- `pages` - number of pages to retrieve.
- `limit` - number of results to retrieve in each page.
- `locale` - `Accept-Language` header value which changes your Google search page web interface language.
- `geo_location` - the geographical location that the result should be adapted for. Using this parameter correctly is extremely important to get the right data.
- `user_agent_type` - device type and browser.
- `render` - enables JavaScript rendering when set to `html`.
- `callback_url` - URL to your callback endpoint.
- `context` - Additional advanced settings and controls for specialized requirements.
- `parse` - returns parsed data when set to true.
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
### Advanced example
```python
from crewai_tools import OxylabsGoogleSearchScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsGoogleSearchScraperTool(
config={
"parse": True,
"geo_location": "Paris, France",
"user_agent_type": "tablet",
}
)
result = tool.run(query="iPhone 16")
print(result)
```
# `OxylabsUniversalScraperTool`
### Example
```python
from crewai_tools import OxylabsUniversalScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsUniversalScraperTool()
result = tool.run(url="https://ip.oxylabs.io")
print(result)
```
### Parameters
- `url` - website url to scrape.
- `user_agent_type` - device type and browser.
- `geo_location` - sets the proxy's geolocation to retrieve data.
- `render` - enables JavaScript rendering when set to `html`.
- `callback_url` - URL to your callback endpoint.
- `context` - Additional advanced settings and controls for specialized requirements.
- `parse` - returns parsed data when set to `true`, as long as a dedicated parser exists for the submitted URL's page type.
- `parsing_instructions` - define your own parsing and data transformation logic that will be executed on an HTML scraping result.
### Advanced example
```python
from crewai_tools import OxylabsUniversalScraperTool
# make sure OXYLABS_USERNAME and OXYLABS_PASSWORD variables are set
tool = OxylabsUniversalScraperTool(
config={
"render": "html",
"user_agent_type": "mobile",
"context": [
{"key": "force_headers", "value": True},
{"key": "force_cookies", "value": True},
{
"key": "headers",
"value": {
"Custom-Header-Name": "custom header content",
},
},
{
"key": "cookies",
"value": [
{"key": "NID", "value": "1234567890"},
{"key": "1P JAR", "value": "0987654321"},
],
},
{"key": "http_method", "value": "get"},
{"key": "follow_redirects", "value": True},
{"key": "successful_status_codes", "value": [808, 909]},
],
}
)
result = tool.run(url="https://ip.oxylabs.io")
print(result)
```

View File

@@ -1,101 +0,0 @@
---
title: Serper Scrape Website
description: The `SerperScrapeWebsiteTool` is designed to scrape websites and extract clean, readable content using Serper's scraping API.
icon: globe
mode: "wide"
---
# `SerperScrapeWebsiteTool`
## Description
This tool is designed to scrape website content and extract clean, readable text from any website URL. It utilizes the [serper.dev](https://serper.dev) scraping API to fetch and process web pages, optionally including markdown formatting for better structure and readability.
## Installation
To effectively use the `SerperScrapeWebsiteTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for an account at `serper.dev`.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Example
The following example demonstrates how to initialize the tool and scrape a website:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
# Initialize the tool for website scraping capabilities
tool = SerperScrapeWebsiteTool()
# Scrape a website with markdown formatting
result = tool.run(url="https://example.com", include_markdown=True)
```
## Arguments
The `SerperScrapeWebsiteTool` accepts the following arguments:
- **url**: Required. The URL of the website to scrape.
- **include_markdown**: Optional. Whether to include markdown formatting in the scraped content. Defaults to `True`.
