mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-25 16:18:13 +00:00
Compare commits
4 Commits
0aae59dc1d
...
0.95.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
440883e9e8 | ||
|
|
d3da73136c | ||
|
|
7272fd15ac | ||
|
|
518800239c |
@@ -146,81 +146,106 @@ Here are examples of how to use different types of knowledge sources:
|
||||
|
||||
### Text File Knowledge Source
|
||||
```python
|
||||
from crewai.knowledge.source import CrewDoclingSource
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
|
||||
# Create a text file knowledge source
|
||||
text_source = CrewDoclingSource(
|
||||
file_paths=["document.txt", "another.txt"]
|
||||
)
|
||||
|
||||
# Create knowledge with text file source
|
||||
knowledge = Knowledge(
|
||||
collection_name="text_knowledge",
|
||||
sources=[text_source]
|
||||
# Create crew with text file source on agents or crew level
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_sources=[text_source]
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[text_source]
|
||||
)
|
||||
```
|
||||
|
||||
### PDF Knowledge Source
|
||||
```python
|
||||
from crewai.knowledge.source import PDFKnowledgeSource
|
||||
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
|
||||
|
||||
# Create a PDF knowledge source
|
||||
pdf_source = PDFKnowledgeSource(
|
||||
file_paths=["document.pdf", "another.pdf"]
|
||||
)
|
||||
|
||||
# Create knowledge with PDF source
|
||||
knowledge = Knowledge(
|
||||
collection_name="pdf_knowledge",
|
||||
sources=[pdf_source]
|
||||
# Create crew with PDF knowledge source on agents or crew level
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_sources=[pdf_source]
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[pdf_source]
|
||||
)
|
||||
```
|
||||
|
||||
### CSV Knowledge Source
|
||||
```python
|
||||
from crewai.knowledge.source import CSVKnowledgeSource
|
||||
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
|
||||
|
||||
# Create a CSV knowledge source
|
||||
csv_source = CSVKnowledgeSource(
|
||||
file_paths=["data.csv"]
|
||||
)
|
||||
|
||||
# Create knowledge with CSV source
|
||||
knowledge = Knowledge(
|
||||
collection_name="csv_knowledge",
|
||||
sources=[csv_source]
|
||||
# Create crew with CSV knowledge source or on agent level
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_sources=[csv_source]
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[csv_source]
|
||||
)
|
||||
```
|
||||
|
||||
### Excel Knowledge Source
|
||||
```python
|
||||
from crewai.knowledge.source import ExcelKnowledgeSource
|
||||
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
|
||||
|
||||
# Create an Excel knowledge source
|
||||
excel_source = ExcelKnowledgeSource(
|
||||
file_paths=["spreadsheet.xlsx"]
|
||||
)
|
||||
|
||||
# Create knowledge with Excel source
|
||||
knowledge = Knowledge(
|
||||
collection_name="excel_knowledge",
|
||||
sources=[excel_source]
|
||||
# Create crew with Excel knowledge source on agents or crew level
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_sources=[excel_source]
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[excel_source]
|
||||
)
|
||||
```
|
||||
|
||||
### JSON Knowledge Source
|
||||
```python
|
||||
from crewai.knowledge.source import JSONKnowledgeSource
|
||||
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
|
||||
|
||||
# Create a JSON knowledge source
|
||||
json_source = JSONKnowledgeSource(
|
||||
file_paths=["data.json"]
|
||||
)
|
||||
|
||||
# Create knowledge with JSON source
|
||||
knowledge = Knowledge(
|
||||
collection_name="json_knowledge",
|
||||
sources=[json_source]
|
||||
# Create crew with JSON knowledge source on agents or crew level
|
||||
agent = Agent(
|
||||
...
|
||||
knowledge_sources=[json_source]
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
...
|
||||
knowledge_sources=[json_source]
|
||||
)
|
||||
```
|
||||
|
||||
@@ -232,7 +257,7 @@ Knowledge sources automatically chunk content for better processing.
|
||||
You can configure chunking behavior in your knowledge sources:
|
||||
|
||||
```python
|
||||
from crewai.knowledge.source import StringKnowledgeSource
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
|
||||
source = StringKnowledgeSource(
|
||||
content="Your content here",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "crewai"
|
||||
version = "0.86.0"
|
||||
version = "0.95.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
|
||||
@@ -14,7 +14,7 @@ warnings.filterwarnings(
|
||||
category=UserWarning,
|
||||
module="pydantic.main",
|
||||
)
|
||||
__version__ = "0.86.0"
|
||||
__version__ = "0.95.0"
|
||||
__all__ = [
|
||||
"Agent",
|
||||
"Crew",
|
||||
|
||||
@@ -21,7 +21,6 @@ from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
@@ -140,9 +139,89 @@ class Agent(BaseAgent):
|
||||
def post_init_setup(self):
|
||||
self._set_knowledge()
|
||||
self.agent_ops_agent_name = self.role
|
||||
unaccepted_attributes = [
|
||||
"AWS_ACCESS_KEY_ID",
|
||||
"AWS_SECRET_ACCESS_KEY",
|
||||
"AWS_REGION_NAME",
|
||||
]
|
||||
|
||||
self.llm = create_llm(self.llm)
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
# Handle different cases for self.llm
|
||||
if isinstance(self.llm, str):
|
||||
# If it's a string, create an LLM instance
|
||||
self.llm = LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# Determine the model name from environment variables or use default
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or "gpt-4o-mini"
|
||||
)
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
|
||||
"OPENAI_BASE_URL"
|
||||
)
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
|
||||
|
||||
# Iterate over all environment variables to find matching API keys or use defaults
|
||||
for provider, env_vars in ENV_VARS.items():
|
||||
if provider == set_provider:
|
||||
for env_var in env_vars:
|
||||
# Check if the environment variable is set
|
||||
key_name = env_var.get("key_name")
|
||||
if key_name and key_name not in unaccepted_attributes:
|
||||
env_value = os.environ.get(key_name)
|
||||
if env_value:
|
||||
key_name = key_name.lower()
|
||||
for pattern in LITELLM_PARAMS:
|
||||
if pattern in key_name:
|
||||
key_name = pattern
|
||||
break
|
||||
llm_params[key_name] = env_value
|
||||
# Check for default values if the environment variable is not set
|
||||
elif env_var.get("default", False):
|
||||
for key, value in env_var.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
# Only add default if the key is already set in os.environ
|
||||
if key in os.environ:
|
||||
llm_params[key] = value
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
# For any other type, attempt to extract relevant attributes
|
||||
llm_params = {
|
||||
"model": getattr(self.llm, "model_name", None)
|
||||
or getattr(self.llm, "deployment_name", None)
|
||||
or str(self.llm),
|
||||
"temperature": getattr(self.llm, "temperature", None),
|
||||
"max_tokens": getattr(self.llm, "max_tokens", None),
|
||||
"logprobs": getattr(self.llm, "logprobs", None),
|
||||
"timeout": getattr(self.llm, "timeout", None),
|
||||
"max_retries": getattr(self.llm, "max_retries", None),
|
||||
"api_key": getattr(self.llm, "api_key", None),
|
||||
"base_url": getattr(self.llm, "base_url", None),
|
||||
"organization": getattr(self.llm, "organization", None),
|
||||
}
|
||||
# Remove None values to avoid passing unnecessary parameters
|
||||
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
||||
self.llm = LLM(**llm_params)
|
||||
|
||||
# Similar handling for function_calling_llm
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
@@ -193,8 +272,6 @@ class Agent(BaseAgent):
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
print("task_prompt:", task_prompt)
|
||||
|
||||
# If the task requires output in JSON or Pydantic format,
|
||||
# append specific instructions to the task prompt to ensure
|
||||
# that the final answer does not include any code block markers
|
||||
|
||||
@@ -1,14 +1,11 @@
|
||||
import os
|
||||
from importlib.metadata import version as get_version
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
|
||||
from crewai.cli.add_crew_to_flow import add_crew_to_flow
|
||||
from crewai.cli.create_crew import create_crew
|
||||
from crewai.cli.create_flow import create_flow
|
||||
from crewai.cli.crew_chat import run_chat
|
||||
from crewai.cli.fetch_chat_llm import fetch_chat_llm
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
@@ -345,15 +342,5 @@ def flow_add_crew(crew_name):
|
||||
add_crew_to_flow(crew_name)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def chat():
|
||||
"""
|
||||
Start a conversation with the Crew, collecting user-supplied inputs,
|
||||
and using the Chat LLM to generate responses.
|
||||
"""
|
||||
click.echo("Starting a conversation with the Crew")
|
||||
run_chat()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
@@ -158,8 +158,6 @@ MODELS = {
|
||||
],
|
||||
}
|
||||
|
||||
DEFAULT_LLM_MODEL = "gpt-4o-mini"
|
||||
|
||||
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
|
||||
|
||||
|
||||
@@ -1,386 +0,0 @@
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Set, Tuple
|
||||
|
||||
import click
|
||||
import tomli
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.cli.fetch_chat_llm import fetch_chat_llm
|
||||
from crewai.cli.fetch_crew_inputs import fetch_crew_inputs
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
|
||||
def run_chat():
|
||||
"""
|
||||
Runs an interactive chat loop using the Crew's chat LLM with function calling.
|
||||
Incorporates crew_name, crew_description, and input fields to build a tool schema.
|
||||
Exits if crew_name or crew_description are missing.
|
||||
"""
|
||||
crew, crew_name = load_crew_and_name()
|
||||
click.secho("\nFetching the Chat LLM...", fg="cyan")
|
||||
try:
|
||||
chat_llm = create_llm(crew.chat_llm)
|
||||
except Exception as e:
|
||||
click.secho(f"Failed to retrieve Chat LLM: {e}", fg="red")
|
||||
return
|
||||
if not chat_llm:
|
||||
click.secho("No valid Chat LLM returned. Exiting.", fg="red")
|
||||
return
|
||||
|
||||
# Generate crew chat inputs automatically
|
||||
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
|
||||
print("crew_inputs:", crew_chat_inputs)
|
||||
|
||||
# Generate a tool schema from the crew inputs
|
||||
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
|
||||
print("crew_tool_schema:", crew_tool_schema)
|
||||
|
||||
# Build initial system message
|
||||
required_fields_str = (
|
||||
", ".join(
|
||||
f"{field.name} (desc: {field.description or 'n/a'})"
|
||||
for field in crew_chat_inputs.inputs
|
||||
)
|
||||
or "(No required fields detected)"
|
||||
)
|
||||
|
||||
system_message = (
|
||||
"You are a helpful AI assistant for the CrewAI platform. "
|
||||
"Your primary purpose is to assist users with the crew's specific tasks. "
|
||||
"You can answer general questions, but should guide users back to the crew's purpose afterward. "
|
||||
"For example, after answering a general question, remind the user of your main purpose, such as generating a research report, and prompt them to specify a topic or task related to the crew's purpose. "
|
||||
"You have a function (tool) you can call by name if you have all required inputs. "
|
||||
f"Those required inputs are: {required_fields_str}. "
|
||||
"Once you have them, call the function. "
|
||||
"Please keep your responses concise and friendly. "
|
||||
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
|
||||
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
|
||||
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
|
||||
f"\nCrew Name: {crew_chat_inputs.crew_name}"
|
||||
f"\nCrew Description: {crew_chat_inputs.crew_description}"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
]
|
||||
|
||||
# Create a wrapper function that captures 'crew' and 'messages' from the enclosing scope
|
||||
def run_crew_tool_with_messages(**kwargs):
|
||||
return run_crew_tool(crew, messages, **kwargs)
|
||||
|
||||
# Prepare available_functions with the wrapper function
|
||||
available_functions = {
|
||||
crew_chat_inputs.crew_name: run_crew_tool_with_messages,
|
||||
}
|
||||
|
||||
click.secho(
|
||||
"\nEntering an interactive chat loop with function-calling.\n"
|
||||
"Type 'exit' or Ctrl+C to quit.\n",
|
||||
fg="cyan",
|
||||
)
|
||||
|
||||
# Main chat loop
|
||||
while True:
|
||||
try:
|
||||
user_input = click.prompt("You", type=str)
|
||||
if user_input.strip().lower() in ["exit", "quit"]:
|
||||
click.echo("Exiting chat. Goodbye!")
|
||||
break
|
||||
|
||||
# Append user message
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
|
||||
# Invoke the LLM, passing tools and available_functions
|
||||
final_response = chat_llm.call(
|
||||
messages=messages,
|
||||
tools=[crew_tool_schema],
|
||||
available_functions=available_functions,
|
||||
)
|
||||
|
||||
# Append assistant's reply
|
||||
messages.append({"role": "assistant", "content": final_response})
|
||||
|
||||
# Display assistant's reply
|
||||
click.secho(f"\nAssistant: {final_response}\n", fg="green")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
click.echo("\nExiting chat. Goodbye!")
|
||||
break
|
||||
except Exception as e:
|
||||
click.secho(f"An error occurred: {e}", fg="red")
|
||||
break
|
||||
|
||||
|
||||
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
|
||||
"""
|
||||
Dynamically build a Littellm 'function' schema for the given crew.
|
||||
|
||||
crew_name: The name of the crew (used for the function 'name').
|
||||
crew_inputs: A ChatInputs object containing crew_description
|
||||
and a list of input fields (each with a name & description).
|
||||
"""
|
||||
properties = {}
|
||||
for field in crew_inputs.inputs:
|
||||
properties[field.name] = {
|
||||
"type": "string",
|
||||
"description": field.description or "No description provided",
|
||||
}
|
||||
|
||||
required_fields = [field.name for field in crew_inputs.inputs]
|
||||
|
||||
return {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": crew_inputs.crew_name,
|
||||
"description": crew_inputs.crew_description or "No crew description",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": required_fields,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def run_crew_tool(crew: Crew, messages: List[Dict[str, str]], **kwargs):
|
||||
"""
|
||||
Runs the crew using crew.kickoff(inputs=kwargs) and returns the output.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew instance to run.
|
||||
messages (List[Dict[str, str]]): The chat messages up to this point.
|
||||
**kwargs: The inputs collected from the user.
|
||||
|
||||
Returns:
|
||||
str: The output from the crew's execution.
|
||||
|
||||
Raises:
|
||||
SystemExit: Exits the chat if an error occurs during crew execution.
