Compare commits

...

117 Commits

Author SHA1 Message Date
Brandon Hancock
1eb4717352 wip 2025-03-07 16:39:50 -05:00
Brandon Hancock (bhancock_ai)
a1f35e768f Enhance LLM Streaming Response Handling and Event System (#2266)
* Initial Stream working

* add tests

* adjust tests

* Update test for multiplication

* Update test for multiplication part 2

* max iter on new test

* streaming tool call test update

* Force pass

* another one

* give up on agent

* WIP

* Non-streaming working again

* stream working too

* fixing type check

* fix failing test

* fix failing test

* fix failing test

* Fix testing for CI

* Fix failing test

* Fix failing test

* Skip failing CI/CD tests

* too many logs

* working

* Trying to fix tests

* drop openai failing tests

* improve logic

* Implement LLM stream chunk event handling with in-memory text stream

* More event types

* Update docs

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2025-03-07 12:54:32 -05:00
Tony Kipkemboi
00eede0d5d docs: Update installation guide to use uv tool package manager (#2196)
* docs: add Qdrant vector search tool documentation

* Update installation docs to use uv and improve quickstart guide

* docs: improve installation instructions and add structured outputs video

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-03 10:45:57 -05:00
Thiago Moretto
a3d5c86218 Convert tab to spaces on crew.py template (#2190)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-03 10:39:11 -05:00
Tony Kipkemboi
60d13bf7e8 docs: Tool docs improvements (#2259)
* docs: add Qdrant vector search tool documentation

* Update installation docs to use uv and improve quickstart guide

* docs: improve installation instructions and add structured outputs video

* Update tool documentation with agent integration examples and consistent formatting
2025-03-03 10:29:37 -05:00
Tony Kipkemboi
86825e1769 docs: add Qdrant vector search tool documentation (#2184)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-27 13:54:44 -05:00
Brandon Hancock (bhancock_ai)
7afc531fbb Improve hierarchical docs (#2244) 2025-02-27 13:38:21 -05:00
Brandon Hancock (bhancock_ai)
ed0490112b explain how to use event listener (#2245) 2025-02-27 13:32:16 -05:00
Brandon Hancock (bhancock_ai)
66c66e3d84 Update docs (#2226) 2025-02-26 15:21:36 -05:00
Brandon Hancock (bhancock_ai)
b9b625a70d Improve extract thought (#2223)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 14:51:46 -05:00
Brandon Hancock (bhancock_ai)
b58253cacc Support multiple router calls and address issue #2175 (#2231)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 13:42:17 -05:00
Brandon Hancock (bhancock_ai)
fbf8732784 Fix type issue (#2224)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-26 13:27:41 -05:00
Brandon Hancock (bhancock_ai)
8fedbe49cb Add support for python 3.10 (#2230) 2025-02-26 13:24:31 -05:00
Lorenze Jay
1e8ee247ca feat: Enhance agent knowledge setup with optional crew embedder (#2232)
- Modify `Agent` class to add `set_knowledge` method
- Allow setting embedder from crew-level configuration
- Remove `_set_knowledge` method from initialization
- Update `Crew` class to set agent knowledge during agent setup
- Add default implementation in `BaseAgent` for compatibility
2025-02-26 12:10:43 -05:00
Fernando Galves
34d2993456 Update the constants.py file adding the list of foundation models available in Amazon Bedrock (#2170)
* Update constants.py

This PR updates the list of foundation models available in Amazon Bedrock to reflect the latest offerings.

* Update constants.py with inference profiles

Add the cross-region inference profiles to increase throughput and improve resiliency by routing your requests across multiple AWS Regions during peak utilization bursts.

* Update constants.py

Fix the model order

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:39:23 -05:00
devin-ai-integration[bot]
e3c5c174ee feat: add context window size for o3-mini model (#2192)
* feat: add context window size for o3-mini model

Fixes #2191

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add context window validation and tests

- Add validation for context window size bounds (1024-2097152)
- Add test for context window validation
- Fix test import error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in llm_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:32:14 -05:00
Brandon Hancock (bhancock_ai)
b4e2db0306 incorporating fix from @misrasaurabh1 with additional type fix (#2213)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-25 15:29:21 -05:00
Shivtej Narake
9cc759ba32 [MINOR]support ChatOllama from langchain_ollama (#2158)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 15:19:36 -05:00
Vidit Ostwal
ac9f8b9d5a Fixed the issue 2123 around memory command with CLI (#2155)
* Fixed the issue 2123 around memory command with CLI

* Fixed typo, added the recommendations

* Fixed Typo

* Fixed lint issue

* Fixed the print statement to include path as well

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:29:33 -05:00
Victor Degliame
3d4a1e4b18 fix: typo in 'delegate_work' and 'ask_question' promps (#2144)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:16:04 -05:00
nikolaidk
123f302744 Update kickoff-async.mdx (#2138)
Missing mandatory field expected_output on task in example

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-25 12:12:27 -05:00
Brandon Hancock (bhancock_ai)
5bae78639e Revert "feat: add prompt observability code (#2027)" (#2211)
* Revert "feat: add prompt observability code (#2027)"

This reverts commit 90f1bee602.

* Fix issues with flows post merge

* Decoupling telemetry and ensure tests  (#2212)

* feat: Enhance event listener and telemetry tracking

- Update event listener to improve telemetry span handling
- Add execution_span field to Task for better tracing
- Modify event handling in EventListener to use new span tracking
- Remove debug print statements
- Improve test coverage for crew and flow events
- Update cassettes to reflect new event tracking behavior

* Remove telemetry references from Crew class

- Remove Telemetry import and initialization from Crew class
- Delete _telemetry attribute from class configuration
- Clean up unused telemetry-related code

* test: Improve crew verbose output test with event log filtering

- Filter out event listener logs in verbose output test
- Ensure no output when verbose is set to False
- Enhance test coverage for crew logging behavior

* dropped comment

* refactor: Improve telemetry span tracking in EventListener

- Remove `execution_span` from Task class
- Add `execution_spans` dictionary to EventListener to track spans
- Update task event handlers to use new span tracking mechanism
- Simplify span management across task lifecycle events

* lint

* Fix failing test

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-24 16:30:16 -05:00
Lorenze Jay
5235442a5b Decoupling telemetry and ensure tests (#2212)
* feat: Enhance event listener and telemetry tracking

- Update event listener to improve telemetry span handling
- Add execution_span field to Task for better tracing
- Modify event handling in EventListener to use new span tracking
- Remove debug print statements
- Improve test coverage for crew and flow events
- Update cassettes to reflect new event tracking behavior

* Remove telemetry references from Crew class

- Remove Telemetry import and initialization from Crew class
- Delete _telemetry attribute from class configuration
- Clean up unused telemetry-related code

* test: Improve crew verbose output test with event log filtering

- Filter out event listener logs in verbose output test
- Ensure no output when verbose is set to False
- Enhance test coverage for crew logging behavior

* dropped comment

* refactor: Improve telemetry span tracking in EventListener

- Remove `execution_span` from Task class
- Add `execution_spans` dictionary to EventListener to track spans
- Update task event handlers to use new span tracking mechanism
- Simplify span management across task lifecycle events

* lint
2025-02-24 12:24:35 -08:00
Lorenze Jay
c62fb615b1 feat: Add LLM call events for improved observability (#2214)
* feat: Add LLM call events for improved observability

- Introduce new LLM call events: LLMCallStartedEvent, LLMCallCompletedEvent, and LLMCallFailedEvent
- Emit events for LLM calls and tool calls to provide better tracking and debugging
- Add event handling in the LLM class to track call lifecycle
- Update event bus to support new LLM-related events
- Add test cases to validate LLM event emissions

* feat: Add event handling for LLM call lifecycle events

- Implement event listeners for LLM call events in EventListener
- Add logging for LLM call start, completion, and failure events
- Import and register new LLM-specific event types

* less log

* refactor: Update LLM event response type to support Any

* refactor: Simplify LLM call completed event emission

Remove unnecessary LLMCallType conversion when emitting LLMCallCompletedEvent

* refactor: Update LLM event docstrings for clarity

Improve docstrings for LLM call events to more accurately describe their purpose and lifecycle

* feat: Add LLMCallFailedEvent emission for tool execution errors

Enhance error handling by emitting a specific event when tool execution fails during LLM calls
2025-02-24 15:17:44 -05:00
Brandon Hancock (bhancock_ai)
78797c64b0 fix reset memory issue (#2182)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-24 14:51:58 -05:00
Brandon Hancock (bhancock_ai)
8a7584798b Better support async flows (#2193)
* Better support async

* Drop coroutine
2025-02-24 10:25:30 -05:00
Jannik Maierhöfer
b50772a38b docs: add header image to langfuse guide (#2128)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-21 10:11:55 -05:00
João Moura
96a7e8038f cassetes 2025-02-20 21:00:10 -06:00
Brandon Hancock (bhancock_ai)
ec050e5d33 drop prints (#2181) 2025-02-20 12:35:39 -05:00
Brandon Hancock (bhancock_ai)
e2ce65fc5b Check the right property for tool calling (#2160)
* Check the right property

* Fix failing tests

* Update cassettes

* Update cassettes again

* Update cassettes again 2

* Update cassettes again 3

* fix other test that fails in ci/cd

* Fix issues pointed out by lorenze
2025-02-20 12:12:52 -05:00
Brandon Hancock (bhancock_ai)
14503bc43b imporve HITL (#2169)
* imporve HITL

* fix failing test

* fix failing test part 2

* Drop extra logs that were causing confusion

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-20 12:01:49 -05:00
Lorenze Jay
00c2f5043e WIP crew events emitter (#2048)
* WIP crew events emitter

* Refactor event handling and introduce new event types

- Migrate from global `emit` function to `event_bus.emit`
- Add new event types for task failures, tool usage, and agent execution
- Update event listeners and event bus to support more granular event tracking
- Remove deprecated event emission methods
- Improve event type consistency and add more detailed event information

* Add event emission for agent execution lifecycle

- Emit AgentExecutionStarted and AgentExecutionError events
- Update CrewAgentExecutor to use event_bus for tracking agent execution
- Refactor error handling to include event emission
- Minor code formatting improvements in task.py and crew_agent_executor.py
- Fix a typo in test file

* Refactor event system and add third-party event listeners

- Move event_bus import to correct module paths
- Introduce BaseEventListener abstract base class
- Add AgentOpsListener for third-party event tracking
- Update event listener initialization and setup
- Clean up event-related imports and exports

* Enhance event system type safety and error handling

- Improve type annotations for event bus and event types
- Add null checks for agent and task in event emissions
- Update import paths for base tool and base agent
- Refactor event listener type hints
- Remove unnecessary print statements
- Update test configurations to match new event handling

* Refactor event classes to improve type safety and naming consistency

- Rename event classes to have explicit 'Event' suffix (e.g., TaskStartedEvent)
- Update import statements and references across multiple files
- Remove deprecated events.py module
- Enhance event type hints and configurations
- Clean up unnecessary event-related code

* Add default model for CrewEvaluator and fix event import order

- Set default model to "gpt-4o-mini" in CrewEvaluator when no model is specified
- Reorder event-related imports in task.py to follow standard import conventions
- Update event bus initialization method return type hint
- Export event_bus in events/__init__.py

* Fix tool usage and event import handling

- Update tool usage to use `.get()` method when checking tool name
- Remove unnecessary `__all__` export list in events/__init__.py

* Refactor Flow and Agent event handling to use event_bus

- Remove `event_emitter` from Flow class and replace with `event_bus.emit()`
- Update Flow and Agent tests to use event_bus event listeners
- Remove redundant event emissions in Flow methods
- Add debug print statements in Flow execution
- Simplify event tracking in test cases

* Enhance event handling for Crew, Task, and Event classes

- Add crew name to failed event types (CrewKickoffFailedEvent, CrewTrainFailedEvent, CrewTestFailedEvent)
- Update Task events to remove redundant task and context attributes
- Refactor EventListener to use Logger for consistent event logging
- Add new event types for Crew train and test events
- Improve event bus event tracking in test cases

* Remove telemetry and tracing dependencies from Task and Flow classes

- Remove telemetry-related imports and private attributes from Task class
- Remove `_telemetry` attribute from Flow class
- Update event handling to emit events without direct telemetry tracking
- Simplify task and flow execution by removing explicit telemetry spans
- Move telemetry-related event handling to EventListener

* Clean up unused imports and event-related code

- Remove unused imports from various event and flow-related files
- Reorder event imports to follow standard conventions
- Remove unnecessary event type references
- Simplify import statements in event and flow modules

* Update crew test to validate verbose output and kickoff_for_each method

- Enhance test_crew_verbose_output to check specific listener log messages
- Modify test_kickoff_for_each_invalid_input to use Pydantic validation error
- Improve test coverage for crew logging and input validation

* Update crew test verbose output with improved emoji icons

- Replace task and agent completion icons from 👍 to 
- Enhance readability of test output logging
- Maintain consistent test coverage for crew verbose output

* Add MethodExecutionFailedEvent to handle flow method execution failures

- Introduce new MethodExecutionFailedEvent in flow_events module
- Update Flow class to catch and emit method execution failures
- Add event listener for method execution failure events
- Update event-related imports to include new event type
- Enhance test coverage for method execution failure handling

* Propagate method execution failures in Flow class

- Modify Flow class to re-raise exceptions after emitting MethodExecutionFailedEvent
- Reorder MethodExecutionFailedEvent import to maintain consistent import style

* Enable test coverage for Flow method execution failure event

- Uncomment pytest.raises() in test_events to verify exception handling
- Ensure test validates MethodExecutionFailedEvent emission during flow kickoff

* Add event handling for tool usage events

- Introduce event listeners for ToolUsageFinishedEvent and ToolUsageErrorEvent
- Log tool usage events with descriptive emoji icons ( and )
- Update event_listener to track and log tool usage lifecycle

* Reorder and clean up event imports in event_listener

- Reorganize imports for tool usage events and other event types
- Maintain consistent import ordering and remove unused imports
- Ensure clean and organized import structure in event_listener module

