Compare commits

...

132 Commits

Author SHA1 Message Date
Eduardo Chiarotti
a4f7631e57 fix: type checking 2024-06-27 10:28:52 -07:00
Eduardo Chiarotti
62679d2fec fix: tests 2024-06-27 10:06:24 -07:00
Eduardo Chiarotti
e3d93dbd90 fix: tests 2024-06-27 09:58:54 -07:00
Eduardo Chiarotti
4b3f9aedb3 fix: tests 2024-06-27 09:52:28 -07:00
Eduardo Chiarotti
ca3de82b09 fix: tests 2024-06-27 09:46:19 -07:00
Eduardo Chiarotti
a5a235de62 fix: tests 2024-06-27 09:14:27 -07:00
Eduardo Chiarotti
da9cc5f097 fix: fix trainig_data error (#820)
* fix: fix trainig_data error

* fix: fix lack crew on agent

* fix: fix lack crew on agent executor
2024-06-27 12:58:20 -03:00
Eduardo Chiarotti
c005ec3f78 fix: fix tests (#814) 2024-06-27 05:45:23 -03:00
Eduardo Chiarotti
6018fe5872 feat: add CodeInterpreterTool to run when enable code execution (#804)
* feat: add CodeInterpreterTool to run when enable code execution is allowed on agent

* feat: change to allow_code_execution

* feat: add readme for CodeInterpreterTool
2024-06-27 02:25:39 -03:00
Nuraly
bf0e70999e Update Agents.md (#816)
Made a space to ensure that Header formatting is displayed correctly on the website
2024-06-27 02:23:18 -03:00
Eduardo Chiarotti
175d5b3dd6 feat: Add Train feature for Crews (#686)
* feat: add training logic to agent and crew

* feat: add training logic to agent executor

* feat: add input parameter  to cli command

* feat: add utilities for the training logic

* feat: polish code, logic and add private variables

* feat: add docstring and type hinting to executor

* feat: add constant file, add constant to code

* feat: fix name of training handler function

* feat: remove unused var

* feat: change file handler file name

* feat: Add training handler file, class and change on the code

* feat: fix name error from file

* fix: change import to adapt to logic

* feat: add training handler test

* feat: add tests for file and training_handler

* feat: add test for task evaluator function

* feat: change text to fit in-screen

* feat: add test for train function

* feat: add test for agent training_handler function

* feat: add test for agent._use_trained_data
2024-06-27 02:22:34 -03:00
Bruno Tanabe
9e61b8325b fix: Fix grammar error in documentation in PDF Search Tool (#819)
Correction of grammar error in the CrewAI documentation, on the page 'https://docs.crewai.com/tools/PDFSearchTool/' it says 'Optinal' instead of 'Optional'.
2024-06-27 00:41:22 -03:00
João Moura
c4d76cde8f updating docs 2024-06-22 19:49:50 -03:00
João Moura
9c44fd8c4a preparing new version 2024-06-22 17:47:35 -03:00
João Moura
f9f8c8f336 Preparing new version 2024-06-22 17:01:22 -03:00
João Moura
0fb3ccb9e9 preapring to cut new version 2024-06-20 12:58:50 -03:00
João Moura
0e5fd0be2c addding new kickoff docs 2024-06-20 02:46:13 -03:00
João Moura
1b45daee49 adding new docs to the menu 2024-06-20 02:24:02 -03:00
João Moura
9f384e3fc1 Updating Docs 2024-06-20 02:19:35 -03:00
Brandon Hancock (bhancock_ai)
377f919d42 Resolved Merge Conflicts for PR #712: Remove Hyphen in co-workers (#786)
* removed hyphen in co-workers

* Fix issue with AgentTool agent selection. The LLM included double quotes in the agent name which messed up the string comparison. Added additional types. Cleaned up error messaging.

* Remove duplicate import

* Improve explanation

* Revert poetry.lock changes

* Fix missing line in poetry.lock

---------

Co-authored-by: madmag77 <goncharov.artemv@gmail.com>
2024-06-18 16:57:56 -03:00
João Moura
e6445afac5 fixing bug to multiple crews on yaml format in the same project 2024-06-18 02:32:53 -03:00
Lorenze Jay
095015d397 Lorenzejay/crew kickoff union type (#767)
* added extra parameter for kickoff to return token usage count after result

* added output_token_usage to class and in full_output

* logger duplicated

* added more types

* added usage_metrics to full output instead

* added more to the description on full_output

* possible mispacing

* updated kickoff return types to be either string or dict applicable when full_output is set

* removed duplicates
2024-06-14 14:23:55 -03:00
Lorenze Jay
614183cbb1 fixes crewai docs assembling crew code block example code (#768) 2024-06-14 14:23:30 -03:00
Dan McKinley
0bc92a284d updates instructor to the latest version. (#760)
* updates instructor to the latest version. adds jsonref, which instructor seems to depend on.

* updates embedchain reference, necessary for python 3.12
2024-06-14 01:57:40 -03:00
Lorenze Jay
d3b6640b4a added usage_metrics to full output (#756)
* added extra parameter for kickoff to return token usage count after result

* added output_token_usage to class and in full_output

* logger duplicated

* added more types

* added usage_metrics to full output instead

* added more to the description on full_output

* possible mispacing
2024-06-12 14:18:52 -03:00
Guangqiang Lu
a1a48888c3 add datetime import for logger.py (#702) 2024-06-11 16:43:15 -03:00
Matt Thompson
bb622bf747 fix: correct default model (gpt-4o), correct token counts, and correct TaskOutput attributes (added agent) (#749)
* fix: 'from datetime import datetime for logging' to print the timestamp

* fix: correct default model (gpt-4o), correct token counts, and correct TaskOutput attributes (added agent)

* test: verify Task callback data is an instance of TaskOutput
2024-06-11 15:29:22 -03:00
Brandon Hancock (bhancock_ai)
946c56494e Feature/kickoff for each sync (#680)
* Sync with deep copy working now

* async working!!

* Clean up code for review

* Fix naming

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-06-11 12:51:39 -03:00
Taradepan R
2a0e21ca76 updated the import for cohere llm (#696) 2024-06-04 03:32:23 -03:00
Karthik Kalyanaraman
ea893432e8 Add Langtrace to the "How to" docs for CrewAI Agent Observability (#634)
* Add files via upload

* Create Langtrace-Observability.md

* Rename crewai-agentops-stats.png to crewai-langtrace-stats.png
2024-05-29 02:14:29 -03:00
theCyberTech - Rip&Tear
bf40956491 Added timestamp to logger (#646)
* Added timestamp to logger

Updated the logger.py file to include timestamps when logging output. For example:

 [2024-05-20 15:32:48][DEBUG]: == Working Agent: Researcher
 [2024-05-20 15:32:48][INFO]: == Starting Task: Research the topic
 [2024-05-20 15:33:22][DEBUG]: == [Researcher] Task output:

* Update tool_usage.py

* Revert "Update tool_usage.py"

This reverts commit 95d18d5b6f.

incorrect bramch for this commit
2024-05-26 01:32:16 -03:00
Saif Mahmud
48948e1217 fixes #665 (#666) 2024-05-26 01:31:28 -03:00
theCyberTech - Rip&Tear
27412c89dd Update crew.py (#644)
Fixed Type on line 53
2024-05-24 00:06:27 -03:00
Mish Ushakov
56f1d24e9d Update BrowserbaseLoadTool.md (#647) 2024-05-24 00:05:52 -03:00
Mike Heavers
ab066a11a8 Update README.md (#652)
Rework example so that if you use a custom LLM it doesn't throw code errors by uncommenting.
2024-05-24 00:05:32 -03:00
Anudeep Kolluri
e35e81e554 Update agent.py (#655)
Changed default model value from gpt-4 to gpt-4o.
Reasoning.
gpt-4 costs 30$ per million tokens while gpt-4o costs 5$.
This is more cost friendly for default option.
2024-05-24 00:04:53 -03:00
Paul Sanders
551e48da4f Clarify text in docstring (#662) 2024-05-24 00:04:01 -03:00
Paul Sanders
21ce0aa17e Enable search in docs (#663) 2024-05-24 00:03:31 -03:00
Olivier Roberdet
2d6f2830e1 Fix typo in instruction en.json (#676) 2024-05-24 00:03:07 -03:00
Eduardo Chiarotti
24ed8a2549 feat: Add crew train cli (#624)
* fix: fix crewai-tools cli command

* feat: add crewai train CLI command

* feat: add the tests

* fix: fix typing hinting issue on code

* fix: test.yml

* fix: fix test

* fix: removed fix since it didnt changed the test
2024-05-23 18:46:45 -03:00
João Moura
a336381849 adding agent to task output 2024-05-16 05:12:32 -03:00
Jason Schrader
208c3a780c Add version command to CLI (#348)
* feat: add version command to cli with tools flag

* test: check output of version and tools flag

* fix: add version tool info to cli outputs
2024-05-15 19:50:49 -03:00
João Moura
1e112fa50a fixing crew base 2024-05-14 17:40:38 -03:00
João Moura
38fc5510ed ppreparing new version 0.30.9 2024-05-14 11:32:05 -03:00
João Moura
1a1f4717aa cutting new version with no yaml parsing 2024-05-13 23:09:29 -03:00
João Moura
977c6114ba preparing new version 2024-05-13 22:32:24 -03:00
João Moura
27fddae286 New version, updating dependencies, fixing memory 2024-05-13 22:26:41 -03:00
João Moura
615ac7f297 preparing new version 2024-05-13 12:59:55 -03:00
João Moura
87d28e896d preparing new version 2024-05-13 02:35:46 -03:00
Saif Mahmud
23f10418d7 Fixes #603 (#604) 2024-05-13 02:34:52 -03:00
João Moura
27e7f48a44 Adding new tests 2024-05-13 02:34:33 -03:00
João Moura
7fd8850ddb Small RC Fixes (#608)
* mentioning ollama on the docs as embedder

* lowering barrier to match tool with simialr name

* Fixing agent tools to support co_worker

* Adding new tests

* Fixing type"

* updating tests

* fixing conflict
2024-05-13 02:29:04 -03:00
Ítalo Vieira
7a4d3dd496 fix typo exectue -> execute (#607) 2024-05-13 02:19:06 -03:00
João Moura
c1d7936689 preparing new version 2024-05-12 19:56:40 -03:00
Eduardo Chiarotti
1ec4da6947 feat: add mypy as type checker, update code and add comment to reference (#591)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: add mypy as type checker, update code and add comment to reference

* feat: remove black linter

* feat: remove poetry to run the command

* feat: change logic to test mypy

* feat: update tests yml to try to fix the tests gh action

* feat: try to add just mypy to run on gh action

* feat: fix yml file

* feat: add comment to avoid issue on gh action

* feat: decouple pytest from the necessity of poetry install

* feat: change tests.yml to test different approach

* feat: change to poetry run

* fix: parameter field on yml file

* fix: update parameters to be on the pyproject

* fix: update pyproject to remove import untyped errors
2024-05-10 16:37:52 -03:00
Steven Edwards
8430c2f9af Task needs an expected_output field in docs. (#568)
* Task needs an expected_output field in docs..

* Add missing comma.
2024-05-10 11:55:10 -03:00
Ayo Ayibiowu
7cc6bccdec feat: adds support to automatically fallback to the default encoding (#596)
* feat: adds support to automatically fallbackk to the default encoding

* fix: use the correct method
2024-05-10 11:54:45 -03:00
Eduardo Chiarotti
aeba64feaf Feat: Add Ruff to improve linting/formatting (#588)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: remove black linter

* feat: update tests yml to try to fix the tests gh action
2024-05-10 11:53:53 -03:00
GabeKoga
04b4191de5 Fix/yaml formatting (#590)
* Bug/curly_braces_yaml

Added parser to help users on yaml syntax

* context error

Patch and later will prioritize this again to have context work with the yaml
2024-05-09 21:35:21 -03:00
Eduardo Chiarotti
1da7473f26 fix: fix test actually running (#587)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black
2024-05-09 21:33:48 -03:00
João Moura
95d13bd033 prepping new version 2024-05-09 09:12:57 -03:00
Eduardo Chiarotti
7eb4fcdaf4 fix: Add validation fix output_file issue when have '/' (#585)
* fix: Add validation fix output_file issue when have /

* fix: run black to format code

* fix: run black to format code
2024-05-09 08:11:00 -03:00
João Moura
809b4b227c Revert "Fix .md doc file 404 error on github (#564)" (#567)
This reverts commit 2bd30af72b.
2024-05-05 10:35:46 -03:00
Alex Fazio
ff51a2da9b corrected imprecision in the instantiation (#555) 2024-05-05 03:55:13 -03:00
João Moura
be83681665 preparing new RC version 2024-05-05 02:57:29 -03:00
Jackie Qi
2bd30af72b Fix .md doc file 404 error on github (#564)
* fix md file link not working on github

* miss one changed file
2024-05-05 02:53:20 -03:00
João Moura
d7b021061b updating .gitignore 2024-05-05 02:52:43 -03:00
João Moura
73647f1669 TYPO 2024-05-05 02:14:49 -03:00
João Moura
d341cb3d5c Fixing manager_agent_support 2024-05-05 00:51:18 -03:00
João Moura
30438410d6 cutting new RC 2024-05-03 00:55:32 -03:00
João Moura
b264ebabc0 adding meomization to crewai project annotations 2024-05-03 00:49:37 -03:00
tarekadam
2edc88e0a1 Update LLM-Connections.md (#553)
fixes command to lower case
2024-05-03 00:25:03 -03:00
João Moura
552dda46f8 updating manager llm pydantic error 2024-05-02 23:39:56 -03:00
João Moura
2340a127d6 curring new rc 2024-05-02 23:22:02 -03:00
João Moura
ecde504a79 updating gitignore 2024-05-02 21:57:49 -03:00
João Moura
0b781065d2 Better json parsing for smaller models 2024-05-02 21:57:41 -03:00
João Moura
bcb57ce5f9 updating git ignore 2024-05-02 20:52:43 -03:00
David Solito
6392a8cdd0 Update crew.py (#551)
Ad manager_agent description in crew docstring
2024-05-02 19:21:22 -03:00
João Moura
34e3dd24b4 new version 2024-05-02 05:00:29 -03:00
João Moura
c303d3730c cutting new version 2024-05-02 05:00:29 -03:00
João Moura
0a53ce17a2 small improvements for i18n 2024-05-02 05:00:29 -03:00
João Moura
7973651e05 new version 2024-05-02 05:00:29 -03:00
João Moura
672b150972 adding initial support for external prompt file 2024-05-02 05:00:29 -03:00
Jason Schrader
d8bcbd7d0a fix typos in generated readme (#345)
small things I noticed while upgrading our setup!
2024-05-02 03:32:18 -03:00
Dmitri Khokhlov
ff2f1477bb fix: TypeError: LongTermMemory.search() missing 1 required positional argument: 'latest_n' (#488)
Signed-off-by: Dmitri Khokhlov <dkhokhlov@gmail.com>
2024-05-02 03:28:36 -03:00
Ikko Eltociear Ashimine
1139073297 fix typo (#489)
* Update test_crew_function_calling_llm.yaml

ouput -> output

* Update tool_usage.py

ouput -> output
2024-05-02 03:27:40 -03:00
Sarvajith Adyanthaya
39deac2747 Changed "Inert" to "Innate" #470 (#490) 2024-05-02 03:27:09 -03:00
ftoppi
0a35868367 Update task.py: try to find json in task output using regex (#491)
* Update task.py: try to find json in task output using regex

Sometimes the model replies with a valid and additional text, let's try to extract and validate it first. It's cheaper than calling LLM for that.

* Update task.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-05-02 03:26:34 -03:00
Mosta
608f869789 Update PGSearchTool.md (#492)
typo on code snippet
2024-05-02 03:22:18 -03:00
Samuel Kocúr
c30bd1a18e fix db_storage_path handling to use env variable or cwd (#507) 2024-05-02 03:16:54 -03:00
Mish Ushakov
20a81af95f Added Browserbase loader to the docs (#508)
* Create BrowserbaseLoadTool.md

* added browserbase loader
2024-05-02 03:15:59 -03:00
deadlious
531c70b476 Tool name recognition based on string distance (#521)
* adding variations of ask question and delegate work tools

* Revert "adding variations of ask question and delegate work tools"

This reverts commit 38d4589be8.

* adding distance calculation for tool names.

* proper formatting

* remove brackets
2024-05-02 03:15:34 -03:00
Victor Carvalho Tavernari
dae0aedc99 Add conditional check for output file directory creation (#523)
This commit adds a conditional check to ensure that the output file directory exists before attempting to create it. This ensures that the code does not
fail in cases where the directory does not exist and needs to be created. The condition is added in the `_save_file` method of the `Task` class, ensuring
that the correct behavior is maintained for saving results to a file.
2024-05-02 03:13:51 -03:00
Jim Collins
5fde03f4b0 Update README.md (#525)
Reworded "If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with, example below uses it:" for clarity
2024-05-02 03:12:03 -03:00
Alex Fazio
48f53b529b fix to import statement PGSearchTool.md (#548)
fix to the import statement in PGSearchTool documentation
2024-05-02 03:10:43 -03:00
João Moura
4d9b0c6138 smal fixes and better guardrail for parsing small models tools usage 2024-05-02 02:21:59 -03:00
João Moura
70cabec876 Adding support for system, prompt and answe templates 2024-05-02 02:21:59 -03:00
João Moura
60423376cf removing unnecessary test 2024-05-02 02:21:59 -03:00
João Moura
22c646294a unifying co-worker string 2024-05-02 02:21:59 -03:00
João Moura
10b317cf34 remving blank line 2024-05-02 02:21:59 -03:00
João Moura
03f0c44cac Fixing task callback 2024-05-02 02:21:59 -03:00
João Moura
caa0e5db8d Revert "AgentOps Implementation (#411)"
This reverts commit 3d5257592b.
2024-05-02 02:21:59 -03:00
Alex Fazio
b862e464f8 docs fix to xml tool import statement (#546)
* docs fix to xml tool import statement

* Update XMLSearchTool.md
2024-05-01 12:53:49 -03:00
Braelyn Boynton
3d5257592b AgentOps Implementation (#411)
* implements agentops with a langchain handler, agent tracking and tool call recording

* track tool usage

* end session after completion

* track tool usage time

* better tool and llm tracking

* code cleanup

* make agentops optional

* optional dependency usage

* remove telemetry code

* optional agentops

* agentops version bump

* remove org key

* true dependency

* add crew org key to agentops

* cleanup

* Update pyproject.toml

* Revert "true dependency"

This reverts commit e52e8e9568.

* Revert "cleanup"

This reverts commit 7f5635fb9e.

* optional parent key

* agentops 0.1.5

* Revert "Revert "cleanup""

This reverts commit cea33d9a5d.

