Compare commits

..

8 Commits

Author SHA1 Message Date
Rip&Tear
56fb691b8f Merge branch 'main' into devin/1735621211-fix-llm-parameter-case-normalization 2025-01-05 16:15:15 +08:00
João Moura
440883e9e8 improving guardrails
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-01-04 16:30:20 -03:00
João Moura
d3da73136c small adjustments before cutting version 2025-01-04 13:44:33 -03:00
João Moura
7272fd15ac Preparing new version (#1845)
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
* Preparing new version
2025-01-03 21:49:55 -03:00
Lorenze Jay
518800239c fix knowledge docs with correct imports (#1846)
* fix knowledge docs with correct imports

* more fixes
2025-01-03 16:45:11 -08:00
Rip&Tear
4c3253e800 Merge branch 'main' into devin/1735621211-fix-llm-parameter-case-normalization 2024-12-31 17:51:28 +08:00
Devin AI
8517a1462a fix: resolve import sorting issues in agent.py and test_agent.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-31 05:36:32 +00:00
Devin AI
452aa9f173 fix: normalize LLM parameter case and improve type handling
- Add case normalization for 'LLM' parameter with deprecation warning
- Add comprehensive type conversion for LLM parameters
- Add proper error handling for parameter conversion
- Add tests to verify parameter handling

Fixes #1817

Co-Authored-By: Joe Moura <joao@crewai.com>
2024-12-31 05:00:11 +00:00
37 changed files with 1505 additions and 1291 deletions

View File

@@ -146,81 +146,106 @@ Here are examples of how to use different types of knowledge sources:
### Text File Knowledge Source
```python
from crewai.knowledge.source import CrewDoclingSource
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
# Create a text file knowledge source
text_source = CrewDoclingSource(
file_paths=["document.txt", "another.txt"]
)
# Create knowledge with text file source
knowledge = Knowledge(
collection_name="text_knowledge",
sources=[text_source]
# Create crew with text file source on agents or crew level
agent = Agent(
...
knowledge_sources=[text_source]
)
crew = Crew(
...
knowledge_sources=[text_source]
)
```
### PDF Knowledge Source
```python
from crewai.knowledge.source import PDFKnowledgeSource
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
# Create a PDF knowledge source
pdf_source = PDFKnowledgeSource(
file_paths=["document.pdf", "another.pdf"]
)
# Create knowledge with PDF source
knowledge = Knowledge(
collection_name="pdf_knowledge",
sources=[pdf_source]
# Create crew with PDF knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[pdf_source]
)
crew = Crew(
...
knowledge_sources=[pdf_source]
)
```
### CSV Knowledge Source
```python
from crewai.knowledge.source import CSVKnowledgeSource
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
# Create a CSV knowledge source
csv_source = CSVKnowledgeSource(
file_paths=["data.csv"]
)
# Create knowledge with CSV source
knowledge = Knowledge(
collection_name="csv_knowledge",
sources=[csv_source]
# Create crew with CSV knowledge source or on agent level
agent = Agent(
...
knowledge_sources=[csv_source]
)
crew = Crew(
...
knowledge_sources=[csv_source]
)
```
### Excel Knowledge Source
```python
from crewai.knowledge.source import ExcelKnowledgeSource
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
# Create an Excel knowledge source
excel_source = ExcelKnowledgeSource(
file_paths=["spreadsheet.xlsx"]
)
# Create knowledge with Excel source
knowledge = Knowledge(
collection_name="excel_knowledge",
sources=[excel_source]
# Create crew with Excel knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[excel_source]
)
crew = Crew(
...
knowledge_sources=[excel_source]
)
```
### JSON Knowledge Source
```python
from crewai.knowledge.source import JSONKnowledgeSource
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
# Create a JSON knowledge source
json_source = JSONKnowledgeSource(
file_paths=["data.json"]
)
# Create knowledge with JSON source
knowledge = Knowledge(
collection_name="json_knowledge",
sources=[json_source]
# Create crew with JSON knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[json_source]
)
crew = Crew(
...
knowledge_sources=[json_source]
)
```
@@ -232,7 +257,7 @@ Knowledge sources automatically chunk content for better processing.
You can configure chunking behavior in your knowledge sources:
```python
from crewai.knowledge.source import StringKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
source = StringKnowledgeSource(
content="Your content here",

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.86.0"
version = "0.95.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.86.0"
__version__ = "0.95.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -21,7 +21,6 @@ from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -138,11 +137,170 @@ class Agent(BaseAgent):
@model_validator(mode="after")
def post_init_setup(self):
# Handle case-insensitive LLM parameter
if hasattr(self, 'LLM'):
import warnings
warnings.warn(
"Using 'LLM' parameter is deprecated. Use lowercase 'llm' instead.",
DeprecationWarning,
stacklevel=2
)
# Transfer LLM value to llm
self.llm = getattr(self, 'LLM')
delattr(self, 'LLM')
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Initialize LLM parameters
llm_params: Dict[str, Any] = {}
self.llm = create_llm(self.llm)
self.function_calling_llm = create_llm(self.function_calling_llm)
# Handle different cases for self.llm
if isinstance(self.llm, str):
# If it's a string, create an LLM instance
self.llm = LLM(model=self.llm)
elif isinstance(self.llm, LLM):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
"OPENAI_BASE_URL"
)
if api_base:
llm_params["base_url"] = api_base
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
# Check if the environment variable is set
key_name = env_var.get("key_name")
if key_name and key_name not in unaccepted_attributes:
env_value = os.environ.get(key_name)
if env_value:
key_name = key_name.lower()
for pattern in LITELLM_PARAMS:
if pattern in key_name:
key_name = pattern
break
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
# Convert environment variables to proper types
try:
param_value = None
# Integer parameters
if key in ['timeout', 'max_tokens', 'n', 'max_completion_tokens']:
try:
param_value = int(str(value)) if value else None
except (ValueError, TypeError):
continue
# Float parameters
elif key in ['temperature', 'top_p', 'presence_penalty', 'frequency_penalty']:
try:
param_value = float(str(value)) if value else None
except (ValueError, TypeError):
continue
# Boolean parameters
elif key == 'logprobs':
if isinstance(value, bool):
param_value = value
elif isinstance(value, str):
param_value = value.lower() == 'true'
# Dict parameters
elif key == 'logit_bias' and value:
try:
if isinstance(value, dict):
param_value = {int(k): float(v) for k, v in value.items()}
elif isinstance(value, str):
import json
bias_dict = json.loads(value)
param_value = {int(k): float(v) for k, v in bias_dict.items()}
except (ValueError, TypeError, json.JSONDecodeError):
continue
elif key == 'response_format' and value:
try:
if isinstance(value, dict):
param_value = value
elif isinstance(value, str):
import json
param_value = json.loads(value)
except (ValueError, json.JSONDecodeError):
continue
# List parameters
elif key == 'callbacks':
if isinstance(value, (list, tuple)):
param_value = list(value)
elif isinstance(value, str):
param_value = [cb.strip() for cb in value.split(',') if cb.strip()]
else:
param_value = []
# String and other parameters
else:
param_value = value
if param_value is not None:
llm_params[key] = param_value
except Exception:
# Skip any invalid values
continue
self.llm = LLM(**llm_params)
else:
# For any other type, attempt to extract relevant attributes
llm_params = {
"model": getattr(self.llm, "model_name", None)
or getattr(self.llm, "deployment_name", None)
or str(self.llm),
"temperature": getattr(self.llm, "temperature", None),
"max_tokens": getattr(self.llm, "max_tokens", None),
"logprobs": getattr(self.llm, "logprobs", None),
"timeout": getattr(self.llm, "timeout", None),
"max_retries": getattr(self.llm, "max_retries", None),
"api_key": getattr(self.llm, "api_key", None),
"base_url": getattr(self.llm, "base_url", None),
"organization": getattr(self.llm, "organization", None),
}
# Remove None values to avoid passing unnecessary parameters
llm_params = {k: v for k, v in llm_params.items() if v is not None}
self.llm = LLM(**llm_params)
# Similar handling for function_calling_llm
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
if not self.agent_executor:
self._setup_agent_executor()
@@ -193,8 +351,6 @@ class Agent(BaseAgent):
task_prompt = task.prompt()
print("task_prompt:", task_prompt)
# If the task requires output in JSON or Pydantic format,
# append specific instructions to the task prompt to ensure
# that the final answer does not include any code block markers

View File

@@ -1,14 +1,11 @@
import os
from importlib.metadata import version as get_version
from typing import Optional, Tuple
from typing import Optional
import click
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.crew_chat import run_chat
from crewai.cli.fetch_chat_llm import fetch_chat_llm
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
@@ -345,15 +342,5 @@ def flow_add_crew(crew_name):
add_crew_to_flow(crew_name)
@crewai.command()
def chat():
"""
Start a conversation with the Crew, collecting user-supplied inputs,
and using the Chat LLM to generate responses.
"""
click.echo("Starting a conversation with the Crew")
run_chat()
if __name__ == "__main__":
crewai()

View File

@@ -158,8 +158,6 @@ MODELS = {
],
}
DEFAULT_LLM_MODEL = "gpt-4o-mini"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

View File

@@ -1,386 +0,0 @@
import json
import re
import sys
from pathlib import Path
from typing import Any, Dict, List, Set, Tuple
import click
import tomli
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.cli.fetch_chat_llm import fetch_chat_llm
from crewai.cli.fetch_crew_inputs import fetch_crew_inputs
from crewai.crew import Crew
from crewai.task import Task
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
def run_chat():
"""
Runs an interactive chat loop using the Crew's chat LLM with function calling.
Incorporates crew_name, crew_description, and input fields to build a tool schema.
Exits if crew_name or crew_description are missing.
"""
crew, crew_name = load_crew_and_name()
click.secho("\nFetching the Chat LLM...", fg="cyan")
try:
chat_llm = create_llm(crew.chat_llm)
except Exception as e:
click.secho(f"Failed to retrieve Chat LLM: {e}", fg="red")
return
if not chat_llm:
click.secho("No valid Chat LLM returned. Exiting.", fg="red")
return
# Generate crew chat inputs automatically
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
print("crew_inputs:", crew_chat_inputs)
# Generate a tool schema from the crew inputs
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
print("crew_tool_schema:", crew_tool_schema)
# Build initial system message
required_fields_str = (
", ".join(
f"{field.name} (desc: {field.description or 'n/a'})"
for field in crew_chat_inputs.inputs
)
or "(No required fields detected)"
)
system_message = (
"You are a helpful AI assistant for the CrewAI platform. "
"Your primary purpose is to assist users with the crew's specific tasks. "
"You can answer general questions, but should guide users back to the crew's purpose afterward. "
"For example, after answering a general question, remind the user of your main purpose, such as generating a research report, and prompt them to specify a topic or task related to the crew's purpose. "
"You have a function (tool) you can call by name if you have all required inputs. "
f"Those required inputs are: {required_fields_str}. "
"Once you have them, call the function. "
"Please keep your responses concise and friendly. "
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
f"\nCrew Name: {crew_chat_inputs.crew_name}"
f"\nCrew Description: {crew_chat_inputs.crew_description}"
)
messages = [
{"role": "system", "content": system_message},
]
# Create a wrapper function that captures 'crew' and 'messages' from the enclosing scope
def run_crew_tool_with_messages(**kwargs):
return run_crew_tool(crew, messages, **kwargs)
# Prepare available_functions with the wrapper function
available_functions = {
crew_chat_inputs.crew_name: run_crew_tool_with_messages,
}
click.secho(
"\nEntering an interactive chat loop with function-calling.\n"
"Type 'exit' or Ctrl+C to quit.\n",
fg="cyan",
)
# Main chat loop
while True:
try:
user_input = click.prompt("You", type=str)
if user_input.strip().lower() in ["exit", "quit"]:
click.echo("Exiting chat. Goodbye!")
break
# Append user message
messages.append({"role": "user", "content": user_input})
# Invoke the LLM, passing tools and available_functions
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
)
# Append assistant's reply
messages.append({"role": "assistant", "content": final_response})
# Display assistant's reply
click.secho(f"\nAssistant: {final_response}\n", fg="green")
except KeyboardInterrupt:
click.echo("\nExiting chat. Goodbye!")
break
except Exception as e:
click.secho(f"An error occurred: {e}", fg="red")
break
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
"""
Dynamically build a Littellm 'function' schema for the given crew.
crew_name: The name of the crew (used for the function 'name').
crew_inputs: A ChatInputs object containing crew_description
and a list of input fields (each with a name & description).
