Compare commits
283 Commits
v0.27.0
...
feat/add-t
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6ebfe5fab0 | ||
|
|
03a9861e73 | ||
|
|
fd30f8ce3e | ||
|
|
71ddf60d5f | ||
|
|
fa4393d77e | ||
|
|
25c314befc | ||
|
|
2fe79e68cd | ||
|
|
37d05a2365 | ||
|
|
0111d261a4 | ||
|
|
0a23e1dc13 | ||
|
|
ef5ff71346 | ||
|
|
1697b4cacb | ||
|
|
6b4710a8d1 | ||
|
|
6f2a8f08ba | ||
|
|
4e6abf596d | ||
|
|
9018e2ab6a | ||
|
|
99d023c5f3 | ||
|
|
da7d8256eb | ||
|
|
88bffaa0d0 | ||
|
|
1159140d9f | ||
|
|
5ac7050f7a | ||
|
|
8b513de64c | ||
|
|
144e6d203f | ||
|
|
2d2154ed65 | ||
|
|
2d086ab596 | ||
|
|
776c67cc0f | ||
|
|
78ef490646 | ||
|
|
4da5cc9778 | ||
|
|
6930656897 | ||
|
|
349753a013 | ||
|
|
f53a3a00e1 | ||
|
|
e2113fe417 | ||
|
|
f9288295e6 | ||
|
|
fcc57f2fc0 | ||
|
|
5cb6ee9eeb | ||
|
|
b38f0825e7 | ||
|
|
f51e94dede | ||
|
|
47bf93d291 | ||
|
|
41fd1c6124 | ||
|
|
be1b9a3994 | ||
|
|
61a196394b | ||
|
|
5b442e4350 | ||
|
|
c9920b9823 | ||
|
|
2faa2dbddb | ||
|
|
76607062f0 | ||
|
|
a8cac9b7e9 | ||
|
|
dfacc8832f | ||
|
|
93f643f851 | ||
|
|
cbf5d548be | ||
|
|
6946b89e17 | ||
|
|
dc4911b1ca | ||
|
|
6ad218f9a0 | ||
|
|
36efa172ee | ||
|
|
a7a2dfd296 | ||
|
|
7baaeacac3 | ||
|
|
021f2eb8a1 | ||
|
|
cb720143c7 | ||
|
|
731de2ff31 | ||
|
|
24e28da203 | ||
|
|
bde0a3e99c | ||
|
|
0415b9982b | ||
|
|
99ada42d97 | ||
|
|
ee32d36312 | ||
|
|
ef928ee3cb | ||
|
|
c66559345f | ||
|
|
3ad95d50d4 | ||
|
|
bc7f601f84 | ||
|
|
e8cbdb7881 | ||
|
|
b0c2b15a3e | ||
|
|
c0f04bbb37 | ||
|
|
c320fc655e | ||
|
|
ac2815c781 | ||
|
|
dd8a199e99 | ||
|
|
161c4a6856 | ||
|
|
67b04b30bf | ||
|
|
7696b45fc3 | ||
|
|
641921eb6c | ||
|
|
a02d2fb93e | ||
|
|
b93632a53a | ||
|
|
09938641cd | ||
|
|
7acf0b2107 | ||
|
|
4eb4073661 | ||
|
|
7b53457ef3 | ||
|
|
691b094a40 | ||
|
|
68e9e54c88 | ||
|
|
d0d99125c4 | ||
|
|
129000d01f | ||
|
|
47f9d026dd | ||
|
|
b75b0b5552 | ||
|
|
3dd6249f1e | ||
|
|
8451113039 | ||
|
|
a79b216875 | ||
|
|
52217c2f63 | ||
|
|
7edacf6e24 | ||
|
|
58558a1950 | ||
|
|
1607c85ae5 | ||
|
|
a6ff342948 | ||
|
|
d2eb54ebf8 | ||
|
|
a41bd18599 | ||
|
|
bb64c80964 | ||
|
|
2fb56f1f9f | ||
|
|
35676fe2f5 | ||
|
|
81ed6f177e | ||
|
|
4bcd1df6bb | ||
|
|
6fae56dd60 | ||
|
|
430f0e9013 | ||
|
|
d7f080a978 | ||
|
|
5d18f73654 | ||
|
|
57fc079267 | ||
|
|
706f4cd74a | ||
|
|
2e3646cc96 | ||
|
|
844cc515d5 | ||
|
|
f47904134b | ||
|
|
d72b00af3c | ||
|
|
bd053a98c7 | ||
|
|
c18208ca59 | ||
|
|
acbe5af8ce | ||
|
|
c81146505a | ||
|
|
6b9a1d4040 | ||
|
|
508fbd49e9 | ||
|
|
e18a6c6bb8 | ||
|
|
16237ef393 | ||
|
|
5332d02f36 | ||
|
|
7258120a0d | ||
|
|
8b7bc69ba1 | ||
|
|
5a807eb93f | ||
|
|
130682c93b | ||
|
|
02e29e4681 | ||
|
|
6943eb4463 | ||
|
|
939a18a4d2 | ||
|
|
ccbe415315 | ||
|
|
511af98dea | ||
|
|
a9d94112f5 | ||
|
|
1bca6029fe | ||
|
|
c027aa8bf6 | ||
|
|
ce7d86e0df | ||
|
|
5dfaf866c9 | ||
|
|
5b66e87621 | ||
|
|
851dd0f84f | ||
|
|
2188358f13 | ||
|
|
10997dd175 | ||
|
|
da9cc5f097 | ||
|
|
c005ec3f78 | ||
|
|
6018fe5872 | ||
|
|
bf0e70999e | ||
|
|
175d5b3dd6 | ||
|
|
9e61b8325b | ||
|
|
c4d76cde8f | ||
|
|
9c44fd8c4a | ||
|
|
f9f8c8f336 | ||
|
|
0fb3ccb9e9 | ||
|
|
0e5fd0be2c | ||
|
|
1b45daee49 | ||
|
|
9f384e3fc1 | ||
|
|
377f919d42 | ||
|
|
e6445afac5 | ||
|
|
095015d397 | ||
|
|
614183cbb1 | ||
|
|
0bc92a284d | ||
|
|
d3b6640b4a | ||
|
|
a1a48888c3 | ||
|
|
bb622bf747 | ||
|
|
946c56494e | ||
|
|
2a0e21ca76 | ||
|
|
ea893432e8 | ||
|
|
bf40956491 | ||
|
|
48948e1217 | ||
|
|
27412c89dd | ||
|
|
56f1d24e9d | ||
|
|
ab066a11a8 | ||
|
|
e35e81e554 | ||
|
|
551e48da4f | ||
|
|
21ce0aa17e | ||
|
|
2d6f2830e1 | ||
|
|
24ed8a2549 | ||
|
|
a336381849 | ||
|
|
208c3a780c | ||
|
|
1e112fa50a | ||
|
|
38fc5510ed | ||
|
|
1a1f4717aa | ||
|
|
977c6114ba | ||
|
|
27fddae286 | ||
|
|
615ac7f297 | ||
|
|
87d28e896d | ||
|
|
23f10418d7 | ||
|
|
27e7f48a44 | ||
|
|
7fd8850ddb | ||
|
|
7a4d3dd496 | ||
|
|
c1d7936689 | ||
|
|
1ec4da6947 | ||
|
|
8430c2f9af | ||
|
|
7cc6bccdec | ||
|
|
aeba64feaf | ||
|
|
04b4191de5 | ||
|
|
1da7473f26 | ||
|
|
95d13bd033 | ||
|
|
7eb4fcdaf4 | ||
|
|
809b4b227c | ||
|
|
ff51a2da9b | ||
|
|
be83681665 | ||
|
|
2bd30af72b | ||
|
|
d7b021061b | ||
|
|
73647f1669 | ||
|
|
d341cb3d5c | ||
|
|
30438410d6 | ||
|
|
b264ebabc0 | ||
|
|
2edc88e0a1 | ||
|
|
552dda46f8 | ||
|
|
2340a127d6 | ||
|
|
ecde504a79 | ||
|
|
0b781065d2 | ||
|
|
bcb57ce5f9 | ||
|
|
6392a8cdd0 | ||
|
|
34e3dd24b4 | ||
|
|
c303d3730c | ||
|
|
0a53ce17a2 | ||
|
|
7973651e05 | ||
|
|
672b150972 | ||
|
|
d8bcbd7d0a | ||
|
|
ff2f1477bb | ||
|
|
1139073297 | ||
|
|
39deac2747 | ||
|
|
0a35868367 | ||
|
|
608f869789 | ||
|
|
c30bd1a18e | ||
|
|
20a81af95f | ||
|
|
531c70b476 | ||
|
|
dae0aedc99 | ||
|
|
5fde03f4b0 | ||
|
|
48f53b529b | ||
|
|
4d9b0c6138 | ||
|
|
70cabec876 | ||
|
|
60423376cf | ||
|
|
22c646294a | ||
|
|
10b317cf34 | ||
|
|
03f0c44cac | ||
|
|
caa0e5db8d | ||
|
|
b862e464f8 | ||
|
|
3d5257592b | ||
|
|
ff76715cd2 | ||
|
|
cdb0a9c953 | ||
|
|
b0acae81b0 | ||
|
|
afc616d263 | ||
|
|
e066b4dcb1 | ||
|
|
9ea495902e | ||
|
|
d786c367b4 | ||
|
|
a391004432 | ||
|
|
dd97a2674d | ||
|
|
437c4c91bc | ||
|
|
575f1f98b0 | ||
|
|
2ee6ab6332 | ||
|
|
3d862538d2 | ||
|
|
4bd36e0460 | ||
|
|
7fbf0f1988 | ||
|
|
066127013b | ||
|
|
f675208d72 | ||
|
|
36aa69cf66 | ||
|
|
66b77ffd08 | ||
|
|
d2a3e4869a | ||
|
|
a2dc7c7f31 | ||
|
|
55ac69776a | ||
|
|
7a7c9b0076 | ||
|
|
77d40230a8 | ||
|
|
e4556040a8 | ||
|
|
755b3934a4 | ||
|
|
2d77fb72a5 | ||
|
|
106b0df42e | ||
|
|
c31ac4cf7e | ||
|
|
7b309df0c5 | ||
|
|
326f524e7c | ||
|
|
315ad20111 | ||
|
|
b1daf17a61 | ||
|
|
9db99befb6 | ||
|
|
aebc443b62 | ||
|
|
2c0e5586e8 | ||
|
|
25f7557751 | ||
|
|
59ebf7b762 | ||
|
|
1abe9db8e0 | ||
|
|
e4363f9ed8 | ||
|
|
e00b545548 | ||
|
|
1aa32c2036 | ||
|
|
65824ef814 | ||
|
|
d17bc33bfb |
10
.github/workflows/black.yml
vendored
@@ -1,10 +0,0 @@
|
||||
name: Lint
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: psf/black@stable
|
||||
16
.github/workflows/linter.yml
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
name: Lint
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install Requirements
|
||||
run: |
|
||||
pip install ruff
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check --exclude "templates","__init__.py"
|
||||
9
.github/workflows/tests.yml
vendored
@@ -14,18 +14,17 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v2
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: "3.11.9"
|
||||
|
||||
- name: Install Requirements
|
||||
run: |
|
||||
sudo apt-get update &&
|
||||
pip install poetry &&
|
||||
poetry lock &&
|
||||
set -e
|
||||
pip install poetry
|
||||
poetry install
|
||||
|
||||
- name: Run tests
|
||||
|
||||
12
.github/workflows/type-checker.yml
vendored
@@ -1,4 +1,3 @@
|
||||
|
||||
name: Run Type Checks
|
||||
|
||||
on: [pull_request]
|
||||
@@ -12,19 +11,16 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v2
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install Requirements
|
||||
run: |
|
||||
sudo apt-get update &&
|
||||
pip install poetry &&
|
||||
poetry lock &&
|
||||
poetry install
|
||||
pip install mypy
|
||||
|
||||
- name: Run type checks
|
||||
run: poetry run pyright
|
||||
run: mypy src
|
||||
|
||||
9
.gitignore
vendored
@@ -8,4 +8,11 @@ assets/*
|
||||
test/
|
||||
docs_crew/
|
||||
chroma.sqlite3
|
||||
old_en.json
|
||||
old_en.json
|
||||
db/
|
||||
test.py
|
||||
rc-tests/*
|
||||
*.pkl
|
||||
temp/*
|
||||
.vscode/*
|
||||
crew_tasks_output.json
|
||||
@@ -1,21 +1,9 @@
|
||||
repos:
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 23.12.1
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.4.4
|
||||
hooks:
|
||||
- id: black
|
||||
language_version: python3.11
|
||||
files: \.(py)$
|
||||
exclude: 'src/crewai/cli/templates/(crew|main)\.py'
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
args: ["--profile", "black", "--filter-files"]
|
||||
|
||||
- repo: https://github.com/PyCQA/autoflake
|
||||
rev: v2.2.1
|
||||
hooks:
|
||||
- id: autoflake
|
||||
args: ['--in-place', '--remove-all-unused-imports', '--remove-unused-variables', '--ignore-init-module-imports']
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
exclude: "templates"
|
||||
- id: ruff-format
|
||||
exclude: "templates"
|
||||
|
||||
37
README.md
@@ -30,7 +30,6 @@
|
||||
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
|
||||
- [How CrewAI Compares](#how-crewai-compares)
|
||||
- [Contribution](#contribution)
|
||||
- [Hire CrewAI](#hire-crewai)
|
||||
- [Telemetry](#telemetry)
|
||||
- [License](#license)
|
||||
|
||||
@@ -49,7 +48,7 @@ To get started with CrewAI, follow these simple steps:
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with, example below uses it:
|
||||
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command: pip install 'crewai[tools]'. This command installs the basic package and also adds extra components which require more dependencies to function."
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
@@ -71,6 +70,17 @@ os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
|
||||
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
|
||||
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
#
|
||||
# import os
|
||||
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
|
||||
#
|
||||
# OR
|
||||
#
|
||||
# from langchain_openai import ChatOpenAI
|
||||
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
@@ -82,18 +92,9 @@ researcher = Agent(
|
||||
You have a knack for dissecting complex data and presenting actionable insights.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
# You can pass an optional llm attribute specifying what model you wanna use.
|
||||
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
|
||||
tools=[search_tool]
|
||||
# You can pass an optional llm attribute specifying what mode you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
#
|
||||
# import os
|
||||
# os.environ['OPENAI_MODEL_NAME'] = 'gpt-3.5-turbo'
|
||||
#
|
||||
# OR
|
||||
#
|
||||
# from langchain_openai import ChatOpenAI
|
||||
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7)
|
||||
)
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
@@ -126,6 +127,7 @@ crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=2, # You can set it to 1 or 2 to different logging levels
|
||||
process = Process.sequential
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
@@ -194,6 +196,7 @@ Please refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
|
||||
## Contribution
|
||||
|
||||
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
|
||||
@@ -232,7 +235,7 @@ poetry run pytest
|
||||
### Running static type checks
|
||||
|
||||
```bash
|
||||
poetry run pyright
|
||||
poetry run mypy
|
||||
```
|
||||
|
||||
### Packaging
|
||||
@@ -247,11 +250,6 @@ poetry build
|
||||
pip install dist/*.tar.gz
|
||||
```
|
||||
|
||||
## Hire CrewAI
|
||||
|
||||
We're a company developing crewAI and crewAI Enterprise, we for a limited time are offer consulting with selected customers, to get them early access to our enterprise solution
|
||||
If you are interested on having access to it and hiring weekly hours with our team, feel free to email us at [joao@crewai.com](mailto:joao@crewai.com).
|
||||
|
||||
## Telemetry
|
||||
|
||||
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
|
||||
@@ -259,6 +257,7 @@ CrewAI uses anonymous telemetry to collect usage data with the main purpose of h
|
||||
There is NO data being collected on the prompts, tasks descriptions agents backstories or goals nor tools usage, no API calls, nor responses nor any data that is being processed by the agents, nor any secrets and env vars.
|
||||
|
||||
Data collected includes:
|
||||
|
||||
- Version of crewAI
|
||||
- So we can understand how many users are using the latest version
|
||||
- Version of Python
|
||||
|
||||
@@ -1463,11 +1463,11 @@
|
||||
"locked": false,
|
||||
"fontSize": 20,
|
||||
"fontFamily": 3,
|
||||
"text": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"text": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"textAlign": "right",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"originalText": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"lineHeight": 1.2,
|
||||
"baseline": 68
|
||||
},
|
||||
@@ -1734,4 +1734,4 @@
|
||||
"viewBackgroundColor": "#ffffff"
|
||||
},
|
||||
"files": {}
|
||||
}
|
||||
}
|
||||
|
||||
|
Before Width: | Height: | Size: 272 KiB After Width: | Height: | Size: 288 KiB |
|
Before Width: | Height: | Size: 190 KiB After Width: | Height: | Size: 419 KiB |
|
Before Width: | Height: | Size: 176 KiB After Width: | Height: | Size: 263 KiB |
BIN
docs/assets/crewai-langtrace-spans.png
Normal file
|
After Width: | Height: | Size: 1.0 MiB |
BIN
docs/assets/crewai-langtrace-stats.png
Normal file
|
After Width: | Height: | Size: 810 KiB |
@@ -1,4 +1,3 @@
|
||||
```markdown
|
||||
---
|
||||
title: crewAI Agents
|
||||
description: What are crewAI Agents and how to use them.
|
||||
@@ -17,20 +16,24 @@ description: What are crewAI Agents and how to use them.
|
||||
|
||||
## Agent Attributes
|
||||
|
||||
| Attribute | Description |
|
||||
| :------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** *(optional)* | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
|
||||
| **Tools** *(optional)* | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
|
||||
| **Function Calling LLM** *(optional)* | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
|
||||
| **Max Iter** *(optional)* | The maximum number of iterations the agent can perform before being forced to give its best answer. Default is `15`. |
|
||||
| **Max RPM** *(optional)* | The maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Verbose** *(optional)* | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
|
||||
| **Step Callback** *(optional)* | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Cache** *(optional)* | Indicates if the agent should use a cache for tool usage. Default is `True`. |
|
||||
| Attribute | Parameter | Description |
|
||||
| :------------------------- | :---- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | `backstory` | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
|
||||
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
|
||||
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
|
||||
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
|
||||
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the Maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
|
||||
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
|
||||
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
|
||||
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
|
||||
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
|
||||
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
|
||||
|
||||
## Creating an Agent
|
||||
|
||||
@@ -56,13 +59,91 @@ agent = Agent(
|
||||
function_calling_llm=my_llm, # Optional
|
||||
max_iter=15, # Optional
|
||||
max_rpm=None, # Optional
|
||||
max_execution_time=None, # Optional
|
||||
verbose=True, # Optional
|
||||
allow_delegation=True, # Optional
|
||||
step_callback=my_intermediate_step_callback, # Optional
|
||||
cache=True # Optional
|
||||
cache=True, # Optional
|
||||
system_template=my_system_template, # Optional
|
||||
prompt_template=my_prompt_template, # Optional
|
||||
response_template=my_response_template, # Optional
|
||||
config=my_config, # Optional
|
||||
crew=my_crew, # Optional
|
||||
tools_handler=my_tools_handler, # Optional
|
||||
cache_handler=my_cache_handler, # Optional
|
||||
callbacks=[callback1, callback2], # Optional
|
||||
agent_executor=my_agent_executor # Optional
|
||||
)
|
||||
```
|
||||
|
||||
## Setting prompt templates
|
||||
|
||||
Prompt templates are used to format the prompt for the agent. You can use to update the system, regular and response templates for the agent. Here's an example of how to set prompt templates:
|
||||
|
||||
```python
|
||||
agent = Agent(
|
||||
role="{topic} specialist",
|
||||
goal="Figure {goal} out",
|
||||
backstory="I am the master of {role}",
|
||||
system_template="""<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
{{ .System }}<|eot_id|>""",
|
||||
prompt_template="""<|start_header_id|>user<|end_header_id|>
|
||||
|
||||
{{ .Prompt }}<|eot_id|>""",
|
||||
response_template="""<|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
{{ .Response }}<|eot_id|>""",
|
||||
)
|
||||
```
|
||||
|
||||
## Bring your Third Party Agents
|
||||
!!! note "Extend your Third Party Agents like LlamaIndex, Langchain, Autogen or fully custom agents using the the crewai's BaseAgent class."
|
||||
|
||||
BaseAgent includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew.
|
||||
|
||||
CrewAI is a universal multi agent framework that allows for all agents to work together to automate tasks and solve problems.
|
||||
|
||||
|
||||
```py
|
||||
from crewai import Agent, Task, Crew
|
||||
from custom_agent import CustomAgent # You need to build and extend your own agent logic with the CrewAI BaseAgent class then import it here.
|
||||
|
||||
from langchain.agents import load_tools
|
||||
|
||||
langchain_tools = load_tools(["google-serper"], llm=llm)
|
||||
|
||||
agent1 = CustomAgent(
|
||||
role="agent role",
|
||||
goal="who is {input}?",
|
||||
backstory="agent backstory",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task1 = Task(
|
||||
expected_output="a short biography of {input}",
|
||||
description="a short biography of {input}",
|
||||
agent=agent1,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
role="agent role",
|
||||
goal="summarize the short bio for {input} and if needed do more research",
|
||||
backstory="agent backstory",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="a tldr summary of the short biography",
|
||||
expected_output="5 bullet point summary of the biography",
|
||||
agent=agent2,
|
||||
context=[task1],
|
||||
)
|
||||
|
||||
my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
|
||||
crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
|
||||
```
|
||||
|
||||
|
||||
## Conclusion
|
||||
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.
|
||||
```
|
||||
@@ -15,16 +15,19 @@ description: Exploring the dynamics of agent collaboration within the CrewAI fra
|
||||
The `Crew` class has been enriched with several attributes to support advanced functionalities:
|
||||
|
||||
- **Language Model Management (`manager_llm`, `function_calling_llm`)**: Manages language models for executing tasks and tools, facilitating sophisticated agent-tool interactions. Note that while `manager_llm` is mandatory for hierarchical processes to ensure proper execution flow, `function_calling_llm` is optional, with a default value provided for streamlined tool interaction.
|
||||
- **Custom Manager Agent (`manager_agent`)**: Allows specifying a custom agent as the manager instead of using the default manager provided by CrewAI.
|
||||
- **Process Flow (`process`)**: Defines the execution logic (e.g., sequential, hierarchical) to streamline task distribution and execution.
|
||||
- **Verbose Logging (`verbose`)**: Offers detailed logging capabilities for monitoring and debugging purposes. It supports both integer and boolean types to indicate the verbosity level. For example, setting `verbose` to 1 might enable basic logging, whereas setting it to True enables more detailed logs.
|
||||
- **Rate Limiting (`max_rpm`)**: Ensures efficient utilization of resources by limiting requests per minute. Guidelines for setting `max_rpm` should consider the complexity of tasks and the expected load on resources.
|
||||
- **Internationalization Support (`language`, `language_file`)**: Facilitates operation in multiple languages, enhancing global usability. Supported languages and the process for utilizing the `language_file` attribute for customization should be clearly documented.
|
||||
- **Internationalization / Customization Support (`language`, `prompt_file`)**: Facilitates full customization of the inner prompts, enhancing global usability. Supported languages and the process for utilizing the `prompt_file` attribute for customization should be clearly documented. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json)
|
||||
- **Execution and Output Handling (`full_output`)**: Distinguishes between full and final outputs for nuanced control over task results. Examples showcasing the difference in outputs can aid in understanding the practical implications of this attribute.
|
||||
- **Callback and Telemetry (`step_callback`, `task_callback`)**: Integrates callbacks for step-wise and task-level execution monitoring, alongside telemetry for performance analytics. The purpose and usage of `task_callback` alongside `step_callback` for granular monitoring should be clearly explained.
|
||||
- **Crew Sharing (`share_crew`)**: Enables sharing of crew information with CrewAI for continuous improvement and training models. The privacy implications and benefits of this feature, including how it contributes to model improvement, should be outlined.
|
||||
- **Usage Metrics (`usage_metrics`)**: Stores all metrics for the language model (LLM) usage during all tasks' execution, providing insights into operational efficiency and areas for improvement. Detailed information on accessing and interpreting these metrics for performance analysis should be provided.
|
||||
- **Memory Usage (`memory`)**: Indicates whether the crew should use memory to store memories of its execution, enhancing task execution and agent learning.
|
||||
- **Embedder Configuration (`embedder`)**: Specifies the configuration for the embedder to be used by the crew for understanding and generating language. This attribute supports customization of the language model provider.
|
||||
- **Cache Management (`cache`)**: Determines whether the crew should use a cache to store the results of tool executions, optimizing performance.
|
||||
- **Output Logging (`output_log_file`)**: Specifies the file path for logging the output of the crew execution.
|
||||
|
||||
## Delegation: Dividing to Conquer
|
||||
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
|
||||
@@ -36,4 +39,4 @@ Setting up a crew involves defining the roles and capabilities of each agent. Cr
|
||||
Consider a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The integration of advanced language model management and process flow attributes allows for more sophisticated interactions, such as the writer delegating complex research tasks to the researcher or querying specific information, thereby facilitating a seamless workflow.
|
||||
|
||||
## Conclusion
|
||||
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
|
||||
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
|
||||
@@ -4,32 +4,39 @@ description: Understanding and utilizing crews in the crewAI framework with comp
|
||||
---
|
||||
|
||||
## What is a Crew?
|
||||
|
||||
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
|
||||
|
||||
## Crew Attributes
|
||||
|
||||
| Attribute | Description |
|
||||
| :-------------------------- | :----------------------------------------------------------- |
|
||||
| **Tasks** | A list of tasks assigned to the crew. |
|
||||
| **Agents** | A list of agents that are part of the crew. |
|
||||
| **Process** *(optional)* | The process flow (e.g., sequential, hierarchical) the crew follows. |
|
||||
| **Verbose** *(optional)* | The verbosity level for logging during execution. |
|
||||
| **Manager LLM** *(optional)*| The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** *(optional)* | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** *(optional)* | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** *(optional)* | Maximum requests per minute the crew adheres to during execution. |
|
||||
| **Language** *(optional)* | Language used for the crew, defaults to English. |
|
||||
| **Language File** *(optional)* | Path to the language file to be used for the crew. |
|
||||
| **Memory** *(optional)* | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Cache** *(optional)* | Specifies whether to use a cache for storing the results of tools' execution. |
|
||||
| **Embedder** *(optional)* | Configuration for the embedder to be used by the crew. mostly used by memory for now |
|
||||
| **Full Output** *(optional)*| Whether the crew should return the full output with all tasks outputs or just the final output. |
|
||||
| **Step Callback** *(optional)* | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Task Callback** *(optional)* | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
|
||||
| **Share Crew** *(optional)* | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| Attribute | Parameters | Description |
|
||||
| :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Tasks** | `tasks` | A list of tasks assigned to the crew. |
|
||||
| **Agents** | `agents` | A list of agents that are part of the crew. |
|
||||
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. |
|
||||
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. |
|
||||
| **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. |
|
||||
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
|
||||
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. |
|
||||
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description.
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
|
||||
!!! note "Crew Max RPM"
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
|
||||
## Creating a Crew
|
||||
|
||||
@@ -40,28 +47,45 @@ When assembling a crew, you combine agents with complementary roles and tools, a
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
from crewai_tools import tool
|
||||
|
||||
@tool('DuckDuckGoSearch')
|
||||
def search(search_query: str):
|
||||
"""Search the web for information on a given topic"""
|
||||
return DuckDuckGoSearchRun().run(search_query)
|
||||
|
||||
# Define agents with specific roles and tools
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Discover innovative AI technologies',
|
||||
tools=[DuckDuckGoSearchRun()]
|
||||
backstory="""You're a senior research analyst at a large company.
|
||||
You're responsible for analyzing data and providing insights
|
||||
to the business.
|
||||
You're currently working on a project to analyze the
|
||||
trends and innovations in the space of artificial intelligence.""",
|
||||
tools=[search]
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write engaging articles on AI discoveries',
|
||||
backstory="""You're a senior writer at a large company.
|
||||
You're responsible for creating content to the business.
|
||||
You're currently working on a project to write about trends
|
||||
and innovations in the space of AI for your next meeting.""",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks for the agents
|
||||
research_task = Task(
|
||||
description='Identify breakthrough AI technologies',
|
||||
agent=researcher
|
||||
agent=researcher,
|
||||
expected_output='A bullet list summary of the top 5 most important AI news'
|
||||
)
|
||||
write_article_task = Task(
|
||||
description='Draft an article on the latest AI technologies',
|
||||
agent=writer
|
||||
agent=writer,
|
||||
expected_output='3 paragraph blog post on the latest AI technologies'
|
||||
)
|
||||
|
||||
# Assemble the crew with a sequential process
|
||||
@@ -74,6 +98,57 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
## Crew Output
|
||||
|
||||
!!! note "Understanding Crew Outputs"
|
||||
The output of a crew in the crewAI framework is encapsulated within the `CrewOutput` class.
|
||||
This class provides a structured way to access results of the crew's execution, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
The `CrewOutput` includes the results from the final task output, token usage, and individual task outputs.
|
||||
|
||||
### Crew Output Attributes
|
||||
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :--------------- | :------------- | :------------------------- | :--------------------------------------------------------------------------------------------------- |
|
||||
| **Raw** | `raw` | `str` | The raw output of the crew. This is the default format for the output. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the crew. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the crew. |
|
||||
| **Tasks Output** | `tasks_output` | `List[TaskOutput]` | A list of `TaskOutput` objects, each representing the output of a task in the crew. |
|
||||
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage, providing insights into the language model's performance during execution. |
|
||||
|
||||
### Crew Output Methods and Properties
|
||||
|
||||
| Method/Property | Description |
|
||||
| :-------------- | :------------------------------------------------------------------------------------------------ |
|
||||
| **json** | Returns the JSON string representation of the crew output if the output format is JSON. |
|
||||
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
|
||||
| \***\*str\*\*** | Returns the string representation of the crew output, prioritizing Pydantic, then JSON, then raw. |
|
||||
|
||||
### Accessing Crew Outputs
|
||||
|
||||
Once a crew has been executed, its output can be accessed through the `output` attribute of the `Crew` object. The `CrewOutput` class provides various ways to interact with and present this output.