* Revert "Revert "true dependency""

This reverts commit 4d1b460b

* cleanup

* Forcing version 0.1.5

* Update pyproject.toml

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-20 12:20:13 -03:00
Elijas Dapšauskas
ff76715cd2 Allow minor version patches to python-dotenv (#339)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:44:08 -03:00
Emmanuel Crown
cdb0a9c953 Fixed a typo in the main readme on the llm selection , options for an agent (#349) 2024-04-19 02:42:04 -03:00
Sajal Sharma
b0acae81b0 Update LLM-Connections.md (#353)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:41:36 -03:00
Kaushal Powar
afc616d263 Update GitHubSearchTool.md (#357)
GithubSearchTool was misspelled as GitHubSearchTool

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:40:38 -03:00
Selim Erhan
e066b4dcb1 Update LLM-Connections.md (#359)
Created a short documentation on how to use Llama2 locally with crewAI thanks to the help of Ollama.

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:39:33 -03:00
Christian24
9ea495902e Fix lockfile (#477) 2024-04-18 11:28:06 -03:00
João Moura
d786c367b4 Update README.md 2024-04-17 00:02:49 -03:00
João Moura
a391004432 Adding manager llm 2024-04-16 16:50:44 -03:00
João Moura
dd97a2674d adding new installing crew docs 2024-04-16 16:50:44 -03:00
Joseph Bastulli
437c4c91bc fix: swapped the task callback assignment (#443) 2024-04-16 15:54:42 -03:00
Jack Hayter
575f1f98b0 Prevent duplicate TokenCalcHandler callbacks on Agent (#475) 2024-04-16 15:54:02 -03:00
Alex Reibman
2ee6ab6332 Incorrect documentation link for AgentOps (#458)
* remove .md

* made language more clear

* update images and documentation for spelling

* update typos and links

* update repo placement

* update wording

* clarify

* update wording

* Added clearer features

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-16 08:24:30 -03:00
Jonathan Morales Vélez
3d862538d2 fix link to observability (#461) 2024-04-16 08:22:11 -03:00
Preston Badeer
4bd36e0460 Update LLM-Connections.md with up to date LM Studio instructions (#468)
Co-authored-by: Preston Badeer <467756+pbadeer@users.noreply.github.com>
2024-04-16 08:20:56 -03:00
Eivind Hyldmo
7fbf0f1988 Fixed typo in Tools.md (#472) 2024-04-16 08:20:25 -03:00
Lennart J. Kurzweg
066127013b Added optional manager_agent parameter (#474)
* Added optional manager_agent parameter

* Update crew.py

---------

Co-authored-by: Lennart J. Kurzweg (Nx2) <git@nx2.site>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-16 08:18:36 -03:00
João Moura
f675208d72 cutting new version with updated cli template 2024-04-11 11:30:30 -03:00
João Moura
36aa69cf66 Preparing new version to use new version of crewai-tools 2024-04-10 11:52:12 -03:00
Cfomodz
66b77ffd08 Update README.md (#442) 2024-04-08 05:59:04 -03:00
João Moura
d2a3e4869a preparring new version 2024-04-08 02:08:57 -03:00
João Moura
a2dc7c7f31 adding missing import 2024-04-08 02:08:43 -03:00
João Moura
55ac69776a preparing new version 2024-04-08 01:39:22 -03:00
João Moura
7a7c9b0076 removing unnecessary certificate 2024-04-08 01:39:11 -03:00
João Moura
77d40230a8 preparing new version 2024-04-07 14:55:45 -03:00
João Moura
e4556040a8 fixing long temr memory interpolation 2024-04-07 14:55:35 -03:00
João Moura
755b3934a4 preping new verison with new tools package 2024-04-07 14:19:50 -03:00
João Moura
2d77fb72a5 preparing new version 2024-04-07 04:18:05 -03:00
rajib
106b0df42e The suggestions were getting split at character level and not at sentence level (#436)
* fix the issue where the suggestions were split at character level

* Update contextual_memory.py

---------

Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-07 02:57:23 -03:00
129 changed files with 617665 additions and 13982 deletions

View File

@@ -1,10 +0,0 @@
name: Lint
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: psf/black@stable

16
.github/workflows/linter.yml vendored Normal file
View File

@@ -0,0 +1,16 @@
name: Lint
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install Requirements
run: |
pip install ruff
- name: Run Ruff Linter
run: ruff check --exclude "templates","__init__.py"

View File

@@ -14,19 +14,18 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
python-version: "3.10"
- name: Install Requirements
run: |
sudo apt-get update &&
pip install poetry &&
pip install poetry
poetry lock &&
poetry install
- name: Run tests
run: poetry run pytest
run: poetry run pytest tests

View File

@@ -1,4 +1,3 @@
name: Run Type Checks
on: [pull_request]
@@ -12,19 +11,16 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
python-version: "3.10"
- name: Install Requirements
run: |
sudo apt-get update &&
pip install poetry &&
poetry lock &&
poetry install
pip install mypy
- name: Run type checks
run: poetry run pyright
run: mypy src

5
.gitignore vendored
View File

@@ -8,4 +8,7 @@ assets/*
test/
docs_crew/
chroma.sqlite3
old_en.json
old_en.json
db/
test.py
rc-tests/*

View File

@@ -1,21 +1,9 @@
repos:
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 23.12.1
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.4
hooks:
- id: black
language_version: python3.11
files: \.(py)$
exclude: 'src/crewai/cli/templates/(crew|main)\.py'
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
args: ["--profile", "black", "--filter-files"]
- repo: https://github.com/PyCQA/autoflake
rev: v2.2.1
hooks:
- id: autoflake
args: ['--in-place', '--remove-all-unused-imports', '--remove-unused-variables', '--ignore-init-module-imports']
- id: ruff
args: ["--fix"]
exclude: "templates"
- id: ruff-format
exclude: "templates"

View File

@@ -30,7 +30,6 @@
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Contribution](#contribution)
- [Hire CrewAI](#hire-crewai)
- [Telemetry](#telemetry)
- [License](#license)
@@ -49,7 +48,7 @@ To get started with CrewAI, follow these simple steps:
pip install crewai
```
If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with, example below uses it:
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command: pip install 'crewai[tools]'. This command installs the basic package and also adds extra components which require more dependencies to function."
```shell
pip install 'crewai[tools]'
@@ -71,6 +70,17 @@ os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
# You can pass an optional llm attribute specifying what model you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
#
# import os
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
#
# OR
#
# from langchain_openai import ChatOpenAI
search_tool = SerperDevTool()
# Define your agents with roles and goals
@@ -82,18 +92,9 @@ researcher = Agent(
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
allow_delegation=False,
# You can pass an optional llm attribute specifying what model you wanna use.
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
tools=[search_tool]
# You can pass an optional llm attribute specifying what mode you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
#
# import os
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
#
# OR
#
# from langchain_openai import ChatOpenAI
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7)
)
writer = Agent(
role='Tech Content Strategist',
@@ -232,7 +233,7 @@ poetry run pytest
### Running static type checks
```bash
poetry run pyright
poetry run mypy
```
### Packaging
@@ -247,11 +248,6 @@ poetry build
pip install dist/*.tar.gz
```
## Hire CrewAI
We're a company developing crewAI and crewAI Enterprise, we for a limited time are offer consulting with selected customers, to get them early access to our enterprise solution
If you are interested on having access to it and hiring weekly hours with our team, feel free to email us at [joao@crewai.com](mailto:joao@crewai.com).
## Telemetry
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
@@ -259,6 +255,7 @@ CrewAI uses anonymous telemetry to collect usage data with the main purpose of h
There is NO data being collected on the prompts, tasks descriptions agents backstories or goals nor tools usage, no API calls, nor responses nor any data that is being processed by the agents, nor any secrets and env vars.
Data collected includes:
- Version of crewAI
- So we can understand how many users are using the latest version
- Version of Python

View File

@@ -1463,11 +1463,11 @@
"locked": false,
"fontSize": 20,
"fontFamily": 3,
"text": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
"text": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
"textAlign": "right",
"verticalAlign": "top",
"containerId": null,
"originalText": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
"originalText": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
"lineHeight": 1.2,
"baseline": 68
},
@@ -1734,4 +1734,4 @@
"viewBackgroundColor": "#ffffff"
},
"files": {}
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 272 KiB

After

Width:  |  Height:  |  Size: 288 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 190 KiB

After

Width:  |  Height:  |  Size: 419 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 176 KiB

After

Width:  |  Height:  |  Size: 263 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 810 KiB

View File

@@ -24,13 +24,16 @@ description: What are crewAI Agents and how to use them.
| **LLM** *(optional)* | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
| **Tools** *(optional)* | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
| **Function Calling LLM** *(optional)* | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
| **Max Iter** *(optional)* | The maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | The maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **max_execution_time** *(optional)* | Maximum execution time for an agent to execute a task It's optional and can be left unspecified, with a default value of `None`, menaning no max execution time |
| **Max Iter** *(optional)* | `max_iter` is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | `max_rpm` is Tte maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` is the Maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
| **Step Callback** *(optional)* | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | Specifies the response format for the agent. Default is `None`. |
## Creating an Agent
@@ -56,12 +59,43 @@ agent = Agent(
function_calling_llm=my_llm, # Optional
max_iter=15, # Optional
max_rpm=None, # Optional
max_execution_time=None, # Optional
verbose=True, # Optional
allow_delegation=True, # Optional
step_callback=my_intermediate_step_callback, # Optional
cache=True # Optional
cache=True, # Optional
system_template=my_system_template, # Optional
prompt_template=my_prompt_template, # Optional
response_template=my_response_template, # Optional
config=my_config, # Optional
crew=my_crew, # Optional
tools_handler=my_tools_handler, # Optional
cache_handler=my_cache_handler, # Optional
callbacks=[callback1, callback2], # Optional
agent_executor=my_agent_executor # Optional
)
```
## Setting prompt templates
Prompt templates are used to format the prompt for the agent. You can use to update the system, regular and response templates for the agent. Here's an example of how to set prompt templates:
```python
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
```
## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.

View File

@@ -15,16 +15,19 @@ description: Exploring the dynamics of agent collaboration within the CrewAI fra
The `Crew` class has been enriched with several attributes to support advanced functionalities:
- **Language Model Management (`manager_llm`, `function_calling_llm`)**: Manages language models for executing tasks and tools, facilitating sophisticated agent-tool interactions. Note that while `manager_llm` is mandatory for hierarchical processes to ensure proper execution flow, `function_calling_llm` is optional, with a default value provided for streamlined tool interaction.
- **Custom Manager Agent (`manager_agent`)**: Allows specifying a custom agent as the manager instead of using the default manager provided by CrewAI.
- **Process Flow (`process`)**: Defines the execution logic (e.g., sequential, hierarchical) to streamline task distribution and execution.
- **Verbose Logging (`verbose`)**: Offers detailed logging capabilities for monitoring and debugging purposes. It supports both integer and boolean types to indicate the verbosity level. For example, setting `verbose` to 1 might enable basic logging, whereas setting it to True enables more detailed logs.
- **Rate Limiting (`max_rpm`)**: Ensures efficient utilization of resources by limiting requests per minute. Guidelines for setting `max_rpm` should consider the complexity of tasks and the expected load on resources.
- **Internationalization Support (`language`, `language_file`)**: Facilitates operation in multiple languages, enhancing global usability. Supported languages and the process for utilizing the `language_file` attribute for customization should be clearly documented.
- **Internationalization / Customization Support (`language`, `prompt_file`)**: Facilitates full customization of the inner prompts, enhancing global usability. Supported languages and the process for utilizing the `prompt_file` attribute for customization should be clearly documented. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json)
- **Execution and Output Handling (`full_output`)**: Distinguishes between full and final outputs for nuanced control over task results. Examples showcasing the difference in outputs can aid in understanding the practical implications of this attribute.
- **Callback and Telemetry (`step_callback`, `task_callback`)**: Integrates callbacks for step-wise and task-level execution monitoring, alongside telemetry for performance analytics. The purpose and usage of `task_callback` alongside `step_callback` for granular monitoring should be clearly explained.
- **Crew Sharing (`share_crew`)**: Enables sharing of crew information with CrewAI for continuous improvement and training models. The privacy implications and benefits of this feature, including how it contributes to model improvement, should be outlined.
- **Usage Metrics (`usage_metrics`)**: Stores all metrics for the language model (LLM) usage during all tasks' execution, providing insights into operational efficiency and areas for improvement. Detailed information on accessing and interpreting these metrics for performance analysis should be provided.
- **Memory Usage (`memory`)**: Indicates whether the crew should use memory to store memories of its execution, enhancing task execution and agent learning.
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
## Delegation: Dividing to Conquer
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
@@ -36,4 +39,4 @@ Setting up a crew involves defining the roles and capabilities of each agent. Cr
Consider a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The integration of advanced language model management and process flow attributes allows for more sophisticated interactions, such as the writer delegating complex research tasks to the researcher or querying specific information, thereby facilitating a seamless workflow.
## Conclusion
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.

View File

@@ -22,13 +22,15 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Language File** *(optional)* | Path to the language file to be used for the crew. |
| **Memory** *(optional)* | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Cache** *(optional)* | Specifies whether to use a cache for storing the results of tools' execution. |
| **Embedder** *(optional)* | Configuration for the embedder to be used by the crew. mostly used by memory for now |
| **Embedder** *(optional)* | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
| **Full Output** *(optional)*| Whether the crew should return the full output with all tasks outputs or just the final output. |
| **Step Callback** *(optional)* | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** *(optional)* | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** *(optional)* | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** *(optional)* | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Output Log File** *(optional)* | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** *(optional)* | `manager` sets a ustom agent that will be used as a manager. |
| **Manager Callbacks** *(optional)* | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** *(optional)* | Path to the prompt JSON file to be used for the crew. |
!!! note "Crew Max RPM"
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
@@ -47,23 +49,34 @@ from langchain_community.tools import DuckDuckGoSearchRun
researcher = Agent(
role='Senior Research Analyst',
goal='Discover innovative AI technologies',
backstory="""You're a senior research analyst at a large company.
You're responsible for analyzing data and providing insights
to the business.
You're currently working on a project to analyze the
trends and innovations in the space of artificial intelligence.""",
tools=[DuckDuckGoSearchRun()]
)
writer = Agent(
role='Content Writer',
goal='Write engaging articles on AI discoveries',
backstory="""You're a senior writer at a large company.
You're responsible for creating content to the business.
You're currently working on a project to write about trends
and innovations in the space of AI for your next meeting.""",
verbose=True
)
# Create tasks for the agents
research_task = Task(
description='Identify breakthrough AI technologies',
agent=researcher
agent=researcher,
expected_output='A bullet list summary of the top 5 most important AI news'
)
write_article_task = Task(
description='Draft an article on the latest AI technologies',
agent=writer
agent=writer,
expected_output='3 paragraph blog post on the latest AI technologies'
)
# Assemble the crew with a sequential process
@@ -98,7 +111,7 @@ print(crew.usage_metrics)
## Crew Execution Process
- **Sequential Process**: Tasks are executed one after another, allowing for a linear flow of work.
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` is required for this process and it's essential for validating the process flow.
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` or `manager_agent` is required for this process and it's essential for validating the process flow.
### Kicking Off a Crew
@@ -109,3 +122,37 @@ Once your crew is assembled, initiate the workflow with the `kickoff()` method.
result = my_crew.kickoff()
print(result)
```
### Kicking Off a Crew
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
`kickoff()`: Starts the execution process according to the defined process flow.
`kickoff_for_each()`: Executes tasks for each agent individually.
`kickoff_async()`: Initiates the workflow asynchronously.
`kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
```python
# Start the crew's task execution
result = my_crew.kickoff()
print(result)
# Example of using kickoff_for_each
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
results = my_crew.kickoff_for_each(inputs=inputs_array)
for result in results:
print(result)
# Example of using kickoff_async
inputs = {'topic': 'AI in healthcare'}
async_result = my_crew.kickoff_async(inputs=inputs)
print(async_result)
# Example of using kickoff_for_each_async
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = my_crew.kickoff_for_each_async(inputs=inputs_array)
for async_result in async_results:
print(async_result)
```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs

View File

@@ -5,16 +5,16 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
## Introduction to Memory Systems in crewAI
!!! note "Enhancing Agent Intelligence"
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and newly identified contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
## Memory System Components
| Component | Description |
| :------------------- | :----------------------------------------------------------- |
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context. |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remeber what they did right and wrong across multiple executions |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
| **Contextual Memory**| Maintains the context of interactions, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
## How Memory Systems Empower Agents
@@ -27,8 +27,7 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
## Implementing Memory in Your Crew
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration.
The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
### Example: Configuring Memory for a Crew

View File

@@ -10,14 +10,14 @@ description: Detailed guide on workflow management through processes in CrewAI,
## Process Implementations
- **Sequential**: Executes tasks sequentially, ensuring tasks are completed in an orderly progression.
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command. A manager language model (`manager_llm`) must be specified in the crew to enable the hierarchical process, facilitating the creation and management of tasks by the manager.
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command. A manager language model (`manager_llm`) or a custom manager agent (`manager_agent`) must be specified in the crew to enable the hierarchical process, facilitating the creation and management of tasks by the manager.
- **Consensual Process (Planned)**: Aiming for collaborative decision-making among agents on task execution, this process type introduces a democratic approach to task management within CrewAI. It is planned for future development and is not currently implemented in the codebase.
## The Role of Processes in Teamwork
Processes enable individual agents to operate as a cohesive unit, streamlining their efforts to achieve common objectives with efficiency and coherence.
## Assigning Processes to a Crew
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` for the manager agent.
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
```python
from crewai import Crew
@@ -32,15 +32,17 @@ crew = Crew(
)
# Example: Creating a crew with a hierarchical process
# Ensure to provide a manager_llm
# Ensure to provide a manager_llm or manager_agent
crew = Crew(
agents=my_agents,
tasks=my_tasks,
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4")
# or
# manager_agent=my_manager_agent
)
```
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object, and for the hierarchical process, `manager_llm` is also required.
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object, and for the hierarchical process, either `manager_llm` or `manager_agent` is also required.
## Sequential Process
This method mirrors dynamic team workflows, progressing through tasks in a thoughtful and systematic manner. Task execution follows the predefined order in the task list, with the output of one task serving as context for the next.
@@ -48,7 +50,7 @@ This method mirrors dynamic team workflows, progressing through tasks in a thoug
To customize task context, utilize the `context` parameter in the `Task` class to specify outputs that should be used as context for subsequent tasks.
## Hierarchical Process
Emulates a corporate hierarchy, CrewAI automatically creates a manager for you, requiring the specification of a manager language model (`manager_llm`) for the manager agent. This agent oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities, reviews outputs, and assesses task completion.
Emulates a corporate hierarchy, CrewAI allows specifying a custom manager agent or automatically creates one, requiring the specification of a manager language model (`manager_llm`). This agent oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities, reviews outputs, and assesses task completion.
## Process Class: Detailed Overview
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation.

View File

@@ -88,7 +88,7 @@ This demonstrates how tasks with specific tools can override an agent's default
## Referring to Other Tasks
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output, including multiple should be used as context for another task.
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output, including multiple, should be used as context for another task.
This is useful when you have a task that depends on the output of another task that is not performed immediately after it. This is done through the `context` attribute of the task:
@@ -225,6 +225,25 @@ While creating and executing tasks, certain validation mechanisms are in place t
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
## Creating Directories when Saving Files
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
```python
# ...
save_output_task = Task(
description='Save the summarized AI news to a file',
expected_output='File saved successfully',
agent=research_agent,
tools=[file_save_tool],
output_file='outputs/ai_news_summary.txt',
create_directory=True
)
#...
```
## Conclusion
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -94,7 +94,7 @@ crew.kickoff()
## Available crewAI Tools
- **Error Handling**: All tools are built with error handling capabilities, allowing agents to gracefully manage exceptions and continue their tasks.
- **Caching Mechanism**: All tools support caching, enabling agents to efficiently reuse previously obtained results, reducing the load on external resources and speeding up the execution time, you can also define finner control over the caching mechanism, using `cache_function` attribute on the tool.
- **Caching Mechanism**: All tools support caching, enabling agents to efficiently reuse previously obtained results, reducing the load on external resources and speeding up the execution time. You can also define finer control over the caching mechanism using the `cache_function` attribute on the tool.
Here is a list of the available tools and their descriptions:
@@ -107,7 +107,7 @@ Here is a list of the available tools and their descriptions:
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SeperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
@@ -120,13 +120,14 @@ Here is a list of the available tools and their descriptions:
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| **BrowserbaseTool** | A tool for interacting with and extracting data from web browsers. |
| **ExaSearchTool** | A tool designed for performing exhaustive searches across various data sources. |
## Creating your own Tools
!!! example "Custom Tool Creation"
Developers can craft custom tools tailored for their agents needs or utilize pre-built options:
To create your own crewAI tools you will need to install our extra tools package:
```bash
@@ -141,7 +142,7 @@ from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
def _run(self, argument: str) -> str:
# Implementation goes here
@@ -154,7 +155,7 @@ class MyCustomTool(BaseTool):
from crewai_tools import tool
@tool("Name of my tool")
def my_tool(question: str) -> str:
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
# Function logic here
return "Result from your custom tool"
```
@@ -180,45 +181,14 @@ multiplication_tool.cache_function = cache_func
writer1 = Agent(
role="Writer",
goal="You write lesssons of math for kids.",
backstory="You're an expert in writting and you love to teach kids but you know nothing of math.",
tools=[multiplcation_tool],
goal="You write lessons of math for kids.",
backstory="You're an expert in writing and you love to teach kids but you know nothing of math.",
tools=[multiplication_tool],
allow_delegation=False,
)
#...
```
## Using LangChain Tools
!!! info "LangChain Integration"
CrewAI seamlessly integrates with LangChains comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
:
```python
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
# Setup API keys
os.environ["SERPER_API_KEY"] = "Your Key"
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
)
# rest of the code ...
```
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -0,0 +1,38 @@
---
title: Using LangChain Tools
description: Learn how to integrate LangChain tools with CrewAI agents to enhance search-based queries and more.
---
## Using LangChain Tools
!!! info "LangChain Integration"
CrewAI seamlessly integrates with LangChains comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
```python
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
# Setup API keys
os.environ["SERPER_API_KEY"] = "Your Key"
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
)
# rest of the code ...
```
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -0,0 +1,57 @@
---
title: Using LlamaIndex Tools
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
---
## Using LlamaIndex Tools
!!! info "LlamaIndex Integration"
CrewAI seamlessly integrates with LlamaIndexs comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more. Here are the available built-in tools offered by LlamaIndex.
```python
from crewai import Agent
from crewai_tools import LlamaIndexTool
# Example 1: Initialize from FunctionTool
from llama_index.core.tools import FunctionTool
your_python_function = lambda ...: ...
og_tool = FunctionTool.from_defaults(your_python_function, name="<name>", description='<description>')
tool = LlamaIndexTool.from_tool(og_tool)
# Example 2: Initialize from LlamaHub Tools
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
wolfram_tools = wolfram_spec.to_tool_list()
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
# Example 3: Initialize Tool from a LlamaIndex Query Engine
query_engine = index.as_query_engine()
query_tool = LlamaIndexTool.from_query_engine(
query_engine,
name="Uber 2019 10K Query Tool",
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
)
# Create and assign the tools to an agent
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[tool, *tools, query_tool]
)
# rest of the code ...
```
## Steps to Get Started
To effectively use the LlamaIndexTool, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
```shell
pip install 'crewai[tools]'
```
2. **Install and Use LlamaIndex**: Follow LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.

