Compare commits

...

14 Commits

Author SHA1 Message Date
Eduardo Chiarotti
616ffe2aba feat: fix test 2024-07-25 15:30:54 -03:00
Eduardo Chiarotti
a6bce1089a feat: change opdeai model 2024-07-25 13:44:32 -03:00
Eduardo Chiarotti
cb8fbf61de feat: back to sync 2024-07-25 13:43:54 -03:00
Eduardo Chiarotti
4d2cdc3d96 feat: improve tests and fix some issue 2024-07-25 12:58:55 -03:00
Eduardo Chiarotti
890c03a0a6 docs: add docs for Testing 2024-07-25 12:09:02 -03:00
Eduardo Chiarotti
e4b419d5be feat: add raise ValueError when testing if output is not the expected 2024-07-24 13:35:29 -03:00
Eduardo Chiarotti
8ffc4f79fa feat: fix type checking issue 2024-07-24 13:34:59 -03:00
Eduardo Chiarotti
c05ef3c8cf feat: add tests 2024-07-24 13:14:20 -03:00
Eduardo Chiarotti
cf600c1a43 feat: improve testing output table 2024-07-24 11:39:43 -03:00
Eduardo Chiarotti
2a88d1d462 feat: add docs and add unit test 2024-07-24 11:05:09 -03:00
Eduardo Chiarotti
660a2ae837 feat: add crew Testing/evalauting feature 2024-07-24 09:14:09 -03:00
Eduardo Chiarotti
6930656897 feat: add crewai test feature (#984)
* feat: add crewai test feature

* fix: remove unused import

* feat: update docstirng

* fix: tests
2024-07-22 17:21:05 -03:00
João Moura
349753a013 prepping new version 2024-07-20 12:26:32 -04:00
Eduardo Chiarotti
f53a3a00e1 fix: planning feature output (#969)
* fix: planning feature output

* fix: add validation for planning result
2024-07-20 11:56:53 -03:00
20 changed files with 1233 additions and 382 deletions

View File

@@ -220,7 +220,7 @@ These methods provide flexibility in how you manage and execute tasks within you
### Replaying from specific task:
You can now replay from a specific task using our cli command replay.
The replay_from_tasks feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.

View File

@@ -0,0 +1,41 @@
---
title: crewAI Testing
description: Learn how to test your crewAI Crew and evaluate their performance.
---
## Introduction
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
### Using the Testing Feature
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
```bash
crewai test
```
If you want to run more iterations or use a different model, you can specify the parameters like this:
```bash
crewai test --n_iterations 5 --model gpt-4o
```
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
A table of scores at the end will show the performance of the crew in terms of the following metrics:
```
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
```
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.

