mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-28 02:08:29 +00:00
Compare commits
7 Commits
tony-docs
...
bugfix/fix
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
31e907bd84 | ||
|
|
4fff01dc4d | ||
|
|
67772ca591 | ||
|
|
b5779dca12 | ||
|
|
42311d9c7a | ||
|
|
294f2cc3a9 | ||
|
|
3dc442801f |
@@ -93,6 +93,12 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
|
||||
|
||||
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
|
||||
|
||||
<Note>
|
||||
You need to install `docling` for the following example to work: `uv add docling`
|
||||
</Note>
|
||||
|
||||
|
||||
|
||||
```python Code
|
||||
from crewai import LLM, Agent, Crew, Process, Task
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
|
||||
@@ -25,7 +25,7 @@ class OutputConverter(BaseModel, ABC):
|
||||
llm: Any = Field(description="The language model to be used to convert the text.")
|
||||
model: Any = Field(description="The model to be used to convert the text.")
|
||||
instructions: str = Field(description="Conversion instructions to the LLM.")
|
||||
max_attempts: Optional[int] = Field(
|
||||
max_attempts: int = Field(
|
||||
description="Max number of attempts to try to get the output formatted.",
|
||||
default=3,
|
||||
)
|
||||
|
||||
@@ -2,11 +2,12 @@ from crewai.types.usage_metrics import UsageMetrics
|
||||
|
||||
|
||||
class TokenProcess:
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
cached_prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
def __init__(self):
|
||||
self.total_tokens: int = 0
|
||||
self.prompt_tokens: int = 0
|
||||
self.cached_prompt_tokens: int = 0
|
||||
self.completion_tokens: int = 0
|
||||
self.successful_requests: int = 0
|
||||
|
||||
def sum_prompt_tokens(self, tokens: int):
|
||||
self.prompt_tokens = self.prompt_tokens + tokens
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
import uuid
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
@@ -12,6 +13,7 @@ from typing import (
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
overload,
|
||||
)
|
||||
from uuid import uuid4
|
||||
|
||||
@@ -25,6 +27,8 @@ from crewai.flow.flow_events import (
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.persistence import FlowPersistence
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
|
||||
@@ -33,7 +37,46 @@ class FlowState(BaseModel):
|
||||
"""Base model for all flow states, ensuring each state has a unique ID."""
|
||||
id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the flow state")
|
||||
|
||||
T = TypeVar("T", bound=Union[FlowState, Dict[str, Any]])
|
||||
# Type variables with explicit bounds
|
||||
T = TypeVar("T", bound=Union[Dict[str, Any], BaseModel]) # Generic flow state type parameter
|
||||
StateT = TypeVar("StateT", bound=Union[Dict[str, Any], BaseModel]) # State validation type parameter
|
||||
|
||||
def ensure_state_type(state: Any, expected_type: Type[StateT]) -> StateT:
|
||||
"""Ensure state matches expected type with proper validation.
|
||||
|
||||
Args:
|
||||
state: State instance to validate
|
||||
expected_type: Expected type for the state
|
||||
|
||||
Returns:
|
||||
Validated state instance
|
||||
|
||||
Raises:
|
||||
TypeError: If state doesn't match expected type
|
||||
ValueError: If state validation fails
|
||||
"""
|
||||
"""Ensure state matches expected type with proper validation.
|
||||
|
||||
Args:
|
||||
state: State instance to validate
|
||||
expected_type: Expected type for the state
|
||||
|
||||
Returns:
|
||||
Validated state instance
|
||||
|
||||
Raises:
|
||||
TypeError: If state doesn't match expected type
|
||||
ValueError: If state validation fails
|
||||
"""
|
||||
if expected_type == dict:
|
||||
if not isinstance(state, dict):
|
||||
raise TypeError(f"Expected dict, got {type(state).__name__}")
|
||||
return cast(StateT, state)
|
||||
if isinstance(expected_type, type) and issubclass(expected_type, BaseModel):
|
||||
if not isinstance(state, expected_type):
|
||||
raise TypeError(f"Expected {expected_type.__name__}, got {type(state).__name__}")
|
||||
return cast(StateT, state)
|
||||
raise TypeError(f"Invalid expected_type: {expected_type}")
|
||||
|
||||
|
||||
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
|
||||
@@ -326,21 +369,27 @@ class FlowMeta(type):
|
||||
routers = set()
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
start_methods.append(attr_name)
|
||||
# Check for any flow-related attributes
|
||||
if (hasattr(attr_value, "__is_flow_method__") or
|
||||
hasattr(attr_value, "__is_start_method__") or
|
||||
hasattr(attr_value, "__trigger_methods__") or
|
||||
hasattr(attr_value, "__is_router__")):
|
||||
|
||||
# Register start methods
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
start_methods.append(attr_name)
|
||||
|
||||
# Register listeners and routers
|
||||
if hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
elif hasattr(attr_value, "__trigger_methods__"):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
@@ -351,6 +400,9 @@ class FlowMeta(type):
|
||||
|
||||
|
||||
class Flow(Generic[T], metaclass=FlowMeta):
|
||||
"""Base class for all flows.
|
||||
|
||||
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
|
||||
_telemetry = Telemetry()
|
||||
|
||||
_start_methods: List[str] = []
|
||||
@@ -367,53 +419,220 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
|
||||
return _FlowGeneric
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
persistence: Optional[FlowPersistence] = None,
|
||||
restore_uuid: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize a new Flow instance.
|
||||
|
||||
Args:
|
||||
persistence: Optional persistence backend for storing flow states
|
||||
restore_uuid: Optional UUID to restore state from persistence
|
||||
**kwargs: Additional state values to initialize or override
|
||||
"""
|
||||
# Initialize basic instance attributes
|
||||
self._methods: Dict[str, Callable] = {}
|
||||
self._state: T = self._create_initial_state()
|
||||
self._method_execution_counts: Dict[str, int] = {}
|
||||
self._pending_and_listeners: Dict[str, Set[str]] = {}
|
||||
self._method_outputs: List[Any] = [] # List to store all method outputs
|
||||
self._persistence: Optional[FlowPersistence] = persistence
|
||||
|
||||
# Validate state model before initialization
|
||||
if isinstance(self.initial_state, type):
|
||||
if issubclass(self.initial_state, BaseModel) and not issubclass(self.initial_state, FlowState):
|
||||
# Check if model has id field
|
||||
model_fields = getattr(self.initial_state, "model_fields", None)
|
||||
if not model_fields or "id" not in model_fields:
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
|
||||
# Handle persistence and potential ID conflicts
|
||||
stored_state = None
|
||||
if self._persistence is not None:
|
||||
if restore_uuid and kwargs and "id" in kwargs and restore_uuid != kwargs["id"]:
|
||||
raise ValueError(
|
||||
f"Conflicting IDs provided: restore_uuid='{restore_uuid}' "
|
||||
f"vs kwargs['id']='{kwargs['id']}'. Use only one ID for restoration."
|
||||
)
|
||||
|
||||
# Attempt to load state, prioritizing restore_uuid
|
||||
if restore_uuid:
|
||||
stored_state = self._persistence.load_state(restore_uuid)
|
||||
if not stored_state:
|
||||
raise ValueError(f"No state found for restore_uuid='{restore_uuid}'")
|
||||
elif kwargs and "id" in kwargs:
|
||||
stored_state = self._persistence.load_state(kwargs["id"])
|
||||
if not stored_state:
|
||||
# For kwargs["id"], we allow creating new state if not found
|
||||
self._state = self._create_initial_state()
|
||||
if kwargs:
|
||||
self._initialize_state(kwargs)
|
||||
return
|
||||
|
||||
# Initialize state based on persistence and kwargs
|
||||
if stored_state:
|
||||
# Create initial state and restore from persistence
|
||||
self._state = self._create_initial_state()
|
||||
self._restore_state(stored_state)
|
||||
# Apply any additional kwargs to override specific fields
|
||||
if kwargs:
|
||||
filtered_kwargs = {k: v for k, v in kwargs.items() if k != "id"}
|
||||
if filtered_kwargs:
|
||||
self._initialize_state(filtered_kwargs)
|
||||
else:
|
||||
# No stored state, create new state with initial values
|
||||
self._state = self._create_initial_state()
|
||||
# Apply any additional kwargs
|
||||
if kwargs:
|
||||
self._initialize_state(kwargs)
|
||||
|
||||
self._telemetry.flow_creation_span(self.__class__.__name__)
|
||||
|
||||
# Register all flow-related methods
|
||||
for method_name in dir(self):
|
||||
if callable(getattr(self, method_name)) and not method_name.startswith(
|
||||
"__"
|
||||
):
|
||||
self._methods[method_name] = getattr(self, method_name)
|
||||
if not method_name.startswith("_"):
|
||||
method = getattr(self, method_name)
|
||||
# Check for any flow-related attributes
|
||||
if (hasattr(method, "__is_flow_method__") or
|
||||
hasattr(method, "__is_start_method__") or
|
||||
hasattr(method, "__trigger_methods__") or
|
||||
hasattr(method, "__is_router__")):
|
||||
# Ensure method is bound to this instance
|
||||
if not hasattr(method, "__self__"):
|
||||
method = method.__get__(self, self.__class__)
|
||||
self._methods[method_name] = method
|
||||
|
||||
|
||||
|
||||
def _create_initial_state(self) -> T:
|
||||
"""Create and initialize flow state with UUID and default values.