View File

@@ -1,72 +1,86 @@
---
title: (AgentOps) Observability using AgentOps
title: Agent Monitoring with AgentOps
description: Understanding and logging your agent performance with AgentOps.
---
# Intro
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how the agent is performing, how users are interacting with the agent, and how the agent is responding to user inputs.
AgentOps is a product, idependent of crewAI that provides a comprehensive observability solution for agents.
This notebook will provide an overview of AgentOps and how to use it with crewAI.
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how their agents are performing, how their agents are interacting with users, and how their agents use external tools and APIs. AgentOps is a product independent of CrewAI that provides a comprehensive observability solution for agents.
## AgentOps
[AgentOps](https://agentops.ai) provides session replays, metrics, and monitoring for agents.
[AgentOps Repo](https://github.com/AgentOps-AI/agentops)
[AgentOps](https://agentops.ai/?=crew) provides session replays, metrics, and monitoring for agents.
At a high level, AgentOps gives you the ability to monitor cost, token usage, latency, agent failures, session-wide statistics, and more. For more info, check out the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
### Overview
AgentOps provides monotoring for agents in development and production. It provides a dashboard for monitoring agent performance, session replays, and custom reporting.
AgentOps provides monitoring for agents in development and production. It provides a dashboard for tracking agent performance, session replays, and custom reporting.
![agentops-overview.png](..%2Fassets%2Fagentops-overview.png)
Additionally, AgentOps provides session drilldowns for viewing Crew agent interactions, LLM calls, and tool usage in real-time. This feature is useful for debugging and understanding how agents interact with users as well as other agents.
Additionally, AgentOps provides session drilldowns that allows users to view the agent's interactions with users in real-time. This feature is useful for debugging and understanding how the agent interacts with users.
![agentops-session.png](..%2Fassets%2Fagentops-session.png)
![agentops-replay.png](..%2Fassets%2Fagentops-replay.png)
![Overview of a select series of agent session runs](..%2Fassets%2Fagentops-overview.png)
![Overview of session drilldowns for examining agent runs](..%2Fassets%2Fagentops-session.png)
![Viewing a step-by-step agent replay execution graph](..%2Fassets%2Fagentops-replay.png)
### Features
- LLM Cost management and tracking
- Replay Analytics
- Recursive thought detection
- Custom Reporting
- Analytics Dashboard
- Public Model Testing
- Custom Tests
- Time Travel Debugging
- Compliance and Security
- **LLM Cost Management and Tracking**: Track spend with foundation model providers.
- **Replay Analytics**: Watch step-by-step agent execution graphs.
- **Recursive Thought Detection**: Identify when agents fall into infinite loops.
- **Custom Reporting**: Create custom analytics on agent performance.
- **Analytics Dashboard**: Monitor high-level statistics about agents in development and production.
- **Public Model Testing**: Test your agents against benchmarks and leaderboards.
- **Custom Tests**: Run your agents against domain-specific tests.
- **Time Travel Debugging**: Restart your sessions from checkpoints.
- **Compliance and Security**: Create audit logs and detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
### Using AgentOps
Create a user API key here: app.agentops.ai/account
1. **Create an API Key:**
Create a user API key here: [Create API Key](app.agentops.ai/account)
Add your API key to your environment variables
2. **Configure Your Environment:**
Add your API key to your environment variables
```
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
Install AgentOps with:
```
pip install crewai[agentops]
```
or
```
pip install agentops
```
3. **Install AgentOps:**
Install AgentOps with:
```bash
pip install crewai[agentops]
```
or
```bash
pip install agentops
```
Before using `Crew` in your script, include these lines:
Before using `Crew` in your script, include these lines:
```python
import agentops
agentops.init()
```
```python
import agentops
agentops.init()
```
This will initiate an AgentOps session as well as automatically track Crew agents. For further info on how to outfit more complex agentic systems, check out the [AgentOps documentation](https://docs.agentops.ai) or join the [Discord](https://discord.gg/j4f3KbeH).
### Crew + AgentOps Examples
- [Job Posting](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting)
- [Markdown Validator](https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator)
- [Instagram Post](https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post)
### Further Information
### Futher Information
To implement more features and better observability, please see the [AgentOps Repo](https://github.com/AgentOps-AI/agentops)
To get started, create an [AgentOps account](https://agentops.ai/?=crew).
For feature requests or bug reports, please reach out to the AgentOps team on the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
#### Extra links
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>

View File

@@ -42,6 +42,7 @@ def my_simple_tool(question: str) -> str:
# Tool logic here
return "Tool output"
```
### Defining a Cache Function for the Tool
To optimize tool performance with caching, define custom caching strategies using the `cache_function` attribute.

View File

@@ -16,7 +16,7 @@ pip install 'crewai[tools]'
```
## Step 1: Assemble Your Agents
Define your agents with distinct roles, backstories, and enhanced capabilities like verbose mode and memory usage. These elements add depth and guide their task execution and interaction within the crew.
Define your agents with distinct roles, backstories, and enhanced capabilities like verbose mode, memory usage, and the ability to set specific agents as managers. These elements add depth and guide their task execution and interaction within the crew.
```python
import os
@@ -24,8 +24,10 @@ os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
os.environ["OPENAI_API_KEY"] = "Your Key"
from crewai import Agent
from crewai_tools import SerperDevTool
from crewai_tools import SerperDevTool, BrowserbaseTool, ExaSearchTool
search_tool = SerperDevTool()
browser_tool = BrowserbaseTool()
exa_search_tool = ExaSearchTool()
# Creating a senior researcher agent with memory and verbose mode
researcher = Agent(
@@ -38,8 +40,7 @@ researcher = Agent(
"innovation, eager to explore and share knowledge that could change"
"the world."
),
tools=[search_tool],
allow_delegation=True
tools=[search_tool, browser_tool],
)
# Creating a writer agent with custom tools and delegation capability
@@ -53,9 +54,20 @@ writer = Agent(
"engaging narratives that captivate and educate, bringing new"
"discoveries to light in an accessible manner."
),
tools=[search_tool],
tools=[exa_search_tool],
allow_delegation=False
)
# Setting a specific manager agent
manager = Agent(
role='Manager',
goal='Ensure the smooth operation and coordination of the team',
verbose=True,
backstory=(
"As a seasoned project manager, you excel in organizing"
"tasks, managing timelines, and ensuring the team stays on track."
)
)
```
## Step 2: Define the Tasks
@@ -75,6 +87,8 @@ research_task = Task(
expected_output='A comprehensive 3 paragraphs long report on the latest AI trends.',
tools=[search_tool],
agent=researcher,
callback="research_callback", # Example of task callback
human_input=True
)
# Writing task with language model configuration
@@ -85,15 +99,14 @@ write_task = Task(
"This article should be easy to understand, engaging, and positive."
),
expected_output='A 4 paragraph article on {topic} advancements formatted as markdown.',
tools=[search_tool],
tools=[exa_search_tool],
agent=writer,
async_execution=False,
output_file='new-blog-post.md' # Example of output customization
output_file='new-blog-post.md', # Example of output customization
)
```
## Step 3: Form the Crew
Combine your agents into a crew, setting the workflow process they'll follow to accomplish the tasks. Now with options to configure language models for enhanced interaction and additional configurations for optimizing performance.
Combine your agents into a crew, setting the workflow process they'll follow to accomplish the tasks. Now with options to configure language models for enhanced interaction and additional configurations for optimizing performance, such as creating directories when saving files.
```python
from crewai import Crew, Process
@@ -106,7 +119,7 @@ crew = Crew(
memory=True,
cache=True,
max_rpm=100,
share_crew=True
manager_agent=manager
)
```

View File

@@ -0,0 +1,94 @@
---
title: Initial Support to Bring Your Own Prompts in CrewAI
description: Enhancing customization and internationalization by allowing users to bring their own prompts in CrewAI.
---
# Initial Support to Bring Your Own Prompts in CrewAI
CrewAI now supports the ability to bring your own prompts, enabling extensive customization and internationalization. This feature allows users to tailor the inner workings of their agents to better suit specific needs, including support for multiple languages.
## Internationalization and Customization Support
### Custom Prompts with `prompt_file`
The `prompt_file` attribute facilitates full customization of the agent prompts, enhancing the global usability of CrewAI. Users can specify their prompt templates, ensuring that the agents communicate in a manner that aligns with specific project requirements or language preferences.
#### Example of a Custom Prompt File
The custom prompts can be defined in a JSON file, similar to the example provided [here](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json).
### Supported Languages
CrewAI's custom prompt support includes internationalization, allowing prompts to be written in different languages. This is particularly useful for global teams or projects that require multilingual support.
## How to Use the `prompt_file` Attribute
To utilize the `prompt_file` attribute, include it in your crew definition. Below is an example demonstrating how to set up agents and tasks with custom prompts.
### Example
```python
import os
from crewai import Agent, Task, Crew
# Define your agents
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
writer = Agent(
role="Senior Writer",
goal="Write the best content about AI and AI agents.",
backstory="You're a senior writer, specialized in technology, software engineering, AI and startups. You work as a freelancer and are now working on writing content for a new customer.",
allow_delegation=False,
)
# Define your tasks
tasks = [
Task(
description="Say Hi",
expected_output="The word: Hi",
agent=researcher,
)
]
# Instantiate your crew with custom prompts
crew = Crew(
agents=[researcher],
tasks=tasks,
prompt_file="prompt.json", # Path to your custom prompt file
)
# Get your crew to work!
crew.kickoff()
```
## Advanced Customization Features
### `language` Attribute
In addition to `prompt_file`, the `language` attribute can be used to specify the language for the agent's prompts. This ensures that the prompts are generated in the desired language, further enhancing the internationalization capabilities of CrewAI.
### Creating Custom Prompt Files
Custom prompt files should be structured in JSON format and include all necessary prompt templates. Below is a simplified example of a prompt JSON file:
```json
{
"system": "You are a system template.",
"prompt": "Here is your prompt template.",
"response": "Here is your response template."
}
```
### Benefits of Custom Prompts
- **Enhanced Flexibility**: Tailor agent communication to specific project needs.
- **Improved Usability**: Supports multiple languages, making it suitable for global projects.
- **Consistency**: Ensures uniform prompt structures across different agents and tasks.
By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly.

View File

@@ -10,7 +10,16 @@ Crafting an efficient CrewAI team hinges on the ability to dynamically tailor yo
- **Role**: Specifies the agent's job within the crew, such as 'Analyst' or 'Customer Service Rep'.
- **Goal**: Defines what the agent aims to achieve, in alignment with its role and the overarching objectives of the crew.
- **Backstory**: Provides depth to the agent's persona, enriching its motivations and engagements within the crew.
- **Tools**: Represents the capabilities or methods the agent uses to perform tasks, from simple functions to intricate integrations.
- **Tools** *(Optional)*: Represents the capabilities or methods the agent uses to perform tasks, from simple functions to intricate integrations.
- **Cache** *(Optional)*: Determines whether the agent should use a cache for tool usage.
- **Max RPM**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
- **Verbose** *(Optional)*: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance.
- **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents.
- **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
- **Max Execution Time** *(Optional)*: `max_execution_time` Sets the maximum execution time for an agent to complete a task.
- **System Template** *(Optional)*: `system_template` defines the system format for the agent.
- **Prompt Template** *(Optional)*: `prompt_template` defines the prompt format for the agent.
- **Response Template** *(Optional)*: `response_template` defines the response format for the agent.
## Advanced Customization Options
Beyond the basic attributes, CrewAI allows for deeper customization to enhance an agent's behavior and capabilities significantly.
@@ -26,7 +35,7 @@ Adjusting an agent's performance and monitoring its operations are crucial for e
- **RPM Limit**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
### Maximum Iterations for Task Execution
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 15, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
## Customizing Agents and Tools
Agents are customized by defining their attributes and tools during initialization. Tools are critical for an agent's functionality, enabling them to perform specialized tasks. The `tools` attribute should be an array of tools the agent can utilize, and it's initialized as an empty list by default. Tools can be added or modified post-agent initialization to adapt to new requirements.
@@ -57,7 +66,7 @@ agent = Agent(
memory=True, # Enable memory
verbose=True,
max_rpm=None, # No limit on requests per minute
max_iter=15, # Default value for maximum iterations
max_iter=25, # Default value for maximum iterations
allow_delegation=False
)
```

View File

@@ -10,7 +10,7 @@ The hierarchical process in CrewAI introduces a structured approach to task mana
The hierarchical process is designed to leverage advanced models like GPT-4, optimizing token usage while handling complex tasks with greater efficiency.
## Hierarchical Process Overview
By default, tasks in CrewAI are managed through a sequential process. However, adopting a hierarchical approach allows for a clear hierarchy in task management, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes for streamlined and effective execution. This manager agent is automatically created by crewAI so you don't need to worry about it.
By default, tasks in CrewAI are managed through a sequential process. However, adopting a hierarchical approach allows for a clear hierarchy in task management, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes for streamlined and effective execution. This manager agent can now be either automatically created by CrewAI or explicitly set by the user.
### Key Features
- **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities.
@@ -52,9 +52,10 @@ writer = Agent(
project_crew = Crew(
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
agents=[researcher, writer],
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory for hierarchical process
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
process=Process.hierarchical, # Specifies the hierarchical management approach
memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
)
```
@@ -64,4 +65,4 @@ project_crew = Crew(
3. **Sequential Task Progression**: Despite being a hierarchical process, tasks follow a logical order for smooth progression, facilitated by the manager's oversight.
## Conclusion
Adopting the hierarchical process in crewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management.
Adopting the hierarchical process in CrewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management. Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.