"""
properties = {}
for field in crew_inputs.inputs:
properties[field.name] = {
"type": "string",
"description": field.description or "No description provided",
}
required_fields = [field.name for field in crew_inputs.inputs]
return {
"type": "function",
"function": {
"name": crew_inputs.crew_name,
"description": crew_inputs.crew_description or "No crew description",
"parameters": {
"type": "object",
"properties": properties,
"required": required_fields,
},
},
}
def run_crew_tool(crew: Crew, messages: List[Dict[str, str]], **kwargs):
"""
Runs the crew using crew.kickoff(inputs=kwargs) and returns the output.
Args:
crew (Crew): The crew instance to run.
messages (List[Dict[str, str]]): The chat messages up to this point.
**kwargs: The inputs collected from the user.
Returns:
str: The output from the crew's execution.
Raises:
SystemExit: Exits the chat if an error occurs during crew execution.
"""
try:
# Serialize 'messages' to JSON string before adding to kwargs
kwargs['crew_chat_messages'] = json.dumps(messages)
# Run the crew with the provided inputs
crew_output = crew.kickoff(inputs=kwargs)
# Convert CrewOutput to a string to send back to the user
result = str(crew_output)
return result
except Exception as e:
# Exit the chat and show the error message
click.secho("An error occurred while running the crew:", fg="red")
click.secho(str(e), fg="red")
sys.exit(1)
def load_crew_and_name() -> Tuple[Crew, str]:
"""
Loads the crew by importing the crew class from the user's project.
Returns:
Tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
"""
# Get the current working directory
cwd = Path.cwd()
# Path to the pyproject.toml file
pyproject_path = cwd / "pyproject.toml"
if not pyproject_path.exists():
raise FileNotFoundError("pyproject.toml not found in the current directory.")
# Load the pyproject.toml file using 'tomli'
with pyproject_path.open("rb") as f:
pyproject_data = tomli.load(f)
# Get the project name from the 'project' section
project_name = pyproject_data["project"]["name"]
folder_name = project_name
# Derive the crew class name from the project name
# E.g., if project_name is 'my_project', crew_class_name is 'MyProject'
crew_class_name = project_name.replace("_", " ").title().replace(" ", "")
# Add the 'src' directory to sys.path
src_path = cwd / "src"
if str(src_path) not in sys.path:
sys.path.insert(0, str(src_path))
# Import the crew module
crew_module_name = f"{folder_name}.crew"
try:
crew_module = __import__(crew_module_name, fromlist=[crew_class_name])
except ImportError as e:
raise ImportError(f"Failed to import crew module {crew_module_name}: {e}")
# Get the crew class from the module
try:
crew_class = getattr(crew_module, crew_class_name)
except AttributeError:
raise AttributeError(
f"Crew class {crew_class_name} not found in module {crew_module_name}"
)
# Instantiate the crew
crew_instance = crew_class().crew()
return crew_instance, crew_class_name
def generate_crew_chat_inputs(crew: Crew, crew_name: str, chat_llm) -> ChatInputs:
"""
Generates the ChatInputs required for the crew by analyzing the tasks and agents.
Args:
crew (Crew): The crew object containing tasks and agents.
crew_name (str): The name of the crew.
chat_llm: The chat language model to use for AI calls.
Returns:
ChatInputs: An object containing the crew's name, description, and input fields.
"""
# Extract placeholders from tasks and agents
required_inputs = fetch_required_inputs(crew)
# Generate descriptions for each input using AI
input_fields = []
for input_name in required_inputs:
description = generate_input_description_with_ai(input_name, crew, chat_llm)
input_fields.append(ChatInputField(name=input_name, description=description))
# Generate crew description using AI
crew_description = generate_crew_description_with_ai(crew, chat_llm)
return ChatInputs(
crew_name=crew_name,
crew_description=crew_description,
inputs=input_fields
)
def fetch_required_inputs(crew: Crew) -> Set[str]:
"""
Extracts placeholders from the crew's tasks and agents.
Args:
crew (Crew): The crew object.
Returns:
Set[str]: A set of placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks
for task in crew.tasks:
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents
for agent in crew.agents:
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) -> str:
"""
Generates an input description using AI based on the context of the crew.
Args:
input_name (str): The name of the input placeholder.
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the input.
"""
# Gather context from tasks and agents where the input is used
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
if f"{{{input_name}}}" in task.description or f"{{{input_name}}}" in task.expected_output:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(lambda m: m.group(1), task.description)
expected_output = placeholder_pattern.sub(lambda m: m.group(1), task.expected_output)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
if f"{{{input_name}}}" in agent.role or f"{{{input_name}}}" in agent.goal or f"{{{input_name}}}" in agent.backstory:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
# If no context is found for the input, raise an exception as per instruction
raise ValueError(f"No context found for input '{input_name}'.")
prompt = (
f"Based on the following context, write a concise description (15 words or less) of the input '{input_name}'.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
description = response.strip()
return description
def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
"""
Generates a brief description of the crew using AI.
Args:
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the crew's purpose (15 words or less).
"""
# Gather context from tasks and agents
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(lambda m: m.group(1), task.description)
expected_output = placeholder_pattern.sub(lambda m: m.group(1), task.expected_output)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
raise ValueError("No context found for generating crew description.")
prompt = (
"Based on the following context, write a concise, action-oriented description (15 words or less) of the crew's purpose.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
crew_description = response.strip()
return crew_description

View File

@@ -1,81 +0,0 @@
import json
import subprocess
import click
from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.llm import LLM
def fetch_chat_llm() -> LLM:
"""
Fetch the chat LLM by running "uv run fetch_chat_llm" (or your chosen script name),
parsing its JSON stdout, and returning an LLM instance.
This expects the script "fetch_chat_llm" to print out JSON that represents the
LLM parameters (e.g., by calling something like: print(json.dumps(llm.to_dict()))).
Any error, whether from the subprocess or JSON parsing, will raise a RuntimeError.
"""
# You may change this command to match whatever's in your pyproject.toml [project.scripts].
command = ["uv", "run", "fetch_chat_llm"]
crewai_version = get_crewai_version()
min_required_version = "0.87.0" # Adjust as needed
pyproject_data = read_toml()
# If old poetry-based setup is detected and version is below min_required_version
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
click.secho(
f"You are running an older version of crewAI ({crewai_version}) that uses poetry pyproject.toml.\n"
f"Please run `crewai update` to transition your pyproject.toml to use uv.",
fg="red",
)
# Initialize a reference to your LLM
llm_instance = None
try:
result = subprocess.run(command, capture_output=True, text=True, check=True)
stdout_lines = result.stdout.strip().splitlines()
# Find the line that contains the JSON data
json_line = next(
(
line
for line in stdout_lines
if line.startswith("{") and line.endswith("}")
),
None,
)
if not json_line:
raise RuntimeError(
"No valid JSON output received from `fetch_chat_llm` command."
)
try:
llm_data = json.loads(json_line)
llm_instance = LLM.from_dict(llm_data)
except json.JSONDecodeError as e:
raise RuntimeError(
f"Unable to parse JSON from `fetch_chat_llm` output: {e}\nOutput: {repr(json_line)}"
) from e
except subprocess.CalledProcessError as e:
raise RuntimeError(f"An error occurred while fetching chat LLM: {e}") from e
except Exception as e:
raise RuntimeError(
f"An unexpected error occurred while fetching chat LLM: {e}"
) from e
if not llm_instance:
raise RuntimeError("Failed to create a valid LLM from `fetch_chat_llm` output.")
return llm_instance

View File

@@ -1,86 +0,0 @@
import json
import subprocess
from typing import Optional
import click
from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.types.crew_chat import ChatInputs
def fetch_crew_inputs() -> Optional[ChatInputs]:
"""
Fetch the crew's ChatInputs (a structure containing crew_description and input fields)
by running "uv run fetch_chat_inputs", which prints JSON representing a ChatInputs object.
This function will parse that JSON and return a ChatInputs instance.
If the output is empty or invalid, an empty ChatInputs object is returned.
"""
command = ["uv", "run", "fetch_chat_inputs"]
crewai_version = get_crewai_version()
min_required_version = "0.87.0"
pyproject_data = read_toml()
crew_name = pyproject_data.get("project", {}).get("name", None)
# If you're on an older poetry-based setup and version < min_required_version
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
click.secho(
f"You are running an older version of crewAI ({crewai_version}) that uses poetry pyproject.toml.\n"
f"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="red",
)
try:
result = subprocess.run(command, capture_output=True, text=True, check=True)
stdout_lines = result.stdout.strip().splitlines()
# Find the line that contains the JSON data
json_line = next(
(
line
for line in stdout_lines
if line.startswith("{") and line.endswith("}")
),
None,
)
if not json_line:
click.echo(
"No valid JSON output received from `fetch_chat_inputs` command.",
err=True,
)
return None
try:
raw_data = json.loads(json_line)
chat_inputs = ChatInputs(**raw_data)
if crew_name:
chat_inputs.crew_name = crew_name
return chat_inputs
except json.JSONDecodeError as e:
click.echo(
f"Unable to parse JSON from `fetch_chat_inputs` output: {e}\nOutput: {repr(json_line)}",
err=True,
)
return None
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while fetching chat inputs: {e}", err=True)
click.echo(e.output, err=True, nl=True)
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry.\n"
"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)
return None

View File

@@ -1,10 +1,8 @@
#!/usr/bin/env python
import sys
import json
import warnings
from {{folder_name}}.crew import {{crew_name}}
from crewai.utilities.llm_utils import create_llm
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -15,30 +13,12 @@ warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
def run():
"""
Run the crew, allowing CLI overrides for required inputs.
Usage example:
uv run run_crew -- --topic="New Topic" --some_other_field="Value"
Run the crew.
