mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 20:38:29 +00:00
Compare commits
58 Commits
v0.14.4
...
bug/create
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
59a5f51fd7 | ||
|
|
375946c15a | ||
|
|
637bd885cf | ||
|
|
337afe228f | ||
|
|
4541835487 | ||
|
|
04d9603449 | ||
|
|
671a8d0180 | ||
|
|
3950878690 | ||
|
|
eaac627600 | ||
|
|
35f8919e73 | ||
|
|
cb5a528550 | ||
|
|
1f95d7b982 | ||
|
|
46971ee985 | ||
|
|
e67009ee2e | ||
|
|
9d3da98251 | ||
|
|
b94de6e947 | ||
|
|
f8a1d4f414 | ||
|
|
7deb268de8 | ||
|
|
47b5cbd211 | ||
|
|
a4e9b9ccfe | ||
|
|
99be4f5a61 | ||
|
|
ba28ab1680 | ||
|
|
e51b8aadae | ||
|
|
33354aa07e | ||
|
|
730b71fad8 | ||
|
|
364cf216a0 | ||
|
|
3cb48ac562 | ||
|
|
ea65283023 | ||
|
|
d2003cc32d | ||
|
|
1766e27337 | ||
|
|
442c324243 | ||
|
|
3134711240 | ||
|
|
546fc965f8 | ||
|
|
9ab45d9118 | ||
|
|
b1ae86757b | ||
|
|
42eeec5897 | ||
|
|
c12283bb16 | ||
|
|
b856b21fc6 | ||
|
|
72a0d1edef | ||
|
|
c0a0e01cf6 | ||
|
|
78bf008c36 | ||
|
|
5857c22daf | ||
|
|
5f73ba1371 | ||
|
|
4c09835abc | ||
|
|
0a025901c5 | ||
|
|
9768e4518f | ||
|
|
1f802ccb5a | ||
|
|
e1306a8e6a | ||
|
|
997c906b5f | ||
|
|
2530196cf8 | ||
|
|
340bea3271 | ||
|
|
3df3bba756 | ||
|
|
a9863fe670 | ||
|
|
7b49b4e985 | ||
|
|
577db88f8e | ||
|
|
01a2e650a4 | ||
|
|
cd9f7931c9 | ||
|
|
2b04ae4e4a |
@@ -1,11 +1,11 @@
|
||||
repos:
|
||||
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 23.12.1
|
||||
hooks:
|
||||
- id: black
|
||||
language_version: python3.11
|
||||
files: \.(py)$
|
||||
exclude: 'src/crewai/cli/templates/(crew|main)\.py'
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.13.2
|
||||
|
||||
40
README.md
40
README.md
@@ -24,6 +24,7 @@
|
||||
- [Key Features](#key-features)
|
||||
- [Examples](#examples)
|
||||
- [Quick Tutorial](#quick-tutorial)
|
||||
- [Write Job Descriptions](#write-job-descriptions)
|
||||
- [Trip Planner](#trip-planner)
|
||||
- [Stock Analysis](#stock-analysis)
|
||||
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
|
||||
@@ -48,16 +49,10 @@ To get started with CrewAI, follow these simple steps:
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with:
|
||||
If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with, example bellow uses it:
|
||||
|
||||
```shell
|
||||
pip install crewai[tools]
|
||||
```
|
||||
|
||||
The example below also uses DuckDuckGo's Search. You can install it with `pip` too:
|
||||
|
||||
```shell
|
||||
pip install duckduckgo-search
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### 2. Setting Up Your Crew
|
||||
@@ -65,19 +60,18 @@ pip install duckduckgo-search
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
|
||||
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
|
||||
# osOPENAI_API_BASE='http://localhost:11434/v1'
|
||||
# OPENAI_MODEL_NAME='openhermes' # Adjust based on available model
|
||||
# OPENAI_API_KEY=''
|
||||
|
||||
# Install duckduckgo-search for this example:
|
||||
# !pip install -U duckduckgo-search
|
||||
# os.environ["OPENAI_API_BASE"] = 'http://localhost:11434/v1'
|
||||
# os.environ["OPENAI_MODEL_NAME"] ='openhermes' # Adjust based on available model
|
||||
# os.environ["OPENAI_API_KEY"] ='sk-111111111111111111111111111111111111111111111111'
|
||||
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
researcher = Agent(
|
||||
@@ -113,8 +107,8 @@ writer = Agent(
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.
|
||||
Your final answer MUST be a full analysis report""",
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.""",
|
||||
expected_output="Full analysis report in bullet points",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
@@ -122,8 +116,8 @@ task2 = Task(
|
||||
description="""Using the insights provided, develop an engaging blog
|
||||
post that highlights the most significant AI advancements.
|
||||
Your post should be informative yet accessible, catering to a tech-savvy audience.
|
||||
Make it sound cool, avoid complex words so it doesn't sound like AI.
|
||||
Your final answer MUST be the full blog post of at least 4 paragraphs.""",
|
||||
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
|
||||
expected_output="Full blog post of at least 4 paragraphs",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
@@ -151,7 +145,7 @@ In addition to the sequential process, you can use the hierarchical process, whi
|
||||
- **Processes Driven**: Currently only supports `sequential` task execution and `hierarchical` processes, but more complex processes like consensual and autonomous are being worked on.
|
||||
- **Save output as file**: Save the output of individual tasks as a file, so you can use it later.
|
||||
- **Parse output as Pydantic or Json**: Parse the output of individual tasks as a Pydantic model or as a Json if you want to.
|
||||
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring you agents' connections to models, even ones running locally!
|
||||
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect crewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models, even ones running locally!
|
||||
|
||||

|
||||
|
||||
@@ -168,6 +162,12 @@ You can test different real life examples of AI crews in the [crewAI-examples re
|
||||
|
||||
[](https://www.youtube.com/watch?v=tnejrr-0a94 "CrewAI Tutorial")
|
||||
|
||||
### Write Job Descriptions
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
|
||||
|
||||
### Trip Planner
|
||||
|
||||
[Check out code for this example](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
|
||||
@@ -10,30 +10,31 @@ description: What are crewAI Agents and how to use them.
|
||||
<li class='leading-3'>Perform tasks</li>
|
||||
<li class='leading-3'>Make decisions</li>
|
||||
<li class='leading-3'>Communicate with other agents</li>
|
||||
<ul>
|
||||
<br/>
|
||||
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew.
|
||||
|
||||
## Agent Attributes
|
||||
|
||||
| Attribute | Description |
|
||||
| :------------------ | :----------------------------------- |
|
||||
| **Role** | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** | The language model used by the agent to process and generate text. Defaults to using OpenAI's GPT-4 (`ChatOpenAI`), unless another model is specified through the environment variable "OPENAI_MODEL_NAME". |
|
||||
| **Tools** | Set of capabilities or functions that the agent can use to perform tasks. Tools can be shared or exclusive to specific agents. It's an attribute that can be set during the initialization of an agent. |
|
||||
| **Function Calling LLM** | The language model used by this agent to call functions. It is an optional field and, if not provided, the behavior of defaulting to the main `llm` is implicit. |
|
||||
| **Max Iter** | The maximum number of iterations the agent can perform before being forced to give its best answer. Default is `15`. |
|
||||
| **Max RPM** | The maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified. |
|
||||
| **Verbose** | Enables detailed logging of the agent's execution for debugging or monitoring purposes when set to True. Default is `False` |
|
||||
| **Allow Delegation**| Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. |
|
||||
| **Step Callback** | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Memory** | Indicates whether the agent should have memory or not, with a default value of False. This impacts the agent's ability to remember past interactions. Default is `False` |
|
||||
| Attribute | Description |
|
||||
| :--------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
|
||||
| **Goal** | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
|
||||
| **Backstory** | Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
|
||||
| **LLM** *(optional)* | The language model used by the agent to process and generate text. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
|
||||
| **Tools** *(optional)* | Set of capabilities or functions that the agent can use to perform tasks. Tools can be shared or exclusive to specific agents. It's an attribute that can be set during the initialization of an agent, with a default value of an empty list. |
|
||||
| **Function Calling LLM** *(optional)* | If passed, this agent will use this LLM to execute function calling for tools instead of relying on the main LLM output. |
|
||||
| **Max Iter** *(optional)* | The maximum number of iterations the agent can perform before being forced to give its best answer. Default is `15`. |
|
||||
| **Max RPM** *(optional)* | The maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
|
||||
| **Verbose** *(optional)* | Enables detailed logging of the agent's execution for debugging or monitoring purposes when set to True. Default is `False`. |
|
||||
| **Allow Delegation** *(optional)* | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `True`. |
|
||||
| **Step Callback** *(optional)* | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
|
||||
| **Memory** *(optional)* | Indicates whether the agent should have memory or not, with a default value of False. This impacts the agent's ability to remember past interactions. Default is `False`. |
|
||||
|
||||
## Creating an Agent
|
||||
|
||||
!!! note "Agent Interaction"
|
||||
Agents can interact with each other using the CrewAI's built-in delegation and communication mechanisms.<br/>This allows for dynamic task management and problem-solving within the crew.
|
||||
Agents can interact with each other using crewAI's built-in delegation and communication mechanisms. This allows for dynamic task management and problem-solving within the crew.
|
||||
|
||||
To create an agent, you would typically initialize an instance of the `Agent` class with the desired properties. Here's a conceptual example including all attributes:
|
||||
|
||||
@@ -49,7 +50,7 @@ agent = Agent(
|
||||
to the business.
|
||||
You're currently working on a project to analyze the
|
||||
performance of our marketing campaigns.""",
|
||||
tools=[my_tool1, my_tool2], # Optional
|
||||
tools=[my_tool1, my_tool2], # Optional, defaults to an empty list
|
||||
llm=my_llm, # Optional
|
||||
function_calling_llm=my_llm, # Optional
|
||||
max_iter=15, # Optional
|
||||
|
||||
@@ -14,15 +14,16 @@ description: Exploring the dynamics of agent collaboration within the CrewAI fra
|
||||
## Enhanced Attributes for Improved Collaboration
|
||||
The `Crew` class has been enriched with several attributes to support advanced functionalities:
|
||||
|
||||
- **Language Model Management (`manager_llm`, `function_calling_llm`)**: Manages language models for executing tasks and tools, facilitating sophisticated agent-tool interactions.
|
||||
- **Language Model Management (`manager_llm`, `function_calling_llm`)**: Manages language models for executing tasks and tools, facilitating sophisticated agent-tool interactions. It's important to note that `manager_llm` is mandatory when using a hierarchical process for ensuring proper execution flow.
|
||||
- **Process Flow (`process`)**: Defines the execution logic (e.g., sequential, hierarchical) to streamline task distribution and execution.
|
||||
- **Verbose Logging (`verbose`)**: Offers detailed logging capabilities for monitoring and debugging purposes.
|
||||
- **Verbose Logging (`verbose`)**: Offers detailed logging capabilities for monitoring and debugging purposes. It supports both integer and boolean types to indicate the verbosity level.
|
||||
- **Configuration (`config`)**: Allows extensive customization to tailor the crew's behavior according to specific requirements.
|
||||
- **Rate Limiting (`max_rpm`)**: Ensures efficient utilization of resources by limiting requests per minute.
|
||||
- **Internationalization Support (`language`)**: Facilitates operation in multiple languages, enhancing global usability.
|
||||
- **Execution and Output Handling (`full_output`)**: Distinguishes between full and final outputs for nuanced control over task results.
|
||||
- **Callback and Telemetry (`step_callback`)**: Integrates callbacks for step-wise execution monitoring and telemetry for performance analytics.
|
||||
- **Crew Sharing (`share_crew`)**: Enables sharing of crew information with CrewAI for continuous improvement.
|
||||
- **Crew Sharing (`share_crew`)**: Enables sharing of crew information with CrewAI for continuous improvement and training models.
|
||||
- **Usage Metrics (`usage_metrics`)**: Store all metrics for the language model (LLM) usage during all tasks' execution, providing insights into operational efficiency and areas for improvement, you can check it after the crew execution.
|
||||
|
||||
## Delegation: Dividing to Conquer
|
||||
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
|
||||
@@ -34,4 +35,4 @@ Setting up a crew involves defining the roles and capabilities of each agent. Cr
|
||||
Consider a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The integration of advanced language model management and process flow attributes allows for more sophisticated interactions, such as the writer delegating complex research tasks to the researcher or querying specific information, thereby facilitating a seamless workflow.
|
||||
|
||||
## Conclusion
|
||||
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
|
||||
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
|
||||
@@ -9,20 +9,20 @@ description: Understanding and utilizing crews in the crewAI framework.
|
||||
|
||||
## Crew Attributes
|
||||
|
||||
| Attribute | Description |
|
||||
| :------------------- | :----------------------------------------------------------- |
|
||||
| **Tasks** | A list of tasks assigned to the crew. |
|
||||
| **Agents** | A list of agents that are part of the crew. |
|
||||
| **Process** | The process flow (e.g., sequential, hierarchical) the crew follows. |
|
||||
| **Verbose** | The verbosity level for logging during execution. |
|
||||
| **Manager LLM** | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** | The language model used by all agents in the crew for calling functions. If none is passed, the main LLM for each agent will be used. |
|
||||
| **Config** | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** | Maximum requests per minute the crew adheres to during execution. |
|
||||
| **Language** | Language used for the crew, defaults to English. |
|
||||
| **Full Output** | Whether the crew should return the full output with all tasks outputs or just the final output. |
|
||||
| **Step Callback** | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Share Crew** | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| Attribute | Description |
|
||||
| :---------------------- | :----------------------------------------------------------- |
|
||||
| **Tasks** | A list of tasks assigned to the crew. |
|
||||
| **Agents** | A list of agents that are part of the crew. |
|
||||
| **Process** *(optional)* | The process flow (e.g., sequential, hierarchical) the crew follows. |
|
||||
| **Verbose** *(optional)* | The verbosity level for logging during execution. |
|
||||
| **Manager LLM** *(optional)* | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** *(optional)* | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** *(optional)* | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** *(optional)* | Maximum requests per minute the crew adheres to during execution. |
|
||||
| **Language** *(optional)* | Language used for the crew, defaults to English. |
|
||||
| **Full Output** *(optional)* | Whether the crew should return the full output with all tasks outputs or just the final output. |
|
||||
| **Step Callback** *(optional)* | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Share Crew** *(optional)* | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
|
||||
!!! note "Crew Max RPM"
|
||||
The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
@@ -47,12 +47,19 @@ researcher = Agent(
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write engaging articles on AI discoveries'
|
||||
goal='Write engaging articles on AI discoveries',
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks for the agents
|
||||
research_task = Task(description='Identify breakthrough AI technologies', agent=researcher)
|
||||
write_article_task = Task(description='Draft an article on the latest AI technologies', agent=writer)
|
||||
research_task = Task(
|
||||
description='Identify breakthrough AI technologies',
|
||||
agent=researcher
|
||||
)
|
||||
write_article_task = Task(
|
||||
description='Draft an article on the latest AI technologies',
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Assemble the crew with a sequential process
|
||||
my_crew = Crew(
|
||||
@@ -60,14 +67,25 @@ my_crew = Crew(
|
||||
tasks=[research_task, write_article_task],
|
||||
process=Process.sequential,
|
||||
full_output=True,
|
||||
verbose=True
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
## Crew Usage Metrics
|
||||
|
||||
After the crew execution, you can access the `usage_metrics` attribute to view the language model (LLM) usage metrics for all tasks executed by the crew. This provides insights into operational efficiency and areas for improvement.
|
||||
|
||||
```python
|
||||
# Access the crew's usage metrics
|
||||
crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
|
||||
crew.kickoff()
|
||||
print(crew.usage_metrics)
|
||||
```
|
||||
|
||||
## Crew Execution Process
|
||||
|
||||
- **Sequential Process**: Tasks are executed one after another, allowing for a linear flow of work.
|
||||
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` is required for this process.
|
||||
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` is required for this process and it's essential for validating the process flow.
|
||||
|
||||
### Kicking Off a Crew
|
||||
|
||||
@@ -77,4 +95,4 @@ Once your crew is assembled, initiate the workflow with the `kickoff()` method.
|
||||
# Start the crew's task execution
|
||||
result = my_crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
```
|
||||
|
||||
@@ -10,26 +10,37 @@ description: Detailed guide on workflow management through processes in CrewAI,
|
||||
## Process Implementations
|
||||
|
||||
- **Sequential**: Executes tasks sequentially, ensuring tasks are completed in an orderly progression.
|
||||
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command, the manager for delegation is automatically created by crewAI.
|
||||
- **Consensual (Planned)**: A future process type aiming for collaborative decision-making among agents on task execution, introducing a more democratic approach to task management within CrewAI.
|
||||
- **Hierarchical**: Organizes tasks in a managerial hierarchy, where tasks are delegated and executed based on a structured chain of command. Note: A manager language model (`manager_llm`) must be specified in the crew to enable the hierarchical process, allowing for the creation and management of tasks by the manager.
|
||||
- **Consensual Process (Planned)**: Currently under consideration for future development, this process type aims for collaborative decision-making among agents on task execution, introducing a more democratic approach to task management within CrewAI. As of now, it is not implemented in the codebase.
|
||||
|
||||
## The Role of Processes in Teamwork
|
||||
Processes enable individual agents to operate as a cohesive unit, streamlining their efforts to achieve common objectives with efficiency and coherence.
|
||||
|
||||
## Assigning Processes to a Crew
|
||||
Specify the process type upon crew creation to set the execution strategy:
|
||||
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. Note: For a hierarchical process, ensure to define `manager_llm` for the manager agent.
|
||||
|
||||
```python
|
||||
from crewai import Crew
|
||||
from crewai.process import Process
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# Example: Creating a crew with a sequential process
|
||||
crew = Crew(agents=my_agents, tasks=my_tasks, process=Process.sequential)
|
||||
crew = Crew(
|
||||
agents=my_agents,
|
||||
tasks=my_tasks,
|
||||
process=Process.sequential
|
||||
)
|
||||
|
||||
# Example: Creating a crew with a hierarchical process
|
||||
crew = Crew(agents=my_agents, tasks=my_tasks, process=Process.hierarchical)
|
||||
# Ensure to provide a manager_llm
|
||||
crew = Crew(
|
||||
agents=my_agents,
|
||||
tasks=my_tasks,
|
||||
process=Process.hierarchical,
|
||||
manager_llm=ChatOpenAI(model="gpt-4")
|
||||
)
|
||||
```
|
||||
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object.
|
||||
**Note:** Ensure `my_agents` and `my_tasks` are defined prior to creating a `Crew` object, and for the hierarchical process, `manager_llm` is also required.
|
||||
|
||||
## Sequential Process
|
||||
This method mirrors dynamic team workflows, progressing through tasks in a thoughtful and systematic manner. Task execution follows the predefined order in the task list, with the output of one task serving as context for the next.
|
||||
@@ -37,13 +48,13 @@ This method mirrors dynamic team workflows, progressing through tasks in a thoug
|
||||
To customize task context, utilize the `context` parameter in the `Task` class to specify outputs that should be used as context for subsequent tasks.
|
||||
|
||||
## Hierarchical Process
|
||||
Emulates a corporate hierarchy. A "manager" agent is automatically created so it oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents, reviews outputs, and assesses task completion.
|
||||
Emulates a corporate hierarchy, crewAI creates a manager automatically for you, requiring the specification of a manager language model (`manager_llm`) for the manager agent. This agent oversees task execution, including planning, delegation, and validation. Tasks are not pre-assigned; the manager allocates tasks to agents based on their capabilities, reviews outputs, and assesses task completion.
|
||||
|
||||
## Process Class: Detailed Overview
|
||||
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential` and `hierarchical`). This design choice guarantees that only valid processes are utilized within the CrewAI framework.
|
||||
The `Process` class is implemented as an enumeration (`Enum`), ensuring type safety and restricting process values to the defined types (`sequential`, `hierarchical`, and future `consensual`). This design choice guarantees that only valid processes are utilized within the CrewAI framework.
|
||||
|
||||
## Planned Future Processes
|
||||
- **Consensual Process**: A collaborative decision-making process among agents on task execution is planned but not currently implemented. This future enhancement will introduce a more democratic approach to task management within CrewAI.
|
||||
- **Consensual Process**: This collaborative decision-making process among agents on task execution is under consideration but not currently implemented. This future enhancement aims to introduce a more democratic approach to task management within CrewAI.
|
||||
|
||||
## Conclusion
|
||||
The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. Documentation will be updated to reflect new processes and enhancements, ensuring users have access to the most current and comprehensive information.
|
||||
The structured collaboration facilitated by processes within CrewAI is crucial for enabling systematic teamwork among agents. Documentation will be regularly updated to reflect new processes and enhancements, ensuring users have access to the most current and comprehensive information.
|
||||
@@ -15,12 +15,12 @@ Tasks in CrewAI can be designed to require collaboration between agents. For exa
|
||||
| :------------- | :----------------------------------- |
|
||||
| **Description** | A clear, concise statement of what the task entails. |
|
||||
| **Agent** | Optionally, you can specify which agent is responsible for the task. If not, the crew's process will determine who takes it on. |
|
||||
| **Expected Output** *(optional)* | Clear and detailed definition of expected output for the task. |
|
||||
| **Expected Output** | Clear and detailed definition of expected output for the task. |
|
||||
| **Tools** *(optional)* | These are the functions or capabilities the agent can utilize to perform the task. They can be anything from simple actions like 'search' to more complex interactions with other agents or APIs. |
|
||||
| **Async Execution** *(optional)* | If the task should be executed asynchronously. This indicates that the crew will not wait for the task to be completed to continue with the next task. |
|
||||
| **Async Execution** *(optional)* | Indicates whether the task should be executed asynchronously, allowing the crew to continue with the next task without waiting for completion. |
|
||||
| **Context** *(optional)* | Other tasks that will have their output used as context for this task. If a task is asynchronous, the system will wait for that to finish before using its output as context. |
|
||||
| **Output JSON** *(optional)* | Takes a pydantic model and returns the output as a JSON object. **Agent LLM needs to be using OpenAI client, could be Ollama for example but using the OpenAI wrapper** |
|
||||
| **Output Pydantic** *(optional)* | Takes a pydantic model and returns the output as a pydantic object. **Agent LLM needs to be using OpenAI client, could be Ollama for example but using the OpenAI wrapper** |
|
||||
| **Output JSON** *(optional)* | Takes a pydantic model and returns the output as a JSON object. **Agent LLM needs to be using an OpenAI client, could be Ollama for example but using the OpenAI wrapper** |
|
||||
| **Output Pydantic** *(optional)* | Takes a pydantic model and returns the output as a pydantic object. **Agent LLM needs to be using an OpenAI client, could be Ollama for example but using the OpenAI wrapper** |
|
||||
| **Output File** *(optional)* | Takes a file path and saves the output of the task on it. |
|
||||
| **Callback** *(optional)* | A function to be executed after the task is completed. |
|
||||
|
||||
@@ -48,10 +48,10 @@ Tools from the [crewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and
|
||||
```python
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
|
||||
from crewai import Agent, Task, Crew
|
||||
from langchain.agents import Tool
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
research_agent = Agent(
|
||||
role='Researcher',
|
||||
@@ -62,9 +62,7 @@ research_agent = Agent(
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Install duckduckgo-search for this example:
|
||||
# !pip install -U duckduckgo-search
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
task = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
@@ -87,16 +85,25 @@ This demonstrates how tasks with specific tools can override an agent's default
|
||||
|
||||
## Referring to Other Tasks
|
||||
|
||||
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output should be used as context for another task.
|
||||
In crewAI, the output of one task is automatically relayed into the next one, but you can specifically define what tasks' output, including multiple should be used as context for another task.
|
||||
|
||||
This is useful when you have a task that depends on the output of another task that is not performed immediately after it. This is done through the `context` attribute of the task:
|
||||
|
||||
```python
|
||||
# ...
|
||||
|
||||
research_task = Task(
|
||||
research_ai_task = Task(
|
||||
description='Find and summarize the latest AI news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
research_ops_task = Task(
|
||||
description='Find and summarize the latest AI Ops news',
|
||||
expected_output='A bullet list summary of the top 5 most important AI Ops news',
|
||||
async_execution=True,
|
||||
agent=research_agent,
|
||||
tools=[search_tool]
|
||||
)
|
||||
@@ -105,7 +112,7 @@ write_blog_task = Task(
|
||||
description="Write a full blog post about the importance of AI and its latest news",
|
||||
expected_output='Full blog post that is 4 paragraphs long',
|
||||
agent=writer_agent,
|
||||
context=[research_task]
|
||||
context=[research_ai_task, research_ops_task]
|
||||
)
|
||||
|
||||
#...
|
||||
@@ -146,7 +153,7 @@ write_article = Task(
|
||||
|
||||
## Callback Mechanism
|
||||
|
||||
You can define a callback function that will be executed after the task is completed. This is useful for tasks that need to trigger some side effect after they are completed, while the crew is still running.
|
||||
The callback function is executed after the task is completed, allowing for actions or notifications to be triggered based on the task's outcome.
|
||||
|
||||
```python
|
||||
# ...
|
||||
@@ -217,5 +224,4 @@ These validations help in maintaining the consistency and reliability of task ex
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools and following robust validation practices is crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
Tasks are the driving force behind the actions of agents in crewAI. By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential, ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
@@ -12,82 +12,80 @@ CrewAI tools empower agents with capabilities ranging from web searching and dat
|
||||
|
||||
## Key Characteristics of Tools
|
||||
|
||||
- **Utility**: Designed for various tasks such as web searching, data analysis, content generation, and agent collaboration.
|
||||
- **Integration**: Enhances agent capabilities by integrating tools directly into their workflow.
|
||||
- **Customizability**: Offers flexibility to develop custom tools or use existing ones, catering to specific agent needs.
|
||||
- **Utility**: Crafted for tasks such as web searching, data analysis, content generation, and agent collaboration.
|
||||
- **Integration**: Boosts agent capabilities by seamlessly integrating tools into their workflow.
|
||||
- **Customizability**: Provides the flexibility to develop custom tools or utilize existing ones, catering to the specific needs of agents.