View File

@@ -22,7 +22,7 @@ import os
from crewai import Agent, Task, Crew
from crewai_tools import SerperDevTool
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
os.environ["OPENAI_API_KEY"] = "Your Key"
# Loading Tools
@@ -30,59 +30,59 @@ search_tool = SerperDevTool()
# Define your agents with roles, goals, tools, and additional attributes
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory=(
"You are a Senior Research Analyst at a leading tech think tank."
"Your expertise lies in identifying emerging trends and technologies in AI and data science."
"You have a knack for dissecting complex data and presenting actionable insights."
),
verbose=True,
allow_delegation=False,
tools=[search_tool],
max_rpm=100
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory=(
"You are a Senior Research Analyst at a leading tech think tank. "
"Your expertise lies in identifying emerging trends and technologies in AI and data science. "
"You have a knack for dissecting complex data and presenting actionable insights."
),
verbose=True,
allow_delegation=False,
tools=[search_tool]
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory=(
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation."
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
),
verbose=True,
allow_delegation=True,
tools=[search_tool],
cache=False, # Disable cache for this agent
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory=(
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation. "
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
),
verbose=True,
allow_delegation=True,
tools=[search_tool],
cache=False, # Disable cache for this agent
)
# Create tasks for your agents
task1 = Task(
description=(
"Conduct a comprehensive analysis of the latest advancements in AI in 2024."
"Identify key trends, breakthrough technologies, and potential industry impacts."
"Compile your findings in a detailed report."
"Make sure to check with a human if the draft is good before finalizing your answer."
),
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
agent=researcher,
human_input=True,
description=(
"Conduct a comprehensive analysis of the latest advancements in AI in 2024. "
"Identify key trends, breakthrough technologies, and potential industry impacts. "
"Compile your findings in a detailed report. "
"Make sure to check with a human if the draft is good before finalizing your answer."
),
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
agent=researcher,
human_input=True
)
task2 = Task(
description=(
"Using the insights from the researcher's report, develop an engaging blog post that highlights the most significant AI advancements."
"Your post should be informative yet accessible, catering to a tech-savvy audience."
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
agent=writer
description=(
"Using the insights from the researcher\'s report, develop an engaging blog post that highlights the most significant AI advancements. "
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2,
memory=True,
)
# Get your crew to work!

View File

@@ -0,0 +1,21 @@
---
title: Installing crewAI
description: A comprehensive guide to installing crewAI and its dependencies, including the latest updates and installation methods.
---
# Installing crewAI
Welcome to crewAI! This guide will walk you through the installation process for crewAI and its dependencies. crewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently. Let's get started!
## Installation
To install crewAI, you need to have Python >=3.10 and <=3.13 installed on your system:
```shell
# Install the main crewAI package
pip install crewai
# Install the main crewAI package and the tools package
# that includes a series of helpful tools for your agents
pip install 'crewai[tools]'
```

View File

@@ -16,16 +16,20 @@ The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. He
- `role`: Defines the agent's role within the solution.
- `goal`: Specifies the agent's objective.
- `backstory`: Provides a background story to the agent.
- `llm`: The language model that will run the agent. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
- `function_calling_llm`: The language model that will handle the tool calling for this agent, overriding the crew function_calling_llm. Optional.
- `max_iter`: Maximum number of iterations for an agent to execute a task, default is 15.
- `memory`: Enables the agent to retain information during and a across executions. Default is `False`.
- `max_rpm`: Maximum number of requests per minute the agent's execution should respect. Optional.
- `verbose`: Enables detailed logging of the agent's execution. Default is `False`.
- `allow_delegation`: Allows the agent to delegate tasks to other agents, default is `True`.
- `cache` *Optional*: Determines whether the agent should use a cache for tool usage. Default is `True`.
- `max_rpm` *Optional*: Maximum number of requests per minute the agent's execution should respect. Optional.
- `verbose` *Optional*: Enables detailed logging of the agent's execution. Default is `False`.
- `allow_delegation` *Optional*: Allows the agent to delegate tasks to other agents, default is `True`.
- `tools`: Specifies the tools available to the agent for task execution. Optional.
- `step_callback`: Provides a callback function to be executed after each step. Optional.
- `cache`: Determines whether the agent should use a cache for tool usage. Default is `True`.
- `max_iter` *Optional*: Maximum number of iterations for an agent to execute a task, default is 25.
- `max_execution_time` *Optional*: Maximum execution time for an agent to execute a task. Optional.
- `step_callback` *Optional*: Provides a callback function to be executed after each step. Optional.
- `llm` *Optional*: Indicates the Large Language Model the agent uses. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
- `function_calling_llm` *Optional* : Will turn the ReAct CrewAI agent into a function-calling agent.
- `callbacks` *Optional*: A list of callback functions from the LangChain library that are triggered during the agent's execution process.
- `system_template` *Optional*: Optional string to define the system format for the agent.
- `prompt_template` *Optional*: Optional string to define the prompt format for the agent.
- `response_template` *Optional*: Optional string to define the response format for the agent.
```python
# Required
@@ -36,13 +40,12 @@ example_agent = Agent(
role='Local Expert',
goal='Provide insights about the city',
backstory="A knowledgeable local guide.",
verbose=True,
memory=True
verbose=True
)
```
## Ollama Integration
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below. Note: Detailed Ollama setup is beyond this document's scope, but general guidance is provided.
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below.
### Setting Up Ollama
- **Environment Variables Configuration**: To integrate Ollama, set the following environment variables:
@@ -52,6 +55,72 @@ OPENAI_MODEL_NAME='openhermes' # Adjust based on available model
OPENAI_API_KEY=''
```
## Ollama Integration (ex. for using Llama 2 locally)
1. [Download Ollama](https://ollama.com/download).
2. After setting up the Ollama, Pull the Llama2 by typing following lines into the terminal ```ollama pull llama2```.
3. Create a ModelFile similar the one below in your project directory.
```
FROM llama2
# Set parameters
PARAMETER temperature 0.8
PARAMETER stop Result
# Sets a custom system message to specify the behavior of the chat assistant
# Leaving it blank for now.
SYSTEM """"""
```
4. Create a script to get the base model, which in our case is llama2, and create a model on top of that with ModelFile above. PS: this will be ".sh" file.
```
#!/bin/zsh
# variables
model_name="llama2"
custom_model_name="crewai-llama2"
#get the base model
ollama pull $model_name
#create the model file
ollama create $custom_model_name -f ./Llama2ModelFile
```
5. Go into the directory where the script file and ModelFile is located and run the script.
6. Enjoy your free Llama2 model that is powered up by excellent agents from CrewAI.
```python
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI
import os
os.environ["OPENAI_API_KEY"] = "NA"
llm = ChatOpenAI(
model = "crewai-llama2",
base_url = "http://localhost:11434/v1")
general_agent = Agent(role = "Math Professor",
goal = """Provide the solution to the students that are asking mathematical questions and give them the answer.""",
backstory = """You are an excellent math professor that likes to solve math questions in a way that everyone can understand your solution""",
allow_delegation = False,
verbose = True,
llm = llm)
task = Task(description="""what is 3 + 5""",
agent = general_agent,
expected_output="A numerical answer.")
crew = Crew(
agents=[general_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
print(result)
```
## HuggingFace Integration
There are a couple of different ways you can use HuggingFace to host your LLM.
@@ -97,10 +166,10 @@ OPENAI_API_KEY=NA
```
#### LM Studio
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
```sh
OPENAI_API_BASE="http://localhost:8000/v1"
OPENAI_MODEL_NAME=NA
OPENAI_API_KEY=NA
OPENAI_API_BASE="http://localhost:1234/v1"
OPENAI_API_KEY="lm-studio"
```
#### Mistral API
@@ -111,15 +180,16 @@ OPENAI_MODEL_NAME="mistral-small"
```
### Solar
```sh
```python
from langchain_community.chat_models.solar import SolarChat
# Initialize language model
os.environ["SOLAR_API_KEY"] = "your-solar-api-key"
llm = SolarChat(max_tokens=1024)
Free developer API key available here: https://console.upstage.ai/services/solar
Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
# Free developer API key available here: https://console.upstage.ai/services/solar
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
```
### text-gen-web-ui
```sh
OPENAI_API_BASE=http://localhost:5000/v1
@@ -128,17 +198,16 @@ OPENAI_API_KEY=NA
```
### Cohere
```sh
from langchain_community.chat_models import ChatCohere
```python
from langchain_cohere import ChatCohere
# Initialize language model
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
llm = ChatCohere()
Free developer API key available here: https://cohere.com/
Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
# Free developer API key available here: https://cohere.com/
# Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
```
### Azure Open AI Configuration
For Azure OpenAI API integration, set the following environment variables:
```sh
@@ -170,4 +239,4 @@ azure_agent = Agent(
```
## Conclusion
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.
Integrating CrewAI with different LLMs expands the framework's versatility, allowing for customized, efficient AI solutions across various domains and platforms.

View File

@@ -0,0 +1,44 @@
---
title: CrewAI Agent Monitoring with Langtrace
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace.
---
# Langtrace Overview
Langtrace is an open-source tool that helps you set up observability and evaluations for LLMs, LLM frameworks, and VectorDB. With Langtrace, you can get deep visibility into the cost, latency, and performance of your CrewAI Agents. Additionally, you can log the hyperparameters and monitor for any performance regressions and set up a process to continuously improve your Agents.
## Setup Instructions
1. Sign up for [Langtrace](https://langtrace.ai/) by going to [https://langtrace.ai/signup](https://langtrace.ai/signup).
2. Create a project and generate an API key.
3. Install Langtrace in your code using the following commands.
**Note**: For detailed instructions on integrating Langtrace, you can check out the official docs from [here](https://docs.langtrace.ai/supported-integrations/llm-frameworks/crewai).
```
# Install the SDK
pip install langtrace-python-sdk
# Import it into your project
from langtrace_python_sdk import langtrace # Must precede any llm module imports
langtrace.init(api_key = '<LANGTRACE_API_KEY>')
```
### Features
- **LLM Token and Cost tracking**
- **Trace graph showing detailed execution steps with latency and logs**
- **Dataset curation using manual annotation**
- **Prompt versioning and management**
- **Prompt Playground with comparison views between models**
- **Testing and Evaluations**
![Langtrace Cost and Usage Tracking](..%2Fassets%2Fcrewai-langtrace-stats.png)
![Langtrace Span Graph and Logs Dashboard](..%2Fassets%2Fcrewai-langtrace-spans.png)
#### Extra links
<a href="https://x.com/langtrace_ai">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.com/invite/EaSATwtr4t">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://langtrace.ai/">🖇 Website</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.langtrace.ai/introduction">📙 Documentation</a>

View File

@@ -13,6 +13,7 @@ The sequential process ensures tasks are executed one after the other, following
- **Linear Task Flow**: Ensures orderly progression by handling tasks in a predetermined sequence.
- **Simplicity**: Best suited for projects with clear, step-by-step tasks.
- **Easy Monitoring**: Facilitates easy tracking of task completion and project progress.
## Implementing the Sequential Process
Assemble your crew and define tasks in the order they need to be executed.

View File

@@ -0,0 +1,68 @@
---
title: Ability to Set a Specific Agent as Manager in CrewAI
description: Introducing the ability to set a specific agent as a manager instead of having CrewAI create one automatically.
---
# Ability to Set a Specific Agent as Manager in CrewAI
CrewAI now allows users to set a specific agent as the manager of the crew, providing more control over the management and coordination of tasks. This feature enables the customization of the managerial role to better fit the project's requirements.
## Using the `manager_agent` Attribute
### Custom Manager Agent
The `manager_agent` attribute allows you to define a custom agent to manage the crew. This agent will oversee the entire process, ensuring that tasks are completed efficiently and to the highest standard.
### Example
```python
import os
from crewai import Agent, Task, Crew, Process
# Define your agents
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
writer = Agent(
role="Senior Writer",
goal="Write the best content about AI and AI agents.",
backstory="You're a senior writer, specialized in technology, software engineering, AI and startups. You work as a freelancer and are now working on writing content for a new customer.",
allow_delegation=False,
)
# Define your task
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
# Define the manager agent
manager = Agent(
role="Manager",
goal="Manage the crew and ensure the tasks are completed efficiently.",
backstory="You're an experienced manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=False,
)
# Instantiate your crew with a custom manager
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_agent=manager,
tasks=[task],
)
# Get your crew to work!
crew.kickoff()
```
## Benefits of a Custom Manager Agent
- **Enhanced Control**: Allows for a more tailored management approach, fitting the specific needs of the project.
- **Improved Coordination**: Ensures that the tasks are efficiently coordinated and managed by an experienced agent.
- **Customizable Management**: Provides the flexibility to define managerial roles and responsibilities that align with the project's goals.

View File

@@ -43,6 +43,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<div style="width:30%">
<h2>How-To Guides</h2>
<ul>
<li>
<a href="./how-to/Installing-CrewAI">
Installing crewAI
</a>
</li>
<li>
<a href="./how-to/Creating-a-Crew-and-kick-it-off">
Getting Started
@@ -79,8 +84,8 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
</a>
</li>
<li>
<a href="./how-to/AgentOps-Observability.md">
Agent Observability using AgentOps
<a href="./how-to/AgentOps-Observability">
Agent Monitoring with AgentOps
</a>
</li>
</ul>

View File

@@ -2,6 +2,7 @@
title: Telemetry
description: Understanding the telemetry data collected by CrewAI and how it contributes to the enhancement of the library.
---
## Telemetry
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.

View File

@@ -0,0 +1,38 @@
# BrowserbaseLoadTool
## Description
[Browserbase](https://browserbase.com) is a developer platform to reliably run, manage, and monitor headless browsers.
Power your AI data retrievals with:
- [Serverless Infrastructure](https://docs.browserbase.com/under-the-hood) providing reliable browsers to extract data from complex UIs
- [Stealth Mode](https://docs.browserbase.com/features/stealth-mode) with included fingerprinting tactics and automatic captcha solving
- [Session Debugger](https://docs.browserbase.com/features/sessions) to inspect your Browser Session with networks timeline and logs
- [Live Debug](https://docs.browserbase.com/guides/session-debug-connection/browser-remote-control) to quickly debug your automation
## Installation
- Get an API key and Project ID from [browserbase.com](https://browserbase.com) and set it in environment variables (`BROWSERBASE_API_KEY`, `BROWSERBASE_PROJECT_ID`).
- Install the [Browserbase SDK](http://github.com/browserbase/python-sdk) along with `crewai[tools]` package:
```
pip install browserbase 'crewai[tools]'
```
## Example
Utilize the BrowserbaseLoadTool as follows to allow your agent to load websites:
```python
from crewai_tools import BrowserbaseLoadTool
tool = BrowserbaseLoadTool()
```
## Arguments
- `api_key` Optional. Browserbase API key. Default is `BROWSERBASE_API_KEY` env variable.
- `project_id` Optional. Browserbase Project ID. Default is `BROWSERBASE_PROJECT_ID` env variable.
- `text_content` Retrieve only text content. Default is `False`.
- `session_id` Optional. Provide an existing Session ID.
- `proxy` Optional. Enable/Disable Proxies."

View File

@@ -50,7 +50,7 @@ tool = CSVSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -41,7 +41,7 @@ Note: Substitute 'https://docs.example.com/reference' with your target documenta
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python
tool = YoutubeVideoSearchTool(
tool = CodeDocsSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
@@ -53,7 +53,7 @@ tool = YoutubeVideoSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -0,0 +1,29 @@
# CodeInterpreterTool
## Description
This tool is used to give the Agent the ability to run code (Python3) from the code generated by the Agent itself. The code is executed in a sandboxed environment, so it is safe to run any code.
It is incredible useful since it allows the Agent to generate code, run it in the same environment, get the result and use it to make decisions.
## Requirements
- Docker
## Installation
Install the crewai_tools package
```shell
pip install 'crewai[tools]'
```
## Example
Remember that when using this tool, the code must be generated by the Agent itself. The code must be a Python3 code. And it will take some time for the first time to run because it needs to build the Docker image.
```python
from crewai_tools import CodeInterpreterTool
Agent(
...
tools=[CodeInterpreterTool()],
)
```

View File

@@ -48,7 +48,7 @@ tool = DOCXSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -43,7 +43,7 @@ tool = DirectorySearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -0,0 +1,36 @@
# EXASearchTool Documentation
## Description
The EXASearchTool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the [exa.ai](https://exa.ai/) API to fetch and display the most relevant search results based on the query provided by the user.
## Installation
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Example
The following example demonstrates how to initialize the tool and execute a search with a given query:
```python
from crewai_tools import EXASearchTool
# Initialize the tool for internet searching capabilities
tool = EXASearchTool()
```
## Steps to Get Started
To effectively use the EXASearchTool, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a [exa.ai](https://exa.ai/) API key by registering for a free account at [exa.ai](https://exa.ai/).
3. **Environment Configuration**: Store your obtained API key in an environment variable named `EXA_API_KEY` to facilitate its use by the tool.
## Conclusion
By integrating the EXASearchTool into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.

View File

@@ -22,15 +22,15 @@ from crewai_tools import GithubSearchTool
# Initialize the tool for semantic searches within a specific GitHub repository
tool = GithubSearchTool(
github_repo='https://github.com/example/repo',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
github_repo='https://github.com/example/repo',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
# OR
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
tool = GithubSearchTool(
content_types=['code', 'issue'] # Options: code, repo, pr, issue
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
```
@@ -55,7 +55,7 @@ tool = GithubSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = JSONSearchTool(
},
},
"embedder": {
"provider": "google",
"provider": "google", # or openai, ollama, ...
"config": {
"model": "models/embedding-001",
"task_type": "retrieval_document",

View File

@@ -49,7 +49,7 @@ tool = MDXSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -29,7 +29,7 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
```
## Arguments
- `pdf`: **Optinal** The PDF path for the search. Can be provided at initialization or within the `run` method's arguments. If provided at initialization, the tool confines its search to the specified document.
- `pdf`: **Optional** The PDF path for the search. Can be provided at initialization or within the `run` method's arguments. If provided at initialization, the tool confines its search to the specified document.
## Custom model and embeddings
@@ -48,7 +48,7 @@ tool = PDFSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -19,7 +19,7 @@ pip install 'crewai[tools]'
Below is a proposed example showcasing how to use the PGSearchTool for conducting a semantic search on a table within a PostgreSQL database:
```python
rom crewai_tools import PGSearchTool
from crewai_tools import PGSearchTool
# Initialize the tool with the database URI and the target table name
tool = PGSearchTool(db_uri='postgresql://user:password@localhost:5432/mydatabase', table_name='employees')
@@ -48,7 +48,7 @@ tool = PGSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
@@ -57,4 +57,4 @@ tool = PGSearchTool(
),
)
)
```
```

