mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
- Modernize integration patterns to use latest Portkey SDK (v1.13.0+) - Replace deprecated createHeaders/PORTKEY_GATEWAY_URL with direct OpenAI SDK compatibility - Add comprehensive async support examples - Enhance multi-LLM provider examples with modern patterns - Add CrewAI-specific integration patterns for Flows and Memory systems - Include detailed production reliability features (retries, fallbacks, load balancing) - Expand observability section with CrewAI-specific metrics and logging - Add troubleshooting and best practices sections - Update all code examples with proper imports and error handling - Improve security features documentation with practical examples Addresses GitHub issue #2935 - comprehensive update to Portkey AI observability documentation Co-Authored-By: João <joao@crewai.com>
621 lines
20 KiB
Plaintext
621 lines
20 KiB
Plaintext
---
|
|
title: Portkey Integration
|
|
description: How to use Portkey with CrewAI
|
|
icon: key
|
|
---
|
|
|
|
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
|
|
|
|
|
|
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a comprehensive AI gateway that enhances CrewAI agents with production-ready capabilities for reliability, cost-efficiency, and performance optimization.
|
|
|
|
Portkey adds 4 core production capabilities to any CrewAI agent:
|
|
1. Routing to **250+ LLMs** with unified API
|
|
2. Enhanced reliability with retries, fallbacks, and load balancing
|
|
3. Comprehensive observability with 40+ metrics and detailed tracing
|
|
4. Advanced security controls and real-time guardrails
|
|
|
|
## Getting Started
|
|
|
|
<Steps>
|
|
<Step title="Install CrewAI and Portkey">
|
|
```bash
|
|
pip install -qU crewai portkey-ai
|
|
```
|
|
</Step>
|
|
<Step title="Configure the LLM Client">
|
|
To build CrewAI Agents with Portkey, you'll need two keys:
|
|
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
|
|
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
|
|
|
|
### Modern Integration (Recommended)
|
|
The latest Portkey SDK (v1.13.0+) is built directly on top of the OpenAI SDK, providing seamless compatibility:
|
|
|
|
```python
|
|
from crewai import LLM
|
|
import os
|
|
|
|
# Set environment variables
|
|
os.environ["PORTKEY_API_KEY"] = "YOUR_PORTKEY_API_KEY"
|
|
os.environ["PORTKEY_VIRTUAL_KEY"] = "YOUR_VIRTUAL_KEY"
|
|
|
|
# Modern Portkey integration with CrewAI
|
|
gpt_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"]
|
|
}
|
|
)
|
|
```
|
|
|
|
### Legacy Integration (Deprecated)
|
|
For backward compatibility, the older pattern is still supported but not recommended:
|
|
|
|
```python
|
|
from crewai import LLM
|
|
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
|
|
|
gpt_llm = LLM(
|
|
model="gpt-4",
|
|
base_url=PORTKEY_GATEWAY_URL,
|
|
api_key="dummy",
|
|
extra_headers=createHeaders(
|
|
api_key="YOUR_PORTKEY_API_KEY",
|
|
virtual_key="YOUR_VIRTUAL_KEY"
|
|
)
|
|
)
|
|
```
|
|
</Step>
|
|
<Step title="Create and Run Your First Agent">
|
|
```python
|
|
from crewai import Agent, Task, Crew
|
|
|
|
# Define your agents with roles and goals
|
|
coder = Agent(
|
|
role='Software developer',
|
|
goal='Write clear, concise code on demand',
|
|
backstory='An expert coder with a keen eye for software trends.',
|
|
llm=gpt_llm
|
|
)
|
|
|
|
# Create tasks for your agents
|
|
task1 = Task(
|
|
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
|
|
expected_output="A clear and concise HTML code",
|
|
agent=coder
|
|
)
|
|
|
|