View File

@@ -36,14 +36,14 @@ To replay from a task programmatically, use the following steps:
2. Execute the replay command within a try-except block to handle potential errors.
```python
def replay_from_task():
def replay():
"""
Replay the crew execution from a specific task.
"""
task_id = '<task_id>'
inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
try:
YourCrewName_Crew().crew().replay_from_task(task_id=task_id, inputs=inputs)
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -129,6 +129,7 @@ nav:
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
- Testing: 'core-concepts/Testing.md'
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:

688
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "crewai"
version = "0.41.0"
version = "0.41.1"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"

View File

@@ -5,11 +5,11 @@ from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from .create_crew import create_crew
from .train_crew import train_crew
from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
from .test_crew import test_crew
from .train_crew import train_crew
@click.group()
@@ -126,5 +126,26 @@ def reset_memories(long, short, entities, kickoff_outputs, all):
click.echo(f"An error occurred while resetting memories: {e}", err=True)
@crewai.command()
@click.option(
"-n",
"--n_iterations",
type=int,
default=3,
help="Number of iterations to Test the crew",
)
@click.option(
"-m",
"--model",
type=str,
default="gpt-4o-mini",
help="LLM Model to run the tests on the Crew. For now only accepting only OpenAI models.",
)
def test(n_iterations: int, model: str):
"""Test the crew and evaluate the results."""
click.echo(f"Testing the crew for {n_iterations} iterations with model {model}")
test_crew(n_iterations, model)
if __name__ == "__main__":
crewai()

View File

@@ -39,3 +39,16 @@ def replay():
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
def test():
"""
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -6,12 +6,13 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = "^0.41.0" }
crewai = { extras = ["tools"], version = "^0.41.1" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay"
test = "{{folder_name}}.main:test"
[build-system]
requires = ["poetry-core"]

View File

@@ -0,0 +1,30 @@
import subprocess
import click
def test_crew(n_iterations: int, model: str) -> None:
"""
Test the crew by running a command in the Poetry environment.
Args:
n_iterations (int): The number of iterations to test the crew.
model (str): The model to test the crew with.
"""
command = ["poetry", "run", "test", str(n_iterations), model]
try:
if n_iterations <= 0:
raise ValueError("The number of iterations must be a positive integer.")
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while testing the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -37,6 +37,7 @@ from crewai.utilities.constants import (
TRAINED_AGENTS_DATA_FILE,
TRAINING_DATA_FILE,
)
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
@@ -561,8 +562,13 @@ class Crew(BaseModel):
self._logger.log("info", "Planning the crew execution")
result = CrewPlanner(self.tasks)._handle_crew_planning()
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
if result is not None and hasattr(result, "list_of_plans_per_task"):
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
task.description += step_plan
else:
self._logger.log(
"info", "Something went wrong with the planning process of the Crew"
)
def _store_execution_log(
self,
@@ -961,5 +967,20 @@ class Crew(BaseModel):
return total_usage_metrics
def test(
self,
n_iterations: int,
openai_model_name: str,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations."""
evaluator = CrewEvaluator(self, openai_model_name)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
self.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"

View File

@@ -0,0 +1,149 @@
from collections import defaultdict
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
class TaskEvaluationPydanticOutput(BaseModel):
quality: float = Field(
description="A score from 1 to 10 evaluating on completion, quality, and overall performance from the task_description and task_expected_output to the actual Task Output."
)
class CrewEvaluator:
"""
A class to evaluate the performance of the agents in the crew based on the tasks they have performed.
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
tasks_scores: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
self.crew = crew
self.openai_model_name = openai_model_name
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:
task.callback = self.evaluate