View File

@@ -50,7 +50,7 @@ tool = TXTSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = WebsiteSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -17,7 +17,7 @@ pip install 'crewai[tools]'
Here are two examples demonstrating how to use the XMLSearchTool. The first example shows searching within a specific XML file, while the second example illustrates initiating a search without predefining an XML path, providing flexibility in search scope.
```python
from crewai_tools.tools.xml_search_tool import XMLSearchTool
from crewai_tools import XMLSearchTool
# Allow agents to search within any XML file's content as it learns about their paths during execution
tool = XMLSearchTool()
@@ -48,7 +48,7 @@ tool = XMLSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = YoutubeChannelSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -52,7 +52,7 @@ tool = YoutubeVideoSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -127,19 +127,26 @@ nav:
- Crews: 'core-concepts/Crews.md'
- Collaboration: 'core-concepts/Collaboration.md'
- Memory: 'core-concepts/Memory.md'
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
- How to Guides:
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
- Using Sequential Process: 'how-to/Sequential.md'
- Using Hierarchical Process: 'how-to/Hierarchical.md'
- Create your own Manager Agent: 'how-to/Your-Own-Manager-Agent.md'
- Connecting to any LLM: 'how-to/LLM-Connections.md'
- Customizing Agents: 'how-to/Customizing-Agents.md'
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
- Agent Observability using AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Tools Docs:
- Google Serper Search: 'tools/SerperDevTool.md'
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
- Directory Read: 'tools/DirectoryReadTool.md'
- Exa Serch Web Loader: 'tools/EXASearchTool.md'
- File Read: 'tools/FileReadTool.md'
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
- Directory RAG Search: 'tools/DirectorySearchTool.md'
@@ -172,6 +179,7 @@ extra_css:
plugins:
- social
- search
extra:
analytics:

2768
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,10 @@
[tool.poetry]
name = "crewai"
version = "0.28.1"
version = "0.32.2"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
packages = [
{ include = "crewai", from = "src" },
]
packages = [{ include = "crewai", from = "src" }]
[tool.poetry.urls]
Homepage = "https://crewai.com"
@@ -21,35 +19,31 @@ openai = "^1.13.3"
opentelemetry-api = "^1.22.0"
opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "^0.5.2"
instructor = "1.3.3"
regex = "^2023.12.25"
crewai-tools = { version = "^0.1.5", optional = true }
crewai-tools = { version = "^0.3.0", optional = true }
click = "^8.1.7"
python-dotenv = "1.0.0"
embedchain = "^0.1.98"
python-dotenv = "^1.0.0"
embedchain = "0.1.109"
appdirs = "^1.4.4"
jsonref = "^1.1.0"
[tool.poetry.extras]
tools = ["crewai-tools"]
[tool.poetry.group.dev.dependencies]
isort = "^5.13.2"
pyright = ">=1.1.350,<2.0.0"
mypy = "1.10.0"
autoflake = "^2.2.1"
pre-commit = "^3.6.0"
mkdocs = "^1.4.3"
mkdocstrings = "^0.22.0"
mkdocstrings-python = "^1.1.2"
mkdocs-material = {extras = ["imaging"], version = "^9.5.7"}
mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.1.5"
[tool.isort]
profile = "black"
known_first_party = ["crewai"]
crewai-tools = "^0.3.0"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"
@@ -59,6 +53,11 @@ python-dotenv = "1.0.0"
[tool.poetry.scripts]
crewai = "crewai.cli.cli:crewai"
[tool.mypy]
ignore_missing_imports = true
disable_error_code = 'import-untyped'
exclude = ["cli/templates/main.py", "cli/templates/crew.py"]
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,5 +1,6 @@
import os
import uuid
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
from langchain.agents.agent import RunnableAgent
@@ -23,7 +24,9 @@ from pydantic_core import PydanticCustomError
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.utilities import I18N, Logger, Prompts, RPMController
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
from crewai.utilities.training_handler import CrewTrainingHandler
class Agent(BaseModel):
@@ -39,7 +42,7 @@ class Agent(BaseModel):
backstory: The backstory of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will the tool calling for this agent, it overrides the crew function_calling_llm.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
max_iter: Maximum number of iterations for an agent to execute a task.
memory: Whether the agent should have memory or not.
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
@@ -111,7 +114,7 @@ class Agent(BaseModel):
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
llm: Any = Field(
default_factory=lambda: ChatOpenAI(
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4")
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
),
description="Language model that will run the agent.",
)
@@ -121,6 +124,18 @@ class Agent(BaseModel):
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
default=None, description="Callback to be executed"
)
system_template: Optional[str] = Field(
default=None, description="System format for the agent."
)
prompt_template: Optional[str] = Field(
default=None, description="Prompt format for the agent."
)
response_template: Optional[str] = Field(
default=None, description="Response format for the agent."
)
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
_original_role: str | None = None
_original_goal: str | None = None
@@ -161,10 +176,16 @@ class Agent(BaseModel):
"""set agent executor is set."""
if hasattr(self.llm, "model_name"):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
if isinstance(self.llm.callbacks, list):
# Ensure self.llm.callbacks is a list
if not isinstance(self.llm.callbacks, list):
self.llm.callbacks = []
# Check if an instance of TokenCalcHandler already exists in the list
if not any(
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
):
self.llm.callbacks.append(token_handler)
else:
self.llm.callbacks = [token_handler]
if not self.agent_executor:
if not self.cache_handler:
@@ -189,7 +210,7 @@ class Agent(BaseModel):
Output of the agent
"""
if self.tools_handler:
self.tools_handler.last_used_tool = {}
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
@@ -209,7 +230,8 @@ class Agent(BaseModel):
task_prompt += self.i18n.slice("memory").format(memory=memory)
tools = tools or self.tools
parsed_tools = self._parse_tools(tools)
parsed_tools = self._parse_tools(tools) # type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
@@ -218,6 +240,11 @@ class Agent(BaseModel):
self.agent_executor.tools_description = render_text_description(parsed_tools)
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
if self.crew and self.crew._train:
task_prompt = self._training_handler(task_prompt=task_prompt)
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -288,11 +315,17 @@ class Agent(BaseModel):
}
if self._rpm_controller:
executor_args[
"request_within_rpm_limit"
] = self._rpm_controller.check_or_wait
executor_args["request_within_rpm_limit"] = (
self._rpm_controller.check_or_wait
)
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
prompt = Prompts(
i18n=self.i18n,
tools=tools,
system_template=self.system_template,
prompt_template=self.prompt_template,
response_template=self.response_template,
).task_execution()
execution_prompt = prompt.partial(
goal=self.goal,
@@ -300,7 +333,13 @@ class Agent(BaseModel):
backstory=self.backstory,
)
bind = self.llm.bind(stop=[self.i18n.slice("observation")])
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
bind = self.llm.bind(stop=stop_words)
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
self.agent_executor = CrewAgentExecutor(
agent=RunnableAgent(runnable=inner_agent), **executor_args
@@ -337,7 +376,29 @@ class Agent(BaseModel):
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
def copy(self):
"""Create a deep copy of the Agent."""
exclude = {
"id",
"_logger",
"_rpm_controller",
"_request_within_rpm_limit",
"_token_process",
"agent_executor",
"tools",
"tools_handler",
"cache_handler",
}
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = Agent(**copied_data)
copied_agent.tools = deepcopy(self.tools)
return copied_agent
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
"""Parse tools to be used for the task."""
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
tools_list = []
@@ -349,11 +410,41 @@ class Agent(BaseModel):
tools_list.append(tool.to_langchain())
else:
tools_list.append(tool)
if self.allow_code_execution:
from crewai_tools.code_interpreter_tool import CodeInterpreterTool
tools_list.append(CodeInterpreterTool)
except ModuleNotFoundError:
for tool in tools:
tools_list.append(tool)
return tools_list
def _training_handler(self, task_prompt: str) -> str:
"""Handle training data for the agent task prompt to improve output on Training."""
if data := CrewTrainingHandler(TRAINING_DATA_FILE).load():
agent_id = str(self.id)
if data.get(agent_id):
human_feedbacks = [
i["human_feedback"] for i in data.get(agent_id, {}).values()
]
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
human_feedbacks
)
return task_prompt
def _use_trained_data(self, task_prompt: str) -> str:
"""Use trained data for the agent task prompt to improve output."""
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
if trained_data_output := data.get(self.role):
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
trained_data_output["suggestions"]
)
return task_prompt
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -18,8 +18,10 @@ from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.training_handler import CrewTrainingHandler
class CrewAgentExecutor(AgentExecutor):
@@ -35,11 +37,14 @@ class CrewAgentExecutor(AgentExecutor):
crew: Any = None
function_calling_llm: Any = None
request_within_rpm_limit: Any = None
tools_handler: InstanceOf[ToolsHandler] = None
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
max_iterations: Optional[int] = 15
have_forced_answer: bool = False
force_answer_max_iterations: Optional[int] = None
step_callback: Optional[Any] = None
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
@root_validator()
def set_force_answer_max_iterations(cls, values: Dict) -> Dict:
@@ -55,7 +60,7 @@ class CrewAgentExecutor(AgentExecutor):
if (
self.crew
and self.crew.memory
and "Action: Delegate work to co-worker" not in output.log
and "Action: Delegate work to coworker" not in output.log
):
memory = ShortTermMemoryItem(
data=output.log,
@@ -81,9 +86,7 @@ class CrewAgentExecutor(AgentExecutor):
datetime=str(time.time()),
expected_output=self.task.expected_output,
metadata={
"suggestions": "\n".join(
[f"- {s}" for s in evaluation.suggestions]
),
"suggestions": evaluation.suggestions,
"quality": evaluation.quality,
},
)
@@ -115,6 +118,7 @@ class CrewAgentExecutor(AgentExecutor):
# Allowing human input given task setting
if self.task.human_input:
self.should_ask_for_human_input = True
# Let's start tracking the number of iterations and time elapsed
self.iterations = 0
time_elapsed = 0.0
@@ -130,8 +134,10 @@ class CrewAgentExecutor(AgentExecutor):
intermediate_steps,
run_manager=run_manager,
)
if self.step_callback:
self.step_callback(next_step_output)
if isinstance(next_step_output, AgentFinish):
# Creating long term memory
create_long_term_memory = threading.Thread(
@@ -185,7 +191,7 @@ class CrewAgentExecutor(AgentExecutor):
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
# Call the LLM to see what to do.
output = self.agent.plan(
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
@@ -242,12 +248,17 @@ class CrewAgentExecutor(AgentExecutor):
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
human_feedback = self._ask_human_input(output.return_values["output"])
if self.crew and self.crew._train:
self._handle_crew_training_output(output, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.should_ask_for_human_input = False
human_feedback = self._ask_human_input(output.return_values["output"])
action = AgentAction(
tool="Human Input", tool_input=human_feedback, log=output.log
)
yield AgentStep(
action=action,
observation=self._i18n.slice("human_feedback").format(
@@ -257,6 +268,9 @@ class CrewAgentExecutor(AgentExecutor):
return
else:
if self.crew and self.crew._train:
self._handle_crew_training_output(output)
yield output
return
@@ -271,8 +285,8 @@ class CrewAgentExecutor(AgentExecutor):
run_manager.on_agent_action(agent_action, color="green")
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
@@ -294,7 +308,6 @@ class CrewAgentExecutor(AgentExecutor):
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
yield AgentStep(action=agent_action, observation=observation)
def _ask_human_input(self, final_answer: dict) -> str:
@@ -302,3 +315,31 @@ class CrewAgentExecutor(AgentExecutor):
return input(
self._i18n.slice("getting_input").format(final_answer=final_answer)
)
def _handle_crew_training_output(
self, output: AgentFinish, human_feedback: str | None = None
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.crew_agent.id)
if (
CrewTrainingHandler(TRAINING_DATA_FILE).load()
and not self.should_ask_for_human_input
):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if training_data.get(agent_id):
training_data[agent_id][self.crew._train_iteration][
"improved_output"
] = output.return_values["output"]
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
if self.should_ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": output.return_values["output"],
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.crew_agent.role,
}
CrewTrainingHandler(TRAINING_DATA_FILE).append(
self.crew._train_iteration, agent_id, training_data
)

View File

@@ -52,7 +52,6 @@ class CrewAgentParser(ReActSingleInputOutputParser):
action_input = action_match.group(2)
tool_input = action_input.strip(" ")
tool_input = tool_input.strip('"')
return AgentAction(action, tool_input, text)
elif includes_answer:

View File

@@ -8,13 +8,13 @@ from .cache.cache_handler import CacheHandler
class ToolsHandler:
"""Callback handler for tool usage."""
last_used_tool: ToolCalling = {}
cache: CacheHandler
last_used_tool: ToolCalling = {} # type: ignore # BUG?: Incompatible types in assignment (expression has type "Dict[...]", variable has type "ToolCalling")
cache: Optional[CacheHandler]
def __init__(self, cache: Optional[CacheHandler] = None):
"""Initialize the callback handler."""
self.cache = cache
self.last_used_tool = {}
self.last_used_tool = {} # type: ignore # BUG?: same as above
def on_tool_use(
self,
@@ -23,7 +23,7 @@ class ToolsHandler:
should_cache: bool = True,
) -> Any:
"""Run when tool ends running."""
self.last_used_tool = calling
self.last_used_tool = calling # type: ignore # BUG?: Incompatible types in assignment (expression has type "Union[ToolCalling, InstructorToolCalling]", variable has type "ToolCalling")
if self.cache and should_cache and calling.tool_name != CacheTools().name:
self.cache.add(
tool=calling.tool_name,

View File

@@ -1,6 +1,8 @@
import click
import pkg_resources
from .create_crew import create_crew
from .train_crew import train_crew
@click.group()
@@ -15,5 +17,36 @@ def create(project_name):
create_crew(project_name)
@crewai.command()
@click.option(
"--tools", is_flag=True, help="Show the installed version of crewai tools"
)
def version(tools):
"""Show the installed version of crewai."""
crewai_version = pkg_resources.get_distribution("crewai").version
click.echo(f"crewai version: {crewai_version}")
if tools:
try:
tools_version = pkg_resources.get_distribution("crewai-tools").version
click.echo(f"crewai tools version: {tools_version}")
except pkg_resources.DistributionNotFound:
click.echo("crewai tools not installed")
@crewai.command()
@click.option(
"-n",
"--n_iterations",
type=int,
default=5,
help="Number of iterations to train the crew",
)
def train(n_iterations: int):
"""Train the crew."""
click.echo(f"Training the crew for {n_iterations} iterations")
train_crew(n_iterations)
if __name__ == "__main__":
crewai()

View File

@@ -40,7 +40,7 @@ poetry run {{folder_name}}
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folser
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
@@ -51,7 +51,7 @@ The {{name}} Crew is composed of multiple AI agents, each with unique roles, goa
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Joing our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat wtih our docs](https://chatg.pt/DWjSBZn)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -1,4 +1,5 @@
#!/usr/bin/env python
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
@@ -7,4 +8,16 @@ def run():
inputs = {
'topic': 'AI LLMs'
}
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
def train():
"""
Train the crew for a given number of iterations.
"""
inputs = {"topic": "AI LLMs"}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")

View File

@@ -6,11 +6,12 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = {extras = ["tools"], version = "^0.27.0"}
crewai = { extras = ["tools"], version = "^0.32.2" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
build-backend = "poetry.core.masonry.api"

View File

@@ -3,7 +3,9 @@ from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -0,0 +1,29 @@
import subprocess
import click
def train_crew(n_iterations: int) -> None:
"""
Train the crew by running a command in the Poetry environment.
Args:
n_iterations (int): The number of iterations to train the crew.
"""
command = ["poetry", "run", "train", str(n_iterations)]
try:
if n_iterations <= 0:
raise ValueError("The number of iterations must be a positive integer.")
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while training the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -1,3 +1,4 @@
import asyncio
import json
import uuid
from typing import Any, Dict, List, Optional, Union
@@ -25,7 +26,9 @@ from crewai.process import Process
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, Logger, RPMController, FileHandler
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.training_handler import CrewTrainingHandler
class Crew(BaseModel):
@@ -36,6 +39,7 @@ class Crew(BaseModel):
tasks: List of tasks assigned to the crew.
agents: List of agents part of this crew.
manager_llm: The language model that will run manager agent.
manager_agent: Custom agent that will be used as manager.
memory: Whether the crew should use memory to store memories of it's execution.
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
cache: Whether the crew should use a cache to store the results of the tools execution.
@@ -44,11 +48,12 @@ class Crew(BaseModel):
verbose: Indicates the verbosity level for logging during execution.
config: Configuration settings for the crew.
max_rpm: Maximum number of requests per minute for the crew execution to be respected.
prompt_file: Path to the prompt json file to be used for the crew.
id: A unique identifier for the crew instance.
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
full_output: Whether the crew should return the full output with all tasks outputs and token usage metrics or just the final output.
task_callback: Callback to be executed after each task for every agents execution.
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
"""
__hash__ = object.__hash__ # type: ignore
@@ -60,6 +65,8 @@ class Crew(BaseModel):
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
cache: bool = Field(default=True)
model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -81,11 +88,14 @@ class Crew(BaseModel):
)
full_output: Optional[bool] = Field(
default=False,
description="Whether the crew should return the full output with all tasks outputs or just the final output.",
description="Whether the crew should return the full output with all tasks outputs and token usage metrics or just the final output.",
)
manager_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
manager_agent: Optional[Any] = Field(
description="Custom agent that will be used as manager.", default=None
)
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
default=None,
description="A list of callback handlers to be executed by the manager agent when hierarchical process is used",
@@ -108,13 +118,9 @@ class Crew(BaseModel):
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
)
language: str = Field(
default="en",
description="Language used for the crew, defaults to English.",
)
language_file: str = Field(
prompt_file: str = Field(
default=None,
description="Path to the language file to be used for the crew.",
description="Path to the prompt json file to be used for the crew.",
