Files
crewAI/lib/crewai-tools/tests/tools/rag/rag_tool_test.py
Devin AI 36d9ca099e fix: add backward compatibility for legacy RAG tool config format
Fixes #4028 - WebsiteSearchTool always requires OpenAI API key even when
Ollama or other providers are specified.

The issue was that the documentation showed the old config format with
'llm' and 'embedder' keys, but the actual RagToolConfig type expects
'embedding_model' and 'vectordb' keys. When the old format was passed,
the embedder config was not recognized, causing the tool to fall back
to the default OpenAI embedding function which requires OPENAI_API_KEY.

Changes:
- Add _normalize_legacy_config method to RagTool that maps legacy
  'embedder' key to 'embedding_model'
- Emit deprecation warnings for legacy config keys
- Ignore 'llm' key with warning (not used in RAG tools)
- Add tests for backward compatibility
- Update documentation to show new config format with examples

Co-Authored-By: João <joao@crewai.com>
2025-12-04 11:27:17 +00:00

477 lines
16 KiB
Python

from pathlib import Path
from tempfile import TemporaryDirectory
from typing import cast
from unittest.mock import MagicMock, Mock, patch
import warnings
import pytest
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
from crewai_tools.tools.rag.rag_tool import RagTool
@patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client")
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_initialization(
mock_create_client: Mock, mock_get_rag_client: Mock
) -> None:
"""Test that RagTool initializes with CrewAI adapter by default."""
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_get_rag_client.return_value = mock_client
mock_create_client.return_value = mock_client
class MyTool(RagTool):
pass
tool = MyTool()
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
adapter = cast(CrewAIRagAdapter, tool.adapter)
assert adapter.collection_name == "rag_tool_collection"
assert adapter._client is not None
@patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client")
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_add_and_query(
mock_create_client: Mock, mock_get_rag_client: Mock
) -> None:
"""Test adding content and querying with RagTool."""
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_client.add_documents = MagicMock(return_value=None)
mock_client.search = MagicMock(
return_value=[
{"content": "The sky is blue on a clear day.", "metadata": {}, "score": 0.9}
]
)
mock_get_rag_client.return_value = mock_client
mock_create_client.return_value = mock_client
class MyTool(RagTool):
pass
tool = MyTool()
tool.add("The sky is blue on a clear day.")
tool.add("Machine learning is a subset of artificial intelligence.")
# Verify documents were added
assert mock_client.add_documents.call_count == 2
result = tool._run(query="What color is the sky?")
assert "Relevant Content:" in result
assert "The sky is blue" in result
mock_client.search.return_value = [
{
"content": "Machine learning is a subset of artificial intelligence.",
"metadata": {},
"score": 0.85,
}
]
result = tool._run(query="Tell me about machine learning")
assert "Relevant Content:" in result
assert "Machine learning" in result
@patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client")
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_file(
mock_create_client: Mock, mock_get_rag_client: Mock
) -> None:
"""Test RagTool with file content."""
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_client.add_documents = MagicMock(return_value=None)
mock_client.search = MagicMock(
return_value=[
{
"content": "Python is a programming language known for its simplicity.",
"metadata": {"file_path": "test.txt"},
"score": 0.95,
}
]
)
mock_get_rag_client.return_value = mock_client
mock_create_client.return_value = mock_client
with TemporaryDirectory() as tmpdir:
test_file = Path(tmpdir) / "test.txt"
test_file.write_text(
"Python is a programming language known for its simplicity."
)
class MyTool(RagTool):
pass
tool = MyTool()
tool.add(str(test_file))
assert mock_client.add_documents.called
result = tool._run(query="What is Python?")
assert "Relevant Content:" in result
assert "Python is a programming language" in result
@patch("crewai_tools.tools.rag.rag_tool.build_embedder")
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_custom_embeddings(
mock_create_client: Mock, mock_build_embedder: Mock
) -> None:
"""Test RagTool with custom embeddings configuration to ensure no API calls."""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.2] * 1536]
mock_build_embedder.return_value = mock_embedding_func
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_client.add_documents = MagicMock(return_value=None)
mock_client.search = MagicMock(
return_value=[{"content": "Test content", "metadata": {}, "score": 0.8}]
)
mock_create_client.return_value = mock_client
class MyTool(RagTool):
pass
config = {
"vectordb": {"provider": "chromadb", "config": {}},
"embedding_model": {
"provider": "openai",
"config": {"model": "text-embedding-3-small"},
},
}
tool = MyTool(config=config)
tool.add("Test content")
result = tool._run(query="Test query")
assert "Relevant Content:" in result
assert "Test content" in result
mock_build_embedder.assert_called()
@patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client")
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_no_results(
mock_create_client: Mock, mock_get_rag_client: Mock
) -> None:
"""Test RagTool when no relevant content is found."""
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_client.search = MagicMock(return_value=[])
mock_get_rag_client.return_value = mock_client
mock_create_client.return_value = mock_client
class MyTool(RagTool):
pass
tool = MyTool()
result = tool._run(query="Non-existent content")
assert "Relevant Content:" in result
assert "No relevant content found" in result
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_azure_config_without_env_vars(
mock_create_client: Mock,
) -> None:
"""Test that RagTool accepts Azure config without requiring env vars.