* moving to dedicated eventlistener

* dont forget crew level

* Refactor AgentOps event listener for crew-level tracking

- Modify AgentOpsListener to handle crew-level events
- Initialize and end AgentOps session at crew kickoff and completion
- Create agents for each crew member during session initialization
- Improve session management and event recording
- Clean up and simplify event handling logic

* Update test_events to validate tool usage error event handling

- Modify test to assert single error event with correct attributes
- Use pytest.raises() to verify error event generation
- Simplify error event validation in test case

* Improve AgentOps listener type hints and formatting

- Add string type hints for AgentOps classes to resolve potential import issues
- Clean up unnecessary whitespace and improve code indentation
- Simplify initialization and event handling logic

* Update test_events to validate multiple tool usage events

- Modify test to assert 75 events instead of a single error event
- Remove pytest.raises() check, allowing crew kickoff to complete
- Adjust event validation to support broader event tracking

* Rename event_bus to crewai_event_bus for improved clarity and specificity

- Replace all references to `event_bus` with `crewai_event_bus`
- Update import statements across multiple files
- Remove the old `event_bus.py` file
- Maintain existing event handling functionality

* Enhance EventListener with singleton pattern and color configuration

- Implement singleton pattern for EventListener to ensure single instance
- Add default color configuration using EMITTER_COLOR from constants
- Modify log method calls to use default color and remove redundant color parameters
- Improve initialization logic to prevent multiple initializations

* Add FlowPlotEvent and update event bus to support flow plotting

- Introduce FlowPlotEvent to track flow plotting events
- Replace Telemetry method with event bus emission in Flow.plot()
- Update event bus to support new FlowPlotEvent type
- Add test case to validate flow plotting event emission

* Remove RunType enum and clean up crew events module

- Delete unused RunType enum from crew_events.py
- Simplify crew_events.py by removing unnecessary enum definition
- Improve code clarity by removing unneeded imports

* Enhance event handling for tool usage and agent execution

- Add new events for tool usage: ToolSelectionErrorEvent, ToolValidateInputErrorEvent
- Improve error tracking and event emission in ToolUsage and LLM classes
- Update AgentExecutionStartedEvent to use task_prompt instead of inputs
- Add comprehensive test coverage for new event types and error scenarios

* Refactor event system and improve crew testing

- Extract base CrewEvent class to a new base_events.py module
- Update event imports across multiple event-related files
- Modify CrewTestStartedEvent to use eval_llm instead of openai_model_name
- Add LLM creation validation in crew testing method
- Improve type handling and event consistency

* Refactor task events to use base CrewEvent

- Move CrewEvent import from crew_events to base_events
- Remove unnecessary blank lines in task_events.py
- Simplify event class structure for task-related events

* Update AgentExecutionStartedEvent to use task_prompt

- Modify test_events.py to use task_prompt instead of inputs
- Simplify event input validation in test case
- Align with recent event system refactoring

* Improve type hinting for TaskCompletedEvent handler

- Add explicit type annotation for TaskCompletedEvent in event_listener.py
- Enhance type safety for event handling in EventListener

* Improve test_validate_tool_input_invalid_input with mock objects

- Add explicit mock objects for agent and action in test case
- Ensure proper string values for mock agent and action attributes
- Simplify test setup for ToolUsage validation method

* Remove ToolUsageStartedEvent emission in tool usage process

- Remove unnecessary event emission for tool usage start
- Simplify tool usage event handling
- Eliminate redundant event data preparation step

* refactor: clean up and organize imports in llm and flow modules

* test: Improve flow persistence test cases and logging
2025-02-19 13:52:47 -08:00
João Moura
bcd90e26b0 making flow verbsoe false by default 2025-02-19 12:54:19 -08:00
Tony Kipkemboi
4eaa8755eb docs: update accordions and fix layout (#2110)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-19 11:06:46 -05:00
Vini Brasil
ba66910fbd Implement flow.state_utils.to_string method and improve types (#2161) 2025-02-19 10:12:51 -05:00
Eduardo Chiarotti
90f1bee602 feat: add prompt observability code (#2027)
* feat: add prompt observability code

* feat: improve logic for llm call

* feat: add tests for traces

* feat: remove unused improt

* feat: add function to clear and add task traces

* feat: fix import

* feat:  chagne time

* feat: fix type checking issues

* feat: add fixed time to fix test

* feat: fix datetime test issue

* feat: add add task traces function

* feat: add same logic as entp

* feat: add start_time as reference for duplication of tool call

* feat: add max_depth

* feat: add protocols file to properly import on LLM

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-19 08:52:30 -03:00
Brandon Hancock (bhancock_ai)
1cb5f57864 Bugfix/fix backtick in agent response (#2159)
* updating prompts

* fix issue

* clean up thoughts as well

* drop trailing set
2025-02-18 16:10:11 -05:00
sharmasundip
7dc47adb5c fix user memory config issue (#2086)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-18 11:59:29 -05:00
Vidit Ostwal
ac819bcb6e Added functionality to have any llm run test functionality (#2071)
* Added functionality to have any llm run test functionality

* Fixed lint issues

* Fixed Linting issues

* Fixed unit test case

* Fixed unit test

* Fixed test case

* Fixed unit test case

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-18 11:45:26 -05:00
Vini Brasil
b6d668fc66 Implement Flow state export method (#2134)
This commit implements a method for exporting the state of a flow into a
JSON-serializable dictionary.

The idea is producing a human-readable version of state that can be
inspected or consumed by other systems, hence JSON and not pickling or
marshalling.

I consider it an export because it's a one-way process, meaning it
cannot be loaded back into Python because of complex types.
2025-02-18 08:47:01 -05:00
luctrate
1b488b6da7 fix: Missing required template variable 'current_year' in description (#2085) 2025-02-13 10:19:52 -03:00
João Moura
d3b398ed52 preparring new version 2025-02-12 18:16:48 -05:00
Vini Brasil
d52fd09602 Fix linting issues (#2115) 2025-02-12 15:33:16 -05:00
Vini Brasil
d6800d8957 Ensure @start methods emit MethodExecutionStartedEvent (#2114)
Previously, `@start` methods triggered a `FlowStartedEvent` but did not
emit a `MethodExecutionStartedEvent`. This was fine for a single entry
point but caused ambiguity when multiple `@start` methods existed.

This commit (1) emits events for starting points, (2) adds tests
ensuring ordering, (3) adds more fields to events.
2025-02-12 14:19:41 -06:00
Tony Kipkemboi
2fd7506ed9 Merge pull request #2109 from tonykipkemboi/main
docs: update observability documentation and mint configuration
2025-02-12 11:43:28 -05:00
Tony Kipkemboi
161084aff2 Update observability documentation and mint configuration 2025-02-12 10:17:36 -05:00
Tony Kipkemboi
b145cb3247 Merge pull request #2100 from jannikmaierhoefer/main
docs: add Langfuse guide
2025-02-12 10:05:07 -05:00
Jannik Maierhöfer
1adbcf697d fix openlit typo 2025-02-11 13:11:08 +01:00
Jannik Maierhöfer
e51355200a docs: add Langfuse guide 2025-02-11 12:52:49 +01:00
Brandon Hancock (bhancock_ai)
47818f4f41 updating bedrock docs (#2088)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:48:12 -05:00
Brandon Hancock (bhancock_ai)
9b10fd47b0 incorporate Small update in memory.mdx, fixing Google AI parameters #2008 (#2087) 2025-02-10 12:17:41 -05:00
Brandon Hancock (bhancock_ai)
c408368267 fix linting issues in new tests (#2089)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 12:10:53 -05:00
Kevin King
90b3145e92 Updated excel_knowledge_source.py to account for excel files with multiple tabs. (#1921)
* Updated excel_knowledge_source.py to account for excel sheets that have multiple tabs. The old implementation contained a single df=pd.read_excel(excel_file_path), which only reads the first or most recently used excel sheet. The updated functionality reads all sheets in the excel workbook.

* updated load_content() function in excel_knowledge_source.py to reduce memory usage and provide better documentation

* accidentally didn't delete the old load_content() function in last commit - corrected this

* Added an override for the content field from the inheritted BaseFileKnowledgeSource to account for the change in the load_content method to support excel files with multiple tabs/sheets. This change should ensure it passes the type check test, as it failed before since content was assigned a different type in BaseFileKnowledgeSource

* Now removed the commented out imports in _import_dependencies, as requested

* Updated excel_knowledge_source to fix linter errors and type errors. Changed inheritence from basefileknowledgesource to baseknowledgesource because basefileknowledgesource's types conflicted (in particular the load_content function and the content class variable.

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-10 08:56:32 -08:00
Nicolas Lorin
fbd0e015d5 doc: use the corresponding source depending on filetype (#2038)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 20:25:33 -03:00
Bradley Goodyear
17e25fb842 Fix a typo in the Task Guardrails section (#2043)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 20:23:52 -03:00
devin-ai-integration[bot]
d6d98ee969 docs: fix long term memory class name in examples (#2049)
* docs: fix long term memory class name in examples

- Replace EnhanceLongTermMemory with LongTermMemory to match actual implementation
- Update code examples to show correct usage
- Fixes #2026

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: improve memory examples with imports, types and security

- Add proper import statements
- Add type hints for better readability
- Add descriptive comments for each memory type
- Add security considerations section
- Add configuration examples section
- Use environment variables for storage paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update memory.mdx

* Update memory.mdx

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:47:31 -03:00
devin-ai-integration[bot]
e0600e3bb9 fix: ensure proper message formatting for Anthropic models (#2063)
* fix: ensure proper message formatting for Anthropic models

- Add Anthropic-specific message formatting
- Add placeholder user message when required
- Add test case for Anthropic message formatting

Fixes #1869

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve Anthropic model handling

- Add robust model detection with _is_anthropic_model
- Enhance message formatting with better edge cases
- Add type hints and improve documentation
- Improve test structure with fixtures
- Add edge case tests

Addresses review feedback on #2063

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 16:35:52 -03:00
devin-ai-integration[bot]
a79d77dfd7 docs: document FileWriterTool as solution for file writing issues (#2039)
* docs: add FileWriterTool recommendation for file writing issues

- Add FileWriterTool recommendation in _save_file docstring
- Update error message to suggest using FileWriterTool for cross-platform compatibility
- Resolves #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance FileWriterTool documentation

- Add cross-platform compatibility details
- Highlight UTF-8 encoding support
- Emphasize Windows compatibility
- Add recommendation for users experiencing file writing issues

Part of #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve _save_file type hints and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:21:56 -03:00
devin-ai-integration[bot]
56ec9bc224 fix: handle multiple task outputs correctly in conditional tasks (#1937)
* fix: handle multiple task outputs correctly in conditional tasks

- Fix IndexError in _handle_conditional_task by using first output
- Modify _execute_tasks to accumulate task outputs instead of resetting
- Update _create_crew_output to handle multiple outputs correctly
- Add tests for multiple tasks with conditional and multiple conditional tasks

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* feat: validate at least one non-conditional task and refine task outputs

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Revert to single output in _create_crew_output; remove redundant empty task check

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: use last output in conditional tasks, add validation test

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: updated conditional tasks tests and indexing

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 16:20:16 -03:00
João Moura
8eef02739a adding shoutout to enterprise 2025-02-09 12:55:33 -05:00
Brandon Hancock (bhancock_ai)
6f4ad532e6 Brandon/general cleanup (#2059)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop

* clean up linting issues

* more linting
2025-02-07 17:00:41 -05:00
Brandon Hancock (bhancock_ai)
74a1de8550 clean up google docs (#2061) 2025-02-07 16:58:13 -05:00
Lorenze Jay
e529766391 Enhance embedding configuration with custom embedder support (#2060)
* Enhance embedding configuration with custom embedder support

- Add support for custom embedding functions in EmbeddingConfigurator
- Update type hints for embedder configuration
- Extend configuration options for various embedding providers
- Add optional embedder configuration to Memory class

* added docs

* Refine custom embedder configuration support

- Update custom embedder configuration method to handle custom embedding functions
- Modify type hints for embedder configuration
- Remove unused model_name parameter in custom embedder configuration
2025-02-07 16:49:46 -05:00
Brandon Hancock (bhancock_ai)
a7f5d574dc General Clean UP (#2042)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop
2025-02-07 14:45:36 -05:00
Vidit Ostwal
0cc02d9492 Added support for logging in JSON format as well. (#1985)
* Added functionality to have json format as well for the logs

* Added additional comments, refractored logging functionality

* Fixed documentation to include the new paramter

* Fixed typo

* Added a Pydantic Error Check between output_log_file and save_as_json parameter

* Removed the save_to_json parameter, incorporated the functionality directly with output_log_file

* Fixed typo

* Sorted the imports using isort

---------

Co-authored-by: Vidit Ostwal <vidit.ostwal@piramal.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-07 13:16:44 -05:00
Vidit Ostwal
fa26f6ebae Added reset memories function inside crew class (#2047)
* Added reset memories function inside crew class

* Fixed typos

* Refractored the code

* Refactor memory reset functionality in Crew class

- Improved error handling and logging for memory reset operations
- Added private methods to modularize memory reset logic
- Enhanced type hints and docstrings
- Updated CLI reset memories command to use new Crew method
- Added utility function to get crew instance in CLI utils

* fix linting issues

* knowledge: Add null check in reset method for storage

* cli: Update memory reset tests to use Crew's reset_memories method

* cli: Enhance memory reset command with improved error handling and validation

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-07 09:49:25 -08:00
Brandon Hancock (bhancock_ai)
f6c2982619 fix manager (#2056) 2025-02-07 10:58:38 -05:00
hyjbrave
5a8649a97f fix unstructured example flow (#2052) 2025-02-07 10:38:15 -05:00
Nicolas Lorin
e6100debac agent: improve knowledge naming (#2041) 2025-02-06 15:19:22 -05:00
João Moura
abee94d056 fix version 2025-02-05 21:19:28 -08:00
Thiago Moretto
92731544ae Fix ignored Crew task callback when one is set on the Task (#2040)
* Fix ignored Crew task callback when one is set on the Task

* type checking
2025-02-05 15:53:15 -05:00
Nicolas Lorin
77c7b7dfa1 FIX: correctly initialize embedder for crew knowledge (#2035) 2025-02-05 10:55:09 -05:00
Juan Figuera
ea64c29fee Added expected_output field to tasks to prevent ValidationError from Pydantic (#1971)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-04 16:49:29 -05:00
Brandon Hancock (bhancock_ai)
f4bb040ad8 Brandon/improve llm structured output (#2029)
* code and tests work

* update docs

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-04 16:46:48 -05:00
rishi154
515478473a Fix : short_term_memory with bedrock - using user defined model(when passed as attribute) rather than default (#1959)
* Update embedding_configurator.py

Modified  _configure_bedrock method to use user submitted model_name rather than default  amazon.titan-embed-text-v1.