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
# Example crew execution
|
||||
crew = Crew(
|
||||
agents=[research_agent, writer_agent],
|
||||
tasks=[research_task, write_article_task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
crew_output = crew.kickoff()
|
||||
|
||||
# Accessing the crew output
|
||||
print(f"Raw Output: {crew_output.raw}")
|
||||
if crew_output.json_dict:
|
||||
print(f"JSON Output: {json.dumps(crew_output.json_dict, indent=2)}")
|
||||
if crew_output.pydantic:
|
||||
print(f"Pydantic Output: {crew_output.pydantic}")
|
||||
print(f"Tasks Output: {crew_output.tasks_output}")
|
||||
print(f"Token Usage: {crew_output.token_usage}")
|
||||
```
|
||||
|
||||
## Memory Utilization
|
||||
|
||||
Crews can utilize memory (short-term, long-term, and entity memory) to enhance their execution and learning over time. This feature allows crews to store and recall execution memories, aiding in decision-making and task execution strategies.
|
||||
@@ -96,7 +171,7 @@ print(crew.usage_metrics)
|
||||
## Crew Execution Process
|
||||
|
||||
- **Sequential Process**: Tasks are executed one after another, allowing for a linear flow of work.
|
||||
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` is required for this process and it's essential for validating the process flow.
|
||||
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` or `manager_agent` is required for this process and it's essential for validating the process flow.
|
||||
|
||||
### Kicking Off a Crew
|
||||
|
||||
@@ -107,3 +182,66 @@ Once your crew is assembled, initiate the workflow with the `kickoff()` method.
|
||||
result = my_crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Different ways to Kicking Off a Crew
|
||||
|
||||
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
|
||||
|
||||
`kickoff()`: Starts the execution process according to the defined process flow.
|
||||
`kickoff_for_each()`: Executes tasks for each agent individually.
|
||||
`kickoff_async()`: Initiates the workflow asynchronously.
|
||||
`kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
|
||||
|
||||
```python
|
||||
# Start the crew's task execution
|
||||
result = my_crew.kickoff()
|
||||
print(result)
|
||||
|
||||
# Example of using kickoff_for_each
|
||||
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
|
||||
results = my_crew.kickoff_for_each(inputs=inputs_array)
|
||||
for result in results:
|
||||
print(result)
|
||||
|
||||
# Example of using kickoff_async
|
||||
inputs = {'topic': 'AI in healthcare'}
|
||||
async_result = my_crew.kickoff_async(inputs=inputs)
|
||||
print(async_result)
|
||||
|
||||
# Example of using kickoff_for_each_async
|
||||
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
|
||||
async_results = my_crew.kickoff_for_each_async(inputs=inputs_array)
|
||||
for async_result in async_results:
|
||||
print(async_result)
|
||||
```
|
||||
|
||||
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs
|
||||
|
||||
|
||||
### Replaying from specific task:
|
||||
You can now replay from a specific task using our cli command replay.
|
||||
|
||||
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
|
||||
|
||||
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
|
||||
|
||||
|
||||
### Replaying from specific task Using the CLI
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
To view latest kickoff task_ids use:
|
||||
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
|
||||
```shell
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
```markdown
|
||||
---
|
||||
title: crewAI Memory Systems
|
||||
description: Leveraging memory systems in the crewAI framework to enhance agent capabilities.
|
||||
@@ -6,16 +5,16 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
|
||||
|
||||
## Introduction to Memory Systems in crewAI
|
||||
!!! note "Enhancing Agent Intelligence"
|
||||
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and newly identified contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
|
||||
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents. This system comprises short-term memory, long-term memory, entity memory, and contextual memory, each serving a unique purpose in aiding agents to remember, reason, and learn from past interactions.
|
||||
|
||||
## Memory System Components
|
||||
|
||||
| Component | Description |
|
||||
| :------------------- | :----------------------------------------------------------- |
|
||||
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context. |
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
|
||||
| **Short-Term Memory**| Temporarily stores recent interactions and outcomes, enabling agents to recall and utilize information relevant to their current context during the current executions. |
|
||||
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. So Agents can remember what they did right and wrong across multiple executions |
|
||||
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. |
|
||||
| **Contextual Memory**| Maintains the context of interactions, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
|
||||
|
||||
## How Memory Systems Empower Agents
|
||||
|
||||
@@ -28,8 +27,12 @@ description: Leveraging memory systems in the crewAI framework to enhance agent
|
||||
## Implementing Memory in Your Crew
|
||||
|
||||
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
|
||||
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration.
|
||||
The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
|
||||
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration. The memory will use OpenAI Embeddings by default, but you can change it by setting `embedder` to a different model.
|
||||
|
||||
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG using EmbedChain package.
|
||||
The **Long-Term Memory** uses SQLLite3 to store task results. Currently, there is no way to override these storage implementations.
|
||||
The data storage files are saved into a platform specific location found using the appdirs package
|
||||
and the name of the project which can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
|
||||
|
||||
### Example: Configuring Memory for a Crew
|
||||
|
||||
@@ -163,10 +166,43 @@ my_crew = Crew(
|
||||
)
|
||||
```
|
||||
|
||||
### Resetting Memory
|
||||
```sh
|
||||
crewai reset_memories [OPTIONS]
|
||||
```
|
||||
|
||||
#### Resetting Memory Options
|
||||
- **`-l, --long`**
|
||||
- **Description:** Reset LONG TERM memory.
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
- **`-s, --short`**
|
||||
- **Description:** Reset SHORT TERM memory.
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
- **`-e, --entities`**
|
||||
- **Description:** Reset ENTITIES memory.
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
- **`-k, --kickoff-outputs`**
|
||||
- **Description:** Reset LATEST KICKOFF TASK OUTPUTS.
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
- **`-a, --all`**
|
||||
- **Description:** Reset ALL memories.
|
||||
- **Type:** Flag (boolean)
|
||||
- **Default:** False
|
||||
|
||||
|
||||
|
||||
## Benefits of Using crewAI's Memory System
|
||||
- **Adaptive Learning:** Crews become more efficient over time, adapting to new information and refining their approach to tasks.
|
||||
- **Enhanced Personalization:** Memory enables agents to remember user preferences and historical interactions, leading to personalized experiences.
|
||||
- **Improved Problem Solving:** Access to a rich memory store aids agents in making more informed decisions, drawing on past learnings and contextual insights.
|
||||
|
||||
## Getting Started
|
||||
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
|
||||
Integrating crewAI's memory system into your projects is straightforward. By leveraging the provided memory components and configurations, you can quickly empower your agents with the ability to remember, reason, and learn from their interactions, unlocking new levels of intelligence and capability.
|
||||
|
||||
138
docs/core-concepts/Planning.md
Normal file
@@ -0,0 +1,138 @@
|
||||
---
|
||||
title: crewAI Planning
|
||||
description: Learn how to add planning to your crewAI Crew and improve their performance.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
The planning feature in CrewAI allows you to add planning capability to your crew. When enabled, before each Crew iteration, all Crew information is sent to an AgentPlanner that will plan the tasks step by step, and this plan will be added to each task description.
|
||||
|
||||
### Using the Planning Feature
|
||||
Getting started with the planning feature is very easy, the only step required is to add `planning=True` to your Crew:
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
|
||||
# Assemble your crew with planning capabilities
|
||||
my_crew = Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
planning=True,
|
||||
)
|
||||
```
|
||||
|
||||
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
|
||||
|
||||
#### Planning LLM
|
||||
|
||||
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# Assemble your crew with planning capabilities and custom LLM
|
||||
my_crew = Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
planning=True,
|
||||
planning_llm=ChatOpenAI(model="gpt-4o")
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### Example
|
||||
|
||||
When running the base case example, you will see something like the following output, which represents the output of the AgentPlanner responsible for creating the step-by-step logic to add to the Agents tasks.
|
||||
|
||||
```bash
|
||||
|
||||
[2024-07-15 16:49:11][INFO]: Planning the crew execution
|
||||
**Step-by-Step Plan for Task Execution**
|
||||
|
||||
**Task Number 1: Conduct a thorough research about AI LLMs**
|
||||
|
||||
**Agent:** AI LLMs Senior Data Researcher
|
||||
|
||||
**Agent Goal:** Uncover cutting-edge developments in AI LLMs
|
||||
|
||||
**Task Expected Output:** A list with 10 bullet points of the most relevant information about AI LLMs
|
||||
|
||||
**Task Tools:** None specified
|
||||
|
||||
**Agent Tools:** None specified
|
||||
|
||||
**Step-by-Step Plan:**
|
||||
|
||||
1. **Define Research Scope:**
|
||||
- Determine the specific areas of AI LLMs to focus on, such as advancements in architecture, use cases, ethical considerations, and performance metrics.
|
||||
|
||||
2. **Identify Reliable Sources:**
|
||||
- List reputable sources for AI research, including academic journals, industry reports, conferences (e.g., NeurIPS, ACL), AI research labs (e.g., OpenAI, Google AI), and online databases (e.g., IEEE Xplore, arXiv).
|
||||
|
||||
3. **Collect Data:**
|
||||
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
|
||||
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
|
||||
|
||||
4. **Analyze Findings:**
|
||||
- Read and summarize the key points from each source.
|
||||
- Highlight new techniques, models, and applications introduced in the past year.
|
||||
|
||||
5. **Organize Information:**
|
||||
- Categorize the information into relevant topics (e.g., new architectures, ethical implications, real-world applications).
|
||||
- Ensure each bullet point is concise but informative.
|
||||
|
||||
6. **Create the List:**
|
||||
- Compile the 10 most relevant pieces of information into a bullet point list.
|
||||
- Review the list to ensure clarity and relevance.
|
||||
|
||||
**Expected Output:**
|
||||
A list with 10 bullet points of the most relevant information about AI LLMs.
|
||||
|
||||
---
|
||||
|
||||
**Task Number 2: Review the context you got and expand each topic into a full section for a report**
|
||||
|
||||
**Agent:** AI LLMs Reporting Analyst
|
||||
|
||||
**Agent Goal:** Create detailed reports based on AI LLMs data analysis and research findings
|
||||
|
||||
**Task Expected Output:** A fully fledge report with the main topics, each with a full section of information. Formatted as markdown without '```'
|
||||
|
||||
**Task Tools:** None specified
|
||||
|
||||
**Agent Tools:** None specified
|
||||
|
||||
**Step-by-Step Plan:**
|
||||
|
||||
1. **Review the Bullet Points:**
|
||||
- Carefully read through the list of 10 bullet points provided by the AI LLMs Senior Data Researcher.
|
||||
|
||||
2. **Outline the Report:**
|
||||
- Create an outline with each bullet point as a main section heading.
|
||||
- Plan sub-sections under each main heading to cover different aspects of the topic.
|
||||
|
||||
3. **Research Further Details:**
|
||||
- For each bullet point, conduct additional research if necessary to gather more detailed information.
|
||||
- Look for case studies, examples, and statistical data to support each section.
|
||||
|
||||
4. **Write Detailed Sections:**
|
||||
- Expand each bullet point into a comprehensive section.
|
||||
- Ensure each section includes an introduction, detailed explanation, examples, and a conclusion.
|
||||
- Use markdown formatting for headings, subheadings, lists, and emphasis.
|
||||
|
||||
5. **Review and Edit:**
|
||||
- Proofread the report for clarity, coherence, and correctness.
|
||||
- Make sure the report flows logically from one section to the next.
|
||||
- Format the report according to markdown standards.
|
||||
|
||||
6. **Finalize the Report:**
|
||||
- Ensure the report is complete with all sections expanded and detailed.
|
||||
- Double-check formatting and make any necessary adjustments.
|
||||
|
||||
**Expected Output:**
|
||||
A fully-fledged report with the main topics, each with a full section of information. Formatted as markdown without '```'.
|
||||
|
||||
---
|
||||
```
|
||||
@@ -10,14 +10,14 @@ description: Detailed guide on workflow management through processes in CrewAI,
|
||||
## Process Implementations
|
||||
|
||||
- **Sequential**: Executes tasks sequentially, ensuring tasks are completed in an orderly progression.
|
||||
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command. A manager language model (`manager_llm`) must be specified in the crew to enable the hierarchical process, facilitating the creation and management of tasks by the manager.
|
||||
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command. A manager language model (`manager_llm`) or a custom manager agent (`manager_agent`) must be specified in the crew to enable the hierarchical process, facilitating the creation and management of tasks by the manager.
|
||||
- **Consensual Process (Planned)**: Aiming for collaborative decision-making among agents on task execution, this process type introduces a democratic approach to task management within CrewAI. It is planned for future development and is not currently implemented in the codebase.
|
||||
|
||||
## The Role of Processes in Teamwork
|
||||
Processes enable individual agents to operate as a cohesive unit, streamlining their efforts to achieve common objectives with efficiency and coherence.
|
||||
|
||||
## Assigning Processes to a Crew
|
||||
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` for the manager agent.
|
||||
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
|
||||
|
||||
```python
|
||||
from crewai import Crew
|
||||
@@ -32,15 +32,17 @@ crew = Crew(
|
||||
)
|
||||
|
||||
# Example: Creating a crew with a hierarchical process
|
||||
# Ensure to provide a manager_llm
|
||||
# Ensure to provide a manager_llm or manager_agent
|
||||
crew = Crew(
|
||||
agents=my_agents,
|
||||
tasks=my_tasks,
|
||||
process=Process.hierarchical,
|
||||
manager_llm=ChatOpenAI(model="gpt-4")
|
||||
# or
|
||||
# manager_agent=my_manager_agent
|
||||
)
|
||||
```
|
||||
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object, and for the hierarchical process, `manager_llm` is also required.
|
||||
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object, and for the hierarchical process, either `manager_llm` or `manager_agent` is also required.
|
||||
|
||||
## Sequential Process
|
||||
This method mirrors dynamic team workflows, progressing through tasks in a thoughtful and systematic manner. Task execution follows the predefined order in the task list, with the output of one task serving as context for the next.
|
||||
@@ -48,7 +50,7 @@ This method mirrors dynamic team workflows, progressing through tasks in a thoug
|
||||
To customize task context, utilize the `context` parameter in the `Task` class to specify outputs that should be used as context for subsequent tasks.
|
||||
|
||||
## Hierarchical Process
|
||||
Emulates a corporate hierarchy, CrewAI automatically creates a manager for you, requiring the specification of a manager language model (`manager_llm`) for the manager agent. This agent oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities, reviews outputs, and assesses task completion.
|
||||
Emulates a corporate hierarchy, CrewAI allows specifying a custom manager agent or automatically creates one, requiring the specification of a manager language model (`manager_llm`). This agent oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities, reviews outputs, and assesses task completion.
|
||||
|
||||
## Process Class: Detailed Overview
|
||||
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`). The consensual process is planned for future inclusion, emphasizing our commitment to continuous development and innovation.
|
||||
|
||||
@@ -4,27 +4,29 @@ description: Detailed guide on managing and creating tasks within the crewAI fra
|
||||
---
|
||||
|
||||
## Overview of a Task
|
||||
|
||||
!!! note "What is a Task?"
|
||||
In the crewAI framework, tasks are specific assignments completed by agents. They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
|
||||
In the crewAI framework, tasks are specific assignments completed by agents. They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
|
||||
|
||||
Tasks within crewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
|
||||
|
||||
## Task Attributes
|
||||
|
||||
| Attribute | Description |
|
||||
| :----------------------| :-------------------------------------------------------------------------------------------- |
|
||||
| **Description** | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | The agent responsible for the task, assigned either directly or by the crew's process. |
|
||||
| **Expected Output** | A detailed description of what the task's completion looks like. |
|
||||
| **Tools** *(optional)* | The functions or capabilities the agent can utilize to perform the task. |
|
||||
| **Async Execution** *(optional)* | If set, the task executes asynchronously, allowing progression without waiting for completion.|
|
||||
| **Context** *(optional)* | Specifies tasks whose outputs are used as context for this task. |
|
||||
| **Config** *(optional)* | Additional configuration details for the agent executing the task, allowing further customization. |
|
||||
| **Output JSON** *(optional)* | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output Pydantic** *(optional)* | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output File** *(optional)* | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
|
||||
| **Callback** *(optional)* | A Python callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** *(optional)* | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
|
||||
| Attribute | Parameters | Description |
|
||||
| :------------------------------- | :---------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | `agent` | The agent responsible for the task, assigned either directly or by the crew's process. |
|
||||
| **Expected Output** | `expected_output` | A detailed description of what the task's completion looks like. |
|
||||
| **Tools** _(optional)_ | `tools` | The functions or capabilities the agent can utilize to perform the task. |
|
||||
| **Async Execution** _(optional)_ | `async_execution` | If set, the task executes asynchronously, allowing progression without waiting for completion. |
|
||||
| **Context** _(optional)_ | `context` | Specifies tasks whose outputs are used as context for this task. |
|
||||
| **Config** _(optional)_ | `config` | Additional configuration details for the agent executing the task, allowing further customization. |
|
||||
| **Output JSON** _(optional)_ | `output_json` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output Pydantic** _(optional)_ | `output_pydantic` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
|
||||
| **Output File** _(optional)_ | `output_file` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
|
||||
| **Output** _(optional)_ | `output` | The output of the task, containing the raw, JSON, and Pydantic output plus additional details. |
|
||||
| **Callback** _(optional)_ | `callback` | A Python callable that is executed with the task's output upon completion. |
|
||||
| **Human Input** _(optional)_ | `human_input` | Indicates if the task requires human feedback at the end, useful for tasks needing human oversight. |
|
||||
|
||||
## Creating a Task
|
||||
|
||||
@@ -35,12 +37,75 @@ from crewai import Task
|
||||
|
||||
task = Task(
|
||||
description='Find and summarize the latest and most relevant news on AI',
|
||||
agent=sales_agent
|
||||
agent=sales_agent,
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
)
|
||||
```
|
||||
|
||||
!!! note "Task Assignment"
|
||||
Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's process decide based on roles, availability, etc.
|
||||
Directly specify an `agent` for assignment or let the `hierarchical` CrewAI's process decide based on roles, availability, etc.
|
||||
|
||||
## Task Output
|
||||
|
||||
!!! note "Understanding Task Outputs"
|
||||
The output of a task in the crewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
|
||||
|
||||
### Task Output Attributes
|
||||
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :---------------- | :-------------- | :------------------------- | :------------------------------------------------------------------------------------------------- |
|
||||
| **Description** | `description` | `str` | A brief description of the task. |
|
||||
| **Summary** | `summary` | `Optional[str]` | A short summary of the task, auto-generated from the description. |
|
||||
| **Raw** | `raw` | `str` | The raw output of the task. This is the default format for the output. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the task. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
|
||||
| **Agent** | `agent` | `str` | The agent that executed the task. |
|
||||
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
|
||||
|
||||
### Task Output Methods and Properties
|
||||
|
||||
| Method/Property | Description |
|
||||
| :-------------- | :------------------------------------------------------------------------------------------------ |
|
||||
| **json** | Returns the JSON string representation of the task output if the output format is JSON. |
|
||||
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
|
||||
| \***\*str\*\*** | Returns the string representation of the task output, prioritizing Pydantic, then JSON, then raw. |
|
||||
|
||||
### Accessing Task Outputs
|
||||
|
||||
Once a task has been executed, its output can be accessed through the `output` attribute of the `Task` object. The `TaskOutput` class provides various ways to interact with and present this output.
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
# Example task
|
||||
task = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
crew = Crew(
|
||||
agents=[research_agent],
|
||||
tasks=[task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Accessing the task output
|
||||
task_output = task.output
|
||||
|
||||
print(f"Task Description: {task_output.description}")
|
||||
print(f"Task Summary: {task_output.summary}")
|
||||
print(f"Raw Output: {task_output.raw}")
|
||||
if task_output.json_dict:
|
||||
print(f"JSON Output: {json.dumps(task_output.json_dict, indent=2)}")
|
||||
if task_output.pydantic:
|
||||
print(f"Pydantic Output: {task_output.pydantic}")
|
||||
```
|
||||
|
||||
## Integrating Tools with Tasks
|
||||
|
||||
@@ -88,7 +153,7 @@ This demonstrates how tasks with specific tools can override an agent's default
|
||||
|
||||
## Referring to Other Tasks
|
||||
|
||||
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output, including multiple should be used as context for another task.
|
||||
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output, including multiple, should be used as context for another task.
|
||||
|
||||
This is useful when you have a task that depends on the output of another task that is not performed immediately after it. This is done through the `context` attribute of the task:
|
||||
|
||||
@@ -96,26 +161,26 @@ This is useful when you have a task that depends on the output of another task t
|
||||
# ...
|
||||
|
||||
research_ai_task = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
research_ops_task = Task(
|
||||
description='Find and summarize the latest AI Ops news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI Ops news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
description='Find and summarize the latest AI Ops news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI Ops news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
write_blog_task = Task(
|
||||
description="Write a full blog post about the importance of AI and its latest news",
|
||||
expected_output='Full blog post that is 4 paragraphs long',
|
||||
agent=writer_agent,
|
||||
context=[research_ai_task, research_ops_task]
|
||||
description="Write a full blog post about the importance of AI and its latest news",
|
||||
expected_output='Full blog post that is 4 paragraphs long',
|
||||
agent=writer_agent,
|
||||
context=[research_ai_task, research_ops_task]
|
||||
)
|
||||
|
||||
#...
|
||||
@@ -131,24 +196,24 @@ You can then use the `context` attribute to define in a future task that it shou
|
||||
#...
|
||||
|
||||
list_ideas = Task(
|
||||
description="List of 5 interesting ideas to explore for an article about AI.",
|
||||
expected_output="Bullet point list of 5 ideas for an article.",
|
||||
agent=researcher,
|
||||
async_execution=True # Will be executed asynchronously
|
||||
description="List of 5 interesting ideas to explore for an article about AI.",
|
||||
expected_output="Bullet point list of 5 ideas for an article.",
|
||||
agent=researcher,
|
||||
async_execution=True # Will be executed asynchronously
|
||||
)
|
||||
|
||||
list_important_history = Task(
|
||||
description="Research the history of AI and give me the 5 most important events.",
|
||||
expected_output="Bullet point list of 5 important events.",
|
||||
agent=researcher,
|
||||
async_execution=True # Will be executed asynchronously
|
||||
description="Research the history of AI and give me the 5 most important events.",
|
||||
expected_output="Bullet point list of 5 important events.",
|
||||
agent=researcher,
|
||||
async_execution=True # Will be executed asynchronously
|
||||
)
|
||||
|
||||
write_article = Task(
|
||||
description="Write an article about AI, its history, and interesting ideas.",
|
||||
expected_output="A 4 paragraph article about AI.",
|
||||
agent=writer,
|
||||
context=[list_ideas, list_important_history] # Will wait for the output of the two tasks to be completed
|
||||
description="Write an article about AI, its history, and interesting ideas.",
|
||||
expected_output="A 4 paragraph article about AI.",
|
||||
agent=writer,
|
||||
context=[list_ideas, list_important_history] # Will wait for the output of the two tasks to be completed
|
||||
)
|
||||
|
||||
#...
|
||||
@@ -162,20 +227,20 @@ The callback function is executed after the task is completed, allowing for acti
|
||||
# ...
|
||||
|
||||
def callback_function(output: TaskOutput):
|
||||
# Do something after the task is completed
|
||||
# Example: Send an email to the manager
|
||||
print(f"""
|
||||
Task completed!
|
||||
Task: {output.description}
|
||||
Output: {output.raw_output}
|
||||
""")
|
||||
# Do something after the task is completed
|
||||
# Example: Send an email to the manager
|
||||
print(f"""
|
||||
Task completed!
|
||||
Task: {output.description}
|
||||
Output: {output.raw_output}
|
||||
""")
|
||||
|
||||
research_task = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
agent=research_agent,
|
||||
tools=[search_tool],
|
||||
callback=callback_function
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
agent=research_agent,
|
||||
tools=[search_tool],
|
||||
callback=callback_function
|
||||
)
|
||||
|
||||
#...
|
||||
@@ -188,27 +253,27 @@ Once a crew finishes running, you can access the output of a specific task by us
|
||||
```python
|
||||
# ...
|
||||
task1 = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
#...
|
||||
|
||||
crew = Crew(
|
||||
agents=[research_agent],
|
||||
tasks=[task1, task2, task3],
|
||||
verbose=2
|
||||
agents=[research_agent],
|
||||
tasks=[task1, task2, task3],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Returns a TaskOutput object with the description and results of the task
|
||||
print(f"""
|
||||
Task completed!
|
||||
Task: {task1.output.description}
|
||||
Output: {task1.output.raw_output}
|
||||
Task completed!
|
||||
Task: {task1.output.description}
|
||||
Output: {task1.output.raw_output}
|
||||
""")
|
||||
```
|
||||
|
||||
@@ -225,6 +290,25 @@ While creating and executing tasks, certain validation mechanisms are in place t
|
||||
|
||||
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
|
||||
|
||||
## Creating Directories when Saving Files
|
||||
|
||||
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
|
||||
|
||||
```python
|
||||
# ...
|
||||
|
||||
save_output_task = Task(
|
||||
description='Save the summarized AI news to a file',
|
||||
expected_output='File saved successfully',
|
||||
agent=research_agent,
|
||||
tools=[file_save_tool],
|
||||
output_file='outputs/ai_news_summary.txt',
|
||||
create_directory=True
|
||||
)
|
||||
|
||||
#...