## Example with Parameters
Here is an example demonstrating how to use the tool with different parameters:
```python Code
from crewai_tools import SerperScrapeWebsiteTool
tool = SerperScrapeWebsiteTool()
# Scrape with markdown formatting (default)
markdown_result = tool.run(
url="https://docs.crewai.com",
include_markdown=True
)
# Scrape without markdown formatting for plain text
plain_result = tool.run(
url="https://docs.crewai.com",
include_markdown=False
)
print("Markdown formatted content:")
print(markdown_result)
print("\nPlain text content:")
print(plain_result)
```
## Use Cases
The `SerperScrapeWebsiteTool` is particularly useful for:
- **Content Analysis**: Extract and analyze website content for research purposes
- **Data Collection**: Gather structured information from web pages
- **Documentation Processing**: Convert web-based documentation into readable formats
- **Competitive Analysis**: Scrape competitor websites for market research
- **Content Migration**: Extract content from existing websites for migration purposes
## Error Handling
The tool includes comprehensive error handling for:
- **Network Issues**: Handles connection timeouts and network errors gracefully
- **API Errors**: Provides detailed error messages for API-related issues
- **Invalid URLs**: Validates and reports issues with malformed URLs
- **Authentication**: Clear error messages for missing or invalid API keys
## Security Considerations
- Always store your `SERPER_API_KEY` in environment variables, never hardcode it in your source code
- Be mindful of rate limits imposed by the Serper API
- Respect robots.txt and website terms of service when scraping content
- Consider implementing delays between requests for large-scale scraping operations

View File

@@ -1,434 +0,0 @@
openapi: 3.0.3
info:
title: CrewAI AMP API
description: |
REST API for interacting with your deployed CrewAI crews on CrewAI AMP.
## Getting Started
1. **Find your crew URL**: Get your unique crew URL from the CrewAI AMP dashboard
2. **Copy examples**: Use the code examples from each endpoint page as templates
3. **Replace placeholders**: Update URLs and tokens with your actual values
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
## Authentication
All API requests require a bearer token for authentication. There are two types of tokens:
- **Bearer Token**: Organization-level token for full crew operations
- **User Bearer Token**: User-scoped token for individual access with limited permissions
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
## Reference Documentation
This documentation provides comprehensive examples for each endpoint:
- **Request formats** with all required and optional parameters
- **Response examples** for success and error scenarios
- **Code samples** in multiple programming languages
- **Authentication patterns** with proper Bearer token usage
Copy the examples and customize them with your actual crew URL and authentication tokens.
## Workflow
1. **Discover inputs** using `GET /inputs`
2. **Start execution** using `POST /kickoff`
3. **Monitor progress** using `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Support
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Replace with your actual deployed crew URL from the CrewAI AMP dashboard
- url: https://my-travel-crew.crewai.com
description: Example travel planning crew (replace with your URL)
- url: https://content-creation-crew.crewai.com
description: Example content creation crew (replace with your URL)
- url: https://research-assistant-crew.crewai.com
description: Example research assistant crew (replace with your URL)
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Get Required Inputs
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the list of all required input parameters that your crew expects for execution.
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
operationId: getRequiredInputs
responses:
'200':
description: Successfully retrieved required inputs
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Array of required input parameter names
example: ["budget", "interests", "duration", "age"]
examples:
travel_crew:
summary: Travel planning crew inputs
value:
inputs: ["budget", "interests", "duration", "age"]
outreach_crew:
summary: Outreach crew inputs
value:
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Start Crew Execution
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
to track the execution progress and retrieve results.
Crew executions can take anywhere from seconds to minutes depending on their complexity.
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
description: Key-value pairs of all required inputs for your crew
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
type: object
description: Additional metadata to pass to the crew
additionalProperties: true
example:
requestId: "user-request-12345"
source: "mobile-app"
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes
example: "https://your-server.com/webhooks/crew"
examples:
travel_planning:
summary: Travel planning crew
value:
inputs:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
requestId: "travel-req-123"
source: "web-app"
outreach_campaign:
summary: Outreach crew with webhooks
value:
inputs:
name: "John Smith"
title: "CTO"
company: "TechCorp"
industry: "Software"
our_product: "AI Development Platform"
linkedin_url: "https://linkedin.com/in/johnsmith"
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Crew execution started successfully
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
description: Unique identifier for tracking this execution
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'400':
description: Invalid request body or missing required inputs
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'401':
$ref: '#/components/responses/UnauthorizedError'
'422':
description: Validation error - ensure all required inputs are provided
content:
application/json:
schema:
$ref: '#/components/schemas/ValidationError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Get Execution Status
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the current status and results of a crew execution using its kickoff ID.