|
||||
"""
|
||||
try:
|
||||
# Serialize 'messages' to JSON string before adding to kwargs
|
||||
kwargs['crew_chat_messages'] = json.dumps(messages)
|
||||
|
||||
# Run the crew with the provided inputs
|
||||
crew_output = crew.kickoff(inputs=kwargs)
|
||||
|
||||
# Convert CrewOutput to a string to send back to the user
|
||||
result = str(crew_output)
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
# Exit the chat and show the error message
|
||||
click.secho("An error occurred while running the crew:", fg="red")
|
||||
click.secho(str(e), fg="red")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def load_crew_and_name() -> Tuple[Crew, str]:
|
||||
"""
|
||||
Loads the crew by importing the crew class from the user's project.
|
||||
|
||||
Returns:
|
||||
Tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
|
||||
"""
|
||||
# Get the current working directory
|
||||
cwd = Path.cwd()
|
||||
|
||||
# Path to the pyproject.toml file
|
||||
pyproject_path = cwd / "pyproject.toml"
|
||||
if not pyproject_path.exists():
|
||||
raise FileNotFoundError("pyproject.toml not found in the current directory.")
|
||||
|
||||
# Load the pyproject.toml file using 'tomli'
|
||||
with pyproject_path.open("rb") as f:
|
||||
pyproject_data = tomli.load(f)
|
||||
|
||||
# Get the project name from the 'project' section
|
||||
project_name = pyproject_data["project"]["name"]
|
||||
folder_name = project_name
|
||||
|
||||
# Derive the crew class name from the project name
|
||||
# E.g., if project_name is 'my_project', crew_class_name is 'MyProject'
|
||||
crew_class_name = project_name.replace("_", " ").title().replace(" ", "")
|
||||
|
||||
# Add the 'src' directory to sys.path
|
||||
src_path = cwd / "src"
|
||||
if str(src_path) not in sys.path:
|
||||
sys.path.insert(0, str(src_path))
|
||||
|
||||
# Import the crew module
|
||||
crew_module_name = f"{folder_name}.crew"
|
||||
try:
|
||||
crew_module = __import__(crew_module_name, fromlist=[crew_class_name])
|
||||
except ImportError as e:
|
||||
raise ImportError(f"Failed to import crew module {crew_module_name}: {e}")
|
||||
|
||||
# Get the crew class from the module
|
||||
try:
|
||||
crew_class = getattr(crew_module, crew_class_name)
|
||||
except AttributeError:
|
||||
raise AttributeError(
|
||||
f"Crew class {crew_class_name} not found in module {crew_module_name}"
|
||||
)
|
||||
|
||||
# Instantiate the crew
|
||||
crew_instance = crew_class().crew()
|
||||
return crew_instance, crew_class_name
|
||||
|
||||
|
||||
def generate_crew_chat_inputs(crew: Crew, crew_name: str, chat_llm) -> ChatInputs:
|
||||
"""
|
||||
Generates the ChatInputs required for the crew by analyzing the tasks and agents.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew object containing tasks and agents.
|
||||
crew_name (str): The name of the crew.
|
||||
chat_llm: The chat language model to use for AI calls.
|
||||
|
||||
Returns:
|
||||
ChatInputs: An object containing the crew's name, description, and input fields.
|
||||
"""
|
||||
# Extract placeholders from tasks and agents
|
||||
required_inputs = fetch_required_inputs(crew)
|
||||
|
||||
# Generate descriptions for each input using AI
|
||||
input_fields = []
|
||||
for input_name in required_inputs:
|
||||
description = generate_input_description_with_ai(input_name, crew, chat_llm)
|
||||
input_fields.append(ChatInputField(name=input_name, description=description))
|
||||
|
||||
# Generate crew description using AI
|
||||
crew_description = generate_crew_description_with_ai(crew, chat_llm)
|
||||
|
||||
return ChatInputs(
|
||||
crew_name=crew_name,
|
||||
crew_description=crew_description,
|
||||
inputs=input_fields
|
||||
)
|
||||
|
||||
|
||||
def fetch_required_inputs(crew: Crew) -> Set[str]:
|
||||
"""
|
||||
Extracts placeholders from the crew's tasks and agents.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew object.
|
||||
|
||||
Returns:
|
||||
Set[str]: A set of placeholder names.
|
||||
"""
|
||||
placeholder_pattern = re.compile(r"\{(.+?)\}")
|
||||
required_inputs: Set[str] = set()
|
||||
|
||||
# Scan tasks
|
||||
for task in crew.tasks:
|
||||
text = f"{task.description or ''} {task.expected_output or ''}"
|
||||
required_inputs.update(placeholder_pattern.findall(text))
|
||||
|
||||
# Scan agents
|
||||
for agent in crew.agents:
|
||||
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
|
||||
required_inputs.update(placeholder_pattern.findall(text))
|
||||
|
||||
return required_inputs
|
||||
|
||||
|
||||
def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) -> str:
|
||||
"""
|
||||
Generates an input description using AI based on the context of the crew.
|
||||
|
||||
Args:
|
||||
input_name (str): The name of the input placeholder.
|
||||
crew (Crew): The crew object.
|
||||
chat_llm: The chat language model to use for AI calls.
|
||||
|
||||
Returns:
|
||||
str: A concise description of the input.
|
||||
"""
|
||||
# Gather context from tasks and agents where the input is used
|
||||
context_texts = []
|
||||
placeholder_pattern = re.compile(r"\{(.+?)\}")
|
||||
|
||||
for task in crew.tasks:
|
||||
if f"{{{input_name}}}" in task.description or f"{{{input_name}}}" in task.expected_output:
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(lambda m: m.group(1), task.description)
|
||||
expected_output = placeholder_pattern.sub(lambda m: m.group(1), task.expected_output)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
for agent in crew.agents:
|
||||
if f"{{{input_name}}}" in agent.role or f"{{{input_name}}}" in agent.goal or f"{{{input_name}}}" in agent.backstory:
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
context_texts.append(f"Agent Backstory: {agent_backstory}")
|
||||
|
||||
context = "\n".join(context_texts)
|
||||
if not context:
|
||||
# If no context is found for the input, raise an exception as per instruction
|
||||
raise ValueError(f"No context found for input '{input_name}'.")
|
||||
|
||||
prompt = (
|
||||
f"Based on the following context, write a concise description (15 words or less) of the input '{input_name}'.\n"
|
||||
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
|
||||
"Context:\n"
|
||||
f"{context}"
|
||||
)
|
||||
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
|
||||
description = response.strip()
|
||||
|
||||
return description
|
||||
|
||||
|
||||
def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
|
||||
"""
|
||||
Generates a brief description of the crew using AI.
|
||||
|
||||
Args:
|
||||
crew (Crew): The crew object.
|
||||
chat_llm: The chat language model to use for AI calls.
|
||||
|
||||
Returns:
|
||||
str: A concise description of the crew's purpose (15 words or less).
|
||||
"""
|
||||
# Gather context from tasks and agents
|
||||
context_texts = []
|
||||
placeholder_pattern = re.compile(r"\{(.+?)\}")
|
||||
|
||||
for task in crew.tasks:
|
||||
# Replace placeholders with input names
|
||||
task_description = placeholder_pattern.sub(lambda m: m.group(1), task.description)
|
||||
expected_output = placeholder_pattern.sub(lambda m: m.group(1), task.expected_output)
|
||||
context_texts.append(f"Task Description: {task_description}")
|
||||
context_texts.append(f"Expected Output: {expected_output}")
|
||||
for agent in crew.agents:
|
||||
# Replace placeholders with input names
|
||||
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
|
||||
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
|
||||
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
|
||||
context_texts.append(f"Agent Role: {agent_role}")
|
||||
context_texts.append(f"Agent Goal: {agent_goal}")
|
||||
context_texts.append(f"Agent Backstory: {agent_backstory}")
|
||||
|
||||
context = "\n".join(context_texts)
|
||||
if not context:
|
||||
raise ValueError("No context found for generating crew description.")
|
||||
|
||||
prompt = (
|
||||
"Based on the following context, write a concise, action-oriented description (15 words or less) of the crew's purpose.\n"
|
||||
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
|
||||
"Context:\n"
|
||||
f"{context}"
|
||||
)
|
||||
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
|
||||
crew_description = response.strip()
|
||||
|
||||
return crew_description
|
||||
@@ -1,81 +0,0 @@
|
||||
import json
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.llm import LLM
|
||||
|
||||
|
||||
def fetch_chat_llm() -> LLM:
|
||||
"""
|
||||
Fetch the chat LLM by running "uv run fetch_chat_llm" (or your chosen script name),
|
||||
parsing its JSON stdout, and returning an LLM instance.
|
||||
|
||||
This expects the script "fetch_chat_llm" to print out JSON that represents the
|
||||
LLM parameters (e.g., by calling something like: print(json.dumps(llm.to_dict()))).
|
||||
|
||||
Any error, whether from the subprocess or JSON parsing, will raise a RuntimeError.
|
||||
"""
|
||||
|
||||
# You may change this command to match whatever's in your pyproject.toml [project.scripts].
|
||||
command = ["uv", "run", "fetch_chat_llm"]
|
||||
|
||||
crewai_version = get_crewai_version()
|
||||
min_required_version = "0.87.0" # Adjust as needed
|
||||
|
||||
pyproject_data = read_toml()
|
||||
|
||||
# If old poetry-based setup is detected and version is below min_required_version
|
||||
if pyproject_data.get("tool", {}).get("poetry") and (
|
||||
version.parse(crewai_version) < version.parse(min_required_version)
|
||||
):
|
||||
click.secho(
|
||||
f"You are running an older version of crewAI ({crewai_version}) that uses poetry pyproject.toml.\n"
|
||||
f"Please run `crewai update` to transition your pyproject.toml to use uv.",
|
||||
fg="red",
|
||||
)
|
||||
|
||||
# Initialize a reference to your LLM
|
||||
llm_instance = None
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=True, text=True, check=True)
|
||||
stdout_lines = result.stdout.strip().splitlines()
|
||||
|
||||
# Find the line that contains the JSON data
|
||||
json_line = next(
|
||||
(
|
||||
line
|
||||
for line in stdout_lines
|
||||
if line.startswith("{") and line.endswith("}")
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if not json_line:
|
||||
raise RuntimeError(
|
||||
"No valid JSON output received from `fetch_chat_llm` command."
|
||||
)
|
||||
|
||||
try:
|
||||
llm_data = json.loads(json_line)
|
||||
llm_instance = LLM.from_dict(llm_data)
|
||||
except json.JSONDecodeError as e:
|
||||
raise RuntimeError(
|
||||
f"Unable to parse JSON from `fetch_chat_llm` output: {e}\nOutput: {repr(json_line)}"
|
||||
) from e
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise RuntimeError(f"An error occurred while fetching chat LLM: {e}") from e
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"An unexpected error occurred while fetching chat LLM: {e}"
|
||||
) from e
|
||||
|
||||
if not llm_instance:
|
||||
raise RuntimeError("Failed to create a valid LLM from `fetch_chat_llm` output.")
|
||||
|
||||
return llm_instance
|
||||
@@ -1,86 +0,0 @@
|
||||
import json
|
||||
import subprocess
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.types.crew_chat import ChatInputs
|
||||
|
||||
|
||||
def fetch_crew_inputs() -> Optional[ChatInputs]:
|
||||
"""
|
||||
Fetch the crew's ChatInputs (a structure containing crew_description and input fields)
|
||||
by running "uv run fetch_chat_inputs", which prints JSON representing a ChatInputs object.
|
||||
|
||||
This function will parse that JSON and return a ChatInputs instance.
|
||||
If the output is empty or invalid, an empty ChatInputs object is returned.
|
||||
"""
|
||||
|
||||
command = ["uv", "run", "fetch_chat_inputs"]
|
||||
crewai_version = get_crewai_version()
|
||||
min_required_version = "0.87.0"
|
||||
|
||||
pyproject_data = read_toml()
|
||||
crew_name = pyproject_data.get("project", {}).get("name", None)
|
||||
|
||||
# If you're on an older poetry-based setup and version < min_required_version
|
||||
if pyproject_data.get("tool", {}).get("poetry") and (
|
||||
version.parse(crewai_version) < version.parse(min_required_version)
|
||||
):
|
||||
click.secho(
|
||||
f"You are running an older version of crewAI ({crewai_version}) that uses poetry pyproject.toml.\n"
|
||||
f"Please run `crewai update` to update your pyproject.toml to use uv.",
|
||||
fg="red",
|
||||
)
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=True, text=True, check=True)
|
||||
stdout_lines = result.stdout.strip().splitlines()
|
||||
|
||||
# Find the line that contains the JSON data
|
||||
json_line = next(
|
||||
(
|
||||
line
|
||||
for line in stdout_lines
|
||||
if line.startswith("{") and line.endswith("}")
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if not json_line:
|
||||
click.echo(
|
||||
"No valid JSON output received from `fetch_chat_inputs` command.",
|
||||
err=True,
|
||||
)
|
||||
return None
|
||||
|
||||
try:
|
||||
raw_data = json.loads(json_line)
|
||||
chat_inputs = ChatInputs(**raw_data)
|
||||
if crew_name:
|
||||
chat_inputs.crew_name = crew_name
|
||||
return chat_inputs
|
||||
except json.JSONDecodeError as e:
|
||||
click.echo(
|
||||
f"Unable to parse JSON from `fetch_chat_inputs` output: {e}\nOutput: {repr(json_line)}",
|
||||
err=True,
|
||||
)
|
||||
return None
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while fetching chat inputs: {e}", err=True)
|
||||
click.echo(e.output, err=True, nl=True)
|
||||
|
||||
if pyproject_data.get("tool", {}).get("poetry"):
|
||||
click.secho(
|
||||
"It's possible that you are using an old version of crewAI that uses poetry.\n"
|
||||
"Please run `crewai update` to update your pyproject.toml to use uv.",
|
||||
fg="yellow",
|
||||
)
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
|
||||
return None
|
||||
@@ -1,10 +1,8 @@
|
||||
#!/usr/bin/env python
|
||||
import sys
|
||||
import json
|
||||
import warnings
|
||||
|
||||
from {{folder_name}}.crew import {{crew_name}}
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
@@ -15,30 +13,12 @@ warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
def run():
|
||||
"""
|
||||
Run the crew, allowing CLI overrides for required inputs.