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
|
||||
41
docs/core-concepts/Testing.md
Normal file
@@ -0,0 +1,41 @@
|
||||
---
|
||||
title: crewAI Testing
|
||||
description: Learn how to test your crewAI Crew and evaluate their performance.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
Testing is a crucial part of the development process, and it is essential to ensure that your crew is performing as expected. And with crewAI, you can easily test your crew and evaluate its performance using the built-in testing capabilities.
|
||||
|
||||
### Using the Testing Feature
|
||||
|
||||
We added the CLI command `crewai test` to make it easy to test your crew. This command will run your crew for a specified number of iterations and provide detailed performance metrics.
|
||||
The parameters are `n_iterations` and `model` which are optional and default to 2 and `gpt-4o-mini` respectively. For now the only provider available is OpenAI.
|
||||
|
||||
```bash
|
||||
crewai test
|
||||
```
|
||||
|
||||
If you want to run more iterations or use a different model, you can specify the parameters like this:
|
||||
|
||||
```bash
|
||||
crewai test --n_iterations 5 --model gpt-4o
|
||||
```
|
||||
|
||||
What happens when you run the `crewai test` command is that the crew will be executed for the specified number of iterations, and the performance metrics will be displayed at the end of the run.
|
||||
|
||||
A table of scores at the end will show the performance of the crew in terms of the following metrics:
|
||||
```
|
||||
Task Scores
|
||||
(1-10 Higher is better)
|
||||
┏━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
|
||||
┃ Tasks/Crew ┃ Run 1 ┃ Run 2 ┃ Avg. Total ┃
|
||||
┡━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
|
||||
│ Task 1 │ 10.0 │ 9.0 │ 9.5 │
|
||||
│ Task 2 │ 9.0 │ 9.0 │ 9.0 │
|
||||
│ Crew │ 9.5 │ 9.0 │ 9.2 │
|
||||
└────────────┴───────┴───────┴────────────┘
|
||||
```
|
||||
|
||||
The example above shows the test results for two runs of the crew with two tasks, with the average total score for each task and the crew as a whole.
|
||||
|
||||
@@ -94,22 +94,30 @@ crew.kickoff()
|
||||
## Available crewAI Tools
|
||||
|
||||
- **Error Handling**: All tools are built with error handling capabilities, allowing agents to gracefully manage exceptions and continue their tasks.
|
||||
- **Caching Mechanism**: All tools support caching, enabling agents to efficiently reuse previously obtained results, reducing the load on external resources and speeding up the execution time, you can also define finner control over the caching mechanism, using `cache_function` attribute on the tool.
|
||||
- **Caching Mechanism**: All tools support caching, enabling agents to efficiently reuse previously obtained results, reducing the load on external resources and speeding up the execution time. You can also define finer control over the caching mechanism using the `cache_function` attribute on the tool.
|
||||
|
||||
Here is a list of the available tools and their descriptions:
|
||||
|
||||
| Tool | Description |
|
||||
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
|
||||
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
|
||||
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
|
||||
| **CodeInterpreterTool** | A tool for interpreting python code. |
|
||||
| **ComposioTool** | Enables use of Composio tools. |
|
||||
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
|
||||
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
|
||||
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
|
||||
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
|
||||
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
|
||||
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
|
||||
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
|
||||
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
|
||||
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages url using Firecrawl and returning its contents. |
|
||||
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
|
||||
| **SeperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
|
||||
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
|
||||
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
|
||||
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
|
||||
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
|
||||
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
|
||||
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
|
||||
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
|
||||
@@ -126,7 +134,6 @@ Here is a list of the available tools and their descriptions:
|
||||
!!! example "Custom Tool Creation"
|
||||
Developers can craft custom tools tailored for their agent’s needs or utilize pre-built options:
|
||||
|
||||
|
||||
To create your own crewAI tools you will need to install our extra tools package:
|
||||
|
||||
```bash
|
||||
@@ -141,7 +148,7 @@ from crewai_tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
@@ -154,7 +161,7 @@ class MyCustomTool(BaseTool):
|
||||
from crewai_tools import tool
|
||||
@tool("Name of my tool")
|
||||
def my_tool(question: str) -> str:
|
||||
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
|
||||
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
|
||||
# Function logic here
|
||||
return "Result from your custom tool"
|
||||
```
|
||||
@@ -180,45 +187,14 @@ multiplication_tool.cache_function = cache_func
|
||||
|
||||
writer1 = Agent(
|
||||
role="Writer",
|
||||
goal="You write lesssons of math for kids.",
|
||||
backstory="You're an expert in writting and you love to teach kids but you know nothing of math.",
|
||||
tools=[multiplcation_tool],
|
||||
goal="You write lessons of math for kids.",
|
||||
backstory="You're an expert in writing and you love to teach kids but you know nothing of math.",
|
||||
tools=[multiplication_tool],
|
||||
allow_delegation=False,
|
||||
)
|
||||
#...
|
||||
```
|
||||
|
||||
## Using LangChain Tools
|
||||
!!! info "LangChain Integration"
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
|
||||
:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from langchain.agents import Tool
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
|
||||
# Setup API keys
|
||||
os.environ["SERPER_API_KEY"] = "Your Key"
|
||||
|
||||
search = GoogleSerperAPIWrapper()
|
||||
|
||||
# Create and assign the search tool to an agent
|
||||
serper_tool = Tool(
|
||||
name="Intermediate Answer",
|
||||
func=search.run,
|
||||
description="Useful for search-based queries",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[serper_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
|
||||
53
docs/core-concepts/Training-Crew.md
Normal file
@@ -0,0 +1,53 @@
|
||||
---
|
||||
title: crewAI Train
|
||||
description: Learn how to train your crewAI agents by giving them feedback early on and get consistent results.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
The training feature in CrewAI allows you to train your AI agents using the command-line interface (CLI). By running the command `crewai train -n <n_iterations>`, you can specify the number of iterations for the training process.
|
||||
|
||||
During training, CrewAI utilizes techniques to optimize the performance of your agents along with human feedback. This helps the agents improve their understanding, decision-making, and problem-solving abilities.
|
||||
|
||||
### Training Your Crew Using the CLI
|
||||
To use the training feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
```shell
|
||||
crewai train -n <n_iterations>
|
||||
```
|
||||
|
||||
### Training Your Crew Programmatically
|
||||
To train your crew programmatically, use the following steps:
|
||||
|
||||
1. Define the number of iterations for training.
|
||||
2. Specify the input parameters for the training process.
|
||||
3. Execute the training command within a try-except block to handle potential errors.
|
||||
|
||||
```python
|
||||
n_iterations = 2
|
||||
inputs = {"topic": "CrewAI Training"}
|
||||
|
||||
try:
|
||||
YourCrewName_Crew().crew().train(n_iterations= n_iterations, inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
```
|
||||
|
||||
!!! note "Replace `<n_iterations>` with the desired number of training iterations. This determines how many times the agents will go through the training process."
|
||||
|
||||
|
||||
### Key Points to Note:
|
||||
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
|
||||
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
|
||||
|
||||
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
|
||||
|
||||
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
|
||||
|
||||
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
|
||||
|
||||
Happy training with CrewAI!
|
||||
38
docs/core-concepts/Using-LangChain-Tools.md
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
title: Using LangChain Tools
|
||||
description: Learn how to integrate LangChain tools with CrewAI agents to enhance search-based queries and more.
|
||||
---
|
||||
|
||||
## Using LangChain Tools
|
||||
!!! info "LangChain Integration"
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from langchain.agents import Tool
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
|
||||
# Setup API keys
|
||||
os.environ["SERPER_API_KEY"] = "Your Key"
|
||||
|
||||
search = GoogleSerperAPIWrapper()
|
||||
|
||||
# Create and assign the search tool to an agent
|
||||
serper_tool = Tool(
|
||||
name="Intermediate Answer",
|
||||
func=search.run,
|
||||
description="Useful for search-based queries",
|
||||
)
|
||||
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[serper_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
|
||||
57
docs/core-concepts/Using-LlamaIndex-Tools.md
Normal file
@@ -0,0 +1,57 @@
|
||||
---
|
||||
title: Using LlamaIndex Tools
|
||||
description: Learn how to integrate LlamaIndex tools with CrewAI agents to enhance search-based queries and more.
|
||||
---
|
||||
|
||||
## Using LlamaIndex Tools
|
||||
|
||||
!!! info "LlamaIndex Integration"
|
||||
CrewAI seamlessly integrates with LlamaIndex’s comprehensive toolkit for RAG (Retrieval-Augmented Generation) and agentic pipelines, enabling advanced search-based queries and more. Here are the available built-in tools offered by LlamaIndex.
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import LlamaIndexTool
|
||||
|
||||
# Example 1: Initialize from FunctionTool
|
||||
from llama_index.core.tools import FunctionTool
|
||||
|
||||
your_python_function = lambda ...: ...
|
||||
og_tool = FunctionTool.from_defaults(your_python_function, name="<name>", description='<description>')
|
||||
tool = LlamaIndexTool.from_tool(og_tool)
|
||||
|
||||
# Example 2: Initialize from LlamaHub Tools
|
||||
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
|
||||
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
|
||||
wolfram_tools = wolfram_spec.to_tool_list()
|
||||
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
|
||||
|
||||
# Example 3: Initialize Tool from a LlamaIndex Query Engine
|
||||
query_engine = index.as_query_engine()
|
||||
query_tool = LlamaIndexTool.from_query_engine(
|
||||
query_engine,
|
||||
name="Uber 2019 10K Query Tool",
|
||||
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
|
||||
)
|
||||
|
||||
# Create and assign the tools to an agent
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[tool, *tools, query_tool]
|
||||
)
|
||||
|
||||
# rest of the code ...
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
|
||||
To effectively use the LlamaIndexTool, follow these steps:
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
2. **Install and Use LlamaIndex**: Follow LlamaIndex documentation [LlamaIndex Documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
|
||||
24
docs/getting-started/Installing-CrewAI.md
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
title: Installing crewAI
|
||||
description: A comprehensive guide to installing crewAI and its dependencies, including the latest updates and installation methods.
|
||||
---
|
||||
|
||||
# Installing crewAI
|
||||
|
||||
Welcome to crewAI! This guide will walk you through the installation process for crewAI and its dependencies. crewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently. Let's get started!
|
||||
|
||||
## Installation
|
||||
|
||||
To install crewAI, you need to have Python >=3.10 and <=3.13 installed on your system:
|
||||
|
||||
```shell
|
||||
# Install the main crewAI package
|
||||
pip install crewai
|
||||
|
||||
# Install the main crewAI package and the tools package
|
||||
# that includes a series of helpful tools for your agents
|
||||
pip install 'crewai[tools]'
|
||||
|
||||
# Alternatively, you can also use:
|
||||
pip install crewai crewai-tools
|
||||
```
|
||||
@@ -0,0 +1,255 @@
|
||||
---
|
||||
title: Starting a New CrewAI Project - Using Template
|
||||
description: A comprehensive guide to starting a new CrewAI project, including the latest updates and project setup methods.
|
||||
---
|
||||
|
||||
# Starting Your CrewAI Project
|
||||
|
||||
Welcome to the ultimate guide for starting a new CrewAI project. This document will walk you through the steps to create, customize, and run your CrewAI project, ensuring you have everything you need to get started.
|
||||
|
||||
Beforre we start there are a couple of things to note:
|
||||
|
||||
1. CrewAI is a Python package and requires Python >=3.10 and <=3.13 to run.
|
||||
2. The preferred way of setting up CrewAI is using the `crewai create` command.This will create a new project folder and install a skeleton template for you to work on.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before getting started with CrewAI, make sure that you have installed it via pip:
|
||||
|
||||
```shell
|
||||
$ pip install crewai crewi-tools
|
||||
```
|
||||
|
||||
### Virtual Environemnts
|
||||
It is highly recommended that you use virtual environments to ensure that your CrewAI project is isolated from other projects and dependencies. Virtual environments provide a clean, separate workspace for each project, preventing conflicts between different versions of packages and libraries. This isolation is crucial for maintaining consistency and reproducibility in your development process. You have multiple options for setting up virtual environments depending on your operating system and Python version:
|
||||
|
||||
1. Use venv (Python's built-in virtual environment tool):
|
||||
venv is included with Python 3.3 and later, making it a convenient choice for many developers. It's lightweight and easy to use, perfect for simple project setups.
|
||||
|
||||
To set up virtual environments with venv, refer to the official [Python documentation](https://docs.python.org/3/tutorial/venv.html).
|
||||
|
||||
2. Use Conda (A Python virtual environment manager):
|
||||
Conda is an open-source package manager and environment management system for Python. It's widely used by data scientists, developers, and researchers to manage dependencies and environments in a reproducible way.
|
||||
|
||||
To set up virtual environments with Conda, refer to the official [Conda documentation](https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html).
|
||||
|
||||
3. Use Poetry (A Python package manager and dependency management tool):
|
||||
Poetry is an open-source Python package manager that simplifies the installation of packages and their dependencies. Poetry offers a convenient way to manage virtual environments and dependencies.
|
||||
Poetry is CrewAI's prefered tool for package / dependancy management in CrewAI.
|
||||
|
||||
### Code IDEs
|
||||
|
||||
Most users of CrewAI a Code Editor / Integrated Development Environment (IDE) for building there Crews. You can use any code IDE of your choice. Seee below for some popular options for Code Editors / Integrated Development Environments (IDE):
|
||||
|
||||
- [Visual Studio Code](https://code.visualstudio.com/) - Most popular
|
||||
- [PyCharm](https://www.jetbrains.com/pycharm/)
|
||||
- [Cursor AI](https://cursor.com)
|
||||
|
||||
Pick one that suits your style and needs.
|
||||
|
||||
## Creating a New Project
|
||||
In this example we will be using Venv as our virtual environment manager.
|
||||
|
||||
To setup a virtual environment, run the following CLI command:
|
||||
|
||||
```shell
|
||||
$ python3 -m venv <venv-name>
|
||||
```
|
||||
|
||||
Activate your virtual environment by running the following CLI command:
|
||||
|
||||
```shell
|
||||
$ source <venv-name>/bin/activate
|
||||
```
|
||||
|
||||
Now, to create a new CrewAI project, run the following CLI command:
|
||||
|
||||
```shell
|
||||
$ crewai create <project_name>
|
||||
```
|
||||
|
||||
This command will create a new project folder with the following structure:
|
||||
|
||||
```shell
|
||||
my_project/
|
||||
├── .gitignore
|
||||
├── pyproject.toml
|
||||
├── README.md
|
||||
└── src/
|
||||
└── my_project/
|
||||
├── __init__.py
|
||||
├── main.py
|
||||
├── crew.py
|
||||
├── tools/
|
||||
│ ├── custom_tool.py
|
||||
│ └── __init__.py
|
||||
└── config/
|
||||
├── agents.yaml
|
||||
└── tasks.yaml
|
||||
```
|
||||
|
||||
You can now start developing your project by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of your project, and the `crew.py` file is where you define your agents and tasks.
|
||||
|
||||
## Customizing Your Project
|
||||
|
||||
To customize your project, you can:
|
||||
- Modify `src/my_project/config/agents.yaml` to define your agents.
|
||||
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
|
||||
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
|
||||
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
|
||||
- Add your environment variables into the `.env` file.
|
||||
|
||||
### Example: Defining Agents and Tasks
|
||||
|
||||
#### agents.yaml
|
||||
|
||||
```yaml
|
||||
researcher:
|
||||
role: >
|
||||
Job Candidate Researcher
|
||||
goal: >
|
||||
Find potential candidates for the job
|
||||
backstory: >
|
||||
You are adept at finding the right candidates by exploring various online
|
||||
resources. Your skill in identifying suitable candidates ensures the best
|
||||
match for job positions.
|
||||
```
|
||||
|
||||
#### tasks.yaml
|
||||
|
||||
```yaml
|
||||
research_candidates_task:
|
||||
description: >
|
||||
Conduct thorough research to find potential candidates for the specified job.
|
||||
Utilize various online resources and databases to gather a comprehensive list of potential candidates.
|
||||
Ensure that the candidates meet the job requirements provided.
|
||||
|
||||
Job Requirements:
|
||||
{job_requirements}
|
||||
expected_output: >
|
||||
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
|
||||
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
|
||||
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
|
||||
- researcher
|
||||
```
|
||||
|
||||
### Referencing Variables:
|
||||
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
|
||||
|
||||
#### Example References
|
||||
agent.yaml
|
||||
```yaml
|
||||
email_summarizer:
|
||||
role: >
|
||||
Email Summarizer
|
||||
goal: >
|
||||
Summarize emails into a concise and clear summary
|
||||
backstory: >
|
||||
You will create a 5 bullet point summary of the report
|
||||
llm: mixtal_llm
|
||||
```
|
||||
|
||||
task.yaml
|
||||
```yaml
|
||||
email_summarizer_task:
|
||||
description: >
|
||||
Summarize the email into a 5 bullet point summary
|
||||
expected_output: >
|
||||
A 5 bullet point summary of the email
|
||||
agent: email_summarizer
|
||||
context:
|
||||
- reporting_task
|
||||
- research_task
|
||||
```
|
||||
|
||||
Use the annotations are used to properly reference the agent and task in the crew.py file.
|
||||
|
||||
### Annotations include:
|
||||
* @agent
|
||||
* @task
|
||||
* @crew
|
||||
* @llm
|
||||
* @tool
|
||||
* @callback
|
||||
* @output_json
|
||||
* @output_pydantic
|
||||
* @cache_handler
|
||||
|
||||
|
||||
crew.py
|
||||
```py
|
||||
...
|
||||
@llm
|
||||
def mixtal_llm(self):
|
||||
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
|
||||
|
||||
@agent
|
||||
def email_summarizer(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config["email_summarizer"],
|
||||
)
|
||||
## ...other tasks defined
|
||||
@task
|
||||
def email_summarizer_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config["email_summarizer_task"],
|
||||
)
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Installing Dependencies
|
||||
|
||||
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:
|
||||
|
||||
```shell
|
||||
$ cd my_project
|
||||
$ poetry lock
|
||||
$ poetry install
|
||||
```
|
||||
|
||||
This will install the dependencies specified in the `pyproject.toml` file.
|
||||
|
||||
## Interpolating Variables
|
||||
|
||||
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{variable}` will be replaced by the value of the variable in the `main.py` file.
|
||||
|
||||
#### agents.yaml
|
||||
|
||||
```yaml
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about the customer and competitors in the context
|
||||
of {customer_domain}.
|
||||
Make sure you find any interesting and relevant information given the
|
||||
current year is 2024.
|
||||
expected_output: >
|
||||
A complete report on the customer and their customers and competitors,
|
||||
including their demographics, preferences, market positioning and audience engagement.
|
||||
```
|
||||
|
||||
#### main.py
|
||||
|
||||
```python
|
||||
# main.py
|
||||
def run():
|
||||
inputs = {
|
||||
"customer_domain": "crewai.com"
|
||||
}
|
||||
MyProjectCrew(inputs).crew().kickoff(inputs=inputs)
|
||||
```
|
||||
|
||||
## Running Your Project
|
||||
|
||||
To run your project, use the following command:
|
||||
|
||||
```shell
|
||||
$ poetry run my_project
|
||||
```
|
||||
|
||||
This will initialize your crew of AI agents and begin task execution as defined in your configuration in the `main.py` file.
|
||||
|
||||
## Deploying Your Project
|
||||
|
||||
The easiest way to deploy your crew is through [CrewAI+](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
|
||||
@@ -1,72 +1,86 @@
|
||||
---
|
||||
title: (AgentOps) Observability using AgentOps
|
||||
title: Agent Monitoring with AgentOps
|
||||
description: Understanding and logging your agent performance with AgentOps.
|
||||
---
|
||||
|
||||
# Intro
|
||||
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how the agent is performing, how users are interacting with the agent, and how the agent is responding to user inputs.
|
||||
|
||||
AgentOps is a product, idependent of crewAI that provides a comprehensive observability solution for agents.
|
||||
|
||||
This notebook will provide an overview of AgentOps and how to use it with crewAI.
|
||||
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how their agents are performing, how their agents are interacting with users, and how their agents use external tools and APIs. AgentOps is a product independent of CrewAI that provides a comprehensive observability solution for agents.
|
||||
|
||||
## AgentOps
|
||||
|
||||
[AgentOps](https://agentops.ai) provides session replays, metrics, and monitoring for agents.
|
||||
[AgentOps Repo](https://github.com/AgentOps-AI/agentops)
|
||||
[AgentOps](https://agentops.ai/?=crew) provides session replays, metrics, and monitoring for agents.
|
||||
|
||||
At a high level, AgentOps gives you the ability to monitor cost, token usage, latency, agent failures, session-wide statistics, and more. For more info, check out the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
### Overview
|
||||
AgentOps provides monotoring for agents in development and production. It provides a dashboard for monitoring agent performance, session replays, and custom reporting.
|
||||
AgentOps provides monitoring for agents in development and production. It provides a dashboard for tracking agent performance, session replays, and custom reporting.
|
||||
|
||||

|
||||
Additionally, AgentOps provides session drilldowns for viewing Crew agent interactions, LLM calls, and tool usage in real-time. This feature is useful for debugging and understanding how agents interact with users as well as other agents.
|
||||
|
||||
Additionally, AgentOps provides session drilldowns that allows users to view the agent's interactions with users in real-time. This feature is useful for debugging and understanding how the agent interacts with users.
|
||||
|
||||

|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
### Features
|
||||
- LLM Cost management and tracking
|
||||
- Replay Analytics
|
||||
- Recursive thought detection
|
||||
- Custom Reporting
|
||||
- Analytics Dashboard
|
||||
- Public Model Testing
|
||||
- Custom Tests
|
||||
- Time Travel Debugging
|
||||
- Compliance and Security
|
||||
- **LLM Cost Management and Tracking**: Track spend with foundation model providers.
|
||||
- **Replay Analytics**: Watch step-by-step agent execution graphs.
|
||||
- **Recursive Thought Detection**: Identify when agents fall into infinite loops.
|
||||
- **Custom Reporting**: Create custom analytics on agent performance.
|
||||
- **Analytics Dashboard**: Monitor high-level statistics about agents in development and production.
|
||||
- **Public Model Testing**: Test your agents against benchmarks and leaderboards.
|
||||
- **Custom Tests**: Run your agents against domain-specific tests.
|
||||
- **Time Travel Debugging**: Restart your sessions from checkpoints.
|
||||
- **Compliance and Security**: Create audit logs and detect potential threats such as profanity and PII leaks.
|
||||
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
|
||||
|
||||
### Using AgentOps
|
||||
|
||||
Create a user API key here: app.agentops.ai/account
|
||||
1. **Create an API Key:**
|
||||
Create a user API key here: [Create API Key](app.agentops.ai/account)
|
||||
|
||||
Add your API key to your environment variables
|
||||
2. **Configure Your Environment:**
|
||||
Add your API key to your environment variables
|
||||
|
||||
```
|
||||
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
|
||||
```
|
||||
```bash
|
||||
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
|
||||
```
|
||||
|
||||
Install AgentOps with:
|
||||
```
|
||||
pip install crewai[agentops]
|
||||
```
|
||||
or
|
||||
```
|
||||
pip install agentops
|
||||
```
|
||||
3. **Install AgentOps:**
|
||||
Install AgentOps with:
|
||||
```bash
|
||||
pip install crewai[agentops]
|
||||
```
|
||||
or
|
||||
```bash
|
||||
pip install agentops
|
||||
```
|
||||
|
||||
Before using `Crew` in your script, include these lines:
|
||||
Before using `Crew` in your script, include these lines:
|
||||
|
||||
```python
|
||||
import agentops
|
||||
agentops.init()
|
||||
```
|
||||
```python
|
||||
import agentops
|
||||
agentops.init()
|
||||
```
|
||||
|
||||
This will initiate an AgentOps session as well as automatically track Crew agents. For further info on how to outfit more complex agentic systems, check out the [AgentOps documentation](https://docs.agentops.ai) or join the [Discord](https://discord.gg/j4f3KbeH).
|
||||
|
||||
### Crew + AgentOps Examples
|
||||
- [Job Posting](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting)
|
||||
- [Markdown Validator](https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator)
|
||||
- [Instagram Post](https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post)
|
||||
|
||||
### Further Information
|
||||
|
||||
### Futher Information
|
||||
To implement more features and better observability, please see the [AgentOps Repo](https://github.com/AgentOps-AI/agentops)
|
||||
To get started, create an [AgentOps account](https://agentops.ai/?=crew).
|
||||
|
||||
For feature requests or bug reports, please reach out to the AgentOps team on the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
#### Extra links
|
||||
|
||||
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
|
||||
<span> • </span>
|
||||
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
|
||||
<span> • </span>
|
||||
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
|
||||
<span> • </span>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>
|
||||
76
docs/how-to/Coding-Agents.md
Normal file
@@ -0,0 +1,76 @@
|
||||
---
|
||||
title: Coding Agents
|
||||
description: Learn how to enable your crewAI Agents to write and execute code, and explore advanced features for enhanced functionality.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
crewAI Agents now have the powerful ability to write and execute code, significantly enhancing their problem-solving capabilities. This feature is particularly useful for tasks that require computational or programmatic solutions.
|
||||
|
||||
## Enabling Code Execution
|
||||
|
||||
To enable code execution for an agent, set the `allow_code_execution` parameter to `True` when creating the agent. Here's an example:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
coding_agent = Agent(
|
||||
role="Senior Python Developer",
|
||||
goal="Craft well-designed and thought-out code",
|
||||
backstory="You are a senior Python developer with extensive experience in software architecture and best practices.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
```
|
||||
|
||||
## Important Considerations
|
||||
|
||||
1. **Model Selection**: It is strongly recommended to use more capable models like Claude 3.5 Sonnet and GPT-4 when enabling code execution. These models have a better understanding of programming concepts and are more likely to generate correct and efficient code.
|
||||
|
||||
2. **Error Handling**: The code execution feature includes error handling. If executed code raises an exception, the agent will receive the error message and can attempt to correct the code or provide alternative solutions.
|
||||
|
||||
3. **Dependencies**: To use the code execution feature, you need to install the `crewai_tools` package. If not installed, the agent will log an info message: "Coding tools not available. Install crewai_tools."
|
||||
|
||||
## Code Execution Process
|
||||
|
||||
When an agent with code execution enabled encounters a task requiring programming:
|
||||
|
||||
1. The agent analyzes the task and determines that code execution is necessary.
|
||||
2. It formulates the Python code needed to solve the problem.
|
||||
3. The code is sent to the internal code execution tool (`CodeInterpreterTool`).
|
||||
4. The tool executes the code in a controlled environment and returns the result.
|
||||
5. The agent interprets the result and incorporates it into its response or uses it for further problem-solving.
|
||||
|
||||
## Example Usage
|
||||
|
||||
Here's a detailed example of creating an agent with code execution capabilities and using it in a task:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
coding_agent = Agent(
|
||||
role="Python Data Analyst",
|
||||
goal="Analyze data and provide insights using Python",
|
||||
backstory="You are an experienced data analyst with strong Python skills.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
|
||||
# Create a task that requires code execution
|
||||
data_analysis_task = Task(
|
||||
description="Analyze the given dataset and calculate the average age of participants.",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
# Create a crew and add the task
|
||||
analysis_crew = Crew(
|
||||
agents=[coding_agent],
|
||||
tasks=[data_analysis_task]
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = analysis_crew.kickoff()
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
In this example, the `coding_agent` can write and execute Python code to perform data analysis tasks.
|
||||
87
docs/how-to/Conditional-Tasks.md
Normal file
@@ -0,0 +1,87 @@
|
||||
---
|
||||
title: Conditional Tasks
|
||||
description: Learn how to use conditional tasks in a crewAI kickoff
|
||||
---
|
||||
|
||||
## Introduction
|
||||
|
||||
Conditional Tasks in crewAI allow for dynamic workflow adaptation based on the outcomes of previous tasks. This powerful feature enables crews to make decisions and execute tasks selectively, enhancing the flexibility and efficiency of your AI-driven processes.
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel
|
||||
from crewai import Agent, Crew
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.task import Task
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
|
||||
# Define a condition function for the conditional task
|
||||
# if false task will be skipped, true, then execute task
|
||||
def is_data_missing(output: TaskOutput) -> bool:
|
||||
return len(output.pydantic.events) < 10: # this will skip this task
|
||||
|
||||
# Define the agents
|
||||
data_fetcher_agent = Agent(
|
||||
role="Data Fetcher",
|
||||
goal="Fetch data online using Serper tool",
|
||||
backstory="Backstory 1",
|
||||
verbose=True,
|
||||
tools=[SerperDevTool()],
|
||||
)
|
||||
|
||||
data_processor_agent = Agent(
|
||||
role="Data Processor",
|
||||
goal="Process fetched data",
|
||||
backstory="Backstory 2",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
summary_generator_agent = Agent(
|
||||
role="Summary Generator",
|
||||
goal="Generate summary from fetched data",
|
||||
backstory="Backstory 3",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
|
||||
class EventOutput(BaseModel):
|
||||
events: List[str]
|
||||
|
||||
|
||||
task1 = Task(
|
||||
description="Fetch data about events in San Francisco using Serper tool",
|
||||
expected_output="List of 10 things to do in SF this week",
|
||||
agent=data_fetcher_agent,
|
||||
output_pydantic=EventOutput,
|
||||
)
|
||||
|
||||
conditional_task = ConditionalTask(
|
||||
description="""
|
||||
Check if data is missing. If we have less than 10 events,
|
||||
fetch more events using Serper tool so that
|
||||
we have a total of 10 events in SF this week..
|
||||
""",
|
||||
expected_output="List of 10 Things to do in SF this week ",
|
||||
condition=is_data_missing,
|
||||
agent=data_processor_agent,
|
||||
)
|
||||
|
||||
task3 = Task(
|
||||
description="Generate summary of events in San Francisco from fetched data",
|
||||
expected_output="summary_generated",
|
||||
agent=summary_generator_agent,
|
||||
)
|
||||
|
||||
# Create a crew with the tasks
|
||||
crew = Crew(
|
||||
agents=[data_fetcher_agent, data_processor_agent, summary_generator_agent],
|
||||
tasks=[task1, conditional_task, task3],
|
||||
verbose=2,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print("results", result)
|
||||
```
|
||||
@@ -42,6 +42,7 @@ def my_simple_tool(question: str) -> str:
|
||||
# Tool logic here
|
||||
return "Tool output"
|
||||
```
|
||||
|
||||
### Defining a Cache Function for the Tool
|
||||
|
||||
To optimize tool performance with caching, define custom caching strategies using the `cache_function` attribute.
|
||||
@@ -50,7 +51,7 @@ To optimize tool performance with caching, define custom caching strategies usin
|
||||
@tool("Tool with Caching")
|
||||
def cached_tool(argument: str) -> str:
|
||||
"""Tool functionality description."""
|
||||
return "Cachable result"
|
||||
return "Cacheable result"
|
||||
|
||||
def my_cache_strategy(arguments: dict, result: str) -> bool:
|
||||
# Define custom caching logic
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
---
|
||||
title: Assembling and Activating Your CrewAI Team
|
||||
description: A comprehensive guide to creating a dynamic CrewAI team for your projects, with updated functionalities including verbose mode, memory capabilities, asynchronous execution, output customization, language model configuration, and more.
|
||||
|
||||
---
|
||||
|
||||
## Introduction
|
||||
Embark on your CrewAI journey by setting up your environment and initiating your AI crew with the latest features. This guide ensures a smooth start, incorporating all recent updates for an enhanced experience.
|
||||
|
||||
## Step 0: Installation
|
||||
Install CrewAI and any necessary packages for your project. CrewAI is compatible with Python >=3.10,<=3.13.
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Step 1: Assemble Your Agents
|
||||
Define your agents with distinct roles, backstories, and enhanced capabilities like verbose mode and memory usage. These elements add depth and guide their task execution and interaction within the crew.
