Files
crewAI/crewai_tools/aws/bedrock/code_interpreter/README.md
Greyson Lalonde e16606672a Squashed 'packages/tools/' content from commit 78317b9c
git-subtree-dir: packages/tools
git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
2025-09-12 21:58:02 -04:00

217 lines
5.8 KiB
Markdown

# AWS Bedrock Code Interpreter Tools
This toolkit provides a set of tools for interacting with the AWS Bedrock Code Interpreter environment. It enables your CrewAI agents to execute code, run shell commands, manage files, and perform computational tasks in a secure, isolated environment.
## Features
- Execute code in various languages (primarily Python)
- Run shell commands in the environment
- Read, write, list, and delete files
- Manage long-running tasks asynchronously
- Multiple code interpreter sessions with thread-based isolation
## Installation
Ensure you have the necessary dependencies:
```bash
uv add crewai-tools bedrock-agentcore
```
## Usage
### Basic Usage
```python
from crewai import Agent, Task, Crew, LLM
from crewai_tools.aws import create_code_interpreter_toolkit
# Create the code interpreter toolkit
toolkit, code_tools = create_code_interpreter_toolkit(region="us-west-2")
# Create the Bedrock LLM
llm = LLM(
model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
region_name="us-west-2",
)
# Create a CrewAI agent that uses the code interpreter tools
developer_agent = Agent(
role="Python Developer",
goal="Create and execute Python code to solve problems.",
backstory="You're a skilled Python developer with expertise in data analysis.",
tools=code_tools,
llm=llm
)
# Create a task for the agent
coding_task = Task(
description="Write a Python function that calculates the factorial of a number and test it. Do not use any imports from outside the Python standard library.",
expected_output="The Python function created, and the test results.",
agent=developer_agent
)
# Create and run the crew
crew = Crew(
agents=[developer_agent],
tasks=[coding_task]
)
result = crew.kickoff()
print(f"\n***Final result:***\n\n{result}")
# Clean up resources when done
import asyncio
asyncio.run(toolkit.cleanup())
```
### Available Tools
The toolkit provides the following tools:
1. `execute_code` - Run code in various languages (primarily Python)
2. `execute_command` - Run shell commands in the environment
3. `read_files` - Read content of files in the environment
4. `list_files` - List files in directories
5. `delete_files` - Remove files from the environment
6. `write_files` - Create or update files
7. `start_command_execution` - Start long-running commands asynchronously
8. `get_task` - Check status of async tasks
9. `stop_task` - Stop running tasks
### Advanced Usage
```python
from crewai import Agent, Task, Crew, LLM
from crewai_tools.aws import create_code_interpreter_toolkit
# Create the code interpreter toolkit
toolkit, code_tools = create_code_interpreter_toolkit(region="us-west-2")
tools_by_name = toolkit.get_tools_by_name()
# Create the Bedrock LLM
llm = LLM(
model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
region_name="us-west-2",
)
# Create agents with specific tools
code_agent = Agent(
role="Code Developer",
goal="Write and execute code",
backstory="You write and test code to solve complex problems.",
tools=[
# Use specific tools by name
tools_by_name["execute_code"],
tools_by_name["execute_command"],
tools_by_name["read_files"],
tools_by_name["write_files"]
],
llm=llm
)
file_agent = Agent(
role="File Manager",
goal="Manage files in the environment",
backstory="You help organize and manage files in the code environment.",
tools=[
# Use specific tools by name
tools_by_name["list_files"],
tools_by_name["read_files"],
tools_by_name["write_files"],
tools_by_name["delete_files"]
],
llm=llm
)
# Create tasks for the agents
coding_task = Task(
description="Write a Python script to analyze data from a CSV file. Do not use any imports from outside the Python standard library.",
expected_output="The Python function created.",
agent=code_agent
)
file_task = Task(
description="Organize the created files into separate directories.",
agent=file_agent
)
# Create and run the crew
crew = Crew(
agents=[code_agent, file_agent],
tasks=[coding_task, file_task]
)
result = crew.kickoff()
print(f"\n***Final result:***\n\n{result}")
# Clean up code interpreter resources when done
import asyncio
asyncio.run(toolkit.cleanup())
```
### Example: Data Analysis with Python
```python
from crewai import Agent, Task, Crew, LLM
from crewai_tools.aws import create_code_interpreter_toolkit
# Create toolkit and tools
toolkit, code_tools = create_code_interpreter_toolkit(region="us-west-2")
# Create the Bedrock LLM
llm = LLM(
model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
region_name="us-west-2",
)
# Create a data analyst agent
analyst_agent = Agent(
role="Data Analyst",
goal="Analyze data using Python",
backstory="You're an expert data analyst who uses Python for data processing.",
tools=code_tools,
llm=llm
)
# Create a task for the agent
analysis_task = Task(
description="""
For all of the below, do not use any imports from outside the Python standard library.
1. Create a sample dataset with random data
2. Perform statistical analysis on the dataset
3. Generate visualizations of the results
4. Save the results and visualizations to files
""",
agent=analyst_agent
)
# Create and run the crew
crew = Crew(
agents=[analyst_agent],
tasks=[analysis_task]
)
result = crew.kickoff()
print(f"\n***Final result:***\n\n{result}")
# Clean up resources
import asyncio
asyncio.run(toolkit.cleanup())
```
## Resource Cleanup
Always clean up code interpreter resources when done to prevent resource leaks:
```python
import asyncio
# Clean up all code interpreter sessions
asyncio.run(toolkit.cleanup())
```
## Requirements
- AWS account with access to Bedrock AgentCore API
- Properly configured AWS credentials