|
||||
Usage example:
|
||||
uv run run_crew -- --topic="New Topic" --some_other_field="Value"
|
||||
Run the crew.
|
||||
"""
|
||||
# Default inputs
|
||||
inputs = {
|
||||
'topic': 'AI LLMs'
|
||||
# Add any other default fields here
|
||||
}
|
||||
|
||||
# 1) Gather overrides from sys.argv
|
||||
# sys.argv might look like: ['run_crew', '--topic=NewTopic']
|
||||
# But be aware that if you're calling "uv run run_crew", sys.argv might have
|
||||
# additional items. So we typically skip the first 1 or 2 items to get only overrides.
|
||||
overrides = parse_cli_overrides(sys.argv[1:])
|
||||
|
||||
# 2) Merge the overrides into defaults
|
||||
inputs.update(overrides)
|
||||
|
||||
# 3) Kick off the crew with final inputs
|
||||
try:
|
||||
{{crew_name}}().crew().kickoff(inputs=inputs)
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while running the crew: {e}")
|
||||
{{crew_name}}().crew().kickoff(inputs=inputs)
|
||||
|
||||
|
||||
def train():
|
||||
@@ -75,94 +55,4 @@ def test():
|
||||
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while testing the crew: {e}")
|
||||
|
||||
def fetch_inputs():
|
||||
"""
|
||||
Command that gathers required placeholders/inputs from the Crew, then
|
||||
prints them as JSON to stdout so external scripts can parse them easily.
|
||||
"""
|
||||
try:
|
||||
crew = {{crew_name}}().crew()
|
||||
crew_inputs = crew.fetch_inputs()
|
||||
json_string = json.dumps(list(crew_inputs))
|
||||
print(json_string)
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while fetching inputs: {e}")
|
||||
|
||||
def fetch_chat_llm():
|
||||
"""
|
||||
Command that fetches the 'chat_llm' property from the Crew,
|
||||
instantiates it via create_llm(),
|
||||
and prints the resulting LLM as JSON (using LLM.to_dict()) to stdout.
|
||||
"""
|
||||
try:
|
||||
crew = {{crew_name}}().crew()
|
||||
raw_chat_llm = getattr(crew, "chat_llm", None)
|
||||
|
||||
if not raw_chat_llm:
|
||||
# If the crew doesn't have chat_llm, fallback to create_llm(None)
|
||||
final_llm = create_llm(None)
|
||||
else:
|
||||
# raw_chat_llm might be a dict, or an LLM, or something else
|
||||
final_llm = create_llm(raw_chat_llm)
|
||||
|
||||
if final_llm:
|
||||
# Print the final LLM as JSON, so fetch_chat_llm.py can parse it
|
||||
from crewai.llm import LLM # Import here to avoid circular references
|
||||
|
||||
# Make sure it's an instance of the LLM class:
|
||||
if isinstance(final_llm, LLM):
|
||||
print(json.dumps(final_llm.to_dict()))
|
||||
else:
|
||||
# If somehow it's not an LLM, try to interpret as a dict
|
||||
# or revert to an empty fallback
|
||||
if isinstance(final_llm, dict):
|
||||
print(json.dumps(final_llm))
|
||||
else:
|
||||
print(json.dumps({}))
|
||||
else:
|
||||
print(json.dumps({}))
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while fetching chat LLM: {e}")
|
||||
|
||||
# TODO: Talk to Joao about making using LLM calls to analyze the crew
|
||||
# and generate all of this information automatically
|
||||
def fetch_chat_inputs():
|
||||
"""
|
||||
Command that fetches the 'chat_inputs' property from the Crew,
|
||||
and prints it as JSON to stdout.
|
||||
"""
|
||||
try:
|
||||
crew = {{crew_name}}().crew()
|
||||
raw_chat_inputs = getattr(crew, "chat_inputs", None)
|
||||
|
||||
if raw_chat_inputs:
|
||||
# Convert to dictionary to print JSON
|
||||
print(json.dumps(raw_chat_inputs.model_dump()))
|
||||
else:
|
||||
# If crew.chat_inputs is None or empty, print an empty JSON
|
||||
print(json.dumps({}))
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while fetching chat inputs: {e}")
|
||||
|
||||
|
||||
def parse_cli_overrides(args_list) -> dict:
|
||||
"""
|
||||
Parse arguments in the form of --key=value from a list of CLI arguments.
|
||||
Return them as a dict. For example:
|
||||
['--topic=AI LLMs', '--username=John'] => {'topic': 'AI LLMs', 'username': 'John'}
|
||||
"""
|
||||
overrides = {}
|
||||
for arg in args_list:
|
||||
if arg.startswith("--"):
|
||||
# remove the leading --
|
||||
trimmed = arg[2:]
|
||||
if "=" in trimmed:
|
||||
key, val = trimmed.split("=", 1)
|
||||
overrides[key] = val
|
||||
else:
|
||||
# If someone passed something like --topic (no =),
|
||||
# either handle differently or ignore
|
||||
pass
|
||||
return overrides
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0,<1.0.0"
|
||||
"crewai[tools]>=0.95.0,<1.0.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0,<1.0.0",
|
||||
"crewai[tools]>=0.95.0,<1.0.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0"
|
||||
"crewai[tools]>=0.95.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import asyncio
|
||||
import json
|
||||
import re
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -37,7 +36,6 @@ from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.types.crew_chat import ChatInputs
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -205,14 +203,6 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
|
||||
)
|
||||
chat_llm: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="LLM used to handle chatting with the crew.",
|
||||
)
|
||||
chat_inputs: Optional[ChatInputs] = Field(
|
||||
default=None,
|
||||
description="Holds descriptions of the crew as well as named inputs for chat usage.",
|
||||
)
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(
|
||||
default=None,
|
||||
)
|
||||
@@ -1001,31 +991,6 @@ class Crew(BaseModel):
|
||||
return self._knowledge.query(query)
|
||||
return None
|
||||
|
||||
def fetch_inputs(self) -> Set[str]:
|
||||
"""
|
||||
Gathers placeholders (e.g., {something}) referenced in tasks or agents.
|
||||
Scans each task's 'description' + 'expected_output', and each agent's
|
||||
'role', 'goal', and 'backstory'.
|
||||
|
||||
Returns a set of all discovered placeholder names.
|
||||
"""
|
||||
placeholder_pattern = re.compile(r"\{(.+?)\}")
|
||||
required_inputs: Set[str] = set()
|
||||
|
||||
# Scan tasks for inputs
|
||||
for task in self.tasks:
|
||||
# description and expected_output might contain e.g. {topic}, {user_name}, etc.
|
||||
text = f"{task.description or ''} {task.expected_output or ''}"
|
||||
required_inputs.update(placeholder_pattern.findall(text))
|
||||
|
||||
# Scan agents for inputs
|
||||
for agent in self.agents:
|
||||
# role, goal, backstory might have placeholders like {role_detail}, etc.
|
||||
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
|
||||
required_inputs.update(placeholder_pattern.findall(text))
|
||||
|
||||
return required_inputs
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Crew."""
|
||||
|
||||
@@ -1081,7 +1046,7 @@ class Crew(BaseModel):
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolates the inputs in the tasks and agents."""
|
||||
[
|
||||
task.interpolate_inputs_and_add_conversation_history(
|
||||
task.interpolate_inputs(
|
||||
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
|
||||
inputs
|
||||
)
|
||||
|
||||
@@ -1,27 +1,21 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Union, cast
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from importlib import resources
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
import litellm
|
||||
from litellm import Choices, get_supported_openai_params
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from litellm import get_supported_openai_params
|
||||
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class FilteredStream:
|
||||
def __init__(self, original_stream):
|
||||
@@ -30,7 +24,6 @@ class FilteredStream:
|
||||
|
||||
def write(self, s) -> int:
|
||||
with self._lock:
|
||||
# Filter out extraneous messages from LiteLLM
|
||||
if (
|
||||
"Give Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new"
|
||||
in s
|
||||
@@ -86,15 +79,18 @@ CONTEXT_WINDOW_USAGE_RATIO = 0.75
|
||||
def suppress_warnings():
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore")
|
||||
warnings.filterwarnings("ignore", message="open_text is deprecated*", category=DeprecationWarning)
|
||||
|
||||
# Redirect stdout and stderr
|
||||
old_stdout = sys.stdout
|
||||
old_stderr = sys.stderr
|
||||
sys.stdout = FilteredStream(old_stdout)
|
||||
sys.stderr = FilteredStream(old_stderr)
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
# Restore stdout and stderr
|
||||
sys.stdout = old_stdout
|
||||
sys.stderr = old_stderr
|
||||
|
||||
@@ -115,12 +111,13 @@ class LLM:
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
response_format: Optional[Dict[str, Any]] = None,
|
||||
seed: Optional[int] = None,
|
||||
logprobs: Optional[int] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
base_url: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
callbacks: List[Any] = [],
|
||||
**kwargs,
|
||||
):
|
||||
self.model = model
|
||||
self.timeout = timeout
|
||||
@@ -142,96 +139,19 @@ class LLM:
|
||||
self.api_key = api_key
|
||||
self.callbacks = callbacks
|
||||
self.context_window_size = 0
|
||||
self.kwargs = kwargs
|
||||
|
||||
# For safety, we disable passing init params to next calls
|
||||
litellm.drop_params = True
|
||||
|
||||
self.set_callbacks(callbacks)
|
||||
self.set_env_callbacks()
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
"""
|
||||
Return a dict of all relevant parameters for serialization.
|
||||
"""
|
||||
return {
|
||||
"model": self.model,
|
||||
"timeout": self.timeout,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"n": self.n,
|
||||
"stop": self.stop,
|
||||
"max_completion_tokens": self.max_completion_tokens,
|
||||
"max_tokens": self.max_tokens,
|
||||
"presence_penalty": self.presence_penalty,
|
||||
"frequency_penalty": self.frequency_penalty,
|
||||
"logit_bias": self.logit_bias,
|
||||
"response_format": self.response_format,
|
||||
"seed": self.seed,
|
||||
"logprobs": self.logprobs,
|
||||
"top_logprobs": self.top_logprobs,
|
||||
"base_url": self.base_url,
|
||||
"api_version": self.api_version,
|
||||
"api_key": self.api_key,
|
||||
"callbacks": self.callbacks,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: dict) -> "LLM":
|
||||
"""
|
||||
Create an LLM instance from a dict.
|
||||
We assume the dict has all relevant keys that match what's in the constructor.
|
||||
"""
|
||||
known_fields = {}
|
||||
known_fields["model"] = data.pop("model", None)
|
||||
known_fields["timeout"] = data.pop("timeout", None)
|
||||
known_fields["temperature"] = data.pop("temperature", None)
|
||||
known_fields["top_p"] = data.pop("top_p", None)
|
||||
known_fields["n"] = data.pop("n", None)
|
||||
known_fields["stop"] = data.pop("stop", None)
|
||||
known_fields["max_completion_tokens"] = data.pop("max_completion_tokens", None)
|
||||
known_fields["max_tokens"] = data.pop("max_tokens", None)
|
||||
known_fields["presence_penalty"] = data.pop("presence_penalty", None)
|
||||
known_fields["frequency_penalty"] = data.pop("frequency_penalty", None)
|
||||
known_fields["logit_bias"] = data.pop("logit_bias", None)
|
||||
known_fields["response_format"] = data.pop("response_format", None)
|
||||
known_fields["seed"] = data.pop("seed", None)
|
||||
known_fields["logprobs"] = data.pop("logprobs", None)
|
||||
known_fields["top_logprobs"] = data.pop("top_logprobs", None)
|
||||
known_fields["base_url"] = data.pop("base_url", None)
|
||||
known_fields["api_version"] = data.pop("api_version", None)
|
||||
known_fields["api_key"] = data.pop("api_key", None)
|
||||
known_fields["callbacks"] = data.pop("callbacks", None)
|
||||
|
||||
return cls(**known_fields, **data)
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: List[Dict[str, str]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
High-level call method that:
|
||||
1) Calls litellm.completion
|
||||
2) Checks for function/tool calls
|
||||
3) If a tool call is found:
|
||||
a) executes the function
|
||||
b) returns the result
|
||||
4) If no tool call, returns the text response
|
||||
|
||||
:param messages: The conversation messages
|
||||
:param tools: Optional list of function schemas for function calling
|
||||
:param callbacks: Optional list of callbacks
|
||||
:param available_functions: A dictionary mapping function_name -> actual Python function
|
||||
:return: Final text response from the LLM or the tool result
|
||||
"""
|
||||
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
|
||||
with suppress_warnings():
|
||||
if callbacks:
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
# --- 1) Make the completion call
|
||||
params = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
@@ -252,65 +172,21 @@ class LLM:
|
||||
"api_version": self.api_version,
|
||||
"api_key": self.api_key,
|
||||
"stream": False,
|
||||
"tools": tools, # pass the tool schema
|
||||
**self.kwargs,
|
||||
}
|
||||
|
||||
# Remove None values
|
||||
# Remove None values to avoid passing unnecessary parameters
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
response = litellm.completion(**params)
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
0
|
||||
].message
|
||||
text_response = response_message.content or ""
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# --- 2) If no tool calls, return the text response
|
||||
if not tool_calls or not available_functions:
|
||||
return text_response
|
||||
|
||||
# --- 3) Handle the tool call
|
||||
tool_call = tool_calls[0]
|
||||
function_name = tool_call.function.name
|
||||
|
||||
if function_name in available_functions:
|
||||
# Parse arguments
|
||||
try:
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
except json.JSONDecodeError as e:
|
||||
logging.warning(f"Failed to parse function arguments: {e}")
|
||||
return text_response # Fallback to text response
|
||||
|
||||
fn = available_functions[function_name]
|
||||
try:
|
||||
# Call the actual tool function
|
||||
result = fn(**function_args)
|
||||
|
||||
print(f"Result from function '{function_name}': {result}")
|
||||
|
||||
# Return the result directly
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logging.error(
|
||||
f"Error executing function '{function_name}': {e}"
|
||||
)
|
||||
return text_response # Fallback to text response
|
||||
|
||||
else:
|
||||
logging.warning(
|
||||
f"Tool call requested unknown function '{function_name}'"
|
||||
)
|
||||
return text_response # Fallback to text response
|
||||
|
||||
return response["choices"][0]["message"]["content"]
|
||||
except Exception as e:
|
||||
# Check if context length was exceeded, otherwise log
|
||||
if not LLMContextLengthExceededException(
|
||||
str(e)
|
||||
)._is_context_limit_error(str(e)):
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
# Re-raise the exception
|
||||
raise
|
||||
|
||||
raise # Re-raise the exception after logging
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
@@ -329,10 +205,7 @@ class LLM:
|
||||
return False
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""
|
||||
Returns the context window size, using 75% of the maximum to avoid
|
||||
cutting off messages mid-thread.