Sending model_name in short_term_memory (embedder_config/config) was not working.


 # Passing model_name to use model_name provide by user than using default. Added if/else for backward compatibility

* Update embedding_configurator.py

Incorporated review comments

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-04 16:44:07 -05:00
TomuHirata
9cf3fadd0f Add documentation for mlflow tracing integration (#1988)
Signed-off-by: Tomu Hirata <tomu.hirata@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-04 16:18:50 -05:00
jinx
89c4b3fe88 Correct current year in tasks, to get more up to date results (#2010)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-04 16:07:22 -05:00
Vidit Ostwal
9e5c599f58 Fixed the memory documentation (#2031) 2025-02-04 16:03:38 -05:00
Vidit Ostwal
a950e67c7d Fixed the documentation (#2017)
* Fixed the documentation

* Fixed typo, improved description

---------

Co-authored-by: Vidit Ostwal <vidit.ostwal@piramal.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-04 12:56:00 -05:00
Tony Kipkemboi
de6933b2d2 Merge pull request #2028 from crewAIInc/brandon/update-litellm-for-o3
update litellm to support o3-mini and deepseek. Update docs.
2025-02-04 12:40:36 -05:00
Brandon Hancock
748383d74c update litellm to support o3-mini and deepseek. Update docs. 2025-02-04 10:58:34 -05:00
Brandon Hancock (bhancock_ai)
23b9e10323 Brandon/provide llm additional params (#2018)
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
* Clean up to match enterprise

* add additional params to LLM calls

* make sure additional params are getting passed to llm

* update docs

* drop print
2025-01-31 12:53:58 -05:00
Brandon Hancock (bhancock_ai)
ddb7958da7 Clean up to match enterprise (#2009)
* Clean up to match enterprise

* improve feedback prompting
2025-01-30 18:16:10 -05:00
Brandon Hancock (bhancock_ai)
477cce321f Fix llms (#2003)
* iwp

* add in api_base

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-01-29 19:41:09 -05:00
Brandon Hancock (bhancock_ai)
7bed63a693 Bugfix/fix broken training (#1993)
* Fixing training while refactoring code

* improve prompts

* make sure to raise an error when missing training data

* Drop comment

* fix failing tests

* add clear

* drop bad code

* fix failing test

* Fix type issues pointed out by lorenze

* simplify training
2025-01-29 19:11:14 -05:00
Lorenze Jay
2709a9205a fixes interpolation issues when inputs are type dict,list specificall… (#1992)
* fixes interpolation issues when inputs are type dict,list specifically when defined on expected_output

* improvements with type hints, doc fixes and rm print statements

* more tests

* test passing

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2025-01-29 13:24:50 -05:00
Daniel Barreto
d19d7b01ec docs: add a "Human Input" row to the Task Attributes table (#1999) 2025-01-29 10:11:48 -05:00
Lorenze Jay
a3ad2c1957 fix breakage when cloning agent/crew using knowledge_sources and enable custom knowledge_storage (#1927)
* fix breakage when cloning agent/crew using knowledge_sources

* fixed typo

* better

* ensure use of other knowledge storage works

* fix copy and custom storage

* added tests

* normalized name

* updated cassette

* fix test

* remove fixture

* fixed test

* fix

* add fixture to this

* add fixture to this

* patch twice since

* fix again

* with fixtures

* better mocks

* fix

* simple

* try

* another

* hopefully fixes test

* hopefully fixes test

* this should fix it !

* WIP: test check with prints

* try this

* exclude knowledge

* fixes

* just drop clone for now

* rm print statements

* printing agent_copy

* checker

* linted

* cleanup

* better docs

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-29 09:37:22 -05:00
Paul Nugent
c3e7a3ec19 Merge pull request #1991 from crewAIInc/feat/update-litellm-for-deepseek-support
update litellm for deepseek
2025-01-28 17:32:05 +00:00
Brandon Hancock
cba8c9faec update litellm 2025-01-28 12:23:06 -05:00
Brandon Hancock (bhancock_ai)
bcb7fb27d0 Fix (#1990)
* Fix

* drop failing files
2025-01-28 11:54:53 -05:00
João Moura
c310044bec preparing new version 2025-01-28 10:29:53 -03:00
Brandon Hancock (bhancock_ai)
5263df24b6 quick fix for mike (#1987) 2025-01-27 17:41:26 -05:00
Brandon Hancock (bhancock_ai)
dea6ed7ef0 fix issue pointed out by mike (#1986)
* fix issue pointed out by mike

* clean up

* Drop logger

* drop unused imports
2025-01-27 17:35:17 -05:00
Brandon Hancock (bhancock_ai)
d3a0dad323 Bugfix/litellm plus generic exceptions (#1965)
* wip

* More clean up

* Fix error

* clean up test

* Improve chat calling messages

* crewai chat improvements

* working but need to clean up

* Clean up chat
2025-01-27 13:41:46 -08:00
devin-ai-integration[bot]
67bf4aea56 Add version check to crew_chat.py (#1966)
* Add version check to crew_chat.py with min version 0.98.0

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting in crew_chat.py

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting in crew_chat.py (attempt 3)

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Update error message, add version check helper, fix import sorting

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting with Ruff auto-fix

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Remove poetry check and import comment headers in crew_chat.py

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
2025-01-24 17:04:41 -05:00
Brandon Hancock (bhancock_ai)
8c76bad50f Fix litellm issues to be more broad (#1960)
* Fix litellm issues to be more broad

* Fix tests
2025-01-23 23:32:10 -05:00
Bobby Lindsey
e27a15023c Add SageMaker as a LLM provider (#1947)
* Add SageMaker as a LLM provider

* Removed unnecessary constants; updated docs to align with bootstrap naming convention

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-22 14:55:24 -05:00
Brandon Hancock (bhancock_ai)
a836f466f4 Updated calls and added tests to verify (#1953)
* Updated calls and added tests to verify

* Drop unused import
2025-01-22 14:36:15 -05:00
Brandon Hancock (bhancock_ai)
67f0de1f90 Bugfix/kickoff hangs when llm call fails (#1943)
* Wip to address https://github.com/crewAIInc/crewAI/issues/1934

* implement proper try / except

* clean up PR

* add tests

* Fix tests and code that was broken

* mnore clean up

* Fixing tests

* fix stop type errors]

* more fixes
2025-01-22 14:24:00 -05:00
Tony Kipkemboi
c642ebf97e docs: improve formatting and clarity in CLI and Composio Tool docs (#1946)
* docs: improve formatting and clarity in CLI and Composio Tool docs

- Add Terminal label to shell code blocks in CLI docs
- Update Composio Tool title and fix tip formatting

* docs: improve installation guide with virtual environment details

- Update Python version requirements and commands
- Add detailed virtual environment setup instructions
- Clarify project-specific environment activation steps
- Streamline additional tools installation with UV

* docs: simplify installation guide

- Remove redundant virtual environment instructions
- Simplify project creation steps
- Update UV package manager description
2025-01-22 10:30:16 -05:00
Brandon Hancock (bhancock_ai)
a21e310d78 add docs for crewai chat (#1936)
* add docs for crewai chat

* add version number
2025-01-21 11:10:25 -05:00
Abhishek Patil
aba68da542 feat: add Composio docs (#1904)
* feat: update Composio tool docs

* Update composiotool.mdx

* fix: minor changes

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-21 11:03:37 -05:00
Sanjeed
e254f11933 Fix wrong llm value in example (#1929)
Original example had `mixtal-llm` which would result in an error.
Replaced with gpt-4o according to https://docs.crewai.com/concepts/llms
2025-01-21 02:55:27 -03:00
João Moura
ab2274caf0 Stateful flows (#1931)
* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* Fixing flow state

* fixing peristed stateful flows

* linter

* type fix

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-01-20 13:30:09 -03:00
devin-ai-integration[bot]
3e4f112f39 feat: add colored logging for flow operations (#1923)
* feat: add colored logging for flow operations

- Add flow_id property for easy ID access
- Add yellow colored logging for flow start
- Add bold_yellow colored logging for state operations
- Implement consistent logging across flow lifecycle

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: improve flow logging and error handling

- Add centralized logging method for flow events
- Add robust error handling in persistence decorator
- Add consistent log messages and levels
- Add color-coded error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports and improve error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-19 05:50:30 -03:00
João Moura
cc018bf128 updating tools version 2025-01-19 00:36:19 -08:00
devin-ai-integration[bot]
46d3e4d4d9 docs: add flow persistence section (#1922)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-01-19 04:34:58 -03:00
Brandon Hancock (bhancock_ai)
627bb3f5f6 Brandon/new release cleanup (#1918)
* WIP

* fixes to match enterprise changes
2025-01-18 15:46:41 -03:00
João Moura
4a44245de9 preparing new verison 2025-01-18 10:18:56 -08:00
Brandon Hancock (bhancock_ai)
30d027158a Fix union issue that Daniel was running into (#1910) 2025-01-16 15:54:16 -05:00
fzowl
3fecde49b6 feature: Introducing VoyageAI (#1871)
* Introducing VoyageAI's embedding models

* Adding back the whitespaces

* Adding the whitespaces back
2025-01-16 13:49:46 -05:00
Brandon Hancock (bhancock_ai)
cc129a0bce Fix docling issues (#1909)
* Fix docling issues

* update docs
2025-01-16 12:47:59 -05:00
Brandon Hancock (bhancock_ai)
b5779dca12 Fix nested pydantic model issue (#1905)
* Fix nested pydantic model issue

* fix failing tests

* add in vcr

* cleanup

* drop prints

* Fix vcr issues

* added new recordings

* trying to fix vcr

* add in fix from lorenze.
2025-01-16 11:28:58 -05:00
devin-ai-integration[bot]
42311d9c7a Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests (#1899)
* Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests

- Add proper error handling in SQLite storage operations
- Set up isolated test environment with temporary storage directory
- Ensure consistent error messages across all database operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in conftest.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Convert TokenProcess counters to instance variables to fix callback tracking

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Replace print statements with logging and improve error handling

- Add proper logging setup in kickoff_task_outputs_storage.py
- Replace self._printer.print() with logger calls
- Use appropriate log levels (error/warning)
- Add directory validation in test environment setup
- Maintain consistent error messages with DatabaseError format

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Comprehensive improvements to database and token handling

- Fix SQLite database path handling in storage classes
- Add proper directory creation and error handling
- Improve token tracking with robust type checking
- Convert TokenProcess counters to instance variables
- Add standardized database error handling
- Set up isolated test environment with temporary storage

Resolves test failures in PR #1899

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-16 11:18:54 -03:00
devin-ai-integration[bot]
294f2cc3a9 Add @persist decorator with FlowPersistence interface (#1892)
* Add @persist decorator with SQLite persistence

- Add FlowPersistence abstract base class
- Implement SQLiteFlowPersistence backend
- Add @persist decorator for flow state persistence
- Add tests for flow persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix remaining merge conflicts in uv.lock

- Remove stray merge conflict markers
- Keep main's comprehensive platform-specific resolution markers
- Preserve all required dependencies for persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix final CUDA dependency conflicts in uv.lock

- Resolve NVIDIA CUDA solver dependency conflicts
- Use main's comprehensive platform checks
- Ensure all merge conflict markers are removed
- Preserve persistence-related dependencies

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix nvidia-cusparse-cu12 dependency conflicts in uv.lock

- Resolve NVIDIA CUSPARSE dependency conflicts
- Use main's comprehensive platform checks
- Complete systematic check of entire uv.lock file
- Ensure all merge conflict markers are removed

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix triton filelock dependency conflicts in uv.lock

- Resolve triton package filelock dependency conflict
- Use main's comprehensive platform checks
- Complete final systematic check of entire uv.lock file
- Ensure TOML file structure is valid

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix merge conflict in crew_test.py

- Remove duplicate assertion in test_multimodal_agent_live_image_analysis
- Clean up conflict markers
- Preserve test functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Clean up trailing merge conflict marker in crew_test.py

- Remove remaining conflict marker at end of file
- Preserve test functionality
- Complete conflict resolution

Co-Authored-By: Joe Moura <joao@crewai.com>

* Improve type safety in persistence implementation and resolve merge conflicts

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add explicit type casting in _create_initial_state method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type safety in flow state handling with proper validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type system with proper TypeVar scoping and validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve state restoration logic and add comprehensive tests

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Initialize FlowState instances without passing id to constructor

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add class-level flow persistence decorator with SQLite default

- Add class-level @persist decorator support
- Set SQLiteFlowPersistence as default backend
- Use db_storage_path for consistent database location
- Improve async method handling and type safety
- Add comprehensive docstrings and examples

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in decorators.py to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Organize imports according to PEP 8 standard

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Format typing imports with line breaks for better readability

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Simplify import organization to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting using Ruff auto-fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-16 10:23:46 -03:00
Tony Kipkemboi
3dc442801f Merge pull request #1903 from crewAIInc/tony-docs
fix: add multimodal docs path to mint.json
2025-01-15 14:25:48 -05:00
194 changed files with 35335 additions and 4159 deletions