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerperDevTool
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Creating a senior researcher agent with memory and verbose mode
|
||||
researcher = Agent(
|
||||
role='Senior Researcher',
|
||||
goal='Uncover groundbreaking technologies in {topic}',
|
||||
verbose=True,
|
||||
memory=True,
|
||||
backstory=(
|
||||
"Driven by curiosity, you're at the forefront of"
|
||||
"innovation, eager to explore and share knowledge that could change"
|
||||
"the world."
|
||||
),
|
||||
tools=[search_tool],
|
||||
allow_delegation=True
|
||||
)
|
||||
|
||||
# Creating a writer agent with custom tools and delegation capability
|
||||
writer = Agent(
|
||||
role='Writer',
|
||||
goal='Narrate compelling tech stories about {topic}',
|
||||
verbose=True,
|
||||
memory=True,
|
||||
backstory=(
|
||||
"With a flair for simplifying complex topics, you craft"
|
||||
"engaging narratives that captivate and educate, bringing new"
|
||||
"discoveries to light in an accessible manner."
|
||||
),
|
||||
tools=[search_tool],
|
||||
allow_delegation=False
|
||||
)
|
||||
```
|
||||
|
||||
## Step 2: Define the Tasks
|
||||
Detail the specific objectives for your agents, including new features for asynchronous execution and output customization. These tasks ensure a targeted approach to their roles.
|
||||
|
||||
```python
|
||||
from crewai import Task
|
||||
|
||||
# Research task
|
||||
research_task = Task(
|
||||
description=(
|
||||
"Identify the next big trend in {topic}."
|
||||
"Focus on identifying pros and cons and the overall narrative."
|
||||
"Your final report should clearly articulate the key points,"
|
||||
"its market opportunities, and potential risks."
|
||||
),
|
||||
expected_output='A comprehensive 3 paragraphs long report on the latest AI trends.',
|
||||
tools=[search_tool],
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
# Writing task with language model configuration
|
||||
write_task = Task(
|
||||
description=(
|
||||
"Compose an insightful article on {topic}."
|
||||
"Focus on the latest trends and how it's impacting the industry."
|
||||
"This article should be easy to understand, engaging, and positive."
|
||||
),
|
||||
expected_output='A 4 paragraph article on {topic} advancements formatted as markdown.',
|
||||
tools=[search_tool],
|
||||
agent=writer,
|
||||
async_execution=False,
|
||||
output_file='new-blog-post.md' # Example of output customization
|
||||
)
|
||||
```
|
||||
|
||||
## Step 3: Form the Crew
|
||||
Combine your agents into a crew, setting the workflow process they'll follow to accomplish the tasks. Now with options to configure language models for enhanced interaction and additional configurations for optimizing performance.
|
||||
|
||||
```python
|
||||
from crewai import Crew, Process
|
||||
|
||||
# Forming the tech-focused crew with some enhanced configurations
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, write_task],
|
||||
process=Process.sequential, # Optional: Sequential task execution is default
|
||||
memory=True,
|
||||
cache=True,
|
||||
max_rpm=100,
|
||||
share_crew=True
|
||||
)
|
||||
```
|
||||
|
||||
## Step 4: Kick It Off
|
||||
Initiate the process with your enhanced crew ready. Observe as your agents collaborate, leveraging their new capabilities for a successful project outcome. Input variables will be interpolated into the agents and tasks for a personalized approach.
|
||||
|
||||
```python
|
||||
# Starting the task execution process with enhanced feedback
|
||||
result = crew.kickoff(inputs={'topic': 'AI in healthcare'})
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Building and activating a crew in CrewAI has evolved with new functionalities. By incorporating verbose mode, memory capabilities, asynchronous task execution, output customization, language model configuration, and enhanced crew configurations, your AI team is more equipped than ever to tackle challenges efficiently. The depth of agent backstories and the precision of their objectives enrich collaboration, leading to successful project outcomes. This guide aims to provide you with a clear and detailed understanding of setting up and utilizing the CrewAI framework to its full potential.
|
||||
94
docs/how-to/Customize-Prompts.md
Normal file
@@ -0,0 +1,94 @@
|
||||
---
|
||||
title: Initial Support to Bring Your Own Prompts in CrewAI
|
||||
description: Enhancing customization and internationalization by allowing users to bring their own prompts in CrewAI.
|
||||
|
||||
---
|
||||
|
||||
# Initial Support to Bring Your Own Prompts in CrewAI
|
||||
|
||||
CrewAI now supports the ability to bring your own prompts, enabling extensive customization and internationalization. This feature allows users to tailor the inner workings of their agents to better suit specific needs, including support for multiple languages.
|
||||
|
||||
## Internationalization and Customization Support
|
||||
|
||||
### Custom Prompts with `prompt_file`
|
||||
|
||||
The `prompt_file` attribute facilitates full customization of the agent prompts, enhancing the global usability of CrewAI. Users can specify their prompt templates, ensuring that the agents communicate in a manner that aligns with specific project requirements or language preferences.
|
||||
|
||||
#### Example of a Custom Prompt File
|
||||
|
||||
The custom prompts can be defined in a JSON file, similar to the example provided [here](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json).
|
||||
|
||||
### Supported Languages
|
||||
|
||||
CrewAI's custom prompt support includes internationalization, allowing prompts to be written in different languages. This is particularly useful for global teams or projects that require multilingual support.
|
||||
|
||||
## How to Use the `prompt_file` Attribute
|
||||
|
||||
To utilize the `prompt_file` attribute, include it in your crew definition. Below is an example demonstrating how to set up agents and tasks with custom prompts.
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Define your agents
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Make the best research and analysis on content about AI and AI agents",
|
||||
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Senior Writer",
|
||||
goal="Write the best content about AI and AI agents.",
|
||||
backstory="You're a senior writer, specialized in technology, software engineering, AI and startups. You work as a freelancer and are now working on writing content for a new customer.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
# Define your tasks
|
||||
tasks = [
|
||||
Task(
|
||||
description="Say Hi",
|
||||
expected_output="The word: Hi",
|
||||
agent=researcher,
|
||||
)
|
||||
]
|
||||
|
||||
# Instantiate your crew with custom prompts
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=tasks,
|
||||
prompt_file="prompt.json", # Path to your custom prompt file
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Customization Features
|
||||
|
||||
### `language` Attribute
|
||||
|
||||
In addition to `prompt_file`, the `language` attribute can be used to specify the language for the agent's prompts. This ensures that the prompts are generated in the desired language, further enhancing the internationalization capabilities of CrewAI.
|
||||
|
||||
### Creating Custom Prompt Files
|
||||
|
||||
Custom prompt files should be structured in JSON format and include all necessary prompt templates. Below is a simplified example of a prompt JSON file:
|
||||
|
||||
```json
|
||||
{
|
||||
"system": "You are a system template.",
|
||||
"prompt": "Here is your prompt template.",
|
||||
"response": "Here is your response template."
|
||||
}
|
||||
```
|
||||
|
||||
### Benefits of Custom Prompts
|
||||
|
||||
- **Enhanced Flexibility**: Tailor agent communication to specific project needs.
|
||||
- **Improved Usability**: Supports multiple languages, making it suitable for global projects.
|
||||
- **Consistency**: Ensures uniform prompt structures across different agents and tasks.
|
||||
|
||||
By incorporating these updates, CrewAI provides users with the ability to fully customize and internationalize their agent prompts, making the platform more versatile and user-friendly.
|
||||
@@ -10,7 +10,16 @@ Crafting an efficient CrewAI team hinges on the ability to dynamically tailor yo
|
||||
- **Role**: Specifies the agent's job within the crew, such as 'Analyst' or 'Customer Service Rep'.
|
||||
- **Goal**: Defines what the agent aims to achieve, in alignment with its role and the overarching objectives of the crew.
|
||||
- **Backstory**: Provides depth to the agent's persona, enriching its motivations and engagements within the crew.
|
||||
- **Tools**: Represents the capabilities or methods the agent uses to perform tasks, from simple functions to intricate integrations.
|
||||
- **Tools** *(Optional)*: Represents the capabilities or methods the agent uses to perform tasks, from simple functions to intricate integrations.
|
||||
- **Cache** *(Optional)*: Determines whether the agent should use a cache for tool usage.
|
||||
- **Max RPM**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
|
||||
- **Verbose** *(Optional)*: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance.
|
||||
- **Allow Delegation** *(Optional)*: `allow_delegation` controls whether the agent is allowed to delegate tasks to other agents.
|
||||
- **Max Iter** *(Optional)*: The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
|
||||
- **Max Execution Time** *(Optional)*: `max_execution_time` Sets the maximum execution time for an agent to complete a task.
|
||||
- **System Template** *(Optional)*: `system_template` defines the system format for the agent.
|
||||
- **Prompt Template** *(Optional)*: `prompt_template` defines the prompt format for the agent.
|
||||
- **Response Template** *(Optional)*: `response_template` defines the response format for the agent.
|
||||
|
||||
## Advanced Customization Options
|
||||
Beyond the basic attributes, CrewAI allows for deeper customization to enhance an agent's behavior and capabilities significantly.
|
||||
@@ -26,7 +35,7 @@ Adjusting an agent's performance and monitoring its operations are crucial for e
|
||||
- **RPM Limit**: Sets the maximum number of requests per minute (`max_rpm`). This attribute is optional and can be set to `None` for no limit, allowing for unlimited queries to external services if needed.
|
||||
|
||||
### Maximum Iterations for Task Execution
|
||||
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 15, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
|
||||
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 25, providing a balance between thoroughness and efficiency. Once the agent approaches this number, it will try its best to give a good answer.
|
||||
|
||||
## Customizing Agents and Tools
|
||||
Agents are customized by defining their attributes and tools during initialization. Tools are critical for an agent's functionality, enabling them to perform specialized tasks. The `tools` attribute should be an array of tools the agent can utilize, and it's initialized as an empty list by default. Tools can be added or modified post-agent initialization to adapt to new requirements.
|
||||
@@ -57,7 +66,7 @@ agent = Agent(
|
||||
memory=True, # Enable memory
|
||||
verbose=True,
|
||||
max_rpm=None, # No limit on requests per minute
|
||||
max_iter=15, # Default value for maximum iterations
|
||||
max_iter=25, # Default value for maximum iterations
|
||||
allow_delegation=False
|
||||
)
|
||||
```
|
||||
|
||||
31
docs/how-to/Force-Tool-Ouput-as-Result.md
Normal file
@@ -0,0 +1,31 @@
|
||||
---
|
||||
title: Forcing Tool Output as Result
|
||||
description: Learn how to force tool output as the result in of an Agent's task in crewAI.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
In CrewAI, you can force the output of a tool as the result of an agent's task. This feature is useful when you want to ensure that the tool output is captured and returned as the task result, and avoid the agent modifying the output during the task execution.
|
||||
|
||||
## Forcing Tool Output as Result
|
||||
To force the tool output as the result of an agent's task, you can set the `result_as_answer` parameter to `True` when creating the agent. This parameter ensures that the tool output is captured and returned as the task result, without any modifications by the agent.
|
||||
|
||||
Here's an example of how to force the tool output as the result of an agent's task:
|
||||
|
||||
```python
|
||||
# ...
|
||||
# Define a custom tool that returns the result as the answer
|
||||
coding_agent =Agent(
|
||||
role="Data Scientist",
|
||||
goal="Product amazing resports on AI",
|
||||
backstory="You work with data and AI",
|
||||
tools=[MyCustomTool(result_as_answer=True)],
|
||||
)
|
||||
# ...
|
||||
```
|
||||
|
||||
### Workflow in Action
|
||||
|
||||
1. **Task Execution**: The agent executes the task using the tool provided.
|
||||
2. **Tool Output**: The tool generates the output, which is captured as the task result.
|
||||
3. **Agent Interaction**: The agent my reflect and take learnings from the tool but the output is not modified.
|
||||
4. **Result Return**: The tool output is returned as the task result without any modifications.
|
||||
@@ -10,7 +10,7 @@ The hierarchical process in CrewAI introduces a structured approach to task mana
|
||||
The hierarchical process is designed to leverage advanced models like GPT-4, optimizing token usage while handling complex tasks with greater efficiency.
|
||||
|
||||
## Hierarchical Process Overview
|
||||
By default, tasks in CrewAI are managed through a sequential process. However, adopting a hierarchical approach allows for a clear hierarchy in task management, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes for streamlined and effective execution. This manager agent is automatically created by crewAI so you don't need to worry about it.
|
||||
By default, tasks in CrewAI are managed through a sequential process. However, adopting a hierarchical approach allows for a clear hierarchy in task management, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes for streamlined and effective execution. This manager agent can now be either automatically created by CrewAI or explicitly set by the user.
|
||||
|
||||
### Key Features
|
||||
- **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities.
|
||||
@@ -52,9 +52,10 @@ writer = Agent(
|
||||
project_crew = Crew(
|
||||
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
|
||||
agents=[researcher, writer],
|
||||
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory for hierarchical process
|
||||
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
|
||||
process=Process.hierarchical, # Specifies the hierarchical management approach
|
||||
memory=True, # Enable memory usage for enhanced task execution
|
||||
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
|
||||
)
|
||||
```
|
||||
|
||||
@@ -64,4 +65,4 @@ project_crew = Crew(
|
||||
3. **Sequential Task Progression**: Despite being a hierarchical process, tasks follow a logical order for smooth progression, facilitated by the manager's oversight.
|
||||
|
||||
## Conclusion
|
||||
Adopting the hierarchical process in crewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management.
|
||||
Adopting the hierarchical process in CrewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management. Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.
|
||||
@@ -22,7 +22,7 @@ import os
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
|
||||
# Loading Tools
|
||||
@@ -30,59 +30,59 @@ search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles, goals, tools, and additional attributes
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory=(
|
||||
"You are a Senior Research Analyst at a leading tech think tank."
|
||||
"Your expertise lies in identifying emerging trends and technologies in AI and data science."
|
||||
"You have a knack for dissecting complex data and presenting actionable insights."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
tools=[search_tool],
|
||||
max_rpm=100
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory=(
|
||||
"You are a Senior Research Analyst at a leading tech think tank. "
|
||||
"Your expertise lies in identifying emerging trends and technologies in AI and data science. "
|
||||
"You have a knack for dissecting complex data and presenting actionable insights."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
tools=[search_tool]
|
||||
)
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory=(
|
||||
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation."
|
||||
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=True,
|
||||
tools=[search_tool],
|
||||
cache=False, # Disable cache for this agent
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory=(
|
||||
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation. "
|
||||
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=True,
|
||||
tools=[search_tool],
|
||||
cache=False, # Disable cache for this agent
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description=(
|
||||
"Conduct a comprehensive analysis of the latest advancements in AI in 2024."
|
||||
"Identify key trends, breakthrough technologies, and potential industry impacts."
|
||||
"Compile your findings in a detailed report."
|
||||
"Make sure to check with a human if the draft is good before finalizing your answer."
|
||||
),
|
||||
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
|
||||
agent=researcher,
|
||||
human_input=True,
|
||||
description=(
|
||||
"Conduct a comprehensive analysis of the latest advancements in AI in 2024. "
|
||||
"Identify key trends, breakthrough technologies, and potential industry impacts. "
|
||||
"Compile your findings in a detailed report. "
|
||||
"Make sure to check with a human if the draft is good before finalizing your answer."
|
||||
),
|
||||
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
|
||||
agent=researcher,
|
||||
human_input=True
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description=(
|
||||
"Using the insights from the researcher's report, develop an engaging blog post that highlights the most significant AI advancements."
|
||||
"Your post should be informative yet accessible, catering to a tech-savvy audience."
|
||||
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
|
||||
),
|
||||
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
|
||||
agent=writer
|
||||
description=(
|
||||
"Using the insights from the researcher\'s report, develop an engaging blog post that highlights the most significant AI advancements. "
|
||||
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
|
||||
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
|
||||
),
|
||||
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=2
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=2,
|
||||
memory=True,
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
|
||||
40
docs/how-to/Kickoff-async.md
Normal file
@@ -0,0 +1,40 @@
|
||||
---
|
||||
title: Kickoff Async
|
||||
description: Kickoff a Crew Asynchronously
|
||||
---
|
||||
|
||||
## Introduction
|
||||
CrewAI provides the ability to kickoff a crew asynchronously, allowing you to start the crew execution in a non-blocking manner. This feature is particularly useful when you want to run multiple crews concurrently or when you need to perform other tasks while the crew is executing.
|
||||
|
||||
## Asynchronous Crew Execution
|
||||
To kickoff a crew asynchronously, use the `kickoff_async()` method. This method initiates the crew execution in a separate thread, allowing the main thread to continue executing other tasks.
|
||||
|
||||
Here's an example of how to kickoff a crew asynchronously:
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
coding_agent = Agent(
|
||||
role="Python Data Analyst",
|
||||
goal="Analyze data and provide insights using Python",
|
||||
backstory="You are an experienced data analyst with strong Python skills.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
|
||||
# Create a task that requires code execution
|
||||
data_analysis_task = Task(
|
||||
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
# Create a crew and add the task
|
||||
analysis_crew = Crew(
|
||||
agents=[coding_agent],
|
||||
tasks=[data_analysis_task]
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
|
||||
```
|
||||
|
||||
45
docs/how-to/Kickoff-for-each.md
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
title: Kickoff For Each
|
||||
description: Kickoff a Crew for a List
|
||||
---
|
||||
|
||||
## Introduction
|
||||
CrewAI provides the ability to kickoff a crew for each item in a list, allowing you to execute the crew for each item in the list. This feature is particularly useful when you need to perform the same set of tasks for multiple items.
|
||||
|
||||
## Kicking Off a Crew for Each Item
|
||||
To kickoff a crew for each item in a list, use the `kickoff_for_each()` method. This method executes the crew for each item in the list, allowing you to process multiple items efficiently.
|
||||
|
||||
Here's an example of how to kickoff a crew for each item in a list:
|
||||
|
||||
```python
|
||||
from crewai import Crew, Agent, Task
|
||||
|
||||
# Create an agent with code execution enabled
|
||||
coding_agent = Agent(
|
||||
role="Python Data Analyst",
|
||||
goal="Analyze data and provide insights using Python",
|
||||
backstory="You are an experienced data analyst with strong Python skills.",
|
||||
allow_code_execution=True
|
||||
)
|
||||
|
||||
# Create a task that requires code execution
|
||||
data_analysis_task = Task(
|
||||
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
|
||||
agent=coding_agent
|
||||
)
|
||||
|
||||
# Create a crew and add the task
|
||||
analysis_crew = Crew(
|
||||
agents=[coding_agent],
|
||||
tasks=[data_analysis_task]
|
||||
)
|
||||
|
||||
datasets = [
|
||||
{ "ages": [25, 30, 35, 40, 45] },
|
||||
{ "ages": [20, 25, 30, 35, 40] },
|
||||
{ "ages": [30, 35, 40, 45, 50] }
|
||||
]
|
||||
|
||||
# Execute the crew
|
||||
result = analysis_crew.kickoff_for_each(inputs=datasets)
|
||||
```
|
||||
@@ -1,31 +1,37 @@
|
||||
---
|
||||
title: Connect CrewAI to LLMs
|
||||
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs), including detailed class attributes and methods.
|
||||
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs), including detailed class attributes, methods, and configuration options.
|
||||
---
|
||||
|
||||
## Connect CrewAI to LLMs
|
||||
|
||||
!!! note "Default LLM"
|
||||
By default, CrewAI uses OpenAI's GPT-4 model for language processing. You can configure your agents to use a different model or API. This guide shows how to connect your agents to various LLMs through environment variables and direct instantiation.
|
||||
By default, CrewAI uses OpenAI's GPT-4 model (specifically, the model specified by the OPENAI_MODEL_NAME environment variable, defaulting to "gpt-4o") for language processing. You can configure your agents to use a different model or API as described in this guide.
|
||||
|
||||
CrewAI offers flexibility in connecting to various LLMs, including local models via [Ollama](https://ollama.ai) and different APIs like Azure. It's compatible with all [LangChain LLM](https://python.langchain.com/docs/integrations/llms/) components, enabling diverse integrations for tailored AI solutions.
|
||||
|
||||
## CrewAI Agent Overview
|
||||
The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. Here's an updated overview reflecting the latest codebase changes:
|
||||
|
||||
The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. Here's a comprehensive overview of the Agent class attributes and methods:
|
||||
|
||||
- **Attributes**:
|
||||
- `role`: Defines the agent's role within the solution.
|
||||
- `goal`: Specifies the agent's objective.
|
||||
- `backstory`: Provides a background story to the agent.
|
||||
- `llm`: The language model that will run the agent. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
|
||||
- `function_calling_llm`: The language model that will handle the tool calling for this agent, overriding the crew function_calling_llm. Optional.
|
||||
- `max_iter`: Maximum number of iterations for an agent to execute a task, default is 15.
|
||||
- `memory`: Enables the agent to retain information during and a across executions. Default is `False`.
|
||||
- `max_rpm`: Maximum number of requests per minute the agent's execution should respect. Optional.
|
||||
- `verbose`: Enables detailed logging of the agent's execution. Default is `False`.
|
||||
- `allow_delegation`: Allows the agent to delegate tasks to other agents, default is `True`.
|
||||
- `cache` *Optional*: Determines whether the agent should use a cache for tool usage. Default is `True`.
|
||||
- `max_rpm` *Optional*: Maximum number of requests per minute the agent's execution should respect. Optional.
|
||||
- `verbose` *Optional*: Enables detailed logging of the agent's execution. Default is `False`.
|
||||
- `allow_delegation` *Optional*: Allows the agent to delegate tasks to other agents, default is `True`.
|
||||
- `tools`: Specifies the tools available to the agent for task execution. Optional.
|
||||
- `step_callback`: Provides a callback function to be executed after each step. Optional.
|
||||
- `cache`: Determines whether the agent should use a cache for tool usage. Default is `True`.
|
||||
- `max_iter` *Optional*: Maximum number of iterations for an agent to execute a task, default is 25.
|
||||
- `max_execution_time` *Optional*: Maximum execution time for an agent to execute a task. Optional.
|
||||
- `step_callback` *Optional*: Provides a callback function to be executed after each step. Optional.
|
||||
- `llm` *Optional*: Indicates the Large Language Model the agent uses. By default, it uses the GPT-4 model defined in the environment variable "OPENAI_MODEL_NAME".
|
||||
- `function_calling_llm` *Optional* : Will turn the ReAct CrewAI agent into a function-calling agent.
|
||||
- `callbacks` *Optional*: A list of callback functions from the LangChain library that are triggered during the agent's execution process.
|
||||
- `system_template` *Optional*: Optional string to define the system format for the agent.
|
||||
- `prompt_template` *Optional*: Optional string to define the prompt format for the agent.
|
||||
- `response_template` *Optional*: Optional string to define the response format for the agent.
|
||||
|
||||
```python
|
||||
# Required
|
||||
@@ -36,22 +42,57 @@ example_agent = Agent(
|
||||
role='Local Expert',
|
||||
goal='Provide insights about the city',
|
||||
backstory="A knowledgeable local guide.",
|
||||
verbose=True,
|
||||
memory=True
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Ollama Integration
|
||||
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below. Note: Detailed Ollama setup is beyond this document's scope, but general guidance is provided.
|
||||
Ollama is preferred for local LLM integration, offering customization and privacy benefits. To integrate Ollama with CrewAI, set the appropriate environment variables as shown below.
|
||||
|
||||
### Setting Up Ollama
|
||||
- **Environment Variables Configuration**: To integrate Ollama, set the following environment variables:
|
||||
```sh
|
||||
OPENAI_API_BASE='http://localhost:11434/v1'
|
||||
OPENAI_MODEL_NAME='openhermes' # Adjust based on available model
|
||||
OPENAI_API_BASE='http://localhost:11434'
|
||||
OPENAI_MODEL_NAME='llama2' # Adjust based on available model
|
||||
OPENAI_API_KEY=''
|
||||
```
|
||||
|
||||
## Ollama Integration (ex. for using Llama 2 locally)
|
||||
1. [Download Ollama](https://ollama.com/download).
|
||||
2. After setting up the Ollama, Pull the Llama2 by typing following lines into the terminal ```ollama pull llama2```.
|
||||
3. Enjoy your free Llama2 model that powered up by excellent agents from crewai.
|
||||
```
|
||||
from crewai import Agent, Task, Crew
|
||||
from langchain.llms import Ollama
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "NA"
|
||||
|
||||
llm = Ollama(
|
||||
model = "llama2",
|
||||
base_url = "http://localhost:11434")
|
||||
|
||||
general_agent = Agent(role = "Math Professor",
|
||||
goal = """Provide the solution to the students that are asking mathematical questions and give them the answer.""",
|
||||
backstory = """You are an excellent math professor that likes to solve math questions in a way that everyone can understand your solution""",
|
||||
allow_delegation = False,
|
||||
verbose = True,
|
||||
llm = llm)
|
||||
|
||||
task = Task(description="""what is 3 + 5""",
|
||||
agent = general_agent,
|
||||
expected_output="A numerical answer.")
|
||||
|
||||
crew = Crew(
|
||||
agents=[general_agent],
|
||||
tasks=[task],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
## HuggingFace Integration
|
||||
There are a couple of different ways you can use HuggingFace to host your LLM.
|
||||
|
||||
@@ -86,7 +127,7 @@ llm = HuggingFaceHub(
|
||||
```
|
||||
|
||||
## OpenAI Compatible API Endpoints
|
||||
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, and Mistral AI.
|
||||
Switch between APIs and models seamlessly using environment variables, supporting platforms like FastChat, LM Studio, Groq, and Mistral AI.
|
||||
|
||||
### Configuration Examples
|
||||
#### FastChat
|
||||
@@ -97,10 +138,17 @@ OPENAI_API_KEY=NA
|
||||
```
|
||||
|
||||
#### LM Studio
|
||||
Launch [LM Studio](https://lmstudio.ai) and go to the Server tab. Then select a model from the dropdown menu and wait for it to load. Once it's loaded, click the green Start Server button and use the URL, port, and API key that's shown (you can modify them). Below is an example of the default settings as of LM Studio 0.2.19:
|
||||
```sh
|
||||
OPENAI_API_BASE="http://localhost:8000/v1"
|
||||
OPENAI_MODEL_NAME=NA
|
||||
OPENAI_API_KEY=NA
|
||||
OPENAI_API_BASE="http://localhost:1234/v1"
|
||||
OPENAI_API_KEY="lm-studio"
|
||||
```
|
||||
|
||||
#### Groq API
|
||||
```sh
|
||||
OPENAI_API_KEY=your-groq-api-key
|
||||
OPENAI_MODEL_NAME='llama3-8b-8192'
|
||||
OPENAI_API_BASE=https://api.groq.com/openai/v1
|
||||
```
|
||||
|
||||
#### Mistral API
|
||||
@@ -110,6 +158,17 @@ OPENAI_API_BASE=https://api.mistral.ai/v1
|
||||
OPENAI_MODEL_NAME="mistral-small"
|
||||
```
|
||||
|
||||
### Solar
|
||||
```python
|
||||
from langchain_community.chat_models.solar import SolarChat
|
||||
# Initialize language model
|
||||
os.environ["SOLAR_API_KEY"] = "your-solar-api-key"
|
||||
llm = SolarChat(max_tokens=1024)
|
||||
|
||||
# Free developer API key available here: https://console.upstage.ai/services/solar
|
||||
# Langchain Example: https://github.com/langchain-ai/langchain/pull/18556
|
||||
```
|
||||
|
||||
### text-gen-web-ui
|
||||
```sh
|
||||
OPENAI_API_BASE=http://localhost:5000/v1
|
||||
@@ -118,19 +177,18 @@ OPENAI_API_KEY=NA
|
||||
```
|
||||
|
||||
### Cohere
|
||||
```sh
|
||||
from langchain_community.chat_models import ChatCohere
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
# Initialize language model
|
||||
os.environ["COHERE_API_KEY"] = "your-cohere-api-key"
|
||||
llm = ChatCohere()
|
||||
|
||||
Free developer API key available here: https://cohere.com/
|
||||
Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
|
||||
# Free developer API key available here: https://cohere.com/
|
||||
# Langchain Documentation: https://python.langchain.com/docs/integrations/chat/cohere
|
||||
```
|
||||
|
||||
### Azure Open AI
|
||||
Azure's OpenAI API needs a distinct setup, utilizing the `langchain_openai` component for Azure-specific configurations.
|
||||
|
||||
### Azure Open AI Configuration
|
||||
For Azure OpenAI API integration, set the following environment variables:
|
||||
```sh
|
||||
AZURE_OPENAI_VERSION="2022-12-01"
|
||||
AZURE_OPENAI_DEPLOYMENT=""
|
||||
|
||||
89
docs/how-to/Langtrace-Observability.md
Normal file
@@ -0,0 +1,89 @@
|
||||
---
|
||||
title: CrewAI Agent Monitoring with Langtrace
|
||||
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
|
||||
---
|
||||
|
||||
# Langtrace Overview
|
||||
|
||||
Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases. While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents. This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents.
|
||||
|
||||
## Setup Instructions
|
||||
|
||||
1. Sign up for [Langtrace](https://langtrace.ai/) by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup).
|
||||
2. Create a project and generate an API key.
|
||||
3. Install Langtrace in your CrewAI project using the following commands:
|
||||
|
||||
```bash
|
||||
# Install the SDK
|
||||
pip install langtrace-python-sdk
|
||||
```
|
||||
|
||||
## Using Langtrace with CrewAI
|
||||
|
||||
To integrate Langtrace with your CrewAI project, follow these steps:
|
||||
|
||||
1. Import and initialize Langtrace at the beginning of your script, before any CrewAI imports:
|
||||
|
||||
```python
|
||||
from langtrace_python_sdk import langtrace
|
||||
langtrace.init(api_key='<LANGTRACE_API_KEY>')
|
||||
|
||||
# Now import CrewAI modules
|
||||
from crewai import Agent, Task, Crew
|
||||
```
|
||||
|
||||
2. Create your CrewAI agents and tasks as usual.
|
||||
|
||||
3. Use Langtrace's tracking functions to monitor your CrewAI operations. For example:
|
||||
|
||||
```python
|
||||
with langtrace.trace("CrewAI Task Execution"):
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Features and Their Application to CrewAI
|
||||
|
||||
1. **LLM Token and Cost Tracking**
|
||||
- Monitor the token usage and associated costs for each CrewAI agent interaction.
|
||||
- Example:
|
||||
```python
|
||||
with langtrace.trace("Agent Interaction"):
|
||||
agent_response = agent.execute(task)
|
||||
```
|
||||
|
||||
2. **Trace Graph for Execution Steps**
|
||||
- Visualize the execution flow of your CrewAI tasks, including latency and logs.