|
||||
"""
|
||||
# Only using 75% of the context window size to avoid cutting the message in the middle
|
||||
if self.context_window_size != 0:
|
||||
return self.context_window_size
|
||||
|
||||
@@ -345,38 +218,51 @@ class LLM:
|
||||
return self.context_window_size
|
||||
|
||||
def set_callbacks(self, callbacks: List[Any]):
|
||||
"""
|
||||
Attempt to keep a single set of callbacks in litellm by removing old
|
||||
duplicates and adding new ones.
|
||||
"""
|
||||
callback_types = [type(callback) for callback in callbacks]
|
||||
for callback in litellm.success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm.success_callback.remove(callback)
|
||||
with suppress_warnings():
|
||||
callback_types = [type(callback) for callback in callbacks]
|
||||
for callback in litellm.success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm.success_callback.remove(callback)
|
||||
|
||||
for callback in litellm._async_success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm._async_success_callback.remove(callback)
|
||||
for callback in litellm._async_success_callback[:]:
|
||||
if type(callback) in callback_types:
|
||||
litellm._async_success_callback.remove(callback)
|
||||
|
||||
litellm.callbacks = callbacks
|
||||
litellm.callbacks = callbacks
|
||||
|
||||
def set_env_callbacks(self):
|
||||
"""
|
||||
Sets the success and failure callbacks for the LiteLLM library from environment variables.
|
||||
|
||||
This method reads the `LITELLM_SUCCESS_CALLBACKS` and `LITELLM_FAILURE_CALLBACKS`
|
||||
environment variables, which should contain comma-separated lists of callback names.
|
||||
It then assigns these lists to `litellm.success_callback` and `litellm.failure_callback`,
|
||||
respectively.
|
||||
|
||||
If the environment variables are not set or are empty, the corresponding callback lists
|
||||
will be set to empty lists.
|
||||
|
||||
Example:
|
||||
LITELLM_SUCCESS_CALLBACKS="langfuse,langsmith"
|
||||
LITELLM_FAILURE_CALLBACKS="langfuse"
|
||||
|
||||
This will set `litellm.success_callback` to ["langfuse", "langsmith"] and
|
||||
`litellm.failure_callback` to ["langfuse"].
|
||||
"""
|
||||
success_callbacks_str = os.environ.get("LITELLM_SUCCESS_CALLBACKS", "")
|
||||
success_callbacks = []
|
||||
if success_callbacks_str:
|
||||
success_callbacks = [
|
||||
cb.strip() for cb in success_callbacks_str.split(",") if cb.strip()
|
||||
]
|
||||
with suppress_warnings():
|
||||
success_callbacks_str = os.environ.get("LITELLM_SUCCESS_CALLBACKS", "")
|
||||
success_callbacks = []
|
||||
if success_callbacks_str:
|
||||
success_callbacks = [
|
||||
callback.strip() for callback in success_callbacks_str.split(",")
|
||||
]
|
||||
|
||||
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
|
||||
failure_callbacks = []
|
||||
if failure_callbacks_str:
|
||||
failure_callbacks = [
|
||||
cb.strip() for cb in failure_callbacks_str.split(",") if cb.strip()
|
||||
]
|
||||
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
|
||||
failure_callbacks = []
|
||||
if failure_callbacks_str:
|
||||
failure_callbacks = [
|
||||
callback.strip() for callback in failure_callbacks_str.split(",")
|
||||
]
|
||||
|
||||
litellm.success_callback = success_callbacks
|
||||
litellm.failure_callback = failure_callbacks
|
||||
litellm.success_callback = success_callbacks
|
||||
litellm.failure_callback = failure_callbacks
|
||||
|
||||
@@ -41,6 +41,7 @@ from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.i18n import I18N
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
class Task(BaseModel):
|
||||
@@ -133,7 +134,6 @@ class Task(BaseModel):
|
||||
default=3, description="Maximum number of retries when guardrail fails"
|
||||
)
|
||||
retry_count: int = Field(default=0, description="Current number of retries")
|
||||
|
||||
start_time: Optional[datetime.datetime] = Field(
|
||||
default=None, description="Start time of the task execution"
|
||||
)
|
||||
@@ -391,10 +391,14 @@ class Task(BaseModel):
|
||||
)
|
||||
|
||||
self.retry_count += 1
|
||||
context = (
|
||||
f"### Previous attempt failed validation: {guardrail_result.error}\n\n\n"
|
||||
f"### Previous result:\n{task_output.raw}\n\n\n"
|
||||
"Try again, making sure to address the validation error."
|
||||
context = self.i18n.errors("validation_error").format(
|
||||
guardrail_result_error=guardrail_result.error,
|
||||
task_output=task_output.raw
|
||||
)
|
||||
printer = Printer()
|
||||
printer.print(
|
||||
content=f"Guardrail blocked, retrying, due to:{guardrail_result.error}\n",
|
||||
color="yellow",
|
||||
)
|
||||
return self._execute_core(agent, context, tools)
|
||||
|
||||
@@ -449,11 +453,9 @@ class Task(BaseModel):
|
||||
tasks_slices = [self.description, output]
|
||||
return "\n".join(tasks_slices)
|
||||
|
||||
|
||||
def interpolate_inputs_and_add_conversation_history(self, inputs: Dict[str, Union[str, int, float]]) -> None:
|
||||
def interpolate_inputs(self, inputs: Dict[str, Union[str, int, float]]) -> None:
|
||||
"""Interpolate inputs into the task description, expected output, and output file path.
|
||||
Add conversation history if present.
|
||||
|
||||
|
||||
Args:
|
||||
inputs: Dictionary mapping template variables to their values.
|
||||
Supported value types are strings, integers, and floats.
|
||||
@@ -493,33 +495,9 @@ class Task(BaseModel):
|
||||
input_string=self._original_output_file, inputs=inputs
|
||||
)
|
||||
except (KeyError, ValueError) as e:
|
||||
raise ValueError(f"Error interpolating output_file path: {str(e)}") from e
|
||||
|
||||
if "crew_chat_messages" in inputs and inputs["crew_chat_messages"]:
|
||||
# Fetch the conversation history instruction using self.i18n.slice
|
||||
conversation_instruction = self.i18n.slice(
|
||||
"conversation_history_instruction"
|
||||
)
|
||||
print("crew_chat_messages:", inputs["crew_chat_messages"])
|
||||
|
||||
# Ensure that inputs["crew_chat_messages"] is a string
|
||||
crew_chat_messages_json = str(inputs["crew_chat_messages"])
|
||||
|
||||
try:
|
||||
crew_chat_messages = json.loads(crew_chat_messages_json)
|
||||
except json.JSONDecodeError as e:
|
||||
print("An error occurred while parsing crew chat messages:", e)
|
||||
raise
|
||||
|
||||
# Process the messages to build conversation history
|
||||
conversation_history = "\n".join(
|
||||
f"{msg['role'].capitalize()}: {msg['content']}"
|
||||
for msg in crew_chat_messages
|
||||
if isinstance(msg, dict) and "role" in msg and "content" in msg
|
||||
)
|
||||
|
||||
# Add the instruction and conversation history to the description
|
||||
self.description += f"\n\n{conversation_instruction}\n\n{conversation_history}"
|
||||
raise ValueError(
|
||||
f"Error interpolating output_file path: {str(e)}"
|
||||
) from e
|
||||
|
||||
def interpolate_only(
|
||||
self, input_string: Optional[str], inputs: Dict[str, Union[str, int, float]]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
@@ -54,12 +54,12 @@ class BaseAgentTool(BaseTool):
|
||||
) -> str:
|
||||
"""
|
||||
Execute delegation to an agent with case-insensitive and whitespace-tolerant matching.
|
||||
|
||||
|
||||
Args:
|
||||
agent_name: Name/role of the agent to delegate to (case-insensitive)
|
||||
task: The specific question or task to delegate
|
||||
context: Optional additional context for the task execution
|
||||
|
||||
|
||||
Returns:
|
||||
str: The execution result from the delegated agent or an error message
|
||||
if the agent cannot be found
|
||||
|
||||
@@ -1,12 +1,23 @@
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from inspect import signature
|
||||
from typing import Any, Callable, Type, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, create_model, validator
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
PydanticDeprecatedSince20,
|
||||
create_model,
|
||||
validator,
|
||||
)
|
||||
from pydantic import BaseModel as PydanticBaseModel
|
||||
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
|
||||
# Ignore all "PydanticDeprecatedSince20" warnings globally
|
||||
warnings.filterwarnings("ignore", category=PydanticDeprecatedSince20)
|
||||
|
||||
|
||||
class BaseTool(BaseModel, ABC):
|
||||
class _ArgsSchemaPlaceholder(PydanticBaseModel):
|
||||
|
||||
@@ -23,8 +23,7 @@
|
||||
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
|
||||
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
|
||||
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
|
||||
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\"",
|
||||
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals."
|
||||
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\""
|
||||
},
|
||||
"errors": {
|
||||
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
|
||||
@@ -35,7 +34,8 @@
|
||||
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
|
||||
"wrong_tool_name": "You tried to use the tool {tool}, but it doesn't exist. You must use one of the following tools, use one at time: {tools}.",
|
||||
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}",
|
||||
"agent_tool_execution_error": "Error executing task with agent '{agent_role}'. Error: {error}"
|
||||
"agent_tool_execution_error": "Error executing task with agent '{agent_role}'. Error: {error}",
|
||||
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error."
|
||||
},
|
||||
"tools": {
|
||||
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
|
||||
|
||||
@@ -1,44 +0,0 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ChatInputField(BaseModel):
|
||||
"""
|
||||
Represents a single required input for the crew, with a name and short description.
|
||||
Example:
|
||||
{
|
||||
"name": "topic",
|
||||
"description": "The topic to focus on for the conversation"
|
||||
}
|
||||
"""
|
||||
|
||||
name: str = Field(..., description="The name of the input field")
|
||||
description: str = Field(
|
||||
...,
|
||||
description="A short description of the input field",
|
||||
)
|
||||
|
||||
|
||||
class ChatInputs(BaseModel):
|
||||
"""
|
||||
Holds a high-level crew_description plus a list of ChatInputFields.
|
||||
Example:
|
||||
{
|
||||
"crew_name": "topic-based-qa",
|
||||
"crew_description": "Use this crew for topic-based Q&A",
|
||||
"inputs": [
|
||||
{"name": "topic", "description": "The topic to focus on"},
|
||||
{"name": "username", "description": "Name of the user"},
|
||||
]
|
||||
}
|
||||
"""
|
||||
|
||||
crew_name: str = Field(..., description="The name of the crew")
|
||||
crew_description: str = Field(
|
||||
...,
|
||||
description="A description of the crew's purpose",
|
||||
)
|
||||
inputs: List[ChatInputField] = Field(
|
||||
default_factory=list, description="A list of input fields for the crew"
|
||||
)
|
||||
@@ -31,10 +31,10 @@ class InternalInstructor:
|
||||
import instructor
|
||||
from litellm import completion
|
||||
|
||||
self._client = instructor.from_litellm(
|
||||
completion,
|
||||
mode=instructor.Mode.TOOLS,
|
||||
)
|
||||
self._client = instructor.from_litellm(
|
||||
completion,
|
||||
mode=instructor.Mode.TOOLS,
|
||||
)
|
||||
|
||||
def to_json(self):
|
||||
model = self.to_pydantic()
|
||||
|
||||
@@ -1,215 +0,0 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from packaging import version
|
||||
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.llm import LLM
|
||||
|
||||
|
||||
def create_llm(
|
||||
llm_value: Union[str, LLM, Any, None] = None,
|
||||
) -> Optional[LLM]:
|
||||
"""
|
||||
Creates or returns an LLM instance based on the given llm_value.
|
||||
|
||||
Args:
|
||||
llm_value (str | LLM | Any | None):
|
||||
- str: The model name (e.g., "gpt-4").
|
||||
- LLM: Already instantiated LLM, returned as-is.
|
||||
- Any: Attempt to extract known attributes like model_name, temperature, etc.
|
||||
- None: Use environment-based or fallback default model.
|
||||
|
||||
Returns:
|
||||
An LLM instance if successful, or None if something fails.
|
||||
"""
|
||||
|
||||
# 1) If llm_value is already an LLM object, return it directly
|
||||
if isinstance(llm_value, LLM):
|
||||
return llm_value
|
||||
|
||||
# 2) If llm_value is a string (model name)
|
||||
if isinstance(llm_value, str):
|
||||
try:
|
||||
created_llm = LLM(model=llm_value)
|
||||
print(f"LLM created with model='{llm_value}'")
|
||||
return created_llm
|
||||
except Exception as e:
|
||||
print(f"Failed to instantiate LLM with model='{llm_value}': {e}")
|
||||
return None
|
||||
|
||||
# 3) If llm_value is None, parse environment variables or use default
|
||||
if llm_value is None:
|
||||
return _llm_via_environment_or_fallback()
|
||||
|
||||
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
|
||||
try:
|
||||
# Extract attributes with explicit types
|
||||
model = (
|
||||
getattr(llm_value, "model_name", None)
|
||||
or getattr(llm_value, "deployment_name", None)
|
||||
or str(llm_value)
|
||||
)
|
||||
temperature: Optional[float] = getattr(llm_value, "temperature", None)
|
||||
max_tokens: Optional[int] = getattr(llm_value, "max_tokens", None)
|
||||
logprobs: Optional[int] = getattr(llm_value, "logprobs", None)
|
||||
timeout: Optional[float] = getattr(llm_value, "timeout", None)
|
||||
api_key: Optional[str] = getattr(llm_value, "api_key", None)
|
||||
base_url: Optional[str] = getattr(llm_value, "base_url", None)
|
||||
|
||||
created_llm = LLM(
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
logprobs=logprobs,
|
||||
timeout=timeout,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
)
|
||||
print(
|
||||
"LLM created with extracted parameters; "
|
||||
f"model='{model}'"
|
||||
)
|
||||
return created_llm
|
||||
except Exception as e:
|
||||
print(f"Error instantiating LLM from unknown object type: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def create_chat_llm() -> Optional[LLM]:
|
||||
"""
|
||||
Creates a Chat LLM with additional checks, such as verifying crewAI version
|
||||
or reading from pyproject.toml. Then calls `create_llm(None, default_model)`.
