mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
23 Commits
update-llm
...
bugfix/eve
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c3617e7f1f | ||
|
|
c23e8fbb02 | ||
|
|
633644ab56 | ||
|
|
65aeb85e88 | ||
|
|
6c003e0382 | ||
|
|
6b14ffcffb | ||
|
|
df25703cc2 | ||
|
|
12a815e5db | ||
|
|
102836a2c2 | ||
|
|
d38be25d33 | ||
|
|
ac848f9ff4 | ||
|
|
a25a27c3d3 | ||
|
|
22c8e5f433 | ||
|
|
8df8255f18 | ||
|
|
66124d9afb | ||
|
|
7def3a8acc | ||
|
|
5b7fed2cb6 | ||
|
|
838b3bc09d | ||
|
|
ebb585e494 | ||
|
|
f09238e512 | ||
|
|
da5f60e7f3 | ||
|
|
807c13e144 | ||
|
|
3dea3d0183 |
@@ -1,6 +1,7 @@
|
||||
---
|
||||
title: 'Event Listeners'
|
||||
description: 'Tap into CrewAI events to build custom integrations and monitoring'
|
||||
icon: spinner
|
||||
---
|
||||
|
||||
# Event Listeners
|
||||
|
||||
642
docs/custom_llm.md
Normal file
642
docs/custom_llm.md
Normal file
@@ -0,0 +1,642 @@
|
||||
# Custom LLM Implementations
|
||||
|
||||
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
|
||||
|
||||
## Using Custom LLM Implementations
|
||||
|
||||
To create a custom LLM implementation, you need to:
|
||||
|
||||
1. Inherit from the `BaseLLM` abstract base class
|
||||
2. Implement the required methods:
|
||||
- `call()`: The main method to call the LLM with messages
|
||||
- `supports_function_calling()`: Whether the LLM supports function calling
|
||||
- `supports_stop_words()`: Whether the LLM supports stop words
|
||||
- `get_context_window_size()`: The context window size of the LLM
|
||||
|
||||
## Example: Basic Custom LLM
|
||||
|
||||
```python
|
||||
from crewai import BaseLLM
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
class CustomLLM(BaseLLM):
|
||||
def __init__(self, api_key: str, endpoint: str):
|
||||
super().__init__() # Initialize the base class to set default attributes
|
||||
if not api_key or not isinstance(api_key, str):
|
||||
raise ValueError("Invalid API key: must be a non-empty string")
|
||||
if not endpoint or not isinstance(endpoint, str):
|
||||
raise ValueError("Invalid endpoint URL: must be a non-empty string")
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
self.stop = [] # You can customize stop words if needed
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Call the LLM with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
callbacks: Optional list of callback functions.
|
||||
available_functions: Optional dict mapping function names to callables.
|
||||
|
||||
Returns:
|
||||
Either a text response from the LLM or the result of a tool function call.
|
||||
|
||||
Raises:
|
||||
TimeoutError: If the LLM request times out.
|
||||
RuntimeError: If the LLM request fails for other reasons.
|
||||
ValueError: If the response format is invalid.
|
||||
"""
|
||||
# Implement your own logic to call the LLM
|
||||
# For example, using requests:
|
||||
import requests
|
||||
|
||||
try:
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# Convert string message to proper format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
data = {
|
||||
"messages": messages,
|
||||
"tools": tools
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers=headers,
|
||||
json=data,
|
||||
timeout=30 # Set a reasonable timeout
|
||||
)
|
||||
response.raise_for_status() # Raise an exception for HTTP errors
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
except requests.Timeout:
|
||||
raise TimeoutError("LLM request timed out")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
except (KeyError, IndexError, ValueError) as e:
|
||||
raise ValueError(f"Invalid response format: {str(e)}")
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Check if the LLM supports function calling.
|
||||
|
||||
Returns:
|
||||
True if the LLM supports function calling, False otherwise.
|
||||
"""
|
||||
# Return True if your LLM supports function calling
|
||||
return True
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Check if the LLM supports stop words.
|
||||
|
||||
Returns:
|
||||
True if the LLM supports stop words, False otherwise.
|
||||
"""
|
||||
# Return True if your LLM supports stop words
|
||||
return True
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Get the context window size of the LLM.
|
||||
|
||||
Returns:
|
||||
The context window size as an integer.
|
||||
"""
|
||||
# Return the context window size of your LLM
|
||||
return 8192
|
||||
```
|
||||
|
||||
## Error Handling Best Practices
|
||||
|
||||
When implementing custom LLMs, it's important to handle errors properly to ensure robustness and reliability. Here are some best practices:
|
||||
|
||||
### 1. Implement Try-Except Blocks for API Calls
|
||||
|
||||
Always wrap API calls in try-except blocks to handle different types of errors:
|
||||
|
||||
```python
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
try:
|
||||
# API call implementation
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers=self.headers,
|
||||
json=self.prepare_payload(messages),
|
||||
timeout=30 # Set a reasonable timeout
|
||||
)
|
||||
response.raise_for_status() # Raise an exception for HTTP errors
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
except requests.Timeout:
|
||||
raise TimeoutError("LLM request timed out")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
except (KeyError, IndexError, ValueError) as e:
|
||||
raise ValueError(f"Invalid response format: {str(e)}")
|
||||
```
|
||||
|
||||
### 2. Implement Retry Logic for Transient Failures
|
||||
|
||||
For transient failures like network issues or rate limiting, implement retry logic with exponential backoff:
|
||||
|
||||
```python
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
import time
|
||||
|
||||
max_retries = 3
|
||||
retry_delay = 1 # seconds
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers=self.headers,
|
||||
json=self.prepare_payload(messages),
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
except (requests.Timeout, requests.ConnectionError) as e:
|
||||
if attempt < max_retries - 1:
|
||||
time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff
|
||||
continue
|
||||
raise TimeoutError(f"LLM request failed after {max_retries} attempts: {str(e)}")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
```
|
||||
|
||||
### 3. Validate Input Parameters
|
||||
|
||||
Always validate input parameters to prevent runtime errors:
|
||||
|
||||
```python
|
||||
def __init__(self, api_key: str, endpoint: str):
|
||||
super().__init__()
|
||||
if not api_key or not isinstance(api_key, str):
|
||||
raise ValueError("Invalid API key: must be a non-empty string")
|
||||
if not endpoint or not isinstance(endpoint, str):
|
||||
raise ValueError("Invalid endpoint URL: must be a non-empty string")
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
```
|
||||
|
||||
### 4. Handle Authentication Errors Gracefully
|
||||
|
||||
Provide clear error messages for authentication failures:
|
||||
|
||||
```python
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
try:
|
||||
response = requests.post(self.endpoint, headers=self.headers, json=data)
|
||||
if response.status_code == 401:
|
||||
raise ValueError("Authentication failed: Invalid API key or token")
|
||||
elif response.status_code == 403:
|
||||
raise ValueError("Authorization failed: Insufficient permissions")
|
||||
response.raise_for_status()
|
||||
# Process response
|
||||
except Exception as e:
|
||||
# Handle error
|
||||
raise
|
||||
```
|
||||
|
||||
## Example: JWT-based Authentication
|
||||
|
||||
For services that use JWT-based authentication instead of API keys, you can implement a custom LLM like this:
|
||||
|
||||
```python
|
||||
from crewai import BaseLLM, Agent, Task
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
class JWTAuthLLM(BaseLLM):
|
||||
def __init__(self, jwt_token: str, endpoint: str):
|
||||
super().__init__() # Initialize the base class to set default attributes
|
||||
if not jwt_token or not isinstance(jwt_token, str):
|
||||
raise ValueError("Invalid JWT token: must be a non-empty string")
|
||||
if not endpoint or not isinstance(endpoint, str):
|
||||
raise ValueError("Invalid endpoint URL: must be a non-empty string")
|
||||
self.jwt_token = jwt_token
|
||||
self.endpoint = endpoint
|
||||
self.stop = [] # You can customize stop words if needed
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Call the LLM with JWT authentication.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
callbacks: Optional list of callback functions.
|
||||
available_functions: Optional dict mapping function names to callables.
|
||||
|
||||
Returns:
|
||||
Either a text response from the LLM or the result of a tool function call.
|
||||
|
||||
Raises:
|
||||
TimeoutError: If the LLM request times out.
|
||||
RuntimeError: If the LLM request fails for other reasons.
|
||||
ValueError: If the response format is invalid.
|
||||
"""
|
||||
# Implement your own logic to call the LLM with JWT authentication
|
||||
import requests
|
||||
|
||||
try:
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.jwt_token}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# Convert string message to proper format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
data = {
|
||||
"messages": messages,
|
||||
"tools": tools
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers=headers,
|
||||
json=data,
|
||||
timeout=30 # Set a reasonable timeout
|
||||
)
|
||||
|
||||
if response.status_code == 401:
|
||||
raise ValueError("Authentication failed: Invalid JWT token")
|
||||
elif response.status_code == 403:
|
||||
raise ValueError("Authorization failed: Insufficient permissions")
|
||||
|
||||
response.raise_for_status() # Raise an exception for HTTP errors
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
except requests.Timeout:
|
||||
raise TimeoutError("LLM request timed out")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
except (KeyError, IndexError, ValueError) as e:
|
||||
raise ValueError(f"Invalid response format: {str(e)}")
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Check if the LLM supports function calling.
|
||||
|
||||
Returns:
|
||||
True if the LLM supports function calling, False otherwise.
|
||||
"""
|
||||
return True
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Check if the LLM supports stop words.
|
||||
|
||||
Returns:
|
||||
True if the LLM supports stop words, False otherwise.
|
||||
"""
|
||||
return True
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Get the context window size of the LLM.
|
||||
|
||||
Returns:
|
||||
The context window size as an integer.
|
||||
"""
|
||||
return 8192
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
Here are some common issues you might encounter when implementing custom LLMs and how to resolve them:
|
||||
|
||||
### 1. Authentication Failures
|
||||
|
||||
**Symptoms**: 401 Unauthorized or 403 Forbidden errors
|
||||
|
||||
**Solutions**:
|
||||
- Verify that your API key or JWT token is valid and not expired
|
||||
- Check that you're using the correct authentication header format
|
||||
- Ensure that your token has the necessary permissions
|
||||
|
||||
### 2. Timeout Issues
|
||||
|
||||
**Symptoms**: Requests taking too long or timing out
|
||||
|
||||
**Solutions**:
|
||||
- Implement timeout handling as shown in the examples
|
||||
- Use retry logic with exponential backoff
|
||||
- Consider using a more reliable network connection
|
||||
|
||||
### 3. Response Parsing Errors
|
||||
|
||||
**Symptoms**: KeyError, IndexError, or ValueError when processing responses
|
||||
|
||||
**Solutions**:
|
||||
- Validate the response format before accessing nested fields
|
||||
- Implement proper error handling for malformed responses
|
||||
- Check the API documentation for the expected response format
|
||||
|
||||
### 4. Rate Limiting
|
||||
|
||||
**Symptoms**: 429 Too Many Requests errors
|
||||
|
||||
**Solutions**:
|
||||
- Implement rate limiting in your custom LLM
|
||||
- Add exponential backoff for retries
|
||||
- Consider using a token bucket algorithm for more precise rate control
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Logging
|
||||
|
||||
Adding logging to your custom LLM can help with debugging and monitoring:
|
||||
|
||||
```python
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
class LoggingLLM(BaseLLM):
|
||||
def __init__(self, api_key: str, endpoint: str):
|
||||
super().__init__()
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
self.logger = logging.getLogger("crewai.llm.custom")
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
self.logger.info(f"Calling LLM with {len(messages) if isinstance(messages, list) else 1} messages")
|
||||
try:
|
||||
# API call implementation
|
||||
response = self._make_api_call(messages, tools)
|
||||
self.logger.debug(f"LLM response received: {response[:100]}...")
|
||||
return response
|
||||
except Exception as e:
|
||||
self.logger.error(f"LLM call failed: {str(e)}")
|
||||
raise
|
||||
```
|
||||
|
||||
### Rate Limiting
|
||||
|
||||
Implementing rate limiting can help avoid overwhelming the LLM API:
|
||||
|
||||
```python
|
||||
import time
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
class RateLimitedLLM(BaseLLM):
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
endpoint: str,
|
||||
requests_per_minute: int = 60
|
||||
):
|
||||
super().__init__()
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
self.requests_per_minute = requests_per_minute
|
||||
self.request_times: List[float] = []
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
self._enforce_rate_limit()
|
||||
# Record this request time
|
||||
self.request_times.append(time.time())
|
||||
# Make the actual API call
|
||||
return self._make_api_call(messages, tools)
|
||||
|
||||
def _enforce_rate_limit(self) -> None:
|
||||
"""Enforce the rate limit by waiting if necessary."""
|
||||
now = time.time()
|
||||
# Remove request times older than 1 minute
|
||||
self.request_times = [t for t in self.request_times if now - t < 60]
|
||||
|
||||
if len(self.request_times) >= self.requests_per_minute:
|
||||
# Calculate how long to wait
|
||||
oldest_request = min(self.request_times)
|
||||
wait_time = 60 - (now - oldest_request)
|
||||
if wait_time > 0:
|
||||
time.sleep(wait_time)
|
||||
```
|
||||
|
||||
### Metrics Collection
|
||||
|
||||
Collecting metrics can help you monitor your LLM usage:
|
||||
|
||||
```python
|
||||
import time
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
class MetricsCollectingLLM(BaseLLM):
|
||||
def __init__(self, api_key: str, endpoint: str):
|
||||
super().__init__()
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
self.metrics: Dict[str, Any] = {
|
||||
"total_calls": 0,
|
||||
"total_tokens": 0,
|
||||
"errors": 0,
|
||||
"latency": []
|
||||
}
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
start_time = time.time()
|
||||
self.metrics["total_calls"] += 1
|
||||
|
||||
try:
|
||||
response = self._make_api_call(messages, tools)
|
||||
# Estimate tokens (simplified)
|
||||
if isinstance(messages, str):
|
||||
token_estimate = len(messages) // 4
|
||||
else:
|
||||
token_estimate = sum(len(m.get("content", "")) // 4 for m in messages)
|
||||
self.metrics["total_tokens"] += token_estimate
|
||||
return response
|
||||
except Exception as e:
|
||||
self.metrics["errors"] += 1
|
||||
raise
|
||||
finally:
|
||||
latency = time.time() - start_time
|
||||
self.metrics["latency"].append(latency)
|
||||
|
||||
def get_metrics(self) -> Dict[str, Any]:
|
||||
"""Return the collected metrics."""
|
||||
avg_latency = sum(self.metrics["latency"]) / len(self.metrics["latency"]) if self.metrics["latency"] else 0
|
||||
return {
|
||||
**self.metrics,
|
||||
"avg_latency": avg_latency
|
||||
}
|
||||
```
|
||||
|
||||
## Advanced Usage: Function Calling
|
||||
|
||||
If your LLM supports function calling, you can implement the function calling logic in your custom LLM:
|
||||
|
||||
```python
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
import requests
|
||||
|
||||
try:
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.jwt_token}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# Convert string message to proper format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
data = {
|
||||
"messages": messages,
|
||||
"tools": tools
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers=headers,
|
||||
json=data,
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
response_data = response.json()
|
||||
|
||||
# Check if the LLM wants to call a function
|
||||
if response_data["choices"][0]["message"].get("tool_calls"):
|
||||
tool_calls = response_data["choices"][0]["message"]["tool_calls"]
|
||||
|
||||
# Process each tool call
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call["function"]["name"]
|
||||
function_args = json.loads(tool_call["function"]["arguments"])
|
||||
|
||||
if available_functions and function_name in available_functions:
|
||||
function_to_call = available_functions[function_name]
|
||||
function_response = function_to_call(**function_args)
|
||||
|
||||
# Add the function response to the messages
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"name": function_name,
|
||||
"content": str(function_response)
|
||||
})
|
||||
|
||||
# Call the LLM again with the updated messages
|
||||
return self.call(messages, tools, callbacks, available_functions)
|
||||
|
||||
# Return the text response if no function call
|
||||
return response_data["choices"][0]["message"]["content"]
|
||||
except requests.Timeout:
|
||||
raise TimeoutError("LLM request timed out")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
except (KeyError, IndexError, ValueError) as e:
|
||||
raise ValueError(f"Invalid response format: {str(e)}")
|
||||
```
|
||||
|
||||
## Using Your Custom LLM with CrewAI
|
||||
|
||||
Once you've implemented your custom LLM, you can use it with CrewAI agents and crews:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from typing import Dict, Any
|
||||
|
||||
# Create your custom LLM instance
|
||||
jwt_llm = JWTAuthLLM(
|
||||
jwt_token="your.jwt.token",
|
||||
endpoint="https://your-llm-endpoint.com/v1/chat/completions"
|
||||
)
|
||||
|
||||
# Use it with an agent
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find information on a topic",
|
||||
backstory="You are a research assistant tasked with finding information.",
|
||||
llm=jwt_llm,
|
||||
)
|
||||
|
||||
# Create a task for the agent
|
||||
task = Task(
|
||||
description="Research the benefits of exercise",
|
||||
agent=agent,
|
||||
expected_output="A summary of the benefits of exercise",
|
||||
)
|
||||
|
||||
# Execute the task
|
||||
result = agent.execute_task(task)
|
||||
print(result)
|
||||
|
||||
# Or use it with a crew
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
manager_llm=jwt_llm, # Use your custom LLM for the manager
|
||||
)
|
||||
|
||||
# Run the crew
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Implementing Your Own Authentication Mechanism
|
||||
|
||||
The `BaseLLM` class allows you to implement any authentication mechanism you need, not just JWT or API keys. You can use:
|
||||
|
||||
- OAuth tokens
|
||||
- Client certificates
|
||||
- Custom headers
|
||||
- Session-based authentication
|
||||
- Any other authentication method required by your LLM provider
|
||||
|
||||
Simply implement the appropriate authentication logic in your custom LLM class.
|
||||
@@ -97,14 +97,20 @@
|
||||
"how-to/kickoff-async",
|
||||
"how-to/kickoff-for-each",
|
||||
"how-to/replay-tasks-from-latest-crew-kickoff",
|
||||
"how-to/conditional-tasks",
|
||||
"how-to/conditional-tasks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"group": "Agent Monitoring & Observability",
|
||||
"pages": [
|
||||
"how-to/weave-integration",
|
||||
"how-to/agentops-observability",
|
||||
"how-to/langfuse-observability",
|
||||
"how-to/langtrace-observability",
|
||||
"how-to/mlflow-observability",
|
||||
"how-to/openlit-observability",
|
||||
"how-to/portkey-observability",
|
||||
"how-to/langfuse-observability"
|
||||
"how-to/opik-observability",
|
||||
"how-to/portkey-observability"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -223,4 +229,4 @@
|
||||
"reddit": "https://www.reddit.com/r/crewAIInc/"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Agent Monitoring with AgentOps
|
||||
title: AgentOps Integration
|
||||
description: Understanding and logging your agent performance with AgentOps.