)
output_log_file: Optional[Union[bool, str]] = Field(
default=False,
@@ -163,19 +169,32 @@ class Crew(BaseModel):
"""Set private attributes."""
if self.memory:
self._long_term_memory = LongTermMemory()
self._short_term_memory = ShortTermMemory(embedder_config=self.embedder)
self._entity_memory = EntityMemory(embedder_config=self.embedder)
self._short_term_memory = ShortTermMemory(
crew=self, embedder_config=self.embedder
)
self._entity_memory = EntityMemory(crew=self, embedder_config=self.embedder)
return self
@model_validator(mode="after")
def check_manager_llm(self):
"""Validates that the language model is set when using hierarchical process."""
if self.process == Process.hierarchical and not self.manager_llm:
raise PydanticCustomError(
"missing_manager_llm",
"Attribute `manager_llm` is required when using hierarchical process.",
{},
)
if self.process == Process.hierarchical:
if not self.manager_llm and not self.manager_agent:
raise PydanticCustomError(
"missing_manager_llm_or_manager_agent",
"Attribute `manager_llm` or `manager_agent` is required when using hierarchical process.",
{},
)
if (self.manager_agent is not None) and (
self.agents.count(self.manager_agent) > 0
):
raise PydanticCustomError(
"manager_agent_in_agents",
"Manager agent should not be included in agents list.",
{},
)
return self
@model_validator(mode="after")
@@ -227,13 +246,46 @@ class Crew(BaseModel):
del task_config["agent"]
return Task(**task_config, agent=task_agent)
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
def _setup_for_training(self) -> None:
"""Sets up the crew for training."""
self._train = True
for task in self.tasks:
task.human_input = True
for agent in self.agents:
agent.allow_delegation = False
def train(self, n_iterations: int, inputs: Optional[Dict[str, Any]] = {}) -> None:
"""Trains the crew for a given number of iterations."""
self._setup_for_training()
for n_iteration in range(n_iterations):
self._train_iteration = n_iteration
self.kickoff(inputs=inputs)
training_data = CrewTrainingHandler("training_data.pkl").load()
for agent in self.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler("trained_agents_data.pkl").save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = {},
) -> Union[str, Dict[str, Any]]:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self)
self._interpolate_inputs(inputs)
self._interpolate_inputs(inputs) # type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
self._set_tasks_callbacks()
i18n = I18N(language=self.language, language_file=self.language_file)
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
agent.i18n = i18n
@@ -251,9 +303,8 @@ class Crew(BaseModel):
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result, manager_metrics = self._run_hierarchical_process()
metrics.append(manager_metrics)
result, manager_metrics = self._run_hierarchical_process() # type: ignore # Unpacking a string is disallowed
metrics.append(manager_metrics) # type: ignore # Cannot determine type of "manager_metrics"
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
@@ -263,16 +314,57 @@ class Crew(BaseModel):
agent._token_process.get_summary() for agent in self.agents
]
self.usage_metrics = {
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
key: sum([m[key] for m in metrics if m is not None]) # type: ignore # List comprehension has incompatible type List[Any | str]; expected List[bool]
for key in metrics[0]
}
return result
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
results = []
for input_data in inputs:
crew = self.copy()
for task in crew.tasks:
task.interpolate_inputs(input_data)
for agent in crew.agents:
agent.interpolate_inputs(input_data)
output = crew.kickoff()
results.append(output)
return results
async def kickoff_async(
self, inputs: Optional[Dict[str, Any]] = {}
) -> Union[str, Dict]:
"""Asynchronous kickoff method to start the crew execution."""
return await asyncio.to_thread(self.kickoff, inputs)
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[Any]:
async def run_crew(input_data):
crew = self.copy()
for task in crew.tasks:
task.interpolate_inputs(input_data)
for agent in crew.agents:
agent.interpolate_inputs(input_data)
return await crew.kickoff_async()
tasks = [asyncio.create_task(run_crew(input_data)) for input_data in inputs]
results = await asyncio.gather(*tasks)
return results
def _run_sequential_process(self) -> str:
"""Executes tasks sequentially and returns the final output."""
task_output = ""
for task in self.tasks:
if task.agent.allow_delegation:
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
@@ -291,6 +383,7 @@ class Crew(BaseModel):
)
output = task.execute(context=task_output)
if not task.async_execution:
task_output = output
@@ -301,20 +394,30 @@ class Crew(BaseModel):
self._file_handler.log(agent=role, task=task_output, status="completed")
self._finish_execution(task_output)
return self._format_output(task_output)
def _run_hierarchical_process(self) -> str:
token_usage = task.agent._token_process.get_summary() # type: ignore # Item "None" of "Agent | None" has no attribute "_token_process"
return self._format_output(task_output, token_usage) # type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
def _run_hierarchical_process(self) -> Union[str, Dict[str, Any]]:
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
i18n = I18N(language=self.language, language_file=self.language_file)
manager = Agent(
role=i18n.retrieve("hierarchical_manager_agent", "role"),
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
tools=AgentTools(agents=self.agents).tools(),
llm=self.manager_llm,
verbose=True,
)
i18n = I18N(prompt_file=self.prompt_file)
if self.manager_agent is not None:
self.manager_agent.allow_delegation = True
manager = self.manager_agent
if len(manager.tools) > 0:
raise Exception("Manager agent should not have tools")
manager.tools = AgentTools(agents=self.agents).tools()
else:
manager = Agent(
role=i18n.retrieve("hierarchical_manager_agent", "role"),
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
tools=AgentTools(agents=self.agents).tools(),
llm=self.manager_llm,
verbose=True,
)
task_output = ""
for task in self.tasks:
@@ -330,7 +433,7 @@ class Crew(BaseModel):
agent=manager, context=task_output, tools=manager.tools
)
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
self._logger.log("debug", f"[{manager.role}] Task ouptput: {task_output}")
if self.output_log_file:
self._file_handler.log(
@@ -338,24 +441,72 @@ class Crew(BaseModel):
)
self._finish_execution(task_output)
return self._format_output(task_output), manager._token_process.get_summary()
def _set_tasks_callbacks(self) -> str:
manager_token_usage = manager._token_process.get_summary()
return self._format_output( # type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
task_output, manager_token_usage
), manager_token_usage
def copy(self):
"""Create a deep copy of the Crew."""
exclude = {
"id",
"_rpm_controller",
"_logger",
"_execution_span",
"_file_handler",
"_cache_handler",
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"agents",
"tasks",
}
cloned_agents = [agent.copy() for agent in self.agents]
cloned_tasks = [task.copy() for task in self.tasks]
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
return copied_crew
def _set_tasks_callbacks(self) -> None:
"""Sets callback for every task suing task_callback"""
for task in self.tasks:
task.callback = self.task_callback
if not task.callback:
task.callback = self.task_callback
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[task.interpolate_inputs(inputs) for task in self.tasks]
[agent.interpolate_inputs(inputs) for agent in self.agents]
[
task.interpolate_inputs(
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
inputs
)
for task in self.tasks
]
def _format_output(self, output: str) -> str:
"""Formats the output of the crew execution."""
[agent.interpolate_inputs(inputs) for agent in self.agents] # type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
def _format_output(
self, output: str, token_usage: Optional[Dict[str, Any]]
) -> Union[str, Dict[str, Any]]:
"""
Formats the output of the crew execution.
If full_output is True, then returned data type will be a dictionary else returned outputs are string
"""
if self.full_output:
return {
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
"final_output": output,
"tasks_outputs": [task.output for task in self.tasks if task],
"usage_metrics": token_usage,
}
else:
return output

View File

@@ -1,3 +1,5 @@
from typing import Optional
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
@@ -32,18 +34,23 @@ class ContextualMemory:
formatted_results = "\n".join([f"- {result}" for result in stm_results])
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> str:
def _fetch_ltm_context(self, task) -> Optional[str]:
"""
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
"""
ltm_results = self.ltm.search(task)
ltm_results = self.ltm.search(task, latest_n=2)
if not ltm_results:
return None
formatted_results = "\n".join(
[f"{result['metadata']['suggestions']}" for result in ltm_results]
)
formatted_results = list(set(formatted_results))
formatted_results = [
suggestion
for result in ltm_results
for suggestion in result["metadata"]["suggestions"] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
]
formatted_results = list(dict.fromkeys(formatted_results))
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query) -> str:
@@ -53,6 +60,6 @@ class ContextualMemory:
"""
em_results = self.em.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in em_results]
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
)
return f"Entities:\n{formatted_results}" if em_results else ""

View File

@@ -10,13 +10,16 @@ class EntityMemory(Memory):
Inherits from the Memory class.
"""
def __init__(self, embedder_config=None):
def __init__(self, crew=None, embedder_config=None):
storage = RAGStorage(
type="entities", allow_reset=False, embedder_config=embedder_config
type="entities",
allow_reset=False,
embedder_config=embedder_config,
crew=crew,
)
super().__init__(storage)
def save(self, item: EntityMemoryItem) -> None:
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)

View File

@@ -18,15 +18,15 @@ class LongTermMemory(Memory):
storage = LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None:
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
metadata = item.metadata
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
self.storage.save(
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
task_description=item.task,
score=metadata["quality"],
metadata=metadata,
datetime=item.datetime,
)
def search(self, task: str) -> Dict[str, Any]:
return self.storage.load(task)
def search(self, task: str, latest_n: int = 3) -> Dict[str, Any]:
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, Union
from typing import Any, Dict, Optional, Union
class LongTermMemoryItem:
@@ -8,8 +8,8 @@ class LongTermMemoryItem:
task: str,
expected_output: str,
datetime: str,
quality: Union[int, float] = None,
metadata: Dict[str, Any] = None,
quality: Optional[Union[int, float]] = None,
metadata: Optional[Dict[str, Any]] = None,
):
self.task = task
self.agent = agent

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict
from typing import Any, Dict, Optional
from crewai.memory.storage.interface import Storage
@@ -12,12 +12,16 @@ class Memory:
self.storage = storage
def save(
self, value: Any, metadata: Dict[str, Any] = None, agent: str = None
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
metadata = metadata or {}
if agent:
metadata["agent"] = agent
self.storage.save(value, metadata)
self.storage.save(value, metadata) # type: ignore # Maybe BUG? Should be self.storage.save(key, value, metadata)
def search(self, query: str) -> Dict[str, Any]:
return self.storage.search(query)

View File

@@ -12,12 +12,14 @@ class ShortTermMemory(Memory):
MemoryItem instances.
"""
def __init__(self, embedder_config=None):
storage = RAGStorage(type="short_term", embedder_config=embedder_config)
def __init__(self, crew=None, embedder_config=None):
storage = RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
)
super().__init__(storage)
def save(self, item: ShortTermMemoryItem) -> None:
def save(self, item: ShortTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
super().save(item.data, item.metadata, item.agent)
def search(self, query: str, score_threshold: float = 0.35):
return self.storage.search(query=query, score_threshold=score_threshold)
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters

View File

@@ -1,8 +1,10 @@
from typing import Any, Dict
from typing import Any, Dict, Optional
class ShortTermMemoryItem:
def __init__(self, data: Any, agent: str, metadata: Dict[str, Any] = None):
def __init__(
self, data: Any, agent: str, metadata: Optional[Dict[str, Any]] = None
):
self.data = data
self.agent = agent
self.metadata = metadata if metadata is not None else {}

View File

@@ -7,5 +7,5 @@ class Storage:
def save(self, key: str, value: Any, metadata: Dict[str, Any]) -> None:
pass
def search(self, key: str) -> Dict[str, Any]:
def search(self, key: str) -> Dict[str, Any]: # type: ignore
pass

View File

@@ -1,6 +1,6 @@
import json
import sqlite3
from typing import Any, Dict, Union
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
from crewai.utilities.paths import db_storage_path
@@ -11,7 +11,9 @@ class LTMSQLiteStorage:
An updated SQLite storage class for LTM data storage.
"""
def __init__(self, db_path=f"{db_storage_path()}/long_term_memory_storage.db"):
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
@@ -67,19 +69,21 @@ class LTMSQLiteStorage:
color="red",
)
def load(self, task_description: str) -> Dict[str, Any]:
def load(
self, task_description: str, latest_n: int
) -> Optional[List[Dict[str, Any]]]:
"""Queries the LTM table by task description with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
SELECT metadata, datetime, score
FROM long_term_memories
WHERE task_description = ?
ORDER BY datetime DESC, score ASC
LIMIT 2
""",
f"""
SELECT metadata, datetime, score
FROM long_term_memories
WHERE task_description = ?
ORDER BY datetime DESC, score ASC
LIMIT {latest_n}
""",
(task_description,),
)
rows = cursor.fetchall()

View File

@@ -2,7 +2,7 @@ import contextlib
import io
import logging
import os
from typing import Any, Dict
from typing import Any, Dict, List, Optional
from embedchain import App
from embedchain.llm.base import BaseLlm
@@ -37,13 +37,18 @@ class RAGStorage(Storage):
search efficiency.
"""
def __init__(self, type, allow_reset=True, embedder_config=None):
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None):
super().__init__()
if (
not os.getenv("OPENAI_API_KEY")
and not os.getenv("OPENAI_BASE_URL") == "https://api.openai.com/v1"
):
os.environ["OPENAI_API_KEY"] = "fake"
agents = crew.agents if crew else []
agents = [agent.role for agent in agents]
agents = "_".join(agents)
config = {
"app": {
"config": {"name": type, "collect_metrics": False, "log_level": "ERROR"}
@@ -58,7 +63,7 @@ class RAGStorage(Storage):
"provider": "chroma",
"config": {
"collection_name": type,
"dir": f"{db_storage_path()}/{type}",
"dir": f"{db_storage_path()}/{type}/{agents}",
"allow_reset": allow_reset,
},
},
@@ -72,16 +77,16 @@ class RAGStorage(Storage):
if allow_reset:
self.app.reset()
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
def save(self, value: Any, metadata: Dict[str, Any]) -> None: # type: ignore # BUG?: Should be save(key, value, metadata) Signature of "save" incompatible with supertype "Storage"
self._generate_embedding(value, metadata)
def search(
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage"
self,
query: str,
limit: int = 3,
filter: dict = None,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> Dict[str, Any]:
) -> List[Any]:
with suppress_logging():
try:
results = (

View File

@@ -1,14 +1,32 @@
tasks_order = []
def memoize(func):
cache = {}
def memoized_func(*args, **kwargs):
key = (args, tuple(kwargs.items()))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
memoized_func.__dict__.update(func.__dict__)
return memoized_func
def task(func):
if not hasattr(task, "registration_order"):
task.registration_order = []
func.is_task = True
tasks_order.append(func.__name__)
return func
wrapped_func = memoize(func)
# Append the function name to the registration order list
task.registration_order.append(func.__name__)
return wrapped_func
def agent(func):
func.is_agent = True
func = memoize(func)
return func
@@ -18,26 +36,43 @@ def crew(func):
instantiated_agents = []
agent_roles = set()
# Iterate over tasks_order to maintain the defined order
for task_name in tasks_order:
possible_task = getattr(self, task_name)
if callable(possible_task):
task_instance = possible_task()
instantiated_tasks.append(task_instance)
if hasattr(task_instance, "agent"):
agent_instance = task_instance.agent
if agent_instance.role not in agent_roles:
instantiated_agents.append(agent_instance)
agent_roles.add(agent_instance.role)
all_functions = {
name: getattr(self, name)
for name in dir(self)
if callable(getattr(self, name))
}
tasks = {
name: func
for name, func in all_functions.items()
if hasattr(func, "is_task")
}
agents = {
name: func
for name, func in all_functions.items()
if hasattr(func, "is_agent")
}
# Sort tasks by their registration order
sorted_task_names = sorted(
tasks, key=lambda name: task.registration_order.index(name)
)
# Instantiate tasks in the order they were defined
for task_name in sorted_task_names:
task_instance = tasks[task_name]()
instantiated_tasks.append(task_instance)
if hasattr(task_instance, "agent"):
agent_instance = task_instance.agent
if agent_instance.role not in agent_roles:
instantiated_agents.append(agent_instance)
agent_roles.add(agent_instance.role)
# Instantiate any additional agents not already included by tasks
for attr_name in dir(self):
possible_agent = getattr(self, attr_name)
if callable(possible_agent) and hasattr(possible_agent, "is_agent"):
temp_agent_instance = possible_agent()
if temp_agent_instance.role not in agent_roles:
instantiated_agents.append(temp_agent_instance)
agent_roles.add(temp_agent_instance.role)
for agent_name in agents:
temp_agent_instance = agents[agent_name]()
if temp_agent_instance.role not in agent_roles:
instantiated_agents.append(temp_agent_instance)
agent_roles.add(temp_agent_instance.role)
self.agents = instantiated_agents
self.tasks = instantiated_tasks

View File

@@ -4,13 +4,15 @@ from pathlib import Path
import yaml
from dotenv import load_dotenv
from pydantic import ConfigDict
load_dotenv()
def CrewBase(cls):
class WrappedClass(cls):
is_crew_class = True
model_config = ConfigDict(arbitrary_types_allowed=True)
is_crew_class: bool = True # type: ignore
base_directory = None
for frame_info in inspect.stack():
@@ -40,6 +42,7 @@ def CrewBase(cls):
@staticmethod
def load_yaml(config_path: str):
with open(config_path, "r") as file:
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
return WrappedClass

View File

@@ -1,5 +1,8 @@
import os
import re
import threading
import uuid
from copy import deepcopy
from typing import Any, Dict, List, Optional, Type
from langchain_openai import ChatOpenAI
@@ -39,7 +42,7 @@ class Task(BaseModel):
tools_errors: int = 0
delegations: int = 0
i18n: I18N = I18N()
thread: threading.Thread = None
thread: Optional[threading.Thread] = None
prompt_context: Optional[str] = None
description: str = Field(description="Description of the actual task.")
expected_output: str = Field(
@@ -107,6 +110,14 @@ class Task(BaseModel):
"may_not_set_field", "This field is not to be set by the user.", {}
)
@field_validator("output_file")
@classmethod
def output_file_validattion(cls, value: str) -> str:
"""Validate the output file path by removing the / from the beginning of the path."""
if value.startswith("/"):
return value[1:]
return value
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Task":
"""Set attributes based on the agent configuration."""
@@ -134,7 +145,7 @@ class Task(BaseModel):
)
return self
def execute(
def execute( # type: ignore # Missing return statement
self,
agent: Agent | None = None,
context: Optional[str] = None,
@@ -153,13 +164,13 @@ class Task(BaseModel):
)
if self.context:
context = []
context = [] # type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
for task in self.context:
if task.async_execution:
task.thread.join()
task.thread.join() # type: ignore # Item "None" of "Thread | None" has no attribute "join"
if task and task.output:
context.append(task.output.raw_output)