This test verifies the fix for the issue where RAG tools were ignoring
the embedding configuration passed via the config parameter and instead
requiring environment variables like EMBEDDINGS_OPENAI_API_KEY.
"""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_client.add_documents = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
# Patch the embedding function builder to avoid actual API calls
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
):
class MyTool(RagTool):
pass
# Configuration with explicit Azure credentials - should work without env vars
config = {
"embedding_model": {
"provider": "azure",
"config": {
"model": "text-embedding-3-small",
"api_key": "test-api-key",
"api_base": "https://test.openai.azure.com/",
"api_version": "2024-02-01",
"api_type": "azure",
"deployment_id": "test-deployment",
},
}
}
# This should not raise a validation error about missing env vars
tool = MyTool(config=config)
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_openai_config_without_env_vars(
mock_create_client: Mock,
) -> None:
"""Test that RagTool accepts OpenAI config without requiring env vars."""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
):
class MyTool(RagTool):
pass
config = {
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
"api_key": "sk-test123",
},
}
}
tool = MyTool(config=config)
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_config_with_qdrant_and_azure_embeddings(
mock_create_client: Mock,
) -> None:
"""Test RagTool with Qdrant vector DB and Azure embeddings config."""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
):
class MyTool(RagTool):
pass
config = {
"vectordb": {"provider": "qdrant", "config": {}},
"embedding_model": {
"provider": "azure",
"config": {
"model": "text-embedding-3-large",
"api_key": "test-key",
"api_base": "https://test.openai.azure.com/",
"api_version": "2024-02-01",
"deployment_id": "test-deployment",
},
},
}
tool = MyTool(config=config)
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_legacy_embedder_config(
mock_create_client: Mock,
) -> None:
"""Test that RagTool accepts legacy 'embedder' config key with deprecation warning.
This test verifies the fix for issue #4028 where WebsiteSearchTool and other
RAG tools always required OpenAI API key even when using Ollama or other providers.
The legacy config format used 'embedder' key instead of 'embedding_model'.
"""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
):
class MyTool(RagTool):
pass
# Legacy config format using 'embedder' key (as shown in old docs)
legacy_config = {
"embedder": {
"provider": "ollama",
"config": {
"model_name": "nomic-embed-text",
"url": "http://localhost:11434/api/embeddings",
},
},
}
# Should emit deprecation warning but still work
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
tool = MyTool(config=legacy_config)
# Check that deprecation warning was issued
deprecation_warnings = [
warning
for warning in w
if issubclass(warning.category, DeprecationWarning)
]
assert len(deprecation_warnings) >= 1
assert "embedder" in str(deprecation_warnings[0].message)
assert "embedding_model" in str(deprecation_warnings[0].message)
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_with_legacy_llm_config_ignored(
mock_create_client: Mock,
) -> None:
"""Test that RagTool ignores legacy 'llm' config key with deprecation warning.
The 'llm' key was shown in old documentation but is not used by RAG tools.
The LLM for generation is controlled by the agent's LLM configuration.
"""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
):
class MyTool(RagTool):
pass
# Legacy config format with both 'llm' and 'embedder' keys
legacy_config = {
"llm": {
"provider": "ollama",
"config": {
"model": "llama2",
},
},
"embedder": {
"provider": "ollama",
"config": {
"model_name": "nomic-embed-text",
"url": "http://localhost:11434/api/embeddings",
},
},
}
# Should emit deprecation warnings for both keys
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
tool = MyTool(config=legacy_config)
# Check that deprecation warnings were issued for both keys
deprecation_warnings = [
warning
for warning in w
if issubclass(warning.category, DeprecationWarning)
]
assert len(deprecation_warnings) >= 2
warning_messages = [str(warning.message) for warning in deprecation_warnings]
assert any("llm" in msg for msg in warning_messages)
assert any("embedder" in msg for msg in warning_messages)
assert tool.adapter is not None
assert isinstance(tool.adapter, CrewAIRagAdapter)
@patch("crewai_tools.adapters.crewai_rag_adapter.create_client")
def test_rag_tool_legacy_config_does_not_override_new_config(
mock_create_client: Mock,
) -> None:
"""Test that legacy 'embedder' key does not override 'embedding_model' if both present."""
mock_embedding_func = MagicMock()
mock_embedding_func.return_value = [[0.1] * 1536]
mock_client = MagicMock()
mock_client.get_or_create_collection = MagicMock(return_value=None)
mock_create_client.return_value = mock_client
with patch(
"crewai_tools.tools.rag.rag_tool.build_embedder",
return_value=mock_embedding_func,
) as mock_build:
class MyTool(RagTool):
pass
# Config with both old and new keys - new key should take precedence
config = {
"embedder": {
"provider": "ollama",
"config": {"model_name": "old-model"},
},
"embedding_model": {
"provider": "openai",
"config": {"model": "text-embedding-3-small", "api_key": "test-key"},
},
}
# No deprecation warning for 'embedder' since 'embedding_model' is present
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
tool = MyTool(config=config)
# Should NOT warn about 'embedder' since 'embedding_model' takes precedence
embedder_warnings = [
warning
for warning in w
if issubclass(warning.category, DeprecationWarning)
and "embedder" in str(warning.message)
]
assert len(embedder_warnings) == 0
assert tool.adapter is not None
# Verify that the new 'embedding_model' config was used, not the legacy 'embedder'
call_args = mock_build.call_args
assert call_args is not None
spec = call_args[0][0]
assert spec["provider"] == "openai"