Files
crewAI/docs/pt-BR/tools/search-research/databricks-query-tool.mdx
Tony Kipkemboi bf9e0423f2
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
chore(docs): bring AMP doc refresh from release/v1.0.0 into main (#3637)
* WIP: v1 docs (#3626)

(cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c)

* docs: parity for all translations

* docs: full name of acronym AMP

* docs: fix lingering unused code

* docs: expand contextual options in docs.json

* docs: add contextual action to request feature on GitHub

* chore: tidy docs formatting
2025-10-02 11:36:04 -04:00

80 lines
1.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
title: Databricks SQL Query Tool
description: The `DatabricksQueryTool` executes SQL queries against Databricks workspace tables.
icon: trowel-bricks
mode: "wide"
---
# `DatabricksQueryTool`
## Description
Run SQL against Databricks workspace tables with either CLI profile or direct host/token authentication.
## Installation
```shell
uv add crewai-tools[databricks-sdk]
```
## Environment Variables
- `DATABRICKS_CONFIG_PROFILE` or (`DATABRICKS_HOST` + `DATABRICKS_TOKEN`)
Create a personal access token and find host details in the Databricks workspace under User Settings → Developer.
Docs: https://docs.databricks.com/en/dev-tools/auth/pat.html
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import DatabricksQueryTool
tool = DatabricksQueryTool(
default_catalog="main",
default_schema="default",
)
agent = Agent(
role="Data Analyst",
goal="Query Databricks",
tools=[tool],
verbose=True,
)
task = Task(
description="SELECT * FROM my_table LIMIT 10",
expected_output="10 rows",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
result = crew.kickoff()
print(result)
```
## Parameters
- `query` (required): SQL query to execute
- `catalog` (optional): Override default catalog
- `db_schema` (optional): Override default schema
- `warehouse_id` (optional): Override default SQL warehouse
- `row_limit` (optional): Maximum rows to return (default: 1000)
## Defaults on initialization
- `default_catalog`
- `default_schema`
- `default_warehouse_id`
### Error handling & tips
- Authentication errors: verify `DATABRICKS_HOST` begins with `https://` and token is valid.
- Permissions: ensure your SQL warehouse and schema are accessible by your token.
- Limits: longrunning queries should be avoided in agent loops; add filters/limits.