|
||||
|
||||
Returns:
|
||||
New state instance with UUID and default values initialized
|
||||
|
||||
Raises:
|
||||
ValueError: If structured state model lacks 'id' field
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
# Handle case where initial_state is None but we have a type parameter
|
||||
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
||||
state_type = getattr(self, "_initial_state_T")
|
||||
if isinstance(state_type, type):
|
||||
if issubclass(state_type, FlowState):
|
||||
return state_type() # type: ignore
|
||||
# Create instance without id, then set it
|
||||
instance = state_type()
|
||||
if not hasattr(instance, 'id'):
|
||||
setattr(instance, 'id', str(uuid4()))
|
||||
return cast(T, instance)
|
||||
elif issubclass(state_type, BaseModel):
|
||||
# Create a new type that includes the ID field
|
||||
class StateWithId(state_type, FlowState): # type: ignore
|
||||
pass
|
||||
return StateWithId() # type: ignore
|
||||
instance = StateWithId()
|
||||
if not hasattr(instance, 'id'):
|
||||
setattr(instance, 'id', str(uuid4()))
|
||||
return cast(T, instance)
|
||||
elif state_type == dict:
|
||||
return cast(T, {"id": str(uuid4())}) # Minimal dict state
|
||||
|
||||
# Handle case where no initial state is provided
|
||||
if self.initial_state is None:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle case where initial_state is a type (class)
|
||||
if isinstance(self.initial_state, type):
|
||||
if issubclass(self.initial_state, FlowState):
|
||||
return cast(T, self.initial_state()) # Uses model defaults
|
||||
elif issubclass(self.initial_state, BaseModel):
|
||||
# Validate that the model has an id field
|
||||
model_fields = getattr(self.initial_state, "model_fields", None)
|
||||
if not model_fields or "id" not in model_fields:
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
return cast(T, self.initial_state()) # Uses model defaults
|
||||
elif self.initial_state == dict:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle dictionary instance case
|
||||
if isinstance(self.initial_state, dict):
|
||||
new_state = dict(self.initial_state) # Copy to avoid mutations
|
||||
if "id" not in new_state:
|
||||
new_state["id"] = str(uuid4())
|
||||
return cast(T, new_state)
|
||||
|
||||
# Handle BaseModel instance case
|
||||
if isinstance(self.initial_state, BaseModel):
|
||||
model = cast(BaseModel, self.initial_state)
|
||||
if not hasattr(model, "id"):
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
|
||||
# Create new instance with same values to avoid mutations
|
||||
if hasattr(model, "model_dump"):
|
||||
# Pydantic v2
|
||||
state_dict = model.model_dump()
|
||||
elif hasattr(model, "dict"):
|
||||
# Pydantic v1
|
||||
state_dict = model.dict()
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
state_dict = {
|
||||
k: v for k, v in model.__dict__.items()
|
||||
if not k.startswith("_")
|
||||
}
|
||||
|
||||
# Create new instance of the same class
|
||||
model_class = type(model)
|
||||
return cast(T, model_class(**state_dict))
|
||||
|
||||
raise TypeError(
|
||||
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
|
||||
)
|
||||
# Handle case where initial_state is None but we have a type parameter
|
||||
if self.initial_state is None and hasattr(self, "_initial_state_T"):
|
||||
state_type = getattr(self, "_initial_state_T")
|
||||
if isinstance(state_type, type):
|
||||
if issubclass(state_type, FlowState):
|
||||
return cast(T, state_type())
|
||||
elif issubclass(state_type, BaseModel):
|
||||
# Create a new type that includes the ID field
|
||||
class StateWithId(state_type, FlowState): # type: ignore
|
||||
pass
|
||||
return cast(T, StateWithId())
|
||||
elif state_type == dict:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle case where no initial state is provided
|
||||
if self.initial_state is None:
|
||||
return {"id": str(uuid4())} # type: ignore
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle case where initial_state is a type (class)
|
||||
if isinstance(self.initial_state, type):
|
||||
if issubclass(self.initial_state, FlowState):
|
||||
return self.initial_state() # type: ignore
|
||||
return cast(T, self.initial_state())
|
||||
elif issubclass(self.initial_state, BaseModel):
|
||||
# Create a new type that includes the ID field
|
||||
class StateWithId(self.initial_state, FlowState): # type: ignore
|
||||
pass
|
||||
return StateWithId() # type: ignore
|
||||
# Validate that the model has an id field
|
||||
model_fields = getattr(self.initial_state, "model_fields", None)
|
||||
if not model_fields or "id" not in model_fields:
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
return cast(T, self.initial_state())
|
||||
elif self.initial_state == dict:
|
||||
return cast(T, {"id": str(uuid4())})
|
||||
|
||||
# Handle dictionary case
|
||||
if isinstance(self.initial_state, dict) and "id" not in self.initial_state:
|
||||
self.initial_state["id"] = str(uuid4())
|
||||
# Handle dictionary instance case
|
||||
if isinstance(self.initial_state, dict):
|
||||
if "id" not in self.initial_state:
|
||||
self.initial_state["id"] = str(uuid4())
|
||||
return cast(T, dict(self.initial_state)) # Create new dict to avoid mutations
|
||||
|
||||
return self.initial_state # type: ignore
|
||||
# Handle BaseModel instance case
|
||||
if isinstance(self.initial_state, BaseModel):
|
||||
if not hasattr(self.initial_state, "id"):
|
||||
raise ValueError("Flow state model must have an 'id' field")
|
||||
return cast(T, self.initial_state)
|
||||
|
||||
raise TypeError(
|
||||
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
|
||||
)
|
||||
|
||||
@property
|
||||
def state(self) -> T:
|
||||
@@ -425,50 +644,95 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return self._method_outputs
|
||||
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Initialize or update flow state with new inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of state values to set/update
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails for structured state
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
if isinstance(self._state, dict):
|
||||
# Preserve the ID when updating unstructured state
|
||||
# For dict states, preserve existing fields unless overridden
|
||||
current_id = self._state.get("id")
|
||||
self._state.update(inputs)
|
||||
# Only update specified fields
|
||||
for k, v in inputs.items():
|
||||
self._state[k] = v
|
||||
# Ensure ID is preserved or generated
|
||||
if current_id:
|
||||
self._state["id"] = current_id
|
||||
elif "id" not in self._state:
|
||||
self._state["id"] = str(uuid4())
|
||||
elif isinstance(self._state, BaseModel):
|
||||
# Structured state
|
||||
# For BaseModel states, preserve existing fields unless overridden
|
||||
try:
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
class ModelWithExtraForbid(base_model): # type: ignore
|
||||
model_config = base_model.model_config.copy()
|
||||
model_config["extra"] = "forbid"
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Get current state as dict, preserving the ID if it exists
|
||||
state_model = cast(BaseModel, self._state)
|
||||
current_state = (
|
||||
state_model.model_dump()
|
||||
if hasattr(state_model, "model_dump")
|
||||
else state_model.dict()
|
||||
if hasattr(state_model, "dict")
|
||||
else {
|
||||
k: v
|
||||
for k, v in state_model.__dict__.items()
|
||||
model = cast(BaseModel, self._state)
|
||||
# Get current state as dict
|
||||
if hasattr(model, "model_dump"):
|
||||
current_state = model.model_dump()
|
||||
elif hasattr(model, "dict"):
|
||||
current_state = model.dict()
|
||||
else:
|
||||
current_state = {
|
||||
k: v for k, v in model.__dict__.items()
|
||||
if not k.startswith("_")
|
||||
}
|
||||
)
|
||||
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**current_state, **inputs})
|
||||
)
|
||||
|
||||
# Create new state with preserved fields and updates
|
||||
new_state = {**current_state, **inputs}
|
||||
|
||||
# Create new instance with merged state
|
||||
model_class = type(model)
|
||||
if hasattr(model_class, "model_validate"):
|
||||
# Pydantic v2
|
||||
self._state = cast(T, model_class.model_validate(new_state))
|
||||
elif hasattr(model_class, "parse_obj"):
|
||||
# Pydantic v1
|
||||
self._state = cast(T, model_class.parse_obj(new_state))
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
self._state = cast(T, model_class(**new_state))
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def _restore_state(self, stored_state: Dict[str, Any]) -> None:
|
||||
"""Restore flow state from persistence.
|
||||
|
||||
Args:
|
||||
stored_state: Previously stored state to restore
|
||||
|
||||
Raises:
|
||||
ValueError: If validation fails for structured state
|
||||
TypeError: If state is neither BaseModel nor dictionary
|
||||
"""
|
||||
# When restoring from persistence, use the stored ID
|
||||
stored_id = stored_state.get("id")
|
||||
if not stored_id:
|
||||
raise ValueError("Stored state must have an 'id' field")
|
||||
|
||||
if isinstance(self._state, dict):
|
||||
# For dict states, update all fields from stored state
|
||||
self._state.clear()
|
||||
self._state.update(stored_state)
|
||||
elif isinstance(self._state, BaseModel):
|
||||
# For BaseModel states, create new instance with stored values
|
||||
model = cast(BaseModel, self._state)
|
||||
if hasattr(model, "model_validate"):
|
||||
# Pydantic v2
|
||||
self._state = cast(T, type(model).model_validate(stored_state))
|
||||
elif hasattr(model, "parse_obj"):
|
||||
# Pydantic v1
|
||||
self._state = cast(T, type(model).parse_obj(stored_state))
|
||||
else:
|
||||
# Fallback for other BaseModel implementations
|
||||
self._state = cast(T, type(model)(**stored_state))
|
||||
else:
|
||||
raise TypeError(
|
||||
f"State must be dict or BaseModel, got {type(self._state)}"
|
||||
)
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
self.event_emitter.send(
|
||||
|
||||
18
src/crewai/flow/persistence/__init__.py
Normal file
18
src/crewai/flow/persistence/__init__.py
Normal file
@@ -0,0 +1,18 @@
|
||||
"""
|
||||
CrewAI Flow Persistence.
|
||||
|
||||
This module provides interfaces and implementations for persisting flow states.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, TypeVar, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.persistence.decorators import persist
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
|
||||
__all__ = ["FlowPersistence", "persist", "SQLiteFlowPersistence"]
|
||||
|
||||
StateType = TypeVar('StateType', bound=Union[Dict[str, Any], BaseModel])
|
||||
DictStateType = Dict[str, Any]
|
||||
53
src/crewai/flow/persistence/base.py
Normal file
53
src/crewai/flow/persistence/base.py
Normal file
@@ -0,0 +1,53 @@
|
||||
"""Base class for flow state persistence."""
|
||||
|
||||
import abc
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class FlowPersistence(abc.ABC):
|
||||
"""Abstract base class for flow state persistence.
|
||||
|
||||
This class defines the interface that all persistence implementations must follow.
|
||||
It supports both structured (Pydantic BaseModel) and unstructured (dict) states.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def init_db(self) -> None:
|
||||
"""Initialize the persistence backend.
|
||||
|
||||
This method should handle any necessary setup, such as:
|
||||
- Creating tables
|
||||
- Establishing connections
|
||||
- Setting up indexes
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def save_state(
|
||||
self,
|
||||
flow_uuid: str,
|
||||
method_name: str,
|
||||
state_data: Union[Dict[str, Any], BaseModel]
|
||||
) -> None:
|
||||
"""Persist the flow state after method completion.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
method_name: Name of the method that just completed
|
||||
state_data: Current state data (either dict or Pydantic model)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
|
||||
"""Load the most recent state for a given flow UUID.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
|
||||
Returns:
|
||||
The most recent state as a dictionary, or None if no state exists
|
||||
"""
|
||||
pass
|
||||
177
src/crewai/flow/persistence/decorators.py
Normal file
177
src/crewai/flow/persistence/decorators.py
Normal file
@@ -0,0 +1,177 @@
|
||||
"""
|
||||
Decorators for flow state persistence.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from crewai.flow.flow import Flow, start
|
||||
from crewai.flow.persistence import persist, SQLiteFlowPersistence
|
||||
|
||||
class MyFlow(Flow):
|
||||
@start()
|
||||
@persist(SQLiteFlowPersistence())
|
||||
def sync_method(self):
|
||||
# Synchronous method implementation
|
||||
pass
|
||||
|
||||
@start()
|
||||
@persist(SQLiteFlowPersistence())
|
||||
async def async_method(self):
|
||||
# Asynchronous method implementation
|
||||
await some_async_operation()
|
||||
```
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import functools
|
||||
import inspect
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Optional,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
get_type_hints,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def persist(persistence: Optional[FlowPersistence] = None):
|
||||
"""Decorator to persist flow state.
|
||||
|
||||
This decorator can be applied at either the class level or method level.
|
||||
When applied at the class level, it automatically persists all flow method
|
||||
states. When applied at the method level, it persists only that method's
|
||||
state.
|
||||
|
||||
Args:
|
||||
persistence: Optional FlowPersistence implementation to use.
|
||||
If not provided, uses SQLiteFlowPersistence.
|
||||
|
||||
Returns:
|
||||
A decorator that can be applied to either a class or method
|
||||
|
||||
Raises:
|
||||
ValueError: If the flow state doesn't have an 'id' field
|
||||
RuntimeError: If state persistence fails
|
||||
|
||||
Example:
|
||||
@persist # Class-level persistence with default SQLite
|
||||
class MyFlow(Flow[MyState]):
|
||||
@start()
|
||||
def begin(self):
|
||||
pass
|
||||
"""
|
||||
def _persist_state(flow_instance: Any, method_name: str, persistence_instance: FlowPersistence) -> None:
|
||||
"""Helper to persist state with error handling."""
|
||||
try:
|
||||
# Get flow UUID from state
|
||||
state = getattr(flow_instance, 'state', None)
|
||||
if state is None:
|
||||
raise ValueError("Flow instance has no state")
|
||||
|
||||
flow_uuid: Optional[str] = None
|
||||
if isinstance(state, dict):
|
||||
flow_uuid = state.get('id')
|
||||
elif isinstance(state, BaseModel):
|
||||
flow_uuid = getattr(state, 'id', None)
|
||||
|
||||
if not flow_uuid:
|
||||
raise ValueError(
|
||||
"Flow state must have an 'id' field for persistence"
|
||||
)
|
||||
|
||||
# Persist the state
|
||||
persistence_instance.save_state(
|
||||
flow_uuid=flow_uuid,
|
||||
method_name=method_name,
|
||||
state_data=state,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to persist state for method {method_name}: {str(e)}"
|
||||
)
|
||||
raise RuntimeError(f"State persistence failed: {str(e)}") from e
|
||||
|
||||
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
|
||||
"""Decorator that handles both class and method decoration."""