context = "\n".join(context)
context.append(task.output.raw_output) # type: ignore # Item "str" of "str | None" has no attribute "append"
context = "\n".join(context) # type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
self.prompt_context = context
tools = tools or self.tools
@@ -191,6 +202,7 @@ class Task(BaseModel):
description=self.description,
exported_output=exported_output,
raw_output=result,
agent=agent.role,
)
if self.callback:
@@ -231,6 +243,32 @@ class Task(BaseModel):
"""Increment the delegations counter."""
self.delegations += 1
def copy(self):
"""Create a deep copy of the Task."""
exclude = {
"id",
"agent",
"context",
"tools",
}
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
cloned_context = (
[task.copy() for task in self.context] if self.context else None
)
cloned_agent = self.agent.copy() if self.agent else None
cloned_tools = deepcopy(self.tools) if self.tools else None
copied_task = Task(
**copied_data,
context=cloned_context,
agent=cloned_agent,
tools=cloned_tools,
)
return copied_task
def _export_output(self, result: str) -> Any:
exported_result = result
instructions = "I'm gonna convert this raw text into valid JSON."
@@ -240,17 +278,26 @@ class Task(BaseModel):
# try to convert task_output directly to pydantic/json
try:
exported_result = model.model_validate_json(result)
exported_result = model.model_validate_json(result) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
if self.output_json:
return exported_result.model_dump()
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result
except Exception:
pass
# sometimes the response contains valid JSON in the middle of text
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0)) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
if self.output_json:
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result
except Exception:
pass
llm = self.agent.function_calling_llm or self.agent.llm
llm = self.agent.function_calling_llm or self.agent.llm # type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
model_schema = PydanticSchemaParser(model=model).get_schema() # type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
@@ -271,17 +318,22 @@ class Task(BaseModel):
if self.output_file:
content = (
exported_result if not self.output_pydantic else exported_result.json()
exported_result if not self.output_pydantic else exported_result.json() # type: ignore # "str" has no attribute "json"
)
self._save_file(content)
return exported_result
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _save_file(self, result: Any) -> None:
with open(self.output_file, "w") as file:
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w", encoding="utf-8") as file: # type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
file.write(result)
return None

View File

@@ -11,6 +11,7 @@ class TaskOutput(BaseModel):
exported_output: Union[str, BaseModel] = Field(
description="Output of the task", default=None
)
agent: str = Field(description="Agent that executed the task")
raw_output: str = Field(description="Result of the task")
@model_validator(mode="after")

View File

@@ -1,46 +0,0 @@
-----BEGIN CERTIFICATE-----
MIIDqDCCAy6gAwIBAgIRAPNkTmtuAFAjfglGvXvh9R0wCgYIKoZIzj0EAwMwgYgx
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpOZXcgSmVyc2V5MRQwEgYDVQQHEwtKZXJz
ZXkgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMS4wLAYDVQQD
EyVVU0VSVHJ1c3QgRUNDIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MB4XDTE4MTEw
MjAwMDAwMFoXDTMwMTIzMTIzNTk1OVowgY8xCzAJBgNVBAYTAkdCMRswGQYDVQQI
ExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGDAWBgNVBAoT
D1NlY3RpZ28gTGltaXRlZDE3MDUGA1UEAxMuU2VjdGlnbyBFQ0MgRG9tYWluIFZh
bGlkYXRpb24gU2VjdXJlIFNlcnZlciBDQTBZMBMGByqGSM49AgEGCCqGSM49AwEH
A0IABHkYk8qfbZ5sVwAjBTcLXw9YWsTef1Wj6R7W2SUKiKAgSh16TwUwimNJE4xk
IQeV/To14UrOkPAY9z2vaKb71EijggFuMIIBajAfBgNVHSMEGDAWgBQ64QmG1M8Z
wpZ2dEl23OA1xmNjmjAdBgNVHQ4EFgQU9oUKOxGG4QR9DqoLLNLuzGR7e64wDgYD
VR0PAQH/BAQDAgGGMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0lBBYwFAYIKwYB
BQUHAwEGCCsGAQUFBwMCMBsGA1UdIAQUMBIwBgYEVR0gADAIBgZngQwBAgEwUAYD
VR0fBEkwRzBFoEOgQYY/aHR0cDovL2NybC51c2VydHJ1c3QuY29tL1VTRVJUcnVz
dEVDQ0NlcnRpZmljYXRpb25BdXRob3JpdHkuY3JsMHYGCCsGAQUFBwEBBGowaDA/
BggrBgEFBQcwAoYzaHR0cDovL2NydC51c2VydHJ1c3QuY29tL1VTRVJUcnVzdEVD
Q0FkZFRydXN0Q0EuY3J0MCUGCCsGAQUFBzABhhlodHRwOi8vb2NzcC51c2VydHJ1
c3QuY29tMAoGCCqGSM49BAMDA2gAMGUCMEvnx3FcsVwJbZpCYF9z6fDWJtS1UVRs
cS0chWBNKPFNpvDKdrdKRe+oAkr2jU+ubgIxAODheSr2XhcA7oz9HmedGdMhlrd9
4ToKFbZl+/OnFFzqnvOhcjHvClECEQcKmc8fmA==
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIID0zCCArugAwIBAgIQVmcdBOpPmUxvEIFHWdJ1lDANBgkqhkiG9w0BAQwFADB7
MQswCQYDVQQGEwJHQjEbMBkGA1UECAwSR3JlYXRlciBNYW5jaGVzdGVyMRAwDgYD
VQQHDAdTYWxmb3JkMRowGAYDVQQKDBFDb21vZG8gQ0EgTGltaXRlZDEhMB8GA1UE
AwwYQUFBIENlcnRpZmljYXRlIFNlcnZpY2VzMB4XDTE5MDMxMjAwMDAwMFoXDTI4
MTIzMTIzNTk1OVowgYgxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpOZXcgSmVyc2V5
MRQwEgYDVQQHEwtKZXJzZXkgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBO
ZXR3b3JrMS4wLAYDVQQDEyVVU0VSVHJ1c3QgRUNDIENlcnRpZmljYXRpb24gQXV0
aG9yaXR5MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEGqxUWqn5aCPnetUkb1PGWthL
q8bVttHmc3Gu3ZzWDGH926CJA7gFFOxXzu5dP+Ihs8731Ip54KODfi2X0GHE8Znc
JZFjq38wo7Rw4sehM5zzvy5cU7Ffs30yf4o043l5o4HyMIHvMB8GA1UdIwQYMBaA
FKARCiM+lvEH7OKvKe+CpX/QMKS0MB0GA1UdDgQWBBQ64QmG1M8ZwpZ2dEl23OA1
xmNjmjAOBgNVHQ8BAf8EBAMCAYYwDwYDVR0TAQH/BAUwAwEB/zARBgNVHSAECjAI
MAYGBFUdIAAwQwYDVR0fBDwwOjA4oDagNIYyaHR0cDovL2NybC5jb21vZG9jYS5j
b20vQUFBQ2VydGlmaWNhdGVTZXJ2aWNlcy5jcmwwNAYIKwYBBQUHAQEEKDAmMCQG
CCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wDQYJKoZIhvcNAQEM
BQADggEBABns652JLCALBIAdGN5CmXKZFjK9Dpx1WywV4ilAbe7/ctvbq5AfjJXy
ij0IckKJUAfiORVsAYfZFhr1wHUrxeZWEQff2Ji8fJ8ZOd+LygBkc7xGEJuTI42+
FsMuCIKchjN0djsoTI0DQoWz4rIjQtUfenVqGtF8qmchxDM6OW1TyaLtYiKou+JV
bJlsQ2uRl9EMC5MCHdK8aXdJ5htN978UeAOwproLtOGFfy/cQjutdAFI3tZs4RmY
CV4Ks2dH/hzg1cEo70qLRDEmBDeNiXQ2Lu+lIg+DdEmSx/cQwgwp+7e9un/jX9Wf
8qn0dNW44bOwgeThpWOjzOoEeJBuv/c=
-----END CERTIFICATE-----

View File

@@ -1,5 +1,4 @@
import asyncio
import importlib.resources
import json
import os
import platform
@@ -41,19 +40,17 @@ class Telemetry:
def __init__(self):
self.ready = False
self.trace_set = False
try:
telemetry_endpoint = "https://telemetry.crewai.com:4319"
self.resource = Resource(
attributes={SERVICE_NAME: "crewAI-telemetry"},
)
self.provider = TracerProvider(resource=self.resource)
cert_file = importlib.resources.files("crewai.telemetry").joinpath(
"STAR_crewai_com_bundle.pem"
)
processor = BatchSpanProcessor(
OTLPSpanExporter(
endpoint=f"{telemetry_endpoint}/v1/traces",
certificate_file=cert_file,
timeout=30,
)
)
@@ -69,13 +66,13 @@ class Telemetry:
self.ready = False
def set_tracer(self):
if self.ready:
provider = trace.get_tracer_provider()
if provider is None:
try:
trace.set_tracer_provider(self.provider)
except Exception:
self.ready = False
if self.ready and not self.trace_set:
try:
trace.set_tracer_provider(self.provider)
self.trace_set = True
except Exception:
self.ready = False
self.trace_set = False
def crew_creation(self, crew):
"""Records the creation of a crew."""
@@ -91,7 +88,10 @@ class Telemetry:
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_language", crew.language)
self._add_attribute(
span, "crew_language", crew.prompt_file if crew.i18n else "None"
)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
self._add_attribute(
@@ -102,11 +102,10 @@ class Telemetry:
{
"id": str(agent.id),
"role": agent.role,
"memory_enabled?": agent.memory,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"i18n": agent.i18n.language,
"i18n": agent.i18n.prompt_file,
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
"delegation_enabled?": agent.allow_delegation,
"tools_names": [
@@ -150,11 +149,17 @@ class Telemetry:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Repeated Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
)
if llm:
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
@@ -166,11 +171,17 @@ class Telemetry:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "tool_name", tool_name)
self._add_attribute(span, "attempts", attempts)
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
)
if llm:
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
@@ -183,8 +194,14 @@ class Telemetry:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Tool Usage Error")
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
if llm:
self._add_attribute(
span, "llm", json.dumps(self._safe_llm_attributes(llm))
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
@@ -198,6 +215,11 @@ class Telemetry:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(
span,
@@ -209,11 +231,10 @@ class Telemetry:
"role": agent.role,
"goal": agent.goal,
"backstory": agent.backstory,
"memory_enabled?": agent.memory,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"i18n": agent.i18n.language,
"i18n": agent.i18n.prompt_file,
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
"delegation_enabled?": agent.allow_delegation,
"tools_names": [
@@ -235,9 +256,11 @@ class Telemetry:
"async_execution?": task.async_execution,
"output": task.expected_output,
"agent_role": task.agent.role if task.agent else "None",
"context": [task.description for task in task.context]
if task.context
else "None",
"context": (
[task.description for task in task.context]
if task.context
else "None"
),
"tools_names": [
tool.name.casefold() for tool in task.tools
],
@@ -253,6 +276,11 @@ class Telemetry:
def end_crew(self, crew, output):
if (self.ready) and (crew.share_crew):
try:
self._add_attribute(
crew._execution_span,
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(crew._execution_span, "crew_output", output)
self._add_attribute(
crew._execution_span,
@@ -282,6 +310,8 @@ class Telemetry:
def _safe_llm_attributes(self, llm):
attributes = ["name", "model_name", "base_url", "model", "top_k", "temperature"]
safe_attributes = {k: v for k, v in vars(llm).items() if k in attributes}
safe_attributes["class"] = llm.__class__.__name__
return safe_attributes
if llm:
safe_attributes = {k: v for k, v in vars(llm).items() if k in attributes}
safe_attributes["class"] = llm.__class__.__name__
return safe_attributes
return {}

View File

@@ -1,4 +1,4 @@
from typing import List
from typing import List, Union
from langchain.tools import StructuredTool
from pydantic import BaseModel, Field
@@ -18,14 +18,14 @@ class AgentTools(BaseModel):
tools = [
StructuredTool.from_function(
func=self.delegate_work,
name="Delegate work to co-worker",
name="Delegate work to coworker",
description=self.i18n.tools("delegate_work").format(
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
),
),
StructuredTool.from_function(
func=self.ask_question,
name="Ask question to co-worker",
name="Ask question to coworker",
description=self.i18n.tools("ask_question").format(
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
),
@@ -33,23 +33,57 @@ class AgentTools(BaseModel):
]
return tools
def delegate_work(self, coworker: str, task: str, context: str):
def delegate_work(
self,
task: str,
context: Union[str, None] = None,
coworker: Union[str, None] = None,
**kwargs,
):
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, task, context)
def ask_question(self, coworker: str, question: str, context: str):
def ask_question(
self,
question: str,
context: Union[str, None] = None,
coworker: Union[str, None] = None,
**kwargs,
):
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, question, context)
def _execute(self, agent, task, context):
def _execute(self, agent: Union[str, None], task: str, context: Union[str, None]):
"""Execute the command."""
try:
agent = [
if agent is None:
agent = ""
# It is important to remove the quotes from the agent name.
# The reason we have to do this is because less-powerful LLM's
# have difficulty producing valid JSON.
# As a result, we end up with invalid JSON that is truncated like this:
# {"task": "....", "coworker": "....
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent.casefold().replace('"', "").replace("\n", "")
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[Agent]", variable has type "str | None")
available_agent
for available_agent in self.agents
if available_agent.role.casefold().strip() == agent.casefold().strip()
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except:
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
@@ -64,9 +98,9 @@ class AgentTools(BaseModel):
)
agent = agent[0]
task = Task(
task = Task( # type: ignore # Incompatible types in assignment (expression has type "Task", variable has type "str")
description=task,
agent=agent,
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
)
return agent.execute_task(task, context)
return agent.execute_task(task, context) # type: ignore # "str" has no attribute "execute_task"

View File

@@ -1,4 +1,5 @@
import ast
from difflib import SequenceMatcher
from textwrap import dedent
from typing import Any, List, Union
@@ -26,13 +27,13 @@ class ToolUsage:
Class that represents the usage of a tool by an agent.
Attributes:
task: Task being executed.
tools_handler: Tools handler that will manage the tool usage.
tools: List of tools available for the agent.
original_tools: Original tools available for the agent before being converted to BaseTool.
tools_description: Description of the tools available for the agent.
tools_names: Names of the tools available for the agent.
function_calling_llm: Language model to be used for the tool usage.
task: Task being executed.
tools_handler: Tools handler that will manage the tool usage.
tools: List of tools available for the agent.
original_tools: Original tools available for the agent before being converted to BaseTool.
tools_description: Description of the tools available for the agent.
tools_names: Names of the tools available for the agent.
function_calling_llm: Language model to be used for the tool usage.
"""
def __init__(
@@ -63,7 +64,7 @@ class ToolUsage:
# Set the maximum parsing attempts for bigger models
if (isinstance(self.function_calling_llm, ChatOpenAI)) and (
self.function_calling_llm.openai_api_base == None
self.function_calling_llm.openai_api_base is None
):
if self.function_calling_llm.model_name in OPENAI_BIGGER_MODELS:
self._max_parsing_attempts = 2
@@ -81,6 +82,8 @@ class ToolUsage:
self._printer.print(content=f"\n\n{error}\n", color="red")
self.task.increment_tools_errors()
return error
# BUG? The code below seems to be unreachable
try:
tool = self._select_tool(calling.tool_name)
except Exception as e:
@@ -88,15 +91,15 @@ class ToolUsage:
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
def _use(
self,
tool_string: str,
tool: BaseTool,
calling: Union[ToolCalling, InstructorToolCalling],
) -> None:
if self._check_tool_repeated_usage(calling=calling):
) -> None: # TODO: Fix this return type
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
tool_names=self.tools_names
@@ -107,29 +110,30 @@ class ToolUsage:
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result)
return result
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # Fix the reutrn type of this function
except Exception:
self.task.increment_tools_errors()
result = None
result = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
if self.tools_handler.cache:
result = self.tools_handler.cache.read(
result = self.tools_handler.cache.read( # type: ignore # Incompatible types in assignment (expression has type "str | None", variable has type "str")
tool=calling.tool_name, input=calling.arguments
)
if not result:
try:
if calling.tool_name in [
"Delegate work to co-worker",
"Ask question to co-worker",
"Delegate work to coworker",
"Ask question to coworker",
]:
self.task.increment_delegations()
if calling.arguments:
try:
acceptable_args = tool.args_schema.schema()["properties"].keys()
acceptable_args = tool.args_schema.schema()["properties"].keys() # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "schema"
arguments = {
k: v
for k, v in calling.arguments.items()
@@ -141,7 +145,7 @@ class ToolUsage:
arguments = calling.arguments
result = tool._run(**arguments)
else:
arguments = calling.arguments.values()
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
result = tool._run(*arguments)
else:
result = tool._run()
@@ -157,9 +161,10 @@ class ToolUsage:
).message
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error_message}\n", color="red")
return error
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
return self.use(calling=calling, tool_string=tool_string)
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
if self.tools_handler:
should_cache = True
@@ -168,9 +173,9 @@ class ToolUsage:
)
if (
hasattr(original_tool, "cache_function")
and original_tool.cache_function
and original_tool.cache_function # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
should_cache = original_tool.cache_function(
should_cache = original_tool.cache_function( # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
calling.arguments, result
)
@@ -184,13 +189,13 @@ class ToolUsage:
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result)
return result
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # No return value expected
def _format_result(self, result: Any) -> None:
self.task.used_tools += 1
if self._should_remember_format():
result = self._remember_format(result=result)
if self._should_remember_format(): # type: ignore # "_should_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
return result
def _should_remember_format(self) -> None:
@@ -201,26 +206,39 @@ class ToolUsage:
result += "\n\n" + self._i18n.slice("tools").format(
tools=self.tools_description, tool_names=self.tools_names
)
return result
return result # type: ignore # No return value expected
def _check_tool_repeated_usage(
self, calling: Union[ToolCalling, InstructorToolCalling]
) -> None:
if not self.tools_handler:
return False
return False # type: ignore # No return value expected
if last_tool_usage := self.tools_handler.last_used_tool:
return (calling.tool_name == last_tool_usage.tool_name) and (
return (calling.tool_name == last_tool_usage.tool_name) and ( # type: ignore # No return value expected
calling.arguments == last_tool_usage.arguments
)
def _select_tool(self, tool_name: str) -> BaseTool:
for tool in self.tools:
if tool.name.lower().strip() == tool_name.lower().strip():
order_tools = sorted(
self.tools,
key=lambda tool: SequenceMatcher(
None, tool.name.lower().strip(), tool_name.lower().strip()
).ratio(),
reverse=True,
)
for tool in order_tools:
if (
tool.name.lower().strip() == tool_name.lower().strip()
or SequenceMatcher(
None, tool.name.lower().strip(), tool_name.lower().strip()
).ratio()
> 0.85
):
return tool
self.task.increment_tools_errors()
if tool_name and tool_name != "":
raise Exception(
f"Action '{tool_name}' don't exist, these are the only available Actions: {self.tools_description}"
f"Action '{tool_name}' don't exist, these are the only available Actions:\n {self.tools_description}"
)
else:
raise Exception(
@@ -247,7 +265,7 @@ class ToolUsage:
return "\n--\n".join(descriptions)
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _tool_calling(
self, tool_string: str
@@ -260,17 +278,17 @@ class ToolUsage:
else ToolCalling
)
converter = Converter(
text=f"Only tools available:\n###\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be exactly equal one of the options, use this text to inform the valid ouput schema:\n\n{tool_string}```",
text=f"Only tools available:\n###\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be exactly equal one of the options, use this text to inform the valid output schema:\n\n{tool_string}```",
llm=self.function_calling_llm,
model=model,
instructions=dedent(
"""\
The schema should have the following structure, only two keys:
- tool_name: str
- arguments: dict (with all arguments being passed)
The schema should have the following structure, only two keys:
- tool_name: str
- arguments: dict (with all arguments being passed)
Example:
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
Example:
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
),
max_attemps=1,
)
@@ -282,16 +300,17 @@ class ToolUsage:
tool_name = self.action.tool
tool = self._select_tool(tool_name)
try:
arguments = ast.literal_eval(self.action.tool_input)
tool_input = self._validate_tool_input(self.action.tool_input)
arguments = ast.literal_eval(tool_input)
except Exception:
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
if not isinstance(arguments, dict):
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
calling = ToolCalling(