|
||||
|
||||
## Using crewAI Tools
|
||||
|
||||
crewAI comes with a series to built-in tools that can be used to extend the capabilities of your agents. Start by installing our extra tools package:
|
||||
To enhance your agents' capabilities with crewAI tools, begin by installing our extra tools package:
|
||||
|
||||
```bash
|
||||
pip install crewai[tools]
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Here is an example on how to use them:
|
||||
Here's an example demonstrating their use:
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew
|
||||
# Importing some of the crewAI tools
|
||||
# Importing crewAI tools
|
||||
from crewai_tools import (
|
||||
DirectoryReadTool,
|
||||
FileReadTool,
|
||||
SeperDevTool,
|
||||
SerperDevTool,
|
||||
WebsiteSearchTool
|
||||
)
|
||||
|
||||
# get a free account in serper.dev
|
||||
os.environ["SERPER_API_KEY"] = "Your Key"
|
||||
# Set up API keys
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
|
||||
# Instantiate tools
|
||||
# Assumes this ./blog-posts exists with existing blog posts on it
|
||||
docs_tools = DirectoryReadTool(directory='./blog-posts')
|
||||
file_read_tool = FileReadTool()
|
||||
search_tool = SeperDevTool()
|
||||
website_rag = WebsiteSearchTool()
|
||||
docs_tool = DirectoryReadTool(directory='./blog-posts')
|
||||
file_tool = FileReadTool()
|
||||
search_tool = SerperDevTool()
|
||||
web_rag_tool = WebsiteSearchTool()
|
||||
|
||||
# Create agents
|
||||
researcher = Agent(
|
||||
role='Market Research Analyst',
|
||||
goal='Provide up-to-date market analysis of the AI industry',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[search_tool, website_rag],
|
||||
tools=[search_tool, web_rag_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write amazing, super engaging blog post about the AI industry',
|
||||
goal='Craft engaging blog posts about the AI industry',
|
||||
backstory='A skilled writer with a passion for technology.',
|
||||
tools=[docs_tools, file_read_tool],
|
||||
tools=[docs_tool, file_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
# Define tasks
|
||||
research = Task(
|
||||
description='Research the AI industry and provide a summary of the latest most trending matters and developments.',
|
||||
expected_output='A summary of the top 3 latest most trending matters and developments in the AI industry with you unique take on why they matter.',
|
||||
description='Research the latest trends in the AI industry and provide a summary.',
|
||||
expected_output='A summary of the top 3 trending developments in the AI industry with a unique perspective on their significance.',
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
write = Task(
|
||||
description='Write an engaging blog post about the AI industry, using the summary provided by the research analyst. Read the latest blog posts in the directory to get inspiration.',
|
||||
expected_output='A 4 paragraph blog post formatted as markdown with proper subtitles about the latest trends that is engaging and informative and funny, avoid complex words and make it easy to read.',
|
||||
description='Write an engaging blog post about the AI industry, based on the research analyst’s summary. Draw inspiration from the latest blog posts in the directory.',
|
||||
expected_output='A 4-paragraph blog post formatted in markdown with engaging, informative, and accessible content, avoiding complex jargon.',
|
||||
agent=writer,
|
||||
output_file='blog-posts/new_post.md' # The final blog post will be written here
|
||||
output_file='blog-posts/new_post.md' # The final blog post will be saved here
|
||||
)
|
||||
|
||||
|
||||
# Create a crew
|
||||
# Assemble a crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research, write],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
# Execute the tasks
|
||||
# Execute tasks
|
||||
crew.kickoff()
|
||||
```
|
||||
|
||||
@@ -140,7 +138,7 @@ Here is a list of the available tools and their descriptions:
|
||||
To create your own crewAI tools you will need to install our extra tools package:
|
||||
|
||||
```bash
|
||||
pip install crewai[tools]
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Once you do that there are two main ways for one to create a crewAI tool:
|
||||
@@ -156,7 +154,7 @@ class MyCustomTool(BaseTool):
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
pass
|
||||
return "Result from custom tool"
|
||||
```
|
||||
|
||||
Define a new class inheriting from `BaseTool`, specifying `name`, `description`, and the `_run` method for operational logic.
|
||||
@@ -183,7 +181,7 @@ from unstructured.partition.html import partition_html
|
||||
|
||||
# Annotate the function with the tool decorator from crewAI
|
||||
@tool("Integration with a given API")
|
||||
def integtation_tool(argument: str) -> str:
|
||||
def integration_tool(argument: str) -> str:
|
||||
"""Integration with a given API"""
|
||||
# Code here
|
||||
return resutls # string to be sent back to the agent
|
||||
@@ -193,13 +191,14 @@ agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[integtation_tool]
|
||||
tools=[integration_tool]
|
||||
)
|
||||
```
|
||||
|
||||
## Using LangChain Tools
|
||||
!!! info "LangChain Integration"
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive toolkit for search-based queries and more:
|
||||
CrewAI seamlessly integrates with LangChain’s comprehensive toolkit for search-based queries and more, here are the available built-in tools that are offered by Langchain [LangChain Toolkit](https://python.langchain.com/docs/integrations/tools/)
|
||||
:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
@@ -229,4 +228,4 @@ agent = Agent(
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Tools are crucial for extending the capabilities of CrewAI agents, allowing them to undertake a diverse array of tasks and collaborate efficiently. When building your AI solutions with CrewAI, consider both custom and existing tools to empower your agents and foster a dynamic AI ecosystem.
|
||||
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively. When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem.
|
||||
|
||||
91
docs/how-to/Create-Custom-Tools.md
Normal file
91
docs/how-to/Create-Custom-Tools.md
Normal file
@@ -0,0 +1,91 @@
|
||||
---
|
||||
title: Creating your own Tools
|
||||
description: Guide on how to create and use custom tools within the crewAI framework.
|
||||
---
|
||||
|
||||
## Creating your own Tools
|
||||
!!! example "Custom Tool Creation"
|
||||
Developers can craft custom tools tailored for their agent’s needs or utilize pre-built options:
|
||||
|
||||
To create your own crewAI tools you will need to install our extra tools package:
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Once you do that there are two main ways for one to create a crewAI tool:
|
||||
|
||||
### Subclassing `BaseTool`
|
||||
|
||||
```python
|
||||
from crewai_tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "Result from custom tool"
|
||||
```
|
||||
|
||||
Define a new class inheriting from `BaseTool`, specifying `name`, `description`, and the `_run` method for operational logic.
|
||||
|
||||
|
||||
### Utilizing the `tool` Decorator
|
||||
|
||||
For a simpler approach, create a `Tool` object directly with the required attributes and a functional logic.
|
||||
|
||||
```python
|
||||
from crewai_tools import tool
|
||||
@tool("Name of my tool")
|
||||
def my_tool(question: str) -> str:
|
||||
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
|
||||
# Function logic here
|
||||
```
|
||||
|
||||
```python
|
||||
import json
|
||||
import requests
|
||||
from crewai import Agent
|
||||
from crewai.tools import tool
|
||||
from unstructured.partition.html import partition_html
|
||||
|
||||
# Annotate the function with the tool decorator from crewAI
|
||||
@tool("Integration with a given API")
|
||||
def integtation_tool(argument: str) -> str:
|
||||
"""Integration with a given API"""
|
||||
# Code here
|
||||
return resutls # string to be sent back to the agent
|
||||
|
||||
# Assign the scraping tool to an agent
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[integtation_tool]
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Using the `Tool` function from langchain
|
||||
|
||||
For another simple approach, create a function in python directly with the required attributes and a functional logic.
|
||||
|
||||
```python
|
||||
def combine(a, b):
|
||||
return a + b
|
||||
```
|
||||
|
||||
Then you can add that function into the your tool by using 'func' variable in the Tool function.
|
||||
|
||||
```python
|
||||
from langchain.agents import Tool
|
||||
|
||||
math_tool = Tool(
|
||||
name="Math tool",
|
||||
func=math_tool,
|
||||
description="Useful for adding two numbers together, in other words combining them."
|
||||
)
|
||||
```
|
||||
@@ -7,11 +7,11 @@ description: A comprehensive guide to creating a dynamic CrewAI team for your pr
|
||||
Embark on your CrewAI journey by setting up your environment and initiating your AI crew with enhanced features. This guide ensures a seamless start, incorporating the latest updates.
|
||||
|
||||
## Step 0: Installation
|
||||
Install CrewAI and any necessary packages for your project. The `duckduckgo-search` package is highlighted here for enhanced search capabilities.
|
||||
Install CrewAI and any necessary packages for your project.
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
pip install duckduckgo-search
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Step 1: Assemble Your Agents
|
||||
@@ -19,24 +19,24 @@ Define your agents with distinct roles, backstories, and now, enhanced capabilit
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
|
||||
from crewai import Agent
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
|
||||
# Topic for the crew run
|
||||
topic = 'AI in healthcare'
|
||||
from crewai_tools import SerperDevTool
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Creating a senior researcher agent with memory and verbose mode
|
||||
researcher = Agent(
|
||||
role='Senior Researcher',
|
||||
goal=f'Uncover groundbreaking technologies in {topic}',
|
||||
goal='Uncover groundbreaking technologies in {topic}',
|
||||
verbose=True,
|
||||
memory=True,
|
||||
backstory="""Driven by curiosity, you're at the forefront of
|
||||
innovation, eager to explore and share knowledge that could change
|
||||
the world.""",
|
||||
backstory=(
|
||||
"Driven by curiosity, you're at the forefront of"
|
||||
"innovation, eager to explore and share knowledge that could change"
|
||||
"the world."
|
||||
),
|
||||
tools=[search_tool],
|
||||
allow_delegation=True
|
||||
)
|
||||
@@ -44,12 +44,14 @@ researcher = Agent(
|
||||
# Creating a writer agent with custom tools and delegation capability
|
||||
writer = Agent(
|
||||
role='Writer',
|
||||
goal=f'Narrate compelling tech stories about {topic}',
|
||||
goal='Narrate compelling tech stories about {topic}',
|
||||
verbose=True,
|
||||
memory=True,
|
||||
backstory="""With a flair for simplifying complex topics, you craft
|
||||
engaging narratives that captivate and educate, bringing new
|
||||
discoveries to light in an accessible manner.""",
|
||||
backstory=(
|
||||
"With a flair for simplifying complex topics, you craft"
|
||||
"engaging narratives that captivate and educate, bringing new"
|
||||
"discoveries to light in an accessible manner."
|
||||
),
|
||||
tools=[search_tool],
|
||||
allow_delegation=False
|
||||
)
|
||||
@@ -63,22 +65,25 @@ from crewai import Task
|
||||
|
||||
# Research task
|
||||
research_task = Task(
|
||||
description=f"""Identify the next big trend in {topic}.
|
||||
Focus on identifying pros and cons and the overall narrative.
|
||||
Your final report should clearly articulate the key points,
|
||||
its market opportunities, and potential risks.""",
|
||||
description=(
|
||||
"Identify the next big trend in {topic}."
|
||||
"Focus on identifying pros and cons and the overall narrative."
|
||||
"Your final report should clearly articulate the key points"
|
||||
"its market opportunities, and potential risks."
|
||||
),
|
||||
expected_output='A comprehensive 3 paragraphs long report on the latest AI trends.',
|
||||
max_inter=3,
|
||||
tools=[search_tool],
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
# Writing task with language model configuration
|
||||
write_task = Task(
|
||||
description=f"""Compose an insightful article on {topic}.
|
||||
Focus on the latest trends and how it's impacting the industry.
|
||||
This article should be easy to understand, engaging, and positive.""",
|
||||
expected_output=f'A 4 paragraph article on {topic} advancements fromated as markdown.',
|
||||
description=(
|
||||
"Compose an insightful article on {topic}."
|
||||
"Focus on the latest trends and how it's impacting the industry."
|
||||
"This article should be easy to understand, engaging, and positive."
|
||||
),
|
||||
expected_output='A 4 paragraph article on {topic} advancements formatted as markdown.',
|
||||
tools=[search_tool],
|
||||
agent=writer,
|
||||
async_execution=False,
|
||||
@@ -101,11 +106,11 @@ crew = Crew(
|
||||
```
|
||||
|
||||
## Step 4: Kick It Off
|
||||
Initiate the process with your enhanced crew ready. Observe as your agents collaborate, leveraging their new capabilities for a successful project outcome.
|
||||
Initiate the process with your enhanced crew ready. Observe as your agents collaborate, leveraging their new capabilities for a successful project outcome. You can also pass the inputs that will be interpolated into the agents and tasks.
|
||||
|
||||
```python
|
||||
# Starting the task execution process with enhanced feedback
|
||||
result = crew.kickoff()
|
||||
result = crew.kickoff(inputs={'topic': 'AI in healthcare'})
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ Beyond the basic attributes, CrewAI allows for deeper customization to enhance a
|
||||
|
||||
### Language Model Customization
|
||||
Agents can be customized with specific language models (`llm`) and function-calling language models (`function_calling_llm`), offering advanced control over their processing and decision-making abilities.
|
||||
By default crewAI agents are ReAct agents, but by setting the `function_calling_llm` you can turn them into a function calling agents.
|
||||
|
||||
### Enabling Memory for Agents
|
||||
CrewAI supports memory for agents, enabling them to remember past interactions. This feature is critical for tasks requiring awareness of previous contexts or decisions.
|
||||
@@ -25,48 +26,48 @@ CrewAI supports memory for agents, enabling them to remember past interactions.
|
||||
Adjusting an agent's performance and monitoring its operations are crucial for efficient task execution.
|
||||
|
||||
### Verbose Mode and RPM Limit
|
||||
- **Verbose Mode**: Enables detailed logging of an agent's actions, useful for debugging and optimization.
|
||||
- **Verbose Mode**: Enables detailed logging of an agent's actions, useful for debugging and optimization. Specifically, it provides insights into agent execution processes, aiding in the optimization of performance.
|
||||
- **RPM Limit**: Sets the maximum number of requests per minute (`max_rpm`), controlling the agent's query frequency to external services.
|
||||
|
||||
### Maximum Iterations for Task Execution
|
||||
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions.
|
||||
The `max_iter` attribute allows users to define the maximum number of iterations an agent can perform for a single task, preventing infinite loops or excessively long executions. The default value is set to 15, providing a balance between thoroughness and efficiency. Once the agent approaches this number it will try it's best to give a good answer.
|
||||
|
||||
## Customizing Agents and Tools
|
||||
Agents are customized by defining their attributes and tools during initialization. Tools are critical for an agent's functionality, enabling them to perform specialized tasks. In this example we will use the crewAI tools package to create a tool for a research analyst agent.
|
||||
|
||||
```shell
|
||||
pip install crewai[tools]
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### Example: Assigning Tools to an Agent
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent
|
||||
from crewai_tools import SeperDevTool
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Set API keys for tool initialization
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
os.environ["SERPER_API_KEY"] = "Your Key"
|
||||
|
||||
# Initialize a search tool
|
||||
search_tool = SeperDevTool()
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Initialize the agent with advanced options
|
||||
agent = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Provide up-to-date market analysis',
|
||||
backstory='An expert analyst with a keen eye for market trends.',
|
||||
tools=[serper_tool],
|
||||
tools=[search_tool],
|
||||
memory=True,
|
||||
verbose=True,
|
||||
max_rpm=10, # Optinal: Limit requests to 10 per minute, preventing API abuse
|
||||
max_iter=5, # Optional: Limit task iterations to 5 before the agent tried to gives its best answer
|
||||
max_rpm=10, # Optional: Limit requests to 10 per minute, preventing API abuse
|
||||
max_iter=5, # Optional: Limit task iterations to 5 before the agent tries to give its best answer
|
||||
allow_delegation=False
|
||||
)
|
||||
```
|
||||
|
||||
## Delegation and Autonomy
|
||||
Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the CrewAI framework.
|
||||
Controlling an agent's ability to delegate tasks or ask questions is vital for tailoring its autonomy and collaborative dynamics within the crewAI framework. By default, the `allow_delegation` attribute is set to `True`, enabling agents to seek assistance or delegate tasks as needed. This default behavior promotes collaborative problem-solving and efficiency within the crewAI ecosystem.
|
||||
|
||||
### Example: Disabling Delegation for an Agent
|
||||
```python
|
||||
@@ -79,4 +80,4 @@ agent = Agent(
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
Customizing agents in CrewAI by setting their roles, goals, backstories, and tools, alongside advanced options like language model customization, memory, and performance settings, equips a nuanced and capable AI team ready for complex challenges.
|
||||
Customizing agents in CrewAI by setting their roles, goals, backstories, and tools, alongside advanced options like language model customization, memory, performance settings, and delegation preferences, equips a nuanced and capable AI team ready for complex challenges.
|
||||
@@ -1,60 +1,61 @@
|
||||
---
|
||||
title: Implementing the Hierarchical Process in CrewAI
|
||||
description: Understanding and applying the hierarchical process within your CrewAI projects, with updates reflecting the latest coding practices.
|
||||
description: A comprehensive guide to understanding and applying the hierarchical process within your CrewAI projects, updated to reflect the latest coding practices and functionalities.
|
||||
---
|
||||
|
||||
## Introduction
|
||||
The hierarchical process in CrewAI introduces a structured approach to managing tasks, mimicking traditional organizational hierarchies for efficient task delegation and execution. This ensures a systematic workflow that enhances project outcomes.
|
||||
The hierarchical process in CrewAI introduces a structured approach to task management, simulating traditional organizational hierarchies for efficient task delegation and execution. This systematic workflow enhances project outcomes by ensuring tasks are handled with optimal efficiency and accuracy.
|
||||
|
||||
!!! note "Complexity and Efficiency"
|
||||
The hierarchical process is designed to leverage advanced models like GPT-4, optimizing token usage while handling complex tasks with greater efficiency.
|
||||
|
||||
## Hierarchical Process Overview
|
||||
Tasks within this process are managed through a clear hierarchy, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes, ensuring a streamlined and effective execution process.
|
||||
By default, tasks in CrewAI are managed through a sequential process. However, adopting a hierarchical approach allows for a clear hierarchy in task management, where a 'manager' agent coordinates the workflow, delegates tasks, and validates outcomes for streamlined and effective execution. This manager agent is automatically created by crewAI so you don't need to worry about it.
|
||||
|
||||
### Key Features
|
||||
- **Task Delegation**: A manager agent is responsible for allocating tasks among crew members based on their roles and capabilities.
|
||||
- **Result Validation**: The manager evaluates the outcomes to ensure they meet the required standards before moving forward.
|
||||
- **Efficient Workflow**: Emulates corporate structures, offering an organized and familiar approach to task management.
|
||||
- **Task Delegation**: A manager agent allocates tasks among crew members based on their roles and capabilities.
|
||||
- **Result Validation**: The manager evaluates outcomes to ensure they meet the required standards.
|
||||
- **Efficient Workflow**: Emulates corporate structures, providing an organized approach to task management.
|
||||
|
||||
## Implementing the Hierarchical Process
|
||||
To adopt the hierarchical process, define a crew with a designated manager and establish a clear chain of command for task execution. This structure is crucial for maintaining an orderly and efficient workflow.
|
||||
To utilize the hierarchical process, it's essential to explicitly set the process attribute to `Process.hierarchical`, as the default behavior is `Process.sequential`. Define a crew with a designated manager and establish a clear chain of command.
|
||||
|
||||
!!! note "Tools and Agent Assignment"
|
||||
Tools should be assigned at the agent level, not the task level, to facilitate task delegation and execution by the designated agents under the manager's guidance.
|
||||
Assign tools at the agent level to facilitate task delegation and execution by the designated agents under the manager's guidance.
|
||||
|
||||
!!! note "Manager LLM Configuration"
|
||||
A manager LLM is automatically assigned to the crew, eliminating the need for manual definition. However, configuring the `manager_llm` parameter is necessary to tailor the manager's decision-making process.
|
||||
!!! note "Manager LLM Requirement"
|
||||
Configuring the `manager_llm` parameter is crucial for the hierarchical process. The system requires a manager LLM to be set up for proper function, ensuring tailored decision-making.
|
||||
|
||||
```python
|
||||
from langchain_openai import ChatOpenAI
|
||||
from crewai import Crew, Process, Agent
|
||||
|
||||
# Agents are defined without specifying a manager explicitly
|
||||
# Agents are defined with an optional tools parameter
|
||||
researcher = Agent(
|
||||
role='Researcher',
|
||||
goal='Conduct in-depth analysis',
|
||||
# tools = [...]
|
||||
role='Researcher',
|
||||
goal='Conduct in-depth analysis',
|
||||
# tools=[] # This can be optionally specified; defaults to an empty list
|
||||
)
|
||||
writer = Agent(
|
||||
role='Writer',
|
||||
goal='Create engaging content',
|
||||
# tools = [...]
|
||||
role='Writer',
|
||||
goal='Create engaging content',
|
||||
# tools=[] # Optionally specify tools; defaults to an empty list
|
||||
)
|
||||
|
||||
# Establishing the crew with a hierarchical process
|
||||
project_crew = Crew(
|
||||
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
|
||||
agents=[researcher, writer],
|
||||
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Defines the manager's decision-making engine
|
||||
process=Process.hierarchical # Specifies the hierarchical management approach
|
||||
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
|
||||
agents=[researcher, writer],
|
||||
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory for hierarchical process
|
||||
process=Process.hierarchical # Specifies the hierarchical management approach
|
||||
)
|
||||
```
|
||||
|
||||
### Workflow in Action
|
||||
1. **Task Assignment**: The manager strategically assigns tasks, considering each agent's role and skills.
|
||||
2. **Execution and Review**: Agents complete their tasks, followed by a thorough review by the manager to ensure quality standards.
|
||||
3. **Sequential Task Progression**: The manager ensures tasks are completed in a logical order, facilitating smooth project progression.
|
||||
1. **Task Assignment**: The manager assigns tasks strategically, considering each agent's capabilities.
|
||||
2. **Execution and Review**: Agents complete their tasks, with the manager ensuring quality standards.
|
||||
3. **Sequential Task Progression**: Despite being a hierarchical process, tasks follow a logical order for smooth progression, facilitated by the manager's oversight.
|
||||
|
||||
|
||||
## Conclusion
|
||||
Adopting the hierarchical process in CrewAI facilitates a well-organized and efficient approach to project management. By structuring tasks and delegations within a clear hierarchy, it enhances both productivity and quality control, making it an ideal strategy for managing complex projects.
|
||||
Adopting the hierarchical process in crewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management.
|
||||
@@ -1,6 +1,11 @@
|
||||
---
|
||||
title: Human Input on Execution
|
||||
description: Comprehensive guide on integrating CrewAI with human input during execution in complex decision-making processes or when needed help during complex tasks.
|
||||
---
|
||||
|
||||
# Human Input in Agent Execution
|
||||
|
||||
Human input is crucial in numerous agent execution scenarios, enabling agents to request additional information or clarification when necessary. This feature is particularly useful in complex decision-making processes or when agents require further details to complete a task effectively.
|
||||
Human input plays a pivotal role in several agent execution scenarios, enabling agents to seek additional information or clarification when necessary. This capability is invaluable in complex decision-making processes or when agents need more details to complete a task effectively.
|
||||
|
||||
## Using Human Input with CrewAI
|
||||
|
||||
@@ -8,25 +13,35 @@ Incorporating human input with CrewAI is straightforward, enhancing the agent's
|
||||
|
||||
### Example:
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
```python
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
from langchain.agents import load_tools
|
||||
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
os.environ["SERPER_API_KEY"] = "Your Key" # serper.dev API key
|
||||
os.environ["OPENAI_API_KEY"] = "Your Key"
|
||||
|
||||
|
||||
# Loading Human Tools
|
||||
human_tools = load_tools(["human"])
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
# Define your agents with roles, goals, and tools
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory="""You are a Senior Research Analyst at a leading tech think tank.
|
||||
Your expertise lies in identifying emerging trends and technologies in AI and
|
||||
data science. You have a knack for dissecting complex data and presenting
|
||||
actionable insights.""",
|
||||
backstory=(
|
||||
"You are a Senior Research Analyst at a leading tech think tank."
|
||||
"Your expertise lies in identifying emerging trends and technologies in AI and data science."
|
||||
"You have a knack for dissecting complex data and presenting actionable insights."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
tools=[search_tool]+human_tools # Passing human tools to the agent
|
||||
@@ -34,31 +49,33 @@ researcher = Agent(
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory="""You are a renowned Tech Content Strategist, known for your insightful
|
||||
and engaging articles on technology and innovation. With a deep understanding of
|
||||
the tech industry, you transform complex concepts into compelling narratives.""",
|
||||
backstory=(
|
||||
"You are a renowned Tech Content Strategist, known for your insightful and engaging articles on technology and innovation."
|
||||
"With a deep understanding of the tech industry, you transform complex concepts into compelling narratives."
|
||||
),
|
||||
verbose=True,
|
||||
allow_delegation=True
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.
|
||||
Compile your findings in a detailed report.
|
||||
Make sure to check with a human if the draft is good before finalizing your answer.""",
|
||||
description=(
|
||||
"Conduct a comprehensive analysis of the latest advancements in AI in 2024."
|
||||
"Identify key trends, breakthrough technologies, and potential industry impacts."
|
||||
"Compile your findings in a detailed report."
|
||||
"Make sure to check with a human if the draft is good before finalizing your answer."
|
||||
),
|
||||
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
|
||||
agent=researcher
|
||||
agent=researcher,
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="""Using the insights from the researcher's report, develop an engaging blog
|
||||
post that highlights the most significant AI advancements.
|
||||
Your post should be informative yet accessible, catering to a tech-savvy audience.
|
||||
Aim for a narrative that captures the essence of these breakthroughs and their
|
||||
implications for the future.
|
||||
Your final answer MUST be the full blog post of at least 3 paragraphs.""",
|
||||
expected_output='A compelling 3 paragraphs blog post formated as markdown about the latest AI advancements in 2024',
|
||||
description=(
|
||||
"Using the insights from the researcher's report, develop an engaging blog post that highlights the most significant AI advancements."
|
||||
"Your post should be informative yet accessible, catering to a tech-savvy audience."
|
||||
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
|
||||
),
|
||||
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
|
||||
agent=writer
|
||||
)
|
||||
|
||||
@@ -74,4 +91,4 @@ result = crew.kickoff()
|
||||
|
||||
print("######################")
|
||||
print(result)
|
||||
```
|
||||
```
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
title: Connect CrewAI to LLMs
|
||||
description: Guide on integrating CrewAI with various Large Language Models (LLMs).
|
||||
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs), including detailed class attributes and methods.
|
||||
---
|
||||
|
||||
## Connect CrewAI to LLMs
|
||||
@@ -10,15 +10,22 @@ description: Guide on integrating CrewAI with various Large Language Models (LLM
|
||||
CrewAI offers flexibility in connecting to various LLMs, including local models via [Ollama](https://ollama.ai) and different APIs like Azure. It's compatible with all [LangChain LLM](https://python.langchain.com/docs/integrations/llms/) components, enabling diverse integrations for tailored AI solutions.
|
||||
|
||||
## CrewAI Agent Overview
|
||||
The `Agent` class in CrewAI is central to implementing AI solutions. Here's a brief overview:
|
||||
The `Agent` class is the cornerstone for implementing AI solutions in CrewAI. Here's an updated overview reflecting the latest codebase changes:
|
||||
|
||||
- **Attributes**:
|
||||
- `role`: Defines the agent's role within the solution.
|
||||
- `goal`: Specifies the agent's objective.
|
||||
- `backstory`: Provides a background story to the agent.
|
||||
- `llm`: Indicates the Large Language Model the agent uses.
|
||||
- `function_calling_llm` *Optinal*: Will turn the ReAct crewAI agent into a function calling agent.
|
||||
- `max_iter`: Maximum number of iterations for an agent to execute a task, default is 15.
|
||||
- `memory`: Enables the agent to retain information during the execution.
|
||||
- `max_rpm`: Sets the maximum number of requests per minute.
|
||||
- `verbose`: Enables detailed logging of the agent's execution.
|
||||
- `allow_delegation`: Allows the agent to delegate tasks to other agents, default is `True`.
|
||||
- `tools`: Specifies the tools available to the agent for task execution.
|
||||
- `step_callback`: Provides a callback function to be executed after each step.
|
||||
|
||||
### Example Changing OpenAI's GPT model
|
||||
```python
|
||||
# Required
|
||||
os.environ["OPENAI_MODEL_NAME"]="gpt-4-0125-preview"
|
||||
|
||||
@@ -43,6 +43,11 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
|
||||
Getting Started
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Create-Custom-Tools">
|
||||
Create Custom Tools
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="./how-to/Sequential">
|
||||
Using Sequential Process
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
---
|
||||
title: Telemetry
|
||||
description: Understanding the telemetry data collected by CrewAI and how it contributes to the enhancement of the library.
|
||||
---
|
||||
## Telemetry
|
||||
|
||||
CrewAI utilizes anonymous telemetry to gather usage statistics with the primary goal of enhancing the library. Our focus is on improving and developing the features, integrations, and tools most utilized by our users.
|
||||
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables.