3
.gitignore vendored
View File

@@ -21,4 +21,5 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
agentops.log
test_flow.html

View File

@@ -1,10 +1,18 @@
<div align="center">
![Logo of CrewAI, two people rowing on a boat](./docs/crewai_logo.png)
![Logo of CrewAI](./docs/crewai_logo.png)
# **CrewAI**
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
**CrewAI Enterprise**
Want to plan, build (+ no code), deploy, monitor and interare your agents: [CrewAI Enterprise](https://www.crewai.com/enterprise). Designed for complex, real-world applications, our enterprise solution offers:
- **Seamless Integrations**
- **Scalable & Secure Deployment**
- **Actionable Insights**
- **24/7 Support**
<h3>
@@ -190,7 +198,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
the current year is 2025.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -392,7 +400,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
@@ -403,7 +411,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],

View File

@@ -43,7 +43,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
@@ -152,7 +152,7 @@ agent = Agent(
use_system_prompt=True, # Default: True
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder_config=None, # Optional: Custom embedder configuration
embedder=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template

View File

@@ -12,7 +12,7 @@ The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you
To use the CrewAI CLI, make sure you have CrewAI installed:
```shell
```shell Terminal
pip install crewai
```
@@ -20,7 +20,7 @@ pip install crewai
The basic structure of a CrewAI CLI command is:
```shell
```shell Terminal
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
```
@@ -30,7 +30,7 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
Create a new crew or flow.
```shell
```shell Terminal
crewai create [OPTIONS] TYPE NAME
```
@@ -38,7 +38,7 @@ crewai create [OPTIONS] TYPE NAME
- `NAME`: Name of the crew or flow
Example:
```shell
```shell Terminal
crewai create crew my_new_crew
crewai create flow my_new_flow
```
@@ -47,14 +47,14 @@ crewai create flow my_new_flow
Show the installed version of CrewAI.
```shell
```shell Terminal
crewai version [OPTIONS]
```
- `--tools`: (Optional) Show the installed version of CrewAI tools
Example:
```shell
```shell Terminal
crewai version
crewai version --tools
```
@@ -63,7 +63,7 @@ crewai version --tools
Train the crew for a specified number of iterations.
```shell
```shell Terminal
crewai train [OPTIONS]
```
@@ -71,7 +71,7 @@ crewai train [OPTIONS]
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
Example:
```shell
```shell Terminal
crewai train -n 10 -f my_training_data.pkl
```
@@ -79,14 +79,14 @@ crewai train -n 10 -f my_training_data.pkl
Replay the crew execution from a specific task.
```shell
```shell Terminal
crewai replay [OPTIONS]
```
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```shell
```shell Terminal
crewai replay -t task_123456
```
@@ -94,7 +94,7 @@ crewai replay -t task_123456
Retrieve your latest crew.kickoff() task outputs.
```shell
```shell Terminal
crewai log-tasks-outputs
```
@@ -102,7 +102,7 @@ crewai log-tasks-outputs
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
```shell
```shell Terminal
crewai reset-memories [OPTIONS]
```
@@ -113,7 +113,7 @@ crewai reset-memories [OPTIONS]
- `-a, --all`: Reset ALL memories
Example:
```shell
```shell Terminal
crewai reset-memories --long --short
crewai reset-memories --all
```
@@ -122,7 +122,7 @@ crewai reset-memories --all
Test the crew and evaluate the results.
```shell
```shell Terminal
crewai test [OPTIONS]
```
@@ -130,24 +130,56 @@ crewai test [OPTIONS]
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```shell
```shell Terminal
crewai test -n 5 -m gpt-3.5-turbo
```
### 8. Run
Run the crew.
Run the crew or flow.
```shell
```shell Terminal
crewai run
```
<Note>
Starting from version 0.103.0, the `crewai run` command can be used to run both standard crews and flows. For flows, it automatically detects the type from pyproject.toml and runs the appropriate command. This is now the recommended way to run both crews and flows.
</Note>
<Note>
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. Chat
### 9. API Keys
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
```shell Terminal
crewai chat
```
<Note>
Ensure you execute these commands from your CrewAI project's root directory.
</Note>
<Note>
IMPORTANT: Set the `chat_llm` property in your `crew.py` file to enable this command.
```python
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True,
chat_llm="gpt-4o", # LLM for chat orchestration
)
```
</Note>
### 10. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.

View File

@@ -23,14 +23,14 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defautls to `None`. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
@@ -240,6 +240,23 @@ print(f"Tasks Output: {crew_output.tasks_output}")
print(f"Token Usage: {crew_output.token_usage}")
```
## Accessing Crew Logs
You can see real time log of the crew execution, by setting `output_log_file` as a `True(Boolean)` or a `file_name(str)`. Supports logging of events as both `file_name.txt` and `file_name.json`.
In case of `True(Boolean)` will save as `logs.txt`.
In case of `output_log_file` is set as `False(Booelan)` or `None`, the logs will not be populated.
```python Code
# Save crew logs
crew = Crew(output_log_file = True) # Logs will be saved as logs.txt
crew = Crew(output_log_file = file_name) # Logs will be saved as file_name.txt
crew = Crew(output_log_file = file_name.txt) # Logs will be saved as file_name.txt
crew = Crew(output_log_file = file_name.json) # Logs will be saved as file_name.json
```
## Memory Utilization
Crews can utilize memory (short-term, long-term, and entity memory) to enhance their execution and learning over time. This feature allows crews to store and recall execution memories, aiding in decision-making and task execution strategies.
@@ -279,9 +296,9 @@ print(result)
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks for each agent individually.
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
- `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
```python Code
# Start the crew's task execution

View File

@@ -0,0 +1,350 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
---
# Event Listeners
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
## How It Works
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
2. **CrewEvent**: Base class for all events in the system
3. **BaseEventListener**: Abstract base class for creating custom event listeners
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
## Creating a Custom Event Listener
To create a custom event listener, you need to:
1. Create a class that inherits from `BaseEventListener`
2. Implement the `setup_listeners` method
3. Register handlers for the events you're interested in
4. Create an instance of your listener in the appropriate file
Here's a simple example of a custom event listener class:
```python
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
print(f"Crew '{event.crew_name}' has started execution!")
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
print(f"Crew '{event.crew_name}' has completed execution!")
print(f"Output: {event.output}")
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event):
print(f"Agent '{event.agent.role}' completed task")
print(f"Output: {event.output}")
```
## Properly Registering Your Listener
Simply defining your listener class isn't enough. You need to create an instance of it and ensure it's imported in your application. This ensures that:
1. The event handlers are registered with the event bus
2. The listener instance remains in memory (not garbage collected)
3. The listener is active when events are emitted
### Option 1: Import and Instantiate in Your Crew or Flow Implementation
The most important thing is to create an instance of your listener in the file where your Crew or Flow is defined and executed:
#### For Crew-based Applications
Create and import your listener at the top of your Crew implementation file:
```python
# In your crew.py file
from crewai import Agent, Crew, Task
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomCrew:
# Your crew implementation...
def crew(self):
return Crew(
agents=[...],
tasks=[...],
# ...
)
```
#### For Flow-based Applications
Create and import your listener at the top of your Flow implementation file:
```python
# In your main.py or flow.py file
from crewai.flow import Flow, listen, start
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomFlow(Flow):
# Your flow implementation...
@start()
def first_step(self):
# ...
```
This ensures that your listener is loaded and active when your Crew or Flow is executed.
### Option 2: Create a Package for Your Listeners
For a more structured approach, especially if you have multiple listeners:
1. Create a package for your listeners:
```
my_project/
├── listeners/
│ ├── __init__.py
│ ├── my_custom_listener.py
│ └── another_listener.py
```
2. In `my_custom_listener.py`, define your listener class and create an instance:
```python
# my_custom_listener.py
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
# ... implementation ...
# Create an instance of your listener
my_custom_listener = MyCustomListener()
```
3. In `__init__.py`, import the listener instances to ensure they're loaded:
```python
# __init__.py
from .my_custom_listener import my_custom_listener
from .another_listener import another_listener
# Optionally export them if you need to access them elsewhere
__all__ = ['my_custom_listener', 'another_listener']
```
4. Import your listeners package in your Crew or Flow file:
```python
# In your crew.py or flow.py file
import my_project.listeners # This loads all your listeners
class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Available Event Types
CrewAI provides a wide range of events that you can listen for:
### Crew Events
- **CrewKickoffStartedEvent**: Emitted when a Crew starts execution
- **CrewKickoffCompletedEvent**: Emitted when a Crew completes execution
- **CrewKickoffFailedEvent**: Emitted when a Crew fails to complete execution
- **CrewTestStartedEvent**: Emitted when a Crew starts testing
- **CrewTestCompletedEvent**: Emitted when a Crew completes testing
- **CrewTestFailedEvent**: Emitted when a Crew fails to complete testing
- **CrewTrainStartedEvent**: Emitted when a Crew starts training
- **CrewTrainCompletedEvent**: Emitted when a Crew completes training
- **CrewTrainFailedEvent**: Emitted when a Crew fails to complete training
### Agent Events
- **AgentExecutionStartedEvent**: Emitted when an Agent starts executing a task
- **AgentExecutionCompletedEvent**: Emitted when an Agent completes executing a task
- **AgentExecutionErrorEvent**: Emitted when an Agent encounters an error during execution
### Task Events
- **TaskStartedEvent**: Emitted when a Task starts execution
- **TaskCompletedEvent**: Emitted when a Task completes execution
- **TaskFailedEvent**: Emitted when a Task fails to complete execution
- **TaskEvaluationEvent**: Emitted when a Task is evaluated
### Tool Usage Events
- **ToolUsageStartedEvent**: Emitted when a tool execution is started
- **ToolUsageFinishedEvent**: Emitted when a tool execution is completed
- **ToolUsageErrorEvent**: Emitted when a tool execution encounters an error
- **ToolValidateInputErrorEvent**: Emitted when a tool input validation encounters an error
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created
- **FlowStartedEvent**: Emitted when a Flow starts execution
- **FlowFinishedEvent**: Emitted when a Flow completes execution
- **FlowPlotEvent**: Emitted when a Flow is plotted
- **MethodExecutionStartedEvent**: Emitted when a Flow method starts execution
- **MethodExecutionFinishedEvent**: Emitted when a Flow method completes execution
- **MethodExecutionFailedEvent**: Emitted when a Flow method fails to complete execution
### LLM Events
- **LLMCallStartedEvent**: Emitted when an LLM call starts
- **LLMCallCompletedEvent**: Emitted when an LLM call completes
- **LLMCallFailedEvent**: Emitted when an LLM call fails
- **LLMStreamChunkEvent**: Emitted for each chunk received during streaming LLM responses
## Event Handler Structure
Each event handler receives two parameters:
1. **source**: The object that emitted the event
2. **event**: The event instance, containing event-specific data
The structure of the event object depends on the event type, but all events inherit from `CrewEvent` and include:
- **timestamp**: The time when the event was emitted
- **type**: A string identifier for the event type
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def temp_handler(source, event):
print("This handler only exists within this context")
# Do something that emits events
# Outside the context, the temporary handler is removed
```
## Use Cases
Event listeners can be used for a variety of purposes:
1. **Logging and Monitoring**: Track the execution of your Crew and log important events
2. **Analytics**: Collect data about your Crew's performance and behavior
3. **Debugging**: Set up temporary listeners to debug specific issues
4. **Integration**: Connect CrewAI with external systems like monitoring platforms, databases, or notification services
5. **Custom Behavior**: Trigger custom actions based on specific events
## Best Practices
1. **Keep Handlers Light**: Event handlers should be lightweight and avoid blocking operations
2. **Error Handling**: Include proper error handling in your event handlers to prevent exceptions from affecting the main execution
3. **Cleanup**: If your listener allocates resources, ensure they're properly cleaned up
4. **Selective Listening**: Only listen for events you actually need to handle
5. **Testing**: Test your event listeners in isolation to ensure they behave as expected
By leveraging CrewAI's event system, you can extend its functionality and integrate it seamlessly with your existing infrastructure.