|
||||
- Useful for identifying bottlenecks in your agent workflows.
|
||||
|
||||
3. **Dataset Curation with Manual Annotation**
|
||||
- Create datasets from your CrewAI task outputs for future training or evaluation.
|
||||
- Example:
|
||||
```python
|
||||
langtrace.log_dataset_item(task_input, agent_output, {"task_type": "research"})
|
||||
```
|
||||
|
||||
4. **Prompt Versioning and Management**
|
||||
- Keep track of different versions of prompts used in your CrewAI agents.
|
||||
- Useful for A/B testing and optimizing agent performance.
|
||||
|
||||
5. **Prompt Playground with Model Comparisons**
|
||||
- Test and compare different prompts and models for your CrewAI agents before deployment.
|
||||
|
||||
6. **Testing and Evaluations**
|
||||
- Set up automated tests for your CrewAI agents and tasks.
|
||||
- Example:
|
||||
```python
|
||||
langtrace.evaluate(agent_output, expected_output, "accuracy")
|
||||
```
|
||||
|
||||
## Monitoring New CrewAI Features
|
||||
|
||||
CrewAI has introduced several new features that can be monitored using Langtrace:
|
||||
|
||||
1. **Code Execution**: Monitor the performance and output of code executed by agents.
|
||||
```python
|
||||
with langtrace.trace("Agent Code Execution"):
|
||||
code_output = agent.execute_code(code_snippet)
|
||||
```
|
||||
|
||||
2. **Third-party Agent Integration**: Track interactions with LlamaIndex, LangChain, and Autogen agents.
|
||||
49
docs/how-to/Replay-tasks-from-latest-Crew-Kickoff.md
Normal file
@@ -0,0 +1,49 @@
|
||||
---
|
||||
title: Replay Tasks from Latest Crew Kickoff
|
||||
description: Replay tasks from the latest crew.kickoff(...)
|
||||
---
|
||||
|
||||
## Introduction
|
||||
CrewAI provides the ability to replay from a task specified from the latest crew kickoff. This feature is particularly useful when you've finished a kickoff and may want to retry certain tasks or don't need to refetch data over and your agents already have the context saved from the kickoff execution so you just need to replay the tasks you want to.
|
||||
|
||||
## Note:
|
||||
You must run `crew.kickoff()` before you can replay a task. Currently, only the latest kickoff is supported, so if you use `kickoff_for_each`, it will only allow you to replay from the most recent crew run.
|
||||
|
||||
Here's an example of how to replay from a task:
|
||||
|
||||
### Replaying from specific task Using the CLI
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
To view latest kickoff task_ids use:
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
Once you have your task_id to replay from use:
|
||||
```shell
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
|
||||
### Replaying from a task Programmatically
|
||||
To replay from a task programmatically, use the following steps:
|
||||
|
||||
1. Specify the task_id and input parameters for the replay process.
|
||||
2. Execute the replay command within a try-except block to handle potential errors.
|
||||
|
||||
```python
|
||||
def replay():
|
||||
"""
|
||||
Replay the crew execution from a specific task.
|
||||
"""
|
||||
task_id = '<task_id>'
|
||||
inputs = {"topic": "CrewAI Training"} # this is optional, you can pass in the inputs you want to replay otherwise uses the previous kickoffs inputs
|
||||
try:
|
||||
YourCrewName_Crew().crew().replay(task_id=task_id, inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
@@ -13,8 +13,9 @@ The sequential process ensures tasks are executed one after the other, following
|
||||
- **Linear Task Flow**: Ensures orderly progression by handling tasks in a predetermined sequence.
|
||||
- **Simplicity**: Best suited for projects with clear, step-by-step tasks.
|
||||
- **Easy Monitoring**: Facilitates easy tracking of task completion and project progress.
|
||||
|
||||
## Implementing the Sequential Process
|
||||
Assemble your crew and define tasks in the order they need to be executed.
|
||||
To use the sequential process, assemble your crew and define tasks in the order they need to be executed.
|
||||
|
||||
```python
|
||||
from crewai import Crew, Process, Agent, Task
|
||||
@@ -36,10 +37,9 @@ writer = Agent(
|
||||
backstory='A skilled writer with a talent for crafting compelling narratives'
|
||||
)
|
||||
|
||||
# Define the tasks in sequence
|
||||
research_task = Task(description='Gather relevant data...', agent=researcher)
|
||||
analysis_task = Task(description='Analyze the data...', agent=analyst)
|
||||
writing_task = Task(description='Compose the report...', agent=writer)
|
||||
research_task = Task(description='Gather relevant data...', agent=researcher, expected_output='Raw Data')
|
||||
analysis_task = Task(description='Analyze the data...', agent=analyst, expected_output='Data Insights')
|
||||
writing_task = Task(description='Compose the report...', agent=writer, expected_output='Final Report')
|
||||
|
||||
# Form the crew with a sequential process
|
||||
report_crew = Crew(
|
||||
@@ -47,6 +47,9 @@ report_crew = Crew(
|
||||
tasks=[research_task, analysis_task, writing_task],
|
||||
process=Process.sequential
|
||||
)
|
||||
|
||||
# Execute the crew
|
||||
result = report_crew.kickoff()
|
||||
```
|
||||
|
||||
### Workflow in Action
|
||||
@@ -54,5 +57,29 @@ report_crew = Crew(
|
||||
2. **Subsequent Tasks**: Agents pick up their tasks based on the process type, with outcomes of preceding tasks or manager directives guiding their execution.
|
||||
3. **Completion**: The process concludes once the final task is executed, leading to project completion.
|
||||
|
||||
## Conclusion
|
||||
The sequential and hierarchical processes in CrewAI offer clear, adaptable paths for task execution. They are well-suited for projects requiring logical progression and dynamic decision-making, ensuring each step is completed effectively, thereby facilitating a cohesive final product.
|
||||
## Advanced Features
|
||||
|
||||
### Task Delegation
|
||||
In sequential processes, if an agent has `allow_delegation` set to `True`, they can delegate tasks to other agents in the crew. This feature is automatically set up when there are multiple agents in the crew.
|
||||
|
||||
### Asynchronous Execution
|
||||
Tasks can be executed asynchronously, allowing for parallel processing when appropriate. To create an asynchronous task, set `async_execution=True` when defining the task.
|
||||
|
||||
### Memory and Caching
|
||||
CrewAI supports both memory and caching features:
|
||||
- **Memory**: Enable by setting `memory=True` when creating the Crew. This allows agents to retain information across tasks.
|
||||
- **Caching**: By default, caching is enabled. Set `cache=False` to disable it.
|
||||
|
||||
### Callbacks
|
||||
You can set callbacks at both the task and step level:
|
||||
- `task_callback`: Executed after each task completion.
|
||||
- `step_callback`: Executed after each step in an agent's execution.
|
||||
|
||||
### Usage Metrics
|
||||
CrewAI tracks token usage across all tasks and agents. You can access these metrics after execution.
|
||||
|
||||
## Best Practices for Sequential Processes
|
||||
1. **Order Matters**: Arrange tasks in a logical sequence where each task builds upon the previous one.
|
||||
2. **Clear Task Descriptions**: Provide detailed descriptions for each task to guide the agents effectively.
|
||||
3. **Appropriate Agent Selection**: Match agents' skills and roles to the requirements of each task.
|
||||
4. **Use Context**: Leverage the context from previous tasks to inform subsequent ones
|
||||
|
||||
87
docs/how-to/Your-Own-Manager-Agent.md
Normal file
@@ -0,0 +1,87 @@
|
||||
---
|
||||
title: Setting a Specific Agent as Manager in CrewAI
|
||||
description: Learn how to set a custom agent as the manager in CrewAI, providing more control over task management and coordination.
|
||||
|
||||
---
|
||||
|
||||
# Setting a Specific Agent as Manager in CrewAI
|
||||
|
||||
CrewAI allows users to set a specific agent as the manager of the crew, providing more control over the management and coordination of tasks. This feature enables the customization of the managerial role to better fit your project's requirements.
|
||||
|
||||
## Using the `manager_agent` Attribute
|
||||
|
||||
### Custom Manager Agent
|
||||
|
||||
The `manager_agent` attribute allows you to define a custom agent to manage the crew. This agent will oversee the entire process, ensuring that tasks are completed efficiently and to the highest standard.
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
|
||||
# Define your agents
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Conduct thorough research and analysis on AI and AI agents",
|
||||
backstory="You're an expert researcher, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently researching for a new client.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Senior Writer",
|
||||
goal="Create compelling content about AI and AI agents",
|
||||
backstory="You're a senior writer, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently writing content for a new client.",
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
# Define your task
|
||||
task = Task(
|
||||
description="Generate a list of 5 interesting ideas for an article, then write one captivating paragraph for each idea that showcases the potential of a full article on this topic. Return the list of ideas with their paragraphs and your notes.",
|
||||
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
|
||||
)
|
||||
|
||||
# Define the manager agent
|
||||
manager = Agent(
|
||||
role="Project Manager",
|
||||
goal="Efficiently manage the crew and ensure high-quality task completion",
|
||||
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
|
||||
allow_delegation=True,
|
||||
)
|
||||
|
||||
# Instantiate your crew with a custom manager
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task],
|
||||
manager_agent=manager,
|
||||
process=Process.hierarchical,
|
||||
)
|
||||
|
||||
# Start the crew's work
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Benefits of a Custom Manager Agent
|
||||
|
||||
- **Enhanced Control**: Tailor the management approach to fit the specific needs of your project.
|
||||
- **Improved Coordination**: Ensure efficient task coordination and management by an experienced agent.
|
||||
- **Customizable Management**: Define managerial roles and responsibilities that align with your project's goals.
|
||||
|
||||
## Setting a Manager LLM
|
||||
|
||||
If you're using the hierarchical process and don't want to set a custom manager agent, you can specify the language model for the manager:
|
||||
|
||||
```python
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
manager_llm = ChatOpenAI(model_name="gpt-4")
|
||||
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task],
|
||||
process=Process.hierarchical,
|
||||
manager_llm=manager_llm
|
||||
)
|
||||
```
|
||||
|
||||
Note: Either `manager_agent` or `manager_llm` must be set when using the hierarchical process.
|
||||
@@ -5,6 +5,19 @@
|
||||
Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
|
||||
<div style="display:flex; margin:0 auto; justify-content: center;">
|
||||
<div style="width:25%">
|
||||
<h2>Getting Started</h2>
|
||||
<ul>
|
||||
<li><a href='./getting-started/Installing-CrewAI'>
|
||||
Installing CrewAI
|
||||
</a>
|
||||
</li>
|
||||
<li><a href='./getting-started/Start-a-New-CrewAI-Project-Template-Method'>
|
||||
Start a New CrewAI Project: Template Method
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div style="width:25%">
|
||||
<h2>Core Concepts</h2>
|
||||
<ul>
|
||||
@@ -33,16 +46,26 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Crews
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./core-concepts/Training-Crew">
|
||||
Training
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./core-concepts/Memory">
|
||||
Memory
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./core-concepts/Planning">
|
||||
Planning
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div style="width:30%">
|
||||
<h2>How-To Guides</h2>
|
||||
<ul>
|
||||
<li>
|
||||
<a href="./how-to/Creating-a-Crew-and-kick-it-off">
|
||||
Getting Started
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Create-Custom-Tools">
|
||||
Create Custom Tools
|
||||
@@ -68,14 +91,49 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Customizing Agents
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Coding-Agents">
|
||||
Coding Agents
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Force-Tool-Ouput-as-Result">
|
||||
Forcing Tool Output as Result
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Human-Input-on-Execution">
|
||||
Human Input on Execution
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/AgentOps-Observability.md">
|
||||
Agent Observability using AgentOps
|
||||
<a href="./how-to/Kickoff-async">
|
||||
Kickoff a Crew Asynchronously
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Kickoff-for-each">
|
||||
Kickoff a Crew for a List
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Replay-tasks-from-latest-Crew-Kickoff">
|
||||
Replay from a Task
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Conditional-Tasks">
|
||||
Conditional Tasks
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/AgentOps-Observability">
|
||||
Agent Monitoring with AgentOps
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Langtrace-Observability">
|
||||
Agent Monitoring with LangTrace
|
||||
</a>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
title: Telemetry
|
||||
description: Understanding the telemetry data collected by CrewAI and how it contributes to the enhancement of the library.
|
||||
---
|
||||
|
||||
## Telemetry
|
||||
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
|
||||
|
||||
38
docs/tools/BrowserbaseLoadTool.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# BrowserbaseLoadTool
|
||||
|
||||
## Description
|
||||
|
||||
[Browserbase](https://browserbase.com) is a developer platform to reliably run, manage, and monitor headless browsers.
|
||||
|
||||
Power your AI data retrievals with:
|
||||
- [Serverless Infrastructure](https://docs.browserbase.com/under-the-hood) providing reliable browsers to extract data from complex UIs
|
||||
- [Stealth Mode](https://docs.browserbase.com/features/stealth-mode) with included fingerprinting tactics and automatic captcha solving
|
||||
- [Session Debugger](https://docs.browserbase.com/features/sessions) to inspect your Browser Session with networks timeline and logs
|
||||
- [Live Debug](https://docs.browserbase.com/guides/session-debug-connection/browser-remote-control) to quickly debug your automation
|
||||
|
||||
## Installation
|
||||
|
||||
- Get an API key and Project ID from [browserbase.com](https://browserbase.com) and set it in environment variables (`BROWSERBASE_API_KEY`, `BROWSERBASE_PROJECT_ID`).
|
||||
- Install the [Browserbase SDK](http://github.com/browserbase/python-sdk) along with `crewai[tools]` package:
|
||||
|
||||
```
|
||||
pip install browserbase 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Utilize the BrowserbaseLoadTool as follows to allow your agent to load websites:
|
||||
|
||||
```python
|
||||
from crewai_tools import BrowserbaseLoadTool
|
||||
|
||||
tool = BrowserbaseLoadTool()
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key` Optional. Browserbase API key. Default is `BROWSERBASE_API_KEY` env variable.
|
||||
- `project_id` Optional. Browserbase Project ID. Default is `BROWSERBASE_PROJECT_ID` env variable.
|
||||
- `text_content` Retrieve only text content. Default is `False`.
|
||||
- `session_id` Optional. Provide an existing Session ID.
|
||||
- `proxy` Optional. Enable/Disable Proxies."
|
||||
@@ -50,7 +50,7 @@ tool = CSVSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -41,7 +41,7 @@ Note: Substitute 'https://docs.example.com/reference' with your target documenta
|
||||
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
|
||||
|
||||
```python
|
||||
tool = YoutubeVideoSearchTool(
|
||||
tool = CodeDocsSearchTool(
|
||||
config=dict(
|
||||
llm=dict(
|
||||
provider="ollama", # or google, openai, anthropic, llama2, ...
|
||||
@@ -53,7 +53,7 @@ tool = YoutubeVideoSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
41
docs/tools/CodeInterpreterTool.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# CodeInterpreterTool
|
||||
|
||||
## Description
|
||||
This tool is used to give the Agent the ability to run code (Python3) from the code generated by the Agent itself. The code is executed in a sandboxed environment, so it is safe to run any code.
|
||||
|
||||
It is incredible useful since it allows the Agent to generate code, run it in the same environment, get the result and use it to make decisions.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Docker
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Remember that when using this tool, the code must be generated by the Agent itself. The code must be a Python3 code. And it will take some time for the first time to run because it needs to build the Docker image.
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
Agent(
|
||||
...
|
||||
tools=[CodeInterpreterTool()],
|
||||
)
|
||||
```
|
||||
|
||||
We also provide a simple way to use it directly from the Agent.
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
agent = Agent(
|
||||
...
|
||||
allow_code_execution=True,
|
||||
)
|
||||
```
|
||||
72
docs/tools/ComposioTool.md
Normal file
@@ -0,0 +1,72 @@
|
||||
# ComposioTool Documentation
|
||||
|
||||
## Description
|
||||
|
||||
This tools is a wrapper around the composio toolset and gives your agent access to a wide variety of tools from the composio SDK.
|
||||
|
||||
## Installation
|
||||
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
|
||||
```shell
|
||||
pip install composio-core
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
after the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`.
|
||||
|
||||
## Example
|
||||
|
||||
The following example demonstrates how to initialize the tool and execute a github action:
|
||||
|
||||
1. Initialize toolset
|
||||
|
||||
```python
|
||||
from composio import App
|
||||
from crewai_tools import ComposioTool
|
||||
from crewai import Agent, Task
|
||||
|
||||
|
||||
tools = [ComposioTool.from_action(action=Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER)]
|
||||
```
|
||||
|
||||
If you don't know what action you want to use, use `from_app` and `tags` filter to get relevant actions
|
||||
|
||||
```python
|
||||
tools = ComposioTool.from_app(App.GITHUB, tags=["important"])
|
||||
```
|
||||
|
||||
or use `use_case` to search relevant actions
|
||||
|
||||
```python
|
||||
tools = ComposioTool.from_app(App.GITHUB, use_case="Star a github repository")
|
||||
```
|
||||
|
||||
2. Define agent
|
||||
|
||||
```python
|
||||
crewai_agent = Agent(
|
||||
role="Github Agent",
|
||||
goal="You take action on Github using Github APIs",
|
||||
backstory=(
|
||||
"You are AI agent that is responsible for taking actions on Github "
|
||||
"on users behalf. You need to take action on Github using Github APIs"
|
||||
),
|
||||
verbose=True,
|
||||
tools=tools,
|
||||
)
|
||||
```
|
||||
|
||||
3. Execute task
|
||||
|
||||
```python
|
||||
task = Task(
|
||||
description="Star a repo ComposioHQ/composio on GitHub",
|
||||
agent=crewai_agent,
|
||||
expected_output="if the star happened",
|
||||
)
|
||||
|
||||
task.execute()
|
||||
```
|
||||
|
||||
* More detailed list of tools can be found [here](https://app.composio.dev)
|
||||
@@ -48,7 +48,7 @@ tool = DOCXSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -43,7 +43,7 @@ tool = DirectorySearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
36
docs/tools/EXASearchTool.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# EXASearchTool Documentation
|
||||
|
||||
## Description
|
||||
|
||||
The EXASearchTool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the [exa.ai](https://exa.ai/) API to fetch and display the most relevant search results based on the query provided by the user.
|
||||
|
||||
## Installation
|
||||
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
||||
|
||||
```python
|
||||
from crewai_tools import EXASearchTool
|
||||
|
||||
# Initialize the tool for internet searching capabilities
|
||||
tool = EXASearchTool()
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
|
||||
To effectively use the EXASearchTool, follow these steps:
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a [exa.ai](https://exa.ai/) API key by registering for a free account at [exa.ai](https://exa.ai/).
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `EXA_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Conclusion
|
||||
|
||||
By integrating the EXASearchTool into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
@@ -4,7 +4,7 @@
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The GithubSearchTool is a Read, Append, and Generate (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
|
||||
The GithubSearchTool is a Retrieval-Augmented Generation (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
|
||||
|
||||
## Installation
|
||||
To use the GithubSearchTool, first ensure the crewai_tools package is installed in your Python environment:
|
||||
@@ -55,7 +55,7 @@ tool = GithubSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -48,7 +48,7 @@ tool = JSONSearchTool(
|
||||
},
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "google",
|
||||
"provider": "google", # or openai, ollama, ...
|
||||
"config": {
|
||||
"model": "models/embedding-001",
|
||||
"task_type": "retrieval_document",
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
The MDXSearchTool is in continuous development. Features may be added or removed, and functionality could change unpredictably as we refine the tool.
|
||||
|
||||
## Description
|
||||
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced market data extraction. This tool is invaluable for researchers and analysts seeking quick access to market insights, especially within the AI sector. It simplifies the task of acquiring, interpreting, and organizing market data by interfacing with various data sources.
|
||||
The MDX Search Tool is a component of the `crewai_tools` package aimed at facilitating advanced markdown language extraction. It enables users to effectively search and extract relevant information from MD files using query-based searches. This tool is invaluable for data analysis, information management, and research tasks, streamlining the process of finding specific information within large document collections.
|
||||
|
||||
## Installation
|
||||
Before using the MDX Search Tool, ensure the `crewai_tools` package is installed. If it is not, you can install it with the following command:
|
||||
@@ -49,7 +49,7 @@ tool = MDXSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
@@ -59,4 +59,4 @@ tool = MDXSearchTool(
|
||||
),
|
||||
)
|
||||
)
|
||||
```
|
||||
```
|
||||
|
||||
@@ -29,7 +29,7 @@ tool = PDFSearchTool(pdf='path/to/your/document.pdf')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `pdf`: **Optinal** The PDF path for the search. Can be provided at initialization or within the `run` method's arguments. If provided at initialization, the tool confines its search to the specified document.
|
||||
- `pdf`: **Optional** The PDF path for the search. Can be provided at initialization or within the `run` method's arguments. If provided at initialization, the tool confines its search to the specified document.
|
||||
|
||||
## Custom model and embeddings
|
||||
|
||||
@@ -48,7 +48,7 @@ tool = PDFSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -19,7 +19,7 @@ pip install 'crewai[tools]'
|
||||
Below is a proposed example showcasing how to use the PGSearchTool for conducting a semantic search on a table within a PostgreSQL database:
|
||||
|
||||
```python
|
||||
rom crewai_tools import PGSearchTool
|
||||
from crewai_tools import PGSearchTool
|
||||
|
||||
# Initialize the tool with the database URI and the target table name
|
||||
tool = PGSearchTool(db_uri='postgresql://user:password@localhost:5432/mydatabase', table_name='employees')
|
||||
@@ -48,7 +48,7 @@ tool = PGSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
@@ -57,4 +57,4 @@ tool = PGSearchTool(
|
||||
),
|
||||
)
|
||||
)
|
||||
```
|
||||
```
|
||||
|
||||
@@ -29,5 +29,70 @@ To effectively use the `SerperDevTool`, follow these steps:
|
||||
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Parameters
|
||||
|
||||
The `SerperDevTool` comes with several parameters that will be passed to the API :
|
||||
|
||||
- **search_url**: The URL endpoint for the search API. (Default is `https://google.serper.dev/search`)
|
||||
|
||||
- **country**: Optional. Specify the country for the search results.
|
||||
- **location**: Optional. Specify the location for the search results.
|
||||
- **locale**: Optional. Specify the locale for the search results.
|
||||
- **n_results**: Number of search results to return. Default is `10`.
|
||||
|
||||
The values for `country`, `location`, `lovale` and `search_url` can be found on the [Serper Playground](https://serper.dev/playground).
|
||||
|
||||
## Example with Parameters
|
||||
|
||||
Here is an example demonstrating how to use the tool with additional parameters:
|
||||
|
||||
```python
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
tool = SerperDevTool(
|
||||
search_url="https://google.serper.dev/scholar",
|
||||
n_results=2,
|
||||
)
|
||||
|
||||
print(tool.run(search_query="ChatGPT"))
|
||||
|
||||
# Using Tool: Search the internet
|
||||
|
||||
# Search results: Title: Role of chat gpt in public health
|
||||
# Link: https://link.springer.com/article/10.1007/s10439-023-03172-7
|
||||
# Snippet: … ChatGPT in public health. In this overview, we will examine the potential uses of ChatGPT in
|
||||
# ---
|
||||
# Title: Potential use of chat gpt in global warming
|
||||
# Link: https://link.springer.com/article/10.1007/s10439-023-03171-8
|
||||
# Snippet: … as ChatGPT, have the potential to play a critical role in advancing our understanding of climate
|
||||
# ---
|
||||
|
||||
```
|
||||
|
||||
```python
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
tool = SerperDevTool(
|
||||
country="fr",
|
||||
locale="fr",
|
||||
location="Paris, Paris, Ile-de-France, France",
|
||||
n_results=2,
|
||||
)
|
||||
|
||||
print(tool.run(search_query="Jeux Olympiques"))
|
||||
|
||||
# Using Tool: Search the internet
|
||||
|
||||
# Search results: Title: Jeux Olympiques de Paris 2024 - Actualités, calendriers, résultats
|
||||
# Link: https://olympics.com/fr/paris-2024
|
||||
# Snippet: Quels sont les sports présents aux Jeux Olympiques de Paris 2024 ? · Athlétisme · Aviron · Badminton · Basketball · Basketball 3x3 · Boxe · Breaking · Canoë ...
|
||||
# ---
|
||||
# Title: Billetterie Officielle de Paris 2024 - Jeux Olympiques et Paralympiques
|
||||
# Link: https://tickets.paris2024.org/
|
||||
# Snippet: Achetez vos billets exclusivement sur le site officiel de la billetterie de Paris 2024 pour participer au plus grand événement sportif au monde.
|
||||
# ---
|
||||
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. The updated parameters allow for more customized and localized search results. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
|
||||
@@ -31,7 +31,7 @@ tool = TXTSearchTool(txt='path/to/text/file.txt')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `txt` (str): **Optinal**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
|
||||
- `txt` (str): **Optional**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
|
||||
|
||||
## Custom model and embeddings
|
||||
|
||||
@@ -50,7 +50,7 @@ tool = TXTSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -48,7 +48,7 @@ tool = WebsiteSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -17,7 +17,7 @@ pip install 'crewai[tools]'
|
||||
Here are two examples demonstrating how to use the XMLSearchTool. The first example shows searching within a specific XML file, while the second example illustrates initiating a search without predefining an XML path, providing flexibility in search scope.
|
||||
|
||||
```python
|
||||
from crewai_tools.tools.xml_search_tool import XMLSearchTool
|
||||
from crewai_tools import XMLSearchTool
|
||||
|
||||
# Allow agents to search within any XML file's content as it learns about their paths during execution
|
||||
tool = XMLSearchTool()
|
||||
@@ -48,7 +48,7 @@ tool = XMLSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -48,7 +48,7 @@ tool = YoutubeChannelSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
@@ -52,7 +52,7 @@ tool = YoutubeVideoSearchTool(
|
||||
),
|
||||
),
|
||||
embedder=dict(
|
||||
provider="google",
|
||||
provider="google", # or openai, ollama, ...