"""
# Default inputs
inputs = {
'topic': 'AI LLMs'
# Add any other default fields here
}
# 1) Gather overrides from sys.argv
# sys.argv might look like: ['run_crew', '--topic=NewTopic']
# But be aware that if you're calling "uv run run_crew", sys.argv might have
# additional items. So we typically skip the first 1 or 2 items to get only overrides.
overrides = parse_cli_overrides(sys.argv[1:])
# 2) Merge the overrides into defaults
inputs.update(overrides)
# 3) Kick off the crew with final inputs
try:
{{crew_name}}().crew().kickoff(inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while running the crew: {e}")
{{crew_name}}().crew().kickoff(inputs=inputs)
def train():
@@ -75,94 +55,4 @@ def test():
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while testing the crew: {e}")
def fetch_inputs():
"""
Command that gathers required placeholders/inputs from the Crew, then
prints them as JSON to stdout so external scripts can parse them easily.
"""
try:
crew = {{crew_name}}().crew()
crew_inputs = crew.fetch_inputs()
json_string = json.dumps(list(crew_inputs))
print(json_string)
except Exception as e:
raise Exception(f"An error occurred while fetching inputs: {e}")
def fetch_chat_llm():
"""
Command that fetches the 'chat_llm' property from the Crew,
instantiates it via create_llm(),
and prints the resulting LLM as JSON (using LLM.to_dict()) to stdout.
"""
try:
crew = {{crew_name}}().crew()
raw_chat_llm = getattr(crew, "chat_llm", None)
if not raw_chat_llm:
# If the crew doesn't have chat_llm, fallback to create_llm(None)
final_llm = create_llm(None)
else:
# raw_chat_llm might be a dict, or an LLM, or something else
final_llm = create_llm(raw_chat_llm)
if final_llm:
# Print the final LLM as JSON, so fetch_chat_llm.py can parse it
from crewai.llm import LLM # Import here to avoid circular references
# Make sure it's an instance of the LLM class:
if isinstance(final_llm, LLM):
print(json.dumps(final_llm.to_dict()))
else:
# If somehow it's not an LLM, try to interpret as a dict
# or revert to an empty fallback
if isinstance(final_llm, dict):
print(json.dumps(final_llm))
else:
print(json.dumps({}))
else:
print(json.dumps({}))
except Exception as e:
raise Exception(f"An error occurred while fetching chat LLM: {e}")
# TODO: Talk to Joao about making using LLM calls to analyze the crew
# and generate all of this information automatically
def fetch_chat_inputs():
"""
Command that fetches the 'chat_inputs' property from the Crew,
and prints it as JSON to stdout.
"""
try:
crew = {{crew_name}}().crew()
raw_chat_inputs = getattr(crew, "chat_inputs", None)
if raw_chat_inputs:
# Convert to dictionary to print JSON
print(json.dumps(raw_chat_inputs.model_dump()))
else:
# If crew.chat_inputs is None or empty, print an empty JSON
print(json.dumps({}))
except Exception as e:
raise Exception(f"An error occurred while fetching chat inputs: {e}")
def parse_cli_overrides(args_list) -> dict:
"""
Parse arguments in the form of --key=value from a list of CLI arguments.
Return them as a dict. For example:
['--topic=AI LLMs', '--username=John'] => {'topic': 'AI LLMs', 'username': 'John'}
"""
overrides = {}
for arg in args_list:
if arg.startswith("--"):
# remove the leading --
trimmed = arg[2:]
if "=" in trimmed:
key, val = trimmed.split("=", 1)
overrides[key] = val
else:
# If someone passed something like --topic (no =),
# either handle differently or ignore
pass
return overrides
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0,<1.0.0"
"crewai[tools]>=0.95.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0,<1.0.0",
"crewai[tools]>=0.95.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.86.0"
"crewai[tools]>=0.95.0"
]
[tool.crewai]

View File

@@ -1,11 +1,10 @@
import asyncio
import json
import re
import uuid
import warnings
from concurrent.futures import Future
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import (
UUID4,
@@ -37,7 +36,6 @@ from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.crew_chat import ChatInputs
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -205,14 +203,6 @@ class Crew(BaseModel):
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
chat_llm: Optional[Any] = Field(
default=None,
description="LLM used to handle chatting with the crew.",
)
chat_inputs: Optional[ChatInputs] = Field(
default=None,
description="Holds descriptions of the crew as well as named inputs for chat usage.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@@ -1001,31 +991,6 @@ class Crew(BaseModel):
return self._knowledge.query(query)
return None
def fetch_inputs(self) -> Set[str]:
"""
Gathers placeholders (e.g., {something}) referenced in tasks or agents.
Scans each task's 'description' + 'expected_output', and each agent's
'role', 'goal', and 'backstory'.
Returns a set of all discovered placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks for inputs
for task in self.tasks:
# description and expected_output might contain e.g. {topic}, {user_name}, etc.
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents for inputs
for agent in self.agents:
# role, goal, backstory might have placeholders like {role_detail}, etc.
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def copy(self):
"""Create a deep copy of the Crew."""
@@ -1081,7 +1046,7 @@ class Crew(BaseModel):
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[
task.interpolate_inputs_and_add_conversation_history(
task.interpolate_inputs(
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
inputs
)

View File

@@ -1,27 +1,21 @@
import json
import logging
import os
import sys
import threading
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Union, cast
from dotenv import load_dotenv
from importlib import resources
from typing import Any, Dict, List, Optional, Union
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices, get_supported_openai_params
from litellm.types.utils import ModelResponse
from litellm import get_supported_openai_params
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
load_dotenv()
class FilteredStream:
def __init__(self, original_stream):
@@ -30,7 +24,6 @@ class FilteredStream:
def write(self, s) -> int:
with self._lock:
# Filter out extraneous messages from LiteLLM
if (
"Give Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new"
in s
@@ -86,15 +79,18 @@ CONTEXT_WINDOW_USAGE_RATIO = 0.75
def suppress_warnings():
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", message="open_text is deprecated*", category=DeprecationWarning)
# Redirect stdout and stderr
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = FilteredStream(old_stdout)
sys.stderr = FilteredStream(old_stderr)
try:
yield
finally:
# Restore stdout and stderr
sys.stdout = old_stdout
sys.stderr = old_stderr
@@ -115,12 +111,13 @@ class LLM:
logit_bias: Optional[Dict[int, float]] = None,
response_format: Optional[Dict[str, Any]] = None,
seed: Optional[int] = None,
logprobs: Optional[int] = None,
logprobs: Optional[bool] = None,
top_logprobs: Optional[int] = None,
base_url: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] = [],
**kwargs,
):
self.model = model
self.timeout = timeout
@@ -142,96 +139,19 @@ class LLM:
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
# For safety, we disable passing init params to next calls
litellm.drop_params = True
self.set_callbacks(callbacks)
self.set_env_callbacks()
def to_dict(self) -> dict:
"""
Return a dict of all relevant parameters for serialization.
"""
return {
"model": self.model,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n,
"stop": self.stop,
"max_completion_tokens": self.max_completion_tokens,
"max_tokens": self.max_tokens,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"logit_bias": self.logit_bias,
"response_format": self.response_format,
"seed": self.seed,
"logprobs": self.logprobs,
"top_logprobs": self.top_logprobs,
"base_url": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
"callbacks": self.callbacks,
}
@classmethod
def from_dict(cls, data: dict) -> "LLM":
"""
Create an LLM instance from a dict.
We assume the dict has all relevant keys that match what's in the constructor.
"""
known_fields = {}
known_fields["model"] = data.pop("model", None)
known_fields["timeout"] = data.pop("timeout", None)
known_fields["temperature"] = data.pop("temperature", None)
known_fields["top_p"] = data.pop("top_p", None)
known_fields["n"] = data.pop("n", None)
known_fields["stop"] = data.pop("stop", None)
known_fields["max_completion_tokens"] = data.pop("max_completion_tokens", None)
known_fields["max_tokens"] = data.pop("max_tokens", None)
known_fields["presence_penalty"] = data.pop("presence_penalty", None)
known_fields["frequency_penalty"] = data.pop("frequency_penalty", None)
known_fields["logit_bias"] = data.pop("logit_bias", None)
known_fields["response_format"] = data.pop("response_format", None)
known_fields["seed"] = data.pop("seed", None)
known_fields["logprobs"] = data.pop("logprobs", None)
known_fields["top_logprobs"] = data.pop("top_logprobs", None)
known_fields["base_url"] = data.pop("base_url", None)
known_fields["api_version"] = data.pop("api_version", None)
known_fields["api_key"] = data.pop("api_key", None)
known_fields["callbacks"] = data.pop("callbacks", None)
return cls(**known_fields, **data)
def call(
self,
messages: List[Dict[str, str]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level call method that:
1) Calls litellm.completion
2) Checks for function/tool calls
3) If a tool call is found:
a) executes the function
b) returns the result
4) If no tool call, returns the text response
:param messages: The conversation messages
:param tools: Optional list of function schemas for function calling
:param callbacks: Optional list of callbacks
:param available_functions: A dictionary mapping function_name -> actual Python function
:return: Final text response from the LLM or the tool result
"""
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
with suppress_warnings():
if callbacks:
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 1) Make the completion call
params = {
"model": self.model,
"messages": messages,
@@ -252,65 +172,21 @@ class LLM:
"api_version": self.api_version,
"api_key": self.api_key,
"stream": False,
"tools": tools, # pass the tool schema
**self.kwargs,
}
# Remove None values
# Remove None values to avoid passing unnecessary parameters
params = {k: v for k, v in params.items() if v is not None}
response = litellm.completion(**params)
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
tool_calls = getattr(response_message, "tool_calls", [])
# --- 2) If no tool calls, return the text response
if not tool_calls or not available_functions:
return text_response
# --- 3) Handle the tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
if function_name in available_functions:
# Parse arguments
try:
function_args = json.loads(tool_call.function.arguments)
except json.JSONDecodeError as e:
logging.warning(f"Failed to parse function arguments: {e}")
return text_response # Fallback to text response
fn = available_functions[function_name]
try:
# Call the actual tool function
result = fn(**function_args)
print(f"Result from function '{function_name}': {result}")
# Return the result directly
return result
except Exception as e:
logging.error(
f"Error executing function '{function_name}': {e}"
)
return text_response # Fallback to text response
else:
logging.warning(
f"Tool call requested unknown function '{function_name}'"
)
return text_response # Fallback to text response
return response["choices"][0]["message"]["content"]
except Exception as e:
# Check if context length was exceeded, otherwise log
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
# Re-raise the exception
raise
raise # Re-raise the exception after logging
def supports_function_calling(self) -> bool:
try:
@@ -329,10 +205,7 @@ class LLM:
return False
def get_context_window_size(self) -> int:
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
"""
# Only using 75% of the context window size to avoid cutting the message in the middle
if self.context_window_size != 0:
return self.context_window_size
@@ -345,38 +218,51 @@ class LLM:
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
"""
Attempt to keep a single set of callbacks in litellm by removing old
duplicates and adding new ones.
"""
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
with suppress_warnings():
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
litellm.callbacks = callbacks
litellm.callbacks = callbacks
def set_env_callbacks(self):
"""
Sets the success and failure callbacks for the LiteLLM library from environment variables.
This method reads the `LITELLM_SUCCESS_CALLBACKS` and `LITELLM_FAILURE_CALLBACKS`
environment variables, which should contain comma-separated lists of callback names.
It then assigns these lists to `litellm.success_callback` and `litellm.failure_callback`,
respectively.
If the environment variables are not set or are empty, the corresponding callback lists
will be set to empty lists.