|
||||
actual_persistence = persistence or SQLiteFlowPersistence()
|
||||
|
||||
if isinstance(target, type):
|
||||
# Class decoration
|
||||
class_methods = {}
|
||||
for name, method in target.__dict__.items():
|
||||
if callable(method) and hasattr(method, "__is_flow_method__"):
|
||||
# Wrap each flow method with persistence
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
@functools.wraps(method)
|
||||
async def class_async_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
method_coro = method(self, *args, **kwargs)
|
||||
if asyncio.iscoroutine(method_coro):
|
||||
result = await method_coro
|
||||
else:
|
||||
result = method_coro
|
||||
_persist_state(self, method.__name__, actual_persistence)
|
||||
return result
|
||||
class_methods[name] = class_async_wrapper
|
||||
else:
|
||||
@functools.wraps(method)
|
||||
def class_sync_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
result = method(self, *args, **kwargs)
|
||||
_persist_state(self, method.__name__, actual_persistence)
|
||||
return result
|
||||
class_methods[name] = class_sync_wrapper
|
||||
|
||||
# Preserve flow-specific attributes
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(class_methods[name], attr, getattr(method, attr))
|
||||
setattr(class_methods[name], "__is_flow_method__", True)
|
||||
|
||||
# Update class with wrapped methods
|
||||
for name, method in class_methods.items():
|
||||
setattr(target, name, method)
|
||||
return target
|
||||
else:
|
||||
# Method decoration
|
||||
method = target
|
||||
setattr(method, "__is_flow_method__", True)
|
||||
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
@functools.wraps(method)
|
||||
async def method_async_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
|
||||
method_coro = method(flow_instance, *args, **kwargs)
|
||||
if asyncio.iscoroutine(method_coro):
|
||||
result = await method_coro
|
||||
else:
|
||||
result = method_coro
|
||||
_persist_state(flow_instance, method.__name__, actual_persistence)
|
||||
return result
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(method_async_wrapper, attr, getattr(method, attr))
|
||||
setattr(method_async_wrapper, "__is_flow_method__", True)
|
||||
return cast(Callable[..., T], method_async_wrapper)
|
||||
else:
|
||||
@functools.wraps(method)
|
||||
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
|
||||
result = method(flow_instance, *args, **kwargs)
|
||||
_persist_state(flow_instance, method.__name__, actual_persistence)
|
||||
return result
|
||||
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
|
||||
if hasattr(method, attr):
|
||||
setattr(method_sync_wrapper, attr, getattr(method, attr))
|
||||
setattr(method_sync_wrapper, "__is_flow_method__", True)
|
||||
return cast(Callable[..., T], method_sync_wrapper)
|
||||
|
||||
return decorator
|
||||
124
src/crewai/flow/persistence/sqlite.py
Normal file
124
src/crewai/flow/persistence/sqlite.py
Normal file
@@ -0,0 +1,124 @@
|
||||
"""
|
||||
SQLite-based implementation of flow state persistence.
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import sqlite3
|
||||
import tempfile
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.persistence.base import FlowPersistence
|
||||
|
||||
|
||||
class SQLiteFlowPersistence(FlowPersistence):
|
||||
"""SQLite-based implementation of flow state persistence.
|
||||
|
||||
This class provides a simple, file-based persistence implementation using SQLite.
|
||||
It's suitable for development and testing, or for production use cases with
|
||||
moderate performance requirements.
|
||||
"""
|
||||
|
||||
db_path: str # Type annotation for instance variable
|
||||
|
||||
def __init__(self, db_path: Optional[str] = None):
|
||||
"""Initialize SQLite persistence.
|
||||
|
||||
Args:
|
||||
db_path: Path to the SQLite database file. If not provided, uses
|
||||
db_storage_path() from utilities.paths.
|
||||
|
||||
Raises:
|
||||
ValueError: If db_path is invalid
|
||||
"""
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
# Get path from argument or default location
|
||||
path = db_path or db_storage_path()
|
||||
|
||||
if not path:
|
||||
raise ValueError("Database path must be provided")
|
||||
|
||||
self.db_path = path # Now mypy knows this is str
|
||||
self.init_db()
|
||||
|
||||
def init_db(self) -> None:
|
||||
"""Create the necessary tables if they don't exist."""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
CREATE TABLE IF NOT EXISTS flow_states (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
flow_uuid TEXT NOT NULL,
|
||||
method_name TEXT NOT NULL,
|
||||
timestamp DATETIME NOT NULL,
|
||||
state_json TEXT NOT NULL
|
||||
)
|
||||
""")
|
||||
# Add index for faster UUID lookups
|
||||
conn.execute("""
|
||||
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
|
||||
ON flow_states(flow_uuid)
|
||||
""")
|
||||
|
||||
def save_state(
|
||||
self,
|
||||
flow_uuid: str,
|
||||
method_name: str,
|
||||
state_data: Union[Dict[str, Any], BaseModel],
|
||||
) -> None:
|
||||
"""Save the current flow state to SQLite.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
method_name: Name of the method that just completed
|
||||
state_data: Current state data (either dict or Pydantic model)
|
||||
"""
|
||||
# Convert state_data to dict, handling both Pydantic and dict cases
|
||||
if isinstance(state_data, BaseModel):
|
||||
state_dict = dict(state_data) # Use dict() for better type compatibility
|
||||
elif isinstance(state_data, dict):
|
||||
state_dict = state_data
|
||||
else:
|
||||
raise ValueError(
|
||||
f"state_data must be either a Pydantic BaseModel or dict, got {type(state_data)}"
|
||||
)
|
||||
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("""
|
||||
INSERT INTO flow_states (
|
||||
flow_uuid,
|
||||
method_name,
|
||||
timestamp,
|
||||
state_json
|
||||
) VALUES (?, ?, ?, ?)
|
||||
""", (
|
||||
flow_uuid,
|
||||
method_name,
|
||||
datetime.utcnow().isoformat(),
|
||||
json.dumps(state_dict),
|
||||
))
|
||||
|
||||
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
|
||||
"""Load the most recent state for a given flow UUID.
|
||||
|
||||
Args:
|
||||
flow_uuid: Unique identifier for the flow instance
|
||||
|
||||
Returns:
|
||||
The most recent state as a dictionary, or None if no state exists
|
||||
"""
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.execute("""
|
||||
SELECT state_json
|
||||
FROM flow_states
|
||||
WHERE flow_uuid = ?
|
||||
ORDER BY id DESC
|
||||
LIMIT 1
|
||||
""", (flow_uuid,))
|
||||
row = cursor.fetchone()
|
||||
|
||||
if row:
|
||||
return json.loads(row[0])
|
||||
return None
|
||||
@@ -8,6 +8,7 @@ try:
|
||||
from docling.exceptions import ConversionError
|
||||
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
|
||||
from docling_core.types.doc.document import DoclingDocument
|
||||
|
||||
DOCLING_AVAILABLE = True
|
||||
except ImportError:
|
||||
DOCLING_AVAILABLE = False
|
||||
@@ -38,8 +39,8 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
chunks: List[str] = Field(default_factory=list)
|
||||
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
content: List[DoclingDocument] = Field(default_factory=list)
|
||||
document_converter: DocumentConverter = Field(
|
||||
content: List["DoclingDocument"] = Field(default_factory=list)
|
||||
document_converter: "DocumentConverter" = Field(
|
||||
default_factory=lambda: DocumentConverter(
|
||||
allowed_formats=[
|
||||
InputFormat.MD,
|
||||
@@ -65,7 +66,7 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
self.safe_file_paths = self.validate_content()
|
||||
self.content = self._load_content()
|
||||
|
||||
def _load_content(self) -> List[DoclingDocument]:
|
||||
def _load_content(self) -> List["DoclingDocument"]:
|
||||
try:
|
||||
return self._convert_source_to_docling_documents()
|
||||
except ConversionError as e:
|
||||
@@ -87,11 +88,11 @@ class CrewDoclingSource(BaseKnowledgeSource):
|
||||
self.chunks.extend(list(new_chunks_iterable))
|
||||
self._save_documents()
|
||||
|
||||
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
|
||||
def _convert_source_to_docling_documents(self) -> List["DoclingDocument"]:
|
||||
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
|
||||
return [result.document for result in conv_results_iter]
|
||||
|
||||
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
|
||||
def _chunk_doc(self, doc: "DoclingDocument") -> Iterator[str]:
|
||||
chunker = HierarchicalChunker()
|
||||
for chunk in chunker.chunk(doc):
|
||||
yield chunk.text
|
||||
|
||||
@@ -222,6 +222,19 @@ class LLM:
|
||||
].message
|
||||
text_response = response_message.content or ""
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# Ensure callbacks get the full response object with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
if hasattr(callback, "log_success_event"):
|
||||
usage_info = getattr(response, "usage", None)
|
||||
if usage_info:
|
||||
callback.log_success_event(
|
||||
kwargs=params,
|
||||
response_obj={"usage": usage_info},
|
||||
start_time=0,
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 2) If no tool calls, return the text response
|
||||
if not tool_calls or not available_functions:
|
||||
|
||||
@@ -1,12 +1,17 @@
|
||||
import json
|
||||
import logging
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.task import Task
|
||||
from crewai.utilities import Printer
|
||||
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
|
||||
from crewai.utilities.errors import DatabaseError, DatabaseOperationError
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KickoffTaskOutputsSQLiteStorage:
|
||||
"""
|
||||
@@ -14,15 +19,24 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
|
||||
self, db_path: Optional[str] = None
|
||||
) -> None:
|
||||
if db_path is None:
|
||||
# Get the parent directory of the default db path and create our db file there
|
||||
db_path = str(Path(db_storage_path()).parent / "latest_kickoff_task_outputs.db")
|
||||
self.db_path = db_path
|
||||
self._printer: Printer = Printer()
|
||||
self._initialize_db()
|
||||
|
||||
def _initialize_db(self):
|
||||
"""
|
||||
Initializes the SQLite database and creates LTM table
|
||||
def _initialize_db(self) -> None:
|
||||
"""Initialize the SQLite database and create the latest_kickoff_task_outputs table.
|
||||
|
||||
This method sets up the database schema for storing task outputs. It creates
|
||||
a table with columns for task_id, expected_output, output (as JSON),
|
||||
task_index, inputs (as JSON), was_replayed flag, and timestamp.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If database initialization fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
@@ -43,10 +57,9 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.INIT_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def add(
|
||||
self,
|
||||
@@ -55,9 +68,22 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
task_index: int,
|
||||
was_replayed: bool = False,
|
||||
inputs: Dict[str, Any] = {},
|
||||
):
|
||||
) -> None:
|
||||
"""Add a new task output record to the database.
|
||||
|
||||
Args:
|
||||
task: The Task object containing task details.
|
||||
output: Dictionary containing the task's output data.
|
||||
task_index: Integer index of the task in the sequence.
|
||||
was_replayed: Boolean indicating if this was a replay execution.
|
||||
inputs: Dictionary of input parameters used for the task.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If saving the task output fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"""
|
||||
@@ -76,21 +102,31 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.SAVE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def update(
|
||||
self,
|
||||
task_index: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Update an existing task output record in the database.
|
||||
|
||||
Updates fields of a task output record identified by task_index. The fields
|
||||
to update are provided as keyword arguments.
|
||||
|
||||
Args:
|
||||
task_index: Integer index of the task to update.
|
||||
**kwargs: Arbitrary keyword arguments representing fields to update.
|
||||
Values that are dictionaries will be JSON encoded.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If updating the task output fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
|
||||
fields = []
|
||||
@@ -110,14 +146,23 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
conn.commit()
|
||||
|
||||
if cursor.rowcount == 0:
|
||||
self._printer.print(
|
||||
f"No row found with task_index {task_index}. No update performed.",
|
||||
color="red",
|
||||
)
|
||||
logger.warning(f"No row found with task_index {task_index}. No update performed.")