|
||||
icon: paperclip
|
||||
---
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
---
|
||||
title: Agent Monitoring with Langfuse
|
||||
title: Langfuse Integration
|
||||
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
|
||||
icon: magnifying-glass-chart
|
||||
icon: vials
|
||||
---
|
||||
|
||||
# Integrate Langfuse with CrewAI
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Agent Monitoring with Langtrace
|
||||
title: Langtrace Integration
|
||||
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
|
||||
icon: chart-line
|
||||
---
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Agent Monitoring with MLflow
|
||||
title: MLflow Integration
|
||||
description: Quickly start monitoring your Agents with MLflow.
|
||||
icon: bars-staggered
|
||||
---
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Agent Monitoring with OpenLIT
|
||||
title: OpenLIT Integration
|
||||
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
|
||||
icon: magnifying-glass-chart
|
||||
---
|
||||
|
||||
124
docs/how-to/opik-observability.mdx
Normal file
124
docs/how-to/opik-observability.mdx
Normal file
@@ -0,0 +1,124 @@
|
||||
---
|
||||
title: Opik Integration
|
||||
description: Learn how to use Comet Opik to debug, evaluate, and monitor your CrewAI applications with comprehensive tracing, automated evaluations, and production-ready dashboards.
|
||||
icon: meteor
|
||||
---
|
||||
|
||||
# Opik Overview
|
||||
|
||||
With [Comet Opik](https://www.comet.com/docs/opik/), debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards.
|
||||
|
||||
Opik provides comprehensive support for every stage of your CrewAI application development:
|
||||
|
||||
- **Log Traces and Spans**: Automatically track LLM calls and application logic to debug and analyze development and production systems. Manually or programmatically annotate, view, and compare responses across projects.
|
||||
- **Evaluate Your LLM Application's Performance**: Evaluate against a custom test set and run built-in evaluation metrics or define your own metrics in the SDK or UI.
|
||||
- **Test Within Your CI/CD Pipeline**: Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Run online evaluations for continuous monitoring in production.
|
||||
- **Monitor & Analyze Production Data**: Understand your models' performance on unseen data in production and generate datasets for new dev iterations.
|
||||
|
||||
## Setup
|
||||
Comet provides a hosted version of the Opik platform, or you can run the platform locally.
|
||||
|
||||
To use the hosted version, simply [create a free Comet account](https://www.comet.com/signup?utm_medium=github&utm_source=crewai_docs) and grab you API Key.
|
||||
|
||||
To run the Opik platform locally, see our [installation guide](https://www.comet.com/docs/opik/self-host/overview/) for more information.
|
||||
|
||||
For this guide we will use CrewAI’s quickstart example.
|
||||
|
||||
<Steps>
|
||||
<Step title="Install required packages">
|
||||
```shell
|
||||
%pip install crewai crewai-tools opik --upgrade
|
||||
```
|
||||
</Step>
|
||||
<Step title="Configure Opik">
|
||||
```python
|
||||
import opik
|
||||
opik.configure(use_local=False)
|
||||
```
|
||||
<Step title="Prepare environment">
|
||||
First, we set up our API keys for our LLM-provider as environment variables:
|
||||
```python
|
||||
import os
|
||||
import getpass
|
||||
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
|
||||
```
|
||||
</Step>
|
||||
<Step title="Using CrewAI">
|
||||
The first step is to create our project. We will use an example from CrewAI’s documentation:
|
||||
```python
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
|
||||
|
||||
class YourCrewName:
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze data trends in the market",
|
||||
backstory="An experienced data analyst with a background in economics",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
role="Market Researcher",
|
||||
goal="Gather information on market dynamics",
|
||||
backstory="A diligent researcher with a keen eye for detail",
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
name="Collect Data Task",
|
||||
description="Collect recent market data and identify trends.",
|
||||
expected_output="A report summarizing key trends in the market.",
|
||||
agent=self.agent_one(),
|
||||
)
|
||||
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
name="Market Research Task",
|
||||
description="Research factors affecting market dynamics.",
|
||||
expected_output="An analysis of factors influencing the market.",
|
||||
agent=self.agent_two(),
|
||||
)
|
||||
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=[self.agent_one(), self.agent_two()],
|
||||
tasks=[self.task_one(), self.task_two()],
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
```
|
||||
Now we can import Opik’s tracker and run our crew:
|
||||
```python
|
||||
from opik.integrations.crewai import track_crewai
|
||||
|
||||
track_crewai(project_name="crewai-integration-demo")
|
||||
|
||||
my_crew = YourCrewName().crew()
|
||||
result = my_crew.kickoff()
|
||||
|
||||
print(result)
|
||||
```
|
||||
After running your CrewAI application, visit the Opik app to view:
|
||||
- LLM traces, spans, and their metadata
|
||||
- Agent interactions and task execution flow
|
||||
- Performance metrics like latency and token usage
|
||||
- Evaluation metrics (built-in or custom)
|
||||
|
||||
<Frame caption="Opik Agent Dashboard">
|
||||
<img src="/images/opik-crewai-dashboard.png" alt="Opik agent monitoring example with CrewAI" />
|
||||
</Frame>
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
## Resources
|
||||
|
||||
- [🦉 Opik Documentation](https://www.comet.com/docs/opik/)
|
||||
- [👉 Opik + CrewAI Colab](https://colab.research.google.com/github/comet-ml/opik/blob/main/apps/opik-documentation/documentation/docs/cookbook/crewai.ipynb)
|
||||
- [🐦 X](https://x.com/cometml)
|
||||
- [💬 Slack](https://slack.comet.com/)
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Agent Monitoring with Portkey
|
||||
title: Portkey Integration
|
||||
description: How to use Portkey with CrewAI
|
||||
icon: key
|
||||
---
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
---
|
||||
title: Weave Integration
|
||||
description: Learn how to use Weights & Biases (W&B) Weave to track, experiment with, evaluate, and improve your CrewAI applications.
|
||||
icon: insights
|
||||
icon: radar
|
||||
---
|
||||
|
||||
# Weave Overview
|
||||
|
||||
BIN
docs/images/opik-crewai-dashboard.png
Normal file
BIN
docs/images/opik-crewai-dashboard.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 99 KiB |
@@ -64,6 +64,9 @@ mem0 = ["mem0ai>=0.1.29"]
|
||||
docling = [
|
||||
"docling>=2.12.0",
|
||||
]
|
||||
aisuite = [
|
||||
"aisuite>=0.1.10",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
|
||||
@@ -5,6 +5,7 @@ from crewai.crew import Crew
|
||||
from crewai.flow.flow import Flow
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.llm import LLM
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
|
||||
@@ -21,6 +22,7 @@ __all__ = [
|
||||
"Process",
|
||||
"Task",
|
||||
"LLM",
|
||||
"BaseLLM",
|
||||
"Flow",
|
||||
"Knowledge",
|
||||
]
|
||||
|
||||
@@ -11,7 +11,7 @@ from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.security import Fingerprint
|
||||
from crewai.task import Task
|
||||
@@ -71,10 +71,10 @@ class Agent(BaseAgent):
|
||||
default=True,
|
||||
description="Use system prompt for the agent.",
|
||||
)
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
llm: Union[str, InstanceOf[BaseLLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
|
||||
function_calling_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
system_template: Optional[str] = Field(
|
||||
@@ -118,7 +118,9 @@ class Agent(BaseAgent):
|
||||
self.agent_ops_agent_name = self.role
|
||||
|
||||
self.llm = create_llm(self.llm)
|
||||
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
|
||||
if self.function_calling_llm and not isinstance(
|
||||
self.function_calling_llm, BaseLLM
|
||||
):
|
||||
self.function_calling_llm = create_llm(self.function_calling_llm)
|
||||
|
||||
if not self.agent_executor:
|
||||
@@ -140,15 +142,13 @@ class Agent(BaseAgent):
|
||||
self.embedder = crew_embedder
|
||||
|
||||
if self.knowledge_sources:
|
||||
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
|
||||
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
|
||||
if isinstance(self.knowledge_sources, list) and all(
|
||||
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
|
||||
):
|
||||
self.knowledge = Knowledge(
|
||||
sources=self.knowledge_sources,
|
||||
embedder=self.embedder,
|
||||
collection_name=knowledge_agent_name,
|
||||
collection_name=self.role,
|
||||
storage=self.knowledge_storage or None,
|
||||
)
|
||||
except (TypeError, ValueError) as e:
|
||||
|
||||
@@ -13,7 +13,7 @@ from crewai.agents.parser import (
|
||||
OutputParserException,
|
||||
)
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N, Printer
|
||||
@@ -61,7 +61,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
callbacks: List[Any] = [],
|
||||
):
|
||||
self._i18n: I18N = I18N()
|
||||
self.llm: LLM = llm
|
||||
self.llm: BaseLLM = llm
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
@@ -87,8 +87,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
|
||||
tool.name: tool for tool in self.tools
|
||||
}
|
||||
self.stop = stop_words
|
||||
self.llm.stop = list(set(self.llm.stop + self.stop))
|
||||
existing_stop = self.llm.stop or []
|
||||
self.llm.stop = list(
|
||||
set(
|
||||
existing_stop + self.stop
|
||||
if isinstance(existing_stop, list)
|
||||
else self.stop
|
||||
)
|
||||
)
|
||||
|
||||
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
if "system" in self.prompt:
|
||||
|
||||
@@ -14,7 +14,7 @@ from packaging import version
|
||||
from crewai.cli.utils import read_toml
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from crewai.crew import Crew
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
from crewai.types.crew_chat import ChatInputField, ChatInputs
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
@@ -116,7 +116,7 @@ def show_loading(event: threading.Event):
|
||||
print()
|
||||
|
||||
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
|
||||
def initialize_chat_llm(crew: Crew) -> Optional[LLM | BaseLLM]:
|
||||
"""Initializes the chat LLM and handles exceptions."""
|
||||
try:
|
||||
return create_llm(crew.chat_llm)
|
||||
|
||||
@@ -6,7 +6,7 @@ import warnings
|
||||
from concurrent.futures import Future
|
||||
from copy import copy as shallow_copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union, cast
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -26,7 +26,7 @@ from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
@@ -37,7 +37,7 @@ from crewai.task import Task
|
||||
from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.tools.base_tool import BaseTool, Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -153,7 +153,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Metrics for the LLM usage during all tasks execution.",
|
||||
)
|
||||
manager_llm: Optional[Any] = Field(
|
||||
manager_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
manager_agent: Optional[BaseAgent] = Field(
|
||||
@@ -187,7 +187,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the crew execution to be respected.",
|
||||
)
|
||||
prompt_file: str = Field(
|
||||
prompt_file: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Path to the prompt json file to be used for the crew.",
|
||||
)
|
||||
@@ -199,7 +199,7 @@ class Crew(BaseModel):
|
||||
default=False,
|
||||
description="Plan the crew execution and add the plan to the crew.",
|
||||
)
|
||||
planning_llm: Optional[Any] = Field(
|
||||
planning_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
default=None,
|
||||
description="Language model that will run the AgentPlanner if planning is True.",
|
||||
)
|
||||
@@ -215,7 +215,7 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
|
||||
)
|
||||
chat_llm: Optional[Any] = Field(
|
||||
chat_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
|
||||
default=None,
|
||||
description="LLM used to handle chatting with the crew.",
|
||||
)
|
||||
@@ -489,7 +489,7 @@ class Crew(BaseModel):
|
||||
task.key for task in self.tasks
|
||||
]
|
||||
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
|
||||
|
||||
|
||||
@property
|
||||
def fingerprint(self) -> Fingerprint:
|
||||
"""
|
||||
@@ -819,7 +819,12 @@ class Crew(BaseModel):
|
||||
|
||||
# Determine which tools to use - task tools take precedence over agent tools
|
||||
tools_for_task = task.tools or agent_to_use.tools or []
|
||||
tools_for_task = self._prepare_tools(agent_to_use, task, tools_for_task)
|
||||
# Prepare tools and ensure they're compatible with task execution
|
||||
tools_for_task = self._prepare_tools(
|
||||
agent_to_use,
|
||||
task,
|
||||
cast(Union[List[Tool], List[BaseTool]], tools_for_task),
|
||||
)
|
||||
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
@@ -838,7 +843,7 @@ class Crew(BaseModel):
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=tools_for_task,
|
||||
tools=cast(List[BaseTool], tools_for_task),
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
@@ -850,7 +855,7 @@ class Crew(BaseModel):
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=tools_for_task,
|
||||
tools=cast(List[BaseTool], tools_for_task),
|
||||
)
|
||||
task_outputs.append(task_output)
|
||||
self._process_task_result(task, task_output)
|
||||
@@ -888,10 +893,12 @@ class Crew(BaseModel):
|
||||
return None
|
||||
|
||||
def _prepare_tools(
|
||||
self, agent: BaseAgent, task: Task, tools: List[Tool]
|
||||
) -> List[Tool]:
|
||||
self, agent: BaseAgent, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
# Add delegation tools if agent allows delegation
|
||||
if agent.allow_delegation:
|
||||
if hasattr(agent, "allow_delegation") and getattr(
|
||||
agent, "allow_delegation", False
|
||||
):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
tools = self._update_manager_tools(task, tools)
|
||||
@@ -900,17 +907,24 @@ class Crew(BaseModel):
|
||||
"Manager agent is required for hierarchical process."
|
||||
)
|
||||
|
||||
elif agent and agent.allow_delegation:
|
||||
elif agent:
|
||||
tools = self._add_delegation_tools(task, tools)
|
||||
|
||||
# Add code execution tools if agent allows code execution
|
||||
if agent.allow_code_execution:
|
||||
if hasattr(agent, "allow_code_execution") and getattr(
|
||||
agent, "allow_code_execution", False
|
||||
):
|
||||
tools = self._add_code_execution_tools(agent, tools)
|
||||
|
||||
if agent and agent.multimodal:
|
||||
if (
|
||||
agent
|
||||
and hasattr(agent, "multimodal")
|
||||
and getattr(agent, "multimodal", False)
|
||||
):
|
||||
tools = self._add_multimodal_tools(agent, tools)
|
||||
|
||||
return tools
|
||||
# Return a List[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
@@ -918,11 +932,13 @@ class Crew(BaseModel):
|
||||
return task.agent
|
||||
|
||||
def _merge_tools(
|
||||
self, existing_tools: List[Tool], new_tools: List[Tool]
|
||||
) -> List[Tool]:
|
||||
self,
|
||||
existing_tools: Union[List[Tool], List[BaseTool]],
|
||||
new_tools: Union[List[Tool], List[BaseTool]],
|
||||
) -> List[BaseTool]:
|
||||
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
|
||||
if not new_tools:
|
||||
return existing_tools
|
||||
return cast(List[BaseTool], existing_tools)
|
||||
|
||||
# Create mapping of tool names to new tools
|
||||
new_tool_map = {tool.name: tool for tool in new_tools}
|
||||
@@ -933,23 +949,41 @@ class Crew(BaseModel):
|
||||
# Add all new tools
|
||||
tools.extend(new_tools)
|
||||
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _inject_delegation_tools(
|
||||
self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]
|
||||
):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
return self._merge_tools(tools, delegation_tools)
|
||||
self,
|
||||
tools: Union[List[Tool], List[BaseTool]],
|
||||
task_agent: BaseAgent,
|
||||
agents: List[BaseAgent],
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(task_agent, "get_delegation_tools"):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
# Cast delegation_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], delegation_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
return self._merge_tools(tools, multimodal_tools)
|
||||
def _add_multimodal_tools(
|
||||
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(agent, "get_multimodal_tools"):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
# Cast multimodal_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], multimodal_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
return self._merge_tools(tools, code_tools)
|
||||
def _add_code_execution_tools(
|
||||
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if hasattr(agent, "get_code_execution_tools"):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
# Cast code_tools to the expected type for _merge_tools
|
||||
return self._merge_tools(tools, cast(List[BaseTool], code_tools))
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
|
||||
def _add_delegation_tools(
|
||||
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
if not tools:
|
||||
@@ -957,7 +991,7 @@ class Crew(BaseModel):
|
||||
tools = self._inject_delegation_tools(
|
||||
tools, task.agent, agents_for_delegation
|
||||
)
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
if self.output_log_file:
|
||||
@@ -965,7 +999,9 @@ class Crew(BaseModel):
|
||||
task_name=task.name, task=task.description, agent=role, status="started"
|
||||
)
|
||||
|
||||
def _update_manager_tools(self, task: Task, tools: List[Tool]):
|
||||
def _update_manager_tools(
|
||||
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
|
||||
) -> List[BaseTool]:
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
|
||||
@@ -973,7 +1009,7 @@ class Crew(BaseModel):
|
||||
tools = self._inject_delegation_tools(
|
||||
tools, self.manager_agent, self.agents
|
||||
)
|
||||
return tools
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
@@ -1214,13 +1250,14 @@ class Crew(BaseModel):
|
||||
def test(
|
||||
self,
|
||||
n_iterations: int,
|
||||
eval_llm: Union[str, InstanceOf[LLM]],
|
||||
eval_llm: Union[str, InstanceOf[BaseLLM]],
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
try:
|
||||
eval_llm = create_llm(eval_llm)
|
||||
if not eval_llm:
|
||||
# Create LLM instance and ensure it's of type LLM for CrewEvaluator
|
||||
llm_instance = create_llm(eval_llm)
|
||||
if not llm_instance:
|
||||
raise ValueError("Failed to create LLM instance.")
|
||||
|
||||
crewai_event_bus.emit(
|
||||
@@ -1228,12 +1265,12 @@ class Crew(BaseModel):
|
||||
CrewTestStartedEvent(
|
||||
crew_name=self.name or "crew",
|
||||
n_iterations=n_iterations,
|
||||
eval_llm=eval_llm,
|
||||
eval_llm=llm_instance,
|
||||
inputs=inputs,
|
||||
),
|
||||
)
|
||||
test_crew = self.copy()
|
||||
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
|
||||
evaluator = CrewEvaluator(test_crew, llm_instance)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import uuid
|
||||
from datetime import date, datetime
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
@@ -32,7 +33,7 @@ def export_state(flow: Flow) -> dict[str, Serializable]:
|
||||
|
||||
|
||||
def to_serializable(
|
||||
obj: Any, max_depth: int = 5, _current_depth: int = 0
|
||||
obj: Any, exclude: set[str] | None = None, max_depth: int = 5, _current_depth: int = 0
|
||||
) -> Serializable:
|
||||
"""Converts a Python object into a JSON-compatible representation.
|
||||
|
||||
@@ -42,6 +43,7 @@ def to_serializable(
|
||||
|
||||
Args:
|
||||
obj (Any): Object to transform.
|
||||
exclude (set[str], optional): Set of keys to exclude from the result.
|
||||
max_depth (int, optional): Maximum recursion depth. Defaults to 5.