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy.
|
||||
|
||||
### Data Collected Includes:
|
||||
- **Version of CrewAI**: Assessing the adoption rate of our latest version helps us understand user needs and guide our updates.
|
||||
@@ -16,8 +20,8 @@ It's pivotal to understand that **NO data is collected** concerning prompts, tas
|
||||
- **Roles of Agents within a Crew**: Understanding the various roles agents play aids in crafting better tools, integrations, and examples.
|
||||
- **Tool Usage**: Identifying which tools are most frequently used allows us to prioritize improvements in those areas.
|
||||
|
||||
### Opt-In Futher Telemetry Sharing
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. This opt-in approach respects user privacy and aligns with data protection standards by ensuring users have control over their data sharing preferences.
|
||||
### Opt-In Further Telemetry Sharing
|
||||
Users can choose to share their complete telemetry data by enabling the `share_crew` attribute to `True` in their crew configurations. This opt-in approach respects user privacy and aligns with data protection standards by ensuring users have control over their data sharing preferences. Enabling `share_crew` results in the collection of detailed `crew` and `task` execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
|
||||
|
||||
### Updates and Revisions
|
||||
We are committed to maintaining the accuracy and transparency of our documentation. Regular reviews and updates are performed to ensure our documentation accurately reflects the latest developments of our codebase and telemetry practices. Users are encouraged to review this section for the most current information on our data collection practices and how they contribute to the improvement of CrewAI.
|
||||
|
||||
37
docs/tools/CSVSearchTool.md
Normal file
37
docs/tools/CSVSearchTool.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# CSVSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
|
||||
This tool is used to perform a RAG (Retrieval-Augmented Generation) search within a CSV file's content. It allows users to semantically search for queries in the content of a specified CSV file. This feature is particularly useful for extracting information from large CSV datasets where traditional search methods might be inefficient. All tools with "Search" in their name, including CSVSearchTool, are RAG tools designed for searching different sources of data.
|
||||
|
||||
## Installation
|
||||
|
||||
Install the crewai_tools package
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from crewai_tools import CSVSearchTool
|
||||
|
||||
# Initialize the tool with a specific CSV file. This setup allows the agent to only search the given CSV file.
|
||||
tool = CSVSearchTool(csv='path/to/your/csvfile.csv')
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool without a specific CSV file. Agent will need to provide the CSV path at runtime.
|
||||
tool = CSVSearchTool()
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `csv` : The path to the CSV file you want to search. This is a mandatory argument if the tool was initialized without a specific CSV file; otherwise, it is optional.
|
||||
0
docs/tools/CodeDocsSearchTool.md
Normal file
0
docs/tools/CodeDocsSearchTool.md
Normal file
35
docs/tools/DOCXSearchTool.md
Normal file
35
docs/tools/DOCXSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# DOCXSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The DOCXSearchTool is a RAG tool designed for semantic searching within DOCX documents. It enables users to effectively search and extract relevant information from DOCX files using query-based searches. This tool is invaluable for data analysis, information management, and research tasks, streamlining the process of finding specific information within large document collections.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package by running the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following example demonstrates initializing the DOCXSearchTool to search within any DOCX file's content or with a specific DOCX file path.
|
||||
|
||||
```python
|
||||
from crewai_tools import DOCXSearchTool
|
||||
|
||||
# Initialize the tool to search within any DOCX file's content
|
||||
tool = DOCXSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific DOCX file, so the agent can only search the content of the specified DOCX file
|
||||
tool = DOCXSearchTool(docx='path/to/your/document.docx')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `docx`: An optional file path to a specific DOCX document you wish to search. If not provided during initialization, the tool allows for later specification of any DOCX file's content path for searching.
|
||||
36
docs/tools/DirectoryReadTool.md
Normal file
36
docs/tools/DirectoryReadTool.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# DirectoryReadTool
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The DirectoryReadTool is a highly efficient utility designed for the comprehensive listing of directory contents. It recursively navigates through the specified directory, providing users with a detailed enumeration of all files, including those nested within subdirectories. This tool is indispensable for tasks requiring a thorough inventory of directory structures or for validating the organization of files within directories.
|
||||
|
||||
## Installation
|
||||
Install the `crewai_tools` package to use the DirectoryReadTool in your project. If you haven't added this package to your environment, you can easily install it with pip using the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
This installs the latest version of the `crewai_tools` package, allowing access to the DirectoryReadTool and other utilities.
|
||||
|
||||
## Example
|
||||
The DirectoryReadTool is simple to use. The code snippet below shows how to set up and use the tool to list the contents of a specified directory:
|
||||
|
||||
```python
|
||||
from crewai_tools import DirectoryReadTool
|
||||
|
||||
# Initialize the tool so the agent can read any directory's content it learns about during execution
|
||||
tool = DirectoryReadTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific directory, so the agent can only read the content of the specified directory
|
||||
tool = DirectoryReadTool(directory='/path/to/your/directory')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
The DirectoryReadTool requires minimal configuration for use. The essential argument for this tool is as follows:
|
||||
|
||||
- `directory`: **Optional** A argument that specifies the path to the directory whose contents you wish to list. It accepts both absolute and relative paths, guiding the tool to the desired directory for content listing.
|
||||
33
docs/tools/DirectorySearchTool.md
Normal file
33
docs/tools/DirectorySearchTool.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# DirectorySearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is designed to perform a semantic search for queries within the content of a specified directory. Utilizing the RAG (Retrieval-Augmented Generation) methodology, it offers a powerful means to semantically navigate through the files of a given directory. The tool can be dynamically set to search any directory specified at runtime or can be pre-configured to search within a specific directory upon initialization.
|
||||
|
||||
## Installation
|
||||
To start using the DirectorySearchTool, you need to install the crewai_tools package. Execute the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following examples demonstrate how to initialize the DirectorySearchTool for different use cases and how to perform a search:
|
||||
|
||||
```python
|
||||
from crewai_tools import DirectorySearchTool
|
||||
|
||||
# To enable searching within any specified directory at runtime
|
||||
tool = DirectorySearchTool()
|
||||
|
||||
# Alternatively, to restrict searches to a specific directory
|
||||
tool = DirectorySearchTool(directory='/path/to/directory')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `directory` : This string argument specifies the directory within which to search. It is mandatory if the tool has not been initialized with a directory; otherwise, the tool will only search within the initialized directory.
|
||||
32
docs/tools/FileReadTool.md
Normal file
32
docs/tools/FileReadTool.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# FileReadTool
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The FileReadTool is a versatile component of the crewai_tools package, designed to streamline the process of reading and retrieving content from files. It is particularly useful in scenarios such as batch text file processing, runtime configuration file reading, and data importation for analytics. This tool supports various text-based file formats including `.txt`, `.csv`, `.json` and more, and adapts its functionality based on the file type, for instance, converting JSON content into a Python dictionary for easy use.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package to use the FileReadTool in your projects:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
To get started with the FileReadTool:
|
||||
|
||||
```python
|
||||
from crewai_tools import FileReadTool
|
||||
|
||||
# Initialize the tool to read any files the agents knows or lean the path for
|
||||
file_read_tool = FileReadTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific file path, so the agent can only read the content of the specified file
|
||||
file_read_tool = FileReadTool(file_path='path/to/your/file.txt')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `file_path`: The path to the file you want to read. It accepts both absolute and relative paths. Ensure the file exists and you have the necessary permissions to access it.
|
||||
42
docs/tools/GitHubSearchTool.md
Normal file
42
docs/tools/GitHubSearchTool.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# GitHubSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The GitHubSearchTool is a Read, Append, and Generate (RAG) tool specifically designed for conducting semantic searches within GitHub repositories. Utilizing advanced semantic search capabilities, it sifts through code, pull requests, issues, and repositories, making it an essential tool for developers, researchers, or anyone in need of precise information from GitHub.
|
||||
|
||||
## Installation
|
||||
To use the GitHubSearchTool, first ensure the crewai_tools package is installed in your Python environment:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
This command installs the necessary package to run the GitHubSearchTool along with any other tools included in the crewai_tools package.
|
||||
|
||||
## Example
|
||||
Here’s how you can use the GitHubSearchTool to perform semantic searches within a GitHub repository:
|
||||
```python
|
||||
from crewai_tools import GitHubSearchTool
|
||||
|
||||
# Initialize the tool for semantic searches within a specific GitHub repository
|
||||
tool = GitHubSearchTool(
|
||||
github_repo='https://github.com/example/repo',
|
||||
content_types=['code', 'issue'] # Options: code, repo, pr, issue
|
||||
)
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
|
||||
tool = GitHubSearchTool(
|
||||
content_types=['code', 'issue'] # Options: code, repo, pr, issue
|
||||
)
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `github_repo` : The URL of the GitHub repository where the search will be conducted. This is a mandatory field and specifies the target repository for your search.
|
||||
- `content_types` : Specifies the types of content to include in your search. You must provide a list of content types from the following options: `code` for searching within the code, `repo` for searching within the repository's general information, `pr` for searching within pull requests, and `issue` for searching within issues. This field is mandatory and allows tailoring the search to specific content types within the GitHub repository.
|
||||
33
docs/tools/JSONSearchTool.md
Normal file
33
docs/tools/JSONSearchTool.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# JSONSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is used to perform a RAG search within a JSON file's content. It allows users to initiate a search with a specific JSON path, focusing the search operation within that particular JSON file. If the path is provided at initialization, the tool restricts its search scope to the specified JSON file, thereby enhancing the precision of search results.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package by executing the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Below are examples demonstrating how to use the JSONSearchTool for searching within JSON files. You can either search any JSON content or restrict the search to a specific JSON file.
|
||||
|
||||
```python
|
||||
from crewai_tools import JSONSearchTool
|
||||
|
||||
# Example 1: Initialize the tool for a general search across any JSON content. This is useful when the path is known or can be discovered during execution.
|
||||
tool = JSONSearchTool()
|
||||
|
||||
# Example 2: Initialize the tool with a specific JSON path, limiting the search to a particular JSON file.
|
||||
tool = JSONSearchTool(json_path='./path/to/your/file.json')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `json_path` (str): An optional argument that defines the path to the JSON file to be searched. This parameter is only necessary if the tool is initialized without a specific JSON path. Providing this argument restricts the search to the specified JSON file.
|
||||
35
docs/tools/MDXSearchTool.md
Normal file
35
docs/tools/MDXSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# MDXSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The MDX Search Tool, a key component of the `crewai_tools` package, is designed for advanced market data extraction, offering invaluable support to researchers and analysts requiring immediate market insights in the AI sector. With its ability to interface with various data sources and tools, it streamlines the process of acquiring, reading, and organizing market data efficiently.
|
||||
|
||||
## Installation
|
||||
To utilize the MDX Search Tool, ensure the `crewai_tools` package is installed. If not already present, install it using the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Configuring and using the MDX Search Tool involves setting up environment variables and utilizing the tool within a crewAI project for market research. Here's a simple example:
|
||||
|
||||
```python
|
||||
from crewai_tools import MDXSearchTool
|
||||
|
||||
# Initialize the tool so the agent can search any MDX content if it learns about during its execution
|
||||
tool = MDXSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific MDX file path for exclusive search within that document
|
||||
tool = MDXSearchTool(mdx='path/to/your/document.mdx')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- mdx: **Optional** The MDX path for the search. Can be provided at initialization
|
||||
35
docs/tools/PDFSearchTool.md
Normal file
35
docs/tools/PDFSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# PDFSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The PDFSearchTool is a RAG tool designed for semantic searches within PDF content. It allows for inputting a search query and a PDF document, leveraging advanced search techniques to find relevant content efficiently. This capability makes it especially useful for extracting specific information from large PDF files quickly.
|
||||
|
||||
## Installation
|
||||
To get started with the PDFSearchTool, first, ensure the crewai_tools package is installed with the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Here's how to use the PDFSearchTool to search within a PDF document:
|
||||
|
||||
```python
|
||||
from crewai_tools import PDFSearchTool
|
||||
|
||||
# Initialize the tool allowing for any PDF content search if the path is provided during execution
|
||||
tool = PDFSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific PDF path for exclusive search within that document
|
||||
tool = PDFSearchTool(pdf='path/to/your/document.pdf')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `pdf`: **Optinal** The PDF path for the search. Can be provided at initialization or within the `run` method's arguments. If provided at initialization, the tool confines its search to the specified document.
|
||||
34
docs/tools/PGSearchTool.md
Normal file
34
docs/tools/PGSearchTool.md
Normal file
@@ -0,0 +1,34 @@
|
||||
# PGSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is designed to facilitate semantic searches within PostgreSQL database tables. Leveraging the RAG (Retrieve and Generate) technology, the PGSearchTool provides users with an efficient means of querying database table content, specifically tailored for PostgreSQL databases. It simplifies the process of finding relevant data through semantic search queries, making it an invaluable resource for users needing to perform advanced queries on extensive datasets within a PostgreSQL database.
|
||||
|
||||
## Installation
|
||||
To install the `crewai_tools` package and utilize the PGSearchTool, execute the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Below is an example showcasing how to use the PGSearchTool to conduct a semantic search on a table within a PostgreSQL database:
|
||||
|
||||
```python
|
||||
from crewai_tools import PGSearchTool
|
||||
|
||||
# Initialize the tool with the database URI and the target table name
|
||||
tool = PGSearchTool(db_uri='postgresql://user:password@localhost:5432/mydatabase', table_name='employees')
|
||||
|
||||
```
|
||||
|
||||
## Arguments
|
||||
The PGSearchTool requires the following arguments for its operation:
|
||||
|
||||
- `db_uri`: A string representing the URI of the PostgreSQL database to be queried. This argument is mandatory and must include the necessary authentication details and the location of the database.
|
||||
- `table_name`: A string specifying the name of the table within the database on which the semantic search will be performed. This argument is mandatory.
|
||||
30
docs/tools/ScrapeWebsiteTool.md
Normal file
30
docs/tools/ScrapeWebsiteTool.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# ScrapeWebsiteTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
A tool designed to extract and read the content of a specified website. It is capable of handling various types of web pages by making HTTP requests and parsing the received HTML content. This tool can be particularly useful for web scraping tasks, data collection, or extracting specific information from websites.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
```python
|
||||
from crewai_tools import ScrapeWebsiteTool
|
||||
|
||||
# To enable scrapping any website it finds during it's execution
|
||||
tool = ScrapeWebsiteTool()
|
||||
|
||||
# Initialize the tool with the website URL, so the agent can only scrap the content of the specified website
|
||||
tool = ScrapeWebsiteTool(website_url='https://www.example.com')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `website_url` : Mandatory website URL to read the file. This is the primary input for the tool, specifying which website's content should be scraped and read.
|
||||
36
docs/tools/SeleniumScrapingTool.md
Normal file
36
docs/tools/SeleniumScrapingTool.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# SeleniumScrapingTool
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is designed for efficient web scraping, enabling users to extract content from web pages. It supports targeted scraping by allowing the specification of a CSS selector for desired elements. The flexibility of the tool enables it to be used on any website URL provided by the user, making it a versatile tool for various web scraping needs.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
```python
|
||||
from crewai_tools import SeleniumScrapingTool
|
||||
|
||||
# Example 1: Scrape any website it finds during its execution
|
||||
tool = SeleniumScrapingTool()
|
||||
|
||||
# Example 2: Scrape the entire webpage
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com')
|
||||
|
||||
# Example 3: Scrape a specific CSS element from the webpage
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.main-content')
|
||||
|
||||
# Example 4: Scrape using optional parameters for customized scraping
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.main-content', cookie={'name': 'user', 'value': 'John Doe'})
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `website_url`: Mandatory. The URL of the website to scrape.
|
||||
- `css_element`: Mandatory. The CSS selector for a specific element to scrape from the website.
|
||||
- `cookie`: Optional. A dictionary containing cookie information. This parameter allows the tool to simulate a session with cookie information, providing access to content that may be restricted to logged-in users.
|
||||
- `wait_time`: Optional. The number of seconds the tool waits after loading the website and after setting a cookie, before scraping the content. This allows for dynamic content to load properly.
|
||||
33
docs/tools/SerperDevTool.md
Normal file
33
docs/tools/SerperDevTool.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# SerperDevTool Documentation
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the [serper.dev](https://serper.dev) API to fetch and display the most relevant search results based on the query provided by the user.
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
||||
|
||||
```python
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Initialize the tool for internet searching capabilities
|
||||
tool = SerperDevTool()
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
To effectively use the `SerperDevTool`, follow these steps:
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Conclusion
|
||||
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
37
docs/tools/TXTSearchTool.md
Normal file
37
docs/tools/TXTSearchTool.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# TXTSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is used to perform a RAG (Retrieval-Augmented Generation) search within the content of a text file. It allows for semantic searching of a query within a specified text file's content, making it an invaluable resource for quickly extracting information or finding specific sections of text based on the query provided.
|
||||
|
||||
## Installation
|
||||
To use the TXTSearchTool, you first need to install the crewai_tools package. This can be done using pip, a package manager for Python. Open your terminal or command prompt and enter the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
This command will download and install the TXTSearchTool along with any necessary dependencies.
|
||||
|
||||
## Example
|
||||
The following example demonstrates how to use the TXTSearchTool to search within a text file. This example shows both the initialization of the tool with a specific text file and the subsequent search within that file's content.
|
||||
|
||||
```python
|
||||
from crewai_tools import TXTSearchTool
|
||||
|
||||
# Initialize the tool to search within any text file's content the agent learns about during its execution
|
||||
tool = TXTSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific text file, so the agent can search within the given text file's content
|
||||
tool = TXTSearchTool(txt='path/to/text/file.txt')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `txt` (str): **Optinal**. The path to the text file you want to search. This argument is only required if the tool was not initialized with a specific text file; otherwise, the search will be conducted within the initially provided text file.
|
||||
35
docs/tools/WebsiteSearchTool.md
Normal file
35
docs/tools/WebsiteSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# WebsiteSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is specifically crafted for conducting semantic searches within the content of a particular website. Leveraging a Retrieval-Augmented Generation (RAG) model, it navigates through the information provided on a given URL. Users have the flexibility to either initiate a search across any website known or discovered during its usage or to concentrate the search on a predefined, specific website.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package by executing the following command in your terminal:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
To utilize the WebsiteSearchTool for different use cases, follow these examples:
|
||||
|
||||
```python
|
||||
from crewai_tools import WebsiteSearchTool
|
||||
|
||||
# To enable the tool to search any website the agent comes across or learns about during its operation
|
||||
tool = WebsiteSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# To restrict the tool to only search within the content of a specific website.
|
||||
tool = WebsiteSearchTool(website='https://example.com')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `website` : An optional argument that specifies the valid website URL to perform the search on. This becomes necessary if the tool is initialized without a specific website. In the `WebsiteSearchToolSchema`, this argument is mandatory. However, in the `FixedWebsiteSearchToolSchema`, it becomes optional if a website is provided during the tool's initialization, as it will then only search within the predefined website's content.
|
||||
35
docs/tools/XMLSearchTool copy.md
Normal file
35
docs/tools/XMLSearchTool copy.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# XMLSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The XMLSearchTool is a cutting-edge RAG tool engineered for conducting semantic searches within XML files. Ideal for users needing to parse and extract information from XML content efficiently, this tool supports inputting a search query and an optional XML file path. By specifying an XML path, users can target their search more precisely to the content of that file, thereby obtaining more relevant search outcomes.
|
||||
|
||||
## Installation
|
||||
To start using the XMLSearchTool, you must first install the crewai_tools package. This can be easily done with the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Here are two examples demonstrating how to use the XMLSearchTool. The first example shows searching within a specific XML file, while the second example illustrates initiating a search without predefining an XML path, providing flexibility in search scope.
|
||||
|
||||
```python
|
||||
from crewai_tools.tools.xml_search_tool import XMLSearchTool
|
||||
|
||||
# Allow agents to search within any XML file's content as it learns about their paths during execution
|
||||
tool = XMLSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific XML file path for exclusive search within that document
|
||||
tool = XMLSearchTool(xml='path/to/your/xmlfile.xml')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `xml`: This is the path to the XML file you wish to search. It is an optional parameter during the tool's initialization but must be provided either at initialization or as part of the `run` method's arguments to execute a search.
|
||||
35
docs/tools/XMLSearchTool.md
Normal file
35
docs/tools/XMLSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# XMLSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
The XMLSearchTool is a cutting-edge RAG tool engineered for conducting semantic searches within XML files. Ideal for users needing to parse and extract information from XML content efficiently, this tool supports inputting a search query and an optional XML file path. By specifying an XML path, users can target their search more precisely to the content of that file, thereby obtaining more relevant search outcomes.
|
||||
|
||||
## Installation
|
||||
To start using the XMLSearchTool, you must first install the crewai_tools package. This can be easily done with the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
Here are two examples demonstrating how to use the XMLSearchTool. The first example shows searching within a specific XML file, while the second example illustrates initiating a search without predefining an XML path, providing flexibility in search scope.
|
||||
|
||||
```python
|
||||
from crewai_tools.tools.xml_search_tool import XMLSearchTool
|
||||
|
||||
# Allow agents to search within any XML file's content as it learns about their paths during execution
|
||||
tool = XMLSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific XML file path for exclusive search within that document
|
||||
tool = XMLSearchTool(xml='path/to/your/xmlfile.xml')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `xml`: This is the path to the XML file you wish to search. It is an optional parameter during the tool's initialization but must be provided either at initialization or as part of the `run` method's arguments to execute a search.
|
||||
35
docs/tools/YoutubeChannelSearchTool.md
Normal file
35
docs/tools/YoutubeChannelSearchTool.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# YoutubeChannelSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
This tool is designed to perform semantic searches within a specific Youtube channel's content. Leveraging the RAG (Retrieval-Augmented Generation) methodology, it provides relevant search results, making it invaluable for extracting information or finding specific content without the need to manually sift through videos. It streamlines the search process within Youtube channels, catering to researchers, content creators, and viewers seeking specific information or topics.
|
||||
|
||||
## Installation
|
||||
To utilize the YoutubeChannelSearchTool, the `crewai_tools` package must be installed. Execute the following command in your shell to install:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
To begin using the YoutubeChannelSearchTool, follow the example below. This demonstrates initializing the tool with a specific Youtube channel handle and conducting a search within that channel's content.
|
||||
|
||||
```python
|
||||
from crewai_tools import YoutubeChannelSearchTool
|
||||
|
||||
# Initialize the tool to search within any Youtube channel's content the agent learns about during its execution
|
||||
tool = YoutubeChannelSearchTool()
|
||||
|
||||
# OR
|
||||
|
||||
# Initialize the tool with a specific Youtube channel handle to target your search
|
||||
tool = YoutubeChannelSearchTool(youtube_channel_handle='@exampleChannel')
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `youtube_channel_handle` : A mandatory string representing the Youtube channel handle. This parameter is crucial for initializing the tool to specify the channel you want to search within. The tool is designed to only search within the content of the provided channel handle.
|
||||
38
docs/tools/YoutubeVideoSearchTool.md
Normal file
38
docs/tools/YoutubeVideoSearchTool.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# YoutubeVideoSearchTool
|
||||
|
||||
!!! note "Depend on OpenAI"
|
||||
All RAG tools at the moment can only use openAI to generate embeddings, we are working on adding support for other providers.
|
||||
|
||||
!!! note "Experimental"
|
||||
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
|
||||
|
||||
## Description
|
||||
|
||||
This tool is part of the `crewai_tools` package and is designed to perform semantic searches within Youtube video content, utilizing Retrieval-Augmented Generation (RAG) techniques. It is one of several "Search" tools in the package that leverage RAG for different sources. The YoutubeVideoSearchTool allows for flexibility in searches; users can search across any Youtube video content without specifying a video URL, or they can target their search to a specific Youtube video by providing its URL.
|
||||
|
||||
## Installation
|
||||
|
||||
To utilize the YoutubeVideoSearchTool, you must first install the `crewai_tools` package. This package contains the YoutubeVideoSearchTool among other utilities designed to enhance your data analysis and processing tasks. Install the package by executing the following command in your terminal:
|
||||
|
||||
```
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
To integrate the YoutubeVideoSearchTool into your Python projects, follow the example below. This demonstrates how to use the tool both for general Youtube content searches and for targeted searches within a specific video's content.
|
||||
|
||||
```python
|
||||
from crewai_tools import YoutubeVideoSearchTool
|
||||
|
||||
# General search across Youtube content without specifying a video URL, so the agent can search within any Youtube video content it learns about irs url during its operation
|
||||
tool = YoutubeVideoSearchTool()
|
||||
|
||||
# Targeted search within a specific Youtube video's content
|
||||
tool = YoutubeVideoSearchTool(youtube_video_url='https://youtube.com/watch?v=example')
|
||||
```
|
||||
## Arguments
|
||||
|
||||
The YoutubeVideoSearchTool accepts the following initialization arguments:
|
||||
|
||||
- `youtube_video_url`: An optional argument at initialization but required if targeting a specific Youtube video. It specifies the Youtube video URL path you want to search within.