|
||||
|
||||
Args:
|
||||
default_model (str): Fallback model if not set in environment.
|
||||
|
||||
Returns:
|
||||
An instance of LLM or None if instantiation fails.
|
||||
"""
|
||||
print("[create_chat_llm] Checking environment and version info...")
|
||||
|
||||
crewai_version = get_crewai_version()
|
||||
min_required_version = "0.87.0" # Update to latest if needed
|
||||
|
||||
pyproject_data = read_toml()
|
||||
if pyproject_data.get("tool", {}).get("poetry") and (
|
||||
version.parse(crewai_version) < version.parse(min_required_version)
|
||||
):
|
||||
print(
|
||||
f"You are running an older version of crewAI ({crewai_version}) that uses poetry.\n"
|
||||
"Please run `crewai update` to switch to uv-based builds."
|
||||
)
|
||||
|
||||
# After checks, simply call create_llm with None (meaning "use env or fallback"):
|
||||
return create_llm(None)
|
||||
|
||||
|
||||
def _llm_via_environment_or_fallback() -> Optional[LLM]:
|
||||
"""
|
||||
Helper function: if llm_value is None, we load environment variables or fallback default model.
|
||||
"""
|
||||
model_name = (
|
||||
os.environ.get("OPENAI_MODEL_NAME")
|
||||
or os.environ.get("MODEL")
|
||||
or DEFAULT_LLM_MODEL
|
||||
)
|
||||
|
||||
# Initialize parameters with correct types
|
||||
model: str = model_name
|
||||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
max_completion_tokens: Optional[int] = None
|
||||
logprobs: Optional[int] = None
|
||||
timeout: Optional[float] = None
|
||||
api_key: Optional[str] = None
|
||||
base_url: Optional[str] = None
|
||||
api_version: Optional[str] = None
|
||||
presence_penalty: Optional[float] = None
|
||||
frequency_penalty: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
n: Optional[int] = None
|
||||
stop: Optional[Union[str, List[str]]] = None
|
||||
logit_bias: Optional[Dict[int, float]] = None
|
||||
response_format: Optional[Dict[str, Any]] = None
|
||||
seed: Optional[int] = None
|
||||
top_logprobs: Optional[int] = None
|
||||
callbacks: List[Any] = []
|
||||
|
||||
# Optional base URL from env
|
||||
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get("OPENAI_BASE_URL")
|
||||
if api_base:
|
||||
base_url = api_base
|
||||
|
||||
# Initialize llm_params dictionary
|
||||
llm_params: Dict[str, Any] = {
|
||||
"model": model,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"max_completion_tokens": max_completion_tokens,
|
||||
"logprobs": logprobs,
|
||||
"timeout": timeout,
|
||||
"api_key": api_key,
|
||||
"base_url": base_url,
|
||||
"api_version": api_version,
|
||||
"presence_penalty": presence_penalty,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
"top_p": top_p,
|
||||
"n": n,
|
||||
"stop": stop,
|
||||
"logit_bias": logit_bias,
|
||||
"response_format": response_format,
|
||||
"seed": seed,
|
||||
"top_logprobs": top_logprobs,
|
||||
"callbacks": callbacks,
|
||||
}
|
||||
|
||||
UNACCEPTED_ATTRIBUTES = [
|
||||
"AWS_ACCESS_KEY_ID",
|
||||
"AWS_SECRET_ACCESS_KEY",
|
||||
"AWS_REGION_NAME",
|
||||
]
|
||||
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
|
||||
|
||||
if set_provider in ENV_VARS:
|
||||
for env_var in ENV_VARS[set_provider]:
|
||||
key_name = env_var.get("key_name")
|
||||
if key_name and key_name not in UNACCEPTED_ATTRIBUTES:
|
||||
env_value = os.environ.get(key_name)
|
||||
if env_value:
|
||||
# Map environment variable names to recognized parameters
|
||||
param_key = _normalize_key_name(key_name.lower())
|
||||
llm_params[param_key] = env_value
|
||||
elif isinstance(env_var, dict):
|
||||
if env_var.get("default", False):
|
||||
for key, value in env_var.items():
|
||||
if key not in ["prompt", "key_name", "default"]:
|
||||
if key in os.environ:
|
||||
llm_params[key] = os.environ[key]
|
||||
else:
|
||||
print(f"Expected env_var to be a dictionary, but got {type(env_var)}")
|
||||
|
||||
# Remove None values
|
||||
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
||||
|
||||
# Try creating the LLM
|
||||
try:
|
||||
new_llm = LLM(**llm_params)
|
||||
print(f"LLM created with model='{model_name}'")
|
||||
return new_llm
|
||||
except Exception as e:
|
||||
print(f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def _normalize_key_name(key_name: str) -> str:
|
||||
"""
|
||||
Maps environment variable names to recognized litellm parameter keys,
|
||||
using patterns from LITELLM_PARAMS.
|
||||
"""
|
||||
for pattern in LITELLM_PARAMS:
|
||||
if pattern in key_name:
|
||||
return pattern
|
||||
return key_name
|
||||
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, List, Optional
|
||||
|
||||
@@ -78,10 +77,10 @@ class CrewPlanner:
|
||||
def _get_agent_knowledge(self, task: Task) -> List[str]:
|
||||
"""
|
||||
Safely retrieve knowledge source content from the task's agent.
|
||||
|
||||
|
||||
Args:
|
||||
task: The task containing an agent with potential knowledge sources
|
||||
|
||||
|
||||
Returns:
|
||||
List[str]: A list of knowledge source strings
|
||||
"""
|
||||
@@ -108,6 +107,6 @@ class CrewPlanner:
|
||||
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
|
||||
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
|
||||
)
|
||||
|
||||
|
||||
tasks_summary.append(task_summary)
|
||||
return " ".join(tasks_summary)
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import warnings
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.types.utils import Usage
|
||||
@@ -8,16 +7,10 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
|
||||
|
||||
|
||||
class TokenCalcHandler(CustomLogger):
|
||||
def __init__(self, token_cost_process: Optional[TokenProcess]):
|
||||
def __init__(self, token_cost_process: TokenProcess):
|
||||
self.token_cost_process = token_cost_process
|
||||
|
||||
def log_success_event(
|
||||
self,
|
||||
kwargs: Dict[str, Any],
|
||||
response_obj: Dict[str, Any],
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
) -> None:
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
if self.token_cost_process is None:
|
||||
return
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class TestAgent(BaseAgent):
|
||||
class MockAgent(BaseAgent):
|
||||
def execute_task(
|
||||
self,
|
||||
task: Any,
|
||||
@@ -29,7 +29,7 @@ class TestAgent(BaseAgent):
|
||||
|
||||
|
||||
def test_key():
|
||||
agent = TestAgent(
|
||||
agent = MockAgent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
|
||||
988
tests/cassettes/test_crew_with_failing_task_guardrails.yaml
Normal file
988
tests/cassettes/test_crew_with_failing_task_guardrails.yaml
Normal file
@@ -0,0 +1,988 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: !!binary |
|
||||
CpotCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS8SwKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLrCQoQmqG4kmRspGSV9KSDE2WH2hIInKDQhtLNgqEqDENyZXcgQ3JlYXRlZDABOeCb
|
||||
nCGokxcYQYDspiGokxcYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogY2FhMWFlYjNkZDQzNjM4NjU2OGE1YzNmZTIx
|
||||
MDFhZjVKMQoHY3Jld19pZBImCiQxOWRmM2Y3MS1kYzk0LTQ0ZjYtYmY0Zi0zNjBjZjY2YjJiYWZK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSo4FCgtjcmV3
|
||||
X2FnZW50cxL+BAr7BFt7ImtleSI6ICI5N2Y0MTdmM2UxZTMxY2YwYzEwOWY3NTI5YWM4ZjZiYyIs
|
||||
ICJpZCI6ICJjMzIyZGMzMS0zZDNlLTRlOTctYjgwNi02MDU3ZTZjNGQxZmUiLCAicm9sZSI6ICJQ
|
||||
cm9ncmFtbWVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
|
||||
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
|
||||
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogdHJ1
|
||||
ZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOTJh
|
||||
MjRiMGJjY2ZiMGRjMGU0MzlkN2Q1OWJhOWY2ZjMiLCAiaWQiOiAiYzMzMGJlNDAtYWQxMS00YjM2
|
||||
LWEwYTYtY2E4NWY5ZWFjYzZhIiwgInJvbGUiOiAiQ29kZSBSZXZpZXdlciIsICJ2ZXJib3NlPyI6
|
||||
IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGlu
|
||||
Z19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/Ijog
|
||||
dHJ1ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IHRydWUsICJtYXhfcmV0cnlfbGltaXQiOiAy
|
||||
LCAidG9vbHNfbmFtZXMiOiBbXX1dSooCCgpjcmV3X3Rhc2tzEvsBCvgBW3sia2V5IjogIjc5YWEy
|
||||
N2RmNzRlNjI3OWUzNGE4ODg4MTc0ODFjNDBmIiwgImlkIjogIjEyYmNjNTAwLWExNzgtNGQyZS05
|
||||
NmQ4LWNkN2UwZmYzNzRhMCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1
|
||||
dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUHJvZ3JhbW1lciIsICJhZ2VudF9rZXkiOiAiOTdm
|
||||
NDE3ZjNlMWUzMWNmMGMxMDlmNzUyOWFjOGY2YmMiLCAidG9vbHNfbmFtZXMiOiBbInRlc3QgdG9v
|
||||
bCJdfV16AhgBhQEAAQAAErMHChCxSjXt2/kv7CqAN8F+6ZMMEghR4jnKP0dHjSoMQ3JldyBDcmVh
|
||||
dGVkMAE5iBNAIqiTFxhBiGZHIqiTFxhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5
|
||||
dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiA3NzNhODc2YjU3OTJkYjY5NTU5
|
||||
ZmU4MmMzYWQyMzU5ZkoxCgdjcmV3X2lkEiYKJDk2YjRkMmFlLTQ3ZDUtNDA0MS1hNjJhLTAyMmMy
|
||||
ZDUzZGZkZkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABK
|
||||
GgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFK
|
||||
2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5IjogIjA3N2M3YTg2N2UyMGQwYTY4Yjk3NGU0NzYw
|
||||
NzEwOWYzIiwgImlkIjogIjVhOTJiYzM4LWFlNGEtNGViZC1iNTM2LTFkZGVjZDBkODBhYyIsICJy
|
||||
b2xlIjogIk11bHRpbW9kYWwgQW5hbHlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
|
||||
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
|
||||
ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
|
||||
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
|
||||
IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJrZXkiOiAiYzc1M2M2ODA2MzU5NDM2YTU4OTZm
|
||||
ZWMwOWJhYTEyNWUiLCAiaWQiOiAiNmRhZTcyNzktMDhjNS00OGNiLWI5OWItYmUyYjAwMzhkYzgz
|
||||
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
|
||||
bnRfcm9sZSI6ICJNdWx0aW1vZGFsIEFuYWx5c3QiLCAiYWdlbnRfa2V5IjogIjA3N2M3YTg2N2Uy
|
||||
MGQwYTY4Yjk3NGU0NzYwNzEwOWYzIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASqQcK
|
||||
EIW4ljcZA7v+rs1zMkO4T0wSCIcyNxRlQUYoKgxDcmV3IENyZWF0ZWQwATngxKQiqJMXGEHIIasi
|
||||
qJMXGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
|
||||
MS43Si4KCGNyZXdfa2V5EiIKIGNkNGRhNjRlNmRjM2I5ZWJkY2EyNDQ0YzFkNzMwMjgxSjEKB2Ny
|
||||
ZXdfaWQSJgokMDY0ZDJmMmYtYWEzMy00MmU4LTgyYjAtMjc1YzM4MzY0MjU0ShwKDGNyZXdfcHJv
|
||||
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
|
||||
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrUAgoLY3Jld19hZ2VudHMSxAIK
|
||||
wQJbeyJrZXkiOiAiZDg1MTA2NGI5YjQ4NDE4YWMyNWY4ZDM3YzdlMzJiYjYiLCAiaWQiOiAiY2M4
|
||||
OWQ4YTAtYjk5Yy00MDNkLTg1ODYtNjgzZDA1MGVjMjlhIiwgInJvbGUiOiAiSW1hZ2UgQW5hbHlz
|
||||
dCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAi
|
||||
ZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0
|
||||
aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1h
|
||||
eF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KggIKCmNyZXdfdGFza3MS8wEK
|
||||
8AFbeyJrZXkiOiAiZWU4NzI5Njk0MTBjOTRjMzM0ZjljZmZhMGE0MTVmZWMiLCAiaWQiOiAiNDY3
|
||||
ZmVlNDktZDkzMi00Nzg1LWI1M2QtYTdkNWQxOTk3NzNmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBm
|
||||
YWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJJbWFnZSBBbmFseXN0
|
||||
IiwgImFnZW50X2tleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJ0b29s
|
||||
c19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEqMHChD9ptX+M+ebjYJvJRIgLS+sEgi86MlIS3PYaCoM
|
||||
Q3JldyBDcmVhdGVkMAE5MGUTI6iTFxhBqKoZI6iTFxhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45
|
||||
NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlMzk1NjdiNTA1
|
||||
MjkwOWNhMzM0MDk4NGI4Mzg5ODBlYUoxCgdjcmV3X2lkEiYKJGQwM2I0NDRiLTBmMjAtNGY5Ni1i
|
||||
MjA0LWQ3YzQ4MzYyNGM0YkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21l
|
||||
bW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2Fn
|
||||
ZW50cxICGAFKzgIKC2NyZXdfYWdlbnRzEr4CCrsCW3sia2V5IjogIjlkYzhjY2UwMzA0NjgxOTYw
|
||||
NDFiNGMzODBiNjE3Y2IwIiwgImlkIjogImM4Mjc0MmM1LWIzZjQtNDJkMC1iYjNmLTRkZWM4Y2Q4
|
||||
MDNmNCIsICJyb2xlIjogIkltYWdlIEFuYWx5c3QiLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4X2l0
|
||||
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
|
||||
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
|
||||
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
|
||||
XX1dSoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImE5YTc2Y2E2OTU3ZDBiZmZhNjllYWIy
|
||||
MGI2NjQ4MjJiIiwgImlkIjogImU4ZDFmNWM0LWJhNDEtNGQyNy1iMGZmLWU3MmNiNDA0MWJhMyIs
|
||||
ICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50
|
||||
X3JvbGUiOiAiSW1hZ2UgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiOWRjOGNjZTAzMDQ2ODE5NjA0
|
||||
MWI0YzM4MGI2MTdjYjAiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQEQqgiftV
|
||||
3giK4F9VtKBNSBIIVzb/bxKe7icqDFRhc2sgQ3JlYXRlZDABOejyJyOokxcYQdhIKCOokxcYSi4K
|
||||
CGNyZXdfa2V5EiIKIGUzOTU2N2I1MDUyOTA5Y2EzMzQwOTg0YjgzODk4MGVhSjEKB2NyZXdfaWQS
|
||||
JgokZDAzYjQ0NGItMGYyMC00Zjk2LWIyMDQtZDdjNDgzNjI0YzRiSi4KCHRhc2tfa2V5EiIKIGE5
|
||||
YTc2Y2E2OTU3ZDBiZmZhNjllYWIyMGI2NjQ4MjJiSjEKB3Rhc2tfaWQSJgokZThkMWY1YzQtYmE0
|
||||
MS00ZDI3LWIwZmYtZTcyY2I0MDQxYmEzegIYAYUBAAEAABKXAQoQg/ksOtq7LbOO50GnDSOHQBII
|
||||
YX08fxOToKwqClRvb2wgVXNhZ2UwATlI/lskqJMXGEEAY2IkqJMXGEoaCg5jcmV3YWlfdmVyc2lv
|
||||
bhIICgYwLjk1LjBKIwoJdG9vbF9uYW1lEhYKFEFkZCBpbWFnZSB0byBjb250ZW50Sg4KCGF0dGVt
|
||||
cHRzEgIYAXoCGAGFAQABAAASqAcKEEmW3y/PMPhkfMJ/43EA4SASCHMJp4PEDhFLKgxDcmV3IENy
|
||||
ZWF0ZWQwATkAuLYlqJMXGEHAaL4lqJMXGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoO
|
||||
cHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43Si4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNh
|
||||
NDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5
|
||||
ZmM5YTMwMWE1ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQ
|
||||
AEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIY
|
||||
AUrTAgoLY3Jld19hZ2VudHMSwwIKwAJbeyJrZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVkNTNm
|
||||
Njg5MjdmZDUiLCAiaWQiOiAiN2IyMGMyODMtNGFiNy00MjFlLTgzM2QtOWE5N2UzNjFjM2Q2Iiwg
|
||||
InJvbGUiOiAiUmVwb3J0IFdyaXRlciIsICJ2ZXJib3NlPyI6IHRydWUsICJtYXhfaXRlciI6IDIw
|
||||
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
|
||||
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
|
||||
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
|
||||
XUqCAgoKY3Jld190YXNrcxLzAQrwAVt7ImtleSI6ICJiNzEzYzgyZmViOTJjOWY1YzU4YjQwYTk3
|
||||
NTU2YjdhYyIsICJpZCI6ICJhZjFhOTYxOC05MjRhLTRlNzktYjZlYi01OGRhMTM2OTU5YzUiLCAi
|
||||
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
|
||||
b2xlIjogIlJlcG9ydCBXcml0ZXIiLCAiYWdlbnRfa2V5IjogIjRiOGE3Yjg0MGY5NGJmNzgxOGI1
|
||||
ZDUzZjY4OTI3ZmQ1IiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEIWRa5ZrcXnJ
|
||||
3rJdzzJ56j8SCKr45vrXkeyTKgxUYXNrIENyZWF0ZWQwATn488glqJMXGEHoScklqJMXGEouCghj
|
||||
cmV3X2tleRIiCiAwMGI5NDZiZTQ0MzcxNGIzYTQ3YzIwMTAxZWIwMmQ2NkoxCgdjcmV3X2lkEiYK
|
||||
JDcyZGUxMGU0LTQ5MGQtNDQ2MC05NTczLTJlOWZjOWEzMDFhNUouCgh0YXNrX2tleRIiCiBiNzEz
|
||||
YzgyZmViOTJjOWY1YzU4YjQwYTk3NTU2YjdhY0oxCgd0YXNrX2lkEiYKJGFmMWE5NjE4LTkyNGEt
|
||||
NGU3OS1iNmViLTU4ZGExMzY5NTljNXoCGAGFAQABAAA=
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '5789'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:17 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
|
||||
an expert at writing structured reports.\nYour personal goal is: Create properly
|
||||
formatted reports\nTo give my best complete final answer to the task use the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
|
||||
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
|
||||
3 key points.\n\nThis is the expect criteria for your final answer: A properly
|
||||
formatted report\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '934'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=v_wJZ5m7qCjrnRfks0gT2GAk9yR14BdIDAQiQR7xxI8-1735266215000-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Am40qBAFJtuaFsOlTsBHFCoYUvLhN\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736018532,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer. \\nFinal
|
||||
Answer: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n## Introduction\\nArtificial
|
||||
Intelligence (AI) is a rapidly evolving technology that simulates human intelligence
|
||||
processes by machines, particularly computer systems. AI has a profound impact
|
||||
on various sectors, enhancing efficiency, improving decision-making, and leading
|
||||
to groundbreaking innovations. This report highlights three key points regarding
|
||||
the significance and implications of AI technology.\\n\\n## Key Point 1: Transformative
|
||||
Potential in Various Industries\\nAI's transformative potential is evident across
|
||||
multiple industries, including healthcare, finance, transportation, and agriculture.
|
||||
In healthcare, AI algorithms can analyze complex medical data, leading to improved
|
||||
diagnostics, personalized medicine, and predictive analytics, thereby enhancing
|
||||
patient outcomes. The financial sector employs AI for risk management, fraud
|
||||
detection, and automated trading, which increases operational efficiency and
|
||||
minimizes human error. In transportation, AI is integral to the development
|
||||
of autonomous vehicles and smart traffic systems, optimizing routes and reducing
|
||||
congestion. Furthermore, agriculture benefits from AI applications through precision
|
||||
farming, which maximizes yield while minimizing environmental impact.\\n\\n##
|
||||
Key Point 2: Ethical Considerations and Challenges\\nAs AI technologies become
|
||||
more pervasive, ethical considerations arise regarding their implementation
|
||||
and use. Concerns include data privacy, algorithmic bias, and the displacement
|
||||
of jobs due to automation. Ensuring that AI systems are transparent, fair, and
|
||||
accountable is crucial in addressing these issues. Organizations must develop
|
||||
comprehensive guidelines and regulatory frameworks to mitigate bias in AI algorithms
|
||||
and protect user data. Moreover, addressing the social implications of AI, such
|
||||
as potential job displacement, is essential, necessitating investment in workforce
|
||||
retraining and education to prepare for an AI-driven economy.\\n\\n## Key Point
|
||||
3: Future Directions and Developments\\nLooking ahead, the future of AI promises
|
||||
continued advancements and integration into everyday life. Emerging trends include
|
||||
the development of explainable AI (XAI), enhancing interpretability and understanding
|
||||
of AI decision-making processes. Advances in natural language processing (NLP)
|
||||
will facilitate better human-computer interactions, allowing for more intuitive
|
||||
applications. Additionally, as AI technology becomes increasingly sophisticated,
|
||||
its role in addressing global challenges, such as climate change and healthcare
|
||||
disparities, is expected to expand. Stakeholders must collaborate to ensure
|
||||
that these developments align with ethical standards and societal needs, fostering
|
||||
a responsible AI future.\\n\\n## Conclusion\\nArtificial Intelligence stands
|
||||
at the forefront of technological innovation, with the potential to revolutionize
|
||||
industries and address complex global challenges. However, it is imperative
|
||||
to navigate the ethical considerations and challenges it poses. By fostering
|
||||
responsible AI development, we can harness its transformative power while ensuring
|
||||
equitability and transparency for future generations.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 170,\n \"completion_tokens\":
|
||||
524,\n \"total_tokens\": 694,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8fcd9890790e0133-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:19 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw;
|
||||
path=/; expires=Sat, 04-Jan-25 19:52:19 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '7717'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999790'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_08d237d56b0168a0f4512417380485db
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKOAgoQw9qUJPsh6jiJZX4qW3ry4hIIT7E0SNH7Ub4qDFRhc2sgQ3JlYXRlZDABOQBO
|
||||
BAmqkxcYQQgdBQmqkxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
|
||||
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
|
||||
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
|
||||
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '337'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:22 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
|
||||
an expert at writing structured reports.\nYour personal goal is: Create properly
|
||||
formatted reports\nTo give my best complete final answer to the task use the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
|
||||
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
|
||||
3 key points.\n\nThis is the expect criteria for your final answer: A properly
|
||||
formatted report\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
|
||||
failed validation: Output must start with ''REPORT:'' no formatting, just the
|
||||
word REPORT\n\n\n### Previous result:\n# Report on Artificial Intelligence (AI)\n\n##
|
||||
Introduction\nArtificial Intelligence (AI) is a rapidly evolving technology
|
||||
that simulates human intelligence processes by machines, particularly computer
|
||||
systems. AI has a profound impact on various sectors, enhancing efficiency,
|
||||
improving decision-making, and leading to groundbreaking innovations. This report
|
||||
highlights three key points regarding the significance and implications of AI
|
||||
technology.\n\n## Key Point 1: Transformative Potential in Various Industries\nAI''s
|
||||
transformative potential is evident across multiple industries, including healthcare,
|
||||
finance, transportation, and agriculture. In healthcare, AI algorithms can analyze
|
||||
complex medical data, leading to improved diagnostics, personalized medicine,
|
||||
and predictive analytics, thereby enhancing patient outcomes. The financial
|
||||
sector employs AI for risk management, fraud detection, and automated trading,
|
||||
which increases operational efficiency and minimizes human error. In transportation,
|
||||
AI is integral to the development of autonomous vehicles and smart traffic systems,
|
||||
optimizing routes and reducing congestion. Furthermore, agriculture benefits
|
||||
from AI applications through precision farming, which maximizes yield while
|
||||
minimizing environmental impact.\n\n## Key Point 2: Ethical Considerations and
|
||||
Challenges\nAs AI technologies become more pervasive, ethical considerations
|
||||
arise regarding their implementation and use. Concerns include data privacy,
|
||||
algorithmic bias, and the displacement of jobs due to automation. Ensuring that
|
||||
AI systems are transparent, fair, and accountable is crucial in addressing these
|
||||
issues. Organizations must develop comprehensive guidelines and regulatory frameworks
|
||||
to mitigate bias in AI algorithms and protect user data. Moreover, addressing
|
||||
the social implications of AI, such as potential job displacement, is essential,
|
||||
necessitating investment in workforce retraining and education to prepare for
|
||||
an AI-driven economy.\n\n## Key Point 3: Future Directions and Developments\nLooking
|
||||
ahead, the future of AI promises continued advancements and integration into
|
||||
everyday life. Emerging trends include the development of explainable AI (XAI),
|
||||
enhancing interpretability and understanding of AI decision-making processes.
|
||||
Advances in natural language processing (NLP) will facilitate better human-computer
|
||||
interactions, allowing for more intuitive applications. Additionally, as AI
|
||||
technology becomes increasingly sophisticated, its role in addressing global
|
||||
challenges, such as climate change and healthcare disparities, is expected to
|
||||
expand. Stakeholders must collaborate to ensure that these developments align
|
||||
with ethical standards and societal needs, fostering a responsible AI future.\n\n##
|
||||
Conclusion\nArtificial Intelligence stands at the forefront of technological
|
||||
innovation, with the potential to revolutionize industries and address complex
|
||||
global challenges. However, it is imperative to navigate the ethical considerations
|
||||
and challenges it poses. By fostering responsible AI development, we can harness
|
||||
its transformative power while ensuring equitability and transparency for future
|
||||
generations.\n\n\nTry again, making sure to address the validation error.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4351'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
|
||||
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Am40yJsMPHsTOmn9Obwyx2caqoJ1R\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736018540,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: \\nREPORT: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n##
|
||||
Introduction\\nArtificial Intelligence (AI) is a rapidly evolving technology
|
||||
that simulates human intelligence processes by machines, particularly computer
|
||||
systems. AI has a profound impact on various sectors, enhancing efficiency,
|
||||
improving decision-making, and leading to groundbreaking innovations. This report
|
||||
highlights three key points regarding the significance and implications of AI
|
||||
technology.\\n\\n## Key Point 1: Transformative Potential in Various Industries\\nAI's
|
||||
transformative potential is evident across multiple industries, including healthcare,
|
||||
finance, transportation, and agriculture. In healthcare, AI algorithms can analyze
|
||||
complex medical data, leading to improved diagnostics, personalized medicine,
|
||||
and predictive analytics, thereby enhancing patient outcomes. The financial
|
||||
sector employs AI for risk management, fraud detection, and automated trading,
|
||||
which increases operational efficiency and minimizes human error. In transportation,
|
||||
AI is integral to the development of autonomous vehicles and smart traffic systems,
|
||||
optimizing routes and reducing congestion. Furthermore, agriculture benefits
|
||||
from AI applications through precision farming, which maximizes yield while
|
||||
minimizing environmental impact.\\n\\n## Key Point 2: Ethical Considerations
|
||||
and Challenges\\nAs AI technologies become more pervasive, ethical considerations
|
||||
arise regarding their implementation and use. Concerns include data privacy,
|
||||
algorithmic bias, and the displacement of jobs due to automation. Ensuring that
|
||||
AI systems are transparent, fair, and accountable is crucial in addressing these
|
||||
issues. Organizations must develop comprehensive guidelines and regulatory frameworks
|
||||
to mitigate bias in AI algorithms and protect user data. Moreover, addressing
|
||||
the social implications of AI, such as potential job displacement, is essential,
|
||||
necessitating investment in workforce retraining and education to prepare for
|
||||
an AI-driven economy.\\n\\n## Key Point 3: Future Directions and Developments\\nLooking
|
||||
ahead, the future of AI promises continued advancements and integration into
|
||||
everyday life. Emerging trends include the development of explainable AI (XAI),
|
||||
enhancing interpretability and understanding of AI decision-making processes.