The response structure varies depending on the execution state:
- **running**: Execution in progress with current task info
- **completed**: Execution finished with full results
- **error**: Execution failed with error details
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
description: The kickoff ID returned from the /kickoff endpoint
schema:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
responses:
'200':
description: Successfully retrieved execution status
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
examples:
running:
summary: Execution in progress
value:
status: "running"
current_task: "research_task"
progress:
completed_tasks: 1
total_tasks: 3
completed:
summary: Execution completed successfully
value:
status: "completed"
result:
output: "Comprehensive travel itinerary for 7 days in Japan focusing on tech culture..."
tasks:
- task_id: "research_task"
output: "Research findings on tech destinations in Japan..."
agent: "Travel Researcher"
execution_time: 45.2
- task_id: "planning_task"
output: "7-day detailed itinerary with activities and recommendations..."
agent: "Trip Planner"
execution_time: 62.8
execution_time: 108.5
error:
summary: Execution failed
value:
status: "error"
error: "Task execution failed: Invalid API key for external service"
execution_time: 23.1
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Execution not found"
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
Use your actual Bearer Token or User Bearer Token from the CrewAI AMP dashboard for real API calls.
**Bearer Token**: Organization-level access for full crew operations
**User Bearer Token**: User-scoped access with limited permissions
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
example: "running"
current_task:
type: string
description: Name of the currently executing task
example: "research_task"
progress:
type: object
properties:
completed_tasks:
type: integer
description: Number of completed tasks
example: 1
total_tasks:
type: integer
description: Total number of tasks in the crew
example: 3
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
example: "completed"
result:
type: object
properties:
output:
type: string
description: Final output from the crew execution
example: "Comprehensive travel itinerary..."
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
description: Total execution time in seconds
example: 108.5
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
example: "error"
error:
type: string
description: Error message describing what went wrong
example: "Task execution failed: Invalid API key"
execution_time:
type: number
description: Time until error occurred in seconds
example: 23.1
TaskResult:
type: object
properties:
task_id:
type: string
description: Unique identifier for the task
example: "research_task"
output:
type: string
description: Output generated by this task
example: "Research findings..."
agent:
type: string
description: Name of the agent that executed this task
example: "Travel Researcher"
execution_time:
type: number
description: Time taken to execute this task in seconds
example: 45.2
Error:
type: object
properties:
error:
type: string
description: Error type or title
example: "Authentication Error"
message:
type: string
description: Detailed error message
example: "Invalid bearer token provided"
ValidationError:
type: object
properties:
error:
type: string
example: "Validation Error"
message:
type: string
example: "Missing required inputs"
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
example: ["budget", "interests"]
responses:
UnauthorizedError:
description: Authentication failed - check your bearer token
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Unauthorized"
message: "Invalid or missing bearer token"
NotFoundError:
description: Resource not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "The requested resource was not found"
ServerError:
description: Internal server error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Internal Server Error"
message: "An unexpected error occurred"

View File

@@ -1,230 +0,0 @@
openapi: 3.0.3
info:
title: CrewAI 엔터프라이즈 API
description: |
CrewAI AMP에 배포된 crew와 상호작용하기 위한 REST API입니다.
## 시작하기
1. **Crew URL 확인**: 대시보드에서 고유한 crew URL을 확인하세요
2. **예제 복사**: 각 엔드포인트의 예제를 템플릿으로 사용하세요
3. **플레이스홀더 교체**: 실제 URL과 토큰으로 바꾸세요
4. **도구로 테스트**: cURL, Postman 등 선호하는 도구로 테스트하세요
version: 1.0.0
contact:
name: CrewAI 지원
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: 대시보드의 실제 crew URL로 교체하세요
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: 필요 입력값 조회
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
실행에 필요한 입력 파라미터 목록을 반환합니다.
operationId: getRequiredInputs
responses:
'200':
description: 입력값을 성공적으로 조회
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Crew 실행 시작
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
제공된 입력으로 새로운 실행을 시작하고 kickoff ID를 반환합니다.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
additionalProperties:
type: string
responses:
'200':
description: 실행이 성공적으로 시작됨
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
'401':
$ref: '#/components/responses/UnauthorizedError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: 실행 상태 조회
description: |
**📋 참조 예제만 제공** - *요청 형식을 보여줍니다. 실제 호출은 cURL 예제를 복사해 URL과 토큰을 교체하세요.*
kickoff ID로 실행 상태와 결과를 조회합니다.