|
||||
21
mkdocs.yml
21
mkdocs.yml
@@ -128,11 +128,32 @@ nav:
|
||||
- Collaboration: 'core-concepts/Collaboration.md'
|
||||
- How to Guides:
|
||||
- Getting Started: 'how-to/Creating-a-Crew-and-kick-it-off.md'
|
||||
- Create Custom Tools: 'how-to/Create-Custom-Tools.md'
|
||||
- Using Sequential Process: 'how-to/Sequential.md'
|
||||
- Using Hierarchical Process: 'how-to/Hierarchical.md'
|
||||
- Connecting to any LLM: 'how-to/LLM-Connections.md'
|
||||
- Customizing Agents: 'how-to/Customizing-Agents.md'
|
||||
- Human Input on Execution: 'how-to/Human-Input-on-Execution.md'
|
||||
- Tools Docs:
|
||||
- Google Serper Search: 'tools/SerperDevTool.md'
|
||||
- Scrape Website: 'tools/ScrapeWebsiteTool.md'
|
||||
- Directory Read: 'tools/DirectoryReadTool.md'
|
||||
- File Read: 'tools/FileReadTool.md'
|
||||
- Selenium Scraper: 'tools/SeleniumScrapingTool.md'
|
||||
- Directory RAG Search: 'tools/DirectorySearchTool.md'
|
||||
- PDF RAG Search: 'tools/PDFSearchTool.md'
|
||||
- TXT RAG Search: 'tools/TXTSearchTool.md'
|
||||
- CSV RAG Search: 'tools/CSVSearchTool.md'
|
||||
- XML RAG Search: 'tools/XMLSearchTool.md'
|
||||
- JSON RAG Search: 'tools/JSONSearchTool.md'
|
||||
- Docx Rag Search: 'tools/DOCXSearchTool.md'
|
||||
- MDX RAG Search: 'tools/MDXSearchTool.md'
|
||||
- PG RAG Search: 'tools/PGSearchTool.md'
|
||||
- Website RAG Search: 'tools/WebsiteSearchTool.md'
|
||||
- Github RAG Search: 'tools/GitHubSearchTool.md'
|
||||
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'
|
||||
- Youtube Video RAG Search: 'tools/YoutubeVideoSearchTool.md'
|
||||
- Youtube Chanel RAG Search: 'tools/YoutubeChannelSearchTool.md'
|
||||
- Examples:
|
||||
- Trip Planner Crew: https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner"
|
||||
- Create Instagram Post: https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
|
||||
|
||||
844
poetry.lock
generated
844
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,7 +1,6 @@
|
||||
|
||||
[tool.poetry]
|
||||
name = "crewai"
|
||||
version = "0.14.4"
|
||||
version = "0.22.5"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
authors = ["Joao Moura <joao@crewai.com>"]
|
||||
readme = "README.md"
|
||||
@@ -9,24 +8,25 @@ packages = [
|
||||
{ include = "crewai", from = "src" },
|
||||
]
|
||||
|
||||
|
||||
[tool.poetry.urls]
|
||||
Homepage = "https://crewai.io"
|
||||
Homepage = "https://crewai.com"
|
||||
Documentation = "https://github.com/joaomdmoura/CrewAI/wiki/Index"
|
||||
Repository = "https://github.com/joaomdmoura/crewai"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
pydantic = "^2.4.2"
|
||||
langchain = "^0.1.0"
|
||||
openai = "^1.7.1"
|
||||
langchain = "^0.1.10"
|
||||
openai = "^1.13.3"
|
||||
langchain-openai = "^0.0.5"
|
||||
opentelemetry-api = "^1.22.0"
|
||||
opentelemetry-sdk = "^1.22.0"
|
||||
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
|
||||
instructor = "^0.5.2"
|
||||
regex = "^2023.12.25"
|
||||
crewai-tools = { version = "^0.0.12", optional = true }
|
||||
crewai-tools = { version = "^0.0.15", optional = true }
|
||||
click = "^8.1.7"
|
||||
python-dotenv = "1.0.0"
|
||||
|
||||
[tool.poetry.extras]
|
||||
tools = ["crewai-tools"]
|
||||
@@ -44,18 +44,20 @@ mkdocs-material = {extras = ["imaging"], version = "^9.5.7"}
|
||||
mkdocs-material-extensions = "^1.3.1"
|
||||
pillow = "^10.2.0"
|
||||
cairosvg = "^2.7.1"
|
||||
crewai_tools = "^0.0.15"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
known_first_party = ["crewai"]
|
||||
|
||||
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.0.0"
|
||||
pytest-vcr = "^1.0.2"
|
||||
python-dotenv = "1.0.0"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
crewai = "crewai.cli.cli:crewai"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from crewai_tools import BaseTool as CrewAITool
|
||||
from langchain.agents.agent import RunnableAgent
|
||||
from langchain.agents.tools import tool as LangChainTool
|
||||
from langchain.memory import ConversationSummaryMemory
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -23,6 +23,7 @@ from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
|
||||
from crewai.utilities import I18N, Logger, Prompts, RPMController
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
|
||||
|
||||
|
||||
class Agent(BaseModel):
|
||||
@@ -36,6 +37,7 @@ class Agent(BaseModel):
|
||||
role: The role of the agent.
|
||||
goal: The objective of the agent.
|
||||
backstory: The backstory of the agent.
|
||||
config: Dict representation of agent configuration.
|
||||
llm: The language model that will run the agent.
|
||||
function_calling_llm: The language model that will the tool calling for this agent, it overrides the crew function_calling_llm.
|
||||
max_iter: Maximum number of iterations for an agent to execute a task.
|
||||
@@ -45,13 +47,16 @@ class Agent(BaseModel):
|
||||
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
||||
tools: Tools at agents disposal
|
||||
step_callback: Callback to be executed after each step of the agent execution.
|
||||
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
_logger: Logger = PrivateAttr()
|
||||
_rpm_controller: RPMController = PrivateAttr(default=None)
|
||||
_request_within_rpm_limit: Any = PrivateAttr(default=None)
|
||||
_token_process: TokenProcess = TokenProcess()
|
||||
|
||||
formatting_errors: int = 0
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
id: UUID4 = Field(
|
||||
default_factory=uuid.uuid4,
|
||||
@@ -61,6 +66,10 @@ class Agent(BaseModel):
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent",
|
||||
default=None,
|
||||
)
|
||||
max_rpm: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the agent execution to be respected.",
|
||||
@@ -103,6 +112,13 @@ class Agent(BaseModel):
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None, description="Callback to be executed"
|
||||
)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
@@ -112,6 +128,14 @@ class Agent(BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "Agent":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_private_attrs(self):
|
||||
"""Set private attributes."""
|
||||
@@ -123,8 +147,12 @@ class Agent(BaseModel):
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_agent_executor(self) -> "Agent":
|
||||
"""Check if the agent executor is set."""
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""set agent executor is set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
self.llm.callbacks = [
|
||||
TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
]
|
||||
if not self.agent_executor:
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
return self
|
||||
@@ -145,6 +173,8 @@ class Agent(BaseModel):
|
||||
Returns:
|
||||
Output of the agent
|
||||
"""
|
||||
self.tools_handler.last_used_tool = {}
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
if context:
|
||||
@@ -156,6 +186,7 @@ class Agent(BaseModel):
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = render_text_description(tools)
|
||||
self.agent_executor.tools_names = self.__tools_names(tools)
|
||||
|
||||
@@ -219,6 +250,7 @@ class Agent(BaseModel):
|
||||
"step_callback": self.step_callback,
|
||||
"tools_handler": self.tools_handler,
|
||||
"function_calling_llm": self.function_calling_llm,
|
||||
"callbacks": self.callbacks,
|
||||
}
|
||||
|
||||
if self._rpm_controller:
|
||||
@@ -243,25 +275,26 @@ class Agent(BaseModel):
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=[self.i18n.slice("observation")])
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser()
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
agent=RunnableAgent(runnable=inner_agent), **executor_args
|
||||
)
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
|
||||
"""Parse tools to be used for the task."""
|
||||
tools_list = []
|
||||
for tool in tools:
|
||||
if isinstance(tool, CrewAITool):
|
||||
tools_list.append(tool.to_langchain())
|
||||
else:
|
||||
tools_list.append(tool)
|
||||
return tools_list
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the agent description and backstory."""
|
||||
if inputs:
|
||||
self.role = self.role.format(**inputs)
|
||||
self.goal = self.goal.format(**inputs)
|
||||
self.backstory = self.backstory.format(**inputs)
|
||||
|
||||
def increment_formatting_errors(self) -> None:
|
||||
"""Count the formatting errors of the agent."""
|
||||
self.formatting_errors += 1
|
||||
|
||||
def format_log_to_str(
|
||||
self,
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
observation_prefix: str = "Result: ",
|
||||
observation_prefix: str = "Observation: ",
|
||||
llm_prefix: str = "",
|
||||
) -> str:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
@@ -271,6 +304,26 @@ class Agent(BaseModel):
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
|
||||
"""Parse tools to be used for the task."""
|
||||
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
|
||||
tools_list = []
|
||||
try:
|
||||
from crewai_tools import BaseTool as CrewAITool
|
||||
|
||||
for tool in tools:
|
||||
if isinstance(tool, CrewAITool):
|
||||
tools_list.append(tool.to_langchain())
|
||||
else:
|
||||
tools_list.append(tool)
|
||||
except ModuleNotFoundError:
|
||||
for tool in tools:
|
||||
tools_list.append(tool)
|
||||
return tools_list
|
||||
|
||||
@staticmethod
|
||||
def __tools_names(tools) -> str:
|
||||
return ", ".join([t.name for t in tools])
|
||||
|
||||
def __repr__(self):
|
||||
return f"Agent(role={self.role}, goal={self.goal}, backstory={self.backstory})"
|
||||
|
||||
@@ -27,6 +27,7 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
request_within_rpm_limit: Any = None
|
||||
tools_handler: InstanceOf[ToolsHandler] = None
|
||||
max_iterations: Optional[int] = 15
|
||||
have_forced_answer: bool = False
|
||||
force_answer_max_iterations: Optional[int] = None
|
||||
step_callback: Optional[Any] = None
|
||||
|
||||
@@ -36,7 +37,9 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
return values
|
||||
|
||||
def _should_force_answer(self) -> bool:
|
||||
return True if self.iterations == self.force_answer_max_iterations else False
|
||||
return (
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _call(
|
||||
self,
|
||||
@@ -103,6 +106,13 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
try:
|
||||
if self._should_force_answer():
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
self.have_forced_answer = True
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
@@ -111,23 +121,6 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
**inputs,
|
||||
)
|
||||
|
||||
if self._should_force_answer():
|
||||
if isinstance(output, AgentFinish):
|
||||
yield output
|
||||
return
|
||||
|
||||
if isinstance(output, AgentAction):
|
||||
output = output
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unexpected output type from agent: {type(output)}"
|
||||
)
|
||||
|
||||
yield AgentStep(
|
||||
action=output, observation=self._i18n.errors("force_final_answer")
|
||||
)
|
||||
return
|
||||
|
||||
except OutputParserException as e:
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
raise_error = not self.handle_parsing_errors
|
||||
@@ -140,11 +133,11 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
|
||||
f"This is the error: {str(e)}"
|
||||
)
|
||||
text = str(e)
|
||||
str(e)
|
||||
if isinstance(self.handle_parsing_errors, bool):
|
||||
if e.send_to_llm:
|
||||
observation = f"\n{str(e.observation)}"
|
||||
text = str(e.llm_output)
|
||||
str(e.llm_output)
|
||||
else:
|
||||
observation = ""
|
||||
elif isinstance(self.handle_parsing_errors, str):
|
||||
@@ -153,22 +146,22 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
observation = f"\n{self.handle_parsing_errors(e)}"
|
||||
else:
|
||||
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
||||
output = AgentAction("_Exception", observation, text)
|
||||
output = AgentAction("_Exception", observation, "")
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(output, color="green")
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = ExceptionTool().run(
|
||||
output.tool_input,
|
||||
verbose=self.verbose,
|
||||
verbose=False,
|
||||
color=None,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
**tool_run_kwargs,
|
||||
)
|
||||
|
||||
if self._should_force_answer():
|
||||
yield AgentStep(
|
||||
action=output, observation=self._i18n.errors("force_final_answer")
|
||||
)
|
||||
error = self._i18n.errors("force_final_answer")
|
||||
output = AgentAction("_Exception", error, error)
|
||||
yield AgentStep(action=output, observation=error)
|
||||
return
|
||||
|
||||
yield AgentStep(action=output, observation=observation)
|
||||
@@ -192,8 +185,8 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
llm=self.llm,
|
||||
task=self.task,
|
||||
action=agent_action,
|
||||
)
|
||||
tool_calling = tool_usage.parse(agent_action.log)
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from typing import Union
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
@@ -6,13 +7,14 @@ from langchain_core.exceptions import OutputParserException
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
TOOL_USAGE_SECTION = "Use Tool:"
|
||||
FINAL_ANSWER_ACTION = "Final Answer:"
|
||||
FINAL_ANSWER_AND_TOOL_ERROR_MESSAGE = "I tried to use a tool and give a final answer at the same time, I must choose only one."
|
||||
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action:' after 'Thought:'. I will do right next, and don't use a tool I have already used.\n"
|
||||
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = "I did it wrong. Invalid Format: I missed the 'Action Input:' after 'Action:'. I will do right next, and don't use a tool I have already used.\n"
|
||||
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = "I did it wrong. Tried to both perform Action and give a Final Answer at the same time, I must do one or the other"
|
||||
|
||||
|
||||
class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
"""Parses Crew-style LLM calls that have a single tool input.
|
||||
"""Parses ReAct-style LLM calls that have a single tool input.
|
||||
|
||||
Expects output to be in one of two formats.
|
||||
|
||||
@@ -20,41 +22,69 @@ class CrewAgentParser(ReActSingleInputOutputParser):
|
||||
should be in the below format. This will result in an AgentAction
|
||||
being returned.
|
||||
|
||||
```
|
||||
Use Tool: All context for using the tool here
|
||||
```
|
||||
Thought: agent thought here
|
||||
Action: search
|
||||
Action Input: what is the temperature in SF?
|
||||
|
||||
If the output signals that a final answer should be given,
|
||||
should be in the below format. This will result in an AgentFinish
|
||||
being returned.
|
||||
|
||||
```
|
||||
Thought: agent thought here
|
||||
Final Answer: The temperature is 100 degrees
|
||||
```
|
||||
"""
|
||||
|
||||
_i18n: I18N = I18N()
|
||||
agent: Any = None
|
||||
|
||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||
includes_answer = FINAL_ANSWER_ACTION in text
|
||||
includes_tool = TOOL_USAGE_SECTION in text
|
||||
|
||||
if includes_tool:
|
||||
regex = (
|
||||
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
||||
)
|
||||
action_match = re.search(regex, text, re.DOTALL)
|
||||
if action_match:
|
||||
if includes_answer:
|
||||
raise OutputParserException(f"{FINAL_ANSWER_AND_TOOL_ERROR_MESSAGE}")
|
||||
raise OutputParserException(
|
||||
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}"
|
||||
)
|
||||
action = action_match.group(1).strip()
|
||||
action_input = action_match.group(2)
|
||||
tool_input = action_input.strip(" ")
|
||||
tool_input = tool_input.strip('"')
|
||||
|
||||
return AgentAction("", "", text)
|
||||
return AgentAction(action, tool_input, text)
|
||||
|
||||
elif includes_answer:
|
||||
return AgentFinish(
|
||||
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
|
||||
)
|
||||
|
||||
format = self._i18n.slice("format_without_tools")
|
||||
error = f"{format}"
|
||||
raise OutputParserException(
|
||||
error,
|
||||
observation=error,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
elif not re.search(
|
||||
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
|
||||
):
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
f"Could not parse LLM output: `{text}`",
|
||||
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
else:
|
||||
format = self._i18n.slice("format_without_tools")
|
||||
error = f"{format}"
|
||||
self.agent.increment_formatting_errors()
|
||||
raise OutputParserException(
|
||||
error,
|
||||
observation=error,
|
||||
llm_output=text,
|
||||
send_to_llm=True,
|
||||
)
|
||||
|
||||
0
src/crewai/cli/__init__.py
Normal file
0
src/crewai/cli/__init__.py
Normal file
19
src/crewai/cli/cli.py
Normal file
19
src/crewai/cli/cli.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import click
|
||||
|
||||
from .create_crew import create_crew
|
||||
|
||||
|
||||
@click.group()
|
||||
def crewai():
|
||||
"""Top-level command group for crewai."""
|
||||
|
||||
|
||||
@crewai.command()
|
||||
@click.argument("project_name")
|
||||
def create(project_name):
|
||||
"""Create a new crew."""
|
||||
create_crew(project_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
crewai()
|
||||
79
src/crewai/cli/create_crew.py
Normal file
79
src/crewai/cli/create_crew.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def create_crew(name):
|
||||
"""Create a new crew."""
|
||||
folder_name = name.replace(" ", "_").replace("-", "_").lower()
|
||||
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
|
||||
|
||||
click.secho(f"Creating folder {folder_name}...", fg="green", bold=True)
|
||||
|
||||
if not os.path.exists(folder_name):
|
||||
os.mkdir(folder_name)
|
||||
os.mkdir(folder_name + "/tests")
|
||||
os.mkdir(folder_name + "/src")
|
||||
os.mkdir(folder_name + "/src/tools")
|
||||
os.mkdir(folder_name + "/src/config")
|
||||
with open(folder_name + "/.env", "w") as file:
|
||||
file.write("OPENAI_API_KEY=YOUR_API_KEY")
|
||||
else:
|
||||
click.secho(
|
||||
f"\tFolder {folder_name} already exists. Please choose a different name.",
|
||||
fg="red",
|
||||
)
|
||||
return
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
templates_dir = package_dir / "templates"
|
||||
|
||||
# List of template files to copy
|
||||
root_template_files = [
|
||||
".gitignore",
|
||||
"pyproject.toml",
|
||||
"README.md",
|
||||
]
|
||||
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
|
||||
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
|
||||
src_template_files = ["__init__.py", "main.py", "crew.py"]
|
||||
|
||||
for file_name in root_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = Path(folder_name) / file_name
|
||||
copy_template(src_file, dst_file, name, class_name, folder_name)
|
||||
|
||||
for file_name in src_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = Path(folder_name) / "src" / file_name
|
||||
copy_template(src_file, dst_file, name, class_name, folder_name)
|
||||
|
||||
for file_name in tools_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = Path(folder_name) / "src" / file_name
|
||||
copy_template(src_file, dst_file, name, class_name, folder_name)
|
||||
|
||||
for file_name in config_template_files:
|
||||
src_file = templates_dir / file_name
|
||||
dst_file = Path(folder_name) / "src" / file_name
|
||||
copy_template(src_file, dst_file, name, class_name, folder_name)
|
||||
|
||||
click.secho(f"Crew {name} created successfully!", fg="green", bold=True)
|
||||
|
||||
|
||||
def copy_template(src, dst, name, class_name, folder_name):
|
||||
"""Copy a file from src to dst."""
|
||||
with open(src, "r") as file:
|
||||
content = file.read()
|
||||
|
||||
# Interpolate the content
|
||||
content = content.replace("{{name}}", name)
|
||||
content = content.replace("{{crew_name}}", class_name)
|
||||
content = content.replace("{{folder_name}}", folder_name)
|
||||
|
||||
# Write the interpolated content to the new file
|
||||
with open(dst, "w") as file:
|
||||
file.write(content)
|
||||
|
||||
click.secho(f" - Created {dst}", fg="green")
|
||||
2
src/crewai/cli/templates/.gitignore
vendored
Normal file
2
src/crewai/cli/templates/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
.env
|
||||
__pycache__/
|
||||
57
src/crewai/cli/templates/README.md
Normal file
57
src/crewai/cli/templates/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# {{crew_name}} Crew
|
||||
|
||||
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install Poetry:
|
||||
|
||||
```bash
|
||||
pip install poetry
|
||||
```
|
||||
|
||||
Next, navigate to your project directory and install the dependencies:
|
||||
|
||||
1. First lock the dependencies and then install them:
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
```
|
||||
### Customizing
|
||||
|
||||
**Add you `OPENAI_API_KEY` on the `.env` file**
|
||||
|
||||
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
|
||||
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
|
||||
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
|
||||
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
|
||||
|
||||
## Running the Project
|
||||
|
||||
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
|
||||
|
||||
```bash
|
||||
poetry run {{folder_name}}
|
||||
```
|
||||
|
||||
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
|
||||
|
||||
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folser
|
||||
|
||||
## Understanding Your Crew
|
||||
|
||||
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
|
||||
|
||||
## Support
|
||||
|
||||
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
|
||||
- Visit our [documentation](https://docs.crewai.com)
|
||||
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
|
||||
- [Joing our Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
- [Chat wtih our docs](https://chatg.pt/DWjSBZn)
|
||||
|
||||
Let's create wonders together with the power and simplicity of crewAI.
|
||||
0
src/crewai/cli/templates/__init__.py
Normal file
0
src/crewai/cli/templates/__init__.py
Normal file
19
src/crewai/cli/templates/config/agents.yaml
Normal file
19
src/crewai/cli/templates/config/agents.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
15
src/crewai/cli/templates/config/tasks.yaml
Normal file
15
src/crewai/cli/templates/config/tasks.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2024.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formated as markdown with out '```'
|
||||
55
src/crewai/cli/templates/crew.py
Normal file
55
src/crewai/cli/templates/crew.py
Normal file
@@ -0,0 +1,55 @@
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
|
||||
# Uncomment the following line to use an example of a custom tool
|
||||
# from {{folder_name}}.tools.custom_tool import MyCustomTool
|
||||
|
||||
# Check our tools documentations for more information on how to use them
|
||||
# from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class {{crew_name}}Crew():
|
||||
"""{{crew_name}} crew"""
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
# tools=[MyCustomTool()], # Example of custom tool, loaded on the beginning of file
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
agent=self.researcher()
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
agent=self.reporting_analyst(),
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the {{crew_name}} crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=2,
|
||||
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
|
||||
)
|
||||
13
src/crewai/cli/templates/main.py
Normal file
13
src/crewai/cli/templates/main.py
Normal file
@@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
from crew import {{crew_name}}Crew
|
||||
|
||||
|
||||
def run():
|
||||
# Replace with your inputs, it will automatically interpolate any tasks and agents information
|
||||
inputs = {
|
||||
'topic': 'AI LLMs'
|
||||
}
|
||||
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
16
src/crewai/cli/templates/pyproject.toml
Normal file
16
src/crewai/cli/templates/pyproject.toml
Normal file
@@ -0,0 +1,16 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.13"
|
||||
crewai = {extras = ["tools"], version = "^0.22.2"}
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:run"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
0
src/crewai/cli/templates/tools/__init__.py
Normal file
0
src/crewai/cli/templates/tools/__init__.py
Normal file
10
src/crewai/cli/templates/tools/custom_tool.py
Normal file
10
src/crewai/cli/templates/tools/custom_tool.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from crewai_tools import BaseTool
|
||||
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
|
||||
def _run(self, argument: str) -> str:
|
||||
# Implementation goes here
|
||||
return "this is an example of a tool output, ignore it and move along."
|
||||
@@ -2,6 +2,7 @@ import json
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
BaseModel,
|
||||
@@ -19,7 +20,7 @@ from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.telemtry import Telemetry
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools import AgentTools
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
|
||||
@@ -32,6 +33,7 @@ class Crew(BaseModel):
|
||||
tasks: List of tasks assigned to the crew.
|
||||
agents: List of agents part of this crew.
|
||||
manager_llm: The language model that will run manager agent.
|
||||
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
|
||||
function_calling_llm: The language model that will run the tool calling for all the agents.
|
||||
process: The process flow that the crew will follow (e.g., sequential).
|
||||
verbose: Indicates the verbosity level for logging during execution.
|
||||
@@ -53,6 +55,10 @@ class Crew(BaseModel):
|
||||
agents: List[Agent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
verbose: Union[int, bool] = Field(default=0)
|
||||
usage_metrics: Optional[dict] = Field(
|
||||
default=None,
|
||||
description="Metrics for the LLM usage during all tasks execution.",
|
||||
)
|
||||
full_output: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Whether the crew should return the full output with all tasks outputs or just the final output.",
|
||||
@@ -60,6 +66,10 @@ class Crew(BaseModel):
|
||||
manager_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
||||
default=None,
|
||||
description="A list of callback handlers to be executed by the manager agent when hierarchical process is used",
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
@@ -173,9 +183,10 @@ class Crew(BaseModel):
|
||||
del task_config["agent"]
|
||||
return Task(**task_config, agent=task_agent)
|
||||
|
||||
def kickoff(self) -> str:
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
self._execution_span = self._telemetry.crew_execution_span(self)
|
||||
self._interpolate_inputs(inputs)
|
||||
|
||||
for agent in self.agents:
|
||||
agent.i18n = I18N(language=self.language)
|
||||
@@ -187,35 +198,51 @@ class Crew(BaseModel):
|
||||
agent.step_callback = self.step_callback
|
||||
agent.create_agent_executor()
|
||||
|
||||
if self.process == Process.sequential:
|
||||
return self._run_sequential_process()
|
||||
if self.process == Process.hierarchical:
|
||||
return self._run_hierarchical_process()
|
||||
metrics = []
|
||||
|
||||
raise NotImplementedError(
|
||||
f"The process '{self.process}' is not implemented yet."
|
||||
)
|
||||
if self.process == Process.sequential:
|
||||
result = self._run_sequential_process()
|
||||
elif self.process == Process.hierarchical:
|
||||
result, manager_metrics = self._run_hierarchical_process()
|
||||
metrics.append(manager_metrics)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The process '{self.process}' is not implemented yet."
|
||||
)
|
||||
|
||||
metrics = metrics + [
|
||||
agent._token_process.get_summary() for agent in self.agents
|
||||
]
|
||||
self.usage_metrics = {
|
||||
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
|
||||
}
|
||||
|
||||
return result
|
||||
|
||||
def _run_sequential_process(self) -> str:
|
||||
"""Executes tasks sequentially and returns the final output."""
|
||||
task_output = ""
|
||||
for task in self.tasks:
|
||||
if task.agent is not None and task.agent.allow_delegation:
|
||||
if task.agent.allow_delegation:
|
||||
agents_for_delegation = [
|
||||
agent for agent in self.agents if agent != task.agent
|
||||
]
|
||||
task.tools += AgentTools(agents=agents_for_delegation).tools()
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
|
||||
task.tools += AgentTools(agents=agents_for_delegation).tools()
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"Working Agent: {role}")
|
||||
self._logger.log("info", f"Starting Task: {task.description}")
|
||||
self._logger.log("debug", f"== Working Agent: {role}", color="bold_yellow")
|
||||
self._logger.log(
|
||||
"info", f"== Starting Task: {task.description}", color="bold_yellow"
|
||||
)
|
||||
|
||||
output = task.execute(context=task_output)
|
||||
if not task.async_execution:
|
||||
task_output = output
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"[{role}] Task output: {task_output}\n\n")
|
||||
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output)
|
||||
@@ -242,12 +269,15 @@ class Crew(BaseModel):
|
||||
agent=manager, context=task_output, tools=manager.tools
|
||||
)
|
||||
|
||||
self._logger.log(
|
||||
"debug", f"[{manager.role}] Task output: {task_output}\n\n"
|
||||
)
|
||||
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output)
|
||||
return self._format_output(task_output), manager._token_process.get_summary()
|
||||
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
|
||||
"""Interpolates the inputs in the tasks and agents."""
|
||||
[task.interpolate_inputs(inputs) for task in self.tasks]
|
||||
[agent.interpolate_inputs(inputs) for agent in self.agents]
|
||||
|
||||
def _format_output(self, output: str) -> str:
|
||||
"""Formats the output of the crew execution."""
|
||||
@@ -263,3 +293,6 @@ class Crew(BaseModel):
|
||||
if self.max_rpm:
|
||||
self._rpm_controller.stop_rpm_counter()
|
||||
self._telemetry.end_crew(self, output)
|
||||
|
||||
def __repr__(self):
|
||||
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|
||||
|
||||
2
src/crewai/project/__init__.py
Normal file
2
src/crewai/project/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .annotations import agent, crew, task
|
||||
from .crew_base import CrewBase
|
||||
47
src/crewai/project/annotations.py
Normal file
47
src/crewai/project/annotations.py
Normal file
@@ -0,0 +1,47 @@
|
||||
tasks_order = []
|
||||
|
||||
|
||||
def task(func):
|
||||
func.is_task = True
|
||||
tasks_order.append(func.__name__)
|
||||
return func
|
||||
|
||||
|
||||
def agent(func):
|
||||
func.is_agent = True
|
||||
return func
|
||||
|
||||
|
||||
def crew(func):
|
||||
def wrapper(self, *args, **kwargs):
|
||||
instantiated_tasks = []
|
||||
instantiated_agents = []
|
||||
|
||||
agent_roles = set()
|
||||
# Iterate over tasks_order to maintain the defined order
|
||||
for task_name in tasks_order:
|
||||
possible_task = getattr(self, task_name)
|
||||
if callable(possible_task):
|
||||
task_instance = possible_task()
|
||||
instantiated_tasks.append(task_instance)
|
||||
if hasattr(task_instance, "agent"):
|
||||
agent_instance = task_instance.agent
|
||||
if agent_instance.role not in agent_roles:
|
||||
instantiated_agents.append(agent_instance)
|
||||
agent_roles.add(agent_instance.role)
|
||||
|
||||
# Instantiate any additional agents not already included by tasks
|
||||
for attr_name in dir(self):
|
||||
possible_agent = getattr(self, attr_name)
|
||||
if callable(possible_agent) and hasattr(possible_agent, "is_agent"):
|
||||
temp_agent_instance = possible_agent()
|
||||
if temp_agent_instance.role not in agent_roles:
|
||||
instantiated_agents.append(temp_agent_instance)
|
||||
agent_roles.add(temp_agent_instance.role)
|
||||
|
||||
self.agents = instantiated_agents
|
||||
self.tasks = instantiated_tasks
|
||||
|
||||
return func(self, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
45
src/crewai/project/crew_base.py
Normal file
45
src/crewai/project/crew_base.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import inspect
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def CrewBase(cls):
|
||||
class WrappedClass(cls):
|
||||
is_crew_class = True
|
||||
|
||||
base_directory = None
|
||||
for frame_info in inspect.stack():
|
||||
if "site-packages" not in frame_info.filename:
|
||||
base_directory = Path(frame_info.filename).parent.resolve()
|
||||
break
|
||||
|
||||
if base_directory is None:
|
||||
raise Exception(
|
||||
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
|
||||
)
|
||||
|
||||
original_agents_config_path = getattr(
|
||||
cls, "agents_config", "config/agents.yaml"
|
||||
)
|
||||
original_tasks_config_path = getattr(cls, "tasks_config", "config/tasks.yaml")
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.agents_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_agents_config_path)
|
||||
)
|
||||
self.tasks_config = self.load_yaml(
|
||||
os.path.join(self.base_directory, self.original_tasks_config_path)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_yaml(config_path: str):
|
||||
with open(config_path, "r") as file:
|
||||
return yaml.safe_load(file)
|
||||
|
||||
return WrappedClass
|
||||
@@ -1,6 +1,6 @@
|
||||
import threading
|
||||
import uuid
|
||||
from typing import Any, List, Optional, Type
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
|
||||
@@ -20,19 +20,24 @@ class Task(BaseModel):
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
used_tools: int = 0
|
||||
tools_errors: int = 0
|
||||
delegations: int = 0
|
||||
i18n: I18N = I18N()
|
||||
thread: threading.Thread = None
|
||||
description: str = Field(description="Description of the actual task.")
|
||||
expected_output: str = Field(
|
||||
description="Clear definition of expected output for the task."