|
||||
Advances in natural language processing (NLP) will facilitate better human-computer
|
||||
interactions, allowing for more intuitive applications. Additionally, as AI
|
||||
technology becomes increasingly sophisticated, its role in addressing global
|
||||
challenges, such as climate change and healthcare disparities, is expected to
|
||||
expand. Stakeholders must collaborate to ensure that these developments align
|
||||
with ethical standards and societal needs, fostering a responsible AI future.\\n\\n##
|
||||
Conclusion\\nArtificial Intelligence stands at the forefront of technological
|
||||
innovation, with the potential to revolutionize industries and address complex
|
||||
global challenges. However, it is imperative to navigate the ethical considerations
|
||||
and challenges it poses. By fostering responsible AI development, we can harness
|
||||
its transformative power while ensuring equitability and transparency for future
|
||||
generations.\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
725,\n \"completion_tokens\": 526,\n \"total_tokens\": 1251,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8fcd98c269880133-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:28 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '8620'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998942'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_de480c9e17954e77dece1b2fe013a0d0
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKOAgoQCwIBgw9XNdGpuGOOIANe2hIIriM3k2t+0NQqDFRhc2sgQ3JlYXRlZDABOcjF
|
||||
ABuskxcYQfBlARuskxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
|
||||
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
|
||||
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
|
||||
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '337'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:32 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
|
||||
an expert at writing structured reports.\nYour personal goal is: Create properly
|
||||
formatted reports\nTo give my best complete final answer to the task use the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
|
||||
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
|
||||
3 key points.\n\nThis is the expect criteria for your final answer: A properly
|
||||
formatted report\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
|
||||
failed validation: Output must end with ''END REPORT'' no formatting, just the
|
||||
word END REPORT\n\n\n### Previous result:\nREPORT: \n\n# Report on Artificial
|
||||
Intelligence (AI)\n\n## Introduction\nArtificial Intelligence (AI) is a rapidly
|
||||
evolving technology that simulates human intelligence processes by machines,
|
||||
particularly computer systems. AI has a profound impact on various sectors,
|
||||
enhancing efficiency, improving decision-making, and leading to groundbreaking
|
||||
innovations. This report highlights three key points regarding the significance
|
||||
and implications of AI technology.\n\n## Key Point 1: Transformative Potential
|
||||
in Various Industries\nAI''s transformative potential is evident across multiple
|
||||
industries, including healthcare, finance, transportation, and agriculture.
|
||||
In healthcare, AI algorithms can analyze complex medical data, leading to improved
|
||||
diagnostics, personalized medicine, and predictive analytics, thereby enhancing
|
||||
patient outcomes. The financial sector employs AI for risk management, fraud
|
||||
detection, and automated trading, which increases operational efficiency and
|
||||
minimizes human error. In transportation, AI is integral to the development
|
||||
of autonomous vehicles and smart traffic systems, optimizing routes and reducing
|
||||
congestion. Furthermore, agriculture benefits from AI applications through precision
|
||||
farming, which maximizes yield while minimizing environmental impact.\n\n##
|
||||
Key Point 2: Ethical Considerations and Challenges\nAs AI technologies become
|
||||
more pervasive, ethical considerations arise regarding their implementation
|
||||
and use. Concerns include data privacy, algorithmic bias, and the displacement
|
||||
of jobs due to automation. Ensuring that AI systems are transparent, fair, and
|
||||
accountable is crucial in addressing these issues. Organizations must develop
|
||||
comprehensive guidelines and regulatory frameworks to mitigate bias in AI algorithms
|
||||
and protect user data. Moreover, addressing the social implications of AI, such
|
||||
as potential job displacement, is essential, necessitating investment in workforce
|
||||
retraining and education to prepare for an AI-driven economy.\n\n## Key Point
|
||||
3: Future Directions and Developments\nLooking ahead, the future of AI promises
|
||||
continued advancements and integration into everyday life. Emerging trends include
|
||||
the development of explainable AI (XAI), enhancing interpretability and understanding
|
||||
of AI decision-making processes. Advances in natural language processing (NLP)
|
||||
will facilitate better human-computer interactions, allowing for more intuitive
|
||||
applications. Additionally, as AI technology becomes increasingly sophisticated,
|
||||
its role in addressing global challenges, such as climate change and healthcare
|
||||
disparities, is expected to expand. Stakeholders must collaborate to ensure
|
||||
that these developments align with ethical standards and societal needs, fostering
|
||||
a responsible AI future.\n\n## Conclusion\nArtificial Intelligence stands at
|
||||
the forefront of technological innovation, with the potential to revolutionize
|
||||
industries and address complex global challenges. However, it is imperative
|
||||
to navigate the ethical considerations and challenges it poses. By fostering
|
||||
responsible AI development, we can harness its transformative power while ensuring
|
||||
equitability and transparency for future generations.\n\n\nTry again, making
|
||||
sure to address the validation error.\n\nBegin! This is VERY important to you,
|
||||
use the tools available and give your best Final Answer, your job depends on
|
||||
it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
|
||||
false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4369'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
|
||||
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Am4176wzYnk3HmSTkkakM4yl6xVYS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736018549,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n## Introduction\\nArtificial
|
||||
Intelligence (AI) is a revolutionary technology designed to simulate human intelligence
|
||||
processes, enabling machines to perform tasks that typically require human cognition.
|
||||
Its rapid development has brought forth significant changes across various sectors,
|
||||
improving operational efficiencies, enhancing decision-making, and fostering
|
||||
innovation. This report outlines three key points regarding the impact and implications
|
||||
of AI technology.\\n\\n## Key Point 1: Transformative Potential in Various Industries\\nAI's
|
||||
transformative potential is observable across numerous sectors including healthcare,
|
||||
finance, transportation, and agriculture. In the healthcare sector, AI algorithms
|
||||
are increasingly used to analyze vast amounts of medical data, which sharpens
|
||||
diagnostics, facilitates personalized treatment plans, and enhances predictive
|
||||
analytics, thus leading to better patient care. In finance, AI contributes to
|
||||
risk assessment, fraud detection, and automated trading, heightening efficiency
|
||||
and reducing the risk of human error. The transportation industry leverages
|
||||
AI technologies for developments in autonomous vehicles and smart transportation
|
||||
systems that optimize routes and alleviate traffic congestion. Furthermore,
|
||||
agriculture benefits from AI by applying precision farming techniques that optimize
|
||||
yield and mitigate environmental effects.\\n\\n## Key Point 2: Ethical Considerations
|
||||
and Challenges\\nWith the increasing deployment of AI technologies, numerous
|
||||
ethical considerations surface, particularly relating to privacy, algorithmic
|
||||
fairness, and the displacement of jobs. Addressing issues such as data security,
|
||||
bias in AI algorithms, and the societal impact of automation is paramount. Organizations
|
||||
are encouraged to develop stringent guidelines and regulatory measures aimed
|
||||
at minimizing bias and ensuring that AI systems uphold values of transparency
|
||||
and accountability. Additionally, the implications of job displacement necessitate
|
||||
strategies for workforce retraining and educational reforms to adequately prepare
|
||||
the workforce for an economy increasingly shaped by AI technologies.\\n\\n##
|
||||
Key Point 3: Future Directions and Developments\\nThe future of AI is poised
|
||||
for remarkable advancements, with trends indicating a growing integration into
|
||||
daily life and widespread applications. The emergence of explainable AI (XAI)
|
||||
aims to enhance the transparency and interpretability of AI decision-making
|
||||
processes, fostering trust and understanding among users. Improvements in natural
|
||||
language processing (NLP) are likely to lead to more seamless and intuitive
|
||||
human-computer interactions. Furthermore, AI's potential to address global challenges,
|
||||
including climate change and disparities in healthcare access, is becoming increasingly
|
||||
significant. Collaborative efforts among stakeholders will be vital to ensuring
|
||||
that AI advancements are ethical and responsive to societal needs, paving the
|
||||
way for a responsible and equitable AI landscape.\\n\\n## Conclusion\\nAI technology
|
||||
is at the forefront of innovation, with the capacity to transform industries
|
||||
and tackle pressing global issues. As we navigate through the complexities and
|
||||
ethical challenges posed by AI, it is crucial to prioritize responsible development
|
||||
and implementation. By harnessing AI's transformative capabilities with a focus
|
||||
on equity and transparency, we can pave the way for a promising future that
|
||||
benefits all.\\n\\nEND REPORT\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
730,\n \"completion_tokens\": 571,\n \"total_tokens\": 1301,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8fcd98f9fc060133-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:36 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '7203'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998937'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_cab0502e7d8a8564e56d8f741cf451ec
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKOAgoQO/xpq2/yF233Vf8OitYSiBIIdyOEucIqtF8qDFRhc2sgQ3JlYXRlZDABOXDe
|
||||
ZdqtkxcYQUDaZ9qtkxcYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
|
||||
YjAyZDY2SjEKB2NyZXdfaWQSJgokNzJkZTEwZTQtNDkwZC00NDYwLTk1NzMtMmU5ZmM5YTMwMWE1
|
||||
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
|
||||
aWQSJgokYWYxYTk2MTgtOTI0YS00ZTc5LWI2ZWItNThkYTEzNjk1OWM1egIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '337'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:37 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Report Writer. You''re
|
||||
an expert at writing structured reports.\nYour personal goal is: Create properly
|
||||
formatted reports\nTo give my best complete final answer to the task use the
|
||||
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
Your final answer must be the great and the most complete as possible, it must
|
||||
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
|
||||
{"role": "user", "content": "\nCurrent Task: Write a report about AI with exactly
|
||||
3 key points.\n\nThis is the expect criteria for your final answer: A properly
|
||||
formatted report\nyou MUST return the actual complete content as the final answer,
|
||||
not a summary.\n\nThis is the context you''re working with:\n### Previous attempt
|
||||
failed validation: Output must start with ''REPORT:'' no formatting, just the
|
||||
word REPORT\n\n\n### Previous result:\n# Report on Artificial Intelligence (AI)\n\n##
|
||||
Introduction\nArtificial Intelligence (AI) is a revolutionary technology designed
|
||||
to simulate human intelligence processes, enabling machines to perform tasks
|
||||
that typically require human cognition. Its rapid development has brought forth
|
||||
significant changes across various sectors, improving operational efficiencies,
|
||||
enhancing decision-making, and fostering innovation. This report outlines three
|
||||
key points regarding the impact and implications of AI technology.\n\n## Key
|
||||
Point 1: Transformative Potential in Various Industries\nAI''s transformative
|
||||
potential is observable across numerous sectors including healthcare, finance,
|
||||
transportation, and agriculture. In the healthcare sector, AI algorithms are
|
||||
increasingly used to analyze vast amounts of medical data, which sharpens diagnostics,
|
||||
facilitates personalized treatment plans, and enhances predictive analytics,
|
||||
thus leading to better patient care. In finance, AI contributes to risk assessment,
|
||||
fraud detection, and automated trading, heightening efficiency and reducing
|
||||
the risk of human error. The transportation industry leverages AI technologies
|
||||
for developments in autonomous vehicles and smart transportation systems that
|
||||
optimize routes and alleviate traffic congestion. Furthermore, agriculture benefits
|
||||
from AI by applying precision farming techniques that optimize yield and mitigate
|
||||
environmental effects.\n\n## Key Point 2: Ethical Considerations and Challenges\nWith
|
||||
the increasing deployment of AI technologies, numerous ethical considerations
|
||||
surface, particularly relating to privacy, algorithmic fairness, and the displacement
|
||||
of jobs. Addressing issues such as data security, bias in AI algorithms, and
|
||||
the societal impact of automation is paramount. Organizations are encouraged
|
||||
to develop stringent guidelines and regulatory measures aimed at minimizing
|
||||
bias and ensuring that AI systems uphold values of transparency and accountability.
|
||||
Additionally, the implications of job displacement necessitate strategies for
|
||||
workforce retraining and educational reforms to adequately prepare the workforce
|
||||
for an economy increasingly shaped by AI technologies.\n\n## Key Point 3: Future
|
||||
Directions and Developments\nThe future of AI is poised for remarkable advancements,
|
||||
with trends indicating a growing integration into daily life and widespread
|
||||
applications. The emergence of explainable AI (XAI) aims to enhance the transparency
|
||||
and interpretability of AI decision-making processes, fostering trust and understanding
|
||||
among users. Improvements in natural language processing (NLP) are likely to
|
||||
lead to more seamless and intuitive human-computer interactions. Furthermore,
|
||||
AI''s potential to address global challenges, including climate change and disparities
|
||||
in healthcare access, is becoming increasingly significant. Collaborative efforts
|
||||
among stakeholders will be vital to ensuring that AI advancements are ethical
|
||||
and responsive to societal needs, paving the way for a responsible and equitable
|
||||
AI landscape.\n\n## Conclusion\nAI technology is at the forefront of innovation,
|
||||
with the capacity to transform industries and tackle pressing global issues.