|
||||
|
||||
Returns:
|
||||
@@ -50,21 +52,39 @@ def to_serializable(
|
||||
if _current_depth >= max_depth:
|
||||
return repr(obj)
|
||||
|
||||
if exclude is None:
|
||||
exclude = set()
|
||||
|
||||
if isinstance(obj, (str, int, float, bool, type(None))):
|
||||
return obj
|
||||
elif isinstance(obj, uuid.UUID):
|
||||
return str(obj)
|
||||
elif isinstance(obj, (date, datetime)):
|
||||
return obj.isoformat()
|
||||
elif isinstance(obj, (list, tuple, set)):
|
||||
return [to_serializable(item, max_depth, _current_depth + 1) for item in obj]
|
||||
return [
|
||||
to_serializable(
|
||||
item, max_depth=max_depth, _current_depth=_current_depth + 1
|
||||
)
|
||||
for item in obj
|
||||
]
|
||||
elif isinstance(obj, dict):
|
||||
return {
|
||||
_to_serializable_key(key): to_serializable(
|
||||
value, max_depth, _current_depth + 1
|
||||
obj=value,
|
||||
exclude=exclude,
|
||||
max_depth=max_depth,
|
||||
_current_depth=_current_depth + 1,
|
||||
)
|
||||
for key, value in obj.items()
|
||||
if key not in exclude
|
||||
}
|
||||
elif isinstance(obj, BaseModel):
|
||||
return to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
|
||||
return to_serializable(
|
||||
obj=obj.model_dump(exclude=exclude),
|
||||
max_depth=max_depth,
|
||||
_current_depth=_current_depth + 1,
|
||||
)
|
||||
else:
|
||||
return repr(obj)
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ from chromadb.config import Settings
|
||||
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.chromadb import sanitize_collection_name
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
@@ -99,7 +100,8 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
)
|
||||
if self.app:
|
||||
self.collection = self.app.get_or_create_collection(
|
||||
name=collection_name, embedding_function=self.embedder
|
||||
name=sanitize_collection_name(collection_name),
|
||||
embedding_function=self.embedder,
|
||||
)
|
||||
else:
|
||||
raise Exception("Vector Database Client not initialized")
|
||||
|
||||
@@ -40,6 +40,7 @@ with warnings.catch_warnings():
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
@@ -218,7 +219,7 @@ class StreamingChoices(TypedDict):
|
||||
finish_reason: Optional[str]
|
||||
|
||||
|
||||
class LLM:
|
||||
class LLM(BaseLLM):
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
|
||||
91
src/crewai/llms/base_llm.py
Normal file
91
src/crewai/llms/base_llm.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
|
||||
class BaseLLM(ABC):
|
||||
"""Abstract base class for LLM implementations.
|
||||
|
||||
This class defines the interface that all LLM implementations must follow.
|
||||
Users can extend this class to create custom LLM implementations that don't
|
||||
rely on litellm's authentication mechanism.
|
||||
|
||||
Custom LLM implementations should handle error cases gracefully, including
|
||||
timeouts, authentication failures, and malformed responses. They should also
|
||||
implement proper validation for input parameters and provide clear error
|
||||
messages when things go wrong.
|
||||
|
||||
Attributes:
|
||||
stop (list): A list of stop sequences that the LLM should use to stop generation.
|
||||
This is used by the CrewAgentExecutor and other components.
|
||||
"""
|
||||
|
||||
model: str
|
||||
temperature: Optional[float] = None
|
||||
stop: Optional[List[str]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
temperature: Optional[float] = None,
|
||||
):
|
||||
"""Initialize the BaseLLM with default attributes.
|
||||
|
||||
This constructor sets default values for attributes that are expected
|
||||
by the CrewAgentExecutor and other components.
|
||||
|
||||
All custom LLM implementations should call super().__init__() to ensure
|
||||
that these default attributes are properly initialized.
|
||||
"""
|
||||
self.model = model
|
||||
self.temperature = temperature
|
||||
self.stop = []
|
||||
|
||||
@abstractmethod
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Call the LLM with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
Can be a string or list of message dictionaries.
|
||||
If string, it will be converted to a single user message.
|
||||
If list, each dict must have 'role' and 'content' keys.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
Each tool should define its name, description, and parameters.
|
||||
callbacks: Optional list of callback functions to be executed
|
||||
during and after the LLM call.
|
||||
available_functions: Optional dict mapping function names to callables
|
||||
that can be invoked by the LLM.
|
||||
|
||||
Returns:
|
||||
Either a text response from the LLM (str) or
|
||||
the result of a tool function call (Any).
|
||||
|
||||
Raises:
|
||||
ValueError: If the messages format is invalid.
|
||||
TimeoutError: If the LLM request times out.
|
||||
RuntimeError: If the LLM request fails for other reasons.
|
||||
"""
|
||||
pass
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Check if the LLM supports stop words.
|
||||
|
||||
Returns:
|
||||
bool: True if the LLM supports stop words, False otherwise.
|
||||
"""
|
||||
return True # Default implementation assumes support for stop words
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Get the context window size for the LLM.
|
||||
|
||||
Returns:
|
||||
int: The number of tokens/characters the model can handle.
|
||||
"""
|
||||
# Default implementation - subclasses should override with model-specific values
|
||||
return 4096
|
||||
38
src/crewai/llms/third_party/ai_suite.py
vendored
Normal file
38
src/crewai/llms/third_party/ai_suite.py
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import aisuite as ai
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
|
||||
|
||||
class AISuiteLLM(BaseLLM):
|
||||
def __init__(self, model: str, temperature: Optional[float] = None, **kwargs):
|
||||
super().__init__(model, temperature, **kwargs)
|
||||
self.client = ai.Client()
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
completion_params = self._prepare_completion_params(messages, tools)
|
||||
response = self.client.chat.completions.create(**completion_params)
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
def _prepare_completion_params(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"temperature": self.temperature,
|
||||
"tools": tools,
|
||||
}
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
return False
|
||||
@@ -572,7 +572,15 @@ class Task(BaseModel):
|
||||
def copy(
|
||||
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
|
||||
) -> "Task":
|
||||
"""Create a deep copy of the Task."""
|
||||
"""Creates a deep copy of the Task while preserving its original class type.
|
||||
|
||||
Args:
|
||||
agents: List of agents available for the task.
|
||||
task_mapping: Dictionary mapping task IDs to Task instances.
|
||||
|
||||
Returns:
|
||||
A copy of the task with the same class type as the original.
|
||||
"""
|
||||
exclude = {
|
||||
"id",
|
||||
"agent",
|
||||
@@ -595,7 +603,7 @@ class Task(BaseModel):
|
||||
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
|
||||
cloned_tools = copy(self.tools) if self.tools else []
|
||||
|
||||
copied_task = Task(
|
||||
copied_task = self.__class__(
|
||||
**copied_data,
|
||||
context=cloned_context,
|
||||
agent=cloned_agent,
|
||||
|
||||
62
src/crewai/utilities/chromadb.py
Normal file
62
src/crewai/utilities/chromadb.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import re
|
||||
from typing import Optional
|
||||
|
||||
MIN_COLLECTION_LENGTH = 3
|
||||
MAX_COLLECTION_LENGTH = 63
|
||||
DEFAULT_COLLECTION = "default_collection"
|
||||
|
||||
# Compiled regex patterns for better performance
|
||||
INVALID_CHARS_PATTERN = re.compile(r"[^a-zA-Z0-9_-]")
|
||||
IPV4_PATTERN = re.compile(r"^(\d{1,3}\.){3}\d{1,3}$")
|
||||
|
||||
|
||||
def is_ipv4_pattern(name: str) -> bool:
|
||||
"""
|
||||
Check if a string matches an IPv4 address pattern.
|
||||
|
||||
Args:
|
||||
name: The string to check
|
||||
|
||||
Returns:
|
||||
True if the string matches an IPv4 pattern, False otherwise
|
||||
"""
|
||||
return bool(IPV4_PATTERN.match(name))
|
||||
|
||||
|
||||
def sanitize_collection_name(name: Optional[str]) -> str:
|
||||
"""
|
||||
Sanitize a collection name to meet ChromaDB requirements:
|
||||
1. 3-63 characters long
|
||||
2. Starts and ends with alphanumeric character
|
||||
3. Contains only alphanumeric characters, underscores, or hyphens
|
||||
4. No consecutive periods
|
||||
5. Not a valid IPv4 address
|
||||
|
||||
Args:
|
||||
name: The original collection name to sanitize
|
||||
|
||||
Returns:
|
||||
A sanitized collection name that meets ChromaDB requirements
|
||||
"""
|
||||
if not name:
|
||||
return DEFAULT_COLLECTION
|
||||
|
||||
if is_ipv4_pattern(name):
|
||||
name = f"ip_{name}"
|
||||
|
||||
sanitized = INVALID_CHARS_PATTERN.sub("_", name)
|
||||
|
||||
if not sanitized[0].isalnum():
|
||||
sanitized = "a" + sanitized
|
||||
|
||||
if not sanitized[-1].isalnum():
|
||||
sanitized = sanitized[:-1] + "z"
|
||||
|
||||
if len(sanitized) < MIN_COLLECTION_LENGTH:
|
||||
sanitized = sanitized + "x" * (MIN_COLLECTION_LENGTH - len(sanitized))
|
||||
if len(sanitized) > MAX_COLLECTION_LENGTH:
|
||||
sanitized = sanitized[:MAX_COLLECTION_LENGTH]
|
||||
if not sanitized[-1].isalnum():
|
||||
sanitized = sanitized[:-1] + "z"
|
||||
|
||||
return sanitized
|
||||
@@ -6,7 +6,7 @@ from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -24,7 +24,7 @@ class CrewEvaluator:
|
||||
|
||||
Attributes:
|
||||
crew (Crew): The crew of agents to evaluate.
|
||||
eval_llm (LLM): Language model instance to use for evaluations
|
||||
eval_llm (BaseLLM): Language model instance to use for evaluations
|
||||
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
|
||||
iteration (int): The current iteration of the evaluation.
|
||||
"""
|
||||
@@ -33,7 +33,7 @@ class CrewEvaluator:
|
||||
run_execution_times: defaultdict = defaultdict(list)
|
||||
iteration: int = 0
|
||||
|
||||
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
|
||||
def __init__(self, crew, eval_llm: InstanceOf[BaseLLM]):
|
||||
self.crew = crew
|
||||
self.llm = eval_llm
|
||||
self._telemetry = Telemetry()
|
||||
|
||||
@@ -507,9 +507,10 @@ class ConsoleFormatter:
|
||||
|
||||
# Remove the thinking status node when complete
|
||||
if "Thinking" in str(tool_branch.label):
|
||||
agent_branch.children.remove(tool_branch)
|
||||
self.print(crew_tree)
|
||||
self.print()
|
||||
if tool_branch in agent_branch.children:
|
||||
agent_branch.children.remove(tool_branch)
|
||||
self.print(crew_tree)
|
||||
self.print()
|
||||
|
||||
def handle_llm_call_failed(
|
||||
self, tool_branch: Optional[Tree], error: str, crew_tree: Optional[Tree]
|
||||
@@ -587,6 +588,7 @@ class ConsoleFormatter:
|
||||
for child in flow_tree.children:
|
||||
if "Running tests" in str(child.label):
|
||||
child.label = Text("✅ Tests completed successfully", style="green")
|
||||
break
|
||||
|
||||
self.print(flow_tree)
|
||||
self.print()
|
||||
|
||||
@@ -2,28 +2,28 @@ import os
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
|
||||
from crewai.llm import LLM
|
||||
from crewai.llm import LLM, BaseLLM
|
||||
|
||||
|
||||
def create_llm(
|
||||
llm_value: Union[str, LLM, Any, None] = None,
|
||||
) -> Optional[LLM]:
|
||||
) -> Optional[LLM | BaseLLM]:
|
||||
"""
|
||||
Creates or returns an LLM instance based on the given llm_value.
|
||||
|
||||
Args:
|
||||
llm_value (str | LLM | Any | None):
|
||||
llm_value (str | BaseLLM | Any | None):
|
||||
- str: The model name (e.g., "gpt-4").
|
||||
- LLM: Already instantiated LLM, returned as-is.
|
||||
- BaseLLM: Already instantiated BaseLLM (including LLM), returned as-is.
|
||||
- Any: Attempt to extract known attributes like model_name, temperature, etc.
|
||||
- None: Use environment-based or fallback default model.
|
||||
|
||||
Returns:
|
||||
An LLM instance if successful, or None if something fails.
|
||||
A BaseLLM instance if successful, or None if something fails.
|
||||
"""
|
||||
|
||||
# 1) If llm_value is already an LLM object, return it directly
|
||||
if isinstance(llm_value, LLM):
|
||||
# 1) If llm_value is already a BaseLLM or LLM object, return it directly
|
||||
if isinstance(llm_value, LLM) or isinstance(llm_value, BaseLLM):
|
||||
return llm_value
|
||||
|
||||
# 2) If llm_value is a string (model name)
|
||||
|
||||
@@ -1621,6 +1621,38 @@ def test_agent_with_knowledge_sources():
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_extensive_role():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent with extensive role description that is longer than 80 characters",
|
||||
goal="Provide information based on knowledge sources",
|
||||
backstory="You have access to specific knowledge sources.",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
knowledge_sources=[string_source],
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="What is Brandon's favorite color?",
|
||||
expected_output="Brandon's favorite color.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources_works_with_copy():
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -710,4 +710,117 @@ interactions:
|
||||
- req_4ceac9bc8ae57f631959b91d2ab63c4d
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
|
||||
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
|
||||
Task: Test task description\n\nThis is the expected criteria for your final
|
||||
answer: Test expected output\nyou MUST return the actual complete content as
|
||||
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
|
||||
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '840'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-BExKOliqPgvHyozZaBu5oN50CHtsa\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1742904348,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Test expected output\",\n \"refusal\": null,\n \"annotations\":
|
||||
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 158,\n \"completion_tokens\":
|
||||
15,\n \"total_tokens\": 173,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_90d33c15d4\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 925e4749af02f227-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 25 Mar 2025 12:05:48 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=VHa7Z7dJYptxXpaMxgldvK6HqIM.m74xpi.80N_EBDc-1742904348-1.0.1.1-VthD2riCSnAprFYhOZxfIrTjT33tybJHpHWB25Q_Hx4vuACCyF00tix6e6eorDReGcW3jb5cUzbGqYi47TrMsS4LYjxBv5eCo7cU9OuFajs;
|
||||
path=/; expires=Tue, 25-Mar-25 12:35:48 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=Is8fSaH3lU8yHyT3fI7cRZiDqIYSI6sPpzfzvEV8HMc-1742904348760-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '377'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '50000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '49999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999822'
|
||||
x-ratelimit-reset-requests:
|
||||
- 1ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_fd6b93e3b1a30868482c72306e7f63c2
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
107
tests/cassettes/test_custom_llm_implementation.yaml
Normal file
107
tests/cassettes/test_custom_llm_implementation.yaml
Normal file
@@ -0,0 +1,107 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What is the answer to life, the universe, and everything?"}],
|
||||
"model": "gpt-4o-mini", "tools": null}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '206'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-B7W6FS0wpfndLdg12G3H6ZAXcYhJi\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1741131387,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The answer to life, the universe, and
|
||||
everything, famously found in Douglas Adams' \\\"The Hitchhiker's Guide to the
|
||||
Galaxy,\\\" is the number 42. However, the question itself is left ambiguous,
|
||||
leading to much speculation and humor in the story.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 30,\n \"completion_tokens\":
|
||||
54,\n \"total_tokens\": 84,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_06737a9306\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91b532234c18cf1f-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Mar 2025 23:36:28 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=DgLb6UAE6W4Oeto1Bi2RiKXQVV5TTzkXdXWFdmAEwQQ-1741131388-1.0.1.1-jWQtsT95wOeQbmIxAK7cv8gJWxYi1tQ.IupuJzBDnZr7iEChwVUQBRfnYUBJPDsNly3bakCDArjD_S.FLKwH6xUfvlxgfd4YSBhBPy7bcgw;
|
||||
path=/; expires=Wed, 05-Mar-25 00:06:28 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=Oa59XCmqjKLKwU34la1hkTunN57JW20E.ZHojvRBfow-1741131388236-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '776'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999960'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_97824e8fe7c1aca3fbcba7c925388b39
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
305
tests/cassettes/test_custom_llm_within_crew.yaml
Normal file
305
tests/cassettes/test_custom_llm_within_crew.yaml
Normal file
@@ -0,0 +1,305 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
|
||||
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
|
||||
my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
|
||||
for your final answer: A greeting to the user\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '931'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
|
||||
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
|
||||
\ \"code\": \"missing_required_parameter\"\n }\n}"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91b54660799a15b4-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '219'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Mar 2025 23:50:16 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=OwS.6cyfDpbxxx8vPp4THv5eNoDMQK0qSVN.wSUyOYk-1741132216-1.0.1.1-QBVd08CjfmDBpNnYQM5ILGbTUWKh6SDM9E4ARG4SV2Z9Q4ltFSFLXoo38OGJApUNZmzn4PtRsyAPsHt_dsrHPF6MD17FPcGtrnAHqCjJrfU;
|
||||
path=/; expires=Wed, 05-Mar-25 00:20:16 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=n_ebDsAOhJm5Mc7OMx8JDiOaZq5qzHCnVxyS3KN0BwA-1741132216951-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '19'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_042a4e8f9432f6fde7a02037bb6caafa
|
||||
http_version: HTTP/1.1
|
||||
status_code: 400
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
|
||||
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
|
||||
my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
|
||||
for your final answer: A greeting to the user\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '931'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
|
||||
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
|
||||
\ \"code\": \"missing_required_parameter\"\n }\n}"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91b54664bb1acef1-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '219'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Mar 2025 23:50:17 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=.wGU4pJEajaSzFWjp05TBQwWbCNA2CgpYNu7UYOzbbM-1741132217-1.0.1.1-NoLiAx4qkplllldYYxZCOSQGsX6hsPUJIEyqmt84B3g7hjW1s7.jk9C9PYzXagHWjT0sQ9Ny4LZBA94lDJTfDBZpty8NJQha7ZKW0P_msH8;
|
||||
path=/; expires=Wed, 05-Mar-25 00:20:17 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=GAjgJjVLtN49bMeWdWZDYLLkEkK51z5kxK4nKqhAzxY-1741132217161-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '25'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7a1d027da1ef4468e861e570c72e98fb
|
||||
http_version: HTTP/1.1
|
||||
status_code: 400
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": [{"role": "system", "content": "You are Say Hi.
|
||||
You just say hi to the user\nYour personal goal is: Say hi to the user\nTo give
|
||||
my best complete final answer to the task respond using the exact following
|
||||
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
|
||||
answer must be the great and the most complete as possible, it must be outcome
|
||||
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
|
||||
"content": "\nCurrent Task: Say hi to the user\n\nThis is the expected criteria
|
||||
for your final answer: A greeting to the user\nyou MUST return the actual complete
|
||||
content as the final answer, not a summary.\n\nBegin! This is VERY important
|
||||
to you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}]}], "model": "gpt-4o-mini", "tools": null}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '931'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.61.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.61.0
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"error\": {\n \"message\": \"Missing required parameter: 'messages[1].content[0].type'.\",\n
|
||||
\ \"type\": \"invalid_request_error\",\n \"param\": \"messages[1].content[0].type\",\n
|
||||
\ \"code\": \"missing_required_parameter\"\n }\n}"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91b54666183beb22-SJC
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '219'
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 04 Mar 2025 23:50:17 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=VwjWHHpkZMJlosI9RbMqxYDBS1t0JK4tWpAy4lST2QM-1741132217-1.0.1.1-u7PU.ZvVBTXNB5R8vaYfWdPXAjWZ3ZcTAy656VaGDZmKIckk5od._eQdn0W0EGVtEMm3TuF60z4GZAPDwMYvb3_3cw1RuEMmQbp4IIrl7VY;
|
||||
path=/; expires=Wed, 05-Mar-25 00:20:17 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=NglAAsQBoiabMuuHFgilRjflSPFqS38VGKnGyweuCuw-1741132217438-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '56'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999974'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_3c335b308b82cc2214783a4bf2fc0fd4
|
||||
http_version: HTTP/1.1
|
||||
status_code: 400
|
||||
version: 1
|
||||
359
tests/custom_llm_test.py
Normal file
359
tests/custom_llm_test.py
Normal file
@@ -0,0 +1,359 @@
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
|
||||
class CustomLLM(BaseLLM):
|
||||
"""Custom LLM implementation for testing.