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent",
|
||||
default=None,
|
||||
)
|
||||
callback: Optional[Any] = Field(
|
||||
description="Callback to be executed after the task is completed.", default=None
|
||||
)
|
||||
agent: Optional[Agent] = Field(
|
||||
description="Agent responsible for execution the task.", default=None
|
||||
)
|
||||
expected_output: Optional[str] = Field(
|
||||
description="Clear definition of expected output for the task.",
|
||||
default=None,
|
||||
)
|
||||
context: Optional[List["Task"]] = Field(
|
||||
description="Other tasks that will have their output used as context for this task.",
|
||||
default=None,
|
||||
@@ -66,6 +71,10 @@ class Task(BaseModel):
|
||||
description="Unique identifier for the object, not set by user.",
|
||||
)
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
||||
@@ -74,6 +83,14 @@ class Task(BaseModel):
|
||||
"may_not_set_field", "This field is not to be set by the user.", {}
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def set_attributes_based_on_config(self) -> "Task":
|
||||
"""Set attributes based on the agent configuration."""
|
||||
if self.config:
|
||||
for key, value in self.config.items():
|
||||
setattr(self, key, value)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_tools(self):
|
||||
"""Check if the tools are set."""
|
||||
@@ -164,13 +181,26 @@ class Task(BaseModel):
|
||||
"""
|
||||
tasks_slices = [self.description]
|
||||
|
||||
if self.expected_output:
|
||||
output = self.i18n.slice("expected_output").format(
|
||||
expected_output=self.expected_output
|
||||
)
|
||||
tasks_slices = [self.description, output]
|
||||
output = self.i18n.slice("expected_output").format(
|
||||
expected_output=self.expected_output
|
||||
)
|
||||
tasks_slices = [self.description, output]
|
||||
return "\n".join(tasks_slices)
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the task description and expected output."""
|
||||
if inputs:
|
||||
self.description = self.description.format(**inputs)
|
||||
self.expected_output = self.expected_output.format(**inputs)
|
||||
|
||||
def increment_tools_errors(self) -> None:
|
||||
"""Increment the tools errors counter."""
|
||||
self.tools_errors += 1
|
||||
|
||||
def increment_delegations(self) -> None:
|
||||
"""Increment the delegations counter."""
|
||||
self.delegations += 1
|
||||
|
||||
def _export_output(self, result: str) -> Any:
|
||||
exported_result = result
|
||||
instructions = "I'm gonna convert this raw text into valid JSON."
|
||||
@@ -214,3 +244,6 @@ class Task(BaseModel):
|
||||
with open(self.output_file, "w") as file:
|
||||
file.write(result)
|
||||
return None
|
||||
|
||||
def __repr__(self):
|
||||
return f"Task(description={self.description}, expected_output={self.expected_output})"
|
||||
|
||||
@@ -46,7 +46,7 @@ class Telemetry:
|
||||
)
|
||||
self.provider = TracerProvider(resource=self.resource)
|
||||
processor = BatchSpanProcessor(
|
||||
OTLPSpanExporter(endpoint=f"{telemetry_endpoint}/v1/traces", timeout=25)
|
||||
OTLPSpanExporter(endpoint=f"{telemetry_endpoint}/v1/traces", timeout=15)
|
||||
)
|
||||
self.provider.add_span_processor(processor)
|
||||
self.ready = True
|
||||
@@ -20,24 +20,24 @@ class AgentTools(BaseModel):
|
||||
func=self.delegate_work,
|
||||
name="Delegate work to co-worker",
|
||||
description=self.i18n.tools("delegate_work").format(
|
||||
coworkers="\n".join([f"- {agent.role}" for agent in self.agents])
|
||||
coworkers=[f"{agent.role}" for agent in self.agents]
|
||||
),
|
||||
),
|
||||
StructuredTool.from_function(
|
||||
func=self.ask_question,
|
||||
name="Ask question to co-worker",
|
||||
description=self.i18n.tools("ask_question").format(
|
||||
coworkers="\n".join([f"- {agent.role}" for agent in self.agents])
|
||||
coworkers=[f"{agent.role}" for agent in self.agents]
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
def delegate_work(self, coworker: str, task: str, context: str):
|
||||
"""Useful to delegate a specific task to a coworker."""
|
||||
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
|
||||
return self._execute(coworker, task, context)
|
||||
|
||||
def ask_question(self, coworker: str, question: str, context: str):
|
||||
"""Useful to ask a question, opinion or take from a coworker."""
|
||||
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
|
||||
return self._execute(coworker, question, context)
|
||||
|
||||
def _execute(self, agent, task, context):
|
||||
@@ -59,5 +59,9 @@ class AgentTools(BaseModel):
|
||||
)
|
||||
|
||||
agent = agent[0]
|
||||
task = Task(description=task, agent=agent)
|
||||
task = Task(
|
||||
description=task,
|
||||
agent=agent,
|
||||
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
|
||||
)
|
||||
return agent.execute_task(task, context)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import ast
|
||||
from textwrap import dedent
|
||||
from typing import Any, List, Union
|
||||
|
||||
@@ -5,7 +6,7 @@ from langchain_core.tools import BaseTool
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.telemtry import Telemetry
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
|
||||
@@ -30,7 +31,6 @@ class ToolUsage:
|
||||
tools: List of tools available for the agent.
|
||||
tools_description: Description of the tools available for the agent.
|
||||
tools_names: Names of the tools available for the agent.
|
||||
llm: Language model to be used for the tool usage.
|
||||
function_calling_llm: Language model to be used for the tool usage.
|
||||
"""
|
||||
|
||||
@@ -41,27 +41,30 @@ class ToolUsage:
|
||||
tools_description: str,
|
||||
tools_names: str,
|
||||
task: Any,
|
||||
llm: Any,
|
||||
function_calling_llm: Any,
|
||||
action: Any,
|
||||
) -> None:
|
||||
self._i18n: I18N = I18N()
|
||||
self._printer: Printer = Printer()
|
||||
self._telemetry: Telemetry = Telemetry()
|
||||
self._run_attempts: int = 1
|
||||
self._max_parsing_attempts: int = 3
|
||||
self._remeber_format_after_usages: int = 3
|
||||
self._remember_format_after_usages: int = 3
|
||||
self.tools_description = tools_description
|
||||
self.tools_names = tools_names
|
||||
self.tools_handler = tools_handler
|
||||
self.tools = tools
|
||||
self.task = task
|
||||
self.llm = function_calling_llm or llm
|
||||
self.action = action
|
||||
self.function_calling_llm = function_calling_llm
|
||||
|
||||
# Set the maximum parsing attempts for bigger models
|
||||
if (isinstance(self.llm, ChatOpenAI)) and (self.llm.openai_api_base == None):
|
||||
if self.llm.model_name in OPENAI_BIGGER_MODELS:
|
||||
if (isinstance(self.function_calling_llm, ChatOpenAI)) and (
|
||||
self.function_calling_llm.openai_api_base == None
|
||||
):
|
||||
if self.function_calling_llm.model_name in OPENAI_BIGGER_MODELS:
|
||||
self._max_parsing_attempts = 2
|
||||
self._remeber_format_after_usages = 4
|
||||
self._remember_format_after_usages = 4
|
||||
|
||||
def parse(self, tool_string: str):
|
||||
"""Parse the tool string and return the tool calling."""
|
||||
@@ -73,14 +76,16 @@ class ToolUsage:
|
||||
if isinstance(calling, ToolUsageErrorException):
|
||||
error = calling.message
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
self.task.increment_tools_errors()
|
||||
return error
|
||||
try:
|
||||
tool = self._select_tool(calling.tool_name)
|
||||
except Exception as e:
|
||||
error = getattr(e, "message", str(e))
|
||||
self.task.increment_tools_errors()
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
return error
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}\n\n{self._i18n.slice('final_answer_format')}"
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
|
||||
|
||||
def _use(
|
||||
self,
|
||||
@@ -91,19 +96,18 @@ class ToolUsage:
|
||||
if self._check_tool_repeated_usage(calling=calling):
|
||||
try:
|
||||
result = self._i18n.errors("task_repeated_usage").format(
|
||||
tool=calling.tool_name,
|
||||
tool_input=", ".join(
|
||||
[str(arg) for arg in calling.arguments.values()]
|
||||
),
|
||||
tool_names=self.tools_names
|
||||
)
|
||||
self._printer.print(content=f"\n\n{result}\n", color="yellow")
|
||||
self._telemetry.tool_repeated_usage(
|
||||
llm=self.llm, tool_name=tool.name, attempts=self._run_attempts
|
||||
llm=self.function_calling_llm,
|
||||
tool_name=tool.name,
|
||||
attempts=self._run_attempts,
|
||||
)
|
||||
result = self._format_result(result=result)
|
||||
return result
|
||||
except Exception:
|
||||
pass
|
||||
self.task.increment_tools_errors()
|
||||
|
||||
result = self.tools_handler.cache.read(
|
||||
tool=calling.tool_name, input=calling.arguments
|
||||
@@ -111,29 +115,53 @@ class ToolUsage:
|
||||
|
||||
if not result:
|
||||
try:
|
||||
if calling.tool_name in [
|
||||
"Delegate work to co-worker",
|
||||
"Ask question to co-worker",
|
||||
]:
|
||||
self.task.increment_delegations()
|
||||
|
||||
if calling.arguments:
|
||||
result = tool._run(**calling.arguments)
|
||||
try:
|
||||
acceptable_args = tool.args_schema.schema()["properties"].keys()
|
||||
arguments = {
|
||||
k: v
|
||||
for k, v in calling.arguments.items()
|
||||
if k in acceptable_args
|
||||
}
|
||||
result = tool._run(**arguments)
|
||||
except Exception:
|
||||
if tool.args_schema:
|
||||
arguments = calling.arguments
|
||||
result = tool._run(**arguments)
|
||||
else:
|
||||
arguments = calling.arguments.values()
|
||||
result = tool._run(*arguments)
|
||||
else:
|
||||
result = tool._run()
|
||||
except Exception as e:
|
||||
self._run_attempts += 1
|
||||
if self._run_attempts > self._max_parsing_attempts:
|
||||
self._telemetry.tool_usage_error(llm=self.llm)
|
||||
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
|
||||
error_message = self._i18n.errors("tool_usage_exception").format(
|
||||
error=e
|
||||
error=e, tool=tool.name, tool_inputs=tool.description
|
||||
)
|
||||
error = ToolUsageErrorException(
|
||||
f'\n{error_message}.\nMoving one then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
|
||||
f'\n{error_message}.\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
|
||||
).message
|
||||
self.task.increment_tools_errors()
|
||||
self._printer.print(content=f"\n\n{error_message}\n", color="red")
|
||||
return error
|
||||
self.task.increment_tools_errors()
|
||||
return self.use(calling=calling, tool_string=tool_string)
|
||||
|
||||
self.tools_handler.on_tool_use(calling=calling, output=result)
|
||||
|
||||
self._printer.print(content=f"\n\n{result}\n", color="yellow")
|
||||
self._telemetry.tool_usage(
|
||||
llm=self.llm, tool_name=tool.name, attempts=self._run_attempts
|
||||
llm=self.function_calling_llm,
|
||||
tool_name=tool.name,
|
||||
attempts=self._run_attempts,
|
||||
)
|
||||
result = self._format_result(result=result)
|
||||
return result
|
||||
@@ -145,7 +173,7 @@ class ToolUsage:
|
||||
return result
|
||||
|
||||
def _should_remember_format(self) -> None:
|
||||
return self.task.used_tools % self._remeber_format_after_usages == 0
|
||||
return self.task.used_tools % self._remember_format_after_usages == 0
|
||||
|
||||
def _remember_format(self, result: str) -> None:
|
||||
result = str(result)
|
||||
@@ -166,7 +194,15 @@ class ToolUsage:
|
||||
for tool in self.tools:
|
||||
if tool.name.lower().strip() == tool_name.lower().strip():
|
||||
return tool
|
||||
raise Exception(f"Tool '{tool_name}' not found.")
|
||||
self.task.increment_tools_errors()
|
||||
if tool_name and tool_name != "":
|
||||
raise Exception(
|
||||
f"Action '{tool_name}' don't exist, these are the only available Actions: {self.tools_description}"
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
f"I forgot the Action name, these are the only available Actions: {self.tools_description}"
|
||||
)
|
||||
|
||||
def _render(self) -> str:
|
||||
"""Render the tool name and description in plain text."""
|
||||
@@ -194,33 +230,57 @@ class ToolUsage:
|
||||
self, tool_string: str
|
||||
) -> Union[ToolCalling, InstructorToolCalling]:
|
||||
try:
|
||||
model = InstructorToolCalling if self._is_gpt(self.llm) else ToolCalling
|
||||
converter = Converter(
|
||||
text=f"Only tools available:\n###\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be exactly equal one of the options, use this text to inform the valid ouput schema:\n\n{tool_string}```",
|
||||
llm=self.llm,
|
||||
model=model,
|
||||
instructions=dedent(
|
||||
"""\
|
||||
The schema should have the following structure, only two keys:
|
||||
- tool_name: str
|
||||
- arguments: dict (with all arguments being passed)
|
||||
if self.function_calling_llm:
|
||||
model = (
|
||||
InstructorToolCalling
|
||||
if self._is_gpt(self.function_calling_llm)
|
||||
else ToolCalling
|
||||
)
|
||||
converter = Converter(
|
||||
text=f"Only tools available:\n###\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be exactly equal one of the options, use this text to inform the valid ouput schema:\n\n{tool_string}```",
|
||||
llm=self.function_calling_llm,
|
||||
model=model,
|
||||
instructions=dedent(
|
||||
"""\
|
||||
The schema should have the following structure, only two keys:
|
||||
- tool_name: str
|
||||
- arguments: dict (with all arguments being passed)
|
||||
|
||||
Example:
|
||||
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
|
||||
),
|
||||
max_attemps=1,
|
||||
)
|
||||
calling = converter.to_pydantic()
|
||||
Example:
|
||||
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
|
||||
),
|
||||
max_attemps=1,
|
||||
)
|
||||
calling = converter.to_pydantic()
|
||||
|
||||
if isinstance(calling, ConverterError):
|
||||
raise calling
|
||||
if isinstance(calling, ConverterError):
|
||||
raise calling
|
||||
else:
|
||||
tool_name = self.action.tool
|
||||
tool = self._select_tool(tool_name)
|
||||
try:
|
||||
arguments = ast.literal_eval(self.action.tool_input)
|
||||
except Exception:
|
||||
return ToolUsageErrorException(
|
||||
f'{self._i18n.errors("tool_arguments_error")}'
|
||||
)
|
||||
if not isinstance(arguments, dict):
|
||||
return ToolUsageErrorException(
|
||||
f'{self._i18n.errors("tool_arguments_error")}'
|
||||
)
|
||||
calling = ToolCalling(
|
||||
tool_name=tool.name,
|
||||
arguments=arguments,
|
||||
log=tool_string,
|
||||
)
|
||||
except Exception as e:
|
||||
self._run_attempts += 1
|
||||
if self._run_attempts > self._max_parsing_attempts:
|
||||
self._telemetry.tool_usage_error(llm=self.llm)
|
||||
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
|
||||
self.task.increment_tools_errors()
|
||||
self._printer.print(content=f"\n\n{e}\n", color="red")
|
||||
return ToolUsageErrorException(
|
||||
f'{self._i18n.errors("tool_usage_error")}\n{self._i18n.slice("format").format(tool_names=self.tools_names)}'
|
||||
f'{self._i18n.errors("tool_usage_error").format(error=e)}\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
|
||||
)
|
||||
return self._tool_calling(tool_string)
|
||||
|
||||
|
||||
@@ -5,26 +5,27 @@
|
||||
"backstory": "You are a seasoned manager with a knack for getting the best out of your team.\nYou are also known for your ability to delegate work to the right people, and to ask the right questions to get the best out of your team.\nEven though you don't perform tasks by yourself, you have a lot of experience in the field, which allows you to properly evaluate the work of your team members."
|
||||
},
|
||||
"slices": {
|
||||
"observation": "\nResult",
|
||||
"task": "\n\nCurrent Task: {input}\n\n Begin! This is VERY important to you, your job depends on it!\n\n",
|
||||
"observation": "\nObservation",
|
||||
"task": "\n\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought: ",
|
||||
"memory": "This is the summary of your work so far:\n{chat_history}",
|
||||
"role_playing": "You are {role}.\n{backstory}\n\nYour personal goal is: {goal}",
|
||||
"tools": "I have access to ONLY the following tools, I can use only these, use one at time:\n\n{tools}\n\nTo use a tool I MUST use the exact following format:\n\n```\nUse Tool: the tool I wanna use, should be one of [{tool_names}] and absolute all relevant input and context for using the tool, I must use only one tool at once.\nResult: [result of the tool]\n```\n\nTo give my final answer I'll use the exact following format:\n\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\nI MUST use these formats, my jobs depends on it!",
|
||||
"no_tools": "To give my final answer use the exact following format:\n\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\nI MUST use these formats, my jobs depends on it!",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer. To use a single tool I MUST use the exact following format:\n\n```\nUse Tool: the tool I wanna use, should be one of [{tool_names}] and absolute all relevant input and context for using the tool, I must use only one tool at once.\nResult: [result of the tool]\n```\n\nTo give my final answer use the exact following format:\n\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\nI MUST use these formats, my jobs depends on it!",
|
||||
"final_answer_format": "If I don't need to use any more tools, I must make sure use the correct format to give my final answer:\n\n```Final Answer: [my expected final answer, entire content of my most complete final answer goes here]```\n I MUST use these formats, my jobs depends on it!",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected formats I must follow:\n\n```\nUse Tool: the tool I wanna use, and absolute all relevant input and context for using the tool, I must use only one tool at once.\nResult: [result of the tool]\n```\nOR\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\n",
|
||||
"task_with_context": "{task}\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "Your final answer must be: {expected_output}"
|
||||
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
|
||||
"tools": "\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple a python dictionary using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
|
||||
"no_tools": "To give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!\n\nThought: ",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n ",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfy the expect criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output} \n you MUST return the actual complete content as the final answer, not a summary."
|
||||
},
|
||||
"errors": {
|
||||
"unexpected_format": "\nSorry, I didn't use the expected format, I MUST either use a tool (use one at time) OR give my best final answer.\n",
|
||||
"force_final_answer": "Actually, I used too many tools, so I'll stop now and give you my absolute BEST Final answer NOW, using exaclty the expected format bellow:\n\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\nI MUST use these formats, my jobs depends on it!",
|
||||
"force_final_answer": "Tool won't be use because it's time to give your final answer. Don't use tools and just your absolute BEST Final answer.",
|
||||
"agent_tool_unexsiting_coworker": "\nError executing tool. Co-worker mentioned not found, it must to be one of the following options:\n{coworkers}\n",
|
||||
"task_repeated_usage": "I already used the {tool} tool with input {tool_input}. So I already know that and must stop using it with same input. \nI could give my best complete final answer if I'm ready, using exaclty the expected format bellow:\n\n```\nFinal Answer: [my expected final answer, entire content of my most complete final answer goes here]\n```\nI MUST use these formats, my jobs depends on it!",
|
||||
"tool_usage_error": "It seems we encountered an unexpected error while trying to use the tool.",
|
||||
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
|
||||
"tool_usage_error": "I encountered an error: {error}",
|
||||
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
|
||||
"wrong_tool_name": "You tried to use the tool {tool}, but it doesn't exist. You must use one of the following tools, use one at time: {tools}.",
|
||||
"tool_usage_exception": "It seems we encountered an unexpected error while trying to use the tool. This was the error: {error}"
|
||||
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}"
|
||||
},
|
||||
"tools": {
|
||||
"delegate_work": "Delegate a specific task to one of the following co-workers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to exectue the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
|
||||
|
||||
@@ -78,8 +78,8 @@ class Converter(BaseModel):
|
||||
)
|
||||
|
||||
parser = CrewPydanticOutputParser(pydantic_object=self.model)
|
||||
new_prompt = HumanMessage(content=self.text) + SystemMessage(
|
||||
content=self.instructions
|
||||
new_prompt = SystemMessage(content=self.instructions) + HumanMessage(
|
||||
content=self.text
|
||||
)
|
||||
return new_prompt | self.llm | parser
|
||||
|
||||
|
||||
@@ -1,11 +1,16 @@
|
||||
from crewai.utilities.printer import Printer
|
||||
|
||||
|
||||
class Logger:
|
||||
_printer = Printer()
|
||||
|
||||
def __init__(self, verbose_level=0):
|
||||
verbose_level = (
|
||||
2 if isinstance(verbose_level, bool) and verbose_level else verbose_level
|
||||
)
|
||||
self.verbose_level = verbose_level
|
||||
|
||||
def log(self, level, message):
|
||||
def log(self, level, message, color="bold_green"):
|
||||
level_map = {"debug": 1, "info": 2}
|
||||
if self.verbose_level and level_map.get(level, 0) <= self.verbose_level:
|
||||
print(f"[{level.upper()}]: {message}")
|
||||
self._printer.print(f"[{level.upper()}]: {message}", color=color)
|
||||
|
||||
@@ -4,9 +4,19 @@ class Printer:
|
||||
self._print_yellow(content)
|
||||
elif color == "red":
|
||||
self._print_red(content)
|
||||
elif color == "bold_green":
|
||||
self._print_bold_green(content)
|
||||
elif color == "bold_yellow":
|
||||
self._print_bold_yellow(content)
|
||||
else:
|
||||
print(content)
|
||||
|
||||
def _print_bold_yellow(self, content):
|
||||
print("\033[1m\033[93m {}\033[00m".format(content))
|
||||
|
||||
def _print_bold_green(self, content):
|
||||
print("\033[1m\033[92m {}\033[00m".format(content))
|
||||
|
||||
def _print_yellow(self, content):
|
||||
print("\033[93m {}\033[00m".format(content))
|
||||
|
||||
|
||||
@@ -27,7 +27,9 @@ class PydanticSchemaParser(BaseModel):
|
||||
field_type = field.annotation
|
||||
if get_origin(field_type) is list:
|
||||
list_item_type = get_args(field_type)[0]
|
||||
if issubclass(list_item_type, BaseModel):
|
||||
if isinstance(list_item_type, type) and issubclass(
|
||||
list_item_type, BaseModel
|
||||
):
|
||||
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
||||
return f"List[\n{nested_schema}\n{' ' * 4 * depth}]"
|
||||
else:
|
||||
|
||||
60
src/crewai/utilities/token_counter_callback.py
Normal file
60
src/crewai/utilities/token_counter_callback.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import tiktoken
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
|
||||
def sum_prompt_tokens(self, tokens: int):
|
||||
self.prompt_tokens = self.prompt_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_completion_tokens(self, tokens: int):
|
||||
self.completion_tokens = self.completion_tokens + tokens
|
||||
self.total_tokens = self.total_tokens + tokens
|
||||
|
||||
def sum_successful_requests(self, requests: int):
|
||||
self.successful_requests = self.successful_requests + requests
|
||||
|
||||
def get_summary(self) -> str:
|
||||
return {
|
||||
"total_tokens": self.total_tokens,
|
||||
"prompt_tokens": self.prompt_tokens,
|
||||
"completion_tokens": self.completion_tokens,
|
||||
"successful_requests": self.successful_requests,
|
||||
}
|
||||
|
||||
|
||||
class TokenCalcHandler(BaseCallbackHandler):
|
||||
model: str = ""
|
||||
token_cost_process: TokenProcess
|
||||
|
||||
def __init__(self, model, token_cost_process):
|
||||
self.model = model
|
||||
self.token_cost_process = token_cost_process
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
if "gpt" in self.model:
|
||||
encoding = tiktoken.encoding_for_model(self.model)
|
||||
else:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
if self.token_cost_process == None:
|
||||
return
|
||||
|
||||
for prompt in prompts:
|
||||
self.token_cost_process.sum_prompt_tokens(len(encoding.encode(prompt)))
|
||||
|
||||
async def on_llm_new_token(self, token: str, **kwargs) -> None:
|
||||
self.token_cost_process.sum_completion_tokens(1)
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
@@ -4,11 +4,13 @@ from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from langchain.tools import tool
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.executor import CrewAgentExecutor
|
||||
from crewai.agents.parser import CrewAgentParser
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.utilities import RPMController
|
||||
@@ -64,10 +66,14 @@ def test_agent_without_memory():
|
||||
llm=ChatOpenAI(temperature=0, model="gpt-4"),
|
||||
)
|
||||
|
||||
task = Task(description="How much is 1 + 1?", agent=no_memory_agent)
|
||||
task = Task(
|
||||
description="How much is 1 + 1?",
|
||||
agent=no_memory_agent,
|
||||
expected_output="the result of the math operation.",
|
||||
)
|
||||
result = no_memory_agent.execute_task(task)
|
||||
|
||||
assert result == "1 + 1 equals 2."
|
||||
assert result == "The result of the math operation 1 + 1 is 2."
|
||||
assert no_memory_agent.agent_executor.memory is None
|
||||
assert memory_agent.agent_executor.memory is not None
|
||||
|
||||
@@ -81,10 +87,14 @@ def test_agent_execution():
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(description="How much is 1 + 1?", agent=agent)
|
||||
task = Task(
|
||||
description="How much is 1 + 1?",
|
||||
agent=agent,
|
||||
expected_output="the result of the math operation.",
|
||||
)
|
||||
|
||||
output = agent.execute_task(task)
|
||||
assert output == "1 + 1 equals 2."
|
||||
assert output == "The result of the math operation 1 + 1 is 2."