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
|
||||
error_msg = DatabaseError.format_error(DatabaseError.UPDATE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def load(self) -> Optional[List[Dict[str, Any]]]:
|
||||
def load(self) -> List[Dict[str, Any]]:
|
||||
"""Load all task output records from the database.
|
||||
|
||||
Returns:
|
||||
List of dictionaries containing task output records, ordered by task_index.
|
||||
Each dictionary contains: task_id, expected_output, output, task_index,
|
||||
inputs, was_replayed, and timestamp.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If loading task outputs fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
@@ -144,23 +189,26 @@ class KickoffTaskOutputsSQLiteStorage:
|
||||
return results
|
||||
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
error_msg = DatabaseError.format_error(DatabaseError.LOAD_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
def delete_all(self):
|
||||
"""
|
||||
Deletes all rows from the latest_kickoff_task_outputs table.
|
||||
def delete_all(self) -> None:
|
||||
"""Delete all task output records from the database.
|
||||
|
||||
This method removes all records from the latest_kickoff_task_outputs table.
|
||||
Use with caution as this operation cannot be undone.
|
||||
|
||||
Raises:
|
||||
DatabaseOperationError: If deleting task outputs fails due to SQLite errors.
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
conn.execute("BEGIN TRANSACTION")
|
||||
cursor = conn.cursor()
|
||||
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
|
||||
color="red",
|
||||
)
|
||||
error_msg = DatabaseError.format_error(DatabaseError.DELETE_ERROR, e)
|
||||
logger.error(error_msg)
|
||||
raise DatabaseOperationError(error_msg, e)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from crewai.utilities import Printer
|
||||
@@ -12,10 +13,15 @@ class LTMSQLiteStorage:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
|
||||
self, db_path: Optional[str] = None
|
||||
) -> None:
|
||||
if db_path is None:
|
||||
# Get the parent directory of the default db path and create our db file there
|
||||
db_path = str(Path(db_storage_path()).parent / "long_term_memory_storage.db")
|
||||
self.db_path = db_path
|
||||
self._printer: Printer = Printer()
|
||||
# Ensure parent directory exists
|
||||
Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
self._initialize_db()
|
||||
|
||||
def _initialize_db(self):
|
||||
|
||||
@@ -26,17 +26,24 @@ class Converter(OutputConverter):
|
||||
if self.llm.supports_function_calling():
|
||||
return self._create_instructor().to_pydantic()
|
||||
else:
|
||||
return self.llm.call(
|
||||
response = self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
]
|
||||
)
|
||||
return self.model.model_validate_json(response)
|
||||
except ValidationError as e:
|
||||
if current_attempt < self.max_attempts:
|
||||
return self.to_pydantic(current_attempt + 1)
|
||||
raise ConverterError(
|
||||
f"Failed to convert text into a Pydantic model due to the following validation error: {e}"
|
||||
)
|
||||
except Exception as e:
|
||||
if current_attempt < self.max_attempts:
|
||||
return self.to_pydantic(current_attempt + 1)
|
||||
return ConverterError(
|
||||
f"Failed to convert text into a pydantic model due to the following error: {e}"
|
||||
raise ConverterError(
|
||||
f"Failed to convert text into a Pydantic model due to the following error: {e}"
|
||||
)
|
||||
|
||||
def to_json(self, current_attempt=1):
|
||||
@@ -66,7 +73,6 @@ class Converter(OutputConverter):
|
||||
llm=self.llm,
|
||||
model=self.model,
|
||||
content=self.text,
|
||||
instructions=self.instructions,
|
||||
)
|
||||
return inst
|
||||
|
||||
@@ -187,10 +193,15 @@ def convert_with_instructions(
|
||||
|
||||
|
||||
def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
|
||||
instructions = "I'm gonna convert this raw text into valid JSON."
|
||||
instructions = "Please convert the following text into valid JSON."
|
||||
if llm.supports_function_calling():
|
||||
model_schema = PydanticSchemaParser(model=model).get_schema()
|
||||
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
instructions += (
|
||||
f"\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
|
||||
)
|
||||
else:
|
||||
model_description = generate_model_description(model)
|
||||
instructions += f"\n\nThe JSON should follow this format:\n{model_description}"
|
||||
return instructions
|
||||
|
||||
|
||||
|
||||
39
src/crewai/utilities/errors.py
Normal file
39
src/crewai/utilities/errors.py
Normal file
@@ -0,0 +1,39 @@
|
||||
"""Error message definitions for CrewAI database operations."""
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class DatabaseOperationError(Exception):
|
||||
"""Base exception class for database operation errors."""
|
||||
|
||||
def __init__(self, message: str, original_error: Optional[Exception] = None):
|
||||
"""Initialize the database operation error.
|
||||
|
||||
Args:
|
||||
message: The error message to display
|
||||
original_error: The original exception that caused this error, if any
|
||||
"""
|
||||
super().__init__(message)
|
||||
self.original_error = original_error
|
||||
|
||||
|
||||
class DatabaseError:
|
||||
"""Standardized error message templates for database operations."""
|
||||
|
||||
INIT_ERROR: str = "Database initialization error: {}"
|
||||
SAVE_ERROR: str = "Error saving task outputs: {}"
|
||||
UPDATE_ERROR: str = "Error updating task outputs: {}"
|
||||
LOAD_ERROR: str = "Error loading task outputs: {}"
|
||||
DELETE_ERROR: str = "Error deleting task outputs: {}"
|
||||
|
||||
@classmethod
|
||||
def format_error(cls, template: str, error: Exception) -> str:
|
||||
"""Format an error message with the given template and error.
|
||||
|
||||
Args:
|
||||
template: The error message template to use
|
||||
error: The exception to format into the template
|
||||
|
||||
Returns:
|
||||
The formatted error message
|
||||
"""
|
||||
return template.format(str(error))
|
||||
@@ -11,12 +11,10 @@ class InternalInstructor:
|
||||
model: Type,
|
||||
agent: Optional[Any] = None,
|
||||
llm: Optional[str] = None,
|
||||
instructions: Optional[str] = None,
|
||||
):
|
||||
self.content = content
|
||||
self.agent = agent
|
||||
self.llm = llm
|
||||
self.instructions = instructions
|
||||
self.model = model
|
||||
self._client = None
|
||||
self.set_instructor()
|
||||
@@ -31,10 +29,7 @@ class InternalInstructor:
|
||||
import instructor
|
||||
from litellm import completion
|
||||
|
||||
self._client = instructor.from_litellm(
|
||||
completion,
|
||||
mode=instructor.Mode.TOOLS,
|
||||
)
|
||||
self._client = instructor.from_litellm(completion)
|
||||
|
||||
def to_json(self):
|
||||
model = self.to_pydantic()
|
||||
@@ -42,8 +37,6 @@ class InternalInstructor:
|
||||
|
||||
def to_pydantic(self):
|
||||
messages = [{"role": "user", "content": self.content}]
|
||||
if self.instructions:
|
||||
messages.append({"role": "system", "content": self.instructions})
|
||||
model = self._client.chat.completions.create(
|
||||
model=self.llm.model, response_model=self.model, messages=messages
|
||||
)
|
||||
|
||||
@@ -5,14 +5,18 @@ import appdirs
|
||||
|
||||
"""Path management utilities for CrewAI storage and configuration."""
|
||||
|
||||
def db_storage_path():
|
||||
"""Returns the path for database storage."""
|
||||
def db_storage_path() -> str:
|
||||
"""Returns the path for SQLite database storage.
|
||||
|
||||
Returns:
|
||||
str: Full path to the SQLite database file
|
||||
"""
|
||||
app_name = get_project_directory_name()
|
||||
app_author = "CrewAI"
|
||||
|
||||
data_dir = Path(appdirs.user_data_dir(app_name, app_author))
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
return data_dir
|
||||
return str(data_dir / "crewai_flows.db")
|
||||
|
||||
|
||||
def get_project_directory_name():
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Type, Union, get_args, get_origin
|
||||
from typing import Dict, List, Type, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -10,40 +10,83 @@ class PydanticSchemaParser(BaseModel):
|
||||
"""
|
||||
Public method to get the schema of a Pydantic model.
|
||||
|
||||
:param model: The Pydantic model class to generate schema for.
|
||||
:return: String representation of the model schema.
|
||||
"""
|
||||
return self._get_model_schema(self.model)
|
||||
return "{\n" + self._get_model_schema(self.model) + "\n}"
|
||||
|
||||
def _get_model_schema(self, model, depth=0) -> str:
|
||||
indent = " " * depth
|
||||
lines = [f"{indent}{{"]
|
||||
for field_name, field in model.model_fields.items():
|
||||
field_type_str = self._get_field_type(field, depth + 1)
|
||||
lines.append(f"{indent} {field_name}: {field_type_str},")
|
||||
lines[-1] = lines[-1].rstrip(",") # Remove trailing comma from last item
|
||||
lines.append(f"{indent}}}")
|
||||
return "\n".join(lines)
|
||||
def _get_model_schema(self, model: Type[BaseModel], depth: int = 0) -> str:
|
||||
indent = " " * 4 * depth
|
||||
lines = [
|
||||
f"{indent} {field_name}: {self._get_field_type(field, depth + 1)}"
|
||||
for field_name, field in model.model_fields.items()
|
||||
]
|
||||
return ",\n".join(lines)
|
||||
|
||||
def _get_field_type(self, field, depth) -> str:
|
||||
def _get_field_type(self, field, depth: int) -> str:
|
||||
field_type = field.annotation
|
||||
if get_origin(field_type) is list:
|
||||
origin = get_origin(field_type)
|
||||
|
||||
if origin in {list, List}:
|
||||
list_item_type = get_args(field_type)[0]
|
||||
if isinstance(list_item_type, type) and issubclass(
|
||||
list_item_type, BaseModel
|
||||
):
|
||||
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
||||
return f"List[\n{nested_schema}\n{' ' * 4 * depth}]"
|
||||
return self._format_list_type(list_item_type, depth)
|
||||
|
||||
if origin in {dict, Dict}:
|
||||
key_type, value_type = get_args(field_type)
|
||||
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
|
||||
|
||||
if origin is Union:
|
||||
return self._format_union_type(field_type, depth)
|
||||
|
||||
if isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
nested_schema = self._get_model_schema(field_type, depth)
|
||||
nested_indent = " " * 4 * depth
|
||||
return f"{field_type.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
|
||||
|
||||
return field_type.__name__
|
||||
|
||||
def _format_list_type(self, list_item_type, depth: int) -> str:
|
||||
if isinstance(list_item_type, type) and issubclass(list_item_type, BaseModel):
|
||||
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
||||
nested_indent = " " * 4 * (depth)
|
||||
return f"List[\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}\n{nested_indent}]"
|
||||
return f"List[{list_item_type.__name__}]"
|
||||
|
||||
def _format_union_type(self, field_type, depth: int) -> str:
|
||||
args = get_args(field_type)
|
||||
if type(None) in args:
|
||||
# It's an Optional type
|
||||
non_none_args = [arg for arg in args if arg is not type(None)]
|
||||
if len(non_none_args) == 1:
|
||||
inner_type = self._get_field_type_for_annotation(
|
||||
non_none_args[0], depth
|
||||
)
|
||||
return f"Optional[{inner_type}]"
|
||||
else:
|
||||
return f"List[{list_item_type.__name__}]"
|
||||
elif get_origin(field_type) is Union:
|
||||
union_args = get_args(field_type)
|
||||
if type(None) in union_args:
|
||||
non_none_type = next(arg for arg in union_args if arg is not type(None))
|
||||
return f"Optional[{self._get_field_type(field.__class__(annotation=non_none_type), depth)}]"
|
||||
else:
|
||||
return f"Union[{', '.join(arg.__name__ for arg in union_args)}]"
|
||||
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
|
||||
return self._get_model_schema(field_type, depth)
|
||||
# Union with None and multiple other types
|
||||
inner_types = ", ".join(
|
||||
self._get_field_type_for_annotation(arg, depth)
|
||||
for arg in non_none_args
|
||||
)
|
||||
return f"Optional[Union[{inner_types}]]"
|
||||
else:
|
||||
return getattr(field_type, "__name__", str(field_type))
|
||||
# General Union type
|
||||
inner_types = ", ".join(
|
||||
self._get_field_type_for_annotation(arg, depth) for arg in args
|
||||
)
|
||||
return f"Union[{inner_types}]"
|
||||
|
||||
def _get_field_type_for_annotation(self, annotation, depth: int) -> str:
|
||||
origin = get_origin(annotation)
|
||||
if origin in {list, List}:
|
||||
list_item_type = get_args(annotation)[0]
|
||||
return self._format_list_type(list_item_type, depth)
|
||||
if origin in {dict, Dict}:
|
||||
key_type, value_type = get_args(annotation)
|
||||
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
|
||||
if origin is Union:
|
||||