# Instantiate your crew with Portkey observability
|
|
crew = Crew(
|
|
agents=[coder],
|
|
tasks=[task1],
|
|
)
|
|
|
|
result = crew.kickoff()
|
|
print(result)
|
|
```
|
|
</Step>
|
|
</Steps>
|
|
|
|
## Async Support
|
|
|
|
Portkey fully supports async operations with CrewAI for high-performance applications:
|
|
|
|
```python
|
|
import asyncio
|
|
from crewai import Agent, Task, Crew, LLM
|
|
import os
|
|
|
|
# Configure async LLM with Portkey
|
|
async_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"]
|
|
}
|
|
)
|
|
|
|
async def run_async_crew():
|
|
agent = Agent(
|
|
role='Data Analyst',
|
|
goal='Analyze data efficiently',
|
|
backstory='Expert in data analysis and insights.',
|
|
llm=async_llm
|
|
)
|
|
|
|
task = Task(
|
|
description="Analyze the latest market trends",
|
|
expected_output="Comprehensive market analysis report",
|
|
agent=agent
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = await crew.kickoff_async()
|
|
return result
|
|
|
|
# Run async crew
|
|
result = asyncio.run(run_async_crew())
|
|
```
|
|
|
|
## Key Features
|
|
|
|
| Feature | Description |
|
|
|:--------|:------------|
|
|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
|
|
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
|
|
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
|
|
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
|
|
| 🚧 Security Controls | Set budget limits and implement role-based access control |
|
|
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
|
|
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
|
|
|
|
|
|
## Production Features with Portkey Configs
|
|
|
|
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
|
|
|
|
<Frame>
|
|
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
|
|
</Frame>
|
|
|
|
|
|
### 1. Use 250+ LLMs
|
|
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
|
|
|
|
Easily switch between different LLM providers using the modern integration pattern:
|
|
|
|
```python
|
|
import os
|
|
|
|
# Anthropic Configuration
|
|
anthropic_llm = LLM(
|
|
model="claude-3-5-sonnet-latest",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["ANTHROPIC_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["ANTHROPIC_VIRTUAL_KEY"],
|
|
"x-portkey-trace-id": "anthropic_agent"
|
|
}
|
|
)
|
|
|
|
# Azure OpenAI Configuration
|
|
azure_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["AZURE_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["AZURE_VIRTUAL_KEY"],
|
|
"x-portkey-trace-id": "azure_agent"
|
|
}
|
|
)
|
|
|
|
# Google Gemini Configuration
|
|
gemini_llm = LLM(
|
|
model="gemini-2.0-flash-exp",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["GEMINI_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["GEMINI_VIRTUAL_KEY"],
|
|
"x-portkey-trace-id": "gemini_agent"
|
|
}
|
|
)
|
|
|
|
# Mistral Configuration
|
|
mistral_llm = LLM(
|
|
model="mistral-large-latest",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["MISTRAL_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["MISTRAL_VIRTUAL_KEY"],
|
|
"x-portkey-trace-id": "mistral_agent"
|
|
}
|
|
)
|
|
```
|
|
|
|
|
|
### 2. Caching
|
|
Improve response times and reduce costs with two powerful caching modes:
|
|
- **Simple Cache**: Perfect for exact matches
|
|
- **Semantic Cache**: Matches responses for requests that are semantically similar
|
|
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
|
|
|
|
```python
|
|
import json
|
|
|
|
# Enable caching for CrewAI agents
|
|
cached_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