|
||||
|
||||
This is a simple implementation of the BaseLLM abstract base class
|
||||
that returns a predefined response for testing purposes.
|
||||
"""
|
||||
|
||||
def __init__(self, response="Default response", model="test-model"):
|
||||
"""Initialize the CustomLLM with a predefined response.
|
||||
|
||||
Args:
|
||||
response: The predefined response to return from call().
|
||||
"""
|
||||
super().__init__(model=model)
|
||||
self.response = response
|
||||
self.call_count = 0
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages,
|
||||
tools=None,
|
||||
callbacks=None,
|
||||
available_functions=None,
|
||||
):
|
||||
"""
|
||||
Mock LLM call that returns a predefined response.
|
||||
Properly formats messages to match OpenAI's expected structure.
|
||||
"""
|
||||
self.call_count += 1
|
||||
|
||||
# If input is a string, convert to proper message format
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# Ensure each message has properly formatted content
|
||||
for message in messages:
|
||||
if isinstance(message["content"], str):
|
||||
message["content"] = [{"type": "text", "text": message["content"]}]
|
||||
|
||||
# Return predefined response in expected format
|
||||
if "Thought:" in str(messages):
|
||||
return f"Thought: I will say hi\nFinal Answer: {self.response}"
|
||||
return self.response
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Return False to indicate that function calling is not supported.
|
||||
|
||||
Returns:
|
||||
False, indicating that this LLM does not support function calling.
|
||||
"""
|
||||
return False
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Return False to indicate that stop words are not supported.
|
||||
|
||||
Returns:
|
||||
False, indicating that this LLM does not support stop words.
|
||||
"""
|
||||
return False
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Return a default context window size.
|
||||
|
||||
Returns:
|
||||
4096, a typical context window size for modern LLMs.
|
||||
"""
|
||||
return 4096
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_custom_llm_implementation():
|
||||
"""Test that a custom LLM implementation works with create_llm."""
|
||||
custom_llm = CustomLLM(response="The answer is 42")
|
||||
|
||||
# Test that create_llm returns the custom LLM instance directly
|
||||
result_llm = create_llm(custom_llm)
|
||||
|
||||
assert result_llm is custom_llm
|
||||
|
||||
# Test calling the custom LLM
|
||||
response = result_llm.call(
|
||||
"What is the answer to life, the universe, and everything?"
|
||||
)
|
||||
|
||||
# Verify that the response from the custom LLM was used
|
||||
assert "42" in response
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_custom_llm_within_crew():
|
||||
"""Test that a custom LLM implementation works with create_llm."""
|
||||
custom_llm = CustomLLM(response="Hello! Nice to meet you!", model="test-model")
|
||||
|
||||
agent = Agent(
|
||||
role="Say Hi",
|
||||
goal="Say hi to the user",
|
||||
backstory="""You just say hi to the user""",
|
||||
llm=custom_llm,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hi to the user",
|
||||
expected_output="A greeting to the user",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
process=Process.sequential,
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
|
||||
# Assert the LLM was called
|
||||
assert custom_llm.call_count > 0
|
||||
# Assert we got a response
|
||||
assert "Hello!" in result.raw
|
||||
|
||||
|
||||
def test_custom_llm_message_formatting():
|
||||
"""Test that the custom LLM properly formats messages"""
|
||||
custom_llm = CustomLLM(response="Test response", model="test-model")
|
||||
|
||||
# Test with string input
|
||||
result = custom_llm.call("Test message")
|
||||
assert result == "Test response"
|
||||
|
||||
# Test with message list
|
||||
messages = [
|
||||
{"role": "system", "content": "System message"},
|
||||
{"role": "user", "content": "User message"},
|
||||
]
|
||||
result = custom_llm.call(messages)
|
||||
assert result == "Test response"
|
||||
|
||||
|
||||
class JWTAuthLLM(BaseLLM):
|
||||
"""Custom LLM implementation with JWT authentication."""
|
||||
|
||||
def __init__(self, jwt_token: str):
|
||||
super().__init__(model="test-model")
|
||||
if not jwt_token or not isinstance(jwt_token, str):
|
||||
raise ValueError("Invalid JWT token")
|
||||
self.jwt_token = jwt_token
|
||||
self.calls = []
|
||||
self.stop = []
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Record the call and return a predefined response."""
|
||||
self.calls.append(
|
||||
{
|
||||
"messages": messages,
|
||||
"tools": tools,
|
||||
"callbacks": callbacks,
|
||||
"available_functions": available_functions,
|
||||
}
|
||||
)
|
||||
# In a real implementation, this would use the JWT token to authenticate
|
||||
# with an external service
|
||||
return "Response from JWT-authenticated LLM"
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Return True to indicate that function calling is supported."""
|
||||
return True
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Return True to indicate that stop words are supported."""
|
||||
return True
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Return a default context window size."""
|
||||
return 8192
|
||||
|
||||
|
||||
def test_custom_llm_with_jwt_auth():
|
||||
"""Test a custom LLM implementation with JWT authentication."""
|
||||
jwt_llm = JWTAuthLLM(jwt_token="example.jwt.token")
|
||||
|
||||
# Test that create_llm returns the JWT-authenticated LLM instance directly
|
||||
result_llm = create_llm(jwt_llm)
|
||||
|
||||
assert result_llm is jwt_llm
|
||||
|
||||
# Test calling the JWT-authenticated LLM
|
||||
response = result_llm.call("Test message")
|
||||
|
||||
# Verify that the JWT-authenticated LLM was called
|
||||
assert len(jwt_llm.calls) > 0
|
||||
# Verify that the response from the JWT-authenticated LLM was used
|
||||
assert response == "Response from JWT-authenticated LLM"
|
||||
|
||||
|
||||
def test_jwt_auth_llm_validation():
|
||||
"""Test that JWT token validation works correctly."""
|
||||
# Test with invalid JWT token (empty string)
|
||||
with pytest.raises(ValueError, match="Invalid JWT token"):
|
||||
JWTAuthLLM(jwt_token="")
|
||||
|
||||
# Test with invalid JWT token (non-string)
|
||||
with pytest.raises(ValueError, match="Invalid JWT token"):
|
||||
JWTAuthLLM(jwt_token=None)
|
||||
|
||||
|
||||
class TimeoutHandlingLLM(BaseLLM):
|
||||
"""Custom LLM implementation with timeout handling and retry logic."""
|
||||
|
||||
def __init__(self, max_retries: int = 3, timeout: int = 30):
|
||||
"""Initialize the TimeoutHandlingLLM with retry and timeout settings.
|
||||
|
||||
Args:
|
||||
max_retries: Maximum number of retry attempts.
|
||||
timeout: Timeout in seconds for each API call.
|
||||
"""
|
||||
super().__init__(model="test-model")
|
||||
self.max_retries = max_retries
|
||||
self.timeout = timeout
|
||||
self.calls = []
|
||||
self.stop = []
|
||||
self.fail_count = 0 # Number of times to simulate failure
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Simulate API calls with timeout handling and retry logic.
|
||||
|
||||
Args:
|
||||
messages: Input messages for the LLM.
|
||||
tools: Optional list of tool schemas for function calling.
|
||||
callbacks: Optional list of callback functions.
|
||||
available_functions: Optional dict mapping function names to callables.
|
||||
|
||||
Returns:
|
||||
A response string based on whether this is the first attempt or a retry.
|
||||
|
||||
Raises:
|
||||
TimeoutError: If all retry attempts fail.
|
||||
"""
|
||||
# Record the initial call
|
||||
self.calls.append(
|
||||
{
|
||||
"messages": messages,
|
||||
"tools": tools,
|
||||
"callbacks": callbacks,
|
||||
"available_functions": available_functions,
|
||||
"attempt": 0,
|
||||
}
|
||||
)
|
||||
|
||||
# Simulate retry logic
|
||||
for attempt in range(self.max_retries):
|
||||
# Skip the first attempt recording since we already did that above
|
||||
if attempt == 0:
|
||||
# Simulate a failure if fail_count > 0
|
||||
if self.fail_count > 0:
|
||||
self.fail_count -= 1
|
||||
# If we've used all retries, raise an error
|
||||
if attempt == self.max_retries - 1:
|
||||
raise TimeoutError(
|
||||
f"LLM request failed after {self.max_retries} attempts"
|
||||
)
|
||||
# Otherwise, continue to the next attempt (simulating backoff)
|
||||
continue
|
||||
else:
|
||||
# Success on first attempt
|
||||
return "First attempt response"
|
||||
else:
|
||||
# This is a retry attempt (attempt > 0)
|
||||
# Always record retry attempts
|
||||
self.calls.append(
|
||||
{
|
||||
"retry_attempt": attempt,
|
||||
"messages": messages,
|
||||
"tools": tools,
|
||||
"callbacks": callbacks,
|
||||
"available_functions": available_functions,
|
||||
}
|
||||
)
|
||||
|
||||
# Simulate a failure if fail_count > 0
|
||||
if self.fail_count > 0:
|
||||
self.fail_count -= 1
|
||||
# If we've used all retries, raise an error
|
||||
if attempt == self.max_retries - 1:
|
||||
raise TimeoutError(
|
||||
f"LLM request failed after {self.max_retries} attempts"
|
||||
)
|
||||
# Otherwise, continue to the next attempt (simulating backoff)
|
||||
continue
|
||||
else:
|
||||
# Success on retry
|
||||
return "Response after retry"
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Return True to indicate that function calling is supported.
|
||||
|
||||
Returns:
|
||||
True, indicating that this LLM supports function calling.
|
||||
"""
|
||||
return True
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Return True to indicate that stop words are supported.
|
||||
|
||||
Returns:
|
||||
True, indicating that this LLM supports stop words.
|
||||
"""
|
||||
return True
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Return a default context window size.
|
||||
|
||||
Returns:
|
||||
8192, a typical context window size for modern LLMs.
|
||||
"""
|
||||
return 8192
|
||||
|
||||
|
||||
def test_timeout_handling_llm():
|
||||
"""Test a custom LLM implementation with timeout handling and retry logic."""
|
||||
# Test successful first attempt
|
||||
llm = TimeoutHandlingLLM()
|
||||
response = llm.call("Test message")
|
||||
assert response == "First attempt response"
|
||||
assert len(llm.calls) == 1
|
||||
|
||||
# Test successful retry
|
||||
llm = TimeoutHandlingLLM()
|
||||
llm.fail_count = 1 # Fail once, then succeed
|
||||
response = llm.call("Test message")
|
||||
assert response == "Response after retry"
|
||||
assert len(llm.calls) == 2 # Initial call + successful retry call
|
||||
|
||||
# Test failure after all retries
|
||||
llm = TimeoutHandlingLLM(max_retries=2)
|
||||
llm.fail_count = 2 # Fail twice, which is all retries
|
||||
with pytest.raises(TimeoutError, match="LLM request failed after 2 attempts"):
|
||||
llm.call("Test message")
|
||||
assert len(llm.calls) == 2 # Initial call + failed retry attempt
|
||||
@@ -6,7 +6,7 @@ import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow import Flow
|
||||
from crewai.flow.state_utils import export_state, to_string
|
||||
from crewai.flow.state_utils import export_state, to_serializable, to_string
|
||||
|
||||
|
||||
class Address(BaseModel):
|
||||
@@ -148,3 +148,23 @@ def test_depth_limit(mock_flow):
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def test_exclude_keys():
|
||||
result = to_serializable({"key1": "value1", "key2": "value2"}, exclude={"key1"})
|
||||
assert result == {"key2": "value2"}
|
||||
|
||||
model = Person(
|
||||
name="John Doe",
|
||||
age=30,
|
||||
address=Address(street="123 Main St", city="Tech City", country="Pythonia"),
|
||||
birthday=date(1994, 1, 1),
|
||||
skills=["Python", "Testing"],
|
||||
)
|
||||
result = to_serializable(model, exclude={"address"})
|
||||
assert result == {
|
||||
"name": "John Doe",
|
||||
"age": 30,
|
||||
"birthday": "1994-01-01",
|
||||
"skills": ["Python", "Testing"],
|
||||
}
|
||||
|
||||
@@ -787,6 +787,25 @@ def test_conditional_task_definition_based_on_dict():
|
||||
assert task.agent is None
|
||||
|
||||
|
||||
def test_conditional_task_copy_preserves_type():
|
||||
task_config = {
|
||||
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
|
||||
"expected_output": "The score of the title.",
|
||||
}
|
||||
original_task = Task(**task_config)
|
||||
copied_task = original_task.copy(agents=[], task_mapping={})
|
||||
assert isinstance(copied_task, Task)
|
||||
|
||||
original_conditional_config = {
|
||||
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'. Check examples to base your evaluation on.",
|
||||
"expected_output": "The score of the title.",
|
||||
"condition": lambda x: True,
|
||||
}
|
||||
original_conditional_task = ConditionalTask(**original_conditional_config)
|
||||
copied_conditional_task = original_conditional_task.copy(agents=[], task_mapping={})
|
||||
assert isinstance(copied_conditional_task, ConditionalTask)
|
||||
|
||||
|
||||
def test_interpolate_inputs():
|
||||
task = Task(
|
||||
description="Give me a list of 5 interesting ideas about {topic} to explore for an article, what makes them unique and interesting.",
|
||||
|
||||
81
tests/utilities/test_chromadb_utils.py
Normal file
81
tests/utilities/test_chromadb_utils.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import unittest
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.utilities.chromadb import (
|
||||
MAX_COLLECTION_LENGTH,
|
||||
MIN_COLLECTION_LENGTH,
|
||||
is_ipv4_pattern,
|
||||
sanitize_collection_name,
|
||||
)
|
||||
|
||||
|
||||
class TestChromadbUtils(unittest.TestCase):
|
||||
def test_sanitize_collection_name_long_name(self):
|
||||
"""Test sanitizing a very long collection name."""
|
||||
long_name = "This is an extremely long role name that will definitely exceed the ChromaDB collection name limit of 63 characters and cause an error when used as a collection name"
|
||||
sanitized = sanitize_collection_name(long_name)
|
||||
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
|
||||
|
||||
def test_sanitize_collection_name_special_chars(self):
|
||||
"""Test sanitizing a name with special characters."""
|
||||
special_chars = "Agent@123!#$%^&*()"
|
||||
sanitized = sanitize_collection_name(special_chars)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
|
||||
|
||||
def test_sanitize_collection_name_short_name(self):
|
||||
"""Test sanitizing a very short name."""
|
||||
short_name = "A"
|
||||
sanitized = sanitize_collection_name(short_name)
|
||||
self.assertGreaterEqual(len(sanitized), MIN_COLLECTION_LENGTH)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
|
||||
def test_sanitize_collection_name_bad_ends(self):
|
||||
"""Test sanitizing a name with non-alphanumeric start/end."""
|
||||
bad_ends = "_Agent_"
|
||||
sanitized = sanitize_collection_name(bad_ends)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
|
||||
def test_sanitize_collection_name_none(self):
|
||||
"""Test sanitizing a None value."""
|
||||
sanitized = sanitize_collection_name(None)
|
||||
self.assertEqual(sanitized, "default_collection")
|
||||
|
||||
def test_sanitize_collection_name_ipv4_pattern(self):
|
||||
"""Test sanitizing an IPv4 address."""
|
||||
ipv4 = "192.168.1.1"
|
||||
sanitized = sanitize_collection_name(ipv4)
|
||||
self.assertTrue(sanitized.startswith("ip_"))
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
|
||||
|
||||
def test_is_ipv4_pattern(self):
|
||||
"""Test IPv4 pattern detection."""
|
||||
self.assertTrue(is_ipv4_pattern("192.168.1.1"))
|
||||
self.assertFalse(is_ipv4_pattern("not.an.ip.address"))
|
||||
|
||||
def test_sanitize_collection_name_properties(self):
|
||||
"""Test that sanitized collection names always meet ChromaDB requirements."""