calling = ToolCalling( # type: ignore # Unexpected keyword argument "log" for "ToolCalling"
tool_name=tool.name,
arguments=arguments,
log=tool_string,
@@ -302,9 +321,60 @@ class ToolUsage:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{e}\n", color="red")
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_usage_error").format(error=e)}\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
)
return self._tool_calling(tool_string)
return calling
def _validate_tool_input(self, tool_input: str) -> str:
try:
ast.literal_eval(tool_input)
return tool_input
except Exception:
# Clean and ensure the string is properly enclosed in braces
tool_input = tool_input.strip()
if not tool_input.startswith("{"):
tool_input = "{" + tool_input
if not tool_input.endswith("}"):
tool_input += "}"
# Manually split the input into key-value pairs
entries = tool_input.strip("{} ").split(",")
formatted_entries = []
for entry in entries:
if ":" not in entry:
continue # Skip malformed entries
key, value = entry.split(":", 1)
# Remove extraneous white spaces and quotes, replace single quotes
key = key.strip().strip('"').replace("'", '"')
value = value.strip()
# Handle replacement of single quotes at the start and end of the value string
if value.startswith("'") and value.endswith("'"):
value = value[1:-1] # Remove single quotes
value = (
'"' + value.replace('"', '\\"') + '"'
) # Re-encapsulate with double quotes
elif value.isdigit(): # Check if value is a digit, hence integer
formatted_value = value
elif value.lower() in [
"true",
"false",
"null",
]: # Check for boolean and null values
formatted_value = value.lower()
else:
# Assume the value is a string and needs quotes
formatted_value = '"' + value.replace('"', '\\"') + '"'
# Rebuild the entry with proper quoting
formatted_entry = f'"{key}": {formatted_value}'
formatted_entries.append(formatted_entry)
# Reconstruct the JSON string
new_json_string = "{" + ", ".join(formatted_entries) + "}"
return new_json_string

View File

@@ -6,12 +6,12 @@
},
"slices": {
"observation": "\nObservation",
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought: ",
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:",
"memory": "\n\n# Useful context: \n{memory}",
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple a python dictionary using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
"no_tools": "To give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n ",
"format": "I MUST either use a tool (use one at time) OR give my best final answer. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n ",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfy the expect criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
@@ -20,9 +20,8 @@
"getting_input": "This is the agent final answer: {final_answer}\nPlease provide a feedback: "
},
"errors": {
"unexpected_format": "\nSorry, I didn't use the expected format, I MUST either use a tool (use one at time) OR give my best final answer.\n",
"force_final_answer": "Tool won't be use because it's time to give your final answer. Don't use tools and just your absolute BEST Final answer.",
"agent_tool_unexsiting_coworker": "\nError executing tool. Co-worker mentioned not found, it must to be one of the following options:\n{coworkers}\n",
"agent_tool_unexsiting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
"tool_usage_error": "I encountered an error: {error}",
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
@@ -30,7 +29,7 @@
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}"
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following co-workers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to exectue the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following co-workers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them."
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them."
}
}

View File

@@ -1,8 +1,22 @@
from .converter import Converter, ConverterError
from .file_handler import FileHandler
from .i18n import I18N
from .instructor import Instructor
from .logger import Logger
from .parser import YamlParser
from .printer import Printer
from .prompts import Prompts
from .rpm_controller import RPMController
from .fileHandler import FileHandler
__all__ = [
"Converter",
"ConverterError",
"FileHandler",
"I18N",
"Instructor",
"Logger",
"Printer",
"Prompts",
"RPMController",
"YamlParser",
]

View File

@@ -0,0 +1,2 @@
TRAINING_DATA_FILE = "training_data.pkl"
TRAINED_AGENTS_DATA_FILE = "trained_agents_data.pkl"

View File

@@ -83,5 +83,5 @@ class Converter(BaseModel):
)
return new_prompt | self.llm | parser
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
def _is_gpt(self, llm) -> bool: # type: ignore # BUG? Name "_is_gpt" defined on line 20 hides name from outer scope
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None

View File

@@ -26,6 +26,18 @@ class TaskEvaluation(BaseModel):
)
class TrainingTaskEvaluation(BaseModel):
suggestions: List[str] = Field(
description="Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks."
)
quality: float = Field(
description="A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback."
)
final_summary: str = Field(
description="A step by step action items to improve the next Agent based on the human-feedback and improved output."
)
class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
@@ -58,4 +70,50 @@ class TaskEvaluator:
return converter.to_pydantic()
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def evaluate_training_data(
self, training_data: dict, agent_id: str
) -> TrainingTaskEvaluation:
"""
Evaluate the training data based on the llm output, human feedback, and improved output.
Parameters:
- training_data (dict): The training data to be evaluated.
- agent_id (str): The ID of the agent.
"""
output_training_data = training_data[agent_id]
final_aggregated_data = ""
for _, data in output_training_data.items():
final_aggregated_data += (
f"Initial Output:\n{data['initial_output']}\n\n"
f"Human Feedback:\n{data['human_feedback']}\n\n"
f"Improved Output:\n{data['improved_output']}\n\n"
)
evaluation_query = (
"Assess the quality of the training data based on the llm output, human feedback , and llm output improved result.\n\n"
f"{final_aggregated_data}"
"Please provide:\n"
"- Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks\n"
"- A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback\n"
)
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(self.llm):
model_schema = PydanticSchemaParser(
model=TrainingTaskEvaluation
).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
llm=self.llm,
text=evaluation_query,
model=TrainingTaskEvaluation,
instructions=instructions,
)
pydantic_result = converter.to_pydantic()
return pydantic_result

View File

@@ -1,20 +0,0 @@
import os
from datetime import datetime
class FileHandler:
"""take care of file operations, currently it only logs messages to a file"""
def __init__(self, file_path):
if isinstance(file_path, bool):
self._path = os.path.join(os.curdir, "logs.txt")
elif isinstance(file_path, str):
self._path = file_path
else:
raise ValueError("file_path must be either a boolean or a string.")
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: ".join([f"{key}={value}" for key, value in kwargs.items()])
with open(self._path, "a") as file:
file.write(message + "\n")

View File

@@ -0,0 +1,69 @@
import os
import pickle
from datetime import datetime
class FileHandler:
"""take care of file operations, currently it only logs messages to a file"""
def __init__(self, file_path):
if isinstance(file_path, bool):
self._path = os.path.join(os.curdir, "logs.txt")
elif isinstance(file_path, str):
self._path = file_path
else:
raise ValueError("file_path must be either a boolean or a string.")
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: ".join([f"{key}={value}" for key, value in kwargs.items()])
with open(self._path, "a", encoding="utf-8") as file:
file.write(message + "\n")
class PickleHandler:
def __init__(self, file_name: str) -> None:
"""
Initialize the PickleHandler with the name of the file where data will be stored.
The file will be saved in the current directory.
Parameters:
- file_name (str): The name of the file for saving and loading data.
"""
self.file_path = os.path.join(os.getcwd(), file_name)
self._initialize_file()
def _initialize_file(self) -> None:
"""
Initialize the file with an empty dictionary if it does not exist or is empty.
"""
if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
self.save({}) # Save an empty dictionary to initialize the file
def save(self, data) -> None:
"""
Save the data to the specified file using pickle.
Parameters:
- data (object): The data to be saved.
"""
with open(self.file_path, "wb") as file:
pickle.dump(data, file)
def load(self) -> dict:
"""
Load the data from the specified file using pickle.
Returns:
- dict: The data loaded from the file.
"""
if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
return {} # Return an empty dictionary if the file does not exist or is empty
with open(self.file_path, "rb") as file:
try:
return pickle.load(file)
except EOFError:
return {} # Return an empty dictionary if the file is empty or corrupted
except Exception:
raise # Raise any other exceptions that occur during loading

View File

@@ -2,44 +2,36 @@ import json
import os
from typing import Dict, Optional
from pydantic import BaseModel, Field, PrivateAttr, ValidationError, model_validator
from pydantic import BaseModel, Field, PrivateAttr, model_validator
class I18N(BaseModel):
_translations: Dict[str, Dict[str, str]] = PrivateAttr()
language_file: Optional[str] = Field(
_prompts: Dict[str, Dict[str, str]] = PrivateAttr()
prompt_file: Optional[str] = Field(
default=None,
description="Path to the translation file to load",
)
language: Optional[str] = Field(
default="en",
description="Language used to load translations",
description="Path to the prompt_file file to load",
)
@model_validator(mode="after")
def load_translation(self) -> "I18N":
"""Load translations from a JSON file based on the specified language."""
def load_prompts(self) -> "I18N":
"""Load prompts from a JSON file."""
try:
if self.language_file:
with open(self.language_file, "r") as f:
self._translations = json.load(f)
if self.prompt_file:
with open(self.prompt_file, "r") as f:
self._prompts = json.load(f)
else:
dir_path = os.path.dirname(os.path.realpath(__file__))
prompts_path = os.path.join(
dir_path, f"../translations/{self.language}.json"
)
prompts_path = os.path.join(dir_path, "../translations/en.json")
with open(prompts_path, "r") as f:
self._translations = json.load(f)
self._prompts = json.load(f)
except FileNotFoundError:
raise ValidationError(
f"Translation file for language '{self.language}' not found."
)
raise Exception(f"Prompt file '{self.prompt_file}' not found.")
except json.JSONDecodeError:
raise ValidationError(f"Error decoding JSON from the prompts file.")
raise Exception("Error decoding JSON from the prompts file.")
if not self._translations:
self._translations = {}
if not self._prompts:
self._prompts = {}
return self
@@ -54,6 +46,6 @@ class I18N(BaseModel):
def retrieve(self, kind, key) -> str:
try:
return self._translations[kind][key]
except:
raise ValidationError(f"Translation for '{kind}':'{key}' not found.")
return self._prompts[kind][key]
except Exception as _:
raise Exception(f"Prompt for '{kind}':'{key}' not found.")

View File

@@ -1,3 +1,5 @@
from datetime import datetime
from crewai.utilities.printer import Printer
@@ -13,4 +15,7 @@ class Logger:
def log(self, level, message, color="bold_green"):
level_map = {"debug": 1, "info": 2}
if self.verbose_level and level_map.get(level, 0) <= self.verbose_level:
self._printer.print(f"[{level.upper()}]: {message}", color=color)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._printer.print(
f"[{timestamp}][{level.upper()}]: {message}", color=color
)

View File

@@ -0,0 +1,17 @@
import re
class YamlParser:
def parse(file):
content = file.read()
# Replace single { and } with doubled ones, while leaving already doubled ones intact and the other special characters {# and {%
modified_content = re.sub(r"(?<!\{){(?!\{)(?!\#)(?!\%)", "{{", content)
modified_content = re.sub(
r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content
)
# Check for 'context:' not followed by '[' and raise an error
if re.search(r"context:(?!\s*\[)", modified_content):
raise ValueError(
"Context is currently only supported in code when creating a task. Please use the 'context' key in the task configuration."
)
return modified_content

View File

@@ -1,3 +1,4 @@
import os
from pathlib import Path
import appdirs
@@ -13,6 +14,11 @@ def db_storage_path():
def get_project_directory_name():
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name
project_directory_name = os.environ.get("CREWAI_STORAGE_DIR")
if project_directory_name:
return project_directory_name
else:
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name

View File

@@ -1,4 +1,4 @@
from typing import Any, ClassVar
from typing import Any, ClassVar, Optional
from langchain.prompts import BasePromptTemplate, PromptTemplate
from pydantic import BaseModel, Field
@@ -7,16 +7,15 @@ from crewai.utilities import I18N
class Prompts(BaseModel):
"""Manages and generates prompts for a generic agent with support for different languages."""
"""Manages and generates prompts for a generic agent."""
i18n: I18N = Field(default=I18N())
tools: list[Any] = Field(default=[])
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
SCRATCHPAD_SLICE: ClassVar[str] = "\n{agent_scratchpad}"
def task_execution_without_tools(self) -> BasePromptTemplate:
"""Generate a prompt for task execution without tools components."""
return self._build_prompt(["role_playing", "task"])
def task_execution(self) -> BasePromptTemplate:
"""Generate a standard prompt for task execution."""
slices = ["role_playing"]
@@ -24,12 +23,42 @@ class Prompts(BaseModel):
slices.append("tools")
else:
slices.append("no_tools")
slices.append("task")
return self._build_prompt(slices)
def _build_prompt(self, components: list[str]) -> BasePromptTemplate:
slices.append("task")
if not self.system_template and not self.prompt_template:
return self._build_prompt(slices)
else:
return self._build_prompt(
slices,
self.system_template,
self.prompt_template,
self.response_template,
)
def _build_prompt(
self,
components: list[str],
system_template=None,
prompt_template=None,
response_template=None,
) -> BasePromptTemplate:
"""Constructs a prompt string from specified components."""
prompt_parts = [self.i18n.slice(component) for component in components]
prompt_parts.append(self.SCRATCHPAD_SLICE)
prompt = PromptTemplate.from_template("".join(prompt_parts))
if not system_template and not prompt_template:
prompt_parts = [self.i18n.slice(component) for component in components]
prompt_parts.append(self.SCRATCHPAD_SLICE)
prompt = PromptTemplate.from_template("".join(prompt_parts))
else:
prompt_parts = [
self.i18n.slice(component)
for component in components
if component != "task"
]
system = system_template.replace("{{ .System }}", "".join(prompt_parts))
prompt = prompt_template.replace(
"{{ .Prompt }}",
"".join([self.i18n.slice("task"), self.SCRATCHPAD_SLICE]),
)
response = response_template.split("{{ .Response }}")[0]
prompt = PromptTemplate.from_template(f"{system}\n{prompt}\n{response}")
return prompt

View File

@@ -22,7 +22,7 @@ class TokenProcess:
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> str:
def get_summary(self) -> Dict[str, Any]:
return {
"total_tokens": self.total_tokens,
"prompt_tokens": self.prompt_tokens,
@@ -42,12 +42,12 @@ class TokenCalcHandler(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
if "gpt" in self.model:
try:
encoding = tiktoken.encoding_for_model(self.model)
else:
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if self.token_cost_process == None:
if self.token_cost_process is None:
return
for prompt in prompts:

View File

@@ -0,0 +1,31 @@
from crewai.utilities.file_handler import PickleHandler
class CrewTrainingHandler(PickleHandler):
def save_trained_data(self, agent_id: str, trained_data: dict) -> None:
"""
Save the trained data for a specific agent.
Parameters:
- agent_id (str): The ID of the agent.
- trained_data (dict): The trained data to be saved.
"""
data = self.load()
data[agent_id] = trained_data
self.save(data)
def append(self, train_iteration: int, agent_id: str, new_data) -> None:
"""
Append new data to the existing pickle file.
Parameters:
- new_data (object): The new data to be appended.
"""
data = self.load()
if agent_id in data:
data[agent_id][train_iteration] = new_data
else:
data[agent_id] = {train_iteration: new_data}
self.save(data)

View File

@@ -1,5 +1,6 @@
"""Test Agent creation and execution basic functionality."""
from unittest import mock
from unittest.mock import patch
import pytest
@@ -29,10 +30,10 @@ def test_agent_default_values():
agent = Agent(role="test role", goal="test goal", backstory="test backstory")
assert isinstance(agent.llm, ChatOpenAI)
assert agent.llm.model_name == "gpt-4"
assert agent.llm.model_name == "gpt-4o"
assert agent.llm.temperature == 0.7
assert agent.llm.verbose == False
assert agent.allow_delegation == True
assert agent.llm.verbose is False
assert agent.allow_delegation is True
def test_custom_llm():
@@ -732,7 +733,7 @@ def test_agent_llm_uses_token_calc_handler_with_llm_has_model_name():
assert len(agent1.llm.callbacks) == 1
assert agent1.llm.callbacks[0].__class__.__name__ == "TokenCalcHandler"
assert agent1.llm.callbacks[0].model == "gpt-4"
assert agent1.llm.callbacks[0].model == "gpt-4o"
assert (
agent1.llm.callbacks[0].token_cost_process.__class__.__name__ == "TokenProcess"
)
@@ -751,9 +752,10 @@ def test_agent_definition_based_on_dict():
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.verbose == True
assert agent.verbose is True
assert agent.tools == []
# test for human input
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_human_input():
@@ -780,6 +782,7 @@ def test_agent_human_input():
mock_human_input.assert_called_once()
assert output == "Hello"
def test_interpolate_inputs():
agent = Agent(
role="{topic} specialist",
@@ -797,3 +800,97 @@ def test_interpolate_inputs():
assert agent.goal == "Figure stuff out"
assert agent.backstory == "I am the master of nothing"
def test_system_and_prompt_template():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
template = agent.agent_executor.agent.dict()["runnable"]["middle"][0]["template"]
assert (
template
== """<|start_header_id|>system<|end_header_id|>
You are {role}. {backstory}
Your personal goal is: {goal}To give my best complete final answer to the task use the exact following format:
Thought: I now can give a great answer
Final Answer: my best complete final answer to the task.
Your final answer must be the great and the most complete as possible, it must be outcome described.
I MUST use these formats, my job depends on it!<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Current Task: {input}
Begin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!
Thought:
{agent_scratchpad}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
)
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_training_handler(crew_training_handler):
task_prompt = "What is 1 + 1?"
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
verbose=True,
)
crew_training_handler().load.return_value = {
f"{str(agent.id)}": {"0": {"human_feedback": "good"}}
}
result = agent._training_handler(task_prompt=task_prompt)
assert result == "What is 1 + 1?You MUST follow these feedbacks: \n good"
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("training_data.pkl"), mock.call().load()]
)
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_use_trained_data(crew_training_handler):
task_prompt = "What is 1 + 1?"
agent = Agent(
role="researcher",
goal="test goal",
backstory="test backstory",
verbose=True,
)
crew_training_handler().load.return_value = {
agent.role: {
"suggestions": [
"The result of the math operatio must be right.",
"Result must be better than 1.",
]
}
}
result = agent._use_trained_data(task_prompt=task_prompt)
assert (
result == "What is 1 + 1?You MUST follow these feedbacks: \n "
"The result of the math operatio must be right.\n - Result must be better than 1."
)
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("trained_agents_data.pkl"), mock.call().load()]
)

Some files were not shown because too many files have changed in this diff Show More