from pathlib import Path from tempfile import TemporaryDirectory from typing import cast from unittest.mock import MagicMock, Mock, patch import warnings import pytest from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter from crewai_tools.tools.rag.rag_tool import RagTool @patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client") @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_initialization( mock_create_client: Mock, mock_get_rag_client: Mock ) -> None: """Test that RagTool initializes with CrewAI adapter by default.""" mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_get_rag_client.return_value = mock_client mock_create_client.return_value = mock_client class MyTool(RagTool): pass tool = MyTool() assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) adapter = cast(CrewAIRagAdapter, tool.adapter) assert adapter.collection_name == "rag_tool_collection" assert adapter._client is not None @patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client") @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_add_and_query( mock_create_client: Mock, mock_get_rag_client: Mock ) -> None: """Test adding content and querying with RagTool.""" mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_client.add_documents = MagicMock(return_value=None) mock_client.search = MagicMock( return_value=[ {"content": "The sky is blue on a clear day.", "metadata": {}, "score": 0.9} ] ) mock_get_rag_client.return_value = mock_client mock_create_client.return_value = mock_client class MyTool(RagTool): pass tool = MyTool() tool.add("The sky is blue on a clear day.") tool.add("Machine learning is a subset of artificial intelligence.") # Verify documents were added assert mock_client.add_documents.call_count == 2 result = tool._run(query="What color is the sky?") assert "Relevant Content:" in result assert "The sky is blue" in result mock_client.search.return_value = [ { "content": "Machine learning is a subset of artificial intelligence.", "metadata": {}, "score": 0.85, } ] result = tool._run(query="Tell me about machine learning") assert "Relevant Content:" in result assert "Machine learning" in result @patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client") @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_file( mock_create_client: Mock, mock_get_rag_client: Mock ) -> None: """Test RagTool with file content.""" mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_client.add_documents = MagicMock(return_value=None) mock_client.search = MagicMock( return_value=[ { "content": "Python is a programming language known for its simplicity.", "metadata": {"file_path": "test.txt"}, "score": 0.95, } ] ) mock_get_rag_client.return_value = mock_client mock_create_client.return_value = mock_client with TemporaryDirectory() as tmpdir: test_file = Path(tmpdir) / "test.txt" test_file.write_text( "Python is a programming language known for its simplicity." ) class MyTool(RagTool): pass tool = MyTool() tool.add(str(test_file)) assert mock_client.add_documents.called result = tool._run(query="What is Python?") assert "Relevant Content:" in result assert "Python is a programming language" in result @patch("crewai_tools.tools.rag.rag_tool.build_embedder") @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_custom_embeddings( mock_create_client: Mock, mock_build_embedder: Mock ) -> None: """Test RagTool with custom embeddings configuration to ensure no API calls.""" mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.2] * 1536] mock_build_embedder.return_value = mock_embedding_func mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_client.add_documents = MagicMock(return_value=None) mock_client.search = MagicMock( return_value=[{"content": "Test content", "metadata": {}, "score": 0.8}] ) mock_create_client.return_value = mock_client class MyTool(RagTool): pass config = { "vectordb": {"provider": "chromadb", "config": {}}, "embedding_model": { "provider": "openai", "config": {"model": "text-embedding-3-small"}, }, } tool = MyTool(config=config) tool.add("Test content") result = tool._run(query="Test query") assert "Relevant Content:" in result assert "Test content" in result mock_build_embedder.assert_called() @patch("crewai_tools.adapters.crewai_rag_adapter.get_rag_client") @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_no_results( mock_create_client: Mock, mock_get_rag_client: Mock ) -> None: """Test RagTool when no relevant content is found.""" mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_client.search = MagicMock(return_value=[]) mock_get_rag_client.return_value = mock_client mock_create_client.return_value = mock_client class MyTool(RagTool): pass tool = MyTool() result = tool._run(query="Non-existent content") assert "Relevant Content:" in result assert "No relevant content found" in result @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_azure_config_without_env_vars( mock_create_client: Mock, ) -> None: """Test that RagTool accepts Azure config without requiring env vars. This test verifies the fix for the issue where RAG tools were ignoring the embedding configuration passed via the config parameter and instead requiring environment variables like EMBEDDINGS_OPENAI_API_KEY. """ mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_client.add_documents = MagicMock(return_value=None) mock_create_client.return_value = mock_client # Patch the embedding function builder to avoid actual API calls with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ): class MyTool(RagTool): pass # Configuration with explicit Azure credentials - should work without env vars config = { "embedding_model": { "provider": "azure", "config": { "model": "text-embedding-3-small", "api_key": "test-api-key", "api_base": "https://test.openai.azure.com/", "api_version": "2024-02-01", "api_type": "azure", "deployment_id": "test-deployment", }, } } # This