def set_iteration(self, iteration: int) -> None:
self.iteration = iteration
def _evaluator_agent(self):
return Agent(
role="Task Execution Evaluator",
goal=(
"Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=ChatOpenAI(model=self.openai_model_name),
)
def _evaluation_task(
self, evaluator_agent: Agent, task_to_evaluate: Task, task_output: str
) -> Task:
return Task(
description=(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
f"task_description: {task_to_evaluate.description} "
f"task_expected_output: {task_to_evaluate.expected_output} "
f"agent: {task_to_evaluate.agent.role if task_to_evaluate.agent else None} "
f"agent_goal: {task_to_evaluate.agent.goal if task_to_evaluate.agent else None} "
f"Task Output: {task_output}"
),
expected_output="Evaluation Score from 1 to 10 based on the performance of the agents on the tasks",
agent=evaluator_agent,
output_pydantic=TaskEvaluationPydanticOutput,
)
def print_crew_evaluation_result(self) -> None:
"""
Prints the evaluation result of the crew in a table.
A Crew with 2 tasks using the command crewai test -n 2
will output the following table:
Task Scores
(1-10 Higher is better)
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
│ Crew │ 9.5 │ 9.0 │ 9.2 │
└────────────┴───────┴───────┴────────────┘
"""
task_averages = [
sum(scores) / len(scores) for scores in zip(*self.tasks_scores.values())
]
crew_average = sum(task_averages) / len(task_averages)
# Create a table
table = Table(title="Tasks Scores \n (1-10 Higher is better)")
# Add columns for the table
table.add_column("Tasks/Crew")
for run in range(1, len(self.tasks_scores) + 1):
table.add_column(f"Run {run}")
table.add_column("Avg. Total")
# Add rows for each task
for task_index in range(len(task_averages)):
task_scores = [
self.tasks_scores[run][task_index]
for run in range(1, len(self.tasks_scores) + 1)
]
avg_score = task_averages[task_index]
table.add_row(
f"Task {task_index + 1}", *map(str, task_scores), f"{avg_score:.1f}"
)
# Add a row for the crew average
crew_scores = [
sum(self.tasks_scores[run]) / len(self.tasks_scores[run])
for run in range(1, len(self.tasks_scores) + 1)
]
table.add_row("Crew", *map(str, crew_scores), f"{crew_average:.1f}")
# Display the table in the terminal
console = Console()
console.print(table)
def evaluate(self, task_output: TaskOutput):
"""Evaluates the performance of the agents in the crew based on the tasks they have performed."""
current_task = None
for task in self.crew.tasks:
if task.description == task_output.description:
current_task = task
break
if not current_task or not task_output:
raise ValueError(
"Task to evaluate and task output are required for evaluation"
)
evaluator_agent = self._evaluator_agent()
evaluation_task = self._evaluation_task(
evaluator_agent, current_task, task_output.raw
)
evaluation_result = evaluation_task.execute_sync()
if isinstance(evaluation_result.pydantic, TaskEvaluationPydanticOutput):
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
else:
raise ValueError("Evaluation result is not in the expected format")

View File

@@ -1,4 +1,4 @@
from typing import List
from typing import List, Optional
from pydantic import BaseModel
@@ -14,14 +14,14 @@ class CrewPlanner:
def __init__(self, tasks: List[Task]):
self.tasks = tasks
def _handle_crew_planning(self):
def _handle_crew_planning(self) -> Optional[BaseModel]:
"""Handles the Crew planning by creating detailed step-by-step plans for each task."""
planning_agent = self._create_planning_agent()
tasks_summary = self._create_tasks_summary()
planner_task = self._create_planner_task(planning_agent, tasks_summary)
return planner_task.execute_sync()
return planner_task.execute_sync().pydantic
def _create_planning_agent(self) -> Agent:
"""Creates the planning agent for the crew planning."""

View File

@@ -0,0 +1,163 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi to John \n you MUST return the
actual complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "logprobs": false,
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '937'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.36.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.36.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{"content":"
John"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wQ7bzZKcXAmiNgs4nn5Of0EFiM","object":"chat.completion.chunk","created":1721491782,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_400f27fa1f","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a643794fe0341e9-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 20 Jul 2024 16:09:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=7kfE3khl2E.6zM44yel5nToHzdtz0QeQ4wkLuGYyqSs-1721491782-1.0.1.1-XUb95eXTriHvSUSCH.TCyAmCGCbPK6L7p_tRTDBon8Fo6ns8TDbDoDGA.wVCFI4MTXSxkqrjD0GpYDj4GBTeSQ;