View File

@@ -150,12 +150,12 @@ final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
````
```
```text Output
---- Final Output ----
Second method received: Output from first_method
````
```
</CodeGroup>
@@ -232,18 +232,18 @@ class UnstructuredExampleFlow(Flow):
def first_method(self):
# The state automatically includes an 'id' field
print(f"State ID: {self.state['id']}")
self.state.message = "Hello from structured flow"
self.state.counter = 0
self.state['counter'] = 0
self.state['message'] = "Hello from structured flow"
@listen(first_method)
def second_method(self):
self.state.counter += 1
self.state.message += " - updated"
self.state['counter'] += 1
self.state['message'] += " - updated"
@listen(second_method)
def third_method(self):
self.state.counter += 1
self.state.message += " - updated again"
self.state['counter'] += 1
self.state['message'] += " - updated again"
print(f"State after third_method: {self.state}")
@@ -323,6 +323,91 @@ flow.kickoff()
By providing both unstructured and structured state management options, CrewAI Flows empowers developers to build AI workflows that are both flexible and robust, catering to a wide range of application requirements.
## Flow Persistence
The @persist decorator enables automatic state persistence in CrewAI Flows, allowing you to maintain flow state across restarts or different workflow executions. This decorator can be applied at either the class level or method level, providing flexibility in how you manage state persistence.
### Class-Level Persistence
When applied at the class level, the @persist decorator automatically persists all flow method states:
```python
@persist # Using SQLiteFlowPersistence by default
class MyFlow(Flow[MyState]):
@start()
def initialize_flow(self):
# This method will automatically have its state persisted
self.state.counter = 1
print("Initialized flow. State ID:", self.state.id)
@listen(initialize_flow)
def next_step(self):
# The state (including self.state.id) is automatically reloaded
self.state.counter += 1
print("Flow state is persisted. Counter:", self.state.counter)
```
### Method-Level Persistence
For more granular control, you can apply @persist to specific methods:
```python
class AnotherFlow(Flow[dict]):
@persist # Persists only this method's state
@start()
def begin(self):
if "runs" not in self.state:
self.state["runs"] = 0
self.state["runs"] += 1
print("Method-level persisted runs:", self.state["runs"])
```
### How It Works
1. **Unique State Identification**
- Each flow state automatically receives a unique UUID
- The ID is preserved across state updates and method calls
- Supports both structured (Pydantic BaseModel) and unstructured (dictionary) states
2. **Default SQLite Backend**
- SQLiteFlowPersistence is the default storage backend
- States are automatically saved to a local SQLite database
- Robust error handling ensures clear messages if database operations fail
3. **Error Handling**
- Comprehensive error messages for database operations
- Automatic state validation during save and load
- Clear feedback when persistence operations encounter issues
### Important Considerations
- **State Types**: Both structured (Pydantic BaseModel) and unstructured (dictionary) states are supported
- **Automatic ID**: The `id` field is automatically added if not present
- **State Recovery**: Failed or restarted flows can automatically reload their previous state
- **Custom Implementation**: You can provide your own FlowPersistence implementation for specialized storage needs
### Technical Advantages
1. **Precise Control Through Low-Level Access**
- Direct access to persistence operations for advanced use cases
- Fine-grained control via method-level persistence decorators
- Built-in state inspection and debugging capabilities
- Full visibility into state changes and persistence operations
2. **Enhanced Reliability**
- Automatic state recovery after system failures or restarts
- Transaction-based state updates for data integrity
- Comprehensive error handling with clear error messages
- Robust validation during state save and load operations
3. **Extensible Architecture**
- Customizable persistence backend through FlowPersistence interface
- Support for specialized storage solutions beyond SQLite
- Compatible with both structured (Pydantic) and unstructured (dict) states
- Seamless integration with existing CrewAI flow patterns
The persistence system's architecture emphasizes technical precision and customization options, allowing developers to maintain full control over state management while benefiting from built-in reliability features.
## Flow Control
### Conditional Logic: `or`
@@ -653,3 +738,34 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows
There are two ways to run a flow:
### Using the Flow API
You can run a flow programmatically by creating an instance of your flow class and calling the `kickoff()` method:
```python
flow = ExampleFlow()
result = flow.kickoff()
```
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:
```shell
crewai run
```
This command automatically detects if your project is a flow (based on the `type = "flow"` setting in your pyproject.toml) and runs it accordingly. This is the recommended way to run flows from the command line.
For backward compatibility, you can also use:
```shell
crewai flow kickoff
```
However, the `crewai run` command is now the preferred method as it works for both crews and flows.

View File

@@ -91,7 +91,13 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
```
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including MD, PDF, DOCX, HTML, and more.
<Note>
You need to install `docling` for the following example to work: `uv add docling`
</Note>
```python Code
from crewai import LLM, Agent, Crew, Process, Task
@@ -146,10 +152,10 @@ Here are examples of how to use different types of knowledge sources:
### Text File Knowledge Source
```python
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
# Create a text file knowledge source
text_source = CrewDoclingSource(
text_source = TextFileKnowledgeSource(
file_paths=["document.txt", "another.txt"]
)
@@ -282,6 +288,7 @@ The `embedder` parameter supports various embedding model providers that include
- `ollama`: Local embeddings with Ollama
- `vertexai`: Google Cloud VertexAI embeddings
- `cohere`: Cohere's embedding models
- `voyageai`: VoyageAI's embedding models
- `bedrock`: AWS Bedrock embeddings
- `huggingface`: Hugging Face models
- `watson`: IBM Watson embeddings
@@ -317,6 +324,13 @@ agent = Agent(
verbose=True,
allow_delegation=False,
llm=gemini_llm,
embedder={
"provider": "google",
"config": {
"model": "models/text-embedding-004",
"api_key": GEMINI_API_KEY,
}
}
)
task = Task(

File diff suppressed because it is too large Load Diff

View File

@@ -58,41 +58,107 @@ my_crew = Crew(
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
```python Code
from crewai import Crew, Agent, Task, Process
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage import LTMSQLiteStorage, RAGStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
my_crew = Crew(
agents=[...],
tasks=[...],
process="Process.sequential",
memory=True,
long_term_memory=EnhanceLongTermMemory(
my_crew: Crew = Crew(
agents = [...],
tasks = [...],
process = Process.sequential,
memory = True,
# Long-term memory for persistent storage across sessions
long_term_memory = LongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
db_path="/my_crew1/long_term_memory_storage.db"
)
),
short_term_memory=EnhanceShortTermMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="short_term",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
# Short-term memory for current context using RAG
short_term_memory = ShortTermMemory(
storage = RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
),
entity_memory=EnhanceEntityMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="entities",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
# Entity memory for tracking key information about entities
entity_memory = EntityMemory(
storage=RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
verbose=True,
)
```
## Security Considerations
When configuring memory storage:
- Use environment variables for storage paths (e.g., `CREWAI_STORAGE_DIR`)
- Never hardcode sensitive information like database credentials
- Consider access permissions for storage directories
- Use relative paths when possible to maintain portability
Example using environment variables:
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path="{storage_path}/memory.db".format(storage_path=storage_path)
)
)
)
```
## Configuration Examples
### Basic Memory Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(db_path="./memory.db")
)
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
@@ -185,7 +251,12 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
)
```
@@ -211,6 +282,19 @@ my_crew = Crew(
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
@@ -224,7 +308,7 @@ my_crew = Crew(
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model_name": "<model_name>"
"model": "<model_name>"
}
}
)
@@ -242,13 +326,15 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(
api_key="YOUR_API_KEY",
api_base="YOUR_API_BASE_PATH",
api_type="azure",
api_version="YOUR_API_VERSION",
model_name="text-embedding-3-small"
)
embedder={
"provider": "openai",
"config": {
"api_key": "YOUR_API_KEY",
"api_base": "YOUR_API_BASE_PATH",
"api_version": "YOUR_API_VERSION",
"model_name": 'text-embedding-3-small'
}
}
)
```
@@ -264,12 +350,15 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=GoogleVertexEmbeddingFunction(
project_id="YOUR_PROJECT_ID",
region="YOUR_REGION",
api_key="YOUR_API_KEY",
model_name="textembedding-gecko"
)
embedder={
"provider": "vertexai",
"config": {
"project_id"="YOUR_PROJECT_ID",
"region"="YOUR_REGION",
"api_key"="YOUR_API_KEY",
"model_name"="textembedding-gecko"
}
}
)
```
@@ -288,7 +377,27 @@ my_crew = Crew(
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model_name": "<model_name>"
"model": "<model_name>"
}
}
)
```
### Using VoyageAI embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "voyageai",
"config": {
"api_key": "YOUR_API_KEY",
"model": "<model_name>"
}
}
)
@@ -338,7 +447,66 @@ my_crew = Crew(
)
```
### Resetting Memory
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb import Documents, EmbeddingFunction, Embeddings
# Create a custom embedding function
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
# generate embeddings
return [1, 2, 3] # this is a dummy embedding
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
```
### Resetting Memory via cli
```shell
crewai reset-memories [OPTIONS]
@@ -352,8 +520,46 @@ crewai reset-memories [OPTIONS]
| `-s`, `--short` | Reset SHORT TERM memory. | Flag (boolean) | False |
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
### Resetting Memory via crew object
```python
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
my_crew.reset_memories(command_type = 'all') # Resets all the memory
```
#### Resetting Memory Options
| Command Type | Description |
| :----------------- | :------------------------------- |
| `long` | Reset LONG TERM memory. |
| `short` | Reset SHORT TERM memory. |
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
## Benefits of Using CrewAI's Memory System

View File

@@ -81,8 +81,8 @@ my_crew.kickoff()
3. **Collect Data:**
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
- Search for the latest papers, articles, and reports published in 2024 and early 2025.
- Use keywords like "Large Language Models 2025", "AI LLM advancements", "AI ethics 2025", etc.
4. **Analyze Findings:**