return self._format_union_type(annotation, depth)
|
||||
if isinstance(annotation, type) and issubclass(annotation, BaseModel):
|
||||
nested_schema = self._get_model_schema(annotation, depth)
|
||||
nested_indent = " " * 4 * depth
|
||||
return f"{annotation.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
|
||||
return annotation.__name__
|
||||
|
||||
@@ -23,11 +23,15 @@ class TokenCalcHandler(CustomLogger):
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
usage: Usage = response_obj["usage"]
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
if isinstance(response_obj, dict) and "usage" in response_obj:
|
||||
usage: Usage = response_obj["usage"]
|
||||
if usage:
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
if hasattr(usage, "prompt_tokens"):
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
if hasattr(usage, "completion_tokens"):
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
|
||||
self.token_cost_process.sum_cached_prompt_tokens(
|
||||
usage.prompt_tokens_details.cached_tokens
|
||||
)
|
||||
|
||||
@@ -1,4 +1,87 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: !!binary |
|
||||
CqcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/hYKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRJ5ChBuJJtOdNaB05mOW/p3915eEgj2tkAd3rZcASoQVG9vbCBVc2FnZSBFcnJvcjAB
|
||||
OYa7/URvKBUYQUpcFEVvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoPCgNsbG0SCAoG
|
||||
Z3B0LTRvegIYAYUBAAEAABLJBwoQifhX01E5i+5laGdALAlZBBIIBuGM1aN+OPgqDENyZXcgQ3Jl
|
||||
YXRlZDABORVGruBvKBUYQaipwOBvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5w
|
||||
eXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogN2U2NjA4OTg5ODU5YTY3ZWVj
|
||||
ODhlZWY3ZmNlODUyMjVKMQoHY3Jld19pZBImCiRiOThiNWEwMC01YTI1LTQxMDctYjQwNS1hYmYz
|
||||
MjBhOGYzYThKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
|
||||
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
|
||||
SuQCCgtjcmV3X2FnZW50cxLUAgrRAlt7ImtleSI6ICIyMmFjZDYxMWU0NGVmNWZhYzA1YjUzM2Q3
|
||||
NWU4ODkzYiIsICJpZCI6ICJkNWIyMzM1YS0yMmIyLTQyZWEtYmYwNS03OTc3NmU3MmYzOTIiLCAi
|
||||
cm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
|
||||
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
|
||||
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
|
||||
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsi
|
||||
Z2V0IGdyZWV0aW5ncyJdfV1KkgIKCmNyZXdfdGFza3MSgwIKgAJbeyJrZXkiOiAiYTI3N2IzNGIy
|
||||
YzE0NmYwYzU2YzVlMTM1NmU4ZjhhNTciLCAiaWQiOiAiMjJiZWMyMzEtY2QyMS00YzU4LTgyN2Ut
|
||||
MDU4MWE4ZjBjMTExIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
|
||||
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJhZ2VudF9rZXkiOiAiMjJh
|
||||
Y2Q2MTFlNDRlZjVmYWMwNWI1MzNkNzVlODg5M2IiLCAidG9vbHNfbmFtZXMiOiBbImdldCBncmVl
|
||||
dGluZ3MiXX1degIYAYUBAAEAABKOAgoQ5WYoxRtTyPjge4BduhL0rRIIv2U6rvWALfwqDFRhc2sg
|
||||
Q3JlYXRlZDABOX068uBvKBUYQZkv8+BvKBUYSi4KCGNyZXdfa2V5EiIKIDdlNjYwODk4OTg1OWE2
|
||||
N2VlYzg4ZWVmN2ZjZTg1MjI1SjEKB2NyZXdfaWQSJgokYjk4YjVhMDAtNWEyNS00MTA3LWI0MDUt
|
||||
YWJmMzIwYThmM2E4Si4KCHRhc2tfa2V5EiIKIGEyNzdiMzRiMmMxNDZmMGM1NmM1ZTEzNTZlOGY4
|
||||
YTU3SjEKB3Rhc2tfaWQSJgokMjJiZWMyMzEtY2QyMS00YzU4LTgyN2UtMDU4MWE4ZjBjMTExegIY
|
||||
AYUBAAEAABKQAQoQXyeDtJDFnyp2Fjk9YEGTpxIIaNE7gbhPNYcqClRvb2wgVXNhZ2UwATkaXTvj
|
||||
bygVGEGvx0rjbygVGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKHAoJdG9vbF9uYW1lEg8K
|
||||
DUdldCBHcmVldGluZ3NKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABLVBwoQMWfznt0qwauEzl7T
|
||||
UOQxRBII9q+pUS5EdLAqDENyZXcgQ3JlYXRlZDABORONPORvKBUYQSAoS+RvKBUYShoKDmNyZXdh
|
||||
aV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19r
|
||||
ZXkSIgogYzMwNzYwMDkzMjY3NjE0NDRkNTdjNzFkMWRhM2YyN2NKMQoHY3Jld19pZBImCiQ3OTQw
|
||||
MTkyNS1iOGU5LTQ3MDgtODUzMC00NDhhZmEzYmY4YjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
|
||||
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
|
||||
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuoCCgtjcmV3X2FnZW50cxLaAgrXAlt7ImtleSI6ICI5
|
||||
OGYzYjFkNDdjZTk2OWNmMDU3NzI3Yjc4NDE0MjVjZCIsICJpZCI6ICI5OTJkZjYyZi1kY2FiLTQy
|
||||
OTUtOTIwNi05MDBkNDExNGIxZTkiLCAicm9sZSI6ICJGcmllbmRseSBOZWlnaGJvciIsICJ2ZXJi
|
||||
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
|
||||
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
|
||||
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
|
||||
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsiZGVjaWRlIGdyZWV0aW5ncyJdfV1KmAIKCmNyZXdf
|
||||
dGFza3MSiQIKhgJbeyJrZXkiOiAiODBkN2JjZDQ5MDk5MjkwMDgzODMyZjBlOTgzMzgwZGYiLCAi
|
||||
aWQiOiAiMmZmNjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3IiwgImFzeW5jX2V4ZWN1
|
||||
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJGcmll
|
||||
bmRseSBOZWlnaGJvciIsICJhZ2VudF9rZXkiOiAiOThmM2IxZDQ3Y2U5NjljZjA1NzcyN2I3ODQx
|
||||
NDI1Y2QiLCAidG9vbHNfbmFtZXMiOiBbImRlY2lkZSBncmVldGluZ3MiXX1degIYAYUBAAEAABKO
|
||||
AgoQnjTp5boK7/+DQxztYIpqihIIgGnMUkBtzHEqDFRhc2sgQ3JlYXRlZDABOcpYcuRvKBUYQalE
|
||||
c+RvKBUYSi4KCGNyZXdfa2V5EiIKIGMzMDc2MDA5MzI2NzYxNDQ0ZDU3YzcxZDFkYTNmMjdjSjEK
|
||||
B2NyZXdfaWQSJgokNzk0MDE5MjUtYjhlOS00NzA4LTg1MzAtNDQ4YWZhM2JmOGIwSi4KCHRhc2tf
|
||||
a2V5EiIKIDgwZDdiY2Q0OTA5OTI5MDA4MzgzMmYwZTk4MzM4MGRmSjEKB3Rhc2tfaWQSJgokMmZm
|
||||
NjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3egIYAYUBAAEAABKTAQoQ26H9pLUgswDN
|
||||
p9XhJwwL6BIIx3bw7mAvPYwqClRvb2wgVXNhZ2UwATmy7NPlbygVGEEvb+HlbygVGEoaCg5jcmV3
|
||||
YWlfdmVyc2lvbhIICgYwLjg2LjBKHwoJdG9vbF9uYW1lEhIKEERlY2lkZSBHcmVldGluZ3NKDgoI
|
||||
YXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '2986'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
|
||||
personal goal is: test goal\nTo give my best complete final answer to the task
|
||||
@@ -22,18 +105,20 @@ interactions:
|
||||
- '824'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -47,8 +132,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIIsTxhvf75xvuu7gQScIlRSKbW\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZLLrWi8ZASpP9bz6HaCV7xBIn\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
@@ -57,12 +142,12 @@ interactions:
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8cfc3b1f4532-ATL
|
||||
- 8f8caa83deca756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -70,14 +155,14 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:50 GMT
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
path=/; expires=Wed, 04-Dec-24 20:59:50 GMT; domain=.api.openai.com; HttpOnly;
|
||||
- __cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw;
|
||||
path=/; expires=Fri, 27-Dec-24 22:44:53 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000;
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
@@ -90,7 +175,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '313'
|
||||
- '404'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -108,7 +193,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_9fd9a8ee688045dcf7ac5f6fdf689372
|
||||
- req_6ac84634bff9193743c4b0911c09b4a6
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -131,20 +216,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -158,8 +243,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIIaQlLyoyPmk909PvAIfA2TmJL\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZNlWdrrPZhq0MJDqd16sMuQEJ\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"True\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
@@ -168,12 +253,12 @@ interactions:
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d060b5e4532-ATL
|
||||
- 8f8caa87094f756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -181,7 +266,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:50 GMT
|
||||
- Fri, 27 Dec 2024 22:14:53 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -195,7 +280,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '375'
|
||||
- '156'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -213,7 +298,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_be7cb475e0859a82c37ee3f2871ea5ea
|
||||
- req_ec74bef2a9ef7b2144c03fd7f7bbeab0
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -242,20 +327,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -269,22 +354,23 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIJAAxpVfUOdrsgYKHwfRlHv4RS\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtZGv4f3h7GDdhyOy9G0sB1lRgC\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now can give a great answer
|
||||
\ \\nFinal Answer: Hello\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
188,\n \"completion_tokens\": 14,\n \"total_tokens\": 202,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
\"assistant\",\n \"content\": \"Thought: I understand the feedback and
|
||||
will adjust my response accordingly. \\nFinal Answer: Hello\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 188,\n \"completion_tokens\":
|
||||
18,\n \"total_tokens\": 206,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d090fc34532-ATL
|
||||
- 8f8caa88cac4756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -292,7 +378,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:51 GMT
|
||||
- Fri, 27 Dec 2024 22:14:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -306,7 +392,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '484'
|
||||
- '358'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -324,7 +410,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_5bf4a565ad6c2567a1ed204ecac89134
|
||||
- req_ae1ab6b206d28ded6fee3c83ed0c2ab7
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
@@ -346,20 +432,20 @@ interactions:
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
|
||||
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
|
||||
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
|
||||
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- x64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- Linux
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
@@ -373,8 +459,8 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AaqIJqyG8vl9mxj2qDPZgaxyNLLIq\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-AjCtaiHL4TY8Dssk0j2miqmjrzquy\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735337694,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"False\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
@@ -383,12 +469,12 @@ interactions:
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0705bf87c0\"\n}\n"
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8ece8d0cfdeb4532-ATL
|
||||
- 8f8caa8bdd26756b-SEA
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -396,7 +482,7 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 04 Dec 2024 20:29:51 GMT
|
||||
- Fri, 27 Dec 2024 22:14:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
@@ -410,7 +496,7 @@ interactions:
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '341'
|
||||
- '184'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
@@ -428,7 +514,7 @@ interactions:
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_5554bade8ceda00cf364b76a51b708ff
|
||||
- req_652891f79c1104a7a8436275d78a69f1
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -1,4 +1,37 @@
|
||||
# conftest.py
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_result = load_dotenv(override=True)
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_test_environment():
|
||||
"""Set up test environment with a temporary directory for SQLite storage."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Create the directory with proper permissions
|
||||
storage_dir = Path(temp_dir) / "crewai_test_storage"
|
||||
storage_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Validate that the directory was created successfully
|
||||
if not storage_dir.exists() or not storage_dir.is_dir():
|
||||
raise RuntimeError(f"Failed to create test storage directory: {storage_dir}")
|
||||
|
||||
# Verify directory permissions
|
||||
try:
|
||||
# Try to create a test file to verify write permissions
|
||||
test_file = storage_dir / ".permissions_test"
|
||||
test_file.touch()
|
||||
test_file.unlink()
|
||||
except (OSError, IOError) as e:
|
||||
raise RuntimeError(f"Test storage directory {storage_dir} is not writable: {e}")
|
||||
|
||||
# Set environment variable to point to the test storage directory
|
||||
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
|
||||
|
||||
yield
|
||||
|
||||
# Cleanup is handled automatically when tempfile context exits
|
||||
|
||||
@@ -1228,6 +1228,7 @@ def test_kickoff_for_each_empty_input():
|
||||
assert results == []
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_kickoff_for_each_invalid_input():
|
||||
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
|
||||
|
||||
|
||||
195
tests/test_flow_persistence.py
Normal file
195
tests/test_flow_persistence.py
Normal file
@@ -0,0 +1,195 @@
|
||||
"""Test flow state persistence functionality."""