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -102,7 +112,11 @@ def test_agent_execution_with_tools():
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(description="What is 3 times 4?", agent=agent)
|
||||
task = Task(
|
||||
description="What is 3 times 4?",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
output = agent.execute_task(task)
|
||||
assert output == "The result of 3 times 4 is 12."
|
||||
|
||||
@@ -124,14 +138,18 @@ def test_logging_tool_usage():
|
||||
)
|
||||
|
||||
assert agent.tools_handler.last_used_tool == {}
|
||||
task = Task(description="What is 3 times 4?", agent=agent)
|
||||
task = Task(
|
||||
description="What is 3 times 4?",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
# force cleaning cache
|
||||
agent.tools_handler.cache = CacheHandler()
|
||||
output = agent.execute_task(task)
|
||||
tool_usage = InstructorToolCalling(
|
||||
tool_name=multiplier.name, arguments={"first_number": 3, "second_number": 4}
|
||||
)
|
||||
assert output == "The result of multiplying 3 by 4 is 12."
|
||||
assert output == "12"
|
||||
assert agent.tools_handler.last_used_tool.tool_name == tool_usage.tool_name
|
||||
assert agent.tools_handler.last_used_tool.arguments == tool_usage.arguments
|
||||
|
||||
@@ -155,8 +173,16 @@ def test_cache_hitting():
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
task1 = Task(description="What is 2 times 6?", agent=agent)
|
||||
task2 = Task(description="What is 3 times 3?", agent=agent)
|
||||
task1 = Task(
|
||||
description="What is 2 times 6?",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
task2 = Task(
|
||||
description="What is 3 times 3?",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
|
||||
output = agent.execute_task(task1)
|
||||
output = agent.execute_task(task2)
|
||||
@@ -166,7 +192,9 @@ def test_cache_hitting():
|
||||
}
|
||||
|
||||
task = Task(
|
||||
description="What is 2 times 6 times 3? Return only the number", agent=agent
|
||||
description="What is 2 times 6 times 3? Return only the number",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
output = agent.execute_task(task)
|
||||
assert output == "36"
|
||||
@@ -182,9 +210,10 @@ def test_cache_hitting():
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool.",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
output = agent.execute_task(task)
|
||||
assert output == "The result of the multiplication of 2 and 6 is 0."
|
||||
assert output == "0"
|
||||
read.assert_called_with(
|
||||
tool="multiplier", input={"first_number": 2, "second_number": 6}
|
||||
)
|
||||
@@ -204,9 +233,13 @@ def test_agent_execution_with_specific_tools():
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
task = Task(description="What is 3 times 4", agent=agent)
|
||||
task = Task(
|
||||
description="What is 3 times 4",
|
||||
agent=agent,
|
||||
expected_output="The result of the multiplication.",
|
||||
)
|
||||
output = agent.execute_task(task=task, tools=[multiplier])
|
||||
assert output == "12"
|
||||
assert output == "The result of the multiplication is 12."
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -230,6 +263,7 @@ def test_agent_custom_max_iterations():
|
||||
) as private_mock:
|
||||
task = Task(
|
||||
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool.",
|
||||
expected_output="The final answer",
|
||||
)
|
||||
agent.execute_task(
|
||||
task=task,
|
||||
@@ -257,7 +291,8 @@ def test_agent_repeated_tool_usage(capsys):
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="The final answer is 42. But don't give it until I tell you so, instead keep using the `get_final_answer` tool."
|
||||
description="The final answer is 42. But don't give it until I tell you so, instead keep using the `get_final_answer` tool.",
|
||||
expected_output="The final answer",
|
||||
)
|
||||
# force cleaning cache
|
||||
agent.tools_handler.cache = CacheHandler()
|
||||
@@ -268,7 +303,7 @@ def test_agent_repeated_tool_usage(capsys):
|
||||
|
||||
captured = capsys.readouterr()
|
||||
|
||||
assert "Final Answer: 42" in captured.out
|
||||
assert "The final answer is 42." in captured.out
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@@ -288,7 +323,8 @@ def test_agent_moved_on_after_max_iterations():
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool. Until you're told you could give my final answer if I'm ready."
|
||||
description="The final answer is 42. But don't give it yet, instead keep using the `get_final_answer` tool over and over until you're told you can give yout final answer.",
|
||||
expected_output="The final answer",
|
||||
)
|
||||
output = agent.execute_task(
|
||||
task=task,
|
||||
@@ -318,16 +354,14 @@ def test_agent_respect_the_max_rpm_set(capsys):
|
||||
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
|
||||
moveon.return_value = True
|
||||
task = Task(
|
||||
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer"
|
||||
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
|
||||
expected_output="The final answer",
|
||||
)
|
||||
output = agent.execute_task(
|
||||
task=task,
|
||||
tools=[get_final_answer],
|
||||
)
|
||||
assert (
|
||||
output
|
||||
== 'The result of using the `get_final_answer` tool with the input "test input" is 42.'
|
||||
)
|
||||
assert output == "42"
|
||||
captured = capsys.readouterr()
|
||||
assert "Max RPM reached, waiting for next minute to start." in captured.out
|
||||
moveon.assert_called()
|
||||
@@ -355,7 +389,8 @@ def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Don't give a Final Answer, instead keep using the `get_final_answer` tool.",
|
||||
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
|
||||
expected_output="The final answer",
|
||||
tools=[get_final_answer],
|
||||
agent=agent,
|
||||
)
|
||||
@@ -388,6 +423,7 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
|
||||
backstory="test backstory",
|
||||
max_rpm=10,
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
@@ -396,15 +432,16 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
|
||||
backstory="test backstory2",
|
||||
max_iter=2,
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
)
|
||||
|
||||
tasks = [
|
||||
Task(
|
||||
description="Just say hi.",
|
||||
agent=agent1,
|
||||
description="Just say hi.", agent=agent1, expected_output="Your greeting."
|
||||
),
|
||||
Task(
|
||||
description="Don't give a Final Answer, instead keep using the `get_final_answer` tool non-stop",
|
||||
description="NEVER give a Final Answer, instead keep using the `get_final_answer` tool non-stop",
|
||||
expected_output="The final answer",
|
||||
tools=[get_final_answer],
|
||||
agent=agent2,
|
||||
),
|
||||
@@ -416,7 +453,7 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
|
||||
moveon.return_value = True
|
||||
crew.kickoff()
|
||||
captured = capsys.readouterr()
|
||||
assert "Action: get_final_answer" in captured.out
|
||||
assert "get_final_answer" in captured.out
|
||||
assert "Max RPM reached, waiting for next minute to start." in captured.out
|
||||
moveon.assert_called_once()
|
||||
|
||||
@@ -428,7 +465,7 @@ def test_agent_error_on_parsing_tool(capsys):
|
||||
from langchain.tools import tool
|
||||
|
||||
@tool
|
||||
def get_final_answer(anything: str) -> float:
|
||||
def get_final_answer() -> float:
|
||||
"""Get the final answer but don't give it yet, just re-use this
|
||||
tool non-stop."""
|
||||
return 42
|
||||
@@ -442,12 +479,18 @@ def test_agent_error_on_parsing_tool(capsys):
|
||||
tasks = [
|
||||
Task(
|
||||
description="Use the get_final_answer tool.",
|
||||
expected_output="The final answer",
|
||||
agent=agent1,
|
||||
tools=[get_final_answer],
|
||||
)
|
||||
]
|
||||
|
||||
crew = Crew(agents=[agent1], tasks=tasks, verbose=2)
|
||||
crew = Crew(
|
||||
agents=[agent1],
|
||||
tasks=tasks,
|
||||
verbose=2,
|
||||
function_calling_llm=ChatOpenAI(model="gpt-4-0125-preview"),
|
||||
)
|
||||
|
||||
with patch.object(ToolUsage, "_render") as force_exception:
|
||||
force_exception.side_effect = Exception("Error on parsing tool.")
|
||||
@@ -478,6 +521,7 @@ def test_agent_remembers_output_format_after_using_tools_too_many_times():
|
||||
tasks = [
|
||||
Task(
|
||||
description="Use tool logic for `get_final_answer` but fon't give you final answer yet, instead keep using it unless you're told to give your final answer",
|
||||
expected_output="The final answer",
|
||||
agent=agent1,
|
||||
tools=[get_final_answer],
|
||||
)
|
||||
@@ -496,10 +540,15 @@ def test_agent_use_specific_tasks_output_as_context(capsys):
|
||||
|
||||
agent2 = Agent(role="test role2", goal="test goal2", backstory="test backstory2")
|
||||
|
||||
say_hi_task = Task(description="Just say hi.", agent=agent1)
|
||||
say_bye_task = Task(description="Just say bye.", agent=agent1)
|
||||
say_hi_task = Task(
|
||||
description="Just say hi.", agent=agent1, expected_output="Your greeting."
|
||||
)
|
||||
say_bye_task = Task(
|
||||
description="Just say bye.", agent=agent1, expected_output="Your farewell."
|
||||
)
|
||||
answer_task = Task(
|
||||
description="Answer accordingly to the context you got.",
|
||||
expected_output="Your answer.",
|
||||
context=[say_hi_task],
|
||||
agent=agent2,
|
||||
)
|
||||
@@ -535,6 +584,7 @@ def test_agent_step_callback():
|
||||
|
||||
essay = Task(
|
||||
description="Write and then review an small paragraph on AI until it's AMAZING",
|
||||
expected_output="The final paragraph.",
|
||||
agent=agent1,
|
||||
)
|
||||
tasks = [essay]
|
||||
@@ -569,6 +619,7 @@ def test_agent_function_calling_llm():
|
||||
|
||||
essay = Task(
|
||||
description="Write and then review an small paragraph on AI until it's AMAZING",
|
||||
expected_output="The final paragraph.",
|
||||
agent=agent1,
|
||||
)
|
||||
tasks = [essay]
|
||||
@@ -576,3 +627,56 @@ def test_agent_function_calling_llm():
|
||||
|
||||
crew.kickoff()
|
||||
private_mock.assert_called()
|
||||
|
||||
|
||||
def test_agent_count_formatting_error():
|
||||
from unittest.mock import patch
|
||||
|
||||
agent1 = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
parser = CrewAgentParser()
|
||||
parser.agent = agent1
|
||||
|
||||
with patch.object(Agent, "increment_formatting_errors") as mock_count_errors:
|
||||
test_text = "This text does not match expected formats."
|
||||
with pytest.raises(OutputParserException):
|
||||
parser.parse(test_text)
|
||||
mock_count_errors.assert_called_once()
|
||||
|
||||
|
||||
def test_agent_llm_uses_token_calc_handler_with_llm_has_model_name():
|
||||
agent1 = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
assert len(agent1.llm.callbacks) == 1
|
||||
assert agent1.llm.callbacks[0].__class__.__name__ == "TokenCalcHandler"
|
||||
assert agent1.llm.callbacks[0].model == "gpt-4"
|
||||
assert (
|
||||
agent1.llm.callbacks[0].token_cost_process.__class__.__name__ == "TokenProcess"
|
||||
)
|
||||
|
||||
|
||||
def test_agent_definition_based_on_dict():
|
||||
config = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"verbose": True,
|
||||
}
|
||||
|
||||
agent = Agent(config=config)
|
||||
|
||||
assert agent.role == "test role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert agent.verbose == True
|
||||
assert agent.tools == []
|
||||
|
||||
@@ -1,29 +1,26 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalTOOLS:\n------\nYou have access to only the following
|
||||
tools:\n\n(\"get_final_answer: get_final_answer(numbers) -> float - Get the
|
||||
final answer but don''t give it yet, just re-use this\\n tool non-stop.\",)\n\nTo
|
||||
use a tool, please use the exact following format:\n\n```\nThought: Do I need
|
||||
to use a tool? Yes\nAction: the tool you wanna use, should be one of [get_final_answer],
|
||||
just the name.\nAction Input: Any and all relevant information input and context
|
||||
for using the tool\nObservation: the result of using the tool\n```\n\nWhen you
|
||||
have a response for your task, or if you do not need to use a tool, you MUST
|
||||
use the format:\n\n```\nThought: Do I need to use a tool? No\nFinal Answer:
|
||||
[your response here]```This is the summary of your work so far:\nBegin! This
|
||||
is VERY important to you, your job depends on it!\n\nCurrent Task: The final
|
||||
answer is 42. But don''t give it yet, instead keep using the `get_final_answer`
|
||||
tool.\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"], "stream": true,
|
||||
"temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goalTo give my best complete final answer to the task
|
||||
use the exact following format:\n\nThought: I now can give a great answer\nFinal
|
||||
Answer: my best complete final answer to the task.\nYour final answer must be
|
||||
the great and the most complete as possible, it must be outcome described.\n\nI
|
||||
MUST use these formats, my job depends on it!\n\nThought: \n\nCurrent Task:
|
||||
The final answer is 42. But don''t give it yet, instead keep using the `get_final_answer`
|
||||
tool.\n\nThis is the expect criteria for your final answer: The final answer
|
||||
\n you MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought: \n"}], "model": "gpt-4", "n": 1,
|
||||
"stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1144'
|
||||
- '953'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -48,90 +45,475 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Okay"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Do"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
let"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
take"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
this"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
step"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
by"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
step"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
use"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"get"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Yes"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
craft"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
get"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
It"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
crucial"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
that"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Input"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
most"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
complete"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
accurate"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
possible"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
job"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
depends"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
on"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
has"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
be"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhrNESkXDcWpz9wMmVDnG7NCSWdF","object":"chat.completion.chunk","created":1707810673,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
but"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
can"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''t"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
give"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
yet"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
By"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
using"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"get"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
in"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
conjunction"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
with"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
information"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
provided"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
specific"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
requirement"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
of"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
giving"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
complete"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
accurate"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
response"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
have"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
determined"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
that"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
This"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
not"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
an"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
approximation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
but"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
comprehensive"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
solution"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
task"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
at"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
hand"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQvbq8CKyjQ3gv70NEWiYMxtNQ3","object":"chat.completion.chunk","created":1709396605,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -142,7 +524,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b7c230d17963f-SJC
|
||||
- 85e2bb2dbcba6b03-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -150,14 +532,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:51:13 GMT
|
||||
- Sat, 02 Mar 2024 16:23:25 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=NFb4H263Krk9Xr5qV1Ptu9blCVbFcyg1S93yd9V3EKs-1707810673-1-AQNacdg58H0w+6ASjroSAKAOJjd/zBe3YTh2wxFl31Po2s5KRxRKeNVpvyuztgWptRmoZ8TY6DYFXv6usPcAFbk=;
|
||||
path=/; expires=Tue, 13-Feb-24 08:21:13 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=tUbxDZyFP7g2u__SkaxvbsOPVFNHnHEO8DM.9LciRLU-1709396605-1.0.1.1-SE2dRJfQmHyv1WOfkKS.wgqE9dl5rSQl84LHZvDvtTJEzAk7ihMPsJHVWPKkh76ml1BB9nrk0oAibJWB7ngF4A;
|
||||
path=/; expires=Sat, 02-Mar-24 16:53:25 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=44lfswKyrmuvCjCVUHHy8KWhx1htUCS9U2auSStgf9Y-1707810673564-0-604800000;
|
||||
- _cfuvid=k.1hp2iDpBJMeA9Ap0rAiTWHKZ7y_ReUdKgzVUG43eo-1709396605957-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -168,9 +550,9 @@ interactions:
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '236'
|
||||
- '246'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -182,234 +564,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299737'
|
||||
- '299783'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 52ms
|
||||
- 43ms
|
||||
x-request-id:
|
||||
- req_fa1aac5fc97191a0abae61124cc03583
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "\n The
|
||||
schema should have the following structure, only two key:\n -
|
||||
tool_name: str\n - arguments: dict (with all
|
||||
arguments being passed)\n\n Example:\n {\"tool_name\":
|
||||
\"tool_name\", \"arguments\": {\"arg_name1\": \"value\", \"arg_name2\": 2}}\n "},
|
||||
{"role": "user", "content": "Tools available:\n\nTool Name: get_final_answer\nTool
|
||||
Description: get_final_answer(numbers) -> float - Get the final answer but don''t
|
||||
give it yet, just re-use this\n tool non-stop.\nTool Arguments: {''numbers'':
|
||||
{}}\n\nReturn a valid schema for the tool, use this text to inform a valid ouput
|
||||
schema:\n\nTool Name: get_final_answer\nTool Arguments: 42```"}], "model": "gpt-4",
|
||||
"function_call": {"name": "InstructorToolCalling"}, "functions": [{"name": "InstructorToolCalling",
|
||||
"description": "Correctly extracted `InstructorToolCalling` with all the required
|
||||
parameters with correct types", "parameters": {"properties": {"tool_name": {"description":
|
||||
"The name of the tool to be called.", "title": "Tool Name", "type": "string"},
|
||||
"arguments": {"description": "A dictinary of arguments to be passed to the tool.",
|
||||
"title": "Arguments", "type": "object"}}, "required": ["arguments", "tool_name"],
|
||||
"type": "object"}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1427'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=NFb4H263Krk9Xr5qV1Ptu9blCVbFcyg1S93yd9V3EKs-1707810673-1-AQNacdg58H0w+6ASjroSAKAOJjd/zBe3YTh2wxFl31Po2s5KRxRKeNVpvyuztgWptRmoZ8TY6DYFXv6usPcAFbk=;
|
||||
_cfuvid=44lfswKyrmuvCjCVUHHy8KWhx1htUCS9U2auSStgf9Y-1707810673564-0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1yRT4/TMBDF7/kUozm3KC3bP8oNcUBcEAgOiwiKXHeamLVnInvCsqry3ZHTbra7
|
||||
F8t6b94vL+NzAYDuiBWg7Yza0PvlPnbx67cTDZ/uy5/p+2P3xbj0tH/4++E+9rjICTn8IavPqXdW
|
||||
Qu9JnfDFtpGMUqauduVuvyq3u81kBDmSz7G21+Xdstyu3l8TnThLCSv4VQAAnKczd+Mj/cMKysWz
|
||||
Eigl0xJW8xAARvFZQZOSS2pYcfFiWmElznV58P7GOA1sc+vGGu9fAQGQTZiQnzlpHKxK/CHiPxrv
|
||||
Hbc3eAA0sR0Cseb+eK4ZoEYV8U1m1FhBjS1pc3JsfGM4PVKscXGZm7N5bspmlYdwoDhpd+ssjjWP
|
||||
OH9zvN7GeSte2j7KIb35STw5dqlrIpkknOsllf4CypDf0/aHVwvFPkrotVF5IM7A9Xpz4eHLQ9+4
|
||||
26uposbf6JtVcW2I6SkphbyAlmIf3fwYxVj8BwAA//8DABjz3GiDAgAA
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b7c31fc7a963f-SJC
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:51:17 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
openai-processing-ms:
|
||||
- '2301'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299791'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 41ms
|
||||
x-request-id:
|
||||
- req_a23b1391462f62f6d37b5f2eed7a87bd
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Progressively summarize the
|
||||
lines of conversation provided, adding onto the previous summary returning a
|
||||
new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks
|
||||
of artificial intelligence. The AI thinks artificial intelligence is a force
|
||||
for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial
|
||||
intelligence is a force for good?\nAI: Because artificial intelligence will
|
||||
help humans reach their full potential.\n\nNew summary:\nThe human asks what
|
||||
the AI thinks of artificial intelligence. The AI thinks artificial intelligence
|
||||
is a force for good because it will help humans reach their full potential.\nEND
|
||||
OF EXAMPLE\n\nCurrent summary:\n\n\nNew lines of conversation:\nHuman: The final
|
||||
answer is 42. But don''t give it yet, instead keep using the `get_final_answer`
|
||||
tool.\nAI: Agent stopped due to iteration limit or time limit.\n\nNew summary:"}],
|
||||
"model": "gpt-4", "n": 1, "stream": false, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '997'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=NFb4H263Krk9Xr5qV1Ptu9blCVbFcyg1S93yd9V3EKs-1707810673-1-AQNacdg58H0w+6ASjroSAKAOJjd/zBe3YTh2wxFl31Po2s5KRxRKeNVpvyuztgWptRmoZ8TY6DYFXv6usPcAFbk=;
|
||||
_cfuvid=44lfswKyrmuvCjCVUHHy8KWhx1htUCS9U2auSStgf9Y-1707810673564-0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1RRwWobMRC971cMuuRim3XixotvKb2UXgo2LXUpRtZOVmokjaqZpS3B/16kdbz0
|
||||
IsR7em+e3rw2AMr1agfKWC0mJL/sss17bPfH9ybsP3Sfz8fD8enr/pf/5r98UouioPNPNPKmWhkK
|
||||
yaM4ihNtMmrB4rretttu3T5uu0oE6tEX2ZBkuVm2j+uHq8KSM8hqB98bAIDXepZsscc/agft4g0J
|
||||
yKwHVLvbIwCVyRdEaWbHoqOoxUwaioKxxj1YBDsGHUHQewaxCE8fQayWen92UXvQkX9jBsewuV/A
|
||||
eRRwkSWPRhicgBC8ICYY2cWhyu4GlFPVnibtHQiRX8Fh8s/IiWLP8yA9YBSwmoGFUsIe+hGLc0Zt
|
||||
bPHVEZxg1qVWoAziAoJ3wclKXf92uZXiaUiZzqXAOHp/w59ddGxPGTVTLAWUaZP80gD8qOWP//Wp
|
||||
UqaQ5CT0gpHrDh8mPzXveWY3766kkGg/4/frrrkmVPyXBUMpaMCcsqu7KDmbS/MPAAD//wMAYCiB
|
||||
8YICAAA=
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b7c415c96963f-SJC
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:51:22 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
openai-processing-ms:
|
||||
- '3959'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299765'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 46ms
|
||||
x-request-id:
|
||||
- req_6c49ee2193171b6ac31e93ff0cbc68bc
|
||||
- req_63db6935f9ea21d7c0e13a34ea96ff2f
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,26 +1,26 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalTOOLS:\n------\nYou have access to only the following
|
||||
tools:\n\n('''',)\n\nTo use a tool, please use the exact following format:\n\n```\nThought:
|
||||
Do I need to use a tool? Yes\nAction: the tool you wanna use, should be one
|
||||
of [], just the name.\nAction Input: Any and all relevant information input
|
||||
and context for using the tool\nObservation: the result of using the tool\n```\n\nWhen
|
||||
you have a response for your task, or if you do not need to use a tool, you
|
||||
MUST use the format:\n\n```\nThought: Do I need to use a tool? No\nFinal Answer:
|
||||
[your response here]```This is the summary of your work so far:\nBegin! This
|
||||
is VERY important to you, your job depends on it!\n\nCurrent Task: How much
|
||||
is 1 + 1?\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"], "stream":
|
||||
true, "temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goalTo give my best complete final answer to the task
|
||||
use the exact following format:\n\nThought: I now can give a great answer\nFinal
|
||||
Answer: my best complete final answer to the task.\nYour final answer must be
|
||||
the great and the most complete as possible, it must be outcome described.\n\nI
|
||||
MUST use these formats, my job depends on it!\n\nThought: \n\nCurrent Task:
|
||||
How much is 1 + 1?\n\nThis is the expect criteria for your final answer: the
|
||||
result of the math operation. \n you MUST return the actual complete content
|
||||
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
|
||||
use the tools available and give your best Final Answer, your job depends on
|
||||
it!\n\nThought: \n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"],
|
||||
"stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '910'
|
||||
- '894'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -45,96 +45,131 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
know"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Do"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
that"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
mathematical"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
operation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
use"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
No"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
+"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
equals"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhqV7v2vJn9mItSSNAgGlWjFjunr","object":"chat.completion.chunk","created":1707810619,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
result"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
of"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
math"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
operation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
+"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQTlwEunjDEDofsGxMyjUHlDUgs","object":"chat.completion.chunk","created":1709396577,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -145,7 +180,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b7ad5eb40985b-SJC
|
||||
- 85e2ba7e6baaa4a4-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -153,14 +188,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:50:20 GMT
|
||||
- Sat, 02 Mar 2024 16:22:57 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=EvpdC3JMPVDn4EoPqnjI6Dw9566m_Megc7okPPYugVY-1707810620-1-AbXyR61/nIN+vn+77nUW7x7HZOpRKZePAUYlsrs5sz1AXL0V/qs1y1OZwmEqURxym0nAJ/mjTASYl4JfBEJpzHQ=;
|
||||
path=/; expires=Tue, 13-Feb-24 08:20:20 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=nXec8HYJnh4Rn1QRDNXzg.1rd.W.EiYNxbdthhiZsOk-1709396577-1.0.1.1-vtpiT4ASoM0Dy4B4sHj2gHRT6MgVjs0yCyFgayAB7Zuv4cd2nQWchGJWeHRS1KkixeNO7et2fyyPaSe.vNStKg;
|
||||
path=/; expires=Sat, 02-Mar-24 16:52:57 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=PJG0SnIiVNEZyl138tw.yk6u25UvB9jEQH0CQpbKGv8-1707810620263-0-604800000;
|
||||
- _cfuvid=PD0znK6604iGLoXkKUr5RsY.y_qQMrBUy4_vL0RRy08-1709396577433-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -171,9 +206,9 @@ interactions:
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '268'
|
||||
- '162'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -185,119 +220,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299795'
|
||||
- '299797'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 40ms
|
||||
x-request-id:
|
||||
- req_ff710fda6fdf55d2cfacbb56fd42654c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Progressively summarize the
|
||||
lines of conversation provided, adding onto the previous summary returning a
|
||||
new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks
|
||||
of artificial intelligence. The AI thinks artificial intelligence is a force
|
||||
for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial
|
||||
intelligence is a force for good?\nAI: Because artificial intelligence will
|
||||
help humans reach their full potential.\n\nNew summary:\nThe human asks what
|
||||
the AI thinks of artificial intelligence. The AI thinks artificial intelligence
|
||||
is a force for good because it will help humans reach their full potential.\nEND
|
||||
OF EXAMPLE\n\nCurrent summary:\n\n\nNew lines of conversation:\nHuman: How much
|
||||
is 1 + 1?\nAI: 1 + 1 equals 2.\n\nNew summary:"}], "model": "gpt-4", "n": 1,
|
||||
"stream": false, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '885'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=EvpdC3JMPVDn4EoPqnjI6Dw9566m_Megc7okPPYugVY-1707810620-1-AbXyR61/nIN+vn+77nUW7x7HZOpRKZePAUYlsrs5sz1AXL0V/qs1y1OZwmEqURxym0nAJ/mjTASYl4JfBEJpzHQ=;
|
||||
_cfuvid=PJG0SnIiVNEZyl138tw.yk6u25UvB9jEQH0CQpbKGv8-1707810620263-0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAA1SQT0/CQBDF7/0Uk71aSFu0kN44YMSDB2PUxBiybId2Yf+xO40awnc3WwroZQ/v
|
||||
N2/2zTskAEzWrAImWk5COzWa+Xb/vq038+JZLV+f9ILu3UI8vDWPpftiaXTY9RYFnV1jYbVTSNKa
|
||||
ExYeOWHcmk+z6SzPyiLvgbY1qmhrHI1uR1mZTwZHa6XAwCr4SAAADv0bs5kav1kFWXpWNIbAG2TV
|
||||
ZQiAeauiwngIMhA3xNIrFNYQmj7uS4vQdpob4GEXgFqE+RLIguBKdIoTQg43kKfATX3GHoOzpo7j
|
||||
nE4ccN9xFaAYs+Gf4yWgso3zdh2PMZ1SF30jjQztyiMP1sQwgaw72Y8JwGdfRPfvNua81Y5WZHdo
|
||||
4sL8rjztY9fOr7SYDpAscfXHNZskQ0IWfgKhXm2kadA7L/teYs7kmPwCAAD//wMAP9y0ZQ4CAAA=
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b7ae0ba19985b-SJC
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:50:24 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
openai-processing-ms:
|
||||
- '2690'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299794'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 41ms
|
||||
x-request-id:
|
||||
- req_9eace1f06c51682bcb91a3b2808f3f55
|
||||
- req_031c5d635ad63d17d3865b3691401085
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
@@ -1,12 +1,21 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalTo complete the task you MUST follow the format:\n\n```\nFinal
|
||||
Answer: [your most complete final answer goes here]\n``` You must use these
|
||||
formats, my life depends on it.This is the summary of your work so far:\nBegin!