|
||||
test_cases = [
|
||||
"A" * 100, # Very long name
|
||||
"_start_with_underscore",
|
||||
"end_with_underscore_",
|
||||
"contains@special#characters",
|
||||
"192.168.1.1", # IPv4 address
|
||||
"a" * 2, # Too short
|
||||
]
|
||||
for test_case in test_cases:
|
||||
sanitized = sanitize_collection_name(test_case)
|
||||
self.assertGreaterEqual(len(sanitized), MIN_COLLECTION_LENGTH)
|
||||
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
|
||||
self.assertTrue(sanitized[0].isalnum())
|
||||
self.assertTrue(sanitized[-1].isalnum())
|
||||
431
uv.lock
generated
431
uv.lock
generated
@@ -1,42 +1,18 @@
|
||||
version = 1
|
||||
requires-python = ">=3.10, <3.13"
|
||||
resolution-markers = [
|
||||
"python_full_version < '3.11' and platform_system == 'Darwin' and sys_platform == 'darwin'",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'darwin'",
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform == 'darwin') or (python_full_version < '3.11' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'darwin')",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system == 'Darwin' and sys_platform == 'linux'",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'linux'",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'linux'",
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_system == 'Darwin' and sys_platform != 'darwin') or (python_full_version < '3.11' and platform_system == 'Darwin' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux'",
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version < '3.11' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version == '3.11.*' and platform_system == 'Darwin' and sys_platform == 'darwin'",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'darwin'",
|
||||
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform == 'darwin') or (python_full_version == '3.11.*' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'darwin')",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and platform_system == 'Darwin' and sys_platform == 'linux'",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'linux'",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'linux'",
|
||||
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and platform_system == 'Darwin' and sys_platform != 'darwin') or (python_full_version == '3.11.*' and platform_system == 'Darwin' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux'",
|
||||
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version == '3.11.*' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_system == 'Darwin' and sys_platform == 'darwin'",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'darwin'",
|
||||
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform == 'darwin') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'darwin')",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Darwin' and sys_platform == 'linux'",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'linux'",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'linux'",
|
||||
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and platform_system == 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_system == 'Darwin' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux'",
|
||||
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12.4' and platform_system == 'Darwin' and sys_platform == 'darwin'",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'darwin'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform == 'darwin') or (python_full_version >= '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'darwin')",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Darwin' and sys_platform == 'linux'",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'linux'",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'linux'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system == 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12.4' and platform_system == 'Darwin' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version < '3.11' and sys_platform == 'darwin'",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux'",
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version == '3.11.*' and sys_platform == 'darwin'",
|
||||
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux'",
|
||||
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform == 'darwin'",
|
||||
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
|
||||
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12.4' and sys_platform == 'darwin'",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -66,7 +42,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "aiohttp"
|
||||
version = "3.11.11"
|
||||
version = "3.10.10"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "aiohappyeyeballs" },
|
||||
@@ -75,56 +51,55 @@ dependencies = [
|
||||
{ name = "attrs" },
|
||||
{ name = "frozenlist" },
|
||||
{ name = "multidict" },
|
||||
{ name = "propcache" },
|
||||
{ name = "yarl" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/fe/ed/f26db39d29cd3cb2f5a3374304c713fe5ab5a0e4c8ee25a0c45cc6adf844/aiohttp-3.11.11.tar.gz", hash = "sha256:bb49c7f1e6ebf3821a42d81d494f538107610c3a705987f53068546b0e90303e", size = 7669618 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/17/7e/16e57e6cf20eb62481a2f9ce8674328407187950ccc602ad07c685279141/aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a", size = 7542993 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/75/7d/ff2e314b8f9e0b1df833e2d4778eaf23eae6b8cc8f922495d110ddcbf9e1/aiohttp-3.11.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a60804bff28662cbcf340a4d61598891f12eea3a66af48ecfdc975ceec21e3c8", size = 708550 },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/b8/aeb4975d5bba233d6f246941f5957a5ad4e3def8b0855a72742e391925f2/aiohttp-3.11.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4b4fa1cb5f270fb3eab079536b764ad740bb749ce69a94d4ec30ceee1b5940d5", size = 468430 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9c/5b/5b620279b3df46e597008b09fa1e10027a39467387c2332657288e25811a/aiohttp-3.11.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:731468f555656767cda219ab42e033355fe48c85fbe3ba83a349631541715ba2", size = 455593 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d8/75/0cdf014b816867d86c0bc26f3d3e3f194198dbf33037890beed629cd4f8f/aiohttp-3.11.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb23d8bb86282b342481cad4370ea0853a39e4a32a0042bb52ca6bdde132df43", size = 1584635 },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/2f/95b8f4e4dfeb57c1d9ad9fa911ede35a0249d75aa339edd2c2270dc539da/aiohttp-3.11.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f047569d655f81cb70ea5be942ee5d4421b6219c3f05d131f64088c73bb0917f", size = 1632363 },
|
||||
{ url = "https://files.pythonhosted.org/packages/39/cb/70cf69ea7c50f5b0021a84f4c59c3622b2b3b81695f48a2f0e42ef7eba6e/aiohttp-3.11.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd7659baae9ccf94ae5fe8bfaa2c7bc2e94d24611528395ce88d009107e00c6d", size = 1668315 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/cc/3a3fc7a290eabc59839a7e15289cd48f33dd9337d06e301064e1e7fb26c5/aiohttp-3.11.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af01e42ad87ae24932138f154105e88da13ce7d202a6de93fafdafb2883a00ef", size = 1589546 },
|
||||
{ url = "https://files.pythonhosted.org/packages/15/b4/0f7b0ed41ac6000e283e7332f0f608d734b675a8509763ca78e93714cfb0/aiohttp-3.11.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5854be2f3e5a729800bac57a8d76af464e160f19676ab6aea74bde18ad19d438", size = 1544581 },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/b9/4d06470fd85c687b6b0e31935ef73dde6e31767c9576d617309a2206556f/aiohttp-3.11.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6526e5fb4e14f4bbf30411216780c9967c20c5a55f2f51d3abd6de68320cc2f3", size = 1529256 },
|
||||
{ url = "https://files.pythonhosted.org/packages/61/a2/6958b1b880fc017fd35f5dfb2c26a9a50c755b75fd9ae001dc2236a4fb79/aiohttp-3.11.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:85992ee30a31835fc482468637b3e5bd085fa8fe9392ba0bdcbdc1ef5e9e3c55", size = 1536592 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/dd/b974012a9551fd654f5bb95a6dd3f03d6e6472a17e1a8216dd42e9638d6c/aiohttp-3.11.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:88a12ad8ccf325a8a5ed80e6d7c3bdc247d66175afedbe104ee2aaca72960d8e", size = 1607446 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e0/d3/6c98fd87e638e51f074a3f2061e81fcb92123bcaf1439ac1b4a896446e40/aiohttp-3.11.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:0a6d3fbf2232e3a08c41eca81ae4f1dff3d8f1a30bae415ebe0af2d2458b8a33", size = 1628809 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a8/2e/86e6f85cbca02be042c268c3d93e7f35977a0e127de56e319bdd1569eaa8/aiohttp-3.11.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84a585799c58b795573c7fa9b84c455adf3e1d72f19a2bf498b54a95ae0d194c", size = 1564291 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/8d/1f4ef3503b767717f65e1f5178b0173ab03cba1a19997ebf7b052161189f/aiohttp-3.11.11-cp310-cp310-win32.whl", hash = "sha256:bfde76a8f430cf5c5584553adf9926534352251d379dcb266ad2b93c54a29745", size = 416601 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/86/81cb83691b5ace3d9aa148dc42bacc3450d749fc88c5ec1973573c1c1779/aiohttp-3.11.11-cp310-cp310-win_amd64.whl", hash = "sha256:0fd82b8e9c383af11d2b26f27a478640b6b83d669440c0a71481f7c865a51da9", size = 442007 },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/ae/e8806a9f054e15f1d18b04db75c23ec38ec954a10c0a68d3bd275d7e8be3/aiohttp-3.11.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ba74ec819177af1ef7f59063c6d35a214a8fde6f987f7661f4f0eecc468a8f76", size = 708624 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c7/e0/313ef1a333fb4d58d0c55a6acb3cd772f5d7756604b455181049e222c020/aiohttp-3.11.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4af57160800b7a815f3fe0eba9b46bf28aafc195555f1824555fa2cfab6c1538", size = 468507 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/60/03455476bf1f467e5b4a32a465c450548b2ce724eec39d69f737191f936a/aiohttp-3.11.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ffa336210cf9cd8ed117011085817d00abe4c08f99968deef0013ea283547204", size = 455571 },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/f9/469588603bd75bf02c8ffb8c8a0d4b217eed446b49d4a767684685aa33fd/aiohttp-3.11.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81b8fe282183e4a3c7a1b72f5ade1094ed1c6345a8f153506d114af5bf8accd9", size = 1685694 },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/b9/1b7fa43faf6c8616fa94c568dc1309ffee2b6b68b04ac268e5d64b738688/aiohttp-3.11.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3af41686ccec6a0f2bdc66686dc0f403c41ac2089f80e2214a0f82d001052c03", size = 1743660 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/8b/0248d19dbb16b67222e75f6aecedd014656225733157e5afaf6a6a07e2e8/aiohttp-3.11.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70d1f9dde0e5dd9e292a6d4d00058737052b01f3532f69c0c65818dac26dc287", size = 1785421 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/11/f478e071815a46ca0a5ae974651ff0c7a35898c55063305a896e58aa1247/aiohttp-3.11.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:249cc6912405917344192b9f9ea5cd5b139d49e0d2f5c7f70bdfaf6b4dbf3a2e", size = 1675145 },
|
||||
{ url = "https://files.pythonhosted.org/packages/26/5d/284d182fecbb5075ae10153ff7374f57314c93a8681666600e3a9e09c505/aiohttp-3.11.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0eb98d90b6690827dcc84c246811feeb4e1eea683c0eac6caed7549be9c84665", size = 1619804 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/78/980064c2ad685c64ce0e8aeeb7ef1e53f43c5b005edcd7d32e60809c4992/aiohttp-3.11.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec82bf1fda6cecce7f7b915f9196601a1bd1a3079796b76d16ae4cce6d0ef89b", size = 1654007 },
|
||||
{ url = "https://files.pythonhosted.org/packages/21/8d/9e658d63b1438ad42b96f94da227f2e2c1d5c6001c9e8ffcc0bfb22e9105/aiohttp-3.11.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9fd46ce0845cfe28f108888b3ab17abff84ff695e01e73657eec3f96d72eef34", size = 1650022 },
|
||||
{ url = "https://files.pythonhosted.org/packages/85/fd/a032bf7f2755c2df4f87f9effa34ccc1ef5cea465377dbaeef93bb56bbd6/aiohttp-3.11.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:bd176afcf8f5d2aed50c3647d4925d0db0579d96f75a31e77cbaf67d8a87742d", size = 1732899 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c5/0c/c2b85fde167dd440c7ba50af2aac20b5a5666392b174df54c00f888c5a75/aiohttp-3.11.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:ec2aa89305006fba9ffb98970db6c8221541be7bee4c1d027421d6f6df7d1ce2", size = 1755142 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/78/91ae1a3b3b3bed8b893c5d69c07023e151b1c95d79544ad04cf68f596c2f/aiohttp-3.11.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:92cde43018a2e17d48bb09c79e4d4cb0e236de5063ce897a5e40ac7cb4878773", size = 1692736 },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/89/a7ef9c4b4cdb546fcc650ca7f7395aaffbd267f0e1f648a436bec33c9b95/aiohttp-3.11.11-cp311-cp311-win32.whl", hash = "sha256:aba807f9569455cba566882c8938f1a549f205ee43c27b126e5450dc9f83cc62", size = 416418 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/db/2192489a8a51b52e06627506f8ac8df69ee221de88ab9bdea77aa793aa6a/aiohttp-3.11.11-cp311-cp311-win_amd64.whl", hash = "sha256:ae545f31489548c87b0cced5755cfe5a5308d00407000e72c4fa30b19c3220ac", size = 442509 },
|
||||
{ url = "https://files.pythonhosted.org/packages/69/cf/4bda538c502f9738d6b95ada11603c05ec260807246e15e869fc3ec5de97/aiohttp-3.11.11-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:e595c591a48bbc295ebf47cb91aebf9bd32f3ff76749ecf282ea7f9f6bb73886", size = 704666 },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/7b/87fcef2cad2fad420ca77bef981e815df6904047d0a1bd6aeded1b0d1d66/aiohttp-3.11.11-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3ea1b59dc06396b0b424740a10a0a63974c725b1c64736ff788a3689d36c02d2", size = 464057 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/a6/789e1f17a1b6f4a38939fbc39d29e1d960d5f89f73d0629a939410171bc0/aiohttp-3.11.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8811f3f098a78ffa16e0ea36dffd577eb031aea797cbdba81be039a4169e242c", size = 455996 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/dd/485061fbfef33165ce7320db36e530cd7116ee1098e9c3774d15a732b3fd/aiohttp-3.11.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7227b87a355ce1f4bf83bfae4399b1f5bb42e0259cb9405824bd03d2f4336a", size = 1682367 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/d7/9ec5b3ea9ae215c311d88b2093e8da17e67b8856673e4166c994e117ee3e/aiohttp-3.11.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d40f9da8cabbf295d3a9dae1295c69975b86d941bc20f0a087f0477fa0a66231", size = 1736989 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/fb/ea94927f7bfe1d86178c9d3e0a8c54f651a0a655214cce930b3c679b8f64/aiohttp-3.11.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ffb3dc385f6bb1568aa974fe65da84723210e5d9707e360e9ecb51f59406cd2e", size = 1793265 },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/7f/6de218084f9b653026bd7063cd8045123a7ba90c25176465f266976d8c82/aiohttp-3.11.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8f5f7515f3552d899c61202d99dcb17d6e3b0de777900405611cd747cecd1b8", size = 1691841 },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/e2/992f43d87831cbddb6b09c57ab55499332f60ad6fdbf438ff4419c2925fc/aiohttp-3.11.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3499c7ffbfd9c6a3d8d6a2b01c26639da7e43d47c7b4f788016226b1e711caa8", size = 1619317 },
|
||||
{ url = "https://files.pythonhosted.org/packages/96/74/879b23cdd816db4133325a201287c95bef4ce669acde37f8f1b8669e1755/aiohttp-3.11.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8e2bf8029dbf0810c7bfbc3e594b51c4cc9101fbffb583a3923aea184724203c", size = 1641416 },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/98/b123f6b15d87c54e58fd7ae3558ff594f898d7f30a90899718f3215ad328/aiohttp-3.11.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b6212a60e5c482ef90f2d788835387070a88d52cf6241d3916733c9176d39eab", size = 1646514 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/38/257fda3dc99d6978ab943141d5165ec74fd4b4164baa15e9c66fa21da86b/aiohttp-3.11.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d119fafe7b634dbfa25a8c597718e69a930e4847f0b88e172744be24515140da", size = 1702095 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/f4/ddab089053f9fb96654df5505c0a69bde093214b3c3454f6bfdb1845f558/aiohttp-3.11.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:6fba278063559acc730abf49845d0e9a9e1ba74f85f0ee6efd5803f08b285853", size = 1734611 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c3/d6/f30b2bc520c38c8aa4657ed953186e535ae84abe55c08d0f70acd72ff577/aiohttp-3.11.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92fc484e34b733704ad77210c7957679c5c3877bd1e6b6d74b185e9320cc716e", size = 1694576 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/97/b0a88c3f4c6d0020b34045ee6d954058abc870814f6e310c4c9b74254116/aiohttp-3.11.11-cp312-cp312-win32.whl", hash = "sha256:9f5b3c1ed63c8fa937a920b6c1bec78b74ee09593b3f5b979ab2ae5ef60d7600", size = 411363 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7f/23/cc36d9c398980acaeeb443100f0216f50a7cfe20c67a9fd0a2f1a5a846de/aiohttp-3.11.11-cp312-cp312-win_amd64.whl", hash = "sha256:1e69966ea6ef0c14ee53ef7a3d68b564cc408121ea56c0caa2dc918c1b2f553d", size = 437666 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3d/dd/3d40c0e67e79c5c42671e3e268742f1ff96c6573ca43823563d01abd9475/aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f", size = 586969 },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/64/8de41b5555e5b43ef6d4ed1261891d33fe45ecc6cb62875bfafb90b9ab93/aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9", size = 399367 },
|
||||
{ url = "https://files.pythonhosted.org/packages/96/36/27bd62ea7ce43906d1443a73691823fc82ffb8fa03276b0e2f7e1037c286/aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8", size = 390720 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e8/4d/d516b050d811ce0dd26325c383013c104ffa8b58bd361b82e52833f68e78/aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1", size = 1228820 },
|
||||
{ url = "https://files.pythonhosted.org/packages/53/94/964d9327a3e336d89aad52260836e4ec87fdfa1207176550fdf384eaffe7/aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a", size = 1264616 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/20/70ce17764b685ca8f5bf4d568881b4e1f1f4ea5e8170f512fdb1a33859d2/aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd", size = 1298402 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/d1/5248225ccc687f498d06c3bca5af2647a361c3687a85eb3aedcc247ee1aa/aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026", size = 1222205 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f2/a3/9296b27cc5d4feadf970a14d0694902a49a985f3fae71b8322a5f77b0baa/aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b", size = 1193804 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/07/f3760160feb12ac51a6168a6da251a4a8f2a70733d49e6ceb9b3e6ee2f03/aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d", size = 1193544 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/4c/93a70f9a4ba1c30183a6dd68bfa79cddbf9a674f162f9c62e823a74a5515/aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7", size = 1193047 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/a3/36a1e23ff00c7a0cd696c5a28db05db25dc42bfc78c508bd78623ff62a4a/aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a", size = 1247201 },
|
||||
{ url = "https://files.pythonhosted.org/packages/55/ae/95399848557b98bb2c402d640b2276ce3a542b94dba202de5a5a1fe29abe/aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc", size = 1264102 },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/f5/02e5c72c1b60d7cceb30b982679a26167e84ac029fd35a93dd4da52c50a3/aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68", size = 1215760 },
|
||||
{ url = "https://files.pythonhosted.org/packages/30/17/1463840bad10d02d0439068f37ce5af0b383884b0d5838f46fb027e233bf/aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257", size = 362678 },
|
||||