|
||||
|
||||
import os
|
||||
from typing import Dict, Optional
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, FlowState, start
|
||||
from crewai.flow.persistence import FlowPersistence, persist
|
||||
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
|
||||
|
||||
|
||||
class TestState(FlowState):
|
||||
"""Test state model with required id field."""
|
||||
counter: int = 0
|
||||
message: str = ""
|
||||
|
||||
|
||||
def test_persist_decorator_saves_state(tmp_path):
|
||||
"""Test that @persist decorator saves state in SQLite."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class TestFlow(Flow[Dict[str, str]]):
|
||||
initial_state = dict() # Use dict instance as initial state
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def init_step(self):
|
||||
self.state["message"] = "Hello, World!"
|
||||
self.state["id"] = "test-uuid" # Ensure we have an ID for persistence
|
||||
|
||||
# Run flow and verify state is saved
|
||||
flow = TestFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
# Load state from DB and verify
|
||||
saved_state = persistence.load_state(flow.state["id"])
|
||||
assert saved_state is not None
|
||||
assert saved_state["message"] == "Hello, World!"
|
||||
|
||||
|
||||
def test_structured_state_persistence(tmp_path):
|
||||
"""Test persistence with Pydantic model state."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class StructuredFlow(Flow[TestState]):
|
||||
initial_state = TestState
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def count_up(self):
|
||||
self.state.counter += 1
|
||||
self.state.message = f"Count is {self.state.counter}"
|
||||
|
||||
# Run flow and verify state changes are saved
|
||||
flow = StructuredFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
# Load and verify state
|
||||
saved_state = persistence.load_state(flow.state.id)
|
||||
assert saved_state is not None
|
||||
assert saved_state["counter"] == 1
|
||||
assert saved_state["message"] == "Count is 1"
|
||||
|
||||
|
||||
def test_flow_state_restoration(tmp_path):
|
||||
"""Test restoring flow state from persistence with various restoration methods."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
# First flow execution to create initial state
|
||||
class RestorableFlow(Flow[TestState]):
|
||||
initial_state = TestState
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def set_message(self):
|
||||
self.state.message = "Original message"
|
||||
self.state.counter = 42
|
||||
|
||||
# Create and persist initial state
|
||||
flow1 = RestorableFlow(persistence=persistence)
|
||||
flow1.kickoff()
|
||||
original_uuid = flow1.state.id
|
||||
|
||||
# Test case 1: Restore using restore_uuid with field override
|
||||
flow2 = RestorableFlow(
|
||||
persistence=persistence,
|
||||
restore_uuid=original_uuid,
|
||||
counter=43, # Override counter
|
||||
)
|
||||
|
||||
# Verify state restoration and selective field override
|
||||
assert flow2.state.id == original_uuid
|
||||
assert flow2.state.message == "Original message" # Preserved
|
||||
assert flow2.state.counter == 43 # Overridden
|
||||
|
||||
# Test case 2: Restore using kwargs['id']
|
||||
flow3 = RestorableFlow(
|
||||
persistence=persistence,
|
||||
id=original_uuid,
|
||||
message="Updated message", # Override message
|
||||
)
|
||||
|
||||
# Verify state restoration and selective field override
|
||||
assert flow3.state.id == original_uuid
|
||||
assert flow3.state.counter == 42 # Preserved
|
||||
assert flow3.state.message == "Updated message" # Overridden
|
||||
|
||||
# Test case 3: Verify error on conflicting IDs
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
RestorableFlow(
|
||||
persistence=persistence,
|
||||
restore_uuid=original_uuid,
|
||||
id="different-id", # Conflict with restore_uuid
|
||||
)
|
||||
assert "Conflicting IDs provided" in str(exc_info.value)
|
||||
|
||||
# Test case 4: Verify error on non-existent restore_uuid
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
RestorableFlow(
|
||||
persistence=persistence,
|
||||
restore_uuid="non-existent-uuid",
|
||||
)
|
||||
assert "No state found" in str(exc_info.value)
|
||||
|
||||
# Test case 5: Allow new state creation with kwargs['id']
|
||||
new_uuid = "new-flow-id"
|
||||
flow4 = RestorableFlow(
|
||||
persistence=persistence,
|
||||
id=new_uuid,
|
||||
message="New message",
|
||||
counter=100,
|
||||
)
|
||||
|
||||
# Verify new state creation with provided ID
|
||||
assert flow4.state.id == new_uuid
|
||||
assert flow4.state.message == "New message"
|
||||
assert flow4.state.counter == 100
|
||||
|
||||
|
||||
def test_multiple_method_persistence(tmp_path):
|
||||
"""Test state persistence across multiple method executions."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class MultiStepFlow(Flow[TestState]):
|
||||
initial_state = TestState
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def step_1(self):
|
||||
self.state.counter = 1
|
||||
self.state.message = "Step 1"
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def step_2(self):
|
||||
self.state.counter = 2
|
||||
self.state.message = "Step 2"
|
||||
|
||||
flow = MultiStepFlow(persistence=persistence)
|
||||
flow.kickoff()
|
||||
|
||||
# Load final state
|
||||
final_state = persistence.load_state(flow.state.id)
|
||||
assert final_state is not None
|
||||
assert final_state["counter"] == 2
|
||||
assert final_state["message"] == "Step 2"
|
||||
|
||||
|
||||
def test_persistence_error_handling(tmp_path):
|
||||
"""Test error handling in persistence operations."""
|
||||
db_path = os.path.join(tmp_path, "test_flows.db")
|
||||
persistence = SQLiteFlowPersistence(db_path)
|
||||
|
||||
class InvalidFlow(Flow[TestState]):
|
||||
# Missing id field in initial state
|
||||
class InvalidState(BaseModel):
|
||||
value: str = ""
|
||||
|
||||
initial_state = InvalidState
|
||||
|
||||
@start()
|
||||
@persist(persistence)
|
||||
def will_fail(self):
|
||||
self.state.value = "test"
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
flow = InvalidFlow(persistence=persistence)
|
||||
|
||||
assert "must have an 'id' field" in str(exc_info.value)
|
||||
114
tests/utilities/cassettes/test_convert_with_instructions.yaml
Normal file
114
tests/utilities/cassettes/test_convert_with_instructions.yaml
Normal file
@@ -0,0 +1,114 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Name: Alice, Age: 30"}], "model":
|
||||
"gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name": "SimpleModel"}},
|
||||
"tools": [{"type": "function", "function": {"name": "SimpleModel", "description":
|
||||
"Correctly extracted `SimpleModel` with all the required parameters with correct
|
||||
types", "parameters": {"properties": {"name": {"title": "Name", "type": "string"},
|
||||
"age": {"title": "Age", "type": "integer"}}, "required": ["age", "name"], "type":
|
||||
"object"}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '507'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Aq4a4xDv8G0i4fbTtPJEI2B8UNBup\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736974028,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_uO5nec8hTk1fpYINM8TUafhe\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"SimpleModel\",\n
|
||||
\ \"arguments\": \"{\\\"name\\\":\\\"Alice\\\",\\\"age\\\":30}\"\n
|
||||
\ }\n }\n ],\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 79,\n \"completion_tokens\": 10,\n
|
||||
\ \"total_tokens\": 89,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9028b81aeb1cb05f-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:08 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
|
||||
path=/; expires=Wed, 15-Jan-25 21:17:08 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '439'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a468000458b9d2848b7497b2e3d485a3
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
2048
tests/utilities/cassettes/test_converter_with_llama3_1_model.yaml
Normal file
2048
tests/utilities/cassettes/test_converter_with_llama3_1_model.yaml
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,869 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"model": "llama3.2:3b", "prompt": "### User:\nName: Alice Llama, Age:
|
||||
30\n\n### System:\nProduce JSON OUTPUT ONLY! Adhere to this format {\"name\":
|
||||
\"function_name\", \"arguments\":{\"argument_name\": \"argument_value\"}} The
|
||||
following functions are available to you:\n{''type'': ''function'', ''function'':
|
||||
{''name'': ''SimpleModel'', ''description'': ''Correctly extracted `SimpleModel`
|
||||
with all the required parameters with correct types'', ''parameters'': {''properties'':
|
||||
{''name'': {''title'': ''Name'', ''type'': ''string''}, ''age'': {''title'':
|
||||
''Age'', ''type'': ''integer''}}, ''required'': [''age'', ''name''], ''type'':
|
||||
''object''}}}\n\n\n", "options": {}, "stream": false, "format": "json"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '657'
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/generate
|
||||
response:
|
||||
content: '{"model":"llama3.2:3b","created_at":"2025-01-15T20:47:11.926411Z","response":"{\"name\":
|
||||
\"SimpleModel\", \"arguments\":{\"name\": \"Alice Llama\", \"age\": 30}}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,14711,744,512,1360,13677,4823,32090,27785,0,2467,6881,311,420,3645,5324,609,794,330,1723,1292,498,330,16774,23118,14819,1292,794,330,14819,3220,32075,578,2768,5865,527,2561,311,499,512,13922,1337,1232,364,1723,518,364,1723,1232,5473,609,1232,364,16778,1747,518,364,4789,1232,364,34192,398,28532,1595,16778,1747,63,449,682,279,2631,5137,449,4495,4595,518,364,14105,1232,5473,13495,1232,5473,609,1232,5473,2150,1232,364,678,518,364,1337,1232,364,928,25762,364,425,1232,5473,2150,1232,364,17166,518,364,1337,1232,364,11924,8439,2186,364,6413,1232,2570,425,518,364,609,4181,364,1337,1232,364,1735,23742,3818,128009,128006,78191,128007,271,5018,609,794,330,16778,1747,498,330,16774,23118,609,794,330,62786,445,81101,498,330,425,794,220,966,3500],"total_duration":3374470708,"load_duration":1075750500,"prompt_eval_count":167,"prompt_eval_duration":1871000000,"eval_count":24,"eval_duration":426000000}'
|
||||
headers:
|
||||
Content-Length:
|
||||
- '1263'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"name": "llama3.2:3b"}'
|
||||
headers:
|
||||
accept:
|
||||
- '*/*'
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '23'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- localhost:11434
|
||||
user-agent:
|
||||
- litellm/1.57.4
|
||||
method: POST
|
||||
uri: http://localhost:11434/api/show
|
||||
response:
|
||||
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
|
||||
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
|
||||
and conditions for use, reproduction, distribution \\nand modification of the
|
||||
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
|
||||
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
|
||||
to promoting safe and fair use of its tools and features, including Llama 3.2.