View File

@@ -33,11 +33,12 @@ crew = Crew(
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. |
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. |
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Whether the task should have a human review the final answer of the agent. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
@@ -68,7 +69,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
the current year is 2025.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -154,7 +155,7 @@ research_task = Task(
description="""
Conduct a thorough research about AI Agents.
Make sure you find any interesting and relevant information given
the current year is 2024.
the current year is 2025.
""",
expected_output="""
A list with 10 bullet points of the most relevant information about AI Agents
@@ -267,7 +268,7 @@ analysis_task = Task(
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
efeedback to agents when their output doesn't meet specific criteria.
feedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails
@@ -875,6 +876,19 @@ save_output_task = Task(
#...
```
Check out the video below to see how to use structured outputs in CrewAI:
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/dNpKQk5uxHw"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Conclusion
Tasks are the driving force behind the actions of agents in CrewAI.

View File

@@ -48,7 +48,6 @@ Define a crew with a designated manager and establish a clear chain of command.
</Tip>
```python Code
from langchain_openai import ChatOpenAI
from crewai import Crew, Process, Agent
# Agents are defined with attributes for backstory, cache, and verbose mode
@@ -56,38 +55,51 @@ researcher = Agent(
role='Researcher',
goal='Conduct in-depth analysis',
backstory='Experienced data analyst with a knack for uncovering hidden trends.',
cache=True,
verbose=False,
# tools=[] # This can be optionally specified; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
writer = Agent(
role='Writer',
goal='Create engaging content',
backstory='Creative writer passionate about storytelling in technical domains.',
cache=True,
verbose=False,
# tools=[] # Optionally specify tools; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
# Establishing the crew with a hierarchical process and additional configurations
project_crew = Crew(
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
agents=[researcher, writer],
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
process=Process.hierarchical, # Specifies the hierarchical management approach
respect_context_window=True, # Enable respect of the context window for tasks
memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
planning=True, # Enable planning feature for pre-execution strategy
manager_llm="gpt-4o", # Specify which LLM the manager should use
process=Process.hierarchical,
planning=True,
)
```
### Using a Custom Manager Agent
Alternatively, you can create a custom manager agent with specific attributes tailored to your project's management needs. This gives you more control over the manager's behavior and capabilities.
```python
# Define a custom manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success.",
allow_delegation=True,
)
# Use the custom manager in your crew
project_crew = Crew(
tasks=[...],
agents=[researcher, writer],
manager_agent=manager, # Use your custom manager agent
process=Process.hierarchical,
planning=True,
)
```
<Tip>
For more details on creating and customizing a manager agent, check out the [Custom Manager Agent documentation](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent).
</Tip>
### Workflow in Action
1. **Task Assignment**: The manager assigns tasks strategically, considering each agent's capabilities and available tools.
@@ -97,4 +109,4 @@ project_crew = Crew(
## Conclusion
Adopting the hierarchical process in CrewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management.
Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.
Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.

View File

@@ -60,12 +60,12 @@ writer = Agent(
# Create tasks for your agents
task1 = Task(
description=(
"Conduct a comprehensive analysis of the latest advancements in AI in 2024. "
"Conduct a comprehensive analysis of the latest advancements in AI in 2025. "
"Identify key trends, breakthrough technologies, and potential industry impacts. "
"Compile your findings in a detailed report. "
"Make sure to check with a human if the draft is good before finalizing your answer."
),
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
expected_output='A comprehensive full report on the latest AI advancements in 2025, leave nothing out',
agent=researcher,
human_input=True
)
@@ -76,7 +76,7 @@ task2 = Task(
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2025',
agent=writer,
human_input=True
)

View File

@@ -54,7 +54,8 @@ coding_agent = Agent(
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
agent=coding_agent,
expected_output="The average age of the participants."
)
# Create a crew and add the task
@@ -116,4 +117,4 @@ async def async_multiple_crews():
# Run the async function
asyncio.run(async_multiple_crews())
```
```

View File

@@ -0,0 +1,100 @@
---
title: Agent Monitoring with Langfuse
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
---
# Integrate Langfuse with CrewAI
This notebook demonstrates how to integrate **Langfuse** with **CrewAI** using OpenTelemetry via the **OpenLit** SDK. By the end of this notebook, you will be able to trace your CrewAI applications with Langfuse for improved observability and debugging.
> **What is Langfuse?** [Langfuse](https://langfuse.com) is an open-source LLM engineering platform. It provides tracing and monitoring capabilities for LLM applications, helping developers debug, analyze, and optimize their AI systems. Langfuse integrates with various tools and frameworks via native integrations, OpenTelemetry, and APIs/SDKs.
[![Langfuse Overview Video](https://github.com/user-attachments/assets/3926b288-ff61-4b95-8aa1-45d041c70866)](https://langfuse.com/watch-demo)
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Langfuse via OpenTelemetry using OpenLit.
### Step 1: Install Dependencies
```python
%pip install langfuse openlit crewai crewai_tools
```
### Step 2: Set Up Environment Variables
Set your Langfuse API keys and configure OpenTelemetry export settings to send traces to Langfuse. Please refer to the [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started) for more information on the Langfuse OpenTelemetry endpoint `/api/public/otel` and authentication.
```python
import os
import base64
LANGFUSE_PUBLIC_KEY="pk-lf-..."
LANGFUSE_SECRET_KEY="sk-lf-..."
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
# your openai key
os.environ["OPENAI_API_KEY"] = "sk-..."
```
### Step 3: Initialize OpenLit
Initialize the OpenLit OpenTelemetry instrumentation SDK to start capturing OpenTelemetry traces.
```python
import openlit
openlit.init()
```
### Step 4: Create a Simple CrewAI Application
We'll create a simple CrewAI application where multiple agents collaborate to answer a user's question.
```python
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
```
### Step 5: See Traces in Langfuse
After running the agent, you can view the traces generated by your CrewAI application in [Langfuse](https://cloud.langfuse.com). You should see detailed steps of the LLM interactions, which can help you debug and optimize your AI agent.
![CrewAI example trace in Langfuse](https://langfuse.com/images/cookbook/integration_crewai/crewai-example-trace.png)
_[Public example trace in Langfuse](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/e2cf380ffc8d47d28da98f136140642b?timestamp=2025-02-05T15%3A12%3A02.717Z&observation=3b32338ee6a5d9af)_
## References
- [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started)

View File

@@ -23,6 +23,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Azure OpenAI
- AWS (Bedrock, SageMaker)
- Cohere
- VoyageAI
- Hugging Face
- Ollama
- Mistral AI

View File

@@ -0,0 +1,206 @@
---
title: Agent Monitoring with MLflow
description: Quickly start monitoring your Agents with MLflow.
icon: bars-staggered
---
# MLflow Overview
[MLflow](https://mlflow.org/) is an open-source platform to assist machine learning practitioners and teams in handling the complexities of the machine learning process.
It provides a tracing feature that enhances LLM observability in your Generative AI applications by capturing detailed information about the execution of your applications services.
Tracing provides a way to record the inputs, outputs, and metadata associated with each intermediate step of a request, enabling you to easily pinpoint the source of bugs and unexpected behaviors.
![Overview of MLflow crewAI tracing usage](/images/mlflow-tracing.gif)
### Features
- **Tracing Dashboard**: Monitor activities of your crewAI agents with detailed dashboards that include inputs, outputs and metadata of spans.
- **Automated Tracing**: A fully automated integration with crewAI, which can be enabled by running `mlflow.crewai.autolog()`.
- **Manual Trace Instrumentation with minor efforts**: Customize trace instrumentation through MLflow's high-level fluent APIs such as decorators, function wrappers and context managers.
- **OpenTelemetry Compatibility**: MLflow Tracing supports exporting traces to an OpenTelemetry Collector, which can then be used to export traces to various backends such as Jaeger, Zipkin, and AWS X-Ray.
- **Package and Deploy Agents**: Package and deploy your crewAI agents to an inference server with a variety of deployment targets.
- **Securely Host LLMs**: Host multiple LLM from various providers in one unified endpoint through MFflow gateway.
- **Evaluation**: Evaluate your crewAI agents with a wide range of metrics using a convenient API `mlflow.evaluate()`.
## Setup Instructions
<Steps>
<Step title="Install MLflow package">
```shell
# The crewAI integration is available in mlflow>=2.19.0
pip install mlflow
```
</Step>
<Step title="Start MFflow tracking server">
```shell
# This process is optional, but it is recommended to use MLflow tracking server for better visualization and broader features.
mlflow server
```
</Step>
<Step title="Initialize MLflow in Your Application">
Add the following two lines to your application code:
```python
import mlflow
mlflow.crewai.autolog()
# Optional: Set a tracking URI and an experiment name if you have a tracking server
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("CrewAI")
```
Example Usage for tracing CrewAI Agents:
```python
from crewai import Agent, Crew, Task
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai_tools import SerperDevTool, WebsiteSearchTool
from textwrap import dedent
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
search_tool = WebsiteSearchTool()
class TripAgents:
def city_selection_agent(self):
return Agent(
role="City Selection Expert",
goal="Select the best city based on weather, season, and prices",
backstory="An expert in analyzing travel data to pick ideal destinations",
tools=[
search_tool,
],
verbose=True,
)
def local_expert(self):
return Agent(
role="Local Expert at this city",
goal="Provide the BEST insights about the selected city",
backstory="""A knowledgeable local guide with extensive information
about the city, it's attractions and customs""",
tools=[search_tool],
verbose=True,
)
class TripTasks:
def identify_task(self, agent, origin, cities, interests, range):
return Task(
description=dedent(
f"""
Analyze and select the best city for the trip based
on specific criteria such as weather patterns, seasonal
events, and travel costs. This task involves comparing
multiple cities, considering factors like current weather
conditions, upcoming cultural or seasonal events, and
overall travel expenses.
Your final answer must be a detailed
report on the chosen city, and everything you found out
about it, including the actual flight costs, weather
forecast and attractions.
Traveling from: {origin}
City Options: {cities}
Trip Date: {range}
Traveler Interests: {interests}
"""
),
agent=agent,
expected_output="Detailed report on the chosen city including flight costs, weather forecast, and attractions",
)
def gather_task(self, agent, origin, interests, range):
return Task(
description=dedent(
f"""
As a local expert on this city you must compile an
in-depth guide for someone traveling there and wanting
to have THE BEST trip ever!
Gather information about key attractions, local customs,
special events, and daily activity recommendations.
Find the best spots to go to, the kind of place only a
local would know.
This guide should provide a thorough overview of what
the city has to offer, including hidden gems, cultural
hotspots, must-visit landmarks, weather forecasts, and
high level costs.
The final answer must be a comprehensive city guide,
rich in cultural insights and practical tips,
tailored to enhance the travel experience.
Trip Date: {range}
Traveling from: {origin}
Traveler Interests: {interests}
"""
),
agent=agent,
expected_output="Comprehensive city guide including hidden gems, cultural hotspots, and practical travel tips",
)
class TripCrew:
def __init__(self, origin, cities, date_range, interests):
self.cities = cities
self.origin = origin
self.interests = interests
self.date_range = date_range
def run(self):
agents = TripAgents()
tasks = TripTasks()
city_selector_agent = agents.city_selection_agent()
local_expert_agent = agents.local_expert()
identify_task = tasks.identify_task(
city_selector_agent,
self.origin,
self.cities,
self.interests,
self.date_range,
)
gather_task = tasks.gather_task(
local_expert_agent, self.origin, self.interests, self.date_range
)
crew = Crew(
agents=[city_selector_agent, local_expert_agent],
tasks=[identify_task, gather_task],
verbose=True,
memory=True,
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
},
)
result = crew.kickoff()
return result
trip_crew = TripCrew("California", "Tokyo", "Dec 12 - Dec 20", "sports")
result = trip_crew.run()
print(result)
```
Refer to [MLflow Tracing Documentation](https://mlflow.org/docs/latest/llms/tracing/index.html) for more configurations and use cases.
</Step>
<Step title="Visualize Activities of Agents">
Now traces for your crewAI agents are captured by MLflow.
Let's visit MLflow tracking server to view the traces and get insights into your Agents.
Open `127.0.0.1:5000` on your browser to visit MLflow tracking server.
<Frame caption="MLflow Tracing Dashboard">
<img src="/images/mlflow1.png" alt="MLflow tracing example with crewai" />
</Frame>
</Step>
</Steps>

View File

@@ -45,6 +45,7 @@ image_analyst = Agent(
# Create a task for image analysis
task = Task(
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
expected_output="A detailed description of the product image",
agent=image_analyst
)
@@ -81,6 +82,7 @@ inspection_task = Task(
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
expected_output="A detailed report highlighting any issues found",
agent=expert_analyst
)

View File

@@ -1,211 +0,0 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -1,5 +1,5 @@
---
title: Portkey Observability and Guardrails
title: Agent Monitoring with Portkey
description: How to use Portkey with CrewAI
icon: key
---

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 MiB

BIN
docs/images/mlflow1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 382 KiB

View File

@@ -15,113 +15,124 @@ icon: wrench
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
# Installing CrewAI
CrewAI uses the `uv` as its dependency management and package handling tool. It simplifies project setup and execution, offering a seamless experience.
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get you set up! 🚀
If you haven't installed `uv` yet, follow **step 1** to quickly get it set up on your system, else you can skip to **step 2**.
<Steps>
<Step title="Install CrewAI">
Install CrewAI with all recommended tools using either method:
```shell Terminal
pip install 'crewai[tools]'
<Step title="Install uv">
- **On macOS/Linux:**
Use `curl` to download the script and execute it with `sh`:
```shell
curl -LsSf https://astral.sh/uv/install.sh | sh
```
or
```shell Terminal
pip install crewai crewai-tools
If your system doesn't have `curl`, you can use `wget`:
```shell
wget -qO- https://astral.sh/uv/install.sh | sh
```
<Note>
Both methods install the core package and additional tools needed for most use cases.
</Note>
- **On Windows:**
Use `irm` to download the script and `iex` to execute it:
```shell
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
```
If you run into any issues, refer to [UV's installation guide](https://docs.astral.sh/uv/getting-started/installation/) for more information.
</Step>
<Step title="Upgrade CrewAI (Existing Installations Only)">
If you have an older version of CrewAI installed, you can upgrade it:
```shell Terminal
pip install --upgrade crewai crewai-tools
<Step title="Install CrewAI 🚀">
- Run the following command to install `crewai` CLI:
```shell
uv tool install crewai
```
<Warning>
If you see a Poetry-related warning, you'll need to migrate to our new dependency manager:
```shell Terminal
crewai update
<Warning>
If you encounter a `PATH` warning, run this command to update your shell:
```shell
uv tool update-shell
```
This will update your project to use [UV](https://github.com/astral-sh/uv), our new faster dependency manager.
</Warning>
</Warning>
<Note>
Skip this step if you're doing a fresh installation.
</Note>
</Step>
<Step title="Verify Installation">
Check your installed versions:
```shell Terminal
pip freeze | grep crewai
- To verify that `crewai` is installed, run:
```shell
uv tools list
```
You should see something like:
```markdown Output
crewai==X.X.X
crewai-tools==X.X.X
- You should see something like:
```markdown
crewai v0.102.0
- crewai
```
<Check>Installation successful! You're ready to create your first crew.</Check>
<Check>Installation successful! You're ready to create your first crew! 🎉</Check>
</Step>
</Steps>
# Creating a New Project
# Creating a CrewAI Project
<Info>
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
</Info>
We recommend using the `YAML` template scaffolding for a structured approach to defining agents and tasks. Here's how to get started:
<Steps>
<Step title="Generate Project Structure">
Run the CrewAI CLI command:
```shell Terminal
crewai create crew <project_name>
```
<Step title="Generate Project Scaffolding">
- Run the `crewai` CLI command:
```shell
crewai create crew <your_project_name>
```
This creates a new project with the following structure:
<Frame>
```
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
├── custom_tool.py
── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
</Frame>
</Step>
- This creates a new project with the following structure:
<Frame>
```
my_project/
├── .gitignore
├── knowledge/
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
</Frame>
</Step>
<Step title="Customize Your Project">
Your project will contain these essential files:
- Your project will contain these essential files:
| File | Purpose |
| --- | --- |
| `agents.yaml` | Define your AI agents and their roles |
| `tasks.yaml` | Set up agent tasks and workflows |
| `.env` | Store API keys and environment variables |
| `main.py` | Project entry point and execution flow |
| `crew.py` | Crew orchestration and coordination |
| `tools/` | Directory for custom agent tools |
| `knowledge/` | Directory for knowledge base |
| File | Purpose |
| --- | --- |
| `agents.yaml` | Define your AI agents and their roles |
| `tasks.yaml` | Set up agent tasks and workflows |
| `.env` | Store API keys and environment variables |
| `main.py` | Project entry point and execution flow |
| `crew.py` | Crew orchestration and coordination |
| `tools/` | Directory for custom agent tools |
- Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
- Keep sensitive information like API keys in `.env`.
</Step>
<Tip>
Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
Keep sensitive information like API keys in `.env`.
</Tip>
<Step title="Run your Crew">
- Before you run your crew, make sure to run:
```bash
crewai install
```
- If you need to install additional packages, use:
```shell
uv add <package-name>
```
- To run your crew, execute the following command in the root of your project:
```bash
crewai run
```
</Step>
</Steps>

View File

@@ -101,8 +101,10 @@
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability"
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{
@@ -114,6 +116,8 @@
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
@@ -130,18 +134,32 @@
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",

View File

@@ -8,10 +8,10 @@ icon: rocket
Let's create a simple crew that will help us `research` and `report` on the `latest AI developments` for a given topic or subject.
Before we proceed, make sure you have `crewai` and `crewai-tools` installed.
Before we proceed, make sure you have finished installing CrewAI.
If you haven't installed them yet, you can do so by following the [installation guide](/installation).
Follow the steps below to get crewing! 🚣‍♂️
Follow the steps below to get Crewing! 🚣‍♂️
<Steps>
<Step title="Create your crew">
@@ -23,6 +23,13 @@ Follow the steps below to get crewing! 🚣‍♂️
```
</CodeGroup>
</Step>
<Step title="Navigate to your new crew project">
<CodeGroup>
```shell Terminal
cd latest-ai-development
```
</CodeGroup>
</Step>
<Step title="Modify your `agents.yaml` file">
<Tip>
You can also modify the agents as needed to fit your use case or copy and paste as is to your project.
@@ -58,7 +65,7 @@ Follow the steps below to get crewing! 🚣‍♂️
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
the current year is 2025.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -172,21 +179,26 @@ Follow the steps below to get crewing! 🚣‍♂️
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
</Step>
<Step title="Lock and install the dependencies">
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
<CodeGroup>
```shell Terminal
cd latest-ai-development
crewai install
```
</CodeGroup>
- Lock the dependencies and install them by using the CLI command:
<CodeGroup>
```shell Terminal
crewai install
```
</CodeGroup>
- If you have additional packages that you want to install, you can do so by running:
<CodeGroup>
```shell Terminal
uv add <package-name>
```
</CodeGroup>
</Step>
<Step title="Run your crew">
To run your crew, execute the following command in the root of your project:
<CodeGroup>
```bash Terminal
crewai run
```
</CodeGroup>
- To run your crew, execute the following command in the root of your project:
<CodeGroup>
```bash Terminal
crewai run
```
</CodeGroup>
</Step>
<Step title="View your final report">
You should see the output in the console and the `report.md` file should be created in the root of your project with the final report.
@@ -195,10 +207,10 @@ Follow the steps below to get crewing! 🚣‍♂️
<CodeGroup>
```markdown output/report.md
# Comprehensive Report on the Rise and Impact of AI Agents in 2024
# Comprehensive Report on the Rise and Impact of AI Agents in 2025
## 1. Introduction to AI Agents
In 2024, Artificial Intelligence (AI) agents are at the forefront of innovation across various industries. As intelligent systems that can perform tasks typically requiring human cognition, AI agents are paving the way for significant advancements in operational efficiency, decision-making, and overall productivity within sectors like Human Resources (HR) and Finance. This report aims to detail the rise of AI agents, their frameworks, applications, and potential implications on the workforce.
In 2025, Artificial Intelligence (AI) agents are at the forefront of innovation across various industries. As intelligent systems that can perform tasks typically requiring human cognition, AI agents are paving the way for significant advancements in operational efficiency, decision-making, and overall productivity within sectors like Human Resources (HR) and Finance. This report aims to detail the rise of AI agents, their frameworks, applications, and potential implications on the workforce.
## 2. Benefits of AI Agents
AI agents bring numerous advantages that are transforming traditional work environments. Key benefits include:
@@ -252,12 +264,18 @@ Follow the steps below to get crewing! 🚣‍♂️
To stay competitive and harness the full potential of AI agents, organizations must remain vigilant about latest developments in AI technology and consider continuous learning and adaptation in their strategic planning.
## 8. Conclusion
The emergence of AI agents is undeniably reshaping the workplace landscape in 2024. With their ability to automate tasks, enhance efficiency, and improve decision-making, AI agents are critical in driving operational success. Organizations must embrace and adapt to AI developments to thrive in an increasingly digital business environment.
The emergence of AI agents is undeniably reshaping the workplace landscape in 5. With their ability to automate tasks, enhance efficiency, and improve decision-making, AI agents are critical in driving operational success. Organizations must embrace and adapt to AI developments to thrive in an increasingly digital business environment.
```
</CodeGroup>
</Step>
</Steps>
<Check>
Congratulations!
You have successfully set up your crew project and are ready to start building your own agentic workflows!
</Check>
### Note on Consistency in Naming
The names you use in your YAML files (`agents.yaml` and `tasks.yaml`) should match the method names in your Python code.
@@ -278,7 +296,7 @@ email_summarizer:
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
llm: openai/gpt-4o
```
<Tip>
@@ -297,194 +315,9 @@ email_summarizer_task:
- research_task
```
Use the annotations to properly reference the agent and task in the `crew.py` file.
### Annotations include:
Here are examples of how to use each annotation in your CrewAI project, and when you should use them:
#### @agent
Used to define an agent in your crew. Use this when:
- You need to create a specialized AI agent with a specific role
- You want the agent to be automatically collected and managed by the crew
- You need to reuse the same agent configuration across multiple tasks
```python
@agent
def research_agent(self) -> Agent:
return Agent(
role="Research Analyst",
goal="Conduct thorough research on given topics",
backstory="Expert researcher with years of experience in data analysis",
tools=[SerperDevTool()],
verbose=True
)
```
#### @task
Used to define a task that can be executed by agents. Use this when:
- You need to define a specific piece of work for an agent
- You want tasks to be automatically sequenced and managed
- You need to establish dependencies between different tasks
```python
@task
def research_task(self) -> Task:
return Task(
description="Research the latest developments in AI technology",
expected_output="A comprehensive report on AI advancements",
agent=self.research_agent(),
output_file="output/research.md"
)
```
#### @crew
Used to define your crew configuration. Use this when:
- You want to automatically collect all @agent and @task definitions
- You need to specify how tasks should be processed (sequential or hierarchical)
- You want to set up crew-wide configurations
```python
@crew
def research_crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected from @agent methods
tasks=self.tasks, # Automatically collected from @task methods
process=Process.sequential,
verbose=True
)
```
#### @tool
Used to create custom tools for your agents. Use this when:
- You need to give agents specific capabilities (like web search, data analysis)
- You want to encapsulate external API calls or complex operations
- You need to share functionality across multiple agents
```python
@tool
def web_search_tool(query: str, max_results: int = 5) -> list[str]:
"""
Search the web for information.
Args:
query: The search query
max_results: Maximum number of results to return
Returns:
List of search results
"""
# Implement your search logic here
return [f"Result {i} for: {query}" for i in range(max_results)]
```
#### @before_kickoff
Used to execute logic before the crew starts. Use this when:
- You need to validate or preprocess input data
- You want to set up resources or configurations before execution
- You need to perform any initialization logic
```python
@before_kickoff
def validate_inputs(self, inputs: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Validate and preprocess inputs before the crew starts."""
if inputs is None:
return None
if 'topic' not in inputs:
raise ValueError("Topic is required")
# Add additional context
inputs['timestamp'] = datetime.now().isoformat()
inputs['topic'] = inputs['topic'].strip().lower()
return inputs
```
#### @after_kickoff
Used to process results after the crew completes. Use this when:
- You need to format or transform the final output
- You want to perform cleanup operations
- You need to save or log the results in a specific way
```python
@after_kickoff
def process_results(self, result: CrewOutput) -> CrewOutput:
"""Process and format the results after the crew completes."""
result.raw = result.raw.strip()
result.raw = f"""
# Research Results
Generated on: {datetime.now().isoformat()}
{result.raw}
"""
return result
```
#### @callback
Used to handle events during crew execution. Use this when:
- You need to monitor task progress
- You want to log intermediate results
- You need to implement custom progress tracking or metrics
```python
@callback
def log_task_completion(self, task: Task, output: str):
"""Log task completion details for monitoring."""
print(f"Task '{task.description}' completed")
print(f"Output length: {len(output)} characters")
print(f"Agent used: {task.agent.role}")
print("-" * 50)
```
#### @cache_handler
Used to implement custom caching for task results. Use this when:
- You want to avoid redundant expensive operations
- You need to implement custom cache storage or expiration logic
- You want to persist results between runs
```python
@cache_handler
def custom_cache(self, key: str) -> Optional[str]:
"""Custom cache implementation for storing task results."""
cache_file = f"cache/{key}.json"
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
data = json.load(f)
# Check if cache is still valid (e.g., not expired)
if datetime.fromisoformat(data['timestamp']) > datetime.now() - timedelta(days=1):
return data['result']
return None
```
<Note>
These decorators are part of the CrewAI framework and help organize your crew's structure by automatically collecting agents, tasks, and handling various lifecycle events.
They should be used within a class decorated with `@CrewBase`.
</Note>
### Replay Tasks from Latest Crew Kickoff
CrewAI now includes a replay feature that allows you to list the tasks from the last run and replay from a specific one. To use this feature, run.
```shell
crewai replay <task_id>
```
Replace `<task_id>` with the ID of the task you want to replay.
### Reset Crew Memory
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
crewai reset-memories --all
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through CrewAI Enterprise, where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com), where you can deploy your crew in a few clicks.
<CardGroup cols={2}>
<Card