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
schema:
type: string
format: uuid
responses:
'200':
description: 상태를 성공적으로 조회
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID를 찾을 수 없음
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 참고** - *예시의 토큰은 자리 표시자입니다.* 실제 토큰을 사용하세요.
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
current_task:
type: string
progress:
type: object
properties:
completed_tasks:
type: integer
total_tasks:
type: integer
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
result:
type: object
properties:
output:
type: string
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
error:
type: string
execution_time:
type: number
TaskResult:
type: object
properties:
task_id:
type: string
output:
type: string
agent:
type: string
execution_time:
type: number
Error:
type: object
properties:
error:
type: string
message:
type: string
ValidationError:
type: object
properties:
error:
type: string
message:
type: string
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
responses:
UnauthorizedError:
description: 인증 실패
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
NotFoundError:
description: 리소스를 찾을 수 없음
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
ServerError:
description: 서버 내부 오류
content:
application/json:
schema:
$ref: '#/components/schemas/Error'

View File

@@ -1,267 +0,0 @@
openapi: 3.0.3
info:
title: CrewAI AMP API
description: |
REST API para interagir com suas crews implantadas no CrewAI AMP.
## Introdução
1. **Encontre a URL da sua crew**: Obtenha sua URL única no painel do CrewAI AMP
2. **Copie os exemplos**: Use os exemplos de cada endpoint como modelo
3. **Substitua os placeholders**: Atualize URLs e tokens com seus valores reais
4. **Teste com suas ferramentas**: Use cURL, Postman ou seu cliente preferido
## Autenticação
Todas as requisições exigem um token bearer. Existem dois tipos:
- **Bearer Token**: Token em nível de organização para operações completas
- **User Bearer Token**: Token com escopo de usuário com permissões limitadas
Você encontra os tokens na aba Status da sua crew no painel do CrewAI AMP.
## Documentação de Referência
Este documento fornece exemplos completos para cada endpoint:
- **Formatos de requisição** com parâmetros obrigatórios e opcionais
- **Exemplos de resposta** para sucesso e erro
- **Amostras de código** em várias linguagens
- **Padrões de autenticação** com uso correto de Bearer token
Copie os exemplos e personalize com sua URL e tokens reais.
## Fluxo
1. **Descubra os inputs** usando `GET /inputs`
2. **Inicie a execução** usando `POST /kickoff`
3. **Monitore o progresso** usando `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Suporte
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Substitua pela URL real da sua crew no painel do CrewAI AMP
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Obter Inputs Requeridos
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Retorna a lista de parâmetros de entrada que sua crew espera.
operationId: getRequiredInputs
responses:
'200':
description: Inputs requeridos obtidos com sucesso
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Nomes dos parâmetros de entrada
example: ["budget", "interests", "duration", "age"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Iniciar Execução da Crew
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Inicia uma nova execução da crew com os inputs fornecidos e retorna um kickoff ID.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
responses:
'200':
description: Execução iniciada com sucesso
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'401':
$ref: '#/components/responses/UnauthorizedError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Obter Status da Execução
description: |
**📋 Exemplo de Referência** - *Mostra o formato da requisição. Para testar com sua crew real, copie o cURL e substitua URL + token.*
Retorna o status atual e os resultados de uma execução usando o kickoff ID.
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
schema:
type: string
format: uuid
responses:
'200':
description: Status recuperado com sucesso
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID não encontrado
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Referência** - *Os tokens mostrados são apenas exemplos.*
Use seus tokens reais do painel do CrewAI AMP.
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
current_task:
type: string
progress:
type: object
properties:
completed_tasks:
type: integer
total_tasks:
type: integer
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
result:
type: object
properties:
output:
type: string
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
error:
type: string
execution_time:
type: number
TaskResult:
type: object
properties:
task_id:
type: string
output:
type: string
agent:
type: string
execution_time:
type: number
Error:
type: object
properties:
error:
type: string
message:
type: string
ValidationError:
type: object
properties:
error:
type: string
message:
type: string
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
responses:
UnauthorizedError:
description: Autenticação falhou
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
NotFoundError:
description: Recurso não encontrado
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
ServerError:
description: Erro interno do servidor
content:
application/json:
schema:
$ref: '#/components/schemas/Error'

View File

@@ -1,40 +1,40 @@
openapi: 3.0.3
info:
title: CrewAI AMP API
title: CrewAI Enterprise API
description: |
REST API for interacting with your deployed CrewAI crews on CrewAI AMP.
REST API for interacting with your deployed CrewAI crews on CrewAI Enterprise.
## Getting Started
1. **Find your crew URL**: Get your unique crew URL from the CrewAI AMP dashboard
1. **Find your crew URL**: Get your unique crew URL from the CrewAI Enterprise dashboard
2. **Copy examples**: Use the code examples from each endpoint page as templates
3. **Replace placeholders**: Update URLs and tokens with your actual values
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
## Authentication
All API requests require a bearer token for authentication. There are two types of tokens:
- **Bearer Token**: Organization-level token for full crew operations
- **User Bearer Token**: User-scoped token for individual access with limited permissions
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
## Reference Documentation
This documentation provides comprehensive examples for each endpoint:
- **Request formats** with all required and optional parameters
- **Response examples** for success and error scenarios
- **Code samples** in multiple programming languages
- **Authentication patterns** with proper Bearer token usage
Copy the examples and customize them with your actual crew URL and authentication tokens.
## Workflow
1. **Discover inputs** using `GET /inputs`
2. **Start execution** using `POST /kickoff`
2. **Start execution** using `POST /kickoff`
3. **Monitor progress** using `GET /status/{kickoff_id}`
version: 1.0.0
contact:
@@ -43,7 +43,7 @@ info:
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Replace with your actual deployed crew URL from the CrewAI AMP dashboard
description: Replace with your actual deployed crew URL from the CrewAI Enterprise dashboard
- url: https://my-travel-crew.crewai.com
description: Example travel planning crew (replace with your URL)
- url: https://content-creation-crew.crewai.com
@@ -58,7 +58,7 @@ paths:
summary: Get Required Inputs
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the list of all required input parameters that your crew expects for execution.
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
operationId: getRequiredInputs
@@ -82,7 +82,7 @@ paths:
value:
inputs: ["budget", "interests", "duration", "age"]
outreach_crew:
summary: Outreach crew inputs
summary: Outreach crew inputs
value:
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
'401':
@@ -97,10 +97,10 @@ paths:
summary: Start Crew Execution
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
to track the execution progress and retrieve results.
Crew executions can take anywhere from seconds to minutes depending on their complexity.
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
operationId: startCrewExecution
@@ -152,7 +152,7 @@ paths:
inputs:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
duration: "7 days"
age: "35"
meta:
requestId: "travel-req-123"
@@ -204,9 +204,9 @@ paths:
summary: Get Execution Status
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the current status and results of a crew execution using its kickoff ID.
The response structure varies depending on the execution state:
- **running**: Execution in progress with current task info
- **completed**: Execution finished with full results
@@ -283,9 +283,9 @@ components:
scheme: bearer
description: |
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
Use your actual Bearer Token or User Bearer Token from the CrewAI AMP dashboard for real API calls.
Use your actual Bearer Token or User Bearer Token from the CrewAI Enterprise dashboard for real API calls.
**Bearer Token**: Organization-level access for full crew operations
**User Bearer Token**: User-scoped access with limited permissions
@@ -309,7 +309,7 @@ components:
description: Number of completed tasks
example: 1
total_tasks:
type: integer
type: integer
description: Total number of tasks in the crew
example: 3
@@ -430,5 +430,5 @@ components:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Internal Server Error"
message: "An unexpected error occurred"
error: "Internal Server Error"
message: "An unexpected error occurred"

Some files were not shown because too many files have changed in this diff Show More