path=/; expires=Sat, 20-Jul-24 16:39:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=iN41lAEk.DjpRMAtG.K0NEvIN0xB9eS0CUCU2iWmjv4-1721491782137-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '104'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999791'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4d90924dd28a0fb48c857f03515f0ca8
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,159 @@
interactions:
- request:
body: '{"messages": [{"content": "You are test_agent. Test Description\nYour personal
goal is: Test GoalTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
my best complete final answer to the task.\nYour final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!\nCurrent Task: Test Task\n\nThis is the
expect criteria for your final answer: Say Hi \n you MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\ncontext raw output\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:\n", "role": "user"}], "model": "gpt-4o", "logprobs": false,
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '929'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.36.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.36.0
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
now"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
can"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
give"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
great"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{"content":"
Hi"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9n6wPAClsh4tUGoLYKLh3VoX1vlAx","object":"chat.completion.chunk","created":1721491781,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_c4e5b6fa31","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8a643791a80e8c96-EWR
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Sat, 20 Jul 2024 16:09:41 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cam5sECdaTzbttLIOaiuvh9flDIAXp_FLPODnDEOn6k-1721491781-1.0.1.1-hyFl43P7HIWZsGueyWuDeO579sZ41as2mvrM.cQS1E8KSLG2ZZ0DxDGbVvHYRO0eflTUJohgZu6CGltvjQfMtQ;
path=/; expires=Sat, 20-Jul-24 16:39:41 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=nmlgS.bqXAu0rZ.OlHPfXrIrdnVgrBSW3e0UuU3N5ng-1721491781661-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '126'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15552000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999794'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_31484eeb0af939af4e0d9c47441ba2db
status:
code: 200
message: OK
version: 1

View File

@@ -3,7 +3,7 @@ from unittest import mock
import pytest
from click.testing import CliRunner
from crewai.cli.cli import train, version, reset_memories
from crewai.cli.cli import reset_memories, test, train, version
@pytest.fixture
@@ -133,3 +133,33 @@ def test_version_command_with_tools(runner):
"crewai tools version:" in result.output
or "crewai tools not installed" in result.output
)
@mock.patch("crewai.cli.cli.test_crew")
def test_test_default_iterations(test_crew, runner):
result = runner.invoke(test)
test_crew.assert_called_once_with(3, "gpt-4o-mini")
assert result.exit_code == 0
assert "Testing the crew for 3 iterations with model gpt-4o-mini" in result.output
@mock.patch("crewai.cli.cli.test_crew")
def test_test_custom_iterations(test_crew, runner):
result = runner.invoke(test, ["--n_iterations", "5", "--model", "gpt-4o"])
test_crew.assert_called_once_with(5, "gpt-4o")
assert result.exit_code == 0
assert "Testing the crew for 5 iterations with model gpt-4o" in result.output
@mock.patch("crewai.cli.cli.test_crew")
def test_test_invalid_string_iterations(test_crew, runner):
result = runner.invoke(test, ["--n_iterations", "invalid"])
test_crew.assert_not_called()
assert result.exit_code == 2
assert (
"Usage: test [OPTIONS]\nTry 'test --help' for help.\n\nError: Invalid value for '-n' / '--n_iterations': 'invalid' is not a valid integer.\n"
in result.output
)

View File

@@ -0,0 +1,97 @@
import subprocess
from unittest import mock
import pytest
from crewai.cli import test_crew
@pytest.mark.parametrize(
"n_iterations,model",
[
(1, "gpt-4o"),
(5, "gpt-3.5-turbo"),
(10, "gpt-4"),
],
)
@mock.patch("crewai.cli.test_crew.subprocess.run")
def test_crew_success(mock_subprocess_run, n_iterations, model):
"""Test the crew function for successful execution."""
mock_subprocess_run.return_value = subprocess.CompletedProcess(