|
||||
This is VERY important to you, your job depends on it!\n\nCurrent Task: What
|
||||
is 3 times 4\n"}], "model": "gpt-4", "n": 1, "stop": ["\nResult"], "stream":
|
||||
true, "temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
|
||||
int, second_number: int) -> float - Useful for when you need to multiply two
|
||||
numbers together.\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [multiplier],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n\n\nCurrent Task: What is 3 times 4\n\nThis is the expect criteria
|
||||
for your final answer: The result of the multiplication. \n you MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought: \n"}], "model": "gpt-4", "n": 1, "stop":
|
||||
["\nObservation"], "stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -15,7 +24,7 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '511'
|
||||
- '1267'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -40,27 +49,139 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
multiply"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAN3ZtdzWEuH23HGRoPRRtzvfGBZ","object":"chat.completion.chunk","created":1708396925,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
by"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"multi"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"plier"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Input"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"{\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"first"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":",\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"second"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"}\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQr05JWhma2mzBiHSxWgnaqxGsk","object":"chat.completion.chunk","created":1709396601,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -71,7 +192,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858364efbe7e01b0-GRU
|
||||
- 85e2bb185cc60309-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -79,14 +200,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:42:05 GMT
|
||||
- Sat, 02 Mar 2024 16:23:22 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=A4_gsEewjfI_cxZT.kzwJOFlNMwGcVQ79F2fvRwT0GU-1708396925-1.0-Acz2vnKqtu4QQDdoAEAvUGGWPfgH2233lNKW2S0hpo4P7GLtP1zHbDcmpxbJKfZnVlmOgzQjlTUGTtkAn4jqBOc=;
|
||||
path=/; expires=Tue, 20-Feb-24 03:12:05 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=7xt.evHqNHg.kYDcuSIOrcvpMtvbxgx1wKETTtKy8SY-1709396602-1.0.1.1-CsnMKefRtILqxvafEEHz4lmjZivT5_XhbZUlN4Vo0KudwSQ9Xoqg.qM7cLY4IlvsEMFktSJ9JvzfyeS.c39wWw;
|
||||
path=/; expires=Sat, 02-Mar-24 16:53:22 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=jbzd0_VB5OSlOP6ehIcdvPI61zEtxDnSKYD1UiuNCFw-1708396925948-0.0-604800000;
|
||||
- _cfuvid=4RaRnBJyviJKlQqJBMi0.odo7Txw_ovYAy9XQ3T2bX8-1709396602467-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -99,7 +220,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '261'
|
||||
- '285'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -111,29 +232,35 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299890'
|
||||
- '299706'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 22ms
|
||||
- 58ms
|
||||
x-request-id:
|
||||
- req_5d13f96a4d7cb8b5c7b58fc21d96c80f
|
||||
- req_22ba080f8a2efe9894a1399e42043b2c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Progressively summarize the
|
||||
lines of conversation provided, adding onto the previous summary returning a
|
||||
new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks
|
||||
of artificial intelligence. The AI thinks artificial intelligence is a force
|
||||
for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial
|
||||
intelligence is a force for good?\nAI: Because artificial intelligence will
|
||||
help humans reach their full potential.\n\nNew summary:\nThe human asks what
|
||||
the AI thinks of artificial intelligence. The AI thinks artificial intelligence
|
||||
is a force for good because it will help humans reach their full potential.\nEND
|
||||
OF EXAMPLE\n\nCurrent summary:\n\n\nNew lines of conversation:\nHuman: What
|
||||
is 3 times 4\nAI: 12\n\nNew summary:"}], "model": "gpt-4", "n": 1, "stream":
|
||||
false, "temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
|
||||
int, second_number: int) -> float - Useful for when you need to multiply two
|
||||
numbers together.\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [multiplier],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n\n\nCurrent Task: What is 3 times 4\n\nThis is the expect criteria
|
||||
for your final answer: The result of the multiplication. \n you MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought: \nI need to multiply 3 by 4.\n\nAction:
|
||||
\nmultiplier\n\nAction Input: \n{\n \"first_number\": 3,\n \"second_number\":
|
||||
4\n}\n\nObservation: 12\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"],
|
||||
"stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -142,12 +269,12 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '871'
|
||||
- '1410'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=A4_gsEewjfI_cxZT.kzwJOFlNMwGcVQ79F2fvRwT0GU-1708396925-1.0-Acz2vnKqtu4QQDdoAEAvUGGWPfgH2233lNKW2S0hpo4P7GLtP1zHbDcmpxbJKfZnVlmOgzQjlTUGTtkAn4jqBOc=;
|
||||
_cfuvid=jbzd0_VB5OSlOP6ehIcdvPI61zEtxDnSKYD1UiuNCFw-1708396925948-0.0-604800000
|
||||
- __cf_bm=7xt.evHqNHg.kYDcuSIOrcvpMtvbxgx1wKETTtKy8SY-1709396602-1.0.1.1-CsnMKefRtILqxvafEEHz4lmjZivT5_XhbZUlN4Vo0KudwSQ9Xoqg.qM7cLY4IlvsEMFktSJ9JvzfyeS.c39wWw;
|
||||
_cfuvid=4RaRnBJyviJKlQqJBMi0.odo7Txw_ovYAy9XQ3T2bX8-1709396602467-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
@@ -170,28 +297,112 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
IRQIACBK2nT3Muk0P0HircDgoOmp5f+7CW4f72isiqKxeOJlYRhgAfeiNUQjzuZGxZCcdyiyGfn8
|
||||
9lcAnL9Tgm+zl/7NeB2OhpXDYraaq5dXv324/dmO3mx/+H39eaI3DhkIgO51od56SRS5GOi5sxSI
|
||||
XD6n3imR1skoH1fjrALfGPeuNCU49X1YhEmV5lKzMzd/Ux0l7gQA/M5aAPveDymRBKvghcEoiT8B
|
||||
bJ1WlOBL1827/sX2DAiVtHVDEjyfKTSI2H3pll2Pjz0rO+gdHD4c5CiftYHizdgrO0jBNvne4XPe
|
||||
z5BmEXXC/8rtaTf1rXvtKGEHrTFI+GY8FdeaoQS73vktvH8BPBihPtzrEX3rjO+ferdUtqNEWozP
|
||||
MmjvCoNk6ah8j0AFc9M6EVpixuAfeZrM7VS1vp3bJG0HrcW/MAAD
|
||||
string: 'data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
now"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
know"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
result"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
of"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
multiplication"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQt0i99z2noUfcUGQrA5jpUMedV","object":"chat.completion.chunk","created":1709396603,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
|
||||
|
||||
'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858364f3f9c101b0-GRU
|
||||
- 85e2bb256a680309-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- br
|
||||
Content-Type:
|
||||
- application/json
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:42:07 GMT
|
||||
- Sat, 02 Mar 2024 16:23:24 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -205,7 +416,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '737'
|
||||
- '269'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -217,13 +428,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299798'
|
||||
- '299675'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 40ms
|
||||
- 65ms
|
||||
x-request-id:
|
||||
- req_afa9aab4213989f7a5f167139b479a8c
|
||||
- req_ec672e63b5c9b9abf5f9dc430aed379c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
@@ -1,18 +1,21 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalYou have access to ONLY the following tools, use
|
||||
one at time:\n\nmultiplier: multiplier(first_number: int, second_number: int)
|
||||
-> float - Useful for when you need to multiply two numbers together.\n\nTo
|
||||
use a tool you MUST use the exact following format:\n\n```\nUse Tool: the tool
|
||||
you wanna use, should be one of [multiplier] and absolute all relevant input
|
||||
and context for using the tool, you must use only one tool at once.\nResult:
|
||||
[result of the tool]\n```\n\nTo complete the task you MUST follow the format:\n\n```\nFinal
|
||||
Answer: [THE MOST COMPLETE ANSWE WITH ALL CONTEXT, DO NOT LEAVE ANYTHING OUT]\n```
|
||||
You must use these formats, my life depends on it.This is the summary of your
|
||||
work so far:\nBegin! This is VERY important to you, your job depends on it!\n\nCurrent
|
||||
Task: What is 3 times 4?\n"}], "model": "gpt-4", "n": 1, "stop": ["\nResult"],
|
||||
"stream": true, "temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
|
||||
int, second_number: int) -> float - Useful for when you need to multiply two
|
||||
numbers together.\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [multiplier],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n\n\nCurrent Task: What is 3 times 4?\n\nThis is the expect criteria
|
||||
for your final answer: The result of the multiplication. \n you MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought: \n"}], "model": "gpt-4", "n": 1, "stop":
|
||||
["\nObservation"], "stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -21,7 +24,7 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1003'
|
||||
- '1268'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -46,82 +49,143 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Use"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Tool"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
multiplier"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
multiply"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
with"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
first"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
second"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
together"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMHBJxGwYmDm0whtJ7ryA3FNzz9","object":"chat.completion.chunk","created":1708396877,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"multi"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"plier"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Input"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"{\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"first"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":",\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"second"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"_number"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"}\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQUCNDddQkY4w3pF6T7U64HPPLY","object":"chat.completion.chunk","created":1709396578,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -132,7 +196,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858363c36d03a4ba-GRU
|
||||
- 85e2ba85cf500126-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -140,14 +204,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:41:18 GMT
|
||||
- Sat, 02 Mar 2024 16:22:58 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=pxRSwqCB1TUHGyPk7A3gNpxP.p.GG4odLvnn1enCzA0-1708396878-1.0-AbvCo+vNuHWyCl3Gm6D//s2A4XFGiLKt9NtnD5752PrzioOdLnmpwWLpDreFWIOxV13kHVhfEi1Y2KMEjaxfDtY=;
|
||||
path=/; expires=Tue, 20-Feb-24 03:11:18 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=wOO.fPfMTZeViJAXOrDQJ1N01e0qoe7CWIKH7TZrfUY-1709396578-1.0.1.1-S5c7jfwe_6L.D7meG2rnZiDmTNen7Zb_M.SrAL1rKbbN8lcbC0MhRIT6VCdyzOesw7jGHGnz1bb0v5qo.wCipw;
|
||||
path=/; expires=Sat, 02-Mar-24 16:52:58 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=ZXYFqXlrgq6ZaXX8prqOY4rU1o6I8IG2Hu4kEeiJ7Rw-1708396878059-0.0-604800000;
|
||||
- _cfuvid=f5uxBBVtyepcIKs_Xuooj_3swQvvq47nfiq3uPXT4QM-1709396578680-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -160,7 +224,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '334'
|
||||
- '192'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -172,35 +236,35 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299770'
|
||||
- '299707'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 46ms
|
||||
- 58ms
|
||||
x-request-id:
|
||||
- req_78cdca068954cd60d8c31a21a1591022
|
||||
- req_36899f2b4e934fac8af1542bd3396235
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tools available:\n\nTool Name:
|
||||
multiplier\nTool Description: multiplier(first_number: int, second_number: int)
|
||||
-> float - Useful for when you need to multiply two numbers together.\nTool
|
||||
Arguments: {''first_number'': {''type'': ''integer''}, ''second_number'': {''type'':
|
||||
''integer''}}\n\nReturn a valid schema for the tool, the tool name must be equal
|
||||
one of the options, use this text to inform a valid ouput schema:\nUse Tool:
|
||||
multiplier, with the first_number as 3 and the second_number as 4.```"}, {"role":
|
||||
"system", "content": "The schema should have the following structure, only two
|
||||
keys:\n- tool_name: str\n- arguments: dict (with all arguments being passed)\n\nExample:\n{\"tool_name\":
|
||||
\"tool_name\", \"arguments\": {\"arg_name1\": \"value\", \"arg_name2\": 2}}\n"}],
|
||||
"model": "gpt-4", "tool_choice": {"type": "function", "function": {"name": "InstructorToolCalling"}},
|
||||
"tools": [{"type": "function", "function": {"name": "InstructorToolCalling",
|
||||
"description": "Correctly extracted `InstructorToolCalling` with all the required
|
||||
parameters with correct types", "parameters": {"properties": {"tool_name": {"description":
|
||||
"The name of the tool to be called.", "title": "Tool Name", "type": "string"},
|
||||
"arguments": {"description": "A dictinary of arguments to be passed to the tool.",
|
||||
"title": "Arguments", "type": "object"}}, "required": ["arguments", "tool_name"],
|
||||
"type": "object"}}}]}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nmultiplier: multiplier(first_number:
|
||||
int, second_number: int) -> float - Useful for when you need to multiply two
|
||||
numbers together.\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [multiplier],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple a python dictionary using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question\n\n\nCurrent Task: What is 3 times 4?\n\nThis is the expect criteria
|
||||
for your final answer: The result of the multiplication. \n you MUST return
|
||||
the actual complete content as the final answer, not a summary.\n\nBegin! This
|
||||
is VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought: \nI need to multiply 3 and 4 together.\n\nAction:
|
||||
\nmultiplier\n\nAction Input: \n{\n \"first_number\": 3,\n \"second_number\":
|
||||
4\n}\n\nObservation: 12\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"],
|
||||
"stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -209,12 +273,12 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1427'
|
||||
- '1421'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=pxRSwqCB1TUHGyPk7A3gNpxP.p.GG4odLvnn1enCzA0-1708396878-1.0-AbvCo+vNuHWyCl3Gm6D//s2A4XFGiLKt9NtnD5752PrzioOdLnmpwWLpDreFWIOxV13kHVhfEi1Y2KMEjaxfDtY=;
|
||||
_cfuvid=ZXYFqXlrgq6ZaXX8prqOY4rU1o6I8IG2Hu4kEeiJ7Rw-1708396878059-0.0-604800000
|
||||
- __cf_bm=wOO.fPfMTZeViJAXOrDQJ1N01e0qoe7CWIKH7TZrfUY-1709396578-1.0.1.1-S5c7jfwe_6L.D7meG2rnZiDmTNen7Zb_M.SrAL1rKbbN8lcbC0MhRIT6VCdyzOesw7jGHGnz1bb0v5qo.wCipw;
|
||||
_cfuvid=f5uxBBVtyepcIKs_Xuooj_3swQvvq47nfiq3uPXT4QM-1709396578680-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
@@ -237,176 +301,103 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
IcwMACBG6nT3Mv39HEJtBWDlfDIkUSsylf33pxoESBftQaG1aL0L/QQogsFceHRxRAucFqhYm2tz
|
||||
s96t5BBRvoD23r8IoM4owHSr6tQG0100Oxcnr+XV8f7r2Pl9o5vdneHLw8nn8/mjZScC6JP3PK05
|
||||
mZ6LgaW9g5CRy1/lGQWG88FivJwt5gviGeuz3FCAm1B3J93BbDjmern1Os0rCrxFAPD3NgF47v2I
|
||||
AoNOK+mFoVIAfwSw9CanAFVV6apWrmYHANLWzQq4xhjiUu29iVNljHD8if59g0n6qzImnqv64GV5
|
||||
Xy8vxpunqgqHt4OP64f5o0y8e/EnDIrywOjFULQxITAH0CmrkHriQrh/z5f33ps9ZYx2m85cgIu9
|
||||
QQH+SQdI7S44ZXNJAclj6teC0Xkp2UFRnJikwAVAcq3Lqo63wlqRFBh3qFRMeXh9OJEOaKVrqQPa
|
||||
toCbXuGYdirW0fhNKH1SrQzD9HhIvBXZGgVY1T6I8dsIWJnMsLGCMwylt6GOa/+Ru4oCo2lBaJ0A
|
||||
IY8nFfxMAkDzRotJNEqWGQtuxGvtNnkZSm1BRtRGAw==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858363ccdaa8a4ba-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- br
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:41:20 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1805'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299805'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 38ms
|
||||
x-request-id:
|
||||
- req_2267942750c31c5ca2874ac7955f01ba
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalYou have access to ONLY the following tools, use
|
||||
one at time:\n\nmultiplier: multiplier(first_number: int, second_number: int)
|
||||
-> float - Useful for when you need to multiply two numbers together.\n\nTo
|
||||
use a tool you MUST use the exact following format:\n\n```\nUse Tool: the tool
|
||||
you wanna use, should be one of [multiplier] and absolute all relevant input
|
||||
and context for using the tool, you must use only one tool at once.\nResult:
|
||||
[result of the tool]\n```\n\nTo complete the task you MUST follow the format:\n\n```\nFinal
|
||||
Answer: [THE MOST COMPLETE ANSWE WITH ALL CONTEXT, DO NOT LEAVE ANYTHING OUT]\n```
|
||||
You must use these formats, my life depends on it.This is the summary of your
|
||||
work so far:\nBegin! This is VERY important to you, your job depends on it!\n\nCurrent
|
||||
Task: What is 3 times 4?\nUse Tool: multiplier, with the first_number as 3 and
|
||||
the second_number as 4.\nResult: 12\nIf you don''t need to use any more tools,
|
||||
use the correct format for your final answer:\n\n```Final Answer: [your most
|
||||
complete final answer goes here]```\nThought: "}], "model": "gpt-4", "n": 1,
|
||||
"stop": ["\nResult"], "stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1257'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=pxRSwqCB1TUHGyPk7A3gNpxP.p.GG4odLvnn1enCzA0-1708396878-1.0-AbvCo+vNuHWyCl3Gm6D//s2A4XFGiLKt9NtnD5752PrzioOdLnmpwWLpDreFWIOxV13kHVhfEi1Y2KMEjaxfDtY=;
|
||||
_cfuvid=ZXYFqXlrgq6ZaXX8prqOY4rU1o6I8IG2Hu4kEeiJ7Rw-1708396878059-0.0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
now"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
know"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
The"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
result"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
of"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"3"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
times"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"4"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"12"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8uAMLnUD3TMLOxxlfdFdC7pXnV7ML","object":"chat.completion.chunk","created":1708396881,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQVJc8UgDc0jJZVRgEWZu2ted30","object":"chat.completion.chunk","created":1709396579,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -417,7 +408,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858363d9ea45a4ba-GRU
|
||||
- 85e2ba8e18320126-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -425,7 +416,7 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:41:21 GMT
|
||||
- Sat, 02 Mar 2024 16:23:00 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -439,7 +430,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '269'
|
||||
- '270'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -451,119 +442,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299708'
|
||||
- '299672'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 58ms
|
||||
- 65ms
|
||||
x-request-id:
|
||||
- req_45e08b4c819934e33f9b4554aa25a548
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Progressively summarize the
|
||||
lines of conversation provided, adding onto the previous summary returning a
|
||||
new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks
|
||||
of artificial intelligence. The AI thinks artificial intelligence is a force
|
||||
for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial
|
||||
intelligence is a force for good?\nAI: Because artificial intelligence will
|
||||
help humans reach their full potential.\n\nNew summary:\nThe human asks what
|
||||
the AI thinks of artificial intelligence. The AI thinks artificial intelligence
|
||||
is a force for good because it will help humans reach their full potential.\nEND
|
||||
OF EXAMPLE\n\nCurrent summary:\n\n\nNew lines of conversation:\nHuman: What
|
||||
is 3 times 4?\nAI: The result of 3 times 4 is 12.\n\nNew summary:"}], "model":
|
||||
"gpt-4", "n": 1, "stream": false, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '900'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=pxRSwqCB1TUHGyPk7A3gNpxP.p.GG4odLvnn1enCzA0-1708396878-1.0-AbvCo+vNuHWyCl3Gm6D//s2A4XFGiLKt9NtnD5752PrzioOdLnmpwWLpDreFWIOxV13kHVhfEi1Y2KMEjaxfDtY=;
|
||||
_cfuvid=ZXYFqXlrgq6ZaXX8prqOY4rU1o6I8IG2Hu4kEeiJ7Rw-1708396878059-0.0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
IWAIACDGO/f6GHXvdMsf4wYM5VBp4/+7CS73Pt5RYwHtjT+wskCzPFxDNN3mE39EbaJ2m9q/vwJg
|
||||
9U4JvpUvw5t2yl+MKwcHQ3x1OpmvFu3m195scn4xW1Vv8714oCcA2tc6exuYNAgxUCtrIPBy+VL2
|
||||
Tol4Hi3S5WyxSA6/aPueKUqwcIM/8aNZnLIWS1u9ZT0l7gQA/K46APvetygRebsQhSFQAt8A7KzK
|
||||
KMGXvq/64cXoSibEtHVjEjwvMzSIOHzpm77Hx8mVHXyWLwPqjm2UDRuDzZGijlYDkwDnWMjD1n/v
|
||||
kVG4yQhXPeIkoJrsX98jZQvX2deeEmZUyg7IAYee6m0tUIL9YJ0I/V8AD35pj6a+ouusdsPTYJvM
|
||||
9JSIpwuZiFfQQHDJbDR+TKDJ1BYToSXjs/wzT3lliqxzXeUmrxmVEv/CAAM=
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 858363e08e96a4ba-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- br
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 20 Feb 2024 02:41:23 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1506'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299790'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 42ms
|
||||
x-request-id:
|
||||
- req_47af60e4e16d4cf08c4a07328530376e
|
||||
- req_738d754c4ba72de190f6b56f0c8adf80
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,20 +1,23 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalYou have access to ONLY the following tools, use
|
||||
one at time:\n\nget_final_answer: get_final_answer(anything: str) -> float -
|
||||
Get the final answer but don''t give it yet, just re-use this\n tool
|
||||
non-stop.\n\nTo use a tool you MUST use the exact following format:\n\n```\nUse
|
||||
Tool: the tool you wanna use, should be one of [get_final_answer] and absolute
|
||||
all relevant input and context for using the tool, you must use only one tool
|
||||
at once.\nResult: [result of the tool]\n```\n\nTo give your final answer use
|
||||
the exact following format:\n\n```\nFinal Answer: [THE MOST COMPLETE ANSWE WITH
|
||||
ALL CONTEXT, DO NOT LEAVE ANYTHING OUT]\n```\nI MUST use these formats, my jobs
|
||||
depends on it!This is the summary of your work so far:\n\n\nCurrent Task: The
|
||||
final answer is 42. But don''t give it until I tell you so, instead keep using
|
||||
the `get_final_answer` tool.\n\n Begin! This is VERY important to you, your
|
||||
job depends on it!\n\n\n"}], "model": "gpt-4-0125-preview", "n": 1, "stop":
|
||||
["\nResult"], "stream": true, "temperature": 0.7}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nget_final_answer:
|
||||
get_final_answer(anything: str) -> float - Get the final answer but don''t give
|
||||
it yet, just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
|
||||
you should always think about what to do\nAction: the action to take, only one
|
||||
name of [get_final_answer], just the name, exactly as it''s written.\nAction
|
||||
Input: the input to the action, just a simple a python dictionary using \" to
|
||||
wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n\n\nCurrent Task: The final
|
||||
answer is 42. But don''t give it until I tell you so, instead keep using the
|
||||
`get_final_answer` tool.\n\nThis is the expect criteria for your final answer:
|
||||
The final answer \n you MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:
|
||||
\n"}], "model": "gpt-4-0125-preview", "n": 1, "stop": ["\nObservation"], "stream":
|
||||
true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -23,7 +26,7 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1145'
|
||||
- '1376'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -48,30 +51,287 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":"Use"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":"
|
||||
Tool"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
Since"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
task"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
find"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
which"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
already"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
stated"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
but"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"''m"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
instructed"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
use"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"get"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
not"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
reveal"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
until"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
told"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
so"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
should"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
use"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
confirm"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
statement"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
get"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSlvb0E49ZRvWth5FKSw9Me8O4a","object":"chat.completion.chunk","created":1708543351,"model":"gpt-4-0125-preview","system_fingerprint":"fp_f084bcfc79","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"Action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
Input"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
{\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"anything"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"\":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"What"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
value"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
that"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
must"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
not"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
be"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
revealed"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"
|
||||
yet"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"?\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{"content":"}\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR2TroDPeeO49vNMIh2jMubpkMn","object":"chat.completion.chunk","created":1709396612,"model":"gpt-4-0125-preview","system_fingerprint":"fp_70b2088885","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -82,7 +342,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85915bc79a85a537-GRU
|
||||
- 85e2bb5bc890012d-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -90,14 +350,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Wed, 21 Feb 2024 19:22:31 GMT
|
||||
- Sat, 02 Mar 2024 16:23:33 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=yNWN6xxJzIde4UgAgONRHE3BZJmmCPGu7Ch2r8cft9A-1708543351-1.0-ASCEMu/lL3CxJvBcFTc1tUBtRrna4KuvHkF7gIGXFGT7IzdbHGcbdzKpMclXH0YRkPX7kIeGPEhgHxYfptOxLlM=;
|
||||
path=/; expires=Wed, 21-Feb-24 19:52:31 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=ZqPBOMK5l2N8sCKgMTw.fnA8PLivFFZM7e8jtoAH6cA-1709396613-1.0.1.1-nXQQHXPi9zxUKswFkIcFdgv8.cKf_5aARG8H1UrOU_Kx9tgUijicvQQV1KpO9zwVgvWkNxGn0GrK6GnSPhcPlg;
|
||||
path=/; expires=Sat, 02-Mar-24 16:53:33 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=rc0f50rp.We1R7UrhqtjVUfOr0VA90lt_6hQ5eO2240-1708543351878-0.0-604800000;
|
||||
- _cfuvid=mOj7JzBX9ePJt4.4OjW7EKPTpXIX6wLyyHVuC4c9ybg-1709396613350-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -110,7 +370,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '595'
|
||||
- '633'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -122,35 +382,39 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '799739'
|
||||
- '799683'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 19ms
|
||||
- 23ms
|
||||
x-request-id:
|
||||
- req_5811f8911568932229521026f504c92b
|
||||
- req_3f5e24a144aea3cf18fb7bfb7b803414
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tools available:\n###\nTool
|
||||
Name: get_final_answer\nTool Description: get_final_answer(anything: str) ->
|
||||
float - Get the final answer but don''t give it yet, just re-use this\n tool
|
||||
non-stop.\nTool Arguments: {''anything'': {''type'': ''string''}}\n\nReturn
|
||||
a valid schema for the tool, the tool name must be equal one of the options,
|
||||
use this text to inform a valid ouput schema:\nUse Tool: get_final_answer```"},
|
||||
{"role": "system", "content": "The schema should have the following structure,
|
||||
only two keys:\n- tool_name: str\n- arguments: dict (with all arguments being
|
||||
passed)\n\nExample:\n{\"tool_name\": \"tool name\", \"arguments\": {\"arg_name1\":
|
||||
\"value\", \"arg_name2\": 2}}"}], "model": "gpt-4-0125-preview", "tool_choice":
|
||||
{"type": "function", "function": {"name": "InstructorToolCalling"}}, "tools":
|
||||
[{"type": "function", "function": {"name": "InstructorToolCalling", "description":
|
||||
"Correctly extracted `InstructorToolCalling` with all the required parameters
|
||||
with correct types", "parameters": {"properties": {"tool_name": {"description":
|
||||
"The name of the tool to be called.", "title": "Tool Name", "type": "string"},
|
||||
"arguments": {"anyOf": [{"type": "object"}, {"type": "null"}], "description":
|
||||
"A dictinary of arguments to be passed to the tool.", "title": "Arguments"}},
|
||||
"required": ["arguments", "tool_name"], "type": "object"}}}]}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\n\nYou ONLY have access to the following tools,
|
||||
and should NEVER make up tools that are not listed here:\n\nget_final_answer:
|
||||
get_final_answer(anything: str) -> float - Get the final answer but don''t give
|
||||