should not raise a validation error about missing env vars tool = MyTool(config=config) assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_openai_config_without_env_vars( mock_create_client: Mock, ) -> None: """Test that RagTool accepts OpenAI config without requiring env vars.""" mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_create_client.return_value = mock_client with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ): class MyTool(RagTool): pass config = { "embedding_model": { "provider": "openai", "config": { "model": "text-embedding-3-small", "api_key": "sk-test123", }, } } tool = MyTool(config=config) assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_config_with_qdrant_and_azure_embeddings( mock_create_client: Mock, ) -> None: """Test RagTool with Qdrant vector DB and Azure embeddings config.""" mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_create_client.return_value = mock_client with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ): class MyTool(RagTool): pass config = { "vectordb": {"provider": "qdrant", "config": {}}, "embedding_model": { "provider": "azure", "config": { "model": "text-embedding-3-large", "api_key": "test-key", "api_base": "https://test.openai.azure.com/", "api_version": "2024-02-01", "deployment_id": "test-deployment", }, }, } tool = MyTool(config=config) assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_legacy_embedder_config( mock_create_client: Mock, ) -> None: """Test that RagTool accepts legacy 'embedder' config key with deprecation warning. This test verifies the fix for issue #4028 where WebsiteSearchTool and other RAG tools always required OpenAI API key even when using Ollama or other providers. The legacy config format used 'embedder' key instead of 'embedding_model'. """ mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_create_client.return_value = mock_client with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ): class MyTool(RagTool): pass # Legacy config format using 'embedder' key (as shown in old docs) legacy_config = { "embedder": { "provider": "ollama", "config": { "model_name": "nomic-embed-text", "url": "http://localhost:11434/api/embeddings", }, }, } # Should emit deprecation warning but still work with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tool = MyTool(config=legacy_config) # Check that deprecation warning was issued deprecation_warnings = [ warning for warning in w if issubclass(warning.category, DeprecationWarning) ] assert len(deprecation_warnings) >= 1 assert "embedder" in str(deprecation_warnings[0].message) assert "embedding_model" in str(deprecation_warnings[0].message) assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_with_legacy_llm_config_ignored( mock_create_client: Mock, ) -> None: """Test that RagTool ignores legacy 'llm' config key with deprecation warning. The 'llm' key was shown in old documentation but is not used by RAG tools. The LLM for generation is controlled by the agent's LLM configuration. """ mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_create_client.return_value = mock_client with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ): class MyTool(RagTool): pass # Legacy config format with both 'llm' and 'embedder' keys legacy_config = { "llm": { "provider": "ollama", "config": { "model": "llama2", }, }, "embedder": { "provider": "ollama", "config": { "model_name": "nomic-embed-text", "url": "http://localhost:11434/api/embeddings", }, }, } # Should emit deprecation warnings for both keys with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tool = MyTool(config=legacy_config) # Check that deprecation warnings were issued for both keys deprecation_warnings = [ warning for warning in w if issubclass(warning.category, DeprecationWarning) ] assert len(deprecation_warnings) >= 2 warning_messages = [str(warning.message) for warning in deprecation_warnings] assert any("llm" in msg for msg in warning_messages) assert any("embedder" in msg for msg in warning_messages) assert tool.adapter is not None assert isinstance(tool.adapter, CrewAIRagAdapter) @patch("crewai_tools.adapters.crewai_rag_adapter.create_client") def test_rag_tool_legacy_config_does_not_override_new_config( mock_create_client: Mock, ) -> None: """Test that legacy 'embedder' key does not override 'embedding_model' if both present.""" mock_embedding_func = MagicMock() mock_embedding_func.return_value = [[0.1] * 1536] mock_client = MagicMock() mock_client.get_or_create_collection = MagicMock(return_value=None) mock_create_client.return_value = mock_client with patch( "crewai_tools.tools.rag.rag_tool.build_embedder", return_value=mock_embedding_func, ) as mock_build: class MyTool(RagTool): pass # Config with both old and new keys - new key should take precedence config = { "embedder": { "provider": "ollama", "config": {"model_name": "old-model"}, }, "embedding_model": { "provider": "openai", "config": {"model": "text-embedding-3-small", "api_key": "test-key"}, }, } # No deprecation warning for 'embedder' since 'embedding_model' is present with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tool = MyTool(config=config) # Should NOT warn about 'embedder' since 'embedding_model' takes precedence embedder_warnings = [ warning for warning in w if issubclass(warning.category, DeprecationWarning) and "embedder" in str(warning.message) ] assert len(embedder_warnings) == 0 assert tool.adapter is not None # Verify that the new 'embedding_model' config was used, not the legacy 'embedder' call_args = mock_build.call_args assert call_args is not None spec = call_args[0][0] assert spec["provider"] == "openai"