|
||||
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
|
||||
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
|
||||
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
|
||||
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
|
||||
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
|
||||
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
|
||||
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
|
||||
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
|
||||
for use, reproduction, distribution \\nand modification of the Llama Materials
|
||||
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
|
||||
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
|
||||
or \u201Cyou\u201D means you, or your employer or any other person or entity
|
||||
(if you are \\nentering into this Agreement on such person or entity\u2019s
|
||||
behalf), of the age required under\\napplicable laws, rules or regulations to
|
||||
provide legal consent and that has legal authority\\nto bind your employer or
|
||||
such other person or entity if you are entering in this Agreement\\non their
|
||||
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
|
||||
and software and algorithms, including\\nmachine-learning model code, trained
|
||||
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
|
||||
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
|
||||
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
|
||||
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
|
||||
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
|
||||
or, \\nif you are an entity, your principal place of business is in the EEA
|
||||
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
|
||||
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
|
||||
or distributing any portion or element of the Llama Materials,\\nyou agree to
|
||||
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
|
||||
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
|
||||
and royalty-free limited license under Meta\u2019s intellectual property or
|
||||
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
|
||||
distribute, copy, create derivative works \\nof, and make modifications to the
|
||||
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
|
||||
you distribute or make available the Llama Materials (or any derivative works
|
||||
thereof), \\nor a product or service (including another AI model) that contains
|
||||
any of them, you shall (A) provide\\na copy of this Agreement with any such
|
||||
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
|
||||
a related website, user interface, blogpost, about page, or product documentation.
|
||||
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
|
||||
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
|
||||
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
|
||||
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
|
||||
or any derivative works thereof, from a Licensee as part\\nof an integrated
|
||||
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
|
||||
\ iii. You must retain in all copies of the Llama Materials that you distribute
|
||||
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
|
||||
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
|
||||
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
|
||||
\ iv. Your use of the Llama Materials must comply with applicable laws
|
||||
and regulations\\n(including trade compliance laws and regulations) and adhere
|
||||
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
|
||||
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
|
||||
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
|
||||
monthly active users\\nof the products or services made available by or for
|
||||
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
|
||||
active users in the preceding calendar month, you must request \\na license
|
||||
from Meta, which Meta may grant to you in its sole discretion, and you are not
|
||||
authorized to\\nexercise any of the rights under this Agreement unless or until
|
||||
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
|
||||
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
|
||||
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
|
||||
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
|
||||
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
|
||||
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
|
||||
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
|
||||
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
|
||||
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
|
||||
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
|
||||
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
|
||||
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
|
||||
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
||||
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
|
||||
\ a. No trademark licenses are granted under this Agreement, and in connection
|
||||
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
|
||||
owned by or associated with the other or any of its affiliates, \\nexcept as
|
||||
required for reasonable and customary use in describing and redistributing the
|
||||
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
|
||||
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
|
||||
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
|
||||
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
|
||||
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
|
||||
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
|
||||
derivatives made by or for Meta, with respect to any\\n derivative works
|
||||
and modifications of the Llama Materials that are made by you, as between you
|
||||
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
|
||||
\ c. If you institute litigation or other proceedings against Meta or any
|
||||
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
|
||||
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
|
||||
\ of any of the foregoing, constitutes infringement of intellectual property
|
||||
or other rights owned or licensable\\n by you, then any licenses granted
|
||||
to you under this Agreement shall terminate as of the date such litigation or\\n
|
||||
\ claim is filed or instituted. You will indemnify and hold harmless Meta
|
||||
from and against any claim by any third\\n party arising out of or related
|
||||
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
|
||||
The term of this Agreement will commence upon your acceptance of this Agreement
|
||||
or access\\nto the Llama Materials and will continue in full force and effect
|
||||
until terminated in accordance with the terms\\nand conditions herein. Meta
|
||||
may terminate this Agreement if you are in breach of any term or condition of
|
||||
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
|
||||
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
|
||||
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
|
||||
be governed and construed under the laws of the State of \\nCalifornia without
|
||||
regard to choice of law principles, and the UN Convention on Contracts for the
|
||||
International\\nSale of Goods does not apply to this Agreement. The courts of
|
||||
California shall have exclusive jurisdiction of\\nany dispute arising out of
|
||||
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
|
||||
is committed to promoting safe and fair use of its tools and features, including
|
||||
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
|
||||
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
|
||||
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
|
||||
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
|
||||
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
|
||||
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
|
||||
contribute to, encourage, plan, incite, or further illegal or unlawful activity
|
||||
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
|
||||
or harm to children, including the solicitation, creation, acquisition, or dissemination
|
||||
of child exploitative content or failure to report Child Sexual Abuse Material\\n
|
||||
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
|
||||
The illegal distribution of information or materials to minors, including obscene
|
||||
materials, or failure to employ legally required age-gating in connection with
|
||||
such information or materials.\\n 5. Sexual solicitation\\n 6.
|
||||
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
|
||||
the harassment, abuse, threatening, or bullying of individuals or groups of
|
||||
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
|
||||
or other unlawful or harmful conduct in the provision of employment, employment
|
||||
benefits, credit, housing, other economic benefits, or other essential goods
|
||||
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
|
||||
profession including, but not limited to, financial, legal, medical/health,
|
||||
or related professional practices\\n 4. Collect, process, disclose, generate,
|
||||
or infer private or sensitive information about individuals, including information
|
||||
about individuals\u2019 identity, health, or demographic information, unless
|
||||
you have obtained the right to do so in accordance with applicable law\\n 5.
|
||||
Engage in or facilitate any action or generate any content that infringes, misappropriates,
|
||||
or otherwise violates any third-party rights, including the outputs or results
|
||||
of any products or services using the Llama Materials\\n 6. Create, generate,
|
||||
or facilitate the creation of malicious code, malware, computer viruses or do
|
||||
anything else that could disable, overburden, interfere with or impair the proper
|
||||
working, integrity, operation or appearance of a website or computer system\\n
|
||||
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
|
||||
or remove usage restrictions or other safety measures, or to enable functionality
|
||||
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
|
||||
planning or development of activities that present a risk of death or bodily
|
||||
harm to individuals, including use of Llama 3.2 related to the following:\\n
|
||||
\ 8. Military, warfare, nuclear industries or applications, espionage, use
|
||||
for materials or activities that are subject to the International Traffic Arms
|
||||
Regulations (ITAR) maintained by the United States Department of State or to
|
||||
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
|
||||
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
|
||||
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
|
||||
\ 11. Operation of critical infrastructure, transportation technologies, or
|
||||
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
|
||||
and eating disorders\\n 13. Any content intended to incite or promote violence,
|
||||
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
|
||||
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
|
||||
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
|
||||
of disinformation\\n 15. Generating, promoting, or furthering defamatory
|
||||
content, including the creation of defamatory statements, images, or other content\\n
|
||||
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
|
||||
another individual without consent, authorization, or legal right\\n 18.
|
||||
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
|
||||
Generating or facilitating false online engagement, including fake reviews and
|
||||
other means of fake online engagement\\n4. Fail to appropriately disclose to
|
||||
end users any known dangers of your AI system\\n5. Interact with third party
|
||||
tools, models, or software designed to generate unlawful content or engage in
|
||||
unlawful or harmful conduct and/or represent that the outputs of such tools,
|
||||
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
|
||||
to any multimodal models included in Llama 3.2, the rights granted under Section
|
||||
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
|
||||
if you are an individual domiciled in, or a company with a principal place of
|
||||
business in, the European Union. This restriction does not apply to end users
|
||||
of a product or service that incorporates any such multimodal models.\\n\\nPlease
|
||||
report any violation of this Policy, software \u201Cbug,\u201D or other problems
|
||||
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
|
||||
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
|
||||
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
|
||||
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
|
||||
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
|
||||
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
|
||||
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
|
||||
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
|
||||
if .Tools }}When you receive a tool call response, use the output to format
|
||||
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
|
||||
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
|
||||
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
|
||||
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
|
||||
a JSON for a function call with its proper arguments that best answers the given
|
||||
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
|
||||
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
|
||||
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
|
||||
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
|
||||
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
|
||||
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
|
||||
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
|
||||
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
|
||||
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
|
||||
headers:
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:12 GMT
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
116
tests/utilities/cassettes/test_converter_with_nested_model.yaml
Normal file
116
tests/utilities/cassettes/test_converter_with_nested_model.yaml
Normal file
@@ -0,0 +1,116 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Name: John Doe\nAge: 30\nAddress:
|
||||
123 Main St, Anytown, 12345"}], "model": "gpt-4o-mini", "tool_choice": {"type":
|
||||
"function", "function": {"name": "Person"}}, "tools": [{"type": "function",
|
||||
"function": {"name": "Person", "description": "Correctly extracted `Person`
|
||||
with all the required parameters with correct types", "parameters": {"$defs":
|
||||
{"Address": {"properties": {"street": {"title": "Street", "type": "string"},
|
||||
"city": {"title": "City", "type": "string"}, "zip_code": {"title": "Zip Code",
|
||||
"type": "string"}}, "required": ["street", "city", "zip_code"], "title": "Address",
|
||||
"type": "object"}}, "properties": {"name": {"title": "Name", "type": "string"},
|
||||
"age": {"title": "Age", "type": "integer"}, "address": {"$ref": "#/$defs/Address"}},
|
||||
"required": ["address", "age", "name"], "type": "object"}}}]}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '853'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
|
||||
_cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.59.6
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.59.6
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-Aq4aFpbhU10QK0e6Jlkxy8AUxCZCf\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1736974039,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
|
||||
\ \"id\": \"call_N29aoGL9tN0qL2O7HI8Op2so\",\n \"type\":
|
||||
\"function\",\n \"function\": {\n \"name\": \"Person\",\n
|
||||
\ \"arguments\": \"{\\\"name\\\":\\\"John Doe\\\",\\\"age\\\":30,\\\"address\\\":{\\\"street\\\":\\\"123
|
||||
Main St\\\",\\\"city\\\":\\\"Anytown\\\",\\\"zip_code\\\":\\\"12345\\\"}}\"\n
|
||||