Example:
LITELLM_SUCCESS_CALLBACKS="langfuse,langsmith"
LITELLM_FAILURE_CALLBACKS="langfuse"
This will set `litellm.success_callback` to ["langfuse", "langsmith"] and
`litellm.failure_callback` to ["langfuse"].
"""
success_callbacks_str = os.environ.get("LITELLM_SUCCESS_CALLBACKS", "")
success_callbacks = []
if success_callbacks_str:
success_callbacks = [
cb.strip() for cb in success_callbacks_str.split(",") if cb.strip()
]
with suppress_warnings():
success_callbacks_str = os.environ.get("LITELLM_SUCCESS_CALLBACKS", "")
success_callbacks = []
if success_callbacks_str:
success_callbacks = [
callback.strip() for callback in success_callbacks_str.split(",")
]
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
failure_callbacks = []
if failure_callbacks_str:
failure_callbacks = [
cb.strip() for cb in failure_callbacks_str.split(",") if cb.strip()
]
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
failure_callbacks = []
if failure_callbacks_str:
failure_callbacks = [
callback.strip() for callback in failure_callbacks_str.split(",")
]
litellm.success_callback = success_callbacks
litellm.failure_callback = failure_callbacks
litellm.success_callback = success_callbacks
litellm.failure_callback = failure_callbacks

View File

@@ -41,6 +41,7 @@ from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
class Task(BaseModel):
@@ -133,7 +134,6 @@ class Task(BaseModel):
default=3, description="Maximum number of retries when guardrail fails"
)
retry_count: int = Field(default=0, description="Current number of retries")
start_time: Optional[datetime.datetime] = Field(
default=None, description="Start time of the task execution"
)
@@ -391,10 +391,14 @@ class Task(BaseModel):
)
self.retry_count += 1
context = (
f"### Previous attempt failed validation: {guardrail_result.error}\n\n\n"
f"### Previous result:\n{task_output.raw}\n\n\n"
"Try again, making sure to address the validation error."
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to:{guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
@@ -449,11 +453,9 @@ class Task(BaseModel):
tasks_slices = [self.description, output]
return "\n".join(tasks_slices)
def interpolate_inputs_and_add_conversation_history(self, inputs: Dict[str, Union[str, int, float]]) -> None:
def interpolate_inputs(self, inputs: Dict[str, Union[str, int, float]]) -> None:
"""Interpolate inputs into the task description, expected output, and output file path.
Add conversation history if present.
Args:
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, and floats.
@@ -493,33 +495,9 @@ class Task(BaseModel):
input_string=self._original_output_file, inputs=inputs
)
except (KeyError, ValueError) as e:
raise ValueError(f"Error interpolating output_file path: {str(e)}") from e
if "crew_chat_messages" in inputs and inputs["crew_chat_messages"]:
# Fetch the conversation history instruction using self.i18n.slice
conversation_instruction = self.i18n.slice(
"conversation_history_instruction"
)
print("crew_chat_messages:", inputs["crew_chat_messages"])
# Ensure that inputs["crew_chat_messages"] is a string
crew_chat_messages_json = str(inputs["crew_chat_messages"])
try:
crew_chat_messages = json.loads(crew_chat_messages_json)
except json.JSONDecodeError as e:
print("An error occurred while parsing crew chat messages:", e)
raise
# Process the messages to build conversation history
conversation_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in crew_chat_messages
if isinstance(msg, dict) and "role" in msg and "content" in msg
)
# Add the instruction and conversation history to the description
self.description += f"\n\n{conversation_instruction}\n\n{conversation_history}"
raise ValueError(
f"Error interpolating output_file path: {str(e)}"
) from e
def interpolate_only(
self, input_string: Optional[str], inputs: Dict[str, Union[str, int, float]]

View File

@@ -1,5 +1,5 @@
import logging
from typing import Optional, Union
from typing import Optional
from pydantic import Field
@@ -54,12 +54,12 @@ class BaseAgentTool(BaseTool):
) -> str:
"""
Execute delegation to an agent with case-insensitive and whitespace-tolerant matching.
Args:
agent_name: Name/role of the agent to delegate to (case-insensitive)
task: The specific question or task to delegate
context: Optional additional context for the task execution
Returns:
str: The execution result from the delegated agent or an error message
if the agent cannot be found

View File

@@ -1,12 +1,23 @@
import warnings
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Callable, Type, get_args, get_origin
from pydantic import BaseModel, ConfigDict, Field, create_model, validator
from pydantic import (
BaseModel,
ConfigDict,
Field,
PydanticDeprecatedSince20,
create_model,
validator,
)
from pydantic import BaseModel as PydanticBaseModel
from crewai.tools.structured_tool import CrewStructuredTool
# Ignore all "PydanticDeprecatedSince20" warnings globally
warnings.filterwarnings("ignore", category=PydanticDeprecatedSince20)
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):

View File

@@ -23,8 +23,7 @@
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\"",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals."
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\""
},
"errors": {
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
@@ -35,7 +34,8 @@
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
"wrong_tool_name": "You tried to use the tool {tool}, but it doesn't exist. You must use one of the following tools, use one at time: {tools}.",
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}",
"agent_tool_execution_error": "Error executing task with agent '{agent_role}'. Error: {error}"
"agent_tool_execution_error": "Error executing task with agent '{agent_role}'. Error: {error}",
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error."
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",

View File

@@ -1,44 +0,0 @@
from typing import List, Optional
from pydantic import BaseModel, Field
class ChatInputField(BaseModel):
"""
Represents a single required input for the crew, with a name and short description.
Example:
{
"name": "topic",
"description": "The topic to focus on for the conversation"
}
"""
name: str = Field(..., description="The name of the input field")
description: str = Field(
...,
description="A short description of the input field",
)
class ChatInputs(BaseModel):
"""
Holds a high-level crew_description plus a list of ChatInputFields.
Example:
{
"crew_name": "topic-based-qa",
"crew_description": "Use this crew for topic-based Q&A",
"inputs": [
{"name": "topic", "description": "The topic to focus on"},
{"name": "username", "description": "Name of the user"},
]
}
"""
crew_name: str = Field(..., description="The name of the crew")
crew_description: str = Field(
...,
description="A description of the crew's purpose",
)
inputs: List[ChatInputField] = Field(
default_factory=list, description="A list of input fields for the crew"
)

View File

@@ -31,10 +31,10 @@ class InternalInstructor:
import instructor
from litellm import completion
self._client = instructor.from_litellm(
completion,
mode=instructor.Mode.TOOLS,
)
self._client = instructor.from_litellm(
completion,
mode=instructor.Mode.TOOLS,
)
def to_json(self):
model = self.to_pydantic()

View File

@@ -1,215 +0,0 @@
import os
from typing import Any, Dict, List, Optional, Union
from packaging import version
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.llm import LLM
def create_llm(
llm_value: Union[str, LLM, Any, None] = None,
) -> Optional[LLM]:
"""
Creates or returns an LLM instance based on the given llm_value.
Args:
llm_value (str | LLM | Any | None):
- str: The model name (e.g., "gpt-4").
- LLM: Already instantiated LLM, returned as-is.
- Any: Attempt to extract known attributes like model_name, temperature, etc.
- None: Use environment-based or fallback default model.
Returns:
An LLM instance if successful, or None if something fails.
"""
# 1) If llm_value is already an LLM object, return it directly
if isinstance(llm_value, LLM):
return llm_value
# 2) If llm_value is a string (model name)
if isinstance(llm_value, str):
try:
created_llm = LLM(model=llm_value)
print(f"LLM created with model='{llm_value}'")
return created_llm
except Exception as e:
print(f"Failed to instantiate LLM with model='{llm_value}': {e}")
return None
# 3) If llm_value is None, parse environment variables or use default
if llm_value is None:
return _llm_via_environment_or_fallback()
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
try:
# Extract attributes with explicit types
model = (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
)
temperature: Optional[float] = getattr(llm_value, "temperature", None)
max_tokens: Optional[int] = getattr(llm_value, "max_tokens", None)
logprobs: Optional[int] = getattr(llm_value, "logprobs", None)
timeout: Optional[float] = getattr(llm_value, "timeout", None)
api_key: Optional[str] = getattr(llm_value, "api_key", None)
base_url: Optional[str] = getattr(llm_value, "base_url", None)
created_llm = LLM(
model=model,
temperature=temperature,
max_tokens=max_tokens,
logprobs=logprobs,
timeout=timeout,
api_key=api_key,
base_url=base_url,
)
print(
"LLM created with extracted parameters; "
f"model='{model}'"
)
return created_llm
except Exception as e:
print(f"Error instantiating LLM from unknown object type: {e}")
return None
def create_chat_llm() -> Optional[LLM]:
"""
Creates a Chat LLM with additional checks, such as verifying crewAI version
or reading from pyproject.toml. Then calls `create_llm(None, default_model)`.
Args:
default_model (str): Fallback model if not set in environment.
Returns:
An instance of LLM or None if instantiation fails.
"""
print("[create_chat_llm] Checking environment and version info...")
crewai_version = get_crewai_version()
min_required_version = "0.87.0" # Update to latest if needed
pyproject_data = read_toml()
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
print(
f"You are running an older version of crewAI ({crewai_version}) that uses poetry.\n"
"Please run `crewai update` to switch to uv-based builds."
)
# After checks, simply call create_llm with None (meaning "use env or fallback"):
return create_llm(None)
def _llm_via_environment_or_fallback() -> Optional[LLM]:
"""
Helper function: if llm_value is None, we load environment variables or fallback default model.
"""
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or DEFAULT_LLM_MODEL
)
# Initialize parameters with correct types
model: str = model_name
temperature: Optional[float] = None
max_tokens: Optional[int] = None
max_completion_tokens: Optional[int] = None
logprobs: Optional[int] = None
timeout: Optional[float] = None
api_key: Optional[str] = None
base_url: Optional[str] = None
api_version: Optional[str] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
logit_bias: Optional[Dict[int, float]] = None
response_format: Optional[Dict[str, Any]] = None
seed: Optional[int] = None
top_logprobs: Optional[int] = None
callbacks: List[Any] = []
# Optional base URL from env
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get("OPENAI_BASE_URL")
if api_base:
base_url = api_base
# Initialize llm_params dictionary
llm_params: Dict[str, Any] = {
"model": model,
"temperature": temperature,
"max_tokens": max_tokens,
"max_completion_tokens": max_completion_tokens,
"logprobs": logprobs,
"timeout": timeout,
"api_key": api_key,
"base_url": base_url,
"api_version": api_version,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"top_p": top_p,
"n": n,
"stop": stop,
"logit_bias": logit_bias,
"response_format": response_format,
"seed": seed,
"top_logprobs": top_logprobs,
"callbacks": callbacks,
}
UNACCEPTED_ATTRIBUTES = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
if set_provider in ENV_VARS:
for env_var in ENV_VARS[set_provider]:
key_name = env_var.get("key_name")
if key_name and key_name not in UNACCEPTED_ATTRIBUTES:
env_value = os.environ.get(key_name)
if env_value:
# Map environment variable names to recognized parameters
param_key = _normalize_key_name(key_name.lower())
llm_params[param_key] = env_value
elif isinstance(env_var, dict):
if env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
if key in os.environ:
llm_params[key] = os.environ[key]
else:
print(f"Expected env_var to be a dictionary, but got {type(env_var)}")
# Remove None values
llm_params = {k: v for k, v in llm_params.items() if v is not None}
# Try creating the LLM
try:
new_llm = LLM(**llm_params)
print(f"LLM created with model='{model_name}'")
return new_llm
except Exception as e:
print(f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}")
return None
def _normalize_key_name(key_name: str) -> str:
"""
Maps environment variable names to recognized litellm parameter keys,
using patterns from LITELLM_PARAMS.