"x-portkey-config": json.dumps({
|
|
"cache": {
|
|
"mode": "semantic", # or "simple" for exact matching
|
|
"max_age": 3600 # Cache for 1 hour
|
|
}
|
|
})
|
|
}
|
|
)
|
|
|
|
# Use with CrewAI agents for improved performance
|
|
research_agent = Agent(
|
|
role='Research Analyst',
|
|
goal='Conduct thorough research with cached responses',
|
|
backstory='Expert researcher who values efficiency.',
|
|
llm=cached_llm
|
|
)
|
|
```
|
|
|
|
### 3. Production Reliability
|
|
Portkey provides comprehensive reliability features essential for production CrewAI deployments:
|
|
|
|
#### Automatic Retries and Fallbacks
|
|
```python
|
|
import json
|
|
|
|
# Configure LLM with automatic retries and fallbacks
|
|
reliable_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-config": json.dumps({
|
|
"retry": {
|
|
"attempts": 3,
|
|
"on_status_codes": [429, 500, 502, 503, 504]
|
|
},
|
|
"fallbacks": [
|
|
{"virtual_key": os.environ["OPENAI_VIRTUAL_KEY"]},
|
|
{"virtual_key": os.environ["ANTHROPIC_VIRTUAL_KEY"]}
|
|
]
|
|
})
|
|
}
|
|
)
|
|
```
|
|
|
|
#### Load Balancing
|
|
```python
|
|
# Distribute requests across multiple models for optimal performance
|
|
load_balanced_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-config": json.dumps({
|
|
"strategy": {
|
|
"mode": "loadbalance",
|
|
"targets": [
|
|
{"virtual_key": os.environ["OPENAI_VIRTUAL_KEY"], "weight": 70},
|
|
{"virtual_key": os.environ["ANTHROPIC_VIRTUAL_KEY"], "weight": 30}
|
|
]
|
|
}
|
|
})
|
|
}
|
|
)
|
|
```
|
|
|
|
#### Request Timeouts and Conditional Routing
|
|
```python
|
|
# Configure timeouts and conditional routing for CrewAI workflows
|
|
production_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-config": json.dumps({
|
|
"request_timeout": 30000, # 30 seconds
|
|
"conditional_routing": {
|
|
"rules": [
|
|
{
|
|
"condition": "request.model == 'gpt-4'",
|
|
"target": {"virtual_key": os.environ["OPENAI_VIRTUAL_KEY"]}
|
|
}
|
|
]
|
|
}
|
|
})
|
|
}
|
|
)
|
|
```
|
|
|
|
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
|
|
|
|
|
|
|
|
### 4. Comprehensive Observability
|
|
|
|
CrewAI workflows involve complex multi-agent interactions. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, providing deep insights into agent behavior, performance, and costs.
|
|
|
|
#### Key Metrics for CrewAI Workflows
|
|
- **Agent Performance**: Individual agent response times and success rates
|
|
- **Task Execution**: Time spent on each task and completion rates
|
|
- **Cost Analysis**: Token usage and costs per agent, task, and crew
|
|
- **Multi-Agent Coordination**: Communication patterns between agents
|
|
- **Tool Usage**: Frequency and success rates of tool calls
|
|
- **Memory Operations**: Knowledge retrieval and storage metrics
|
|
- **Cache Efficiency**: Hit rates and performance improvements
|
|
|
|
#### Custom Metadata for CrewAI
|
|
```python
|
|
import json
|
|
|
|
# Add custom metadata to track CrewAI-specific metrics
|
|
crew_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
"x-portkey-metadata": json.dumps({
|
|
"crew_id": "marketing_crew_v1",
|
|
"agent_role": "content_writer",
|
|
"task_type": "blog_generation",
|
|
"environment": "production"
|
|
})
|
|
}
|
|
)
|
|
```
|
|
|
|
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
|
|
|
|
### 5. Advanced Logging and Tracing
|
|
|
|
Portkey provides comprehensive logging capabilities specifically designed for complex multi-agent systems like CrewAI. Track every interaction, decision, and outcome across your entire crew workflow.