118
docs/tools/aimindtool.mdx Normal file
View File

@@ -0,0 +1,118 @@
---
title: AI Mind Tool
description: The `AIMindTool` is designed to query data sources in natural language.
icon: brain
---
# `AIMindTool`
## Description
The `AIMindTool` is a wrapper around [AI-Minds](https://mindsdb.com/minds) provided by [MindsDB](https://mindsdb.com/). It allows you to query data sources in natural language by simply configuring their connection parameters. This tool is useful when you need answers to questions from your data stored in various data sources including PostgreSQL, MySQL, MariaDB, ClickHouse, Snowflake, and Google BigQuery.
Minds are AI systems that work similarly to large language models (LLMs) but go beyond by answering any question from any data. This is accomplished by:
- Selecting the most relevant data for an answer using parametric search
- Understanding the meaning and providing responses within the correct context through semantic search
- Delivering precise answers by analyzing data and using machine learning (ML) models
## Installation
To incorporate this tool into your project, you need to install the Minds SDK:
```shell
uv add minds-sdk
```
## Steps to Get Started
To effectively use the `AIMindTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` and `minds-sdk` packages are installed in your Python environment.
2. **API Key Acquisition**: Sign up for a Minds account [here](https://mdb.ai/register), and obtain an API key.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `MINDS_API_KEY` to facilitate its use by the tool.
## Example
The following example demonstrates how to initialize the tool and execute a query:
```python Code
from crewai_tools import AIMindTool
# Initialize the AIMindTool
aimind_tool = AIMindTool(
datasources=[
{
"description": "house sales data",
"engine": "postgres",
"connection_data": {
"user": "demo_user",
"password": "demo_password",
"host": "samples.mindsdb.com",
"port": 5432,
"database": "demo",
"schema": "demo_data"
},
"tables": ["house_sales"]
}
]
)
# Run a natural language query
result = aimind_tool.run("How many 3 bedroom houses were sold in 2008?")
print(result)
```
## Parameters
The `AIMindTool` accepts the following parameters:
- **api_key**: Optional. Your Minds API key. If not provided, it will be read from the `MINDS_API_KEY` environment variable.
- **datasources**: A list of dictionaries, each containing the following keys:
- **description**: A description of the data contained in the datasource.
- **engine**: The engine (or type) of the datasource.
- **connection_data**: A dictionary containing the connection parameters for the datasource.
- **tables**: A list of tables that the data source will use. This is optional and can be omitted if all tables in the data source are to be used.
A list of supported data sources and their connection parameters can be found [here](https://docs.mdb.ai/docs/data_sources).
## Agent Integration Example
Here's how to integrate the `AIMindTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import AIMindTool
# Initialize the tool
aimind_tool = AIMindTool(
datasources=[
{
"description": "sales data",
"engine": "postgres",
"connection_data": {
"user": "your_user",
"password": "your_password",
"host": "your_host",
"port": 5432,
"database": "your_db",
"schema": "your_schema"
},
"tables": ["sales"]
}
]
)
# Define an agent with the AIMindTool
@agent
def data_analyst(self) -> Agent:
return Agent(
config=self.agents_config["data_analyst"],
allow_delegation=False,
tools=[aimind_tool]
)
```
## Conclusion
The `AIMindTool` provides a powerful way to query your data sources using natural language, making it easier to extract insights without writing complex SQL queries. By connecting to various data sources and leveraging AI-Minds technology, this tool enables agents to access and analyze data efficiently.

View File

@@ -0,0 +1,96 @@
---
title: Brave Search
description: The `BraveSearchTool` is designed to search the internet using the Brave Search API.
icon: searchengin
---
# `BraveSearchTool`
## Description
This tool is designed to perform web searches using the Brave Search API. It allows you to search the internet with a specified query and retrieve relevant results. The tool supports customizable result counts and country-specific searches.
## Installation
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Steps to Get Started
To effectively use the `BraveSearchTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a Brave Search API key by registering at [Brave Search API](https://api.search.brave.com/app/keys).
3. **Environment Configuration**: Store your obtained API key in an environment variable named `BRAVE_API_KEY` to facilitate its use by the tool.
## Example
The following example demonstrates how to initialize the tool and execute a search with a given query:
```python Code
from crewai_tools import BraveSearchTool
# Initialize the tool for internet searching capabilities
tool = BraveSearchTool()
# Execute a search
results = tool.run(search_query="CrewAI agent framework")
print(results)
```
## Parameters
The `BraveSearchTool` accepts the following parameters:
- **search_query**: Mandatory. The search query you want to use to search the internet.
- **country**: Optional. Specify the country for the search results. Default is empty string.
- **n_results**: Optional. Number of search results to return. Default is `10`.
- **save_file**: Optional. Whether to save the search results to a file. Default is `False`.
## Example with Parameters
Here is an example demonstrating how to use the tool with additional parameters:
```python Code
from crewai_tools import BraveSearchTool
# Initialize the tool with custom parameters
tool = BraveSearchTool(
country="US",
n_results=5,
save_file=True
)
# Execute a search
results = tool.run(search_query="Latest AI developments")
print(results)
```
## Agent Integration Example
Here's how to integrate the `BraveSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import BraveSearchTool
# Initialize the tool
brave_search_tool = BraveSearchTool()
# Define an agent with the BraveSearchTool
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[brave_search_tool]
)
```
## Conclusion
By integrating the `BraveSearchTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. The tool provides a simple interface to the powerful Brave Search API, making it easy to retrieve and process search results programmatically. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.