args=f"poetry run test {n_iterations} {model}", returncode=0
)
result = test_crew.test_crew(n_iterations, model)
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "test", str(n_iterations), model],
capture_output=False,
text=True,
check=True,
)
assert result is None
@mock.patch("crewai.cli.test_crew.click")
def test_test_crew_zero_iterations(click):
test_crew.test_crew(0, "gpt-4o")
click.echo.assert_called_once_with(
"An unexpected error occurred: The number of iterations must be a positive integer.",
err=True,
)
@mock.patch("crewai.cli.test_crew.click")
def test_test_crew_negative_iterations(click):
test_crew.test_crew(-2, "gpt-4o")
click.echo.assert_called_once_with(
"An unexpected error occurred: The number of iterations must be a positive integer.",
err=True,
)
@mock.patch("crewai.cli.test_crew.click")
@mock.patch("crewai.cli.test_crew.subprocess.run")
def test_test_crew_called_process_error(mock_subprocess_run, click):
n_iterations = 5
mock_subprocess_run.side_effect = subprocess.CalledProcessError(
returncode=1,
cmd=["poetry", "run", "test", str(n_iterations), "gpt-4o"],
output="Error",
stderr="Some error occurred",
)
test_crew.test_crew(n_iterations, "gpt-4o")
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "test", "5", "gpt-4o"],
capture_output=False,
text=True,
check=True,
)
click.echo.assert_has_calls(
[
mock.call.echo(
"An error occurred while testing the crew: Command '['poetry', 'run', 'test', '5', 'gpt-4o']' returned non-zero exit status 1.",
err=True,
),
mock.call.echo("Error", err=True),
]
)
@mock.patch("crewai.cli.test_crew.click")
@mock.patch("crewai.cli.test_crew.subprocess.run")
def test_test_crew_unexpected_exception(mock_subprocess_run, click):
# Arrange
n_iterations = 5
mock_subprocess_run.side_effect = Exception("Unexpected error")
test_crew.test_crew(n_iterations, "gpt-4o")
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "test", "5", "gpt-4o"],
capture_output=False,
text=True,
check=True,
)
click.echo.assert_called_once_with(
"An unexpected error occurred: Unexpected error", err=True
)

View File

@@ -8,6 +8,7 @@ from unittest.mock import MagicMock, patch
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
@@ -1917,13 +1918,13 @@ def test_replay_feature():
)
crew.kickoff()
crew.replay_from_task(str(write.id))
crew.replay(str(write.id))
# Ensure context was passed correctly
assert mock_execute_task.call_count == 3
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_replay_from_task_error():
def test_crew_replay_error():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -1936,7 +1937,7 @@ def test_crew_replay_from_task_error():
)
with pytest.raises(TypeError) as e:
crew.replay_from_task() # type: ignore purposefully throwing err
crew.replay() # type: ignore purposefully throwing err
assert "task_id is required" in str(e)
@@ -2071,14 +2072,14 @@ def test_replay_task_with_context():
with patch.object(Task, "execute_sync") as mock_replay_task:
mock_replay_task.return_value = mock_task_output4
replayed_output = crew.replay_from_task(str(task4.id))
replayed_output = crew.replay(str(task4.id))
assert replayed_output.raw == "Presentation on AI advancements..."
db_handler.reset()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_from_task_with_context():
def test_replay_with_context():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(
description="Context Task", expected_output="Say Task Output", agent=agent
@@ -2130,7 +2131,7 @@ def test_replay_from_task_with_context():
},
],
):
crew.replay_from_task(str(task2.id))
crew.replay(str(task2.id))
assert crew.tasks[1].context[0].output.raw == "context raw output"
@@ -2192,7 +2193,7 @@ def test_replay_with_invalid_task_id():
ValueError,
match="Task with id bf5b09c9-69bd-4eb8-be12-f9e5bae31c2d not found in the crew's tasks.",
):
crew.replay_from_task("bf5b09c9-69bd-4eb8-be12-f9e5bae31c2d")
crew.replay("bf5b09c9-69bd-4eb8-be12-f9e5bae31c2d")
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -2251,13 +2252,13 @@ def test_replay_interpolates_inputs_properly(mock_interpolate_inputs):
},
],
):
crew.replay_from_task(str(task2.id))
crew.replay(str(task2.id))
assert crew._inputs == {"name": "John"}
assert mock_interpolate_inputs.call_count == 2
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_from_task_setup_context():
def test_replay_setup_context():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(description="Context Task", expected_output="Say {name}", agent=agent)
task2 = Task(
@@ -2306,7 +2307,7 @@ def test_replay_from_task_setup_context():
},
],
):
crew.replay_from_task(str(task2.id))