|
|
|
|
#### CrewAI-Specific Logging Features
|
|
- **Agent Conversation Flows**: Complete conversation history between agents
|
|
- **Task Execution Traces**: Step-by-step task completion with timing
|
|
- **Tool Call Monitoring**: Detailed logs of all tool invocations and results
|
|
- **Memory Access Patterns**: Track knowledge retrieval and storage operations
|
|
- **Error Propagation**: Trace how errors flow through multi-agent workflows
|
|
|
|
#### Implementing Structured Logging
|
|
```python
|
|
import json
|
|
import os
|
|
from datetime import datetime
|
|
|
|
# Configure detailed logging for CrewAI workflows
|
|
logged_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
"x-portkey-trace-id": f"crew_execution_{datetime.now().isoformat()}",
|
|
"x-portkey-metadata": json.dumps({
|
|
"workflow_type": "multi_agent_research",
|
|
"crew_size": 3,
|
|
"expected_duration": "5_minutes"
|
|
})
|
|
}
|
|
)
|
|
|
|
# Use with CrewAI for comprehensive observability
|
|
research_crew = Crew(
|
|
agents=[researcher, writer, reviewer],
|
|
tasks=[research_task, writing_task, review_task],
|
|
verbose=True # Enable CrewAI's built-in logging
|
|
)
|
|
```
|
|
|
|
<details>
|
|
<summary><b>Traces</b></summary>
|
|
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
|
|
</details>
|
|
|
|
<details>
|
|
<summary><b>Logs</b></summary>
|
|
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
|
|
</details>
|
|
|
|
### 6. Enterprise Security Features
|
|
- **Budget Controls**: Set spending limits per Virtual Key to prevent cost overruns
|
|
- **Rate Limiting**: Control request frequency to prevent abuse
|
|
- **Role-Based Access**: Implement fine-grained permissions for team members
|
|
- **Audit Logging**: Track all system changes and access patterns
|
|
- **Data Retention**: Configure policies for log and metric retention
|
|
- **API Key Rotation**: Automated rotation of Virtual Keys for enhanced security
|
|
|
|
```python
|
|
import json
|
|
import os
|
|
|
|
# Example of budget-controlled LLM for production CrewAI deployments
|
|
budget_controlled_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
"x-portkey-config": json.dumps({
|
|
"budget": {
|
|
"limit": 100.0, # $100 monthly limit
|
|
"period": "monthly"
|
|
},
|
|
"rate_limit": {
|
|
"requests_per_minute": 60
|
|
}
|
|
})
|
|
}
|
|
)
|
|
```
|
|
|
|
## CrewAI-Specific Integration Patterns
|
|
|
|
### Integration with CrewAI Flows
|
|
Portkey seamlessly integrates with CrewAI's Flow system for event-driven workflows:
|
|
|
|
```python
|
|
import json
|
|
import os
|
|
from crewai.flow.flow import Flow, listen, start
|
|
from crewai import Agent, Task
|
|
|
|
class ResearchFlow(Flow):
|
|
|
|
@start()
|
|
def initiate_research(self):
|
|
researcher = Agent(
|
|
role='Senior Researcher',
|
|
goal='Conduct comprehensive research',
|
|
backstory='Expert researcher with access to multiple data sources.',
|
|
llm=reliable_llm # Using Portkey-configured LLM
|
|
)
|
|
|
|
research_task = Task(
|
|
description="Research the latest trends in {topic}",
|
|
expected_output="Comprehensive research report",
|
|
agent=researcher
|
|
)
|
|
|
|
return research_task.execute()
|
|
|
|
@listen(initiate_research)
|
|
def analyze_findings(self, research_result):
|
|
analyst = Agent(
|
|
role='Data Analyst',
|
|
goal='Analyze research findings',
|
|
backstory='Expert in data analysis and pattern recognition.',
|
|
llm=cached_llm # Using cached LLM for efficiency
|
|
)
|
|
|
|
analysis_task = Task(
|
|
description="Analyze the research findings: {research_result}",
|
|
expected_output="Detailed analysis with insights",
|
|
agent=analyst
|
|
)
|
|
|
|
return analysis_task.execute()
|
|
|
|
# Run the flow with Portkey observability
|