|
||||
config=dict(
|
||||
model="models/embedding-001",
|
||||
task_type="retrieval_document",
|
||||
|
||||
27
mkdocs.yml
@@ -119,6 +119,9 @@ theme:
|
||||
|
||||
nav:
|
||||
- Home: '/'
|
||||
- Getting Started:
|
||||
- Installing CrewAI: 'getting-started/Installing-CrewAI.md'
|
||||
- Starting a new CrewAI project: 'getting-started/Start-a-New-CrewAI-Project-Template-Method.md'
|
||||
- Core Concepts:
|
||||
- Agents: 'core-concepts/Agents.md'
|
||||
- Tasks: 'core-concepts/Tasks.md'
|
||||
@@ -126,19 +129,39 @@ nav:
|
||||
- Processes: 'core-concepts/Processes.md'
|
||||
- Crews: 'core-concepts/Crews.md'
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- Training: 'core-concepts/Training-Crew.md'
|
||||
- Memory: 'core-concepts/Memory.md'
|
||||
- Planning: 'core-concepts/Planning.md'
|
||||
- Testing: 'core-concepts/Testing.md'
|
||||
- Using LangChain Tools: 'core-concepts/Using-LangChain-Tools.md'
|
||||
- Using LlamaIndex Tools: 'core-concepts/Using-LlamaIndex-Tools.md'
|
||||
- How to Guides:
|
||||
- Starting Your crewAI Project: 'how-to/Start-a-New-CrewAI-Project.md'
|
||||
- Installing CrewAI: 'how-to/Installing-CrewAI.md'
|
||||
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
|
||||
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
|
||||
- Using Sequential Process: 'how-to/Sequential.md'
|
||||
- Using Hierarchical Process: 'how-to/Hierarchical.md'
|
||||
- Create your own Manager Agent: 'how-to/Your-Own-Manager-Agent.md'
|
||||
- Connecting to any LLM: 'how-to/LLM-Connections.md'
|
||||
- Customizing Agents: 'how-to/Customizing-Agents.md'
|
||||
- Coding Agents: 'how-to/Coding-Agents.md'
|
||||
- Forcing Tool Output as Result: 'how-to/Force-Tool-Ouput-as-Result.md'
|
||||
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
|
||||
- Agent Observability using AgentOps: 'how-to/AgentOps-Observability.md'
|
||||
- Kickoff a Crew Asynchronously: 'how-to/Kickoff-async.md'
|
||||
- Kickoff a Crew for a List: 'how-to/Kickoff-for-each.md'
|
||||
- Replay from a specific task from a kickoff: 'how-to/Replay-tasks-from-latest-Crew-Kickoff.md'
|
||||
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
|
||||
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
|
||||
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
|
||||
- Tools Docs:
|
||||
- Google Serper Search: 'tools/SerperDevTool.md'
|
||||
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
|
||||
- Composio Tools: 'tools/ComposioTool.md'
|
||||
- Code Interpreter: 'tools/CodeInterpreterTool.md'
|
||||
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
|
||||
- Directory Read: 'tools/DirectoryReadTool.md'
|
||||
- Exa Serch Web Loader: 'tools/EXASearchTool.md'
|
||||
- File Read: 'tools/FileReadTool.md'
|
||||
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
|
||||
- Directory RAG Search: 'tools/DirectorySearchTool.md'
|
||||
@@ -164,6 +187,7 @@ nav:
|
||||
- Landing Page Generator: https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator"
|
||||
- Prepare for meetings: https://github.com/joaomdmoura/crewAI-examples/tree/main/prep-for-a-meeting"
|
||||
- Telemetry: 'telemetry/Telemetry.md'
|
||||
- Change Log: 'https://github.com/crewAIInc/crewAI/releases'
|
||||
|
||||
extra_css:
|
||||
- stylesheets/output.css
|
||||
@@ -171,6 +195,7 @@ extra_css:
|
||||
|
||||
plugins:
|
||||
- social
|
||||
- search
|
||||
|
||||
extra:
|
||||
analytics:
|
||||
|
||||
3790
poetry.lock
generated
@@ -1,12 +1,10 @@
|
||||
[tool.poetry]
|
||||
name = "crewai"
|
||||
version = "0.27.0"
|
||||
version = "0.41.1"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
authors = ["Joao Moura <joao@crewai.com>"]
|
||||
readme = "README.md"
|
||||
packages = [
|
||||
{ include = "crewai", from = "src" },
|
||||
]
|
||||
packages = [{ include = "crewai", from = "src" }]
|
||||
|
||||
[tool.poetry.urls]
|
||||
Homepage = "https://crewai.com"
|
||||
@@ -16,40 +14,39 @@ Repository = "https://github.com/joaomdmoura/crewai"
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
pydantic = "^2.4.2"
|
||||
langchain = "^0.1.10"
|
||||
langchain = ">0.2,<=0.3"
|
||||
openai = "^1.13.3"
|
||||
opentelemetry-api = "^1.22.0"
|
||||
opentelemetry-sdk = "^1.22.0"
|
||||
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
|
||||
instructor = "^0.5.2"
|
||||
instructor = "1.3.3"
|
||||
regex = "^2023.12.25"
|
||||
crewai-tools = { version = "^0.1.4", optional = true }
|
||||
crewai-tools = { version = "^0.4.26", optional = true }
|
||||
click = "^8.1.7"
|
||||
python-dotenv = "1.0.0"
|
||||
embedchain = "^0.1.98"
|
||||
python-dotenv = "^1.0.0"
|
||||
appdirs = "^1.4.4"
|
||||
jsonref = "^1.1.0"
|
||||
agentops = { version = "^0.3.0", optional = true }
|
||||
embedchain = "^0.1.114"
|
||||
json-repair = "^0.25.2"
|
||||
|
||||
[tool.poetry.extras]
|
||||
tools = ["crewai-tools"]
|
||||
agentops = ["agentops"]
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
isort = "^5.13.2"
|
||||
pyright = ">=1.1.350,<2.0.0"
|
||||
mypy = "1.10.0"
|
||||
autoflake = "^2.2.1"
|
||||
pre-commit = "^3.6.0"
|
||||
mkdocs = "^1.4.3"
|
||||
mkdocstrings = "^0.22.0"
|
||||
mkdocstrings-python = "^1.1.2"
|
||||
mkdocs-material = {extras = ["imaging"], version = "^9.5.7"}
|
||||
mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
|
||||
mkdocs-material-extensions = "^1.3.1"
|
||||
pillow = "^10.2.0"
|
||||
cairosvg = "^2.7.1"
|
||||
crewai_tools = "^0.1.4"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
known_first_party = ["crewai"]
|
||||
|
||||
crewai-tools = "^0.4.26"
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.0.0"
|
||||
@@ -59,6 +56,11 @@ python-dotenv = "1.0.0"
|
||||
[tool.poetry.scripts]
|
||||
crewai = "crewai.cli.cli:crewai"
|
||||
|
||||
[tool.mypy]
|
||||
ignore_missing_imports = true
|
||||
disable_error_code = 'import-untyped'
|
||||
exclude = ["cli/templates/main.py", "cli/templates/crew.py"]
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
@@ -2,3 +2,5 @@ from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
|
||||
__all__ = ["Agent", "Crew", "Process", "Task"]
|
||||
|
||||
@@ -1,32 +1,39 @@
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from inspect import signature
|
||||
from typing import Any, List, Optional, Tuple
|
||||
|
||||
from langchain.agents.agent import RunnableAgent
|
||||
from langchain.agents.tools import BaseTool
|
||||
from langchain.agents.tools import tool as LangChainTool
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
PrivateAttr,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.utilities import I18N, Logger, Prompts, RPMController
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" already defined on line 21
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
|
||||
class Agent(BaseModel):
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
"""Represents an agent in a system.
|
||||
|
||||
Each agent has a role, a goal, a backstory, and an optional language model (llm).
|
||||
@@ -39,7 +46,7 @@ class Agent(BaseModel):
|
||||
backstory: The backstory of the agent.
|
||||
config: Dict representation of agent configuration.
|
||||
llm: The language model that will run the agent.
|
||||
function_calling_llm: The language model that will the tool calling for this agent, it overrides the crew function_calling_llm.
|
||||
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
|
||||
max_iter: Maximum number of iterations for an agent to execute a task.
|
||||
memory: Whether the agent should have memory or not.
|
||||
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
|
||||
@@ -50,53 +57,13 @@ class Agent(BaseModel):
|
||||
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_logger: Logger = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr(default=None)
|
||||
_request_within_rpm_limit: Any = PrivateAttr(default=None)
|
||||
_token_process: TokenProcess = TokenProcess()
|
||||
|
||||
formatting_errors: int = 0
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
id: UUID4 = Field(
|
||||
default_factory=uuid.uuid4,
|
||||
frozen=True,
|
||||
description="Unique identifier for the object, not set by user.",
|
||||
)
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
cache: bool = Field(
|
||||
default=True,
|
||||
description="Whether the agent should use a cache for tool usage.",
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent",
|
||||
_times_executed: int = PrivateAttr(default=0)
|
||||
max_execution_time: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum execution time for an agent to execute a task",
|
||||
)
|
||||
max_rpm: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the agent execution to be respected.",
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=False, description="Verbose mode for the Agent Execution"
|
||||
)
|
||||
allow_delegation: bool = Field(
|
||||
default=True, description="Allow delegation of tasks to agents"
|
||||
)
|
||||
tools: Optional[List[Any]] = Field(
|
||||
default_factory=list, description="Tools at agents disposal"
|
||||
)
|
||||
max_iter: Optional[int] = Field(
|
||||
default=15, description="Maximum iterations for an agent to execute a task"
|
||||
)
|
||||
agent_executor: InstanceOf[CrewAgentExecutor] = Field(
|
||||
default=None, description="An instance of the CrewAgentExecutor class."
|
||||
)
|
||||
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
|
||||
tools_handler: InstanceOf[ToolsHandler] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
)
|
||||
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
@@ -104,10 +71,9 @@ class Agent(BaseModel):
|
||||
default=None,
|
||||
description="Callback to be executed after each step of the agent execution.",
|
||||
)
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
llm: Any = Field(
|
||||
default_factory=lambda: ChatOpenAI(
|
||||
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4")
|
||||
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
|
||||
),
|
||||
description="Language model that will run the agent.",
|
||||
)
|
||||
@@ -117,48 +83,54 @@ class Agent(BaseModel):
|
||||
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None, description="Callback to be executed"
|
||||
)
|
||||
|
||||
_original_role: str | None = None
|
||||
_original_goal: str | None = None
|
||||
_original_backstory: str | None = None
|
||||
system_template: Optional[str] = Field(
|
||||
default=None, description="System format for the agent."
|
||||
)
|
||||
prompt_template: Optional[str] = Field(
|
||||
default=None, description="Prompt format for the agent."
|
||||
)
|
||||
response_template: Optional[str] = Field(
|
||||
default=None, description="Response format for the agent."
|
||||
)
|
||||
tools_results: Optional[List[Any]] = Field(
|
||||
default=[], description="Results of the tools used by the agent."
|
||||
)
|
||||
allow_code_execution: Optional[bool] = Field(
|
||||
default=False, description="Enable code execution for the agent."
|
||||
)
|
||||
max_retry_limit: int = Field(
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
if v:
|
||||
raise PydanticCustomError(
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "Agent":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self):
|
||||
"""Set private attributes."""
|
||||
self._logger = Logger(self.verbose)
|
||||
if self.max_rpm and not self._rpm_controller:
|
||||
self._rpm_controller = RPMController(
|
||||
max_rpm=self.max_rpm, logger=self._logger
|
||||
)
|
||||
return self
|
||||
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""set agent executor is set."""
|
||||
"""Ensure agent executor and token process are set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
self.llm.callbacks = [
|
||||
TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
]
|
||||
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
|
||||
# Ensure self.llm.callbacks is a list
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
self.llm.callbacks = []
|
||||
|
||||
# Check if an instance of TokenCalcHandler already exists in the list
|
||||
if not any(
|
||||
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
|
||||
):
|
||||
self.llm.callbacks.append(token_handler)
|
||||
|
||||
if agentops and not any(
|
||||
isinstance(handler, agentops.LangchainCallbackHandler)
|
||||
for handler in self.llm.callbacks
|
||||
):
|
||||
agentops.stop_instrumenting()
|
||||
self.llm.callbacks.append(agentops.LangchainCallbackHandler())
|
||||
|
||||
if not self.agent_executor:
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
@@ -182,7 +154,7 @@ class Agent(BaseModel):
|
||||
Output of the agent
|
||||
"""
|
||||
if self.tools_handler:
|
||||
self.tools_handler.last_used_tool = {}
|
||||
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
@@ -201,50 +173,60 @@ class Agent(BaseModel):
|
||||
if memory.strip() != "":
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
tools = tools or self.tools
|
||||
tools = tools or self.tools or []
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = parsed_tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = render_text_description(parsed_tools)
|
||||
self.agent_executor.tools_description = self._render_text_description_and_args(
|
||||
parsed_tools
|
||||
)
|
||||
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
|
||||
|
||||
result = self.agent_executor.invoke(
|
||||
{
|
||||
"input": task_prompt,
|
||||
"tool_names": self.agent_executor.tools_names,
|
||||
"tools": self.agent_executor.tools_description,
|
||||
}
|
||||
)["output"]
|
||||
if self.crew and self.crew._train:
|
||||
task_prompt = self._training_handler(task_prompt=task_prompt)
|
||||
else:
|
||||
task_prompt = self._use_trained_data(task_prompt=task_prompt)
|
||||
|
||||
try:
|
||||
result = self.agent_executor.invoke(
|
||||
{
|
||||
"input": task_prompt,
|
||||
"tool_names": self.agent_executor.tools_names,
|
||||
"tools": self.agent_executor.tools_description,
|
||||
}
|
||||
)["output"]
|
||||
except Exception as e:
|
||||
self._times_executed += 1
|
||||
if self._times_executed > self.max_retry_limit:
|
||||
raise e
|
||||
result = self.execute_task(task, context, tools)
|
||||
|
||||
if self.max_rpm:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
|
||||
# If there was any tool in self.tools_results that had result_as_answer
|
||||
# set to True, return the results of the last tool that had
|
||||
# result_as_answer set to True
|
||||
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
|
||||
if tool_result.get("result_as_answer", False):
|
||||
result = tool_result["result"]
|
||||
|
||||
return result
|
||||
|
||||
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
|
||||
"""Set the cache handler for the agent.
|
||||
|
||||
Args:
|
||||
cache_handler: An instance of the CacheHandler class.
|
||||
"""
|
||||
self.tools_handler = ToolsHandler()
|
||||
if self.cache:
|
||||
self.cache_handler = cache_handler
|
||||
self.tools_handler.cache = cache_handler
|
||||
self.create_agent_executor()
|
||||
|
||||
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
|
||||
"""Set the rpm controller for the agent.
|
||||
|
||||
Args:
|
||||
rpm_controller: An instance of the RPMController class.
|
||||
"""
|
||||
if not self._rpm_controller:
|
||||
self._rpm_controller = rpm_controller
|
||||
self.create_agent_executor()
|
||||
def format_log_to_str(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
observation_prefix: str = "Observation: ",
|
||||
llm_prefix: str = "",
|
||||
) -> str:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
thoughts = ""
|
||||
for action, observation in intermediate_steps:
|
||||
thoughts += action.log
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
|
||||
def create_agent_executor(self, tools=None) -> None:
|
||||
"""Create an agent executor for the agent.
|
||||
@@ -252,7 +234,7 @@ class Agent(BaseModel):
|
||||
Returns:
|
||||
An instance of the CrewAgentExecutor class.
|
||||
"""
|
||||
tools = tools or self.tools
|
||||
tools = tools or self.tools or []
|
||||
|
||||
agent_args = {
|
||||
"input": lambda x: x["input"],
|
||||
@@ -273,18 +255,26 @@ class Agent(BaseModel):
|
||||
"original_tools": tools,
|
||||
"handle_parsing_errors": True,
|
||||
"max_iterations": self.max_iter,
|
||||
"max_execution_time": self.max_execution_time,
|
||||
"step_callback": self.step_callback,
|
||||
"tools_handler": self.tools_handler,
|
||||
"function_calling_llm": self.function_calling_llm,
|
||||
"callbacks": self.callbacks,
|
||||
"max_tokens": self.max_tokens,
|
||||
}
|
||||
|
||||
if self._rpm_controller:
|
||||
executor_args[
|
||||
"request_within_rpm_limit"
|
||||
] = self._rpm_controller.check_or_wait
|
||||
executor_args["request_within_rpm_limit"] = (
|
||||
self._rpm_controller.check_or_wait
|
||||
)
|
||||
|
||||
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
|
||||
prompt = Prompts(
|
||||
i18n=self.i18n,
|
||||
tools=tools,
|
||||
system_template=self.system_template,
|
||||
prompt_template=self.prompt_template,
|
||||
response_template=self.response_template,
|
||||
).task_execution()
|
||||
|
||||
execution_prompt = prompt.partial(
|
||||
goal=self.goal,
|
||||
@@ -292,48 +282,43 @@ class Agent(BaseModel):
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=[self.i18n.slice("observation")])
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
|
||||
if self.response_template:
|
||||
stop_words.append(
|
||||
self.response_template.split("{{ .Response }}")[1].strip()
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=stop_words)
|
||||
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
agent=RunnableAgent(runnable=inner_agent), **executor_args
|
||||
)
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the agent description and backstory."""
|
||||
if self._original_role is None:
|
||||
self._original_role = self.role
|
||||
if self._original_goal is None:
|
||||
self._original_goal = self.goal
|
||||
if self._original_backstory is None:
|
||||
self._original_backstory = self.backstory
|
||||
def get_delegation_tools(self, agents: List[BaseAgent]):
|
||||
agent_tools = AgentTools(agents=agents)
|
||||
tools = agent_tools.tools()
|
||||
return tools
|
||||
|
||||
if inputs:
|
||||
self.role = self._original_role.format(**inputs)
|
||||
self.goal = self._original_goal.format(**inputs)
|
||||
self.backstory = self._original_backstory.format(**inputs)
|
||||
def get_code_execution_tools(self):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
def increment_formatting_errors(self) -> None:
|
||||
"""Count the formatting errors of the agent."""
|
||||
self.formatting_errors += 1
|
||||
return [CodeInterpreterTool()]
|
||||
except ModuleNotFoundError:
|
||||
self._logger.log(
|
||||
"info", "Coding tools not available. Install crewai_tools. "
|
||||
)
|
||||
|
||||
def format_log_to_str(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
observation_prefix: str = "Observation: ",
|
||||
llm_prefix: str = "",
|
||||
) -> str:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
thoughts = ""
|
||||
for action, observation in intermediate_steps:
|
||||
thoughts += action.log
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
def get_output_converter(self, llm, text, model, instructions):
|
||||
return Converter(llm=llm, text=text, model=model, instructions=instructions)
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
|
||||
"""Parse tools to be used for the task."""
|
||||
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
|
||||
tools_list = []
|
||||
try:
|
||||
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
|
||||
from crewai_tools import BaseTool as CrewAITool
|
||||
|
||||
for tool in tools:
|
||||
@@ -342,10 +327,82 @@ class Agent(BaseModel):
|
||||
else:
|
||||
tools_list.append(tool)
|
||||
except ModuleNotFoundError:
|
||||
tools_list = []
|
||||
for tool in tools:
|
||||
tools_list.append(tool)
|
||||
|
||||
return tools_list
|
||||
|
||||
def _training_handler(self, task_prompt: str) -> str:
|
||||
"""Handle training data for the agent task prompt to improve output on Training."""
|
||||
if data := CrewTrainingHandler(TRAINING_DATA_FILE).load():
|
||||
agent_id = str(self.id)
|
||||
|
||||
if data.get(agent_id):
|
||||
human_feedbacks = [
|
||||
i["human_feedback"] for i in data.get(agent_id, {}).values()
|
||||
]
|
||||
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
|
||||
human_feedbacks
|
||||
)
|
||||
|
||||
return task_prompt
|
||||
|
||||
def _use_trained_data(self, task_prompt: str) -> str:
|
||||
"""Use trained data for the agent task prompt to improve output."""
|
||||
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
|
||||
if trained_data_output := data.get(self.role):
|
||||
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
|
||||
trained_data_output["suggestions"]
|
||||
)
|
||||
return task_prompt
|
||||
|
||||
def _render_text_description(self, tools: List[BaseTool]) -> str:
|
||||
"""Render the tool name and description in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
|
||||
.. code-block:: markdown
|
||||
|
||||
search: This tool is used for search
|
||||
calculator: This tool is used for math
|
||||
"""
|
||||
description = "\n".join(
|
||||
[
|
||||
f"Tool name: {tool.name}\nTool description:\n{tool.description}"
|
||||
for tool in tools
|
||||
]
|
||||
)
|
||||
|
||||
return description
|
||||
|
||||
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
|
||||
"""Render the tool name, description, and args in plain text.
|
||||
|
||||
Output will be in the format of:
|
||||
|
||||
.. code-block:: markdown
|
||||
|
||||
search: This tool is used for search, args: {"query": {"type": "string"}}
|
||||
calculator: This tool is used for math, \
|
||||
args: {"expression": {"type": "string"}}
|
||||
"""
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
args_schema = str(tool.args)
|
||||
if hasattr(tool, "func") and tool.func:
|
||||
sig = signature(tool.func)
|
||||
description = (
|
||||
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
|
||||
)
|
||||
else:
|
||||
description = (
|
||||
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
|
||||
)
|
||||
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
|
||||
|
||||
return "\n".join(tool_strings)
|
||||
|
||||
@staticmethod
|
||||
def __tools_names(tools) -> str:
|
||||
return ", ".join([t.name for t in tools])
|
||||
|
||||
0
src/crewai/agents/agent_builder/__init__.py
Normal file
266
src/crewai/agents/agent_builder/base_agent.py
Normal file
@@ -0,0 +1,266 @@
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, TypeVar
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
InstanceOf,
|
||||
PrivateAttr,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
|
||||
class BaseAgent(ABC, BaseModel):
|
||||
"""Abstract Base Class for all third party agents compatible with CrewAI.
|
||||
|
||||
Attributes:
|
||||
id (UUID4): Unique identifier for the agent.
|
||||
role (str): Role of the agent.
|
||||
goal (str): Objective of the agent.
|
||||
backstory (str): Backstory of the agent.
|
||||
cache (bool): Whether the agent should use a cache for tool usage.
|
||||
config (Optional[Dict[str, Any]]): Configuration for the agent.
|
||||
verbose (bool): Verbose mode for the Agent Execution.
|
||||
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
|
||||
allow_delegation (bool): Allow delegation of tasks to agents.
|
||||
tools (Optional[List[Any]]): Tools at the agent's disposal.
|
||||
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
|
||||
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
|
||||
llm (Any): Language model that will run the agent.
|
||||
crew (Any): Crew to which the agent belongs.
|
||||
i18n (I18N): Internationalization settings.
|
||||
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
|
||||
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
|
||||
max_tokens: Maximum number of tokens for the agent to generate in a response.
|
||||
|
||||
|
||||
Methods:
|
||||
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
|
||||
Abstract method to execute a task.
|
||||
create_agent_executor(tools=None) -> None:
|
||||
Abstract method to create an agent executor.
|
||||
_parse_tools(tools: List[Any]) -> List[Any]:
|
||||
Abstract method to parse tools.
|
||||
get_delegation_tools(agents: List["BaseAgent"]):
|
||||
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
|
||||
get_output_converter(llm, model, instructions):
|
||||
Abstract method to get the converter class for the agent to create json/pydantic outputs.
|
||||
interpolate_inputs(inputs: Dict[str, Any]) -> None:
|
||||
Interpolate inputs into the agent description and backstory.
|
||||
set_cache_handler(cache_handler: CacheHandler) -> None:
|
||||
Set the cache handler for the agent.
|
||||
increment_formatting_errors() -> None:
|
||||
Increment formatting errors.
|
||||
copy() -> "BaseAgent":
|
||||
Create a copy of the agent.
|
||||
set_rpm_controller(rpm_controller: RPMController) -> None:
|
||||
Set the rpm controller for the agent.
|
||||
set_private_attrs() -> "BaseAgent":
|
||||
Set private attributes.
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_logger: Logger = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr(default=None)
|
||||
_request_within_rpm_limit: Any = PrivateAttr(default=None)
|
||||
formatting_errors: int = 0
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
cache: bool = Field(
|
||||
default=True, description="Whether the agent should use a cache for tool usage."
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent", default=None
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default=False, description="Verbose mode for the Agent Execution"
|
||||
)
|
||||
max_rpm: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the agent execution to be respected.",
|
||||
)
|
||||
allow_delegation: bool = Field(
|
||||
default=True, description="Allow delegation of tasks to agents"
|
||||
)
|
||||
tools: Optional[List[Any]] = Field(
|
||||
default_factory=list, description="Tools at agents' disposal"
|
||||
)
|
||||
max_iter: Optional[int] = Field(
|
||||
default=25, description="Maximum iterations for an agent to execute a task"
|
||||
)
|
||||
agent_executor: InstanceOf = Field(
|
||||
default=None, description="An instance of the CrewAgentExecutor class."
|
||||
)
|
||||
llm: Any = Field(
|
||||
default=None, description="Language model that will run the agent."
|
||||
)
|
||||
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
tools_handler: InstanceOf[ToolsHandler] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
)
|
||||
max_tokens: Optional[int] = Field(
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
)
|
||||
|
||||
_original_role: str | None = None
|
||||
_original_goal: str | None = None
|
||||
_original_backstory: str | None = None
|
||||
_token_process: TokenProcess = TokenProcess()
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_config_attributes(self):
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
if v:
|
||||
raise PydanticCustomError(
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "BaseAgent":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self):
|
||||
"""Set private attributes."""
|
||||
self._logger = Logger(self.verbose)
|
||||
if self.max_rpm and not self._rpm_controller:
|
||||
self._rpm_controller = RPMController(
|
||||
max_rpm=self.max_rpm, logger=self._logger
|
||||
)
|
||||
if not self._token_process:
|
||||
self._token_process = TokenProcess()
|
||||
return self
|
||||
|
||||
@property
|
||||
def key(self):
|
||||
source = [self.role, self.goal, self.backstory]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
|
||||
@abstractmethod
|
||||
def execute_task(
|
||||
self,
|
||||
task: Any,
|
||||
context: Optional[str] = None,
|
||||
tools: Optional[List[Any]] = None,
|
||||
) -> str:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def create_agent_executor(self, tools=None) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _parse_tools(self, tools: List[Any]) -> List[Any]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
|
||||
"""Set the task tools that init BaseAgenTools class."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_output_converter(
|
||||
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
|
||||
):
|
||||
"""Get the converter class for the agent to create json/pydantic outputs."""
|
||||
pass
|
||||
|
||||
def copy(self: T) -> T: # type: ignore # Signature of "copy" incompatible with supertype "BaseModel"
|
||||
"""Create a deep copy of the Agent."""
|
||||
exclude = {
|
||||
"id",
|
||||
"_logger",
|
||||
"_rpm_controller",
|
||||
"_request_within_rpm_limit",
|
||||
"_token_process",
|
||||
"agent_executor",
|
||||
"tools",
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
"llm",
|
||||
}
|
||||
|
||||
# Copy llm and clear callbacks
|
||||
existing_llm = shallow_copy(self.llm)
|
||||
existing_llm.callbacks = []
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
|
||||
|
||||
return copied_agent
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the agent description and backstory."""
|
||||
if self._original_role is None:
|
||||
self._original_role = self.role
|
||||
if self._original_goal is None:
|
||||
self._original_goal = self.goal
|
||||
if self._original_backstory is None:
|
||||
self._original_backstory = self.backstory
|
||||
|
||||
if inputs:
|
||||
self.role = self._original_role.format(**inputs)
|
||||
self.goal = self._original_goal.format(**inputs)
|
||||
self.backstory = self._original_backstory.format(**inputs)
|
||||
|
||||
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
|
||||
"""Set the cache handler for the agent.
|
||||
|
||||
Args:
|
||||
cache_handler: An instance of the CacheHandler class.
|
||||
"""
|
||||
self.tools_handler = ToolsHandler()
|
||||
if self.cache:
|
||||
self.cache_handler = cache_handler
|
||||
self.tools_handler.cache = cache_handler
|
||||
self.create_agent_executor()
|
||||
|
||||
def increment_formatting_errors(self) -> None:
|
||||
self.formatting_errors += 1
|
||||
|
||||
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
|
||||
"""Set the rpm controller for the agent.
|
||||
|
||||
Args:
|
||||
rpm_controller: An instance of the RPMController class.
|
||||
"""
|
||||
if not self._rpm_controller:
|
||||
self._rpm_controller = rpm_controller
|
||||
self.create_agent_executor()
|
||||
109
src/crewai/agents/agent_builder/base_agent_executor_mixin.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
|
||||
|
||||
class CrewAgentExecutorMixin:
|
||||
crew: Optional["Crew"]
|
||||
crew_agent: Optional["BaseAgent"]
|
||||
task: Optional["Task"]
|
||||
iterations: int
|
||||
force_answer_max_iterations: int
|
||||
have_forced_answer: bool
|
||||
_i18n: I18N
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
"""Determine if a forced answer is required based on iteration count."""
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _create_short_term_memory(self, output) -> None:
|
||||
"""Create and save a short-term memory item if conditions are met."""
|
||||
if (
|
||||
self.crew
|
||||
and self.crew_agent
|
||||
and self.task
|
||||
and "Action: Delegate work to coworker" not in output.log
|
||||
):
|
||||
try:
|
||||
memory = ShortTermMemoryItem(
|
||||
data=output.log,
|
||||
agent=self.crew_agent.role,
|
||||
metadata={
|
||||
"observation": self.task.description,
|
||||
},
|
||||
)
|
||||
if (
|
||||
hasattr(self.crew, "_short_term_memory")
|
||||
and self.crew._short_term_memory
|
||||
):
|
||||
self.crew._short_term_memory.save(memory)
|
||||
except Exception as e:
|
||||
print(f"Failed to add to short term memory: {e}")
|
||||
pass
|
||||
|
||||
def _create_long_term_memory(self, output) -> None:
|
||||
"""Create and save long-term and entity memory items based on evaluation."""
|
||||
if (
|
||||
self.crew
|
||||
and self.crew.memory
|
||||
and self.crew._long_term_memory
|
||||
and self.crew._entity_memory
|
||||
and self.task
|
||||
and self.crew_agent
|
||||
):
|
||||
try:
|
||||
ltm_agent = TaskEvaluator(self.crew_agent)
|
||||
evaluation = ltm_agent.evaluate(self.task, output.log)
|
||||
|
||||
if isinstance(evaluation, ConverterError):
|
||||
return
|
||||
|
||||
long_term_memory = LongTermMemoryItem(
|
||||
task=self.task.description,
|
||||
agent=self.crew_agent.role,
|
||||
quality=evaluation.quality,
|
||||
datetime=str(time.time()),
|
||||
expected_output=self.task.expected_output,
|
||||
metadata={
|
||||
"suggestions": evaluation.suggestions,
|
||||
"quality": evaluation.quality,
|
||||
},
|
||||
)
|
||||
self.crew._long_term_memory.save(long_term_memory)
|
||||
|
||||
for entity in evaluation.entities:
|
||||
entity_memory = EntityMemoryItem(
|
||||
name=entity.name,
|
||||
type=entity.type,
|
||||
description=entity.description,
|
||||
relationships="\n".join(
|
||||
[f"- {r}" for r in entity.relationships]
|
||||
),
|
||||
)
|
||||
self.crew._entity_memory.save(entity_memory)
|
||||
except AttributeError as e:
|
||||
print(f"Missing attributes for long term memory: {e}")
|
||||
pass
|
||||
except Exception as e:
|
||||
print(f"Failed to add to long term memory: {e}")
|
||||
pass
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
"""Prompt human input for final decision making."""
|
||||
return input(
|
||||
self._i18n.slice("getting_input").format(final_answer=final_answer)
|
||||
)
|
||||
86
src/crewai/agents/agent_builder/utilities/base_agent_tool.py
Normal file
@@ -0,0 +1,86 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.task import Task
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
class BaseAgentTools(BaseModel, ABC):
|
||||
"""Default tools around agent delegation"""
|
||||
|
||||
agents: List[BaseAgent] = Field(description="List of agents in this crew.")