{ url = "https://files.pythonhosted.org/packages/dd/01/a0ef707d93e867a43abbffee3a2cdf30559910750b9176b891628c7ad074/aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6", size = 381097 },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/31/3c351d17596194e5a38ef169a4da76458952b2497b4b54645b9d483cbbb0/aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f", size = 586501 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/a8/a559d09eb08478cdead6b7ce05b0c4a133ba27fcdfa91e05d2e62867300d/aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb", size = 398993 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c5/47/7736d4174613feef61d25332c3bd1a4f8ff5591fbd7331988238a7299485/aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871", size = 390647 },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/21/e9ba192a04b7160f5a8952c98a1de7cf8072ad150fa3abd454ead1ab1d7f/aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c", size = 1306481 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cf/50/f364c01c8d0def1dc34747b2470969e216f5a37c7ece00fe558810f37013/aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38", size = 1344652 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/c2/74f608e984e9b585649e2e83883facad6fa3fc1d021de87b20cc67e8e5ae/aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb", size = 1378498 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/a7/05a48c7c0a7a80a5591b1203bf1b64ca2ed6a2050af918d09c05852dc42b/aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7", size = 1292718 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/78/a925655018747e9790350180330032e27d6e0d7ed30bde545fae42f8c49c/aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911", size = 1251776 },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/9d/85c6b69f702351d1236594745a4fdc042fc43f494c247a98dac17e004026/aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092", size = 1271716 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7f/a7/55fc805ff9b14af818903882ece08e2235b12b73b867b521b92994c52b14/aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142", size = 1266263 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/ec/d2be2ca7b063e4f91519d550dbc9c1cb43040174a322470deed90b3d3333/aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9", size = 1321617 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/a3/b29f7920e1cd0a9a68a45dd3eb16140074d2efb1518d2e1f3e140357dc37/aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1", size = 1339227 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/81/34b67235c47e232d807b4bbc42ba9b927c7ce9476872372fddcfd1e41b3d/aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a", size = 1299068 },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/1f/26a7fe11b6ad3184f214733428353c89ae9fe3e4f605a657f5245c5e720c/aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94", size = 362223 },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/91/85dcd93f64011434359ce2666bece981f08d31bc49df33261e625b28595d/aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959", size = 381576 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/99/4c5aefe5ad06a1baf206aed6598c7cdcbc7c044c46801cd0d1ecb758cae3/aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c", size = 583536 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/36/8b3bc49b49cb6d2da40ee61ff15dbcc44fd345a3e6ab5bb20844df929821/aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28", size = 395693 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/77/0aa8660dcf11fa65d61712dbb458c4989de220a844bd69778dff25f2d50b/aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f", size = 390898 },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/d2/b833d95deb48c75db85bf6646de0a697e7fb5d87bd27cbade4f9746b48b1/aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138", size = 1312060 },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/5f/29fd5113165a0893de8efedf9b4737e0ba92dfcd791415a528f947d10299/aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742", size = 1350553 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/cc/f835f74b7d344428469200105236d44606cfa448be1e7c95ca52880d9bac/aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7", size = 1392646 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bf/fe/1332409d845ca601893bbf2d76935e0b93d41686e5f333841c7d7a4a770d/aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16", size = 1306310 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e4/a1/25a7633a5a513278a9892e333501e2e69c83e50be4b57a62285fb7a008c3/aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8", size = 1260255 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f2/39/30eafe89e0e2a06c25e4762844c8214c0c0cd0fd9ffc3471694a7986f421/aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6", size = 1271141 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/fc/33125df728b48391ef1fcb512dfb02072158cc10d041414fb79803463020/aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a", size = 1280244 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3b/61/e42bf2c2934b5caa4e2ec0b5e5fd86989adb022b5ee60c2572a9d77cf6fe/aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9", size = 1316805 },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/32/f52a5e2ae9ad3bba10e026a63a7a23abfa37c7d97aeeb9004eaa98df3ce3/aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a", size = 1343930 },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/be/6a403b464dcab3631fe8e27b0f1d906d9e45c5e92aca97ee007e5a895560/aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205", size = 1306186 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/fd/bb50fe781068a736a02bf5c7ad5f3ab53e39f1d1e63110da6d30f7605edc/aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628", size = 359289 },
|
||||
{ url = "https://files.pythonhosted.org/packages/70/9e/5add7e240f77ef67c275c82cc1d08afbca57b77593118c1f6e920ae8ad3f/aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf", size = 379313 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -139,6 +114,18 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17", size = 7617 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aisuite"
|
||||
version = "0.1.10"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "httpx" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/6a/9d/c7a8a76abb9011dd2bc9a5cb8ffa8231640e20bbdae177ce9ab6cb67c66c/aisuite-0.1.10.tar.gz", hash = "sha256:170e62d4c91fecb22e82a04e058154a111cef473681171e5df7346272e77f414", size = 29052 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/58/c2/9a34a01516de107e5f9406dbfd319b6004340708101d67fa107373da4058/aisuite-0.1.10-py3-none-any.whl", hash = "sha256:c8510ebe38d6546b6a06819171e201fcaf0bf9ae020ffcfe19b6bd90430781ad", size = 43984 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "alembic"
|
||||
version = "1.13.3"
|
||||
@@ -333,7 +320,7 @@ name = "build"
|
||||
version = "1.2.2.post1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "os_name == 'nt'" },
|
||||
{ name = "colorama", marker = "(os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "importlib-metadata", marker = "python_full_version < '3.10.2'" },
|
||||
{ name = "packaging" },
|
||||
{ name = "pyproject-hooks" },
|
||||
@@ -568,7 +555,7 @@ name = "click"
|
||||
version = "8.1.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593 }
|
||||
wheels = [
|
||||
@@ -651,6 +638,9 @@ dependencies = [
|
||||
agentops = [
|
||||
{ name = "agentops" },
|
||||
]
|
||||
aisuite = [
|
||||
{ name = "aisuite" },
|
||||
]
|
||||
docling = [
|
||||
{ name = "docling" },
|
||||
]
|
||||
@@ -698,6 +688,7 @@ dev = [
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
|
||||
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.10" },
|
||||
{ name = "appdirs", specifier = ">=1.4.4" },
|
||||
{ name = "auth0-python", specifier = ">=4.7.1" },
|
||||
{ name = "blinker", specifier = ">=1.9.0" },
|
||||
@@ -752,7 +743,7 @@ dev = [
|
||||
|
||||
[[package]]
|
||||
name = "crewai-tools"
|
||||
version = "0.37.0"
|
||||
version = "0.38.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "chromadb" },
|
||||
@@ -767,9 +758,9 @@ dependencies = [
|
||||
{ name = "pytube" },
|
||||
{ name = "requests" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ef/a9/813ef7b721d11ac962c2a3cf4c98196d3ca8bca5bb0fa5e01da0af51ac23/crewai_tools-0.37.0.tar.gz", hash = "sha256:23c8428761809e30d164be32c2a02850c4648e4371e9934eb58842590bca9659", size = 722104 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/85/3f/d3b5697b4c6756cec65316c9ea9ccd9054f7b73670d1580befd3632ba031/crewai_tools-0.38.1.tar.gz", hash = "sha256:6abe75b3b339d53a9cf4e2d80124d863ff62a82b36753c30bec64318881876b2", size = 737620 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/f4/b3/6bf9b066f628875c383689ab72d21968e1108ebece887491dbf051ee39c5/crewai_tools-0.37.0-py3-none-any.whl", hash = "sha256:df5c9efade5c1f4fcfdf6ac8af13c422be7127a3083a5cda75d8f314c652bb10", size = 548490 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/2b/a6c9007647ffbb6a3c204b3ef26806030d6b041e3e012d4cec43c21335d6/crewai_tools-0.38.1-py3-none-any.whl", hash = "sha256:d9d3a88060f1f30c8f4ea044f6dd564a50d0a22b8a018a6fcec202b36246b9d8", size = 561414 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1730,7 +1721,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "httpx"
|
||||
version = "0.27.0"
|
||||
version = "0.27.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "anyio" },
|
||||
@@ -1739,9 +1730,9 @@ dependencies = [
|
||||
{ name = "idna" },
|
||||
{ name = "sniffio" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/5c/2d/3da5bdf4408b8b2800061c339f240c1802f2e82d55e50bd39c5a881f47f0/httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5", size = 126413 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/78/82/08f8c936781f67d9e6b9eeb8a0c8b4e406136ea4c3d1f89a5db71d42e0e6/httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2", size = 144189 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/41/7b/ddacf6dcebb42466abd03f368782142baa82e08fc0c1f8eaa05b4bae87d5/httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5", size = 75590 },
|
||||
{ url = "https://files.pythonhosted.org/packages/56/95/9377bcb415797e44274b51d46e3249eba641711cf3348050f76ee7b15ffc/httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0", size = 76395 },
|
||||
]
|
||||
|
||||
[package.optional-dependencies]
|
||||
@@ -2503,7 +2494,7 @@ version = "1.6.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
{ name = "ghp-import" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "markdown" },
|
||||
@@ -2684,7 +2675,7 @@ version = "2.10.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pygments" },
|
||||
{ name = "pywin32", marker = "platform_system == 'Windows'" },
|
||||
{ name = "pywin32", marker = "sys_platform == 'win32'" },
|
||||
{ name = "tqdm" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3a/93/80ac75c20ce54c785648b4ed363c88f148bf22637e10c9863db4fbe73e74/mpire-2.10.2.tar.gz", hash = "sha256:f66a321e93fadff34585a4bfa05e95bd946cf714b442f51c529038eb45773d97", size = 271270 }
|
||||
@@ -2931,7 +2922,7 @@ name = "nvidia-cudnn-cu12"
|
||||
version = "9.1.0.70"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
|
||||
@@ -2958,9 +2949,9 @@ name = "nvidia-cusolver-cu12"
|
||||
version = "11.4.5.107"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd", size = 124161928 },
|
||||
@@ -2971,7 +2962,7 @@ name = "nvidia-cusparse-cu12"
|
||||
version = "12.1.0.106"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c", size = 195958278 },
|
||||
@@ -3071,7 +3062,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.61.0"
|
||||
version = "1.68.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "anyio" },
|
||||
@@ -3083,9 +3074,9 @@ dependencies = [
|
||||
{ name = "tqdm" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/32/2a/b3fa8790be17d632f59d4f50257b909a3f669036e5195c1ae55737274620/openai-1.61.0.tar.gz", hash = "sha256:216f325a24ed8578e929b0f1b3fb2052165f3b04b0461818adaa51aa29c71f8a", size = 350174 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3f/6b/6b002d5d38794645437ae3ddb42083059d556558493408d39a0fcea608bc/openai-1.68.2.tar.gz", hash = "sha256:b720f0a95a1dbe1429c0d9bb62096a0d98057bcda82516f6e8af10284bdd5b19", size = 413429 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/93/76/70c5ad6612b3e4c89fa520266bbf2430a89cae8bd87c1e2284698af5927e/openai-1.61.0-py3-none-any.whl", hash = "sha256:e8c512c0743accbdbe77f3429a1490d862f8352045de8dc81969301eb4a4f666", size = 460623 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/34/cebce15f64eb4a3d609a83ac3568d43005cc9a1cba9d7fde5590fd415423/openai-1.68.2-py3-none-any.whl", hash = "sha256:24484cb5c9a33b58576fdc5acf0e5f92603024a4e39d0b99793dfa1eb14c2b36", size = 606073 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3510,7 +3501,7 @@ name = "portalocker"
|
||||
version = "2.10.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pywin32", marker = "platform_system == 'Windows'" },
|
||||
{ name = "pywin32", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ed/d3/c6c64067759e87af98cc668c1cc75171347d0f1577fab7ca3749134e3cd4/portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f", size = 40891 }
|
||||
wheels = [
|
||||
@@ -3817,77 +3808,71 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "pydantic"
|
||||
version = "2.10.4"
|
||||
version = "2.9.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "annotated-types" },
|
||||
{ name = "pydantic-core" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/70/7e/fb60e6fee04d0ef8f15e4e01ff187a196fa976eb0f0ab524af4599e5754c/pydantic-2.10.4.tar.gz", hash = "sha256:82f12e9723da6de4fe2ba888b5971157b3be7ad914267dea8f05f82b28254f06", size = 762094 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/a9/b7/d9e3f12af310e1120c21603644a1cd86f59060e040ec5c3a80b8f05fae30/pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f", size = 769917 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/f3/26/3e1bbe954fde7ee22a6e7d31582c642aad9e84ffe4b5fb61e63b87cd326f/pydantic-2.10.4-py3-none-any.whl", hash = "sha256:597e135ea68be3a37552fb524bc7d0d66dcf93d395acd93a00682f1efcb8ee3d", size = 431765 },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/e4/ba44652d562cbf0bf320e0f3810206149c8a4e99cdbf66da82e97ab53a15/pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12", size = 434928 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic-core"
|
||||
version = "2.27.2"
|
||||
version = "2.23.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/fc/01/f3e5ac5e7c25833db5eb555f7b7ab24cd6f8c322d3a3ad2d67a952dc0abc/pydantic_core-2.27.2.tar.gz", hash = "sha256:eb026e5a4c1fee05726072337ff51d1efb6f59090b7da90d30ea58625b1ffb39", size = 413443 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e2/aa/6b6a9b9f8537b872f552ddd46dd3da230367754b6f707b8e1e963f515ea3/pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863", size = 402156 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/bc/fed5f74b5d802cf9a03e83f60f18864e90e3aed7223adaca5ffb7a8d8d64/pydantic_core-2.27.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2d367ca20b2f14095a8f4fa1210f5a7b78b8a20009ecced6b12818f455b1e9fa", size = 1895938 },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/2a/185aff24ce844e39abb8dd680f4e959f0006944f4a8a0ea372d9f9ae2e53/pydantic_core-2.27.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:491a2b73db93fab69731eaee494f320faa4e093dbed776be1a829c2eb222c34c", size = 1815684 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c3/43/fafabd3d94d159d4f1ed62e383e264f146a17dd4d48453319fd782e7979e/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7969e133a6f183be60e9f6f56bfae753585680f3b7307a8e555a948d443cc05a", size = 1829169 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/d1/f2dfe1a2a637ce6800b799aa086d079998959f6f1215eb4497966efd2274/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3de9961f2a346257caf0aa508a4da705467f53778e9ef6fe744c038119737ef5", size = 1867227 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/39/e06fcbcc1c785daa3160ccf6c1c38fea31f5754b756e34b65f74e99780b5/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2bb4d3e5873c37bb3dd58714d4cd0b0e6238cebc4177ac8fe878f8b3aa8e74c", size = 2037695 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7a/67/61291ee98e07f0650eb756d44998214231f50751ba7e13f4f325d95249ab/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:280d219beebb0752699480fe8f1dc61ab6615c2046d76b7ab7ee38858de0a4e7", size = 2741662 },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/90/3b15e31b88ca39e9e626630b4c4a1f5a0dfd09076366f4219429e6786076/pydantic_core-2.27.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47956ae78b6422cbd46f772f1746799cbb862de838fd8d1fbd34a82e05b0983a", size = 1993370 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/83/c06d333ee3a67e2e13e07794995c1535565132940715931c1c43bfc85b11/pydantic_core-2.27.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:14d4a5c49d2f009d62a2a7140d3064f686d17a5d1a268bc641954ba181880236", size = 1996813 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7c/f7/89be1c8deb6e22618a74f0ca0d933fdcb8baa254753b26b25ad3acff8f74/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:337b443af21d488716f8d0b6164de833e788aa6bd7e3a39c005febc1284f4962", size = 2005287 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/7d/8eb3e23206c00ef7feee17b83a4ffa0a623eb1a9d382e56e4aa46fd15ff2/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:03d0f86ea3184a12f41a2d23f7ccb79cdb5a18e06993f8a45baa8dfec746f0e9", size = 2128414 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4e/99/fe80f3ff8dd71a3ea15763878d464476e6cb0a2db95ff1c5c554133b6b83/pydantic_core-2.27.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7041c36f5680c6e0f08d922aed302e98b3745d97fe1589db0a3eebf6624523af", size = 2155301 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/a3/e50460b9a5789ca1451b70d4f52546fa9e2b420ba3bfa6100105c0559238/pydantic_core-2.27.2-cp310-cp310-win32.whl", hash = "sha256:50a68f3e3819077be2c98110c1f9dcb3817e93f267ba80a2c05bb4f8799e2ff4", size = 1816685 },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/4c/a8838731cb0f2c2a39d3535376466de6049034d7b239c0202a64aaa05533/pydantic_core-2.27.2-cp310-cp310-win_amd64.whl", hash = "sha256:e0fd26b16394ead34a424eecf8a31a1f5137094cabe84a1bcb10fa6ba39d3d31", size = 1982876 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c2/89/f3450af9d09d44eea1f2c369f49e8f181d742f28220f88cc4dfaae91ea6e/pydantic_core-2.27.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:8e10c99ef58cfdf2a66fc15d66b16c4a04f62bca39db589ae8cba08bc55331bc", size = 1893421 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/e3/71fe85af2021f3f386da42d291412e5baf6ce7716bd7101ea49c810eda90/pydantic_core-2.27.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:26f32e0adf166a84d0cb63be85c562ca8a6fa8de28e5f0d92250c6b7e9e2aff7", size = 1814998 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/3c/724039e0d848fd69dbf5806894e26479577316c6f0f112bacaf67aa889ac/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c19d1ea0673cd13cc2f872f6c9ab42acc4e4f492a7ca9d3795ce2b112dd7e15", size = 1826167 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/5b/1b29e8c1fb5f3199a9a57c1452004ff39f494bbe9bdbe9a81e18172e40d3/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5e68c4446fe0810e959cdff46ab0a41ce2f2c86d227d96dc3847af0ba7def306", size = 1865071 },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/6c/3985203863d76bb7d7266e36970d7e3b6385148c18a68cc8915fd8c84d57/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9640b0059ff4f14d1f37321b94061c6db164fbe49b334b31643e0528d100d99", size = 2036244 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/41/f15316858a246b5d723f7d7f599f79e37493b2e84bfc789e58d88c209f8a/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:40d02e7d45c9f8af700f3452f329ead92da4c5f4317ca9b896de7ce7199ea459", size = 2737470 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a8/7c/b860618c25678bbd6d1d99dbdfdf0510ccb50790099b963ff78a124b754f/pydantic_core-2.27.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c1fd185014191700554795c99b347d64f2bb637966c4cfc16998a0ca700d048", size = 1992291 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bf/73/42c3742a391eccbeab39f15213ecda3104ae8682ba3c0c28069fbcb8c10d/pydantic_core-2.27.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d81d2068e1c1228a565af076598f9e7451712700b673de8f502f0334f281387d", size = 1994613 },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/7a/941e89096d1175d56f59340f3a8ebaf20762fef222c298ea96d36a6328c5/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1a4207639fb02ec2dbb76227d7c751a20b1a6b4bc52850568e52260cae64ca3b", size = 2002355 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6e/95/2359937a73d49e336a5a19848713555605d4d8d6940c3ec6c6c0ca4dcf25/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:3de3ce3c9ddc8bbd88f6e0e304dea0e66d843ec9de1b0042b0911c1663ffd474", size = 2126661 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2b/4c/ca02b7bdb6012a1adef21a50625b14f43ed4d11f1fc237f9d7490aa5078c/pydantic_core-2.27.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:30c5f68ded0c36466acede341551106821043e9afaad516adfb6e8fa80a4e6a6", size = 2153261 },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/9d/a241db83f973049a1092a079272ffe2e3e82e98561ef6214ab53fe53b1c7/pydantic_core-2.27.2-cp311-cp311-win32.whl", hash = "sha256:c70c26d2c99f78b125a3459f8afe1aed4d9687c24fd677c6a4436bc042e50d6c", size = 1812361 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e8/ef/013f07248041b74abd48a385e2110aa3a9bbfef0fbd97d4e6d07d2f5b89a/pydantic_core-2.27.2-cp311-cp311-win_amd64.whl", hash = "sha256:08e125dbdc505fa69ca7d9c499639ab6407cfa909214d500897d02afb816e7cc", size = 1982484 },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/1c/16b3a3e3398fd29dca77cea0a1d998d6bde3902fa2706985191e2313cc76/pydantic_core-2.27.2-cp311-cp311-win_arm64.whl", hash = "sha256:26f0d68d4b235a2bae0c3fc585c585b4ecc51382db0e3ba402a22cbc440915e4", size = 1867102 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/74/51c8a5482ca447871c93e142d9d4a92ead74de6c8dc5e66733e22c9bba89/pydantic_core-2.27.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9e0c8cfefa0ef83b4da9588448b6d8d2a2bf1a53c3f1ae5fca39eb3061e2f0b0", size = 1893127 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d3/f3/c97e80721735868313c58b89d2de85fa80fe8dfeeed84dc51598b92a135e/pydantic_core-2.27.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:83097677b8e3bd7eaa6775720ec8e0405f1575015a463285a92bfdfe254529ef", size = 1811340 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/91/840ec1375e686dbae1bd80a9e46c26a1e0083e1186abc610efa3d9a36180/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:172fce187655fece0c90d90a678424b013f8fbb0ca8b036ac266749c09438cb7", size = 1822900 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/31/4240bc96025035500c18adc149aa6ffdf1a0062a4b525c932065ceb4d868/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:519f29f5213271eeeeb3093f662ba2fd512b91c5f188f3bb7b27bc5973816934", size = 1869177 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fa/20/02fbaadb7808be578317015c462655c317a77a7c8f0ef274bc016a784c54/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05e3a55d124407fffba0dd6b0c0cd056d10e983ceb4e5dbd10dda135c31071d6", size = 2038046 },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/86/7f306b904e6c9eccf0668248b3f272090e49c275bc488a7b88b0823444a4/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c3ed807c7b91de05e63930188f19e921d1fe90de6b4f5cd43ee7fcc3525cb8c", size = 2685386 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8d/f0/49129b27c43396581a635d8710dae54a791b17dfc50c70164866bbf865e3/pydantic_core-2.27.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fb4aadc0b9a0c063206846d603b92030eb6f03069151a625667f982887153e2", size = 1997060 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/0f/943b4af7cd416c477fd40b187036c4f89b416a33d3cc0ab7b82708a667aa/pydantic_core-2.27.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:28ccb213807e037460326424ceb8b5245acb88f32f3d2777427476e1b32c48c4", size = 2004870 },