|
flow = ResearchFlow()
|
|
result = flow.kickoff(inputs={"topic": "AI in healthcare"})
|
|
```
|
|
|
|
### Integration with CrewAI Memory Systems
|
|
Enhance CrewAI's memory capabilities with Portkey's observability:
|
|
|
|
```python
|
|
import json
|
|
import os
|
|
from crewai.memory import LongTermMemory, ShortTermMemory
|
|
|
|
# Configure memory-aware agents with Portkey tracking
|
|
memory_llm = LLM(
|
|
model="gpt-4",
|
|
base_url="https://api.portkey.ai/v1",
|
|
api_key=os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
extra_headers={
|
|
"x-portkey-api-key": os.environ["PORTKEY_API_KEY"],
|
|
"x-portkey-virtual-key": os.environ["PORTKEY_VIRTUAL_KEY"],
|
|
"x-portkey-metadata": json.dumps({
|
|
"memory_enabled": True,
|
|
"memory_type": "long_term"
|
|
})
|
|
}
|
|
)
|
|
|
|
# Create crew with memory and Portkey observability
|
|
memory_crew = Crew(
|
|
agents=[knowledge_agent],
|
|
tasks=[learning_task],
|
|
memory=True, # Enable CrewAI memory
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
### Tool Integration Monitoring
|
|
Track tool usage across your CrewAI workflows:
|
|
|
|
```python
|
|
import os
|
|
from crewai_tools import SerperDevTool, FileReadTool
|
|
|
|
# Configure tools with Portkey tracking
|
|
search_tool = SerperDevTool()
|
|
file_tool = FileReadTool()
|
|
|
|
tool_aware_agent = Agent(
|
|
role='Research Assistant',
|
|
goal='Use tools effectively for research',
|
|
backstory='Expert in using various research tools.',
|
|
llm=logged_llm, # Portkey will track all tool calls
|
|
tools=[search_tool, file_tool]
|
|
)
|
|
```
|
|
|
|
## Troubleshooting and Best Practices
|
|
|
|
### Common Integration Issues
|
|
|
|
#### API Key Configuration
|
|
```python
|
|
# Ensure proper environment variable setup
|
|
import os
|
|
|
|
required_vars = [
|
|
"PORTKEY_API_KEY",
|
|
"PORTKEY_VIRTUAL_KEY"
|
|
]
|
|
|
|
for var in required_vars:
|
|
if not os.getenv(var):
|
|
raise ValueError(f"Missing required environment variable: {var}")
|
|
```
|
|
|
|
#### Error Handling
|
|
```python
|
|
# Implement robust error handling for production deployments
|
|
try:
|
|
result = crew.kickoff()
|
|
except Exception as e:
|
|
# Portkey will automatically log the error with full context
|
|
print(f"Crew execution failed: {e}")
|
|
# Implement fallback logic here
|
|
```
|
|
|
|
### Performance Optimization Tips
|
|
|
|
1. **Use Caching**: Enable semantic caching for repetitive tasks
|
|
2. **Load Balancing**: Distribute requests across multiple providers
|
|
3. **Batch Operations**: Group similar requests when possible
|
|
4. **Monitor Metrics**: Regularly review performance dashboards
|
|
5. **Optimize Prompts**: Use Portkey's prompt analytics to improve efficiency
|
|
|
|
### Security Best Practices
|
|
|
|
1. **Environment Variables**: Never hardcode API keys in source code
|
|
2. **Virtual Keys**: Use Virtual Keys instead of direct provider keys
|
|
3. **Budget Limits**: Set appropriate spending limits for production
|
|
4. **Access Control**: Implement role-based access for team members
|
|
5. **Regular Rotation**: Rotate API keys periodically
|
|
|
|
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://portkey.ai/docs/product/ai-gateway/configs).
|
|
|
|
## Resources
|
|
|
|
- [📘 Portkey Documentation](https://portkey.ai/docs)
|
|
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
|
|
- [🔧 Portkey Python SDK](https://github.com/Portkey-AI/portkey-python-sdk)
|
|
- [📦 PyPI Package](https://pypi.org/project/portkey-ai/)
|
|
- [🐦 Twitter](https://twitter.com/portkeyai)
|
|
- [💬 Discord Community](https://discord.gg/DD7vgKK299)
|
|
- [📚 CrewAI Examples with Portkey](https://github.com/crewAIInc/crewAI-examples)
|