"""
for pattern in LITELLM_PARAMS:
if pattern in key_name:
return pattern
return key_name

View File

@@ -1,4 +1,3 @@
import json
import logging
from typing import Any, List, Optional
@@ -78,10 +77,10 @@ class CrewPlanner:
def _get_agent_knowledge(self, task: Task) -> List[str]:
"""
Safely retrieve knowledge source content from the task's agent.
Args:
task: The task containing an agent with potential knowledge sources
Returns:
List[str]: A list of knowledge source strings
"""
@@ -108,6 +107,6 @@ class CrewPlanner:
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
tasks_summary.append(task_summary)
return " ".join(tasks_summary)

View File

@@ -1,5 +1,4 @@
import warnings
from typing import Any, Dict, Optional
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
@@ -8,16 +7,10 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
class TokenCalcHandler(CustomLogger):
def __init__(self, token_cost_process: Optional[TokenProcess]):
def __init__(self, token_cost_process: TokenProcess):
self.token_cost_process = token_cost_process
def log_success_event(
self,
kwargs: Dict[str, Any],
response_obj: Dict[str, Any],
start_time: float,
end_time: float,
) -> None:
def log_success_event(self, kwargs, response_obj, start_time, end_time):
if self.token_cost_process is None:
return

View File

@@ -7,7 +7,7 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
class TestAgent(BaseAgent):
class MockAgent(BaseAgent):
def execute_task(
self,
task: Any,
@@ -29,7 +29,7 @@ class TestAgent(BaseAgent):
def test_key():
agent = TestAgent(
agent = MockAgent(
role="test role",
goal="test goal",
backstory="test backstory",

View File

@@ -0,0 +1,988 @@
interactions:
- request:
body: !!binary |
CpotCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS8SwKEgoQY3Jld2FpLnRl
bGVtZXRyeRLrCQoQmqG4kmRspGSV9KSDE2WH2hIInKDQhtLNgqEqDENyZXcgQ3JlYXRlZDABOeCb
nCGokxcYQYDspiGokxcYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogY2FhMWFlYjNkZDQzNjM4NjU2OGE1YzNmZTIx
MDFhZjVKMQoHY3Jld19pZBImCiQxOWRmM2Y3MS1kYzk0LTQ0ZjYtYmY0Zi0zNjBjZjY2YjJiYWZK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSo4FCgtjcmV3
X2FnZW50cxL+BAr7BFt7ImtleSI6ICI5N2Y0MTdmM2UxZTMxY2YwYzEwOWY3NTI5YWM4ZjZiYyIs
ICJpZCI6ICJjMzIyZGMzMS0zZDNlLTRlOTctYjgwNi02MDU3ZTZjNGQxZmUiLCAicm9sZSI6ICJQ
cm9ncmFtbWVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogdHJ1
ZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOTJh
MjRiMGJjY2ZiMGRjMGU0MzlkN2Q1OWJhOWY2ZjMiLCAiaWQiOiAiYzMzMGJlNDAtYWQxMS00YjM2
LWEwYTYtY2E4NWY5ZWFjYzZhIiwgInJvbGUiOiAiQ29kZSBSZXZpZXdlciIsICJ2ZXJib3NlPyI6
IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGlu
Z19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/Ijog
dHJ1ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IHRydWUsICJtYXhfcmV0cnlfbGltaXQiOiAy
LCAidG9vbHNfbmFtZXMiOiBbXX1dSooCCgpjcmV3X3Rhc2tzEvsBCvgBW3sia2V5IjogIjc5YWEy
N2RmNzRlNjI3OWUzNGE4ODg4MTc0ODFjNDBmIiwgImlkIjogIjEyYmNjNTAwLWExNzgtNGQyZS05
NmQ4LWNkN2UwZmYzNzRhMCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1
dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUHJvZ3JhbW1lciIsICJhZ2VudF9rZXkiOiAiOTdm
NDE3ZjNlMWUzMWNmMGMxMDlmNzUyOWFjOGY2YmMiLCAidG9vbHNfbmFtZXMiOiBbInRlc3QgdG9v
bCJdfV16AhgBhQEAAQAAErMHChCxSjXt2/kv7CqAN8F+6ZMMEghR4jnKP0dHjSoMQ3JldyBDcmVh
dGVkMAE5iBNAIqiTFxhBiGZHIqiTFxhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5
dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiA3NzNhODc2YjU3OTJkYjY5NTU5
ZmU4MmMzYWQyMzU5ZkoxCgdjcmV3X2lkEiYKJDk2YjRkMmFlLTQ3ZDUtNDA0MS1hNjJhLTAyMmMy
ZDUzZGZkZkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABK
GgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFK
2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5IjogIjA3N2M3YTg2N2UyMGQwYTY4Yjk3NGU0NzYw
NzEwOWYzIiwgImlkIjogIjVhOTJiYzM4LWFlNGEtNGViZC1iNTM2LTFkZGVjZDBkODBhYyIsICJy
b2xlIjogIk11bHRpbW9kYWwgQW5hbHlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJrZXkiOiAiYzc1M2M2ODA2MzU5NDM2YTU4OTZm
ZWMwOWJhYTEyNWUiLCAiaWQiOiAiNmRhZTcyNzktMDhjNS00OGNiLWI5OWItYmUyYjAwMzhkYzgz
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
bnRfcm9sZSI6ICJNdWx0aW1vZGFsIEFuYWx5c3QiLCAiYWdlbnRfa2V5IjogIjA3N2M3YTg2N2Uy
MGQwYTY4Yjk3NGU0NzYwNzEwOWYzIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASqQcK
EIW4ljcZA7v+rs1zMkO4T0wSCIcyNxRlQUYoKgxDcmV3IENyZWF0ZWQwATngxKQiqJMXGEHIIasi
qJMXGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
MS43Si4KCGNyZXdfa2V5EiIKIGNkNGRhNjRlNmRjM2I5ZWJkY2EyNDQ0YzFkNzMwMjgxSjEKB2Ny
ZXdfaWQSJgokMDY0ZDJmMmYtYWEzMy00MmU4LTgyYjAtMjc1YzM4MzY0MjU0ShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrUAgoLY3Jld19hZ2VudHMSxAIK
wQJbeyJrZXkiOiAiZDg1MTA2NGI5YjQ4NDE4YWMyNWY4ZDM3YzdlMzJiYjYiLCAiaWQiOiAiY2M4
OWQ4YTAtYjk5Yy00MDNkLTg1ODYtNjgzZDA1MGVjMjlhIiwgInJvbGUiOiAiSW1hZ2UgQW5hbHlz
dCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAi
ZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0
aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1h
eF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KggIKCmNyZXdfdGFza3MS8wEK
8AFbeyJrZXkiOiAiZWU4NzI5Njk0MTBjOTRjMzM0ZjljZmZhMGE0MTVmZWMiLCAiaWQiOiAiNDY3
ZmVlNDktZDkzMi00Nzg1LWI1M2QtYTdkNWQxOTk3NzNmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBm
YWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJJbWFnZSBBbmFseXN0
IiwgImFnZW50X2tleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJ0b29s
c19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEqMHChD9ptX+M+ebjYJvJRIgLS+sEgi86MlIS3PYaCoM
Q3JldyBDcmVhdGVkMAE5MGUTI6iTFxhBqKoZI6iTFxhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45
NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlMzk1NjdiNTA1
MjkwOWNhMzM0MDk4NGI4Mzg5ODBlYUoxCgdjcmV3X2lkEiYKJGQwM2I0NDRiLTBmMjAtNGY5Ni1i
MjA0LWQ3YzQ4MzYyNGM0YkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21l
bW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2Fn
ZW50cxICGAFKzgIKC2NyZXdfYWdlbnRzEr4CCrsCW3sia2V5IjogIjlkYzhjY2UwMzA0NjgxOTYw
NDFiNGMzODBiNjE3Y2IwIiwgImlkIjogImM4Mjc0MmM1LWIzZjQtNDJkMC1iYjNmLTRkZWM4Y2Q4
MDNmNCIsICJyb2xlIjogIkltYWdlIEFuYWx5c3QiLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4X2l0
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
XX1dSoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImE5YTc2Y2E2OTU3ZDBiZmZhNjllYWIy
MGI2NjQ4MjJiIiwgImlkIjogImU4ZDFmNWM0LWJhNDEtNGQyNy1iMGZmLWU3MmNiNDA0MWJhMyIs
ICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50
X3JvbGUiOiAiSW1hZ2UgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiOWRjOGNjZTAzMDQ2ODE5NjA0
MWI0YzM4MGI2MTdjYjAiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQEQqgiftV
3giK4F9VtKBNSBIIVzb/bxKe7icqDFRhc2sgQ3JlYXRlZDABOejyJyOokxcYQdhIKCOokxcYSi4K
CGNyZXdfa2V5EiIKIGUzOTU2N2I1MDUyOTA5Y2EzMzQwOTg0YjgzODk4MGVhSjEKB2NyZXdfaWQS
JgokZDAzYjQ0NGItMGYyMC00Zjk2LWIyMDQtZDdjNDgzNjI0YzRiSi4KCHRhc2tfa2V5EiIKIGE5
YTc2Y2E2OTU3ZDBiZmZhNjllYWIyMGI2NjQ4MjJiSjEKB3Rhc2tfaWQSJgokZThkMWY1YzQtYmE0
MS00ZDI3LWIwZmYtZTcyY2I0MDQxYmEzegIYAYUBAAEAABKXAQoQg/ksOtq7LbOO50GnDSOHQBII
YX08fxOToKwqClRvb2wgVXNhZ2UwATlI/lskqJMXGEEAY2IkqJMXGEoaCg5jcmV3YWlfdmVyc2lv
bhIICgYwLjk1LjBKIwoJdG9vbF9uYW1lEhYKFEFkZCBpbWFnZSB0byBjb250ZW50Sg4KCGF0dGVt
cHRzEgIYAXoCGAGFAQABAAASqAcKEEmW3y/PMPhkfMJ/43EA4SASCHMJp4PEDhFLKgxDcmV3IENy
ZWF0ZWQwATkAuLYlqJMXGEHAaL4lqJMXGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoO
cHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43Si4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNh
NDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5
ZmM5YTMwMWE1ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQ
AEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIY
AUrTAgoLY3Jld19hZ2VudHMSwwIKwAJbeyJrZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVkNTNm
Njg5MjdmZDUiLCAiaWQiOiAiN2IyMGMyODMtNGFiNy00MjFlLTgzM2QtOWE5N2UzNjFjM2Q2Iiwg
InJvbGUiOiAiUmVwb3J0IFdyaXRlciIsICJ2ZXJib3NlPyI6IHRydWUsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
XUqCAgoKY3Jld190YXNrcxLzAQrwAVt7ImtleSI6ICJiNzEzYzgyZmViOTJjOWY1YzU4YjQwYTk3
NTU2YjdhYyIsICJpZCI6ICJhZjFhOTYxOC05MjRhLTRlNzktYjZlYi01OGRhMTM2OTU5YzUiLCAi
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
b2xlIjogIlJlcG9ydCBXcml0ZXIiLCAiYWdlbnRfa2V5IjogIjRiOGE3Yjg0MGY5NGJmNzgxOGI1
ZDUzZjY4OTI3ZmQ1IiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEIWRa5ZrcXnJ
3rJdzzJ56j8SCKr45vrXkeyTKgxUYXNrIENyZWF0ZWQwATn488glqJMXGEHoScklqJMXGEouCghj
cmV3X2tleRIiCiAwMGI5NDZiZTQ0MzcxNGIzYTQ3YzIwMTAxZWIwMmQ2NkoxCgdjcmV3X2lkEiYK
JDcyZGUxMGU0LTQ5MGQtNDQ2MC05NTczLTJlOWZjOWEzMDFhNUouCgh0YXNrX2tleRIiCiBiNzEz
YzgyZmViOTJjOWY1YzU4YjQwYTk3NTU2YjdhY0oxCgd0YXNrX2lkEiYKJGFmMWE5NjE4LTkyNGEt
NGU3OS1iNmViLTU4ZGExMzY5NTljNXoCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '5789'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sat, 04 Jan 2025 19:22:17 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
an expert at writing structured reports.\nYour personal goal is: Create properly
formatted reports\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
3 key points.\n\nThis is the expect criteria for your final answer: A properly
formatted report\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '934'
content-type:
- application/json
cookie:
- _cfuvid=v_wJZ5m7qCjrnRfks0gT2GAk9yR14BdIDAQiQR7xxI8-1735266215000-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Am40qBAFJtuaFsOlTsBHFCoYUvLhN\",\n \"object\":
\"chat.completion\",\n \"created\": 1736018532,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer. \\nFinal
Answer: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n## Introduction\\nArtificial
Intelligence (AI) is a rapidly evolving technology that simulates human intelligence
processes by machines, particularly computer systems. AI has a profound impact
on various sectors, enhancing efficiency, improving decision-making, and leading
to groundbreaking innovations. This report highlights three key points regarding
the significance and implications of AI technology.\\n\\n## Key Point 1: Transformative
Potential in Various Industries\\nAI's transformative potential is evident across
multiple industries, including healthcare, finance, transportation, and agriculture.
