Adding tooling to use Amazon Bedrock Agents as enternal agent, enbaling distributed agentic capabilities

This commit is contained in:
Raju Rangan
2025-03-11 10:21:30 -04:00
parent e8326f134f
commit d47adfc34a
2 changed files with 321 additions and 0 deletions

View File

@@ -0,0 +1,181 @@
# BedrockInvokeAgentTool
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
## Installation
```bash
pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Agents
## Usage
Here's how to use the tool with a CrewAI agent:
```python
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|----------|------|----------|---------|-------------|
| agent_id | str | Yes | None | The unique identifier of the Bedrock agent |
| agent_alias_id | str | Yes | None | The unique identifier of the agent alias |
| session_id | str | No | timestamp | The unique identifier of the session |
| enable_trace | bool | No | False | Whether to enable trace for debugging |
| end_session | bool | No | False | Whether to end the session after invocation |
| description | str | No | None | Custom description for the tool |
## Environment Variables
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
AWS_REGION=your-aws-region # Defaults to us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Advanced Usage
### Multi-Agent Workflow with Session Management
```python
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Use Cases
### Hybrid Multi-Agent Collaborations
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
### Data Sovereignty and Compliance
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
### Seamless AWS Service Integration
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
- Enable CrewAI agents to interact with AWS services through natural language requests
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
### Scalable Hybrid Agent Architectures
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
### Cross-Organizational Agent Collaboration
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
- Build agent ecosystems that span organizational boundaries while maintaining security and data control

View File

@@ -0,0 +1,140 @@
from typing import Type, Optional, Dict, Any
import os
import json
import uuid
import time
from datetime import datetime, timezone
from dotenv import load_dotenv
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
import boto3
from botocore.exceptions import ClientError
# Load environment variables from .env file
load_dotenv()
class BedrockInvokeAgentToolInput(BaseModel):
"""Input schema for BedrockInvokeAgentTool."""
query: str = Field(..., description="The query to send to the agent")
class BedrockInvokeAgentTool(BaseTool):
name: str = "Bedrock Agent Invoke Tool"
description: str = "An agent responsible for policy analysis."
args_schema: Type[BaseModel] = BedrockInvokeAgentToolInput
agent_id: str = None
agent_alias_id: str = None
session_id: str = None
enable_trace: bool = False
end_session: bool = False
def __init__(
self,
agent_id: str = None,
agent_alias_id: str = None,
session_id: str = None,
enable_trace: bool = False,
end_session: bool = False,
description: Optional[str] = None,
**kwargs
):
"""Initialize the BedrockInvokeAgentTool with agent configuration.
Args:
agent_id (str): The unique identifier of the Bedrock agent
agent_alias_id (str): The unique identifier of the agent alias
session_id (str): The unique identifier of the session
enable_trace (bool): Whether to enable trace for the agent invocation
end_session (bool): Whether to end the session with the agent
description (Optional[str]): Custom description for the tool
"""
super().__init__(**kwargs)
# Get values from environment variables if not provided
self.agent_id = agent_id or os.getenv('BEDROCK_AGENT_ID')
self.agent_alias_id = agent_alias_id or os.getenv('BEDROCK_AGENT_ALIAS_ID')
self.session_id = session_id or str(int(time.time())) # Use timestamp as session ID if not provided
self.enable_trace = enable_trace
self.end_session = end_session
# Update the description if provided
if description:
self.description = description
def _run(self, query: str) -> str:
try:
# Initialize the Bedrock Agent Runtime client
bedrock_agent = boto3.client(
"bedrock-agent-runtime",
region_name=os.getenv('AWS_REGION', os.getenv('AWS_DEFAULT_REGION', 'us-west-2'))
)
# Format the prompt with current time
current_utc = datetime.now(timezone.utc)
prompt = f"""
The current time is: {current_utc}
Below is the users query or task. Complete it and answer it consicely and to the point:
{query}
"""
# Invoke the agent
response = bedrock_agent.invoke_agent(
agentId=self.agent_id,
agentAliasId=self.agent_alias_id,
sessionId=self.session_id,
inputText=prompt,
enableTrace=self.enable_trace,
endSession=self.end_session
)
# Process the response
completion = ""
# Check if response contains a completion field
if 'completion' in response:
# Process streaming response format
for event in response.get('completion', []):
if 'chunk' in event and 'bytes' in event['chunk']:
chunk_bytes = event['chunk']['bytes']
if isinstance(chunk_bytes, (bytes, bytearray)):
completion += chunk_bytes.decode('utf-8')
else:
completion += str(chunk_bytes)
# If no completion found in streaming format, try direct format
if not completion and 'chunk' in response and 'bytes' in response['chunk']:
chunk_bytes = response['chunk']['bytes']
if isinstance(chunk_bytes, (bytes, bytearray)):
completion = chunk_bytes.decode('utf-8')
else:
completion = str(chunk_bytes)
# If still no completion, return debug info
if not completion:
debug_info = {
"error": "Could not extract completion from response",
"response_keys": list(response.keys())
}
# Add more debug info
if 'chunk' in response:
debug_info["chunk_keys"] = list(response['chunk'].keys())
return json.dumps(debug_info, indent=2)
return completion
except ClientError as e:
error_code = "Unknown"
error_message = str(e)
# Try to extract error code if available
if hasattr(e, 'response') and 'Error' in e.response and 'Code' in e.response['Error']:
error_code = e.response['Error']['Code']
return f"Error invoking Bedrock Agent ({error_code}): {error_message}"
except Exception as e:
return f"Error: {str(e)}"