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
|
||||
@abstractmethod
|
||||
def tools(self):
|
||||
pass
|
||||
|
||||
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
|
||||
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
|
||||
if coworker:
|
||||
is_list = coworker.startswith("[") and coworker.endswith("]")
|
||||
if is_list:
|
||||
coworker = coworker[1:-1].split(",")[0]
|
||||
|
||||
return coworker
|
||||
|
||||
def delegate_work(
|
||||
self, task: str, context: str, coworker: Optional[str] = None, **kwargs
|
||||
):
|
||||
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, task, context)
|
||||
|
||||
def ask_question(
|
||||
self, question: str, context: str, coworker: Optional[str] = None, **kwargs
|
||||
):
|
||||
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
|
||||
coworker = self._get_coworker(coworker, **kwargs)
|
||||
return self._execute(coworker, question, context)
|
||||
|
||||
def _execute(
|
||||
self, agent_name: Union[str, None], task: str, context: Union[str, None]
|
||||
):
|
||||
"""Execute the command."""
|
||||
try:
|
||||
if agent_name is None:
|
||||
agent_name = ""
|
||||
|
||||
# It is important to remove the quotes from the agent name.
|
||||
# The reason we have to do this is because less-powerful LLM's
|
||||
# have difficulty producing valid JSON.
|
||||
# As a result, we end up with invalid JSON that is truncated like this:
|
||||
# {"task": "....", "coworker": "....
|
||||
# when it should look like this:
|
||||
# {"task": "....", "coworker": "...."}
|
||||
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
|
||||
|
||||
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
|
||||
available_agent
|
||||
for available_agent in self.agents
|
||||
if available_agent.role.casefold().replace("\n", "") == agent_name
|
||||
]
|
||||
except Exception as _:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
)
|
||||
|
||||
if not agent:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
)
|
||||
|
||||
agent = agent[0]
|
||||
task_with_assigned_agent = Task( # type: ignore # Incompatible types in assignment (expression has type "Task", variable has type "str")
|
||||
description=task,
|
||||
agent=agent,
|
||||
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
|
||||
)
|
||||
return agent.execute_task(task_with_assigned_agent, context)
|
||||
@@ -0,0 +1,47 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class OutputConverter(BaseModel, ABC):
|
||||
"""
|
||||
Abstract base class for converting task results into structured formats.
|
||||
|
||||
This class provides a framework for converting unstructured text into
|
||||
either Pydantic models or JSON, tailored for specific agent requirements.
|
||||
It uses a language model to interpret and structure the input text based
|
||||
on given instructions.
|
||||
|
||||
Attributes:
|
||||
text (str): The input text to be converted.
|
||||
llm (Any): The language model used for conversion.
|
||||
model (Any): The target model for structuring the output.
|
||||
instructions (str): Specific instructions for the conversion process.
|
||||
max_attempts (int): Maximum number of conversion attempts (default: 3).
|
||||
"""
|
||||
|
||||
text: str = Field(description="Text to be converted.")
|
||||
llm: Any = Field(description="The language model to be used to convert the text.")
|
||||
model: Any = Field(description="The model to be used to convert the text.")
|
||||
instructions: str = Field(description="Conversion instructions to the LLM.")
|
||||
max_attempts: Optional[int] = Field(
|
||||
description="Max number of attempts to try to get the output formatted.",
|
||||
default=3,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def to_pydantic(self, current_attempt=1):
|
||||
"""Convert text to pydantic."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def to_json(self, current_attempt=1):
|
||||
"""Convert text to json."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def is_gpt(self) -> bool:
|
||||
"""Return if llm provided is of gpt from openai."""
|
||||
pass
|
||||
@@ -0,0 +1,27 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
|
||||
def sum_prompt_tokens(self, tokens: int):
|
||||
self.prompt_tokens = self.prompt_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_completion_tokens(self, tokens: int):
|
||||
self.completion_tokens = self.completion_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_successful_requests(self, requests: int):
|
||||
self.successful_requests = self.successful_requests + requests
|
||||
|
||||
def get_summary(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"total_tokens": self.total_tokens,
|
||||
"prompt_tokens": self.prompt_tokens,
|
||||
"completion_tokens": self.completion_tokens,
|
||||
"successful_requests": self.successful_requests,
|
||||
}
|
||||
@@ -7,22 +7,19 @@ from langchain.agents.agent import ExceptionTool
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor):
|
||||
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
|
||||
_i18n: I18N = I18N()
|
||||
should_ask_for_human_input: bool = False
|
||||
llm: Any = None
|
||||
@@ -35,68 +32,14 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
crew: Any = None
|
||||
function_calling_llm: Any = None
|
||||
request_within_rpm_limit: Any = None
|
||||
tools_handler: InstanceOf[ToolsHandler] = None
|
||||
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
|
||||
max_iterations: Optional[int] = 15
|
||||
have_forced_answer: bool = False
|
||||
force_answer_max_iterations: Optional[int] = None
|
||||
force_answer_max_iterations: Optional[int] = None # type: ignore # Incompatible types in assignment (expression has type "int | None", base class "CrewAgentExecutorMixin" defined the type as "int")
|
||||
step_callback: Optional[Any] = None
|
||||
|
||||
@root_validator()
|
||||
def set_force_answer_max_iterations(cls, values: Dict) -> Dict:
|
||||
values["force_answer_max_iterations"] = values["max_iterations"] - 2
|
||||
return values
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _create_short_term_memory(self, output) -> None:
|
||||
if (
|
||||
self.crew
|
||||
and self.crew.memory
|
||||
and "Action: Delegate work to co-worker" not in output.log
|
||||
):
|
||||
memory = ShortTermMemoryItem(
|
||||
data=output.log,
|
||||
agent=self.crew_agent.role,
|
||||
metadata={
|
||||
"observation": self.task.description,
|
||||
},
|
||||
)
|
||||
self.crew._short_term_memory.save(memory)
|
||||
|
||||
def _create_long_term_memory(self, output) -> None:
|
||||
if self.crew and self.crew.memory:
|
||||
ltm_agent = TaskEvaluator(self.crew_agent)
|
||||
evaluation = ltm_agent.evaluate(self.task, output.log)
|
||||
|
||||
if isinstance(evaluation, ConverterError):
|
||||
return
|
||||
|
||||
long_term_memory = LongTermMemoryItem(
|
||||
task=self.task.description,
|
||||
agent=self.crew_agent.role,
|
||||
quality=evaluation.quality,
|
||||
datetime=str(time.time()),
|
||||
expected_output=self.task.expected_output,
|
||||
metadata={
|
||||
"suggestions": "\n".join(
|
||||
[f"- {s}" for s in evaluation.suggestions]
|
||||
),
|
||||
"quality": evaluation.quality,
|
||||
},
|
||||
)
|
||||
self.crew._long_term_memory.save(long_term_memory)
|
||||
|
||||
for entity in evaluation.entities:
|
||||
entity_memory = EntityMemoryItem(
|
||||
name=entity.name,
|
||||
type=entity.type,
|
||||
description=entity.description,
|
||||
relationships="\n".join([f"- {r}" for r in entity.relationships]),
|
||||
)
|
||||
self.crew._entity_memory.save(entity_memory)
|
||||
system_template: Optional[str] = None
|
||||
prompt_template: Optional[str] = None
|
||||
response_template: Optional[str] = None
|
||||
|
||||
def _call(
|
||||
self,
|
||||
@@ -115,6 +58,7 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
# Allowing human input given task setting
|
||||
if self.task.human_input:
|
||||
self.should_ask_for_human_input = True
|
||||
|
||||
# Let's start tracking the number of iterations and time elapsed
|
||||
self.iterations = 0
|
||||
time_elapsed = 0.0
|
||||
@@ -130,8 +74,10 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
intermediate_steps,
|
||||
run_manager=run_manager,
|
||||
)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(next_step_output)
|
||||
|
||||
if isinstance(next_step_output, AgentFinish):
|
||||
# Creating long term memory
|
||||
create_long_term_memory = threading.Thread(
|
||||
@@ -185,7 +131,7 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
|
||||
intermediate_steps,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**inputs,
|
||||
@@ -242,12 +188,17 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
if self.should_ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(output.return_values["output"])
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(output, human_feedback)
|
||||
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.should_ask_for_human_input = False
|
||||
human_feedback = self._ask_human_input(output.return_values["output"])
|
||||
action = AgentAction(
|
||||
tool="Human Input", tool_input=human_feedback, log=output.log
|
||||
)
|
||||
|
||||
yield AgentStep(
|
||||
action=action,
|
||||
observation=self._i18n.slice("human_feedback").format(
|
||||
@@ -257,6 +208,9 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
return
|
||||
|
||||
else:
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(output)
|
||||
|
||||
yield output
|
||||
return
|
||||
|
||||
@@ -271,13 +225,14 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
run_manager.on_agent_action(agent_action, color="green")
|
||||
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=self.tools_handler,
|
||||
tools=self.tools,
|
||||
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
|
||||
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
|
||||
original_tools=self.original_tools,
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
task=self.task,
|
||||
agent=self.crew_agent,
|
||||
action=agent_action,
|
||||
)
|
||||
tool_calling = tool_usage.parse(agent_action.log)
|
||||
@@ -287,6 +242,8 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
else:
|
||||
if tool_calling.tool_name.casefold().strip() in [
|
||||
name.casefold().strip() for name in name_to_tool_map
|
||||
] or tool_calling.tool_name.casefold().replace("_", " ") in [
|
||||
name.casefold().strip() for name in name_to_tool_map
|
||||
]:
|
||||
observation = tool_usage.use(tool_calling, agent_action.log)
|
||||
else:
|
||||
@@ -294,11 +251,32 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
tool=tool_calling.tool_name,
|
||||
tools=", ".join([tool.name.casefold() for tool in self.tools]),
|
||||
)
|
||||
|
||||
yield AgentStep(action=agent_action, observation=observation)
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
"""Get human input."""
|
||||
return input(
|
||||
self._i18n.slice("getting_input").format(final_answer=final_answer)
|
||||
)
|
||||
def _handle_crew_training_output(
|
||||
self, output: AgentFinish, human_feedback: str | None = None
|
||||
) -> None:
|
||||
"""Function to handle the process of the training data."""
|
||||
agent_id = str(self.crew_agent.id)
|
||||
|
||||
if (
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
and not self.should_ask_for_human_input
|
||||
):
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
if training_data.get(agent_id):
|
||||
training_data[agent_id][self.crew._train_iteration][
|
||||
"improved_output"
|
||||
] = output.return_values["output"]
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
|
||||
|
||||
if self.should_ask_for_human_input and human_feedback is not None:
|
||||
training_data = {
|
||||
"initial_output": output.return_values["output"],
|
||||
"human_feedback": human_feedback,
|
||||
"agent": agent_id,
|
||||
"agent_role": self.crew_agent.role,
|
||||
}
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).append(
|
||||
self.crew._train_iteration, agent_id, training_data
|
||||
)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from json_repair import repair_json
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
@@ -48,12 +49,15 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
raise OutputParserException(
|
||||
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
|
||||
)
|
||||
action = action_match.group(1).strip()
|
||||
action_input = action_match.group(2)
|
||||
tool_input = action_input.strip(" ")
|
||||
tool_input = tool_input.strip('"')
|
||||
action = action_match.group(1)
|
||||
clean_action = self._clean_action(action)
|
||||
|
||||
return AgentAction(action, tool_input, text)
|
||||
action_input = action_match.group(2).strip()
|
||||
|
||||
tool_input = action_input.strip(" ").strip('"')
|
||||
safe_tool_input = self._safe_repair_json(tool_input)
|
||||
|
||||
return AgentAction(clean_action, safe_tool_input, text)
|
||||
|
||||
elif includes_answer:
|
||||
return AgentFinish(
|
||||
@@ -88,3 +92,30 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
|
||||
def _clean_action(self, text: str) -> str:
|
||||
"""Clean action string by removing non-essential formatting characters."""
|
||||
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
|
||||
|
||||
def _safe_repair_json(self, tool_input: str) -> str:
|
||||
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]
|
||||
|
||||
# Skip repair if the input starts and ends with square brackets
|
||||
# Explanation: The JSON parser has issues handling inputs that are enclosed in square brackets ('[]').
|
||||
# These are typically valid JSON arrays or strings that do not require repair. Attempting to repair such inputs
|
||||
# might lead to unintended alterations, such as wrapping the entire input in additional layers or modifying
|
||||
# the structure in a way that changes its meaning. By skipping the repair for inputs that start and end with
|
||||
# square brackets, we preserve the integrity of these valid JSON structures and avoid unnecessary modifications.
|
||||
if tool_input.startswith("[") and tool_input.endswith("]"):
|
||||
return tool_input
|
||||
|
||||
# Before repair, handle common LLM issues:
|
||||
# 1. Replace """ with " to avoid JSON parser errors
|
||||
|
||||
tool_input = tool_input.replace('"""', '"')
|
||||
|
||||
result = repair_json(tool_input)
|
||||
if result in UNABLE_TO_REPAIR_JSON_RESULTS:
|
||||
return tool_input
|
||||
|
||||
return str(result)
|
||||
|
||||
@@ -8,13 +8,13 @@ from .cache.cache_handler import CacheHandler
|
||||
class ToolsHandler:
|
||||
"""Callback handler for tool usage."""
|
||||
|
||||
last_used_tool: ToolCalling = {}
|
||||
cache: CacheHandler
|
||||
last_used_tool: ToolCalling = {} # type: ignore # BUG?: Incompatible types in assignment (expression has type "Dict[...]", variable has type "ToolCalling")
|
||||
cache: Optional[CacheHandler]
|
||||
|
||||
def __init__(self, cache: Optional[CacheHandler] = None):
|
||||
"""Initialize the callback handler."""
|
||||
self.cache = cache
|
||||
self.last_used_tool = {}
|
||||
self.last_used_tool = {} # type: ignore # BUG?: same as above
|
||||
|
||||
def on_tool_use(
|
||||
self,
|
||||
@@ -23,7 +23,7 @@ class ToolsHandler:
|
||||
should_cache: bool = True,
|
||||
) -> Any:
|
||||
"""Run when tool ends running."""
|
||||
self.last_used_tool = calling
|
||||
self.last_used_tool = calling # type: ignore # BUG?: Incompatible types in assignment (expression has type "Union[ToolCalling, InstructorToolCalling]", variable has type "ToolCalling")
|
||||
if self.cache and should_cache and calling.tool_name != CacheTools().name:
|
||||
self.cache.add(
|
||||
tool=calling.tool_name,
|
||||
|
||||
@@ -1,6 +1,15 @@
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
|
||||
from .create_crew import create_crew
|
||||
from .evaluate_crew import evaluate_crew
|
||||
from .replay_from_task import replay_task_command
|
||||
from .reset_memories_command import reset_memories_command
|
||||
from .train_crew import train_crew
|
||||
|
||||
|
||||
@click.group()
|
||||
@@ -15,5 +24,128 @@ def create(project_name):
|
||||
create_crew(project_name)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.option(
|
||||
"--tools", is_flag=True, help="Show the installed version of crewai tools"
|
||||
)
|
||||
def version(tools):
|
||||
"""Show the installed version of crewai."""
|
||||
crewai_version = pkg_resources.get_distribution("crewai").version
|
||||
click.echo(f"crewai version: {crewai_version}")
|
||||
|
||||
if tools:
|
||||
try:
|
||||
tools_version = pkg_resources.get_distribution("crewai-tools").version
|
||||
click.echo(f"crewai tools version: {tools_version}")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
click.echo("crewai tools not installed")
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.option(
|
||||
"-n",
|
||||
"--n_iterations",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of iterations to train the crew",
|
||||
)
|
||||
def train(n_iterations: int):
|
||||
"""Train the crew."""
|
||||
click.echo(f"Training the crew for {n_iterations} iterations")
|
||||
train_crew(n_iterations)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.option(
|
||||
"-t",
|
||||
"--task_id",
|
||||
type=str,
|
||||
help="Replay the crew from this task ID, including all subsequent tasks.",
|
||||
)
|
||||
def replay(task_id: str) -> None:
|
||||
"""
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
Args:
|
||||
task_id (str): The ID of the task to replay from.
|
||||
"""
|
||||
try:
|
||||
click.echo(f"Replaying the crew from task {task_id}")
|
||||
replay_task_command(task_id)
|
||||
except Exception as e:
|
||||
click.echo(f"An error occurred while replaying: {e}", err=True)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
def log_tasks_outputs() -> None:
|
||||
"""
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
"""
|
||||
try:
|
||||
storage = KickoffTaskOutputsSQLiteStorage()
|
||||
tasks = storage.load()
|
||||
|
||||
if not tasks:
|
||||
click.echo(
|
||||
"No task outputs found. Only crew kickoff task outputs are logged."
|
||||
)
|
||||
return
|
||||
|
||||
for index, task in enumerate(tasks, 1):
|
||||
click.echo(f"Task {index}: {task['task_id']}")
|
||||
click.echo(f"Description: {task['expected_output']}")
|
||||
click.echo("------")
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An error occurred while logging task outputs: {e}", err=True)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
|
||||
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
|
||||
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
|
||||
@click.option(
|
||||
"-k",
|
||||
"--kickoff-outputs",
|
||||
is_flag=True,
|
||||
help="Reset LATEST KICKOFF TASK OUTPUTS",
|
||||
)
|
||||
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
|
||||
def reset_memories(long, short, entities, kickoff_outputs, all):
|
||||
"""
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
|
||||
"""
|
||||
try:
|
||||
if not all and not (long or short or entities or kickoff_outputs):
|
||||
click.echo(
|
||||
"Please specify at least one memory type to reset using the appropriate flags."
|
||||
)
|
||||
return
|
||||
reset_memories_command(long, short, entities, kickoff_outputs, all)
|
||||
except Exception as e:
|
||||
click.echo(f"An error occurred while resetting memories: {e}", err=True)
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.option(
|
||||
"-n",
|
||||
"--n_iterations",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of iterations to Test the crew",
|
||||
)
|
||||
@click.option(
|
||||
"-m",
|
||||
"--model",
|
||||
type=str,
|
||||
default="gpt-4o-mini",
|
||||
help="LLM Model to run the tests on the Crew. For now only accepting only OpenAI models.",
|
||||
)
|
||||
def test(n_iterations: int, model: str):
|
||||
"""Test the crew and evaluate the results."""
|
||||
click.echo(f"Testing the crew for {n_iterations} iterations with model {model}")
|
||||
evaluate_crew(n_iterations, model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
|
||||
30
src/crewai/cli/evaluate_crew.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def evaluate_crew(n_iterations: int, model: str) -> None:
|
||||
"""
|
||||
Test and Evaluate the crew by running a command in the Poetry environment.
|
||||
|
||||
Args:
|
||||
n_iterations (int): The number of iterations to test the crew.
|
||||
model (str): The model to test the crew with.
|
||||
"""
|
||||
command = ["poetry", "run", "test", str(n_iterations), model]
|
||||
|
||||
try:
|
||||
if n_iterations <= 0:
|
||||
raise ValueError("The number of iterations must be a positive integer.")
|
||||
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
if result.stderr:
|
||||
click.echo(result.stderr, err=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while testing the crew: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
24
src/crewai/cli/replay_from_task.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import subprocess
|
||||
import click
|
||||
|
||||
|
||||
def replay_task_command(task_id: str) -> None:
|
||||
"""
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
Args:
|
||||
task_id (str): The ID of the task to replay from.
|
||||
"""
|
||||
command = ["poetry", "run", "replay", task_id]
|
||||
|
||||
try:
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
if result.stderr:
|
||||
click.echo(result.stderr, err=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while replaying the task: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
49
src/crewai/cli/reset_memories_command.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import subprocess
|
||||
import click
|
||||
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
|
||||
|
||||
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
|
||||
"""
|
||||
Reset the crew memories.
|
||||
|
||||
Args:
|
||||
long (bool): Whether to reset the long-term memory.
|
||||
short (bool): Whether to reset the short-term memory.
|
||||
entity (bool): Whether to reset the entity memory.
|
||||
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
|
||||
all (bool): Whether to reset all memories.
|
||||
"""
|
||||
|
||||
try:
|
||||
if all:
|
||||
ShortTermMemory().reset()
|
||||
EntityMemory().reset()
|
||||
LongTermMemory().reset()
|
||||
TaskOutputStorageHandler().reset()
|
||||
click.echo("All memories have been reset.")
|
||||
else:
|
||||
if long:
|
||||
LongTermMemory().reset()
|
||||
click.echo("Long term memory has been reset.")
|
||||
|
||||
if short:
|
||||
ShortTermMemory().reset()
|
||||
click.echo("Short term memory has been reset.")
|
||||
if entity:
|
||||
EntityMemory().reset()
|
||||
click.echo("Entity memory has been reset.")
|
||||
if kickoff_outputs:
|
||||
TaskOutputStorageHandler().reset()
|
||||
click.echo("Latest Kickoff outputs stored has been reset.")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while resetting the memories: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
@@ -23,7 +23,7 @@ poetry install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
**Add you `OPENAI_API_KEY` on the `.env` file**
|
||||
**Add your `OPENAI_API_KEY` into the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
@@ -40,7 +40,7 @@ poetry run {{folder_name}}
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folser
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
@@ -51,7 +51,7 @@ The {{name}} Crew is composed of multiple AI agents, each with unique roles, goa
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Joing our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat wtih our docs](https://chatg.pt/DWjSBZn)
|
||||
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat with our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
|
||||
@@ -5,6 +5,7 @@ research_task:
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
@@ -12,4 +13,5 @@ reporting_task:
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formated as markdown with out '```'
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
|
||||
@@ -32,14 +32,12 @@ class {{crew_name}}Crew():
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
agent=self.researcher()
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
agent=self.reporting_analyst(),
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
|
||||
@@ -1,10 +1,54 @@
|
||||
#!/usr/bin/env python
|
||||
import sys
|
||||
from {{folder_name}}.crew import {{crew_name}}Crew
|
||||
|
||||
# This main file is intended to be a way for your to run your
|
||||
# crew locally, so refrain from adding necessary logic into this file.
|
||||
# Replace with inputs you want to test with, it will automatically
|
||||
# interpolate any tasks and agents information
|
||||
|
||||
def run():
|
||||
# Replace with your inputs, it will automatically interpolate any tasks and agents information
|
||||
"""
|
||||
Run the crew.
|
||||
"""
|
||||
inputs = {
|
||||
'topic': 'AI LLMs'
|
||||
}
|
||||
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
|
||||
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
|
||||
|
||||
|
||||
def train():
|
||||
"""
|
||||
Train the crew for a given number of iterations.
|
||||
"""
|
||||
inputs = {
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while training the crew: {e}")
|
||||
|
||||
def replay():
|
||||
"""
|
||||
Replay the crew execution from a specific task.
|
||||
"""
|
||||
try:
|
||||
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
def test():
|
||||
"""
|
||||
Test the crew execution and returns the results.
|
||||
"""
|
||||
inputs = {
|
||||
"topic": "AI LLMs"
|
||||
}
|
||||
try:
|
||||
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while replaying the crew: {e}")
|
||||
|
||||
@@ -6,11 +6,14 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = {extras = ["tools"], version = "^0.27.0"}
|
||||
crewai = { extras = ["tools"], version = "^0.41.1" }
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:run"
|
||||
train = "{{folder_name}}.main:train"
|
||||
replay = "{{folder_name}}.main:replay"
|
||||
test = "{{folder_name}}.main:test"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
@@ -3,7 +3,9 @@ from crewai_tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
)
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
|
||||
29
src/crewai/cli/train_crew.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def train_crew(n_iterations: int) -> None:
|
||||
"""
|
||||
Train the crew by running a command in the Poetry environment.
|
||||
|
||||
Args:
|
||||
n_iterations (int): The number of iterations to train the crew.
|
||||
"""
|
||||
command = ["poetry", "run", "train", str(n_iterations)]
|
||||
|
||||
try:
|
||||
if n_iterations <= 0:
|
||||
raise ValueError("The number of iterations must be a positive integer.")
|
||||
|
||||
result = subprocess.run(command, capture_output=False, text=True, check=True)
|
||||
|
||||
if result.stderr:
|
||||
click.echo(result.stderr, err=True)
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
click.echo(f"An error occurred while training the crew: {e}", err=True)
|
||||
click.echo(e.output, err=True)
|
||||
|
||||
except Exception as e:
|
||||
click.echo(f"An unexpected error occurred: {e}", err=True)
|
||||
@@ -1,6 +1,9 @@
|
||||
import asyncio
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from pydantic import (
|
||||
@@ -17,15 +20,37 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import (
|
||||
TRAINED_AGENTS_DATA_FILE,
|
||||
TRAINING_DATA_FILE,
|
||||
)
|
||||
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.formatter import (
|
||||
aggregate_raw_outputs_from_task_outputs,
|
||||
aggregate_raw_outputs_from_tasks,
|
||||
)
|
||||
from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
try:
|
||||
import agentops
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
|
||||
class Crew(BaseModel):
|
||||
@@ -36,6 +61,7 @@ class Crew(BaseModel):
|
||||
tasks: List of tasks assigned to the crew.
|
||||
agents: List of agents part of this crew.
|
||||
manager_llm: The language model that will run manager agent.
|
||||
manager_agent: Custom agent that will be used as manager.
|
||||
memory: Whether the crew should use memory to store memories of it's execution.
|
||||
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
|
||||
cache: Whether the crew should use a cache to store the results of the tools execution.
|
||||
@@ -44,26 +70,37 @@ class Crew(BaseModel):
|
||||
verbose: Indicates the verbosity level for logging during execution.
|
||||
config: Configuration settings for the crew.
|
||||
max_rpm: Maximum number of requests per minute for the crew execution to be respected.
|
||||
prompt_file: Path to the prompt json file to be used for the crew.
|
||||
id: A unique identifier for the crew instance.
|
||||
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
|
||||
task_callback: Callback to be executed after each task for every agents execution.
|
||||
step_callback: Callback to be executed after each step for every agents execution.
|
||||
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
|
||||
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
|
||||
planning: Plan the crew execution and add the plan to the crew.