In healthcare, AI algorithms can analyze complex medical data, leading to improved
diagnostics, personalized medicine, and predictive analytics, thereby enhancing
patient outcomes. The financial sector employs AI for risk management, fraud
detection, and automated trading, which increases operational efficiency and
minimizes human error. In transportation, AI is integral to the development
of autonomous vehicles and smart traffic systems, optimizing routes and reducing
congestion. Furthermore, agriculture benefits from AI applications through precision
farming, which maximizes yield while minimizing environmental impact.\\n\\n##
Key Point 2: Ethical Considerations and Challenges\\nAs AI technologies become
more pervasive, ethical considerations arise regarding their implementation
and use. Concerns include data privacy, algorithmic bias, and the displacement
of jobs due to automation. Ensuring that AI systems are transparent, fair, and
accountable is crucial in addressing these issues. Organizations must develop
comprehensive guidelines and regulatory frameworks to mitigate bias in AI algorithms
and protect user data. Moreover, addressing the social implications of AI, such
as potential job displacement, is essential, necessitating investment in workforce
retraining and education to prepare for an AI-driven economy.\\n\\n## Key Point
3: Future Directions and Developments\\nLooking ahead, the future of AI promises
continued advancements and integration into everyday life. Emerging trends include
the development of explainable AI (XAI), enhancing interpretability and understanding
of AI decision-making processes. Advances in natural language processing (NLP)
will facilitate better human-computer interactions, allowing for more intuitive
applications. Additionally, as AI technology becomes increasingly sophisticated,
its role in addressing global challenges, such as climate change and healthcare
disparities, is expected to expand. Stakeholders must collaborate to ensure
that these developments align with ethical standards and societal needs, fostering
a responsible AI future.\\n\\n## Conclusion\\nArtificial Intelligence stands
at the forefront of technological innovation, with the potential to revolutionize
industries and address complex global challenges. However, it is imperative
to navigate the ethical considerations and challenges it poses. By fostering
responsible AI development, we can harness its transformative power while ensuring
equitability and transparency for future generations.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 170,\n \"completion_tokens\":
524,\n \"total_tokens\": 694,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fcd9890790e0133-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 04 Jan 2025 19:22:19 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw;
path=/; expires=Sat, 04-Jan-25 19:52:19 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '7717'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_08d237d56b0168a0f4512417380485db
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQw9qUJPsh6jiJZX4qW3ry4hIIT7E0SNH7Ub4qDFRhc2sgQ3JlYXRlZDABOQBO
BAmqkxcYQQgdBQmqkxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sat, 04 Jan 2025 19:22:22 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
an expert at writing structured reports.\nYour personal goal is: Create properly
formatted reports\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
3 key points.\n\nThis is the expect criteria for your final answer: A properly
formatted report\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
failed validation: Output must start with ''REPORT:'' no formatting, just the
word REPORT\n\n\n### Previous result:\n# Report on Artificial Intelligence (AI)\n\n##
Introduction\nArtificial Intelligence (AI) is a rapidly evolving technology
that simulates human intelligence processes by machines, particularly computer
systems. AI has a profound impact on various sectors, enhancing efficiency,
improving decision-making, and leading to groundbreaking innovations. This report
highlights three key points regarding the significance and implications of AI
technology.\n\n## Key Point 1: Transformative Potential in Various Industries\nAI''s
transformative potential is evident across multiple industries, including healthcare,
finance, transportation, and agriculture. In healthcare, AI algorithms can analyze
complex medical data, leading to improved diagnostics, personalized medicine,
and predictive analytics, thereby enhancing patient outcomes. The financial
sector employs AI for risk management, fraud detection, and automated trading,
which increases operational efficiency and minimizes human error. In transportation,
AI is integral to the development of autonomous vehicles and smart traffic systems,
optimizing routes and reducing congestion. Furthermore, agriculture benefits
from AI applications through precision farming, which maximizes yield while
minimizing environmental impact.\n\n## Key Point 2: Ethical Considerations and
Challenges\nAs AI technologies become more pervasive, ethical considerations
arise regarding their implementation and use. Concerns include data privacy,
algorithmic bias, and the displacement of jobs due to automation. Ensuring that
AI systems are transparent, fair, and accountable is crucial in addressing these
issues. Organizations must develop comprehensive guidelines and regulatory frameworks
to mitigate bias in AI algorithms and protect user data. Moreover, addressing
the social implications of AI, such as potential job displacement, is essential,
necessitating investment in workforce retraining and education to prepare for
an AI-driven economy.\n\n## Key Point 3: Future Directions and Developments\nLooking
ahead, the future of AI promises continued advancements and integration into
everyday life. Emerging trends include the development of explainable AI (XAI),
enhancing interpretability and understanding of AI decision-making processes.
Advances in natural language processing (NLP) will facilitate better human-computer
interactions, allowing for more intuitive applications. Additionally, as AI
technology becomes increasingly sophisticated, its role in addressing global
challenges, such as climate change and healthcare disparities, is expected to
expand. Stakeholders must collaborate to ensure that these developments align
with ethical standards and societal needs, fostering a responsible AI future.\n\n##
Conclusion\nArtificial Intelligence stands at the forefront of technological
innovation, with the potential to revolutionize industries and address complex
global challenges. However, it is imperative to navigate the ethical considerations
and challenges it poses. By fostering responsible AI development, we can harness
its transformative power while ensuring equitability and transparency for future
generations.\n\n\nTry again, making sure to address the validation error.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4351'
content-type:
- application/json
cookie:
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Am40yJsMPHsTOmn9Obwyx2caqoJ1R\",\n \"object\":
\"chat.completion\",\n \"created\": 1736018540,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: \\nREPORT: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n##
Introduction\\nArtificial Intelligence (AI) is a rapidly evolving technology
that simulates human intelligence processes by machines, particularly computer
systems. AI has a profound impact on various sectors, enhancing efficiency,
improving decision-making, and leading to groundbreaking innovations. This report
highlights three key points regarding the significance and implications of AI
technology.\\n\\n## Key Point 1: Transformative Potential in Various Industries\\nAI's
transformative potential is evident across multiple industries, including healthcare,
finance, transportation, and agriculture. In healthcare, AI algorithms can analyze
complex medical data, leading to improved diagnostics, personalized medicine,
and predictive analytics, thereby enhancing patient outcomes. The financial
sector employs AI for risk management, fraud detection, and automated trading,
which increases operational efficiency and minimizes human error. In transportation,
AI is integral to the development of autonomous vehicles and smart traffic systems,
optimizing routes and reducing congestion. Furthermore, agriculture benefits
from AI applications through precision farming, which maximizes yield while
minimizing environmental impact.\\n\\n## Key Point 2: Ethical Considerations
and Challenges\\nAs AI technologies become more pervasive, ethical considerations
arise regarding their implementation and use. Concerns include data privacy,
algorithmic bias, and the displacement of jobs due to automation. Ensuring that
AI systems are transparent, fair, and accountable is crucial in addressing these
issues. Organizations must develop comprehensive guidelines and regulatory frameworks
to mitigate bias in AI algorithms and protect user data. Moreover, addressing
the social implications of AI, such as potential job displacement, is essential,
necessitating investment in workforce retraining and education to prepare for
an AI-driven economy.\\n\\n## Key Point 3: Future Directions and Developments\\nLooking
ahead, the future of AI promises continued advancements and integration into
everyday life. Emerging trends include the development of explainable AI (XAI),
enhancing interpretability and understanding of AI decision-making processes.
Advances in natural language processing (NLP) will facilitate better human-computer
interactions, allowing for more intuitive applications. Additionally, as AI
technology becomes increasingly sophisticated, its role in addressing global
challenges, such as climate change and healthcare disparities, is expected to
expand. Stakeholders must collaborate to ensure that these developments align
with ethical standards and societal needs, fostering a responsible AI future.\\n\\n##
Conclusion\\nArtificial Intelligence stands at the forefront of technological
innovation, with the potential to revolutionize industries and address complex
global challenges. However, it is imperative to navigate the ethical considerations
and challenges it poses. By fostering responsible AI development, we can harness
its transformative power while ensuring equitability and transparency for future
generations.\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
725,\n \"completion_tokens\": 526,\n \"total_tokens\": 1251,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fcd98c269880133-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 04 Jan 2025 19:22:28 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '8620'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998942'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_de480c9e17954e77dece1b2fe013a0d0
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQCwIBgw9XNdGpuGOOIANe2hIIriM3k2t+0NQqDFRhc2sgQ3JlYXRlZDABOcjF
ABuskxcYQfBlARuskxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sat, 04 Jan 2025 19:22:32 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
an expert at writing structured reports.\nYour personal goal is: Create properly
formatted reports\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
3 key points.\n\nThis is the expect criteria for your final answer: A properly
formatted report\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
failed validation: Output must end with ''END REPORT'' no formatting, just the
word END REPORT\n\n\n### Previous result:\nREPORT: \n\n# Report on Artificial
Intelligence (AI)\n\n## Introduction\nArtificial Intelligence (AI) is a rapidly
evolving technology that simulates human intelligence processes by machines,
particularly computer systems. AI has a profound impact on various sectors,
enhancing efficiency, improving decision-making, and leading to groundbreaking
innovations. This report highlights three key points regarding the significance
and implications of AI technology.\n\n## Key Point 1: Transformative Potential
in Various Industries\nAI''s transformative potential is evident across multiple
industries, including healthcare, finance, transportation, and agriculture.