crew.replay(str(task2.id))
# Check if the first task's output was set correctly
assert crew.tasks[0].output is not None
@@ -2499,3 +2500,34 @@ def test_conditional_should_execute():
assert condition_mock.call_count == 1
assert condition_mock() is True
assert mock_execute_sync.call_count == 2
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations
mock_kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)

View File

@@ -0,0 +1,113 @@
from unittest import mock
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.evaluators.crew_evaluator_handler import (
CrewEvaluator,
TaskEvaluationPydanticOutput,
)
class TestCrewEvaluator:
@pytest.fixture
def crew_planner(self):
agent = Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1")
task = Task(
description="Task 1",
expected_output="Output 1",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
assert crew_planner.crew.tasks[0].callback == crew_planner.evaluate
def test_set_iteration(self, crew_planner):
crew_planner.set_iteration(1)
assert crew_planner.iteration == 1
def test_evaluator_agent(self, crew_planner):
agent = crew_planner._evaluator_agent()
assert agent.role == "Task Execution Evaluator"
assert (
agent.goal
== "Your goal is to evaluate the performance of the agents in the crew based on the tasks they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
)
assert (
agent.backstory
== "Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed"
)
assert agent.verbose is False
assert agent.llm.model_name == "gpt-4o-mini"
def test_evaluation_task(self, crew_planner):
evaluator_agent = Agent(
role="Evaluator Agent",
goal="Evaluate the performance of the agents in the crew",
backstory="Master in Evaluation",
)
task_to_evaluate = Task(
description="Task 1",
expected_output="Output 1",
agent=Agent(role="Agent 1", goal="Goal 1", backstory="Backstory 1"),
)
task_output = "Task Output 1"
task = crew_planner._evaluation_task(
evaluator_agent, task_to_evaluate, task_output
)
assert task.description.startswith(
"Based on the task description and the expected output, compare and evaluate the performance of the agents in the crew based on the Task Output they have performed using score from 1 to 10 evaluating on completion, quality, and overall performance."
)
assert task.agent == evaluator_agent
assert (
task.description
== "Based on the task description and the expected output, compare and evaluate "
"the performance of the agents in the crew based on the Task Output they have "
"performed using score from 1 to 10 evaluating on completion, quality, and overall "
"performance.task_description: Task 1 task_expected_output: Output 1 "
"agent: Agent 1 agent_goal: Goal 1 Task Output: Task Output 1"
)
@mock.patch("crewai.utilities.evaluators.crew_evaluator_handler.Console")
@mock.patch("crewai.utilities.evaluators.crew_evaluator_handler.Table")
def test_print_crew_evaluation_result(self, table, console, crew_planner):
crew_planner.tasks_scores = {
1: [10, 9, 8],
2: [9, 8, 7],
}
crew_planner.print_crew_evaluation_result()
table.assert_has_calls(
[
mock.call(title="Tasks Scores \n (1-10 Higher is better)"),
mock.call().add_column("Tasks/Crew"),
mock.call().add_column("Run 1"),
mock.call().add_column("Run 2"),
mock.call().add_column("Avg. Total"),
mock.call().add_row("Task 1", "10", "9", "9.5"),
mock.call().add_row("Task 2", "9", "8", "8.5"),
mock.call().add_row("Task 3", "8", "7", "7.5"),
mock.call().add_row("Crew", "9.0", "8.0", "8.5"),
]
)
console.assert_has_calls([mock.call(), mock.call().print(table())])
def test_evaluate(self, crew_planner):
task_output = TaskOutput(
description="Task 1", agent=str(crew_planner.crew.agents[0])
)
with mock.patch.object(Task, "execute_sync") as execute:
execute().pydantic = TaskEvaluationPydanticOutput(quality=9.5)
crew_planner.evaluate(task_output)
assert crew_planner.tasks_scores[0] == [9.5]

View File

@@ -1,4 +1,5 @@
from unittest.mock import patch
from crewai.tasks.task_output import TaskOutput
import pytest
@@ -31,10 +32,15 @@ class TestCrewPlanner:
def test_handle_crew_planning(self, crew_planner):
with patch.object(Task, "execute_sync") as execute:
execute.return_value = PlannerTaskPydanticOutput(
list_of_plans_per_task=["Plan 1", "Plan 2", "Plan 3"]
execute.return_value = TaskOutput(
description="Description",
agent="agent",
pydantic=PlannerTaskPydanticOutput(
list_of_plans_per_task=["Plan 1", "Plan 2", "Plan 3"]
),
)
result = crew_planner._handle_crew_planning()
assert isinstance(result, PlannerTaskPydanticOutput)
assert len(result.list_of_plans_per_task) == len(crew_planner.tasks)
execute.assert_called_once()