|
||||
As we navigate through the complexities and ethical challenges posed by AI,
|
||||
it is crucial to prioritize responsible development and implementation. By harnessing
|
||||
AI''s transformative capabilities with a focus on equity and transparency, we
|
||||
can pave the way for a promising future that benefits all.\n\nEND REPORT\n\n\nTry
|
||||
again, making sure to address the validation error.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
|
||||
false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4669'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000;
|
||||
__cf_bm=pumYGlf1gsbVoFNTM1vh9Okj41SgxP3y65T5YWWPU1U-1736018539-1.0.1.1-wmaotkWMviN4lKh6M3P04A8p61Ehm.rTehDpsJhxYhNBNU5.kznMCa3cNXePaEbsKkk4PU2QcWjHj2C7yDrjkw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Am41EaJaKZSumZe8ph2I32d6QNbTP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736018556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: \\n\\nREPORT: \\n\\n# Report on Artificial Intelligence (AI)\\n\\n##
|
||||
Introduction\\nArtificial Intelligence (AI) is a revolutionary technology designed
|
||||
to simulate human intelligence processes, enabling machines to perform tasks
|
||||
that typically require human cognition. Its rapid development has brought forth
|
||||
significant changes across various sectors, improving operational efficiencies,
|
||||
enhancing decision-making, and fostering innovation. This report outlines three
|
||||
key points regarding the impact and implications of AI technology.\\n\\n## Key
|
||||
Point 1: Transformative Potential in Various Industries\\nAI's transformative
|
||||
potential is observable across numerous sectors including healthcare, finance,
|
||||
transportation, and agriculture. In the healthcare sector, AI algorithms are
|
||||
increasingly used to analyze vast amounts of medical data, which sharpens diagnostics,
|
||||
facilitates personalized treatment plans, and enhances predictive analytics,
|
||||
thus leading to better patient care. In finance, AI contributes to risk assessment,
|
||||
fraud detection, and automated trading, heightening efficiency and reducing
|
||||
the risk of human error. The transportation industry leverages AI technologies
|
||||
for developments in autonomous vehicles and smart transportation systems that
|
||||
optimize routes and alleviate traffic congestion. Furthermore, agriculture benefits
|
||||
from AI by applying precision farming techniques that optimize yield and mitigate
|
||||
environmental effects.\\n\\n## Key Point 2: Ethical Considerations and Challenges\\nWith
|
||||
the increasing deployment of AI technologies, numerous ethical considerations
|
||||
surface, particularly relating to privacy, algorithmic fairness, and the displacement
|
||||
of jobs. Addressing issues such as data security, bias in AI algorithms, and
|
||||
the societal impact of automation is paramount. Organizations are encouraged
|
||||
to develop stringent guidelines and regulatory measures aimed at minimizing
|
||||
bias and ensuring that AI systems uphold values of transparency and accountability.
|
||||
Additionally, the implications of job displacement necessitate strategies for
|
||||
workforce retraining and educational reforms to adequately prepare the workforce
|
||||
for an economy increasingly shaped by AI technologies.\\n\\n## Key Point 3:
|
||||
Future Directions and Developments\\nThe future of AI is poised for remarkable
|
||||
advancements, with trends indicating a growing integration into daily life and
|
||||
widespread applications. The emergence of explainable AI (XAI) aims to enhance
|
||||
the transparency and interpretability of AI decision-making processes, fostering
|
||||
trust and understanding among users. Improvements in natural language processing
|
||||
(NLP) are likely to lead to more seamless and intuitive human-computer interactions.
|
||||
Furthermore, AI's potential to address global challenges, including climate
|
||||
change and disparities in healthcare access, is becoming increasingly significant.
|
||||
Collaborative efforts among stakeholders will be vital to ensuring that AI advancements
|
||||
are ethical and responsive to societal needs, paving the way for a responsible
|
||||
and equitable AI landscape.\\n\\n## Conclusion\\nAI technology is at the forefront
|
||||
of innovation, with the capacity to transform industries and tackle pressing
|
||||
global issues. As we navigate through the complexities and ethical challenges
|
||||
posed by AI, it is crucial to prioritize responsible development and implementation.
|
||||
By harnessing AI's transformative capabilities with a focus on equity and transparency,
|
||||
we can pave the way for a promising future that benefits all.\\n\\nEND REPORT\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 774,\n \"completion_tokens\":
|
||||
574,\n \"total_tokens\": 1348,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8fcd9928eaa40133-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sat, 04 Jan 2025 19:22:46 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '9767'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998862'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_d3d0e47180363d07d988cb5ab639597c
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -177,12 +177,12 @@ class TestDeployCommand(unittest.TestCase):
|
||||
def test_get_crew_status(self):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.json.return_value = {"name": "TestCrew", "status": "active"}
|
||||
mock_response.json.return_value = {"name": "InternalCrew", "status": "active"}
|
||||
self.mock_client.crew_status_by_name.return_value = mock_response
|
||||
|
||||
with patch("sys.stdout", new=StringIO()) as fake_out:
|
||||
self.deploy_command.get_crew_status()
|
||||
self.assertIn("TestCrew", fake_out.getvalue())
|
||||
self.assertIn("InternalCrew", fake_out.getvalue())
|
||||
self.assertIn("active", fake_out.getvalue())
|
||||
|
||||
def test_get_crew_logs(self):
|
||||
|
||||
@@ -3087,28 +3087,6 @@ def test_hierarchical_verbose_false_manager_agent():
|
||||
assert not crew.manager_agent.verbose
|
||||
|
||||
|
||||
def test_fetch_inputs():
|
||||
agent = Agent(
|
||||
role="{role_detail} Researcher",
|
||||
goal="Research on {topic}.",
|
||||
backstory="Expert in {field}.",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Analyze the data on {topic}.",
|
||||
expected_output="Summary of {topic} analysis.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
|
||||
expected_placeholders = {"role_detail", "topic", "field"}
|
||||
actual_placeholders = crew.fetch_inputs()
|
||||
|
||||
assert (
|
||||
actual_placeholders == expected_placeholders
|
||||
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
|
||||
|
||||
def test_task_tools_preserve_code_execution_tools():
|
||||
"""
|
||||
Test that task tools don't override code execution tools when allow_code_execution=True
|
||||
@@ -3359,3 +3337,110 @@ def test_multimodal_agent_live_image_analysis():
|
||||
assert isinstance(result.raw, str)
|
||||
assert len(result.raw) > 100 # Expecting a detailed analysis
|
||||
assert "error" not in result.raw.lower() # No error messages in response
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_with_failing_task_guardrails():
|
||||
"""Test that crew properly handles failing guardrails and retries with validation feedback."""
|
||||
|
||||
def strict_format_guardrail(result: TaskOutput):
|
||||
"""Validates that the output follows a strict format:
|
||||
- Must start with 'REPORT:'
|
||||
- Must end with 'END REPORT'
|
||||
"""
|
||||
content = result.raw.strip()
|
||||
|
||||
if not ('REPORT:' in content or '**REPORT:**' in content):
|
||||
return (False, "Output must start with 'REPORT:' no formatting, just the word REPORT")
|
||||
|
||||
if not ('END REPORT' in content or '**END REPORT**' in content):
|
||||
return (False, "Output must end with 'END REPORT' no formatting, just the word END REPORT")
|
||||
|
||||
return (True, content)
|
||||
|
||||
researcher = Agent(
|
||||
role="Report Writer",
|
||||
goal="Create properly formatted reports",
|
||||
backstory="You're an expert at writing structured reports.",
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="""Write a report about AI with exactly 3 key points.""",
|
||||
expected_output="A properly formatted report",
|
||||
agent=researcher,
|
||||
guardrail=strict_format_guardrail,
|
||||
max_retries=3
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[task],
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify the final output meets all format requirements
|
||||
content = result.raw.strip()
|
||||
assert content.startswith('REPORT:'), "Output should start with 'REPORT:'"
|
||||
assert content.endswith('END REPORT'), "Output should end with 'END REPORT'"
|
||||
|
||||
# Verify task output
|
||||
task_output = result.tasks_output[0]
|
||||
assert isinstance(task_output, TaskOutput)
|
||||
assert task_output.raw == result.raw
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_guardrail_feedback_in_context():
|
||||
"""Test that guardrail feedback is properly appended to task context for retries."""
|
||||
|
||||
def format_guardrail(result: TaskOutput):
|
||||
"""Validates that the output contains a specific keyword."""
|
||||
if "IMPORTANT" not in result.raw:
|
||||
return (False, "Output must contain the keyword 'IMPORTANT'")
|
||||
return (True, result.raw)
|
||||
|
||||
# Create execution contexts list to track contexts
|
||||
execution_contexts = []
|
||||
|
||||
researcher = Agent(
|
||||
role="Writer",
|
||||
goal="Write content with specific keywords",
|
||||
backstory="You're an expert at following specific writing requirements.",
|
||||
allow_delegation=False
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Write a short response.",
|
||||
expected_output="A response containing the keyword 'IMPORTANT'",
|
||||
agent=researcher,
|
||||
guardrail=format_guardrail,
|
||||
max_retries=2
|
||||
)
|
||||
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
|
||||
with patch.object(Agent, "execute_task") as mock_execute_task:
|
||||
# Define side_effect to capture context and return different responses
|
||||
def side_effect(task, context=None, tools=None):
|
||||
execution_contexts.append(context if context else "")
|
||||
if len(execution_contexts) == 1:
|
||||
return "This is a test response"
|
||||
return "This is an IMPORTANT test response"
|
||||
|
||||
mock_execute_task.side_effect = side_effect
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify that we had multiple executions
|
||||
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
|
||||
|
||||
# Verify that the second execution included the guardrail feedback
|
||||
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], \
|
||||
"Guardrail feedback should be included in retry context"
|
||||
|
||||
# Verify final output meets guardrail requirements
|
||||
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
|
||||
|
||||
# Verify task retry count
|
||||
assert task.retry_count == 1, "Task should have been retried once"
|
||||
|
||||
@@ -27,7 +27,7 @@ class SimpleCrew:
|
||||
|
||||
|
||||
@CrewBase
|
||||
class TestCrew:
|
||||
class InternalCrew:
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
@@ -84,7 +84,7 @@ def test_task_memoization():
|
||||
|
||||
|
||||
def test_crew_memoization():
|
||||
crew = TestCrew()
|
||||
crew = InternalCrew()
|
||||
first_call_result = crew.crew()
|
||||
second_call_result = crew.crew()
|
||||
|
||||
@@ -107,7 +107,7 @@ def test_task_name():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_before_kickoff_modification():
|
||||
crew = TestCrew()
|
||||
crew = InternalCrew()
|
||||
inputs = {"topic": "LLMs"}
|
||||
result = crew.crew().kickoff(inputs=inputs)
|
||||
assert "bicycles" in result.raw, "Before kickoff function did not modify inputs"
|
||||
@@ -115,7 +115,7 @@ def test_before_kickoff_modification():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_after_kickoff_modification():
|
||||
crew = TestCrew()
|
||||
crew = InternalCrew()
|
||||
# Assuming the crew execution returns a dict
|
||||
result = crew.crew().kickoff({"topic": "LLMs"})
|
||||
|
||||
@@ -126,7 +126,7 @@ def test_after_kickoff_modification():
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_before_kickoff_with_none_input():
|
||||
crew = TestCrew()
|
||||
crew = InternalCrew()
|
||||
crew.crew().kickoff(None)
|
||||
# Test should pass without raising exceptions
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ from crewai import Agent, Task
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
class TestAgentTool(BaseAgentTool):
|
||||
class InternalAgentTool(BaseAgentTool):
|
||||
"""Concrete implementation of BaseAgentTool for testing."""
|
||||
|
||||
def _run(self, *args, **kwargs):
|
||||
@@ -39,7 +39,7 @@ def test_agent_tool_role_matching(role_name, should_match):
|
||||
)
|
||||
|
||||
# Create test agent tool
|
||||
agent_tool = TestAgentTool(
|
||||
agent_tool = InternalAgentTool(
|
||||
name="test_tool", description="Test tool", agents=[test_agent]
|
||||
)
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ def test_creating_a_tool_using_annotation():
|
||||
my_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
assert my_tool.args_schema.schema()["properties"] == {
|
||||
assert my_tool.args_schema.model_json_schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
@@ -29,7 +29,7 @@ def test_creating_a_tool_using_annotation():
|
||||
converted_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
assert converted_tool.args_schema.schema()["properties"] == {
|
||||
assert converted_tool.args_schema.model_json_schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
@@ -54,7 +54,7 @@ def test_creating_a_tool_using_baseclass():
|
||||
my_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
assert my_tool.args_schema.schema()["properties"] == {
|
||||
assert my_tool.args_schema.model_json_schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert my_tool.run("What is the meaning of life?") == "What is the meaning of life?"
|
||||
@@ -66,7 +66,7 @@ def test_creating_a_tool_using_baseclass():
|
||||
converted_tool.description
|
||||
== "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
assert converted_tool.args_schema.schema()["properties"] == {
|
||||
assert converted_tool.args_schema.model_json_schema()["properties"] == {
|
||||
"question": {"title": "Question", "type": "string"}
|
||||
}
|
||||
assert (
|
||||
|
||||
@@ -25,7 +25,7 @@ def schema_class():
|
||||
return TestSchema
|
||||
|
||||
|
||||
class TestCrewStructuredTool:
|
||||
class InternalCrewStructuredTool:
|
||||
def test_initialization(self, basic_function, schema_class):
|
||||
"""Test basic initialization of CrewStructuredTool"""
|
||||
tool = CrewStructuredTool(
|
||||
|
||||
@@ -12,7 +12,7 @@ from crewai.utilities.evaluators.crew_evaluator_handler import (
|
||||
)
|
||||
|
||||
|
||||
class TestCrewEvaluator:
|
||||
class InternalCrewEvaluator:
|
||||
@pytest.fixture
|
||||
def crew_planner(self):
|
||||
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
|
||||
|
||||
@@ -16,7 +16,7 @@ from crewai.utilities.planning_handler import (
|
||||
)
|
||||
|
||||
|
||||
class TestCrewPlanner:
|
||||
class InternalCrewPlanner:
|
||||
@pytest.fixture
|
||||
def crew_planner(self):
|
||||
tasks = [
|
||||
@@ -115,13 +115,13 @@ class TestCrewPlanner:
|
||||
def __init__(self, name: str, description: str):
|
||||
tool_data = {"name": name, "description": description}
|
||||
super().__init__(**tool_data)
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return self.name
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return self.name
|
||||
|
||||
|
||||
def to_structured_tool(self):
|
||||
return self
|
||||
|
||||
@@ -149,11 +149,11 @@ class TestCrewPlanner:
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Create planner with the new task
|
||||
planner = CrewPlanner([task], None)
|
||||
tasks_summary = planner._create_tasks_summary()
|
||||
|
||||
|
||||
# Verify task summary content
|
||||
assert isinstance(tasks_summary, str)
|
||||
assert task.description in tasks_summary
|
||||
|
||||
@@ -4,7 +4,7 @@ import unittest
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
class TestCrewTrainingHandler(unittest.TestCase):
|
||||
class InternalCrewTrainingHandler(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.handler = CrewTrainingHandler("trained_data.pkl")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user