|
||||
{ url = "https://files.pythonhosted.org/packages/35/40/aea70b5b1a63911c53a4c8117c0a828d6790483f858041f47bab0b779f44/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:de3cd1899e2c279b140adde9357c4495ed9d47131b4a4eaff9052f23398076b3", size = 1999822 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f2/b3/807b94fd337d58effc5498fd1a7a4d9d59af4133e83e32ae39a96fddec9d/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:220f892729375e2d736b97d0e51466252ad84c51857d4d15f5e9692f9ef12be4", size = 2130364 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/df/791c827cd4ee6efd59248dca9369fb35e80a9484462c33c6649a8d02b565/pydantic_core-2.27.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a0fcd29cd6b4e74fe8ddd2c90330fd8edf2e30cb52acda47f06dd615ae72da57", size = 2158303 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9b/67/4e197c300976af185b7cef4c02203e175fb127e414125916bf1128b639a9/pydantic_core-2.27.2-cp312-cp312-win32.whl", hash = "sha256:1e2cb691ed9834cd6a8be61228471d0a503731abfb42f82458ff27be7b2186fc", size = 1834064 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/ea/cd7209a889163b8dcca139fe32b9687dd05249161a3edda62860430457a5/pydantic_core-2.27.2-cp312-cp312-win_amd64.whl", hash = "sha256:cc3f1a99a4f4f9dd1de4fe0312c114e740b5ddead65bb4102884b384c15d8bc9", size = 1989046 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/49/c54baab2f4658c26ac633d798dab66b4c3a9bbf47cff5284e9c182f4137a/pydantic_core-2.27.2-cp312-cp312-win_arm64.whl", hash = "sha256:3911ac9284cd8a1792d3cb26a2da18f3ca26c6908cc434a18f730dc0db7bfa3b", size = 1885092 },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/72/af70981a341500419e67d5cb45abe552a7c74b66326ac8877588488da1ac/pydantic_core-2.27.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:2bf14caea37e91198329b828eae1618c068dfb8ef17bb33287a7ad4b61ac314e", size = 1891159 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/3d/c5913cccdef93e0a6a95c2d057d2c2cba347815c845cda79ddd3c0f5e17d/pydantic_core-2.27.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0cb791f5b45307caae8810c2023a184c74605ec3bcbb67d13846c28ff731ff8", size = 1768331 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/f0/a3ae8fbee269e4934f14e2e0e00928f9346c5943174f2811193113e58252/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:688d3fd9fcb71f41c4c015c023d12a79d1c4c0732ec9eb35d96e3388a120dcf3", size = 1822467 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/7a/7bbf241a04e9f9ea24cd5874354a83526d639b02674648af3f350554276c/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d591580c34f4d731592f0e9fe40f9cc1b430d297eecc70b962e93c5c668f15f", size = 1979797 },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/5f/4784c6107731f89e0005a92ecb8a2efeafdb55eb992b8e9d0a2be5199335/pydantic_core-2.27.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:82f986faf4e644ffc189a7f1aafc86e46ef70372bb153e7001e8afccc6e54133", size = 1987839 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6d/a7/61246562b651dff00de86a5f01b6e4befb518df314c54dec187a78d81c84/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bec317a27290e2537f922639cafd54990551725fc844249e64c523301d0822fc", size = 1998861 },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/aa/837821ecf0c022bbb74ca132e117c358321e72e7f9702d1b6a03758545e2/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:0296abcb83a797db256b773f45773da397da75a08f5fcaef41f2044adec05f50", size = 2116582 },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/b0/5e74656e95623cbaa0a6278d16cf15e10a51f6002e3ec126541e95c29ea3/pydantic_core-2.27.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:0d75070718e369e452075a6017fbf187f788e17ed67a3abd47fa934d001863d9", size = 2151985 },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/37/3e32eeb2a451fddaa3898e2163746b0cffbbdbb4740d38372db0490d67f3/pydantic_core-2.27.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:7e17b560be3c98a8e3aa66ce828bdebb9e9ac6ad5466fba92eb74c4c95cb1151", size = 2004715 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/8b/d3ae387f66277bd8104096d6ec0a145f4baa2966ebb2cad746c0920c9526/pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b", size = 1867835 },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/76/f68272e4c3a7df8777798282c5e47d508274917f29992d84e1898f8908c7/pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166", size = 1776689 },
|
||||
{ url = "https://files.pythonhosted.org/packages/cc/69/5f945b4416f42ea3f3bc9d2aaec66c76084a6ff4ff27555bf9415ab43189/pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb", size = 1800748 },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/ab/891a7b0054bcc297fb02d44d05c50e68154e31788f2d9d41d0b72c89fdf7/pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916", size = 1806469 },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/7c/6e3fa122075d78f277a8431c4c608f061881b76c2b7faca01d317ee39b5d/pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07", size = 2002246 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/6f/22d5692b7ab63fc4acbc74de6ff61d185804a83160adba5e6cc6068e1128/pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232", size = 2659404 },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/ac/1e647dc1121c028b691028fa61a4e7477e6aeb5132628fde41dd34c1671f/pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2", size = 2053940 },
|
||||
{ url = "https://files.pythonhosted.org/packages/91/75/984740c17f12c3ce18b5a2fcc4bdceb785cce7df1511a4ce89bca17c7e2d/pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f", size = 1921437 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a0/74/13c5f606b64d93f0721e7768cd3e8b2102164866c207b8cd6f90bb15d24f/pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3", size = 1966129 },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/03/9c4aa5919457c7b57a016c1ab513b1a926ed9b2bb7915bf8e506bf65c34b/pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071", size = 2110908 },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/2c/053d33f029c5dc65e5cf44ff03ceeefb7cce908f8f3cca9265e7f9b540c8/pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119", size = 1735278 },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/81/7dfe464eca78d76d31dd661b04b5f2036ec72ea8848dd87ab7375e185c23/pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f", size = 1917453 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/30/890a583cd3f2be27ecf32b479d5d615710bb926d92da03e3f7838ff3e58b/pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8", size = 1865160 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/9a/b634442e1253bc6889c87afe8bb59447f106ee042140bd57680b3b113ec7/pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d", size = 1776777 },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/9a/7816295124a6b08c24c96f9ce73085032d8bcbaf7e5a781cd41aa910c891/pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e", size = 1799244 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/8f/89c1405176903e567c5f99ec53387449e62f1121894aa9fc2c4fdc51a59b/pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607", size = 1805307 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d5/a5/1a194447d0da1ef492e3470680c66048fef56fc1f1a25cafbea4bc1d1c48/pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd", size = 2000663 },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/a5/1df8541651de4455e7d587cf556201b4f7997191e110bca3b589218745a5/pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea", size = 2655941 },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/31/a3899b5ce02c4316865e390107f145089876dff7e1dfc770a231d836aed8/pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e", size = 2052105 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/aa/98e190f8745d5ec831f6d5449344c48c0627ac5fed4e5340a44b74878f8e/pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b", size = 1919967 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/35/b6e00b6abb2acfee3e8f85558c02a0822e9a8b2f2d812ea8b9079b118ba0/pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0", size = 1964291 },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/46/7bee6d32b69191cd649bbbd2361af79c472d72cb29bb2024f0b6e350ba06/pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64", size = 2109666 },
|
||||
{ url = "https://files.pythonhosted.org/packages/39/ef/7b34f1b122a81b68ed0a7d0e564da9ccdc9a2924c8d6c6b5b11fa3a56970/pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f", size = 1732940 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/76/37b7e76c645843ff46c1d73e046207311ef298d3f7b2f7d8f6ac60113071/pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3", size = 1916804 },
|
||||
{ url = "https://files.pythonhosted.org/packages/74/7b/8e315f80666194b354966ec84b7d567da77ad927ed6323db4006cf915f3f/pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231", size = 1856459 },
|
||||
{ url = "https://files.pythonhosted.org/packages/14/de/866bdce10ed808323d437612aca1ec9971b981e1c52e5e42ad9b8e17a6f6/pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee", size = 1770007 },
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/69/8edd5c3cd48bb833a3f7ef9b81d7666ccddd3c9a635225214e044b6e8281/pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87", size = 1790245 },
|
||||
{ url = "https://files.pythonhosted.org/packages/80/33/9c24334e3af796ce80d2274940aae38dd4e5676298b4398eff103a79e02d/pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8", size = 1801260 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/6f/e9567fd90104b79b101ca9d120219644d3314962caa7948dd8b965e9f83e/pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327", size = 1996872 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/ad/b5f0fe9e6cfee915dd144edbd10b6e9c9c9c9d7a56b69256d124b8ac682e/pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2", size = 2661617 },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/c8/7d4b708f8d05a5cbfda3243aad468052c6e99de7d0937c9146c24d9f12e9/pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36", size = 2071831 },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/4d/3079d00c47f22c9a9a8220db088b309ad6e600a73d7a69473e3a8e5e3ea3/pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126", size = 1917453 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/88/9df5b7ce880a4703fcc2d76c8c2d8eb9f861f79d0c56f4b8f5f2607ccec8/pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e", size = 1968793 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/b9/41f7efe80f6ce2ed3ee3c2dcfe10ab7adc1172f778cc9659509a79518c43/pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24", size = 2116872 },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/08/b59b7a92e03dd25554b0436554bf23e7c29abae7cce4b1c459cd92746811/pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84", size = 1738535 },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/8d/479293e4d39ab409747926eec4329de5b7129beaedc3786eca070605d07f/pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9", size = 1917992 },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/a9/5d582eb3204464284611f636b55c0a7410d748ff338756323cb1ce721b96/pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5", size = 1857135 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2c/57/faf36290933fe16717f97829eabfb1868182ac495f99cf0eda9f59687c9d/pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec", size = 1740583 },
|
||||
{ url = "https://files.pythonhosted.org/packages/91/7c/d99e3513dc191c4fec363aef1bf4c8af9125d8fa53af7cb97e8babef4e40/pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480", size = 1793637 },
|
||||
{ url = "https://files.pythonhosted.org/packages/29/18/812222b6d18c2d13eebbb0f7cdc170a408d9ced65794fdb86147c77e1982/pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068", size = 1941963 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/36/c1f3642ac3f05e6bb4aec3ffc399fa3f84895d259cf5f0ce3054b7735c29/pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801", size = 1915332 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f7/ca/9c0854829311fb446020ebb540ee22509731abad886d2859c855dd29b904/pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728", size = 1957926 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/1c/7836b67c42d0cd4441fcd9fafbf6a027ad4b79b6559f80cf11f89fd83648/pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433", size = 2100342 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/f9/b6bcaf874f410564a78908739c80861a171788ef4d4f76f5009656672dfe/pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753", size = 1920344 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -5023,19 +5008,19 @@ dependencies = [
|
||||
{ name = "fsspec" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "networkx" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "sympy" },
|
||||
{ name = "triton", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
wheels = [
|
||||
@@ -5082,7 +5067,7 @@ name = "tqdm"
|
||||
version = "4.66.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 }
|
||||
wheels = [
|
||||
@@ -5124,7 +5109,7 @@ name = "triton"
|
||||
version = "3.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "filelock", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a", size = 209376304 },
|
||||
@@ -5519,64 +5504,64 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "yarl"
|
||||
version = "1.18.3"
|
||||
version = "1.16.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "idna" },
|
||||
{ name = "multidict" },
|
||||
{ name = "propcache" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b7/9d/4b94a8e6d2b51b599516a5cb88e5bc99b4d8d4583e468057eaa29d5f0918/yarl-1.18.3.tar.gz", hash = "sha256:ac1801c45cbf77b6c99242eeff4fffb5e4e73a800b5c4ad4fc0be5def634d2e1", size = 181062 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/23/52/e9766cc6c2eab7dd1e9749c52c9879317500b46fb97d4105223f86679f93/yarl-1.16.0.tar.gz", hash = "sha256:b6f687ced5510a9a2474bbae96a4352e5ace5fa34dc44a217b0537fec1db00b4", size = 176548 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/98/e005bc608765a8a5569f58e650961314873c8469c333616eb40bff19ae97/yarl-1.18.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7df647e8edd71f000a5208fe6ff8c382a1de8edfbccdbbfe649d263de07d8c34", size = 141458 },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/5d/f8106b263b8ae8a866b46d9be869ac01f9b3fb7f2325f3ecb3df8003f796/yarl-1.18.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c69697d3adff5aa4f874b19c0e4ed65180ceed6318ec856ebc423aa5850d84f7", size = 94365 },
|
||||
{ url = "https://files.pythonhosted.org/packages/56/3e/d8637ddb9ba69bf851f765a3ee288676f7cf64fb3be13760c18cbc9d10bd/yarl-1.18.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:602d98f2c2d929f8e697ed274fbadc09902c4025c5a9963bf4e9edfc3ab6f7ed", size = 92181 },
|
||||
{ url = "https://files.pythonhosted.org/packages/76/f9/d616a5c2daae281171de10fba41e1c0e2d8207166fc3547252f7d469b4e1/yarl-1.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c654d5207c78e0bd6d749f6dae1dcbbfde3403ad3a4b11f3c5544d9906969dde", size = 315349 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/b4/3ea5e7b6f08f698b3769a06054783e434f6d59857181b5c4e145de83f59b/yarl-1.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5094d9206c64181d0f6e76ebd8fb2f8fe274950a63890ee9e0ebfd58bf9d787b", size = 330494 },
|
||||
{ url = "https://files.pythonhosted.org/packages/55/f1/e0fc810554877b1b67420568afff51b967baed5b53bcc983ab164eebf9c9/yarl-1.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35098b24e0327fc4ebdc8ffe336cee0a87a700c24ffed13161af80124b7dc8e5", size = 326927 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/42/b1753949b327b36f210899f2dd0a0947c0c74e42a32de3f8eb5c7d93edca/yarl-1.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3236da9272872443f81fedc389bace88408f64f89f75d1bdb2256069a8730ccc", size = 319703 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/6d/e87c62dc9635daefb064b56f5c97df55a2e9cc947a2b3afd4fd2f3b841c7/yarl-1.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2c08cc9b16f4f4bc522771d96734c7901e7ebef70c6c5c35dd0f10845270bcd", size = 310246 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/ef/e2e8d1785cdcbd986f7622d7f0098205f3644546da7919c24b95790ec65a/yarl-1.18.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80316a8bd5109320d38eef8833ccf5f89608c9107d02d2a7f985f98ed6876990", size = 319730 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/15/8723e22345bc160dfde68c4b3ae8b236e868f9963c74015f1bc8a614101c/yarl-1.18.3-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c1e1cc06da1491e6734f0ea1e6294ce00792193c463350626571c287c9a704db", size = 321681 },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/09/bf764e974f1516efa0ae2801494a5951e959f1610dd41edbfc07e5e0f978/yarl-1.18.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fea09ca13323376a2fdfb353a5fa2e59f90cd18d7ca4eaa1fd31f0a8b4f91e62", size = 324812 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/4c/20a0187e3b903c97d857cf0272d687c1b08b03438968ae8ffc50fe78b0d6/yarl-1.18.3-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e3b9fd71836999aad54084906f8663dffcd2a7fb5cdafd6c37713b2e72be1760", size = 337011 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/71/6244599a6e1cc4c9f73254a627234e0dad3883ece40cc33dce6265977461/yarl-1.18.3-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:757e81cae69244257d125ff31663249b3013b5dc0a8520d73694aed497fb195b", size = 338132 },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/f5/e0c3efaf74566c4b4a41cb76d27097df424052a064216beccae8d303c90f/yarl-1.18.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b1771de9944d875f1b98a745bc547e684b863abf8f8287da8466cf470ef52690", size = 331849 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/b8/3d16209c2014c2f98a8f658850a57b716efb97930aebf1ca0d9325933731/yarl-1.18.3-cp310-cp310-win32.whl", hash = "sha256:8874027a53e3aea659a6d62751800cf6e63314c160fd607489ba5c2edd753cf6", size = 84309 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/b7/2e9a5b18eb0fe24c3a0e8bae994e812ed9852ab4fd067c0107fadde0d5f0/yarl-1.18.3-cp310-cp310-win_amd64.whl", hash = "sha256:93b2e109287f93db79210f86deb6b9bbb81ac32fc97236b16f7433db7fc437d8", size = 90484 },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/93/282b5f4898d8e8efaf0790ba6d10e2245d2c9f30e199d1a85cae9356098c/yarl-1.18.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8503ad47387b8ebd39cbbbdf0bf113e17330ffd339ba1144074da24c545f0069", size = 141555 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6d/9c/0a49af78df099c283ca3444560f10718fadb8a18dc8b3edf8c7bd9fd7d89/yarl-1.18.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02ddb6756f8f4517a2d5e99d8b2f272488e18dd0bfbc802f31c16c6c20f22193", size = 94351 },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/a1/205ab51e148fdcedad189ca8dd587794c6f119882437d04c33c01a75dece/yarl-1.18.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:67a283dd2882ac98cc6318384f565bffc751ab564605959df4752d42483ad889", size = 92286 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/fe/88b690b30f3f59275fb674f5f93ddd4a3ae796c2b62e5bb9ece8a4914b83/yarl-1.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d980e0325b6eddc81331d3f4551e2a333999fb176fd153e075c6d1c2530aa8a8", size = 340649 },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/eb/3b65499b568e01f36e847cebdc8d7ccb51fff716dbda1ae83c3cbb8ca1c9/yarl-1.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b643562c12680b01e17239be267bc306bbc6aac1f34f6444d1bded0c5ce438ca", size = 356623 },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/46/f559dc184280b745fc76ec6b1954de2c55595f0ec0a7614238b9ebf69618/yarl-1.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c017a3b6df3a1bd45b9fa49a0f54005e53fbcad16633870104b66fa1a30a29d8", size = 354007 },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/ba/1865d85212351ad160f19fb99808acf23aab9a0f8ff31c8c9f1b4d671fc9/yarl-1.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75674776d96d7b851b6498f17824ba17849d790a44d282929c42dbb77d4f17ae", size = 344145 },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/cb/5c3e975d77755d7b3d5193e92056b19d83752ea2da7ab394e22260a7b824/yarl-1.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ccaa3a4b521b780a7e771cc336a2dba389a0861592bbce09a476190bb0c8b4b3", size = 336133 },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/89/b77d3fd249ab52a5c40859815765d35c91425b6bb82e7427ab2f78f5ff55/yarl-1.18.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2d06d3005e668744e11ed80812e61efd77d70bb7f03e33c1598c301eea20efbb", size = 347967 },