View File

@@ -8,18 +8,15 @@ icon: code-simple
## Description
This tool enables the Agent to execute Python 3 code that it has generated autonomously. The code is run in a secure, isolated environment, ensuring safety regardless of the content.
This functionality is particularly valuable as it allows the Agent to create code, execute it within the same ecosystem,
obtain the results, and utilize that information to inform subsequent decisions and actions.
The `CodeInterpreterTool` enables CrewAI agents to execute Python 3 code that they generate autonomously. The code is run in a secure, isolated Docker container, ensuring safety regardless of the content. This functionality is particularly valuable as it allows agents to create code, execute it, obtain the results, and utilize that information to inform subsequent decisions and actions.
## Requirements
- Docker
- Docker must be installed and running on your system. If you don't have it, you can install it from [here](https://docs.docker.com/get-docker/).
## Installation
Install the `crewai_tools` package
To use this tool, you need to install the CrewAI tools package:
```shell
pip install 'crewai[tools]'
@@ -27,27 +24,153 @@ pip install 'crewai[tools]'
## Example
Remember that when using this tool, the code must be generated by the Agent itself.
The code must be a Python3 code. And it will take some time for the first time to run
because it needs to build the Docker image.
The following example demonstrates how to use the `CodeInterpreterTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai import Agent, Task, Crew, Process
from crewai_tools import CodeInterpreterTool
Agent(
...
tools=[CodeInterpreterTool()],
# Initialize the tool
code_interpreter = CodeInterpreterTool()
# Define an agent that uses the tool
programmer_agent = Agent(
role="Python Programmer",
goal="Write and execute Python code to solve problems",
backstory="An expert Python programmer who can write efficient code to solve complex problems.",
tools=[code_interpreter],
verbose=True,
)
# Example task to generate and execute code
coding_task = Task(
description="Write a Python function to calculate the Fibonacci sequence up to the 10th number and print the result.",
expected_output="The Fibonacci sequence up to the 10th number.",
agent=programmer_agent,
)
# Create and run the crew
crew = Crew(
agents=[programmer_agent],
tasks=[coding_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
We also provide a simple way to use it directly from the Agent.
You can also enable code execution directly when creating an agent:
```python Code
from crewai import Agent
agent = Agent(
...
allow_code_execution=True,
# Create an agent with code execution enabled
programmer_agent = Agent(
role="Python Programmer",
goal="Write and execute Python code to solve problems",
backstory="An expert Python programmer who can write efficient code to solve complex problems.",
allow_code_execution=True, # This automatically adds the CodeInterpreterTool
verbose=True,
)
```
## Parameters
The `CodeInterpreterTool` accepts the following parameters during initialization:
- **user_dockerfile_path**: Optional. Path to a custom Dockerfile to use for the code interpreter container.
- **user_docker_base_url**: Optional. URL to the Docker daemon to use for running the container.
- **unsafe_mode**: Optional. Whether to run code directly on the host machine instead of in a Docker container. Default is `False`. Use with caution!
When using the tool with an agent, the agent will need to provide:
- **code**: Required. The Python 3 code to execute.
- **libraries_used**: Required. A list of libraries used in the code that need to be installed.
## Agent Integration Example
Here's a more detailed example of how to integrate the `CodeInterpreterTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import CodeInterpreterTool
# Initialize the tool
code_interpreter = CodeInterpreterTool()
# Define an agent that uses the tool
data_analyst = Agent(
role="Data Analyst",
goal="Analyze data using Python code",
backstory="""You are an expert data analyst who specializes in using Python
to analyze and visualize data. You can write efficient code to process
large datasets and extract meaningful insights.""",
tools=[code_interpreter],
verbose=True,
)
# Create a task for the agent
analysis_task = Task(
description="""
Write Python code to:
1. Generate a random dataset of 100 points with x and y coordinates
2. Calculate the correlation coefficient between x and y
3. Create a scatter plot of the data
4. Print the correlation coefficient and save the plot as 'scatter.png'
Make sure to handle any necessary imports and print the results.
""",
expected_output="The correlation coefficient and confirmation that the scatter plot has been saved.",
agent=data_analyst,
)
# Run the task
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
## Implementation Details
The `CodeInterpreterTool` uses Docker to create a secure environment for code execution:
```python Code
class CodeInterpreterTool(BaseTool):
name: str = "Code Interpreter"
description: str = "Interprets Python3 code strings with a final print statement."
args_schema: Type[BaseModel] = CodeInterpreterSchema
default_image_tag: str = "code-interpreter:latest"
def _run(self, **kwargs) -> str:
code = kwargs.get("code", self.code)
libraries_used = kwargs.get("libraries_used", [])
if self.unsafe_mode:
return self.run_code_unsafe(code, libraries_used)
else:
return self.run_code_in_docker(code, libraries_used)
```
The tool performs the following steps:
1. Verifies that the Docker image exists or builds it if necessary
2. Creates a Docker container with the current working directory mounted
3. Installs any required libraries specified by the agent
4. Executes the Python code in the container
5. Returns the output of the code execution
6. Cleans up by stopping and removing the container
## Security Considerations
By default, the `CodeInterpreterTool` runs code in an isolated Docker container, which provides a layer of security. However, there are still some security considerations to keep in mind:
1. The Docker container has access to the current working directory, so sensitive files could potentially be accessed.
2. The `unsafe_mode` parameter allows code to be executed directly on the host machine, which should only be used in trusted environments.
3. Be cautious when allowing agents to install arbitrary libraries, as they could potentially include malicious code.
## Conclusion
The `CodeInterpreterTool` provides a powerful way for CrewAI agents to execute Python code in a relatively secure environment. By enabling agents to write and run code, it significantly expands their problem-solving capabilities, especially for tasks involving data analysis, calculations, or other computational work. This tool is particularly useful for agents that need to perform complex operations that are more efficiently expressed in code than in natural language.

View File

@@ -1,78 +1,118 @@
---
title: Composio Tool
description: The `ComposioTool` is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
description: Composio provides 250+ production-ready tools for AI agents with flexible authentication management.
icon: gear-code
---
# `ComposioTool`
# `ComposioToolSet`
## Description
Composio is an integration platform that allows you to connect your AI agents to 250+ tools. Key features include:
This tools is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
- **Enterprise-Grade Authentication**: Built-in support for OAuth, API Keys, JWT with automatic token refresh
- **Full Observability**: Detailed tool usage logs, execution timestamps, and more
## Installation
To incorporate this tool into your project, follow the installation instructions below:
To incorporate Composio tools into your project, follow the instructions below:
```shell
pip install composio-core
pip install 'crewai[tools]'
pip install composio-crewai
pip install crewai
```
after the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`.
After the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`. Get your Composio API key from [here](https://app.composio.dev)
## Example
The following example demonstrates how to initialize the tool and execute a github action:
1. Initialize Composio tools
1. Initialize Composio toolset
```python Code
from composio import App
from crewai_tools import ComposioTool
from crewai import Agent, Task
from composio_crewai import ComposioToolSet, App, Action
from crewai import Agent, Task, Crew
tools = [ComposioTool.from_action(action=Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER)]
toolset = ComposioToolSet()
```
If you don't know what action you want to use, use `from_app` and `tags` filter to get relevant actions
2. Connect your GitHub account
<CodeGroup>
```shell CLI
composio add github
```
```python Code
tools = ComposioTool.from_app(App.GITHUB, tags=["important"])
request = toolset.initiate_connection(app=App.GITHUB)
print(f"Open this URL to authenticate: {request.redirectUrl}")
```
</CodeGroup>
or use `use_case` to search relevant actions
3. Get Tools
- Retrieving all the tools from an app (not recommended for production):
```python Code
tools = ComposioTool.from_app(App.GITHUB, use_case="Star a github repository")
tools = toolset.get_tools(apps=[App.GITHUB])
```
2. Define agent
- Filtering tools based on tags:
```python Code
tag = "users"
filtered_action_enums = toolset.find_actions_by_tags(
App.GITHUB,
tags=[tag],
)
tools = toolset.get_tools(actions=filtered_action_enums)
```
- Filtering tools based on use case:
```python Code
use_case = "Star a repository on GitHub"
filtered_action_enums = toolset.find_actions_by_use_case(
App.GITHUB, use_case=use_case, advanced=False
)
tools = toolset.get_tools(actions=filtered_action_enums)
```
<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
- Using specific tools:
In this demo, we will use the `GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER` action from the GitHub app.
```python Code
tools = toolset.get_tools(
actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
```
Learn more about filtering actions [here](https://docs.composio.dev/patterns/tools/use-tools/use-specific-actions)
4. Define agent
```python Code
crewai_agent = Agent(
role="Github Agent",
goal="You take action on Github using Github APIs",
backstory=(
"You are AI agent that is responsible for taking actions on Github "
"on users behalf. You need to take action on Github using Github APIs"
),
role="GitHub Agent",
goal="You take action on GitHub using GitHub APIs",
backstory="You are AI agent that is responsible for taking actions on GitHub on behalf of users using GitHub APIs",
verbose=True,
tools=tools,
llm= # pass an llm
)
```
3. Execute task
5. Execute task
```python Code
task = Task(
description="Star a repo ComposioHQ/composio on GitHub",
description="Star a repo composiohq/composio on GitHub",
agent=crewai_agent,
expected_output="if the star happened",
expected_output="Status of the operation",
)
task.execute()
crew = Crew(agents=[crewai_agent], tasks=[task])
crew.kickoff()
```
* More detailed list of tools can be found [here](https://app.composio.dev)
* More detailed list of tools can be found [here](https://app.composio.dev)

View File

@@ -8,9 +8,9 @@ icon: file-pen
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files.
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files with cross-platform compatibility (Windows, Linux, macOS).
It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more.
This tool supports creating new directories if they don't exist, making it easier to organize your output.
This tool handles path differences across operating systems, supports UTF-8 encoding, and automatically creates directories if they don't exist, making it easier to organize your output reliably across different platforms.
## Installation
@@ -43,6 +43,8 @@ print(result)
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories.
This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided,
incorporating this tool into projects is straightforward and efficient.
By integrating the `FileWriterTool` into your crews, the agents can reliably write content to files across different operating systems.
This tool is essential for tasks that require saving output data, creating structured file systems, and handling cross-platform file operations.
It's particularly recommended for Windows users who may encounter file writing issues with standard Python file operations.
By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and ensures consistent file writing behavior across all platforms.

View File

@@ -0,0 +1,86 @@
---
title: Hyperbrowser Load Tool
description: The `HyperbrowserLoadTool` enables web scraping and crawling using Hyperbrowser.
icon: globe
---
# `HyperbrowserLoadTool`
## Description
The `HyperbrowserLoadTool` enables web scraping and crawling using [Hyperbrowser](https://hyperbrowser.ai), a platform for running and scaling headless browsers. This tool allows you to scrape a single page or crawl an entire site, returning the content in properly formatted markdown or HTML.
Key Features:
- Instant Scalability - Spin up hundreds of browser sessions in seconds without infrastructure headaches
- Simple Integration - Works seamlessly with popular tools like Puppeteer and Playwright
- Powerful APIs - Easy to use APIs for scraping/crawling any site
- Bypass Anti-Bot Measures - Built-in stealth mode, ad blocking, automatic CAPTCHA solving, and rotating proxies
## Installation
To use this tool, you need to install the Hyperbrowser SDK:
```shell
uv add hyperbrowser
```
## Steps to Get Started
To effectively use the `HyperbrowserLoadTool`, follow these steps:
1. **Sign Up**: Head to [Hyperbrowser](https://app.hyperbrowser.ai/) to sign up and generate an API key.
2. **API Key**: Set the `HYPERBROWSER_API_KEY` environment variable or pass it directly to the tool constructor.
3. **Install SDK**: Install the Hyperbrowser SDK using the command above.
## Example
The following example demonstrates how to initialize the tool and use it to scrape a website:
```python Code
from crewai_tools import HyperbrowserLoadTool
from crewai import Agent
# Initialize the tool with your API key
tool = HyperbrowserLoadTool(api_key="your_api_key") # Or use environment variable
# Define an agent that uses the tool
@agent
def web_researcher(self) -> Agent:
'''
This agent uses the HyperbrowserLoadTool to scrape websites
and extract information.
'''
return Agent(
config=self.agents_config["web_researcher"],
tools=[tool]
)
```
## Parameters
The `HyperbrowserLoadTool` accepts the following parameters:
### Constructor Parameters
- **api_key**: Optional. Your Hyperbrowser API key. If not provided, it will be read from the `HYPERBROWSER_API_KEY` environment variable.
### Run Parameters
- **url**: Required. The website URL to scrape or crawl.
- **operation**: Optional. The operation to perform on the website. Either 'scrape' or 'crawl'. Default is 'scrape'.
- **params**: Optional. Additional parameters for the scrape or crawl operation.
## Supported Parameters
For detailed information on all supported parameters, visit:
- [Scrape Parameters](https://docs.hyperbrowser.ai/reference/sdks/python/scrape#start-scrape-job-and-wait)
- [Crawl Parameters](https://docs.hyperbrowser.ai/reference/sdks/python/crawl#start-crawl-job-and-wait)
## Return Format
The tool returns content in the following format:
- For **scrape** operations: The content of the page in markdown or HTML format.
- For **crawl** operations: The content of each page separated by dividers, including the URL of each page.
## Conclusion
The `HyperbrowserLoadTool` provides a powerful way to scrape and crawl websites, handling complex scenarios like anti-bot measures, CAPTCHAs, and more. By leveraging Hyperbrowser's platform, this tool enables agents to access and extract web content efficiently.

View File

@@ -0,0 +1,112 @@
---
title: Linkup Search Tool
description: The `LinkupSearchTool` enables querying the Linkup API for contextual information.
icon: link
---
# `LinkupSearchTool`
## Description
The `LinkupSearchTool` provides the ability to query the Linkup API for contextual information and retrieve structured results. This tool is ideal for enriching workflows with up-to-date and reliable information from Linkup, allowing agents to access relevant data during their tasks.
## Installation
To use this tool, you need to install the Linkup SDK:
```shell
uv add linkup-sdk
```
## Steps to Get Started
To effectively use the `LinkupSearchTool`, follow these steps:
1. **API Key**: Obtain a Linkup API key.
2. **Environment Setup**: Set up your environment with the API key.
3. **Install SDK**: Install the Linkup SDK using the command above.
## Example
The following example demonstrates how to initialize the tool and use it in an agent:
```python Code
from crewai_tools import LinkupSearchTool
from crewai import Agent
import os
# Initialize the tool with your API key
linkup_tool = LinkupSearchTool(api_key=os.getenv("LINKUP_API_KEY"))
# Define an agent that uses the tool
@agent
def researcher(self) -> Agent:
'''
This agent uses the LinkupSearchTool to retrieve contextual information
from the Linkup API.
'''
return Agent(
config=self.agents_config["researcher"],
tools=[linkup_tool]
)
```
## Parameters
The `LinkupSearchTool` accepts the following parameters:
### Constructor Parameters
- **api_key**: Required. Your Linkup API key.
### Run Parameters
- **query**: Required. The search term or phrase.
- **depth**: Optional. The search depth. Default is "standard".
- **output_type**: Optional. The type of output. Default is "searchResults".
## Advanced Usage
You can customize the search parameters for more specific results:
```python Code
# Perform a search with custom parameters
results = linkup_tool.run(
query="Women Nobel Prize Physics",
depth="deep",
output_type="searchResults"
)
```
## Return Format
The tool returns results in the following format:
```json
{
"success": true,
"results": [
{
"name": "Result Title",
"url": "https://example.com/result",
"content": "Content of the result..."
},
// Additional results...
]
}
```
If an error occurs, the response will be:
```json
{
"success": false,
"error": "Error message"
}
```
## Error Handling
The tool gracefully handles API errors and provides structured feedback. If the API request fails, the tool will return a dictionary with `success: false` and an error message.
## Conclusion
The `LinkupSearchTool` provides a seamless way to integrate Linkup's contextual information retrieval capabilities into your CrewAI agents. By leveraging this tool, agents can access relevant and up-to-date information to enhance their decision-making and task execution.

View File

@@ -0,0 +1,146 @@
---
title: LlamaIndex Tool
description: The `LlamaIndexTool` is a wrapper for LlamaIndex tools and query engines.
icon: address