\ }\n }\n ],\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 118,\n \"completion_tokens\": 30,\n
|
||||
\ \"total_tokens\": 148,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 9028b863dbaa672f-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 15 Jan 2025 20:47:20 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '840'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999968'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_2f9d1e3f0ace4944891dde05093486aa
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -39,6 +39,22 @@ class NestedModel(BaseModel):
|
||||
data: SimpleModel
|
||||
|
||||
|
||||
class Address(BaseModel):
|
||||
street: str
|
||||
city: str
|
||||
zip_code: str
|
||||
|
||||
|
||||
class Person(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
address: Address
|
||||
|
||||
|
||||
class CustomConverter(Converter):
|
||||
pass
|
||||
|
||||
|
||||
# Fixtures
|
||||
@pytest.fixture
|
||||
def mock_agent():
|
||||
@@ -199,26 +215,23 @@ def test_convert_with_instructions_failure(
|
||||
|
||||
# Tests for get_conversion_instructions
|
||||
def test_get_conversion_instructions_gpt():
|
||||
mock_llm = Mock()
|
||||
mock_llm.openai_api_base = None
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
||||
supports_function_calling.return_value = True
|
||||
instructions = get_conversion_instructions(SimpleModel, mock_llm)
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
|
||||
assert (
|
||||
instructions
|
||||
== f"I'm gonna convert this raw text into valid JSON.\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
== f"Please convert the following text into valid JSON.\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
|
||||
)
|
||||
|
||||
|
||||
def test_get_conversion_instructions_non_gpt():
|
||||
mock_llm = Mock()
|
||||
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
||||
supports_function_calling.return_value = False
|
||||
with patch("crewai.utilities.converter.PydanticSchemaParser") as mock_parser:
|
||||
mock_parser.return_value.get_schema.return_value = "Sample schema"
|
||||
instructions = get_conversion_instructions(SimpleModel, mock_llm)
|
||||
assert "Sample schema" in instructions
|
||||
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
||||
with patch.object(LLM, "supports_function_calling", return_value=False):
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
assert '"name": str' in instructions
|
||||
assert '"age": int' in instructions
|
||||
|
||||
|
||||
# Tests for is_gpt
|
||||
@@ -232,10 +245,6 @@ def test_supports_function_calling_false():
|
||||
assert llm.supports_function_calling() is False
|
||||
|
||||
|
||||
class CustomConverter(Converter):
|
||||
pass
|
||||
|
||||
|
||||
def test_create_converter_with_mock_agent():
|
||||
mock_agent = MagicMock()
|
||||
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
|
||||
@@ -255,7 +264,7 @@ def test_create_converter_with_mock_agent():
|
||||
def test_create_converter_with_custom_converter():
|
||||
converter = create_converter(
|
||||
converter_cls=CustomConverter,
|
||||
llm=Mock(),
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
text="Sample",
|
||||
model=SimpleModel,
|
||||
instructions="Convert",
|
||||
@@ -313,3 +322,269 @@ def test_generate_model_description_dict_field():
|
||||
description = generate_model_description(ModelWithDictField)
|
||||
expected_description = '{\n "attributes": Dict[str, int]\n}'
|
||||
assert description == expected_description
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_convert_with_instructions():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
sample_text = "Name: Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
# Act
|
||||
output = converter.to_pydantic()
|
||||
|
||||
# Assert
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_2_model():
|
||||
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
|
||||
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice Llama"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_llama3_1_model():
|
||||
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
||||
sample_text = "Name: Alice Llama, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Alice Llama"
|
||||
assert output.age == 30
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_converter_with_nested_model():
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
|
||||
|
||||
instructions = get_conversion_instructions(Person, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=Person,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, Person)
|
||||
assert output.name == "John Doe"
|
||||
assert output.age == 30
|
||||
assert isinstance(output.address, Address)
|
||||
assert output.address.street == "123 Main St"
|
||||
assert output.address.city == "Anytown"
|
||||
assert output.address.zip_code == "12345"
|
||||
|
||||
|
||||
# Tests for error handling
|
||||
def test_converter_error_handling():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = "Invalid JSON"
|
||||
sample_text = "Name: Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
with pytest.raises(ConverterError) as exc_info:
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
|
||||
|
||||
|
||||
# Tests for retry logic
|
||||
def test_converter_retry_logic():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.side_effect = [
|
||||
"Invalid JSON",
|
||||
"Still invalid",
|
||||
'{"name": "Retry Alice", "age": 30}',
|
||||
]
|
||||
sample_text = "Name: Retry Alice, Age: 30"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
max_attempts=3,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Retry Alice"
|
||||
assert output.age == 30
|
||||
assert llm.call.call_count == 3
|
||||
|
||||
|
||||
# Tests for optional fields
|
||||
def test_converter_with_optional_fields():
|
||||
class OptionalModel(BaseModel):
|
||||
name: str
|
||||
age: Optional[int]
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
# Simulate the LLM's response with 'age' explicitly set to null
|
||||
llm.call.return_value = '{"name": "Bob", "age": null}'
|
||||
sample_text = "Name: Bob, age: None"
|
||||
|
||||
instructions = get_conversion_instructions(OptionalModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=OptionalModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, OptionalModel)
|
||||
assert output.name == "Bob"
|
||||
assert output.age is None
|
||||
|
||||
|
||||
# Tests for list fields
|
||||
def test_converter_with_list_field():
|
||||
class ListModel(BaseModel):
|
||||
items: List[int]
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"items": [1, 2, 3]}'
|
||||
sample_text = "Items: 1, 2, 3"
|
||||
|
||||
instructions = get_conversion_instructions(ListModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=ListModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, ListModel)
|
||||
assert output.items == [1, 2, 3]
|
||||
|
||||
|
||||
# Tests for enums
|
||||
from enum import Enum
|
||||
|
||||
|
||||
def test_converter_with_enum():
|
||||
class Color(Enum):
|
||||
RED = "red"
|
||||
GREEN = "green"
|
||||
BLUE = "blue"
|
||||
|
||||
class EnumModel(BaseModel):
|
||||
name: str
|
||||
color: Color
|
||||
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"name": "Alice", "color": "red"}'
|
||||
sample_text = "Name: Alice, Color: Red"
|
||||
|
||||
instructions = get_conversion_instructions(EnumModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=EnumModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, EnumModel)
|
||||
assert output.name == "Alice"
|
||||
assert output.color == Color.RED
|
||||
|
||||
|
||||
# Tests for ambiguous input
|
||||
def test_converter_with_ambiguous_input():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = False
|
||||
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
|
||||
sample_text = "Charlie is thirty years old"
|
||||
|
||||
instructions = get_conversion_instructions(SimpleModel, llm)
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text=sample_text,
|
||||
model=SimpleModel,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
with pytest.raises(ConverterError) as exc_info:
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert "validation error" in str(exc_info.value).lower()
|
||||
|
||||
|
||||
# Tests for function calling support
|
||||
def test_converter_with_function_calling():
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = True
|
||||
|
||||
instructor = Mock()
|
||||
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
|
||||
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
text="Name: Eve, Age: 35",
|
||||
model=SimpleModel,
|
||||
instructions="Convert this text.",
|
||||
)
|
||||
converter._create_instructor = Mock(return_value=instructor)
|
||||
|
||||
output = converter.to_pydantic()
|
||||
|
||||
assert isinstance(output, SimpleModel)
|
||||
assert output.name == "Eve"
|
||||
assert output.age == 35
|
||||
instructor.to_pydantic.assert_called_once()
|
||||
|
||||
94
tests/utilities/test_pydantic_schema_parser.py
Normal file
94
tests/utilities/test_pydantic_schema_parser.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
|
||||
def test_simple_model():
|
||||
class SimpleModel(BaseModel):
|
||||
field1: int
|
||||
field2: str
|
||||
|
||||
parser = PydanticSchemaParser(model=SimpleModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
field1: int,
|
||||
field2: str
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_nested_model():
|
||||
class NestedModel(BaseModel):
|
||||
nested_field: int
|
||||
|
||||
class ParentModel(BaseModel):
|
||||
parent_field: str
|
||||
nested: NestedModel
|
||||
|
||||
parser = PydanticSchemaParser(model=ParentModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
parent_field: str,
|
||||
nested: NestedModel
|
||||
{
|
||||
nested_field: int
|
||||
}
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_list():
|
||||
class ListModel(BaseModel):
|
||||
list_field: List[int]
|
||||
|
||||
parser = PydanticSchemaParser(model=ListModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
list_field: List[int]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_optional_field():
|
||||
class OptionalModel(BaseModel):
|
||||
optional_field: Optional[str]
|
||||
|
||||
parser = PydanticSchemaParser(model=OptionalModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
optional_field: Optional[str]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_union():
|
||||
class UnionModel(BaseModel):
|
||||
union_field: Union[int, str]
|
||||
|
||||
parser = PydanticSchemaParser(model=UnionModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
union_field: Union[int, str]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
|
||||
|
||||
def test_model_with_dict():
|
||||
class DictModel(BaseModel):
|
||||
dict_field: Dict[str, int]
|
||||
|
||||
parser = PydanticSchemaParser(model=DictModel)
|
||||
schema = parser.get_schema()
|
||||
|
||||
expected_schema = """{
|
||||
dict_field: Dict[str, int]
|
||||
}"""
|
||||
assert schema.strip() == expected_schema.strip()
|
||||
49
uv.lock
generated
49
uv.lock
generated
@@ -1,6 +1,7 @@
|
||||
version = 1
|
||||
requires-python = ">=3.10, <3.13"
|
||||
resolution-markers = [
|
||||
|
||||
"python_full_version < '3.11' and platform_system == 'Darwin' and sys_platform == 'darwin'",
|
||||
"python_full_version < '3.11' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform == 'darwin'",
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform == 'darwin') or (python_full_version < '3.11' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'darwin')",
|
||||
@@ -36,7 +37,7 @@ resolution-markers = [
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform == 'linux'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system == 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12.4' and platform_system == 'Darwin' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and platform_system == 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux'",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and platform_system != 'Darwin' and sys_platform != 'darwin') or (python_full_version >= '3.12.4' and platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'darwin' and sys_platform != 'linux')"
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -345,7 +346,7 @@ name = "build"
|
||||
version = "1.2.2.post1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "os_name == 'nt'" },
|
||||
{ name = "colorama", marker = "(os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "importlib-metadata", marker = "python_full_version < '3.10.2'" },
|
||||
{ name = "packaging" },
|
||||
{ name = "pyproject-hooks" },
|
||||
@@ -580,7 +581,7 @@ name = "click"
|
||||
version = "8.1.7"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/96/d3/f04c7bfcf5c1862a2a5b845c6b2b360488cf47af55dfa79c98f6a6bf98b5/click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de", size = 336121 }
|
||||
wheels = [
|
||||
@@ -2587,7 +2588,7 @@ version = "1.6.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
{ name = "ghp-import" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "markdown" },
|
||||
@@ -2768,7 +2769,7 @@ version = "2.10.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pygments" },
|
||||
{ name = "pywin32", marker = "platform_system == 'Windows'" },
|
||||
{ name = "pywin32", marker = "sys_platform == 'win32'" },
|
||||
{ name = "tqdm" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3a/93/80ac75c20ce54c785648b4ed363c88f148bf22637e10c9863db4fbe73e74/mpire-2.10.2.tar.gz", hash = "sha256:f66a321e93fadff34585a4bfa05e95bd946cf714b442f51c529038eb45773d97", size = 271270 }
|
||||
@@ -3015,7 +3016,7 @@ name = "nvidia-cudnn-cu12"
|
||||
version = "9.1.0.70"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" }
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
|
||||
@@ -3044,7 +3045,7 @@ source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" }
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd", size = 124161928 },
|
||||
@@ -3055,7 +3056,7 @@ name = "nvidia-cusparse-cu12"
|
||||
version = "12.1.0.106"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" }
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c", size = 195958278 },
|
||||
@@ -3605,7 +3606,7 @@ name = "portalocker"
|
||||
version = "2.10.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pywin32", marker = "platform_system == 'Windows'" },
|
||||
{ name = "pywin32", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/ed/d3/c6c64067759e87af98cc668c1cc75171347d0f1577fab7ca3749134e3cd4/portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f", size = 40891 }
|
||||
wheels = [
|
||||
@@ -5193,19 +5194,19 @@ dependencies = [
|
||||
{ name = "fsspec" },
|
||||
{ name = "jinja2" },
|
||||
{ name = "networkx" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "sympy" },
|
||||
{ name = "triton", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
||||
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
wheels = [
|
||||
@@ -5252,7 +5253,7 @@ name = "tqdm"
|
||||
version = "4.66.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "platform_system == 'Windows'" },
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 }
|
||||
wheels = [
|
||||
@@ -5295,7 +5296,7 @@ version = "0.27.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "attrs" },
|
||||
{ name = "cffi", marker = "implementation_name != 'pypy' and os_name == 'nt'" },
|
||||
{ name = "cffi", marker = "(implementation_name != 'pypy' and os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (implementation_name != 'pypy' and os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
|
||||
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
|
||||
{ name = "idna" },
|
||||
{ name = "outcome" },
|
||||
@@ -5326,7 +5327,7 @@ name = "triton"
|
||||
version = "3.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" },
|
||||
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux' and sys_platform != 'linux')" }
|
||||
]
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a", size = 209376304 },
|
||||
|
||||
Reference in New Issue
Block a user