mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 23:28:30 +00:00
Adding tooling to use Amazon Bedrock Knowledge Base as a knowledge retreiver
This commit is contained in:
159
src/crewai_tools/aws/bedrock/knowledge_base/README.md
Normal file
159
src/crewai_tools/aws/bedrock/knowledge_base/README.md
Normal file
@@ -0,0 +1,159 @@
|
||||
# BedrockKBRetrieverTool
|
||||
|
||||
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Requirements
|
||||
|
||||
- AWS credentials configured (either through environment variables or AWS CLI)
|
||||
- `boto3` and `python-dotenv` packages
|
||||
- Access to Amazon Bedrock Knowledge Base
|
||||
|
||||
## Usage
|
||||
|
||||
Here's how to use the tool with a CrewAI agent:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
|
||||
|
||||
# Initialize the tool
|
||||
kb_tool = BedrockKBRetrieverTool(
|
||||
knowledge_base_id="your-kb-id",
|
||||
number_of_results=5
|
||||
)
|
||||
|
||||
# Create a CrewAI agent that uses the tool
|
||||
researcher = Agent(
|
||||
role='Knowledge Base Researcher',
|
||||
goal='Find information about company policies',
|
||||
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
|
||||
tools=[kb_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task for the agent
|
||||
research_task = Task(
|
||||
description="Find our company's remote work policy and summarize the key points.",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create a crew with the agent
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Tool Arguments
|
||||
|
||||
| Argument | Type | Required | Default | Description |
|
||||
|----------|------|----------|---------|-------------|
|
||||
| knowledge_base_id | str | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
|
||||
| number_of_results | int | No | 5 | Maximum number of results to return |
|
||||
| retrieval_configuration | dict | No | None | Custom configurations for the knowledge base query |
|
||||
| guardrail_configuration | dict | No | None | Content filtering settings |
|
||||
| next_token | str | No | None | Token for pagination |
|
||||
|
||||
## Environment Variables
|
||||
|
||||
```bash
|
||||
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
|
||||
AWS_REGION=your-aws-region # Defaults to us-east-1
|
||||
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
|
||||
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
|
||||
```
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns results in JSON format:
|
||||
|
||||
```json
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"content": "Retrieved text content",
|
||||
"content_type": "text",
|
||||
"source_type": "S3",
|
||||
"source_uri": "s3://bucket/document.pdf",
|
||||
"score": 0.95,
|
||||
"metadata": {
|
||||
"additional": "metadata"
|
||||
}
|
||||
}
|
||||
],
|
||||
"nextToken": "pagination-token",
|
||||
"guardrailAction": "NONE"
|
||||
}
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Retrieval Configuration
|
||||
|
||||
```python
|
||||
kb_tool = BedrockKBRetrieverTool(
|
||||
knowledge_base_id="your-kb-id",
|
||||
retrieval_configuration={
|
||||
"vectorSearchConfiguration": {
|
||||
"numberOfResults": 10,
|
||||
"overrideSearchType": "HYBRID"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
policy_expert = Agent(
|
||||
role='Policy Expert',
|
||||
goal='Analyze company policies in detail',
|
||||
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
|
||||
tools=[kb_tool]
|
||||
)
|
||||
```
|
||||
|
||||
## Supported Data Sources
|
||||
|
||||
- Amazon S3
|
||||
- Confluence
|
||||
- Salesforce
|
||||
- SharePoint
|
||||
- Web pages
|
||||
- Custom document locations
|
||||
- Amazon Kendra
|
||||
- SQL databases
|
||||
|
||||
## Use Cases
|
||||
|
||||
### Enterprise Knowledge Integration
|
||||
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
|
||||
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
|
||||
- Create agents that can answer questions based on your internal documentation while maintaining data security
|
||||
|
||||
### Specialized Domain Knowledge
|
||||
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
|
||||
- Leverage existing knowledge repositories that are already maintained in your AWS environment
|
||||
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
|
||||
|
||||
### Data-Driven Decision Making
|
||||
- Ground CrewAI agent responses in your actual company data rather than general knowledge
|
||||
- Ensure agents provide recommendations based on your specific business context and documentation
|
||||
- Reduce hallucinations by retrieving factual information from your knowledge bases
|
||||
|
||||
### Scalable Information Access
|
||||
- Access terabytes of organizational knowledge without embedding it all into your models
|
||||
- Dynamically query only the relevant information needed for specific tasks
|
||||
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
|
||||
|
||||
### Compliance and Governance
|
||||
- Ensure CrewAI agents provide responses that align with your company's approved documentation
|
||||
- Create auditable trails of information sources used by your agents
|
||||
- Maintain control over what information sources your agents can access
|
||||
188
src/crewai_tools/aws/bedrock/knowledge_base/retriever_tool.py
Normal file
188
src/crewai_tools/aws/bedrock/knowledge_base/retriever_tool.py
Normal file
@@ -0,0 +1,188 @@
|
||||
from typing import Type, Optional, List, Dict, Any
|
||||
import os
|
||||
import json
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
import boto3
|
||||
from botocore.exceptions import ClientError
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class BedrockKBRetrieverToolInput(BaseModel):
|
||||
"""Input schema for BedrockKBRetrieverTool."""
|
||||
query: str = Field(..., description="The query to retrieve information from the knowledge base")
|
||||
|
||||
|
||||
class BedrockKBRetrieverTool(BaseTool):
|
||||
name: str = "Bedrock Knowledge Base Retriever Tool"
|
||||
description: str = "Retrieves information from an Amazon Bedrock Knowledge Base given a query"
|
||||
args_schema: Type[BaseModel] = BedrockKBRetrieverToolInput
|
||||
knowledge_base_id: str = None
|
||||
number_of_results: Optional[int] = 5
|
||||
retrieval_configuration: Optional[Dict[str, Any]] = None
|
||||
guardrail_configuration: Optional[Dict[str, Any]] = None
|
||||
next_token: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
knowledge_base_id: str = None,
|
||||
number_of_results: Optional[int] = 5,
|
||||
retrieval_configuration: Optional[Dict[str, Any]] = None,
|
||||
guardrail_configuration: Optional[Dict[str, Any]] = None,
|
||||
next_token: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""Initialize the BedrockKBRetrieverTool with knowledge base configuration.
|
||||
|
||||
Args:
|
||||
knowledge_base_id (str): The unique identifier of the knowledge base to query (length: 0-10, pattern: ^[0-9a-zA-Z]+$)
|
||||
number_of_results (Optional[int], optional): The maximum number of results to return. Defaults to 5.
|
||||
retrieval_configuration (Optional[Dict[str, Any]], optional): Configurations for the knowledge base query and retrieval process. Defaults to None.
|
||||
guardrail_configuration (Optional[Dict[str, Any]], optional): Guardrail settings. Defaults to None.
|
||||
next_token (Optional[str], optional): Token for retrieving the next batch of results. Defaults to None.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Get knowledge_base_id from environment variable if not provided
|
||||
self.knowledge_base_id = knowledge_base_id or os.getenv('BEDROCK_KB_ID')
|
||||
self.number_of_results = number_of_results
|
||||
|
||||
# Initialize retrieval_configuration with number_of_results if provided
|
||||
if retrieval_configuration is None and number_of_results is not None:
|
||||
self.retrieval_configuration = {
|
||||
"vectorSearchConfiguration": {
|
||||
"numberOfResults": number_of_results
|
||||
}
|
||||
}
|
||||
else:
|
||||
self.retrieval_configuration = retrieval_configuration
|
||||
|
||||
self.guardrail_configuration = guardrail_configuration
|
||||
self.next_token = next_token
|
||||
|
||||
# Validate parameters
|
||||
self._validate_parameters()
|
||||
|
||||
# Update the description to include the knowledge base details
|
||||
self.description = f"Retrieves information from Amazon Bedrock Knowledge Base '{self.knowledge_base_id}' given a query"
|
||||
|
||||
def _validate_parameters(self):
|
||||
"""Validate the parameters according to AWS API requirements."""
|
||||
# Validate knowledge_base_id
|
||||
if not self.knowledge_base_id or len(self.knowledge_base_id) > 10 or not all(c.isalnum() for c in self.knowledge_base_id):
|
||||
raise ValueError("knowledge_base_id must be 0-10 alphanumeric characters")
|
||||
|
||||
# Validate next_token if provided
|
||||
if self.next_token and (len(self.next_token) < 1 or len(self.next_token) > 2048 or ' ' in self.next_token):
|
||||
raise ValueError("next_token must be 1-2048 characters and match pattern ^\\S*$")
|
||||
|
||||
def _run(self, query: str) -> str:
|
||||
try:
|
||||
# Initialize the Bedrock Agent Runtime client
|
||||
bedrock_agent_runtime = boto3.client(
|
||||
'bedrock-agent-runtime',
|
||||
region_name=os.getenv('AWS_REGION', os.getenv('AWS_DEFAULT_REGION', 'us-east-1')),
|
||||
# AWS SDK will automatically use AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY from environment
|
||||
)
|
||||
|
||||
# Prepare the request parameters
|
||||
retrieve_params = {
|
||||
'knowledgeBaseId': self.knowledge_base_id,
|
||||
'retrievalQuery': {
|
||||
'text': query
|
||||
}
|
||||
}
|
||||
|
||||
# Add optional parameters if provided
|
||||
if self.retrieval_configuration:
|
||||
retrieve_params['retrievalConfiguration'] = self.retrieval_configuration
|
||||
|
||||
if self.guardrail_configuration:
|
||||
retrieve_params['guardrailConfiguration'] = self.guardrail_configuration
|
||||
|
||||
if self.next_token:
|
||||
retrieve_params['nextToken'] = self.next_token
|
||||
|
||||
# Make the retrieve API call
|
||||
response = bedrock_agent_runtime.retrieve(**retrieve_params)
|
||||
|
||||
# Process the response
|
||||
results = []
|
||||
for result in response.get('retrievalResults', []):
|
||||
# Extract content
|
||||
content_obj = result.get('content', {})
|
||||
content = content_obj.get('text', '')
|
||||
content_type = content_obj.get('type', 'text')
|
||||
|
||||
# Extract location information
|
||||
location = result.get('location', {})
|
||||
location_type = location.get('type', 'unknown')
|
||||
source_uri = None
|
||||
|
||||
# Map for location types and their URI fields
|
||||
location_mapping = {
|
||||
's3Location': {'field': 'uri', 'type': 'S3'},
|
||||
'confluenceLocation': {'field': 'url', 'type': 'Confluence'},
|
||||
'salesforceLocation': {'field': 'url', 'type': 'Salesforce'},
|
||||
'sharePointLocation': {'field': 'url', 'type': 'SharePoint'},
|
||||
'webLocation': {'field': 'url', 'type': 'Web'},
|
||||
'customDocumentLocation': {'field': 'id', 'type': 'CustomDocument'},
|
||||
'kendraDocumentLocation': {'field': 'uri', 'type': 'KendraDocument'},
|
||||
'sqlLocation': {'field': 'query', 'type': 'SQL'}
|
||||
}
|
||||
|
||||
# Extract the URI based on location type
|
||||
for loc_key, config in location_mapping.items():
|
||||
if loc_key in location:
|
||||
source_uri = location[loc_key].get(config['field'])
|
||||
if not location_type or location_type == 'unknown':
|
||||
location_type = config['type']
|
||||
break
|
||||
|
||||
# Include score if available
|
||||
score = result.get('score')
|
||||
|
||||
# Include metadata if available
|
||||
metadata = result.get('metadata')
|
||||
|
||||
# Create a well-formed JSON object for each result
|
||||
result_object = {
|
||||
'content': content,
|
||||
'content_type': content_type,
|
||||
'source_type': location_type,
|
||||
'source_uri': source_uri
|
||||
}
|
||||
|
||||
# Add score if available
|
||||
if score is not None:
|
||||
result_object['score'] = score
|
||||
|
||||
# Add metadata if available
|
||||
if metadata:
|
||||
result_object['metadata'] = metadata
|
||||
|
||||
# Add the JSON object to results
|
||||
results.append(result_object)
|
||||
|
||||
# Include nextToken in the response if available
|
||||
response_object = {}
|
||||
if results:
|
||||
response_object["results"] = results
|
||||
else:
|
||||
response_object["message"] = "No results found for the given query."
|
||||
|
||||
if "nextToken" in response:
|
||||
response_object["nextToken"] = response["nextToken"]
|
||||
|
||||
if "guardrailAction" in response:
|
||||
response_object["guardrailAction"] = response["guardrailAction"]
|
||||
|
||||
# Return the results as a JSON string
|
||||
return json.dumps(response_object, indent=2)
|
||||
|
||||
except ClientError as e:
|
||||
return f"Error retrieving from Bedrock Knowledge Base: {str(e)}"
|
||||
Reference in New Issue
Block a user