In healthcare, AI algorithms can analyze complex medical data, leading to improved
diagnostics, personalized medicine, and predictive analytics, thereby enhancing
patient outcomes. The financial sector employs AI for risk management, fraud
detection, and automated trading, which increases operational efficiency and
minimizes human error. In transportation, AI is integral to the development
of autonomous vehicles and smart traffic systems, optimizing routes and reducing
congestion. Furthermore, agriculture benefits from AI applications through precision
farming, which maximizes yield while minimizing environmental impact.\n\n##
Key Point 2: Ethical Considerations and Challenges\nAs AI technologies become
more pervasive, ethical considerations arise regarding their implementation
and use. Concerns include data privacy, algorithmic bias, and the displacement
of jobs due to automation. Ensuring that AI systems are transparent, fair, and
accountable is crucial in addressing these issues. Organizations must develop
comprehensive guidelines and regulatory frameworks to mitigate bias in AI algorithms
and protect user data. Moreover, addressing the social implications of AI, such
as potential job displacement, is essential, necessitating investment in workforce
retraining and education to prepare for an AI-driven economy.\n\n## Key Point
3: Future Directions and Developments\nLooking ahead, the future of AI promises
continued advancements and integration into everyday life. Emerging trends include
the development of explainable AI (XAI), enhancing interpretability and understanding
of AI decision-making processes. Advances in natural language processing (NLP)
will facilitate better human-computer interactions, allowing for more intuitive
applications. Additionally, as AI technology becomes increasingly sophisticated,
its role in addressing global challenges, such as climate change and healthcare
disparities, is expected to expand. Stakeholders must collaborate to ensure
that these developments align with ethical standards and societal needs, fostering
a responsible AI future.\n\n## Conclusion\nArtificial Intelligence stands at
the forefront of technological innovation, with the potential to revolutionize
industries and address complex global challenges. However, it is imperative
to navigate the ethical considerations and challenges it poses. By fostering
responsible AI development, we can harness its transformative power while ensuring
equitability and transparency for future generations.\n\n\nTry again, making
sure to address the validation error.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4369'
content-type:
- application/json
cookie:
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Am4176wzYnk3HmSTkkakM4yl6xVYS\",\n \"object\":
\"chat.completion\",\n \"created\": 1736018549,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n## Introduction\\nArtificial
Intelligence (AI) is a revolutionary technology designed to simulate human intelligence
processes, enabling machines to perform tasks that typically require human cognition.
Its rapid development has brought forth significant changes across various sectors,
improving operational efficiencies, enhancing decision-making, and fostering
innovation. This report outlines three key points regarding the impact and implications
of AI technology.\\n\\n## Key Point 1: Transformative Potential in Various Industries\\nAI's
transformative potential is observable across numerous sectors including healthcare,
finance, transportation, and agriculture. In the healthcare sector, AI algorithms
are increasingly used to analyze vast amounts of medical data, which sharpens
diagnostics, facilitates personalized treatment plans, and enhances predictive
analytics, thus leading to better patient care. In finance, AI contributes to
risk assessment, fraud detection, and automated trading, heightening efficiency
and reducing the risk of human error. The transportation industry leverages
AI technologies for developments in autonomous vehicles and smart transportation
systems that optimize routes and alleviate traffic congestion. Furthermore,
agriculture benefits from AI by applying precision farming techniques that optimize
yield and mitigate environmental effects.\\n\\n## Key Point 2: Ethical Considerations
and Challenges\\nWith the increasing deployment of AI technologies, numerous
ethical considerations surface, particularly relating to privacy, algorithmic
fairness, and the displacement of jobs. Addressing issues such as data security,
bias in AI algorithms, and the societal impact of automation is paramount. Organizations
are encouraged to develop stringent guidelines and regulatory measures aimed
at minimizing bias and ensuring that AI systems uphold values of transparency
and accountability. Additionally, the implications of job displacement necessitate
strategies for workforce retraining and educational reforms to adequately prepare
the workforce for an economy increasingly shaped by AI technologies.\\n\\n##
Key Point 3: Future Directions and Developments\\nThe future of AI is poised
for remarkable advancements, with trends indicating a growing integration into
daily life and widespread applications. The emergence of explainable AI (XAI)
aims to enhance the transparency and interpretability of AI decision-making
processes, fostering trust and understanding among users. Improvements in natural
language processing (NLP) are likely to lead to more seamless and intuitive
human-computer interactions. Furthermore, AI's potential to address global challenges,
including climate change and disparities in healthcare access, is becoming increasingly
significant. Collaborative efforts among stakeholders will be vital to ensuring
that AI advancements are ethical and responsive to societal needs, paving the
way for a responsible and equitable AI landscape.\\n\\n## Conclusion\\nAI technology
is at the forefront of innovation, with the capacity to transform industries
and tackle pressing global issues. As we navigate through the complexities and
ethical challenges posed by AI, it is crucial to prioritize responsible development
and implementation. By harnessing AI's transformative capabilities with a focus
on equity and transparency, we can pave the way for a promising future that
benefits all.\\n\\nEND REPORT\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
730,\n \"completion_tokens\": 571,\n \"total_tokens\": 1301,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fcd98f9fc060133-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 04 Jan 2025 19:22:36 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '7203'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998937'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_cab0502e7d8a8564e56d8f741cf451ec
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQO/xpq2/yF233Vf8OitYSiBIIdyOEucIqtF8qDFRhc2sgQ3JlYXRlZDABOXDe
ZdqtkxcYQUDaZ9qtkxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sat, 04 Jan 2025 19:22:37 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
an expert at writing structured reports.\nYour personal goal is: Create properly
formatted reports\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
3 key points.\n\nThis is the expect criteria for your final answer: A properly
formatted report\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
failed validation: Output must start with ''REPORT:'' no formatting, just the
word REPORT\n\n\n### Previous result:\n# Report on Artificial Intelligence (AI)\n\n##
Introduction\nArtificial Intelligence (AI) is a revolutionary technology designed
to simulate human intelligence processes, enabling machines to perform tasks
that typically require human cognition. Its rapid development has brought forth
significant changes across various sectors, improving operational efficiencies,
enhancing decision-making, and fostering innovation. This report outlines three
key points regarding the impact and implications of AI technology.\n\n## Key
Point 1: Transformative Potential in Various Industries\nAI''s transformative
potential is observable across numerous sectors including healthcare, finance,
transportation, and agriculture. In the healthcare sector, AI algorithms are
increasingly used to analyze vast amounts of medical data, which sharpens diagnostics,
facilitates personalized treatment plans, and enhances predictive analytics,
thus leading to better patient care. In finance, AI contributes to risk assessment,
fraud detection, and automated trading, heightening efficiency and reducing
the risk of human error. The transportation industry leverages AI technologies
for developments in autonomous vehicles and smart transportation systems that
optimize routes and alleviate traffic congestion. Furthermore, agriculture benefits
from AI by applying precision farming techniques that optimize yield and mitigate
environmental effects.\n\n## Key Point 2: Ethical Considerations and Challenges\nWith
the increasing deployment of AI technologies, numerous ethical considerations
surface, particularly relating to privacy, algorithmic fairness, and the displacement
of jobs. Addressing issues such as data security, bias in AI algorithms, and
the societal impact of automation is paramount. Organizations are encouraged
to develop stringent guidelines and regulatory measures aimed at minimizing
bias and ensuring that AI systems uphold values of transparency and accountability.
Additionally, the implications of job displacement necessitate strategies for
workforce retraining and educational reforms to adequately prepare the workforce
for an economy increasingly shaped by AI technologies.\n\n## Key Point 3: Future
Directions and Developments\nThe future of AI is poised for remarkable advancements,
with trends indicating a growing integration into daily life and widespread
applications. The emergence of explainable AI (XAI) aims to enhance the transparency
and interpretability of AI decision-making processes, fostering trust and understanding
among users. Improvements in natural language processing (NLP) are likely to
lead to more seamless and intuitive human-computer interactions. Furthermore,
AI''s potential to address global challenges, including climate change and disparities
in healthcare access, is becoming increasingly significant. Collaborative efforts
among stakeholders will be vital to ensuring that AI advancements are ethical
and responsive to societal needs, paving the way for a responsible and equitable
AI landscape.\n\n## Conclusion\nAI technology is at the forefront of innovation,
with the capacity to transform industries and tackle pressing global issues.
As we navigate through the complexities and ethical challenges posed by AI,
it is crucial to prioritize responsible development and implementation. By harnessing
AI''s transformative capabilities with a focus on equity and transparency, we
can pave the way for a promising future that benefits all.\n\nEND REPORT\n\n\nTry
again, making sure to address the validation error.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4669'
content-type:
- application/json
cookie:
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Am41EaJaKZSumZe8ph2I32d6QNbTP\",\n \"object\":
\"chat.completion\",\n \"created\": 1736018556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: \\n\\nREPORT: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n##
Introduction\\nArtificial Intelligence (AI) is a revolutionary technology designed
to simulate human intelligence processes, enabling machines to perform tasks
that typically require human cognition. Its rapid development has brought forth
significant changes across various sectors, improving operational efficiencies,
enhancing decision-making, and fostering innovation. This report outlines three
key points regarding the impact and implications of AI technology.\\n\\n## Key
Point 1: Transformative Potential in Various Industries\\nAI's transformative
potential is observable across numerous sectors including healthcare, finance,
transportation, and agriculture. In the healthcare sector, AI algorithms are
increasingly used to analyze vast amounts of medical data, which sharpens diagnostics,
facilitates personalized treatment plans, and enhances predictive analytics,
thus leading to better patient care. In finance, AI contributes to risk assessment,
fraud detection, and automated trading, heightening efficiency and reducing
the risk of human error. The transportation industry leverages AI technologies
for developments in autonomous vehicles and smart transportation systems that
optimize routes and alleviate traffic congestion. Furthermore, agriculture benefits
from AI by applying precision farming techniques that optimize yield and mitigate
environmental effects.\\n\\n## Key Point 2: Ethical Considerations and Challenges\\nWith
the increasing deployment of AI technologies, numerous ethical considerations
surface, particularly relating to privacy, algorithmic fairness, and the displacement
of jobs. Addressing issues such as data security, bias in AI algorithms, and
the societal impact of automation is paramount. Organizations are encouraged
to develop stringent guidelines and regulatory measures aimed at minimizing
bias and ensuring that AI systems uphold values of transparency and accountability.
Additionally, the implications of job displacement necessitate strategies for
workforce retraining and educational reforms to adequately prepare the workforce
for an economy increasingly shaped by AI technologies.\\n\\n## Key Point 3:
Future Directions and Developments\\nThe future of AI is poised for remarkable
advancements, with trends indicating a growing integration into daily life and
widespread applications. The emergence of explainable AI (XAI) aims to enhance
the transparency and interpretability of AI decision-making processes, fostering
trust and understanding among users. Improvements in natural language processing
(NLP) are likely to lead to more seamless and intuitive human-computer interactions.
