Files
crewAI/src/crewai/knowledge/source/pdf_knowledge_source.py
Brandon Hancock (bhancock_ai) 14a36d3f5e Knowledge (#1567)
* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-11-20 15:40:08 -08:00

55 lines
1.8 KiB
Python

from typing import List, Dict
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class PDFKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries PDF file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess PDF file content."""
super().load_content() # Validate the file paths
pdfplumber = self._import_pdfplumber()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
text = ""
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
content[path] = text
return content
def _import_pdfplumber(self):
"""Dynamically import pdfplumber."""
try:
import pdfplumber
return pdfplumber
except ImportError:
raise ImportError(
"pdfplumber is not installed. Please install it with: pip install pdfplumber"
)
def add(self) -> None:
"""
Add PDF file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
for _, text in self.content.items():
new_chunks = self._chunk_text(text)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]