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_execution_span: Any = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr()
|
||||
_logger: Logger = PrivateAttr()
|
||||
_file_handler: FileHandler = PrivateAttr()
|
||||
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(default=CacheHandler())
|
||||
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
||||
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
||||
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
||||
_train: Optional[bool] = PrivateAttr(default=False)
|
||||
_train_iteration: Optional[int] = PrivateAttr()
|
||||
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
|
||||
_logging_color: str = PrivateAttr(
|
||||
default="bold_purple",
|
||||
)
|
||||
_task_output_handler: TaskOutputStorageHandler = PrivateAttr(
|
||||
default_factory=TaskOutputStorageHandler
|
||||
)
|
||||
|
||||
cache: bool = Field(default=True)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
tasks: List[Task] = Field(default_factory=list)
|
||||
agents: List[Agent] = Field(default_factory=list)
|
||||
agents: List[BaseAgent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
verbose: Union[int, bool] = Field(default=0)
|
||||
memory: bool = Field(
|
||||
@@ -78,13 +115,12 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Metrics for the LLM usage during all tasks execution.",
|
||||
)
|
||||
full_output: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Whether the crew should return the full output with all tasks outputs or just the final output.",
|
||||
)
|
||||
manager_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
manager_agent: Optional[BaseAgent] = Field(
|
||||
description="Custom agent that will be used as manager.", default=None
|
||||
)
|
||||
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None,
|
||||
description="A list of callback handlers to be executed by the manager agent when hierarchical process is used",
|
||||
@@ -107,13 +143,29 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the crew execution to be respected.",
|
||||
)
|
||||
language: str = Field(
|
||||
default="en",
|
||||
description="Language used for the crew, defaults to English.",
|
||||
)
|
||||
language_file: str = Field(
|
||||
prompt_file: str = Field(
|
||||
default=None,
|
||||
description="Path to the language file to be used for the crew.",
|
||||
description="Path to the prompt json file to be used for the crew.",
|
||||
)
|
||||
output_log_file: Optional[Union[bool, str]] = Field(
|
||||
default=False,
|
||||
description="output_log_file",
|
||||
)
|
||||
planning: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Plan the crew execution and add the plan to the crew.",
|
||||
)
|
||||
planning_llm: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Language model that will run the AgentPlanner if planning is True.",
|
||||
)
|
||||
task_execution_output_json_files: Optional[List[str]] = Field(
|
||||
default=None,
|
||||
description="List of file paths for task execution JSON files.",
|
||||
)
|
||||
execution_logs: List[Dict[str, Any]] = Field(
|
||||
default=[],
|
||||
description="List of execution logs for tasks",
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@@ -145,10 +197,11 @@ class Crew(BaseModel):
|
||||
"""Set private attributes."""
|
||||
self._cache_handler = CacheHandler()
|
||||
self._logger = Logger(self.verbose)
|
||||
if self.output_log_file:
|
||||
self._file_handler = FileHandler(self.output_log_file)
|
||||
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
self._telemetry.crew_creation(self)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
@@ -156,19 +209,32 @@ class Crew(BaseModel):
|
||||
"""Set private attributes."""
|
||||
if self.memory:
|
||||
self._long_term_memory = LongTermMemory()
|
||||
self._short_term_memory = ShortTermMemory(embedder_config=self.embedder)
|
||||
self._entity_memory = EntityMemory(embedder_config=self.embedder)
|
||||
self._short_term_memory = ShortTermMemory(
|
||||
crew=self, embedder_config=self.embedder
|
||||
)
|
||||
self._entity_memory = EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_manager_llm(self):
|
||||
"""Validates that the language model is set when using hierarchical process."""
|
||||
if self.process == Process.hierarchical and not self.manager_llm:
|
||||
raise PydanticCustomError(
|
||||
"missing_manager_llm",
|
||||
"Attribute `manager_llm` is required when using hierarchical process.",
|
||||
{},
|
||||
)
|
||||
if self.process == Process.hierarchical:
|
||||
if not self.manager_llm and not self.manager_agent:
|
||||
raise PydanticCustomError(
|
||||
"missing_manager_llm_or_manager_agent",
|
||||
"Attribute `manager_llm` or `manager_agent` is required when using hierarchical process.",
|
||||
{},
|
||||
)
|
||||
|
||||
if (self.manager_agent is not None) and (
|
||||
self.agents.count(self.manager_agent) > 0
|
||||
):
|
||||
raise PydanticCustomError(
|
||||
"manager_agent_in_agents",
|
||||
"Manager agent should not be included in agents list.",
|
||||
{},
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
@@ -192,6 +258,106 @@ class Crew(BaseModel):
|
||||
agent.set_rpm_controller(self._rpm_controller)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_tasks(self):
|
||||
if self.process == Process.sequential:
|
||||
for task in self.tasks:
|
||||
if task.agent is None:
|
||||
raise PydanticCustomError(
|
||||
"missing_agent_in_task",
|
||||
f"Sequential process error: Agent is missing in the task with the following description: {task.description}", # type: ignore # Argument of type "str" cannot be assigned to parameter "message_template" of type "LiteralString"
|
||||
{},
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_end_with_at_most_one_async_task(self):
|
||||
"""Validates that the crew ends with at most one asynchronous task."""
|
||||
final_async_task_count = 0
|
||||
|
||||
# Traverse tasks backward
|
||||
for task in reversed(self.tasks):
|
||||
if task.async_execution:
|
||||
final_async_task_count += 1
|
||||
else:
|
||||
break # Stop traversing as soon as a non-async task is encountered
|
||||
|
||||
if final_async_task_count > 1:
|
||||
raise PydanticCustomError(
|
||||
"async_task_count",
|
||||
"The crew must end with at most one asynchronous task.",
|
||||
{},
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_first_task(self) -> "Crew":
|
||||
"""Ensure the first task is not a ConditionalTask."""
|
||||
if self.tasks and isinstance(self.tasks[0], ConditionalTask):
|
||||
raise PydanticCustomError(
|
||||
"invalid_first_task",
|
||||
"The first task cannot be a ConditionalTask.",
|
||||
{},
|
||||
)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_async_tasks_not_async(self) -> "Crew":
|
||||
"""Ensure that ConditionalTask is not async."""
|
||||
for task in self.tasks:
|
||||
if task.async_execution and isinstance(task, ConditionalTask):
|
||||
raise PydanticCustomError(
|
||||
"invalid_async_conditional_task",
|
||||
f"Conditional Task: {task.description} , cannot be executed asynchronously.", # type: ignore # Argument of type "str" cannot be assigned to parameter "message_template" of type "LiteralString"
|
||||
{},
|
||||
)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_async_task_cannot_include_sequential_async_tasks_in_context(self):
|
||||
"""
|
||||
Validates that if a task is set to be executed asynchronously,
|
||||
it cannot include other asynchronous tasks in its context unless
|
||||
separated by a synchronous task.
|
||||
"""
|
||||
for i, task in enumerate(self.tasks):
|
||||
if task.async_execution and task.context:
|
||||
for context_task in task.context:
|
||||
if context_task.async_execution:
|
||||
for j in range(i - 1, -1, -1):
|
||||
if self.tasks[j] == context_task:
|
||||
raise ValueError(
|
||||
f"Task '{task.description}' is asynchronous and cannot include other sequential asynchronous tasks in its context."
|
||||
)
|
||||
if not self.tasks[j].async_execution:
|
||||
break
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_context_no_future_tasks(self):
|
||||
"""Validates that a task's context does not include future tasks."""
|
||||
task_indices = {id(task): i for i, task in enumerate(self.tasks)}
|
||||
|
||||
for task in self.tasks:
|
||||
if task.context:
|
||||
for context_task in task.context:
|
||||
if id(context_task) not in task_indices:
|
||||
continue # Skip context tasks not in the main tasks list
|
||||
if task_indices[id(context_task)] > task_indices[id(task)]:
|
||||
raise ValueError(
|
||||
f"Task '{task.description}' has a context dependency on a future task '{context_task.description}', which is not allowed."
|
||||
)
|
||||
return self
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
source = [agent.key for agent in self.agents] + [
|
||||
task.key for task in self.tasks
|
||||
]
|
||||
return md5("|".join(source).encode()).hexdigest()
|
||||
|
||||
def _setup_from_config(self):
|
||||
assert self.config is not None, "Config should not be None."
|
||||
|
||||
@@ -220,125 +386,588 @@ class Crew(BaseModel):
|
||||
del task_config["agent"]
|
||||
return Task(**task_config, agent=task_agent)
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
|
||||
def _setup_for_training(self) -> None:
|
||||
"""Sets up the crew for training."""
|
||||
self._train = True
|
||||
|
||||
for task in self.tasks:
|
||||
task.human_input = True
|
||||
|
||||
for agent in self.agents:
|
||||
agent.allow_delegation = False
|
||||
|
||||
CrewTrainingHandler(TRAINING_DATA_FILE).initialize_file()
|
||||
CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).initialize_file()
|
||||
|
||||
def train(self, n_iterations: int, inputs: Optional[Dict[str, Any]] = {}) -> None:
|
||||
"""Trains the crew for a given number of iterations."""
|
||||
self._setup_for_training()
|
||||
|
||||
for n_iteration in range(n_iterations):
|
||||
self._train_iteration = n_iteration
|
||||
self.kickoff(inputs=inputs)
|
||||
|
||||
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
|
||||
|
||||
for agent in self.agents:
|
||||
result = TaskEvaluator(agent).evaluate_training_data(
|
||||
training_data=training_data, agent_id=str(agent.id)
|
||||
)
|
||||
|
||||
CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).save_trained_data(
|
||||
agent_id=str(agent.role), trained_data=result.model_dump()
|
||||
)
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> CrewOutput:
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
self._execution_span = self._telemetry.crew_execution_span(self)
|
||||
self._interpolate_inputs(inputs)
|
||||
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
|
||||
self._task_output_handler.reset()
|
||||
self._logging_color = "bold_purple"
|
||||
|
||||
if inputs is not None:
|
||||
self._inputs = inputs
|
||||
self._interpolate_inputs(inputs)
|
||||
self._set_tasks_callbacks()
|
||||
|
||||
i18n = I18N(language=self.language, language_file=self.language_file)
|
||||
i18n = I18N(prompt_file=self.prompt_file)
|
||||
|
||||
for agent in self.agents:
|
||||
agent.i18n = i18n
|
||||
agent.crew = self
|
||||
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
|
||||
agent.crew = self # type: ignore[attr-defined]
|
||||
# TODO: Create an AgentFunctionCalling protocol for future refactoring
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
if not agent.function_calling_llm:
|
||||
agent.function_calling_llm = self.function_calling_llm
|
||||
if not agent.step_callback:
|
||||
agent.step_callback = self.step_callback
|
||||
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
|
||||
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
|
||||
|
||||
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
|
||||
agent.create_agent_executor()
|
||||
|
||||
if self.planning:
|
||||
self._handle_crew_planning()
|
||||
|
||||
metrics = []
|
||||
|
||||
if self.process == Process.sequential:
|
||||
result = self._run_sequential_process()
|
||||
elif self.process == Process.hierarchical:
|
||||
result, manager_metrics = self._run_hierarchical_process()
|
||||
metrics.append(manager_metrics)
|
||||
|
||||
result = self._run_hierarchical_process()
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The process '{self.process}' is not implemented yet."
|
||||
)
|
||||
metrics += [agent._token_process.get_summary() for agent in self.agents]
|
||||
|
||||
metrics = metrics + [
|
||||
agent._token_process.get_summary() for agent in self.agents
|
||||
]
|
||||
self.usage_metrics = {
|
||||
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
|
||||
}
|
||||
|
||||
return result
|
||||
|
||||
def _run_sequential_process(self) -> str:
|
||||
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
|
||||
"""Executes the Crew's workflow for each input in the list and aggregates results."""
|
||||
results: List[CrewOutput] = []
|
||||
|
||||
# Initialize the parent crew's usage metrics
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
|
||||
for input_data in inputs:
|
||||
crew = self.copy()
|
||||
|
||||
output = crew.kickoff(inputs=input_data)
|
||||
|
||||
if crew.usage_metrics:
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
|
||||
|
||||
results.append(output)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
self._task_output_handler.reset()
|
||||
return results
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
|
||||
"""Asynchronous kickoff method to start the crew execution."""
|
||||
return await asyncio.to_thread(self.kickoff, inputs)
|
||||
|
||||
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[CrewOutput]:
|
||||
crew_copies = [self.copy() for _ in inputs]
|
||||
|
||||
async def run_crew(crew, input_data):
|
||||
return await crew.kickoff_async(inputs=input_data)
|
||||
|
||||
tasks = [
|
||||
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
|
||||
for i in range(len(inputs))
|
||||
]
|
||||
tasks = [
|
||||
asyncio.create_task(run_crew(crew_copies[i], inputs[i]))
|
||||
for i in range(len(inputs))
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
for crew in crew_copies:
|
||||
if crew.usage_metrics:
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
for crew in crew_copies:
|
||||
if crew.usage_metrics:
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
|
||||
|
||||
self.usage_metrics = total_usage_metrics
|
||||
self._task_output_handler.reset()
|
||||
return results
|
||||
|
||||
def _handle_crew_planning(self):
|
||||
"""Handles the Crew planning."""
|
||||
self._logger.log("info", "Planning the crew execution")
|
||||
result = CrewPlanner(
|
||||
tasks=self.tasks, planning_agent_llm=self.planning_llm
|
||||
)._handle_crew_planning()
|
||||
|
||||
for task, step_plan in zip(self.tasks, result.list_of_plans_per_task):
|
||||
task.description += step_plan
|
||||
|
||||
def _store_execution_log(
|
||||
self,
|
||||
task: Task,
|
||||
output: TaskOutput,
|
||||
task_index: int,
|
||||
was_replayed: bool = False,
|
||||
):
|
||||
if self._inputs:
|
||||
inputs = self._inputs
|
||||
else:
|
||||
inputs = {}
|
||||
|
||||
log = {
|
||||
"task": task,
|
||||
"output": {
|
||||
"description": output.description,
|
||||
"summary": output.summary,
|
||||
"raw": output.raw,
|
||||
"pydantic": output.pydantic,
|
||||
"json_dict": output.json_dict,
|
||||
"output_format": output.output_format,
|
||||
"agent": output.agent,
|
||||
},
|
||||
"task_index": task_index,
|
||||
"inputs": inputs,
|
||||
"was_replayed": was_replayed,
|
||||
}
|
||||
self._task_output_handler.update(task_index, log)
|
||||
|
||||
def _run_sequential_process(self) -> CrewOutput:
|
||||
"""Executes tasks sequentially and returns the final output."""
|
||||
task_output = ""
|
||||
for task in self.tasks:
|
||||
if task.agent.allow_delegation:
|
||||
agents_for_delegation = [
|
||||
agent for agent in self.agents if agent != task.agent
|
||||
]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
|
||||
task.tools += AgentTools(agents=agents_for_delegation).tools()
|
||||
return self._execute_tasks(self.tasks)
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== Working Agent: {role}", color="bold_yellow")
|
||||
self._logger.log(
|
||||
"info", f"== Starting Task: {task.description}", color="bold_yellow"
|
||||
)
|
||||
|
||||
output = task.execute(context=task_output)
|
||||
if not task.async_execution:
|
||||
task_output = output
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output)
|
||||
|
||||
def _run_hierarchical_process(self) -> str:
|
||||
def _run_hierarchical_process(self) -> CrewOutput:
|
||||
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
|
||||
self._create_manager_agent()
|
||||
return self._execute_tasks(self.tasks)
|
||||
|
||||
i18n = I18N(language=self.language, language_file=self.language_file)
|
||||
manager = Agent(
|
||||
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
llm=self.manager_llm,
|
||||
verbose=True,
|
||||
def _create_manager_agent(self):
|
||||
i18n = I18N(prompt_file=self.prompt_file)
|
||||
if self.manager_agent is not None:
|
||||
self.manager_agent.allow_delegation = True
|
||||
manager = self.manager_agent
|
||||
if manager.tools is not None and len(manager.tools) > 0:
|
||||
raise Exception("Manager agent should not have tools")
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
manager = Agent(
|
||||
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
llm=self.manager_llm,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
self.manager_agent = manager
|
||||
|
||||
def _execute_tasks(
|
||||
self,
|
||||
tasks: List[Task],
|
||||
start_index: Optional[int] = 0,
|
||||
was_replayed: bool = False,
|
||||
) -> CrewOutput:
|
||||
"""Executes tasks sequentially and returns the final output.
|
||||
|
||||
Args:
|
||||
tasks (List[Task]): List of tasks to execute
|
||||
manager (Optional[BaseAgent], optional): Manager agent to use for delegation. Defaults to None.
|
||||
|
||||
Returns:
|
||||
CrewOutput: Final output of the crew
|
||||
"""
|
||||
|
||||
task_outputs: List[TaskOutput] = []
|
||||
futures: List[Tuple[Task, Future[TaskOutput], int]] = []
|
||||
last_sync_output: Optional[TaskOutput] = None
|
||||
|
||||
for task_index, task in enumerate(tasks):
|
||||
if start_index is not None and task_index < start_index:
|
||||
if task.output:
|
||||
if task.async_execution:
|
||||
task_outputs.append(task.output)
|
||||
else:
|
||||
task_outputs = [task.output]
|
||||
last_sync_output = task.output
|
||||
continue
|
||||
|
||||
agent_to_use = self._get_agent_to_use(task)
|
||||
if agent_to_use is None:
|
||||
raise ValueError(
|
||||
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
|
||||
)
|
||||
|
||||
self._prepare_agent_tools(task)
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
if isinstance(task, ConditionalTask):
|
||||
skipped_task_output = self._handle_conditional_task(
|
||||
task, task_outputs, futures, task_index, was_replayed
|
||||
)
|
||||
if skipped_task_output:
|
||||
continue
|
||||
|
||||
if task.async_execution:
|
||||
context = self._get_context(
|
||||
task, [last_sync_output] if last_sync_output else []
|
||||
)
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
if futures:
|
||||
task_outputs = self._process_async_tasks(futures, was_replayed)
|
||||
futures.clear()
|
||||
|
||||
context = self._get_context(task, task_outputs)
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
)
|
||||
task_outputs = [task_output]
|
||||
self._process_task_result(task, task_output)
|
||||
self._store_execution_log(task, task_output, task_index, was_replayed)
|
||||
|
||||
if futures:
|
||||
task_outputs = self._process_async_tasks(futures, was_replayed)
|
||||
|
||||
return self._create_crew_output(task_outputs)
|
||||
|
||||
def _handle_conditional_task(
|
||||
self,
|
||||
task: ConditionalTask,
|
||||
task_outputs: List[TaskOutput],
|
||||
futures: List[Tuple[Task, Future[TaskOutput], int]],
|
||||
task_index: int,
|
||||
was_replayed: bool,
|
||||
) -> Optional[TaskOutput]:
|
||||
if futures:
|
||||
task_outputs = self._process_async_tasks(futures, was_replayed)
|
||||
futures.clear()
|
||||
|
||||
previous_output = task_outputs[task_index - 1] if task_outputs else None
|
||||
if previous_output is not None and not task.should_execute(previous_output):
|
||||
self._logger.log(
|
||||
"debug",
|
||||
f"Skipping conditional task: {task.description}",
|
||||
color="yellow",
|
||||
)
|
||||
skipped_task_output = task.get_skipped_task_output()
|
||||
|
||||
if not was_replayed:
|
||||
self._store_execution_log(task, skipped_task_output, task_index)
|
||||
return skipped_task_output
|
||||
return None
|
||||
|
||||
def _prepare_agent_tools(self, task: Task):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
self._update_manager_tools(task)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
elif task.agent and task.agent.allow_delegation:
|
||||
self._add_delegation_tools(task)
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
return self.manager_agent
|
||||
return task.agent
|
||||
|
||||
def _add_delegation_tools(self, task: Task):
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
|
||||
|
||||
# Add tools if they are not already in task.tools
|
||||
for new_tool in delegation_tools:
|
||||
# Find the index of the tool with the same name
|
||||
existing_tool_index = next(
|
||||
(
|
||||
index
|
||||
for index, tool in enumerate(task.tools or [])
|
||||
if tool.name == new_tool.name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if not task.tools:
|
||||
task.tools = []
|
||||
|
||||
if existing_tool_index is not None:
|
||||
# Replace the existing tool
|
||||
task.tools[existing_tool_index] = new_tool
|
||||
else:
|
||||
# Add the new tool
|
||||
task.tools.append(new_tool)
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
color = self._logging_color
|
||||
self._logger.log("debug", f"== Working Agent: {role}", color=color)
|
||||
self._logger.log("info", f"== Starting Task: {task.description}", color=color)
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=task.description, status="started")
|
||||
|
||||
def _update_manager_tools(self, task: Task):
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
|
||||
else:
|
||||
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
|
||||
self.agents
|
||||
)
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
aggregate_raw_outputs_from_tasks(task.context)
|
||||
if task.context
|
||||
else aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
)
|
||||
return context
|
||||
|
||||
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=output, status="completed")
|
||||
|
||||
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
|
||||
if len(task_outputs) != 1:
|
||||
raise ValueError(
|
||||
"Something went wrong. Kickoff should return only one task output."
|
||||
)
|
||||
final_task_output = task_outputs[0]
|
||||
final_string_output = final_task_output.raw
|
||||
self._finish_execution(final_string_output)
|
||||
token_usage = self.calculate_usage_metrics()
|
||||
|
||||
return CrewOutput(
|
||||
raw=final_task_output.raw,
|
||||
pydantic=final_task_output.pydantic,
|
||||
json_dict=final_task_output.json_dict,
|
||||
tasks_output=[task.output for task in self.tasks if task.output],
|
||||
token_usage=token_usage,
|
||||
)
|
||||
|
||||
task_output = ""
|
||||
for task in self.tasks:
|
||||
self._logger.log("debug", f"Working Agent: {manager.role}")
|
||||
self._logger.log("info", f"Starting Task: {task.description}")
|
||||
|
||||
task_output = task.execute(
|
||||
agent=manager, context=task_output, tools=manager.tools
|
||||
def _process_async_tasks(
|
||||
self,
|
||||
futures: List[Tuple[Task, Future[TaskOutput], int]],
|
||||
was_replayed: bool = False,
|
||||
) -> List[TaskOutput]:
|
||||
task_outputs: List[TaskOutput] = []
|
||||
for future_task, future, task_index in futures:
|
||||
task_output = future.result()
|
||||
task_outputs.append(task_output)
|
||||
self._process_task_result(future_task, task_output)
|
||||
self._store_execution_log(
|
||||
future_task, task_output, task_index, was_replayed
|
||||
)
|
||||
return task_outputs
|
||||
|
||||
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
|
||||
def _find_task_index(
|
||||
self, task_id: str, stored_outputs: List[Any]
|
||||
) -> Optional[int]:
|
||||
return next(
|
||||
(
|
||||
index
|
||||
for (index, d) in enumerate(stored_outputs)
|
||||
if d["task_id"] == str(task_id)
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output), manager._token_process.get_summary()
|
||||
def replay(
|
||||
self, task_id: str, inputs: Optional[Dict[str, Any]] = None
|
||||
) -> CrewOutput:
|
||||
stored_outputs = self._task_output_handler.load()
|
||||
if not stored_outputs:
|
||||
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
|
||||
|
||||
def _set_tasks_callbacks(self) -> str:
|
||||
start_index = self._find_task_index(task_id, stored_outputs)
|
||||
|
||||
if start_index is None:
|
||||
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
|
||||
|
||||
replay_inputs = (
|
||||
inputs if inputs is not None else stored_outputs[start_index]["inputs"]
|
||||
)
|
||||
self._inputs = replay_inputs
|
||||
|
||||
if replay_inputs:
|
||||
self._interpolate_inputs(replay_inputs)
|
||||
|
||||
if self.process == Process.hierarchical:
|
||||
self._create_manager_agent()
|
||||
|
||||
for i in range(start_index):
|
||||
stored_output = stored_outputs[i][
|
||||
"output"
|
||||
] # for adding context to the task
|
||||
task_output = TaskOutput(
|
||||
description=stored_output["description"],
|
||||
agent=stored_output["agent"],
|
||||
raw=stored_output["raw"],
|
||||
pydantic=stored_output["pydantic"],
|
||||
json_dict=stored_output["json_dict"],
|
||||
output_format=stored_output["output_format"],
|
||||
)
|
||||
self.tasks[i].output = task_output
|
||||
|
||||
self._logging_color = "bold_blue"
|
||||
result = self._execute_tasks(self.tasks, start_index, True)
|
||||
return result
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Crew."""
|
||||
|
||||
exclude = {
|
||||
"id",
|
||||
"_rpm_controller",
|
||||
"_logger",
|
||||
"_execution_span",
|
||||
"_file_handler",
|
||||
"_cache_handler",
|
||||
"_short_term_memory",
|
||||
"_long_term_memory",
|
||||
"_entity_memory",
|
||||
"_telemetry",
|
||||
"agents",
|
||||
"tasks",
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
cloned_tasks = [task.copy(cloned_agents) for task in self.tasks]
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_data.pop("agents", None)
|
||||
copied_data.pop("tasks", None)
|
||||
|
||||
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
|
||||
|
||||
return copied_crew
|
||||
|
||||
def _set_tasks_callbacks(self) -> None:
|
||||
"""Sets callback for every task suing task_callback"""
|
||||
for task in self.tasks:
|
||||
task.callback = self.task_callback
|
||||
if not task.callback:
|
||||
task.callback = self.task_callback
|
||||
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolates the inputs in the tasks and agents."""
|
||||
[task.interpolate_inputs(inputs) for task in self.tasks]
|
||||
[agent.interpolate_inputs(inputs) for agent in self.agents]
|
||||
[
|
||||
task.interpolate_inputs(
|
||||
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
|
||||
inputs
|
||||
)
|
||||
for task in self.tasks
|
||||
]
|
||||
# type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
|
||||
for agent in self.agents:
|
||||
agent.interpolate_inputs(inputs)
|
||||
|
||||
def _format_output(self, output: str) -> str:
|
||||
"""Formats the output of the crew execution."""
|
||||
if self.full_output:
|
||||
return {
|
||||
"final_output": output,
|
||||
"tasks_outputs": [task.output for task in self.tasks if task],
|
||||
}
|
||||
else:
|
||||
return output
|
||||
|
||||
def _finish_execution(self, output) -> None:
|
||||
def _finish_execution(self, final_string_output: str) -> None:
|
||||
if self.max_rpm:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
self._telemetry.end_crew(self, output)
|
||||
if agentops:
|
||||
agentops.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
self._telemetry.end_crew(self, final_string_output)
|
||||
|
||||
def calculate_usage_metrics(self) -> Dict[str, int]:
|
||||
"""Calculates and returns the usage metrics."""
|
||||
total_usage_metrics = {
|
||||
"total_tokens": 0,
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
"successful_requests": 0,
|
||||
}
|
||||
|
||||
for agent in self.agents:
|
||||
if hasattr(agent, "_token_process"):
|
||||
token_sum = agent._token_process.get_summary()
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += token_sum.get(key, 0)
|
||||
|
||||
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
|
||||
token_sum = self.manager_agent._token_process.get_summary()
|
||||
for key in total_usage_metrics:
|
||||
total_usage_metrics[key] += token_sum.get(key, 0)
|
||||
|
||||
return total_usage_metrics
|
||||
|
||||
def test(
|
||||
self,
|
||||
n_iterations: int,
|
||||
openai_model_name: str,
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations."""
|
||||
evaluator = CrewEvaluator(self, openai_model_name)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
self.kickoff(inputs=inputs)
|
||||
|
||||
evaluator.print_crew_evaluation_result()
|
||||
|
||||
def __repr__(self):
|
||||
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|
||||
|
||||
1
src/crewai/crews/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .crew_output import CrewOutput
|
||||
50
src/crewai/crews/crew_output.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
|
||||
|
||||
class CrewOutput(BaseModel):
|
||||
"""Class that represents the result of a crew."""
|
||||
|
||||
raw: str = Field(description="Raw output of crew", default="")
|
||||
pydantic: Optional[BaseModel] = Field(
|
||||
description="Pydantic output of Crew", default=None
|
||||
)
|
||||
json_dict: Optional[Dict[str, Any]] = Field(
|
||||
description="JSON dict output of Crew", default=None
|
||||
)
|
||||
tasks_output: list[TaskOutput] = Field(
|
||||
description="Output of each task", default=[]
|
||||
)
|
||||
token_usage: Dict[str, Any] = Field(
|
||||
description="Processed token summary", default={}
|
||||
)
|
||||
|
||||
@property
|
||||
def json(self) -> Optional[str]:
|
||||
if self.tasks_output[-1].output_format != OutputFormat.JSON:
|
||||
raise ValueError(
|
||||
"No JSON output found in the final task. Please make sure to set the output_json property in the final task in your crew."
|
||||
)
|
||||
|
||||
return json.dumps(self.json_dict)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert json_output and pydantic_output to a dictionary."""
|
||||
output_dict = {}
|
||||
if self.json_dict:
|
||||
output_dict.update(self.json_dict)
|
||||
elif self.pydantic:
|
||||
output_dict.update(self.pydantic.model_dump())
|
||||
return output_dict
|
||||
|
||||
def __str__(self):
|
||||
if self.pydantic:
|
||||
return str(self.pydantic)
|
||||
if self.json_dict:
|
||||
return str(self.json_dict)
|
||||
return self.raw
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
|
||||
|
||||
|
||||
@@ -32,18 +34,23 @@ class ContextualMemory:
|
||||
formatted_results = "\n".join([f"- {result}" for result in stm_results])
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
def _fetch_ltm_context(self, task) -> str:
|
||||
def _fetch_ltm_context(self, task) -> Optional[str]:
|
||||
"""
|
||||
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
|
||||
formatted as bullet points.
|
||||
"""
|
||||
ltm_results = self.ltm.search(task)
|
||||
ltm_results = self.ltm.search(task, latest_n=2)
|
||||
if not ltm_results:
|
||||
return None
|
||||
formatted_results = "\n".join(
|
||||
[f"{result['metadata']['suggestions']}" for result in ltm_results]
|
||||
)
|
||||
formatted_results = list(set(formatted_results))
|
||||
|
||||
formatted_results = [
|
||||
suggestion
|
||||
for result in ltm_results
|
||||
for suggestion in result["metadata"]["suggestions"] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
]
|
||||
formatted_results = list(dict.fromkeys(formatted_results))
|
||||
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
|
||||
|
||||
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
|
||||
|
||||
def _fetch_entity_context(self, query) -> str:
|
||||
@@ -53,6 +60,6 @@ class ContextualMemory:
|
||||
"""
|
||||
em_results = self.em.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in em_results]
|
||||
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
|
||||
)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
|
||||
@@ -10,13 +10,22 @@ class EntityMemory(Memory):
|
||||
Inherits from the Memory class.
|
||||
"""
|
||||
|
||||
def __init__(self, embedder_config=None):
|
||||
def __init__(self, crew=None, embedder_config=None):
|
||||
storage = RAGStorage(
|
||||
type="entities", allow_reset=False, embedder_config=embedder_config
|
||||
type="entities",
|
||||
allow_reset=False,
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None:
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
self.storage.reset()
|
||||
except Exception as e:
|
||||
raise Exception(f"An error occurred while resetting the entity memory: {e}")
|
||||
|
||||
@@ -18,15 +18,18 @@ class LongTermMemory(Memory):
|
||||
storage = LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None:
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
metadata = item.metadata
|
||||
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
self.storage.save(
|
||||
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
|
||||
task_description=item.task,
|
||||
score=metadata["quality"],
|
||||
metadata=metadata,
|
||||
datetime=item.datetime,
|
||||
)
|
||||
|
||||
def search(self, task: str) -> Dict[str, Any]:
|
||||
return self.storage.load(task)
|
||||
def search(self, task: str, latest_n: int = 3) -> Dict[str, Any]:
|
||||
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
|
||||
def reset(self) -> None:
|
||||
self.storage.reset()
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, Union
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
|
||||
class LongTermMemoryItem:
|
||||
@@ -8,8 +8,8 @@ class LongTermMemoryItem:
|
||||
task: str,
|
||||
expected_output: str,
|
||||
datetime: str,
|
||||
quality: Union[int, float] = None,
|
||||
metadata: Dict[str, Any] = None,
|
||||
quality: Optional[Union[int, float]] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
@@ -12,12 +12,16 @@ class Memory:
|
||||
self.storage = storage
|
||||
|
||||
def save(
|
||||
self, value: Any, metadata: Dict[str, Any] = None, agent: str = None
|
||||
self,
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
metadata = metadata or {}
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
self.storage.save(value, metadata) # type: ignore # Maybe BUG? Should be self.storage.save(key, value, metadata)
|
||||
|
||||
def search(self, query: str) -> Dict[str, Any]:
|
||||
return self.storage.search(query)
|
||||
|
||||
@@ -12,12 +12,22 @@ class ShortTermMemory(Memory):
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, embedder_config=None):
|
||||
storage = RAGStorage(type="short_term", embedder_config=embedder_config)
|
||||
def __init__(self, crew=None, embedder_config=None):
|
||||
storage = RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: ShortTermMemoryItem) -> None:
|
||||
super().save(item.data, item.metadata, item.agent)
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
def search(self, query: str, score_threshold: float = 0.35):
|
||||
return self.storage.search(query=query, score_threshold=score_threshold)
|
||||
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
self.storage.reset()
|
||||
except Exception as e:
|
||||
raise Exception(
|
||||
f"An error occurred while resetting the short-term memory: {e}"
|
||||
)
|
||||
|
||||