|
||||
{ url = "https://files.pythonhosted.org/packages/35/bd/f6b7630ba2cc06c319c3235634c582a6ab014d52311e7d7c22f9518189b5/yarl-1.18.3-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:9d41beda9dc97ca9ab0b9888cb71f7539124bc05df02c0cff6e5acc5a19dcc6e", size = 346397 },
|
||||
{ url = "https://files.pythonhosted.org/packages/18/1a/0b4e367d5a72d1f095318344848e93ea70da728118221f84f1bf6c1e39e7/yarl-1.18.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ba23302c0c61a9999784e73809427c9dbedd79f66a13d84ad1b1943802eaaf59", size = 350206 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b5/cf/320fff4367341fb77809a2d8d7fe75b5d323a8e1b35710aafe41fdbf327b/yarl-1.18.3-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:6748dbf9bfa5ba1afcc7556b71cda0d7ce5f24768043a02a58846e4a443d808d", size = 362089 },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/cf/aadba261d8b920253204085268bad5e8cdd86b50162fcb1b10c10834885a/yarl-1.18.3-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0b0cad37311123211dc91eadcb322ef4d4a66008d3e1bdc404808992260e1a0e", size = 366267 },
|
||||
{ url = "https://files.pythonhosted.org/packages/54/58/fb4cadd81acdee6dafe14abeb258f876e4dd410518099ae9a35c88d8097c/yarl-1.18.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0fb2171a4486bb075316ee754c6d8382ea6eb8b399d4ec62fde2b591f879778a", size = 359141 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/7a/4c571597589da4cd5c14ed2a0b17ac56ec9ee7ee615013f74653169e702d/yarl-1.18.3-cp311-cp311-win32.whl", hash = "sha256:61b1a825a13bef4a5f10b1885245377d3cd0bf87cba068e1d9a88c2ae36880e1", size = 84402 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/7b/8600250b3d89b625f1121d897062f629883c2f45339623b69b1747ec65fa/yarl-1.18.3-cp311-cp311-win_amd64.whl", hash = "sha256:b9d60031cf568c627d028239693fd718025719c02c9f55df0a53e587aab951b5", size = 91030 },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/85/bd2e2729752ff4c77338e0102914897512e92496375e079ce0150a6dc306/yarl-1.18.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1dd4bdd05407ced96fed3d7f25dbbf88d2ffb045a0db60dbc247f5b3c5c25d50", size = 142644 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ff/74/1178322cc0f10288d7eefa6e4a85d8d2e28187ccab13d5b844e8b5d7c88d/yarl-1.18.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7c33dd1931a95e5d9a772d0ac5e44cac8957eaf58e3c8da8c1414de7dd27c576", size = 94962 },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/75/79c6acc0261e2c2ae8a1c41cf12265e91628c8c58ae91f5ff59e29c0787f/yarl-1.18.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25b411eddcfd56a2f0cd6a384e9f4f7aa3efee14b188de13048c25b5e91f1640", size = 92795 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/32/927b2d67a412c31199e83fefdce6e645247b4fb164aa1ecb35a0f9eb2058/yarl-1.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:436c4fc0a4d66b2badc6c5fc5ef4e47bb10e4fd9bf0c79524ac719a01f3607c2", size = 332368 },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/e5/859fca07169d6eceeaa4fde1997c91d8abde4e9a7c018e371640c2da2b71/yarl-1.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e35ef8683211db69ffe129a25d5634319a677570ab6b2eba4afa860f54eeaf75", size = 342314 },
|
||||
{ url = "https://files.pythonhosted.org/packages/08/75/76b63ccd91c9e03ab213ef27ae6add2e3400e77e5cdddf8ed2dbc36e3f21/yarl-1.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84b2deecba4a3f1a398df819151eb72d29bfeb3b69abb145a00ddc8d30094512", size = 341987 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/e1/a097d5755d3ea8479a42856f51d97eeff7a3a7160593332d98f2709b3580/yarl-1.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00e5a1fea0fd4f5bfa7440a47eff01d9822a65b4488f7cff83155a0f31a2ecba", size = 336914 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/42/e1b4d0e396b7987feceebe565286c27bc085bf07d61a59508cdaf2d45e63/yarl-1.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0e883008013c0e4aef84dcfe2a0b172c4d23c2669412cf5b3371003941f72bb", size = 325765 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/18/03a5834ccc9177f97ca1bbb245b93c13e58e8225276f01eedc4cc98ab820/yarl-1.18.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5a3f356548e34a70b0172d8890006c37be92995f62d95a07b4a42e90fba54272", size = 344444 },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/03/a713633bdde0640b0472aa197b5b86e90fbc4c5bc05b727b714cd8a40e6d/yarl-1.18.3-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ccd17349166b1bee6e529b4add61727d3f55edb7babbe4069b5764c9587a8cc6", size = 340760 },
|
||||
{ url = "https://files.pythonhosted.org/packages/eb/99/f6567e3f3bbad8fd101886ea0276c68ecb86a2b58be0f64077396cd4b95e/yarl-1.18.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b958ddd075ddba5b09bb0be8a6d9906d2ce933aee81100db289badbeb966f54e", size = 346484 },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/a9/84717c896b2fc6cb15bd4eecd64e34a2f0a9fd6669e69170c73a8b46795a/yarl-1.18.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c7d79f7d9aabd6011004e33b22bc13056a3e3fb54794d138af57f5ee9d9032cb", size = 359864 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/2e/d0f5f1bef7ee93ed17e739ec8dbcb47794af891f7d165fa6014517b48169/yarl-1.18.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4891ed92157e5430874dad17b15eb1fda57627710756c27422200c52d8a4e393", size = 364537 },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/8a/568d07c5d4964da5b02621a517532adb8ec5ba181ad1687191fffeda0ab6/yarl-1.18.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ce1af883b94304f493698b00d0f006d56aea98aeb49d75ec7d98cd4a777e9285", size = 357861 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/e3/924c3f64b6b3077889df9a1ece1ed8947e7b61b0a933f2ec93041990a677/yarl-1.18.3-cp312-cp312-win32.whl", hash = "sha256:f91c4803173928a25e1a55b943c81f55b8872f0018be83e3ad4938adffb77dd2", size = 84097 },
|
||||
{ url = "https://files.pythonhosted.org/packages/34/45/0e055320daaabfc169b21ff6174567b2c910c45617b0d79c68d7ab349b02/yarl-1.18.3-cp312-cp312-win_amd64.whl", hash = "sha256:7e2ee16578af3b52ac2f334c3b1f92262f47e02cc6193c598502bd46f5cd1477", size = 90399 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f5/4b/a06e0ec3d155924f77835ed2d167ebd3b211a7b0853da1cf8d8414d784ef/yarl-1.18.3-py3-none-any.whl", hash = "sha256:b57f4f58099328dfb26c6a771d09fb20dbbae81d20cfb66141251ea063bd101b", size = 45109 },
|
||||
{ url = "https://files.pythonhosted.org/packages/df/30/00b17348655202e4bd24f8d79cd062888e5d3bdbf2ba726615c5d21b54a5/yarl-1.16.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:32468f41242d72b87ab793a86d92f885355bcf35b3355aa650bfa846a5c60058", size = 140016 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/15/9b7b85b72b81f180689257b2bb6e54d5d0764a399679aa06d5dec8ca6e2e/yarl-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:234f3a3032b505b90e65b5bc6652c2329ea7ea8855d8de61e1642b74b4ee65d2", size = 92953 },
|
||||
{ url = "https://files.pythonhosted.org/packages/31/41/91848bbb76789336d3b786ff144030001b5027b17729b3afa32da668f5b0/yarl-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8a0296040e5cddf074c7f5af4a60f3fc42c0237440df7bcf5183be5f6c802ed5", size = 90793 },
|
||||
{ url = "https://files.pythonhosted.org/packages/6c/99/f1ada764e350ab054e14902f3f68589a7d77469ac47fbc512aa1a78a2f35/yarl-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de6c14dd7c7c0badba48157474ea1f03ebee991530ba742d381b28d4f314d6f3", size = 313155 },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/fd/998ccdb489ca97d9073d882265203a2fae4c5bff30eb9b8a0bbbed7aef2b/yarl-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b140e532fe0266003c936d017c1ac301e72ee4a3fd51784574c05f53718a55d8", size = 328624 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/5d/395bbae1f509f64e6d26b7ffffff178d70c5480f15af735dfb0afb8f0dc5/yarl-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:019f5d58093402aa8f6661e60fd82a28746ad6d156f6c5336a70a39bd7b162b9", size = 325163 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/25/65601d336189d122483f5ff0276b08278fa4778f833458cfcac5c6eddc87/yarl-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c42998fd1cbeb53cd985bff0e4bc25fbe55fd6eb3a545a724c1012d69d5ec84", size = 318076 },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/bb/0c9692ec457c1ed023654a9fba6d0c69a20c79b56275d972f6a24ab18547/yarl-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c7c30fb38c300fe8140df30a046a01769105e4cf4282567a29b5cdb635b66c4", size = 309551 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/2f/d0ced2050a203241a3f2e05c5bb86038b071f216897defd824dd85333f9e/yarl-1.16.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e49e0fd86c295e743fd5be69b8b0712f70a686bc79a16e5268386c2defacaade", size = 317678 },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/93/b7359aa2bd0567eca72491cd20059744ed6ee00f08cd58c861243f656a90/yarl-1.16.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:b9ca7b9147eb1365c8bab03c003baa1300599575effad765e0b07dd3501ea9af", size = 317003 },
|
||||
{ url = "https://files.pythonhosted.org/packages/87/18/77ef4d45d19ecafad0f7c07d5cf13a757a90122383494bc5a3e8ee68e2f2/yarl-1.16.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27e11db3f1e6a51081a981509f75617b09810529de508a181319193d320bc5c7", size = 322795 },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/a9/b38880bf79665d1c8a3d4c09d6f7a686a50f8c74caf07603a2b8e5314038/yarl-1.16.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8994c42f4ca25df5380ddf59f315c518c81df6a68fed5bb0c159c6cb6b92f120", size = 337022 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/79/865788b297fc17117e3ff6ea74d5f864185085d61adc3364444732095254/yarl-1.16.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:542fa8e09a581bcdcbb30607c7224beff3fdfb598c798ccd28a8184ffc18b7eb", size = 338357 },
|
||||
{ url = "https://files.pythonhosted.org/packages/bd/5e/c5cba528448f73c7035c9d3c07261b54312d8caa8372eeeff5e1f07e43ec/yarl-1.16.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2bd6a51010c7284d191b79d3b56e51a87d8e1c03b0902362945f15c3d50ed46b", size = 330470 },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/e4/90757595d81ec328ad94afa62d0724903a6c72b76e0ee9c9af9d8a399dd2/yarl-1.16.0-cp310-cp310-win32.whl", hash = "sha256:178ccb856e265174a79f59721031060f885aca428983e75c06f78aa24b91d929", size = 82967 },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/5a/b82ec5e7557b0d938b9475cbb5dcbb1f98c8601101188d79e423dc215cd0/yarl-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:fe8bba2545427418efc1929c5c42852bdb4143eb8d0a46b09de88d1fe99258e7", size = 89159 },
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/00/b29affe83de95e403f8a2a669b5a33f1e7dfe686264008100052eb0b05fd/yarl-1.16.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d8643975a0080f361639787415a038bfc32d29208a4bf6b783ab3075a20b1ef3", size = 140120 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/22/bcc9799950281a5d4f646536854839ccdbb965e900827ef0750680f81faf/yarl-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:676d96bafc8c2d0039cea0cd3fd44cee7aa88b8185551a2bb93354668e8315c2", size = 92956 },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/0f/1b76d853d9d921d68bd9991648be17d34e7ac51e2e20e7658f8ee7e2e2ad/yarl-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d9525f03269e64310416dbe6c68d3b23e5d34aaa8f47193a1c45ac568cecbc49", size = 90891 },
|
||||
{ url = "https://files.pythonhosted.org/packages/61/19/3666d990c24aae98c748e2c262adc9b3a71e38834df007ac5317f4bbd789/yarl-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b37d5ec034e668b22cf0ce1074d6c21fd2a08b90d11b1b73139b750a8b0dd97", size = 338857 },
|
||||
{ url = "https://files.pythonhosted.org/packages/a0/3d/54acbb3cdfcfea03d6a3535cff1e060a2de23e419a4e3955c9661171b8a8/yarl-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f32c4cb7386b41936894685f6e093c8dfaf0960124d91fe0ec29fe439e201d0", size = 354005 },
|
||||
{ url = "https://files.pythonhosted.org/packages/15/98/cd9fe3938422c88775c94578a6c145aca89ff8368ff64e6032213ac12403/yarl-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b8e265a0545637492a7e12fd7038370d66c9375a61d88c5567d0e044ded9202", size = 351195 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e2/13/b6eff6ea1667aee948ecd6b1c8fb6473234f8e48f49af97be93251869c51/yarl-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:789a3423f28a5fff46fbd04e339863c169ece97c827b44de16e1a7a42bc915d2", size = 342789 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/05/d98e65ea74a7e44bb033b2cf5bcc16edc1d5212bdc5ca7fbb5e380d89f8e/yarl-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1d1f45e3e8d37c804dca99ab3cf4ab3ed2e7a62cd82542924b14c0a4f46d243", size = 336478 },
|
||||
{ url = "https://files.pythonhosted.org/packages/7d/47/43de2e94b75f36d84733a35c807d0e33aaf084e98f32e2cbc685102f4ba4/yarl-1.16.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:621280719c4c5dad4c1391160a9b88925bb8b0ff6a7d5af3224643024871675f", size = 346008 },
|
||||
{ url = "https://files.pythonhosted.org/packages/e2/de/9c2f900ec5e2f2e20329cfe7dcd9452e326d08cb5ecd098c2d4e9987b65c/yarl-1.16.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:ed097b26f18a1f5ff05f661dc36528c5f6735ba4ce8c9645e83b064665131349", size = 343745 },
|
||||
{ url = "https://files.pythonhosted.org/packages/56/cd/b014dce22e37b77caa37f998c6c47434fd78d01e7be07119629f369f5ee1/yarl-1.16.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:2f1fe2b2e3ee418862f5ebc0c0083c97f6f6625781382f828f6d4e9b614eba9b", size = 349705 },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/17/bb191a26f7189423964e008ccb5146ce5258454ef3979f9d4c6860d282c7/yarl-1.16.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:87dd10bc0618991c66cee0cc65fa74a45f4ecb13bceec3c62d78ad2e42b27a16", size = 360767 },
|
||||
{ url = "https://files.pythonhosted.org/packages/19/09/7d777369e151991b708a5b35280ea7444621d65af5f0545bcdce5d840867/yarl-1.16.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:4199db024b58a8abb2cfcedac7b1292c3ad421684571aeb622a02f242280e8d6", size = 364755 },
|
||||
{ url = "https://files.pythonhosted.org/packages/00/32/7558997d1d2e53dab15f6db5db49fc6b412b63ede3cb8314e5dd7cff14fe/yarl-1.16.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:99a9dcd4b71dd5f5f949737ab3f356cfc058c709b4f49833aeffedc2652dac56", size = 357087 },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/20/c49a95a30c57224e5fb0fc83235295684b041300ce508b71821cb042527d/yarl-1.16.0-cp311-cp311-win32.whl", hash = "sha256:a9394c65ae0ed95679717d391c862dece9afacd8fa311683fc8b4362ce8a410c", size = 83030 },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/e3/2a746721d6f32886d9bafccdb80174349f180ccae0a287f25ba4312a2618/yarl-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b9101f528ae0f8f65ac9d64dda2bb0627de8a50344b2f582779f32fda747c1d", size = 89616 },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/be/82f696c8ce0395c37f62b955202368086e5cc114d5bb9cb1b634cff5e01d/yarl-1.16.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:4ffb7c129707dd76ced0a4a4128ff452cecf0b0e929f2668ea05a371d9e5c104", size = 141230 },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/60/45caaa748b53c4b0964f899879fcddc41faa4e0d12c6f0ae3311e8c151ff/yarl-1.16.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:1a5e9d8ce1185723419c487758d81ac2bde693711947032cce600ca7c9cda7d6", size = 93515 },
|
||||
{ url = "https://files.pythonhosted.org/packages/54/bd/33aaca2f824dc1d630729e16e313797e8b24c8f7b6803307e5394274e443/yarl-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d743e3118b2640cef7768ea955378c3536482d95550222f908f392167fe62059", size = 91441 },
|
||||
{ url = "https://files.pythonhosted.org/packages/af/fa/1ce8ca85489925aabdb8d2e7bbeaf74e7d3e6ac069779d6d6b9c7c62a8ed/yarl-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26768342f256e6e3c37533bf9433f5f15f3e59e3c14b2409098291b3efaceacb", size = 330871 },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/2a/a8110a225e498b87315827f8b61d24de35f86041834cf8c9c5544380c46b/yarl-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1b0796168b953bca6600c5f97f5ed407479889a36ad7d17183366260f29a6b9", size = 340641 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d0/64/20cd1cb1f60b3ff49e7d75c1a2083352e7c5939368aafa960712c9e53797/yarl-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:858728086914f3a407aa7979cab743bbda1fe2bdf39ffcd991469a370dd7414d", size = 340245 },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/a8/7f38bbefb22eb925a68ad1d8193b05f51515614a6c0ebcadf26e9ae5e5ad/yarl-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5570e6d47bcb03215baf4c9ad7bf7c013e56285d9d35013541f9ac2b372593e7", size = 336054 },
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/a6/ac633ea3ea0c4eb1057e6800db1d077e77493b4b3449a4a97b2fbefadef4/yarl-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66ea8311422a7ba1fc79b4c42c2baa10566469fe5a78500d4e7754d6e6db8724", size = 324405 },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/cd/4fc87ce9b0df7afb610ffb904f4aef25f59e0ad40a49da19a475facf98b7/yarl-1.16.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:649bddcedee692ee8a9b7b6e38582cb4062dc4253de9711568e5620d8707c2a3", size = 342235 },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/bc/38bae4b716da1206849d88e167d3d2c5695ae9b418a3915220947593e5ca/yarl-1.16.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:3a91654adb7643cb21b46f04244c5a315a440dcad63213033826549fa2435f71", size = 340835 },
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/0f/b9efbc0075916a450cbad41299dff3bdd3393cb1d8378bb831c4a6a836e1/yarl-1.16.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b439cae82034ade094526a8f692b9a2b5ee936452de5e4c5f0f6c48df23f8604", size = 344323 },
|
||||
{ url = "https://files.pythonhosted.org/packages/87/6d/dc483ea1574005f14ef4c5f5f726cf60327b07ac83bd417d98db23e5285f/yarl-1.16.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:571f781ae8ac463ce30bacebfaef2c6581543776d5970b2372fbe31d7bf31a07", size = 355112 },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/22/3b7c3728d26b3cc295c51160ae4e2612ab7d3f9df30beece44bf72861730/yarl-1.16.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:aa7943f04f36d6cafc0cf53ea89824ac2c37acbdb4b316a654176ab8ffd0f968", size = 361506 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/8d/b7b5d43cf22a020b564ddf7502d83df150d797e34f18f6bf5fe0f12cbd91/yarl-1.16.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1a5cf32539373ff39d97723e39a9283a7277cbf1224f7aef0c56c9598b6486c3", size = 355746 },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/a6/a2098bf3f09d38eb540b2b192e180d9d41c2ff64b692783db2188f0a55e3/yarl-1.16.0-cp312-cp312-win32.whl", hash = "sha256:a5b6c09b9b4253d6a208b0f4a2f9206e511ec68dce9198e0fbec4f160137aa67", size = 82675 },
|
||||
{ url = "https://files.pythonhosted.org/packages/ed/a6/0a54b382cfc336e772b72681d6816a99222dc2d21876e649474973b8d244/yarl-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:1208ca14eed2fda324042adf8d6c0adf4a31522fa95e0929027cd487875f0240", size = 88986 },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/f7/87a32867ddc1a9817018bfd6109ee57646a543acf0d272843d8393e575f9/yarl-1.16.0-py3-none-any.whl", hash = "sha256:e6980a558d8461230c457218bd6c92dfc1d10205548215c2c21d79dc8d0a96f3", size = 43746 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user