it yet, just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
|
||||
you should always think about what to do\nAction: the action to take, only one
|
||||
name of [get_final_answer], just the name, exactly as it''s written.\nAction
|
||||
Input: the input to the action, just a simple a python dictionary using \" to
|
||||
wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n\n\nCurrent Task: The final
|
||||
answer is 42. But don''t give it until I tell you so, instead keep using the
|
||||
`get_final_answer` tool.\n\nThis is the expect criteria for your final answer:
|
||||
The final answer \n you MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:
|
||||
\nThought: Since my task is to find the final answer which is already stated
|
||||
as 42, but I''m instructed to use the `get_final_answer` tool and not reveal
|
||||
it until told so, I should use the tool to confirm the statement.\n\nAction:
|
||||
get_final_answer\n\nAction Input: {\"anything\": \"What is the value that must
|
||||
not be revealed yet?\"}\n\nObservation: 42\n"}], "model": "gpt-4-0125-preview",
|
||||
"n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -159,12 +423,12 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1393'
|
||||
- '1727'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=yNWN6xxJzIde4UgAgONRHE3BZJmmCPGu7Ch2r8cft9A-1708543351-1.0-ASCEMu/lL3CxJvBcFTc1tUBtRrna4KuvHkF7gIGXFGT7IzdbHGcbdzKpMclXH0YRkPX7kIeGPEhgHxYfptOxLlM=;
|
||||
_cfuvid=rc0f50rp.We1R7UrhqtjVUfOr0VA90lt_6hQ5eO2240-1708543351878-0.0-604800000
|
||||
- __cf_bm=ZqPBOMK5l2N8sCKgMTw.fnA8PLivFFZM7e8jtoAH6cA-1709396613-1.0.1.1-nXQQHXPi9zxUKswFkIcFdgv8.cKf_5aARG8H1UrOU_Kx9tgUijicvQQV1KpO9zwVgvWkNxGn0GrK6GnSPhcPlg;
|
||||
_cfuvid=mOj7JzBX9ePJt4.4OjW7EKPTpXIX6wLyyHVuC4c9ybg-1709396613350-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
@@ -187,142 +451,160 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
IZgMACD+N1V3LdO/N7tV1pTS8HEYIZmEpuae///mg0OL9qBoLVr3RK+AEgw7aZhNwQ/+P9DHdE4f
|
||||
YzyNShGHvMC2zx4SIpgUjKBWslYu2vascS9u+7kt3ieft1fvT8OPLL74/ufNJj2t0EqIEJa/WtWc
|
||||
TMfFwDLBQ8jI5Xs6BaP+tDcbj4bD8YD4yIVUWzBCHuv2qN3rD8btKOmy3nDvroJRugKjn4SI6DCa
|
||||
EOH79yMw6rVWSW8MFQz4JyKUwWowgqwqU9XS12gBQPq6WUa+sZa4VIdghZLWCsd79DAHynpVWive
|
||||
Vu7zPLvdngyfR0/bbzNW5evqu76SiW8v7uKhKE+MXgxFG2MCc0Tw0vGrVz6U++9C+RqCPZHWGp9v
|
||||
5hLh0gtghAN/sne8dJqDceS6Fpnx0grpq40uOVqcrcLBDhwGhFXSq+dbaiqZa47/fygE/VcPmNOL
|
||||
yvyrfh1syGMZllVhkAYPEa8cWwMjVHWIYvz/hGhhEsPmli8hlsHFWtThT/sKjAaTUUNghQAh98cF
|
||||
/DQCQPMG03lyShaZCTZEZnyuy1gaCzmALIqsNxstVaamcyT/iQED
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85915bcfcd52a537-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- br
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 21 Feb 2024 19:22:34 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0125-preview
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1629'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '800000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '799825'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 13ms
|
||||
x-request-id:
|
||||
- req_fdf979d873b6bedc600dbe2d9a119f05
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalYou have access to ONLY the following tools, use
|
||||
one at time:\n\nget_final_answer: get_final_answer(anything: str) -> float -
|
||||
Get the final answer but don''t give it yet, just re-use this\n tool
|
||||
non-stop.\n\nTo use a tool you MUST use the exact following format:\n\n```\nUse
|
||||
Tool: the tool you wanna use, should be one of [get_final_answer] and absolute
|
||||
all relevant input and context for using the tool, you must use only one tool
|
||||
at once.\nResult: [result of the tool]\n```\n\nTo give your final answer use
|
||||
the exact following format:\n\n```\nFinal Answer: [THE MOST COMPLETE ANSWE WITH
|
||||
ALL CONTEXT, DO NOT LEAVE ANYTHING OUT]\n```\nI MUST use these formats, my jobs
|
||||
depends on it!This is the summary of your work so far:\n\n\nCurrent Task: The
|
||||
final answer is 42. But don''t give it until I tell you so, instead keep using
|
||||
the `get_final_answer` tool.\n\n Begin! This is VERY important to you, your
|
||||
job depends on it!\n\n\nUse Tool: get_final_answer\nResult: 42\n\nIf you don''t
|
||||
need to use any more tools, make sure use the correct format to give your final
|
||||
answer:\n\n```Final Answer: [entire content of your most complete final answer
|
||||
goes here]```\n You MUST use these formats, your jobs depends on it!\n"}], "model":
|
||||
"gpt-4-0125-preview", "n": 1, "stop": ["\nResult"], "stream": true, "temperature":
|
||||
0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1430'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=yNWN6xxJzIde4UgAgONRHE3BZJmmCPGu7Ch2r8cft9A-1708543351-1.0-ASCEMu/lL3CxJvBcFTc1tUBtRrna4KuvHkF7gIGXFGT7IzdbHGcbdzKpMclXH0YRkPX7kIeGPEhgHxYfptOxLlM=;
|
||||
_cfuvid=rc0f50rp.We1R7UrhqtjVUfOr0VA90lt_6hQ5eO2240-1708543351878-0.0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
now"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
know"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"42"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8umSotD3VfmGvWS89RCR98d94YN56","object":"chat.completion.chunk","created":1708543354,"model":"gpt-4-0125-preview","system_fingerprint":"fp_d0c0cfacb3","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
But"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
don"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"''t"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
give"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
until"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
tell"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
you"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
so"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
instead"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
keep"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
using"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"get"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"_final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"_answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"`"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMR6TUPT9bDW7OP4LESvqX2D07w6","object":"chat.completion.chunk","created":1709396616,"model":"gpt-4-0125-preview","system_fingerprint":"fp_00ceb2df5b","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -333,7 +615,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85915bdb9be6a537-GRU
|
||||
- 85e2bb747bc3012d-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -341,7 +623,7 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Wed, 21 Feb 2024 19:22:34 GMT
|
||||
- Sat, 02 Mar 2024 16:23:36 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -355,7 +637,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '475'
|
||||
- '249'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -367,121 +649,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '799670'
|
||||
- '799598'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 24ms
|
||||
- 30ms
|
||||
x-request-id:
|
||||
- req_d2c8ba56102d51a77a7088ed56eaf8c5
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Progressively summarize the
|
||||
lines of conversation provided, adding onto the previous summary returning a
|
||||
new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks
|
||||
of artificial intelligence. The AI thinks artificial intelligence is a force
|
||||
for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial
|
||||
intelligence is a force for good?\nAI: Because artificial intelligence will
|
||||
help humans reach their full potential.\n\nNew summary:\nThe human asks what
|
||||
the AI thinks of artificial intelligence. The AI thinks artificial intelligence
|
||||
is a force for good because it will help humans reach their full potential.\nEND
|
||||
OF EXAMPLE\n\nCurrent summary:\n\n\nNew lines of conversation:\nHuman: The final
|
||||
answer is 42. But don''t give it until I tell you so, instead keep using the
|
||||
`get_final_answer` tool.\nAI: 42\n\nNew summary:"}], "model": "gpt-4-0125-preview",
|
||||
"n": 1, "stream": false, "temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '977'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=yNWN6xxJzIde4UgAgONRHE3BZJmmCPGu7Ch2r8cft9A-1708543351-1.0-ASCEMu/lL3CxJvBcFTc1tUBtRrna4KuvHkF7gIGXFGT7IzdbHGcbdzKpMclXH0YRkPX7kIeGPEhgHxYfptOxLlM=;
|
||||
_cfuvid=rc0f50rp.We1R7UrhqtjVUfOr0VA90lt_6hQ5eO2240-1708543351878-0.0-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
IeAJACB+6vR3L9PTzSGteIsy/V6pBkw7C5ukH94CGShuhxt9PTrq+fS3C7MAp4FHvyUYeGC9TXz6
|
||||
g3Bnt6t3TwIgnZAExXno4tpU3rKrX8xmf9xeH+5e3vT3k12v3PXzZM2zzSf1BEAcFSp2nLwfYhBq
|
||||
bkggc/meSkhitBguZ9PJZDZDPqo5URVJUGacN/WGo/HMy5Iu1Y57N2cdK0sSPwIATqcZQPPvpyQx
|
||||
7EEhGkOTJPwJoJYrRRIUWqutCxtHPYJe+bolCXrNFQZFHDRSiu3AjzvrKzjGTrs85yoBf0p1E1YI
|
||||
G7tTbd+tjraYjnPqR4zOKgFRkCnnsxC/EsAxV2pcFSZ9FC9k6ia6ngAhdao6IOqFmgLbTsd9uoO4
|
||||
XP6u4sy0HFmSaLqqwkFhOeQ38VojCbKOjYjoIoA/J487vx2Qabk2zndcqsa+GZWJ6F17FHI6Wr1v
|
||||
GOjh7Hg0ElYKyvW/4qe6yVRrWu3z7dT46XA5jeI0XqxIXIQBAw==
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85915be1aca3a537-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- br
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 21 Feb 2024 19:22:37 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0125-preview
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2510'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '800000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '799774'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 16ms
|
||||
x-request-id:
|
||||
- req_5850b110143112eb39fed9077edbe8f8
|
||||
- req_0eba12496454c279bc61ab9d84c7eea0
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,530 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: !!binary |
|
||||
CvcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSzhcKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLlBwoQQqP1ewdlJ8eWOgAf3nagOBIINaPxkxssPbIqDENyZXcgQ3JlYXRlZDABOZDU
|
||||
O0J//7gXQcA9PkJ//7gXShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuMTYuM0oaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKMQoHY3Jld19pZBImCiQ5NDA4MmFhNS0zNmI0LTQyNGYtYWU4Ni1hNzUx
|
||||
NTgxYWFhNWJKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKFQoNY3Jld19sYW5ndWFnZRIE
|
||||
CgJlbkoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRz
|
||||
EgIYAUrMAgoLY3Jld19hZ2VudHMSvAIKuQJbeyJpZCI6ICI1ZWY4NDU5My1jYWExLTQ3ZDAtOTQ0
|
||||
MC1lZTk0YzY0YzM4YjIiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgIm1lbW9yeV9lbmFibGVkPyI6
|
||||
IGZhbHNlLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMTUsICJtYXhfcnBtIjogbnVs
|
||||
bCwgImkxOG4iOiAiZW4iLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwgXCJtb2RlbF9uYW1lXCI6
|
||||
IFwiZ3B0LTRcIiwgXCJ0ZW1wZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0T3BlbkFJ
|
||||
XCJ9IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiB0cnVlLCAidG9vbHNfbmFtZXMiOiBbXX1dSooB
|
||||
CgpjcmV3X3Rhc2tzEnwKelt7ImlkIjogImRhMjE2NjM4LWU0ODktNDk2Ni1iM2NhLWE0OTk2Mzk2
|
||||
YjRlMyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNo
|
||||
ZXIiLCAidG9vbHNfbmFtZXMiOiBbXX1dSigKCHBsYXRmb3JtEhwKGm1hY09TLTE0LjMtYXJtNjQt
|
||||
YXJtLTY0Yml0ShwKEHBsYXRmb3JtX3JlbGVhc2USCAoGMjMuMy4wShsKD3BsYXRmb3JtX3N5c3Rl
|
||||
bRIICgZEYXJ3aW5KewoQcGxhdGZvcm1fdmVyc2lvbhJnCmVEYXJ3aW4gS2VybmVsIFZlcnNpb24g
|
||||
MjMuMy4wOiBXZWQgRGVjIDIwIDIxOjMwOjU5IFBTVCAyMDIzOyByb290OnhudS0xMDAwMi44MS41
|
||||
fjcvUkVMRUFTRV9BUk02NF9UNjAzMEoKCgRjcHVzEgIYDHoCGAES5gcKEN5fDdSVtOXq6TIY6xBA
|
||||
9IkSCL9iOJN+f2NaKgxDcmV3IENyZWF0ZWQwATkAou5Cf/+4F0EoPPBCf/+4F0oaCg5jcmV3YWlf
|
||||
dmVyc2lvbhIICgYwLjE2LjNKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43SjEKB2NyZXdfaWQS
|
||||
JgokMmIwMjAwZGMtNGFiZS00Y2UzLTgwMTEtMTYyMmFmNTE0NWRlShwKDGNyZXdfcHJvY2VzcxIM
|
||||
CgpzZXF1ZW50aWFsShUKDWNyZXdfbGFuZ3VhZ2USBAoCZW5KGgoUY3Jld19udW1iZXJfb2ZfdGFz
|
||||
a3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFKzQIKC2NyZXdfYWdlbnRzEr0CCroC
|
||||
W3siaWQiOiAiM2NiZjczODctNDNlMC00ZGRkLThkMTYtZDU4NGUwY2MyMWU4IiwgInJvbGUiOiAi
|
||||
UmVzZWFyY2hlciIsICJtZW1vcnlfZW5hYmxlZD8iOiBmYWxzZSwgInZlcmJvc2U/IjogZmFsc2Us
|
||||
ICJtYXhfaXRlciI6IDE1LCAibWF4X3JwbSI6IG51bGwsICJpMThuIjogImVuIiwgImxsbSI6ICJ7
|
||||
XCJuYW1lXCI6IG51bGwsIFwibW9kZWxfbmFtZVwiOiBcImdwdC00XCIsIFwidGVtcGVyYXR1cmVc
|
||||
IjogMC43LCBcImNsYXNzXCI6IFwiQ2hhdE9wZW5BSVwifSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/
|
||||
IjogZmFsc2UsICJ0b29sc19uYW1lcyI6IFtdfV1KigEKCmNyZXdfdGFza3MSfAp6W3siaWQiOiAi
|
||||
NmMxN2FhMjMtMDU4Zi00ZDA3LTk1YjItYzgwYzBkMjQ1YWVjIiwgImFzeW5jX2V4ZWN1dGlvbj8i
|
||||
OiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJ0b29sc19uYW1lcyI6IFtdfV1K
|
||||
KAoIcGxhdGZvcm0SHAoabWFjT1MtMTQuMy1hcm02NC1hcm0tNjRiaXRKHAoQcGxhdGZvcm1fcmVs
|
||||
ZWFzZRIICgYyMy4zLjBKGwoPcGxhdGZvcm1fc3lzdGVtEggKBkRhcndpbkp7ChBwbGF0Zm9ybV92
|
||||
ZXJzaW9uEmcKZURhcndpbiBLZXJuZWwgVmVyc2lvbiAyMy4zLjA6IFdlZCBEZWMgMjAgMjE6MzA6
|
||||
NTkgUFNUIDIwMjM7IHJvb3Q6eG51LTEwMDAyLjgxLjV+Ny9SRUxFQVNFX0FSTTY0X1Q2MDMwSgoK
|
||||
BGNwdXMSAhgMegIYARLmBwoQngJJFR63bnmhXZu1jBEeXxIIXOKEjBdnaVgqDENyZXcgQ3JlYXRl
|
||||
ZDABOWDZjg+A/7gXQbhrkA+A/7gXShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuMTYuM0oaCg5weXRo
|
||||
b25fdmVyc2lvbhIICgYzLjExLjdKMQoHY3Jld19pZBImCiQ3ODY5ZmExMi1iN2IzLTRjYWEtYTBh
|
||||
Ni1hNTEyYmY1NGE3NTZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKFQoNY3Jld19sYW5n
|
||||
dWFnZRIECgJlbkoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2Zf
|
||||
YWdlbnRzEgIYAUrNAgoLY3Jld19hZ2VudHMSvQIKugJbeyJpZCI6ICI4MDY4ZGVlYS1lMmMxLTRi
|
||||
MTctOTI1Mi1mMmI1YzJmZTcwZmMiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgIm1lbW9yeV9lbmFi
|
||||
bGVkPyI6IGZhbHNlLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMTUsICJtYXhfcnBt
|
||||
IjogbnVsbCwgImkxOG4iOiAiZW4iLCAibGxtIjogIntcIm5hbWVcIjogbnVsbCwgXCJtb2RlbF9u
|
||||
YW1lXCI6IFwiZ3B0LTRcIiwgXCJ0ZW1wZXJhdHVyZVwiOiAwLjcsIFwiY2xhc3NcIjogXCJDaGF0
|
||||
T3BlbkFJXCJ9IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgInRvb2xzX25hbWVzIjog
|
||||
W119XUqKAQoKY3Jld190YXNrcxJ8CnpbeyJpZCI6ICI2YTIzZTdmZS1jNDFiLTRkZWEtYTgzYy03
|
||||
ZDU0M2EzMzJkOTQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJS
|
||||
ZXNlYXJjaGVyIiwgInRvb2xzX25hbWVzIjogW119XUooCghwbGF0Zm9ybRIcChptYWNPUy0xNC4z
|
||||
LWFybTY0LWFybS02NGJpdEocChBwbGF0Zm9ybV9yZWxlYXNlEggKBjIzLjMuMEobCg9wbGF0Zm9y
|
||||
bV9zeXN0ZW0SCAoGRGFyd2luSnsKEHBsYXRmb3JtX3ZlcnNpb24SZwplRGFyd2luIEtlcm5lbCBW
|
||||
ZXJzaW9uIDIzLjMuMDogV2VkIERlYyAyMCAyMTozMDo1OSBQU1QgMjAyMzsgcm9vdDp4bnUtMTAw
|
||||
MDIuODEuNX43L1JFTEVBU0VfQVJNNjRfVDYwMzBKCgoEY3B1cxICGAx6AhgB
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate, br
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '3066'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.23.0
|
||||
method: POST
|
||||
uri: http://telemetry.crewai.com:4318/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sat, 02 Mar 2024 16:29:45 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are Researcher. You''re
|
||||
love to sey howdy.\nYour personal goal is: Be super empathetic.To give my best
|
||||
complete final answer to the task use the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: my best complete final answer to
|
||||
the task.\nYour final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\n\nI MUST use these formats, my job depends on
|
||||
it!\n\nThought: \n\nCurrent Task: say howdy\n\nThis is the expect criteria for
|
||||
your final answer: Howdy! \n you MUST return the actual complete content as
|
||||
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
|
||||
the tools available and give your best Final Answer, your job depends on it!\n\nThought:
|
||||
\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"], "stream": true,
|
||||
"temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '881'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
muster"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
all"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
empathy"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
put"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
into"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
action"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
consider"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
receiver"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
feelings"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
perspective"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
situation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
make"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
this"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
greeting"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
warm"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
welcoming"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
as"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
possible"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
This"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
more"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
than"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
just"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
\""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"how"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\";"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
genuine"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
heartfelt"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
greeting"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
How"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
hope"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
you"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''re"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
having"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
wonderful"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
day"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''m"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
here"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
ready"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
make"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
your"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
day"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
even"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
better"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Let"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''s"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
have"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
great"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
time"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
together"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMX2EZExiFxwtsYhzkItHeeyKFFc","object":"chat.completion.chunk","created":1709396984,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
|
||||
|
||||
'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85e2c470dbf71acd-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Sat, 02 Mar 2024 16:29:45 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=Nx0bcmWEQFG_g6v1zkZz84sSA1OR14xTocpsSC62dBU-1709396985-1.0.1.1-6PgK6mieiNVMiUog66e0v_pjbnks6SL.nHIXfgwif3eY9D1w0E2XbxrHsKWViNbmuuZOtYE90qhztzwYywubLw;
|
||||
path=/; expires=Sat, 02-Mar-24 16:59:45 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=4yvFYJreqN9A2bYUvZOoRS1PWyIJLTU3rU6XDaVXHqM-1709396985404-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '464'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299800'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 39ms
|
||||
x-request-id:
|
||||
- req_4285558512febc2d55f043276b3df12f
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,25 +1,26 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role.\ntest backstory\n\nYour
|
||||
personal goal is: test goalTOOLS:\n------\nYou have access to only the following
|
||||
tools:\n\n('''',)\n\nTo use a tool, please use the exact following format:\n\n```\nThought:
|
||||
Do I need to use a tool? Yes\nAction: the tool you wanna use, should be one
|
||||
of [], just the name.\nAction Input: Any and all relevant information input
|
||||
and context for using the tool\nObservation: the result of using the tool\n```\n\nWhen
|
||||
you have a response for your task, or if you do not need to use a tool, you
|
||||
MUST use the format:\n\n```\nThought: Do I need to use a tool? No\nFinal Answer:
|
||||
[your response here]```Begin! This is VERY important to you, your job depends
|
||||
on it!\n\nCurrent Task: How much is 1 + 1?\n"}], "model": "gpt-4", "n": 1, "stop":
|
||||
["\nObservation"], "stream": true, "temperature": 0.0}'
|
||||
body: '{"messages": [{"role": "user", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goalTo give my best complete final answer to the task
|
||||
use the exact following format:\n\nThought: I now can give a great answer\nFinal
|
||||
Answer: my best complete final answer to the task.\nYour final answer must be
|
||||
the great and the most complete as possible, it must be outcome described.\n\nI
|
||||
MUST use these formats, my job depends on it!\n\nThought: \n\nCurrent Task:
|
||||
How much is 1 + 1?\n\nThis is the expect criteria for your final answer: the
|
||||
result of the math operation. \n you MUST return the actual complete content
|
||||
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
|
||||
use the tools available and give your best Final Answer, your job depends on
|
||||
it!\n\nThought: \n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"],
|
||||
"stream": true, "temperature": 0.0}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '868'
|
||||
- '894'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
@@ -44,96 +45,125 @@ interactions:
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
string: 'data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Thought"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"After"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
performing"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Do"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
simple"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
mathematical"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
operation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
need"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
have"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
determined"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
use"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
result"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
tool"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
No"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
The"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
result"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
of"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
math"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
operation"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
+"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"1"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
equals"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"2"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8rhoWQPa2JkVfJ3R7p3stqT2DXung","object":"chat.completion.chunk","created":1707810496,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
data: {"id":"chatcmpl-8yMQQCt3v497dultu61jvOn3AXn78","object":"chat.completion.chunk","created":1709396574,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
@@ -144,7 +174,7 @@ interactions:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 854b77d38d4215f1-SJC
|
||||
- 85e2ba6fab3c00e2-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
@@ -152,14 +182,14 @@ interactions:
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Tue, 13 Feb 2024 07:48:17 GMT
|
||||
- Sat, 02 Mar 2024 16:22:55 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=MzxC1xo7LqfNVrkSGvbsQwFovwE9BGVOVvKdxJ6iNGs-1707810497-1-AT9+DPA/J8Vj8DV63FFZ7Ofu50U6fltHzYuk8IAFOCmfEyoE/gRDFNAMT3cpkIGc9QYP9vePmgaRrOwn3jlaE1c=;
|
||||
path=/; expires=Tue, 13-Feb-24 08:18:17 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=09iVxN7bwlVc0TOtlGcpB8mZ55hs7xkV5JkSvyZmXeA-1709396575-1.0.1.1-C7tjZLqYGDjJhtaAZHFCR9god.pwKUu0O7dDT2HwtxUSD2zbrIAQREJgs18nwxSzs_gEBRLVnzvWbVmuEgvSzw;
|
||||
path=/; expires=Sat, 02-Mar-24 16:52:55 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=Xh3ZuwMifgbaylPyq.F1cxXIU.lHdsLsy_556QRUXxw-1707810497093-0-604800000;
|
||||
- _cfuvid=w1UiKQatN4AJulvq5e_n4Ig5WkrlgE0uDrsUjcQ0Ffo-1709396575463-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -170,9 +200,9 @@ interactions:
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- user-z7g4wmlazxqvc5wjyaaaocfz
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '325'
|
||||
- '284'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -184,13 +214,13 @@ interactions:
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299805'
|
||||
- '299798'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 38ms
|
||||
- 40ms
|
||||
x-request-id:
|
||||
- req_be41ae797dc113ec3cc04303015e8597
|
||||
- req_6a11314dbfc3a808fac698822b35640c
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
@@ -0,0 +1,334 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "You are Researcher. You''re
|
||||
love to sey howdy.\nYour personal goal is: Be super empathetic.To give my best
|
||||
complete final answer to the task use the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: my best complete final answer to
|
||||
the task.\nYour final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\n\nI MUST use these formats, my job depends on
|
||||
it!\n\nThought: \n\nCurrent Task: say howdy\n\nThis is the expect criteria for
|
||||
your final answer: Howdy! \n you MUST return the actual complete content as
|
||||
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
|
||||
the tools available and give your best Final Answer, your job depends on it!\n\nThought:
|
||||
\n"}], "model": "gpt-4", "n": 1, "stop": ["\nObservation"], "stream": true,
|
||||
"temperature": 0.7}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, br
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '881'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.12.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.12.0
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
must"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
greet"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
in"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
friendly"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
warm"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
manner"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
showing"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
empathy"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
kindness"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
recipient"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
This"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
is"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
crucial"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
for"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
personal"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
goal"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
also"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
for"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
my"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
job"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":".\n\n"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Answer"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
How"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"dy"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
I"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
hope"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
this"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
message"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
finds"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
you"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
well"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
and"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
brings"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
smile"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
to"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
your"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
face"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Have"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
a"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
fantastic"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
day"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-8yMWz25sw9PDbmUOBNq9V1iJ6jvNh","object":"chat.completion.chunk","created":1709396981,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
|
||||
|
||||
'
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 85e2c45b4abc4d2f-GRU
|
||||
Cache-Control:
|
||||
- no-cache, must-revalidate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- text/event-stream
|
||||
Date:
|
||||
- Sat, 02 Mar 2024 16:29:41 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=kWjBWTjLtuLL57wtiIGPnz1W_AUrAHEcA445ie2rbIg-1709396981-1.0.1.1-JLvi6DZyKB8U8MN.GpgEupI3_Mx4OY1krKoXLZRKftPUp8EO8JR9z59RcECIes0_EyrWfvt6hSnvCh9j3rHQqA;
|
||||
path=/; expires=Sat, 02-Mar-24 16:59:41 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=S9QWAyHqLa3ZvyQaB0OLd3ZwInwEVcVTrIjB9dJyJ.Q-1709396981692-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
access-control-allow-origin:
|
||||
- '*'
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-model:
|
||||
- gpt-4-0613
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '268'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=15724800; includeSubDomains
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '300000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '299800'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 39ms
|
||||
x-request-id:
|
||||
- req_751e7644c368ac8a65b2ff632f7b2fe3
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user