Furthermore, AI's potential to address global challenges, including climate
change and disparities in healthcare access, is becoming increasingly significant.
Collaborative efforts among stakeholders will be vital to ensuring that AI advancements
are ethical and responsive to societal needs, paving the way for a responsible
and equitable AI landscape.\\n\\n## Conclusion\\nAI technology is at the forefront
of innovation, with the capacity to transform industries and tackle pressing
global issues. As we navigate through the complexities and ethical challenges
posed by AI, it is crucial to prioritize responsible development and implementation.
By harnessing AI's transformative capabilities with a focus on equity and transparency,
we can pave the way for a promising future that benefits all.\\n\\nEND REPORT\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 774,\n \"completion_tokens\":
574,\n \"total_tokens\": 1348,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fcd9928eaa40133-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sat, 04 Jan 2025 19:22:46 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '9767'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998862'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d3d0e47180363d07d988cb5ab639597c
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -177,12 +177,12 @@ class TestDeployCommand(unittest.TestCase):
def test_get_crew_status(self):
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {"name": "TestCrew", "status": "active"}
mock_response.json.return_value = {"name": "InternalCrew", "status": "active"}
self.mock_client.crew_status_by_name.return_value = mock_response
with patch("sys.stdout", new=StringIO()) as fake_out:
self.deploy_command.get_crew_status()
self.assertIn("TestCrew", fake_out.getvalue())
self.assertIn("InternalCrew", fake_out.getvalue())
self.assertIn("active", fake_out.getvalue())
def test_get_crew_logs(self):

View File

@@ -3087,28 +3087,6 @@ def test_hierarchical_verbose_false_manager_agent():
assert not crew.manager_agent.verbose
def test_fetch_inputs():
agent = Agent(
role="{role_detail} Researcher",
goal="Research on {topic}.",
backstory="Expert in {field}.",
)
task = Task(
description="Analyze the data on {topic}.",
expected_output="Summary of {topic} analysis.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
expected_placeholders = {"role_detail", "topic", "field"}
actual_placeholders = crew.fetch_inputs()
assert (
actual_placeholders == expected_placeholders
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
def test_task_tools_preserve_code_execution_tools():
"""
Test that task tools don't override code execution tools when allow_code_execution=True
@@ -3359,3 +3337,110 @@ def test_multimodal_agent_live_image_analysis():
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_with_failing_task_guardrails():
"""Test that crew properly handles failing guardrails and retries with validation feedback."""
def strict_format_guardrail(result: TaskOutput):
"""Validates that the output follows a strict format:
- Must start with 'REPORT:'
- Must end with 'END REPORT'
"""
content = result.raw.strip()
if not ('REPORT:' in content or '**REPORT:**' in content):
return (False, "Output must start with 'REPORT:' no formatting, just the word REPORT")
if not ('END REPORT' in content or '**END REPORT**' in content):
return (False, "Output must end with 'END REPORT' no formatting, just the word END REPORT")
return (True, content)
researcher = Agent(
role="Report Writer",
goal="Create properly formatted reports",
backstory="You're an expert at writing structured reports.",
)
task = Task(
description="""Write a report about AI with exactly 3 key points.""",
expected_output="A properly formatted report",
agent=researcher,
guardrail=strict_format_guardrail,
max_retries=3
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
result = crew.kickoff()
# Verify the final output meets all format requirements
content = result.raw.strip()
assert content.startswith('REPORT:'), "Output should start with 'REPORT:'"
assert content.endswith('END REPORT'), "Output should end with 'END REPORT'"
# Verify task output
task_output = result.tasks_output[0]
assert isinstance(task_output, TaskOutput)
assert task_output.raw == result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_guardrail_feedback_in_context():
"""Test that guardrail feedback is properly appended to task context for retries."""
def format_guardrail(result: TaskOutput):
"""Validates that the output contains a specific keyword."""
if "IMPORTANT" not in result.raw:
return (False, "Output must contain the keyword 'IMPORTANT'")
return (True, result.raw)
# Create execution contexts list to track contexts
execution_contexts = []
researcher = Agent(
role="Writer",
goal="Write content with specific keywords",
backstory="You're an expert at following specific writing requirements.",
allow_delegation=False
)
task = Task(
description="Write a short response.",
expected_output="A response containing the keyword 'IMPORTANT'",
agent=researcher,
guardrail=format_guardrail,
max_retries=2
)
crew = Crew(agents=[researcher], tasks=[task])
with patch.object(Agent, "execute_task") as mock_execute_task:
# Define side_effect to capture context and return different responses
def side_effect(task, context=None, tools=None):
execution_contexts.append(context if context else "")
if len(execution_contexts) == 1:
return "This is a test response"
return "This is an IMPORTANT test response"
mock_execute_task.side_effect = side_effect
result = crew.kickoff()
# Verify that we had multiple executions
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
# Verify that the second execution included the guardrail feedback
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], \
"Guardrail feedback should be included in retry context"
# Verify final output meets guardrail requirements
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
# Verify task retry count
assert task.retry_count == 1, "Task should have been retried once"

View File

@@ -27,7 +27,7 @@ class SimpleCrew:
@CrewBase
class TestCrew:
class InternalCrew:
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@@ -84,7 +84,7 @@ def test_task_memoization():
def test_crew_memoization():
crew = TestCrew()
crew = InternalCrew()
first_call_result = crew.crew()
second_call_result = crew.crew()
@@ -107,7 +107,7 @@ def test_task_name():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_before_kickoff_modification():
crew = TestCrew()
crew = InternalCrew()
inputs = {"topic": "LLMs"}
result = crew.crew().kickoff(inputs=inputs)
assert "bicycles" in result.raw, "Before kickoff function did not modify inputs"
@@ -115,7 +115,7 @@ def test_before_kickoff_modification():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_after_kickoff_modification():
crew = TestCrew()
crew = InternalCrew()
# Assuming the crew execution returns a dict
result = crew.crew().kickoff({"topic": "LLMs"})
@@ -126,7 +126,7 @@ def test_after_kickoff_modification():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_before_kickoff_with_none_input():
crew = TestCrew()
crew = InternalCrew()
crew.crew().kickoff(None)
# Test should pass without raising exceptions

65
tests/test_agent.py Normal file
View File

@@ -0,0 +1,65 @@
import os
from unittest import mock
import pytest
from crewai.agent import Agent
from crewai.llm import LLM
def test_agent_with_custom_llm():
"""Test creating an agent with a custom LLM."""
custom_llm = LLM(model="gpt-4")
agent = Agent()
agent.role = "test"
agent.goal = "test"
agent.backstory = "test"
agent.llm = custom_llm
agent.allow_delegation = False
agent.post_init_setup()
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4"
def test_agent_with_uppercase_llm_param():
"""Test creating an agent with uppercase 'LLM' parameter."""
custom_llm = LLM(model="gpt-4")
with pytest.warns(DeprecationWarning):
agent = Agent()
agent.role = "test"
agent.goal = "test"
agent.backstory = "test"
setattr(agent, 'LLM', custom_llm) # Using uppercase LLM
agent.allow_delegation = False
agent.post_init_setup()
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4"
assert not hasattr(agent, 'LLM')
def test_agent_llm_parameter_types():
"""Test LLM parameter type handling."""
env_vars = {
"temperature": "0.7",
"max_tokens": "100",
"presence_penalty": "0.5",
"logprobs": "true",
"logit_bias": '{"50256": -100}',
"callbacks": "callback1,callback2",
}
with mock.patch.dict(os.environ, env_vars):
agent = Agent()
agent.role = "test"
agent.goal = "test"
agent.backstory = "test"
agent.llm = "gpt-4"
agent.allow_delegation = False
agent.post_init_setup()
assert isinstance(agent.llm, LLM)
assert agent.llm.temperature == 0.7
assert agent.llm.max_tokens == 100
assert agent.llm.presence_penalty == 0.5
assert agent.llm.logprobs is True
assert agent.llm.logit_bias == {50256: -100.0}
assert agent.llm.callbacks == ["callback1", "callback2"]

View File

@@ -6,7 +6,7 @@ from crewai import Agent, Task
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
class TestAgentTool(BaseAgentTool):
class InternalAgentTool(BaseAgentTool):
"""Concrete implementation of BaseAgentTool for testing."""
def _run(self, *args, **kwargs):
@@ -39,7 +39,7 @@ def test_agent_tool_role_matching(role_name, should_match):
)
# Create test agent tool
agent_tool = TestAgentTool(
agent_tool = InternalAgentTool(
name="test_tool", description="Test tool", agents=[test_agent]
)

View File

@@ -15,7 +15,7 @@ def test_creating_a_tool_using_annotation():
my_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
)
assert my_tool.args_schema.schema()["properties"] == {
assert my_tool.args_schema.model_json_schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (
@@ -29,7 +29,7 @@ def test_creating_a_tool_using_annotation():
converted_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
)
assert converted_tool.args_schema.schema()["properties"] == {
assert converted_tool.args_schema.model_json_schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (
@@ -54,7 +54,7 @@ def test_creating_a_tool_using_baseclass():
my_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
)
assert my_tool.args_schema.schema()["properties"] == {
assert my_tool.args_schema.model_json_schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert my_tool.run("What is the meaning of life?") == "What is the meaning of life?"
@@ -66,7 +66,7 @@ def test_creating_a_tool_using_baseclass():
converted_tool.description
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
)
assert converted_tool.args_schema.schema()["properties"] == {
assert converted_tool.args_schema.model_json_schema()["properties"] == {
"question": {"title": "Question", "type": "string"}
}
assert (

View File

@@ -25,7 +25,7 @@ def schema_class():
return TestSchema
class TestCrewStructuredTool:
class InternalCrewStructuredTool:
def test_initialization(self, basic_function, schema_class):
"""Test basic initialization of CrewStructuredTool"""
tool = CrewStructuredTool(

View File

@@ -12,7 +12,7 @@ from crewai.utilities.evaluators.crew_evaluator_handler import (
)
class TestCrewEvaluator:
class InternalCrewEvaluator:
@pytest.fixture
def crew_planner(self):
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")

View File

@@ -16,7 +16,7 @@ from crewai.utilities.planning_handler import (
)
class TestCrewPlanner:
class InternalCrewPlanner:
@pytest.fixture
def crew_planner(self):
tasks = [
@@ -115,13 +115,13 @@ class TestCrewPlanner:
def __init__(self, name: str, description: str):
tool_data = {"name": name, "description": description}
super().__init__(**tool_data)
def __str__(self):
return self.name
def __repr__(self):
return self.name
def to_structured_tool(self):
return self
@@ -149,11 +149,11 @@ class TestCrewPlanner:
]
)
)
# Create planner with the new task
planner = CrewPlanner([task], None)
tasks_summary = planner._create_tasks_summary()
# Verify task summary content
assert isinstance(tasks_summary, str)
assert task.description in tasks_summary

View File

@@ -4,7 +4,7 @@ import unittest
from crewai.utilities.training_handler import CrewTrainingHandler
class TestCrewTrainingHandler(unittest.TestCase):
class InternalCrewTrainingHandler(unittest.TestCase):
def setUp(self):
self.handler = CrewTrainingHandler("trained_data.pkl")

2
uv.lock generated
View File

@@ -631,7 +631,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.86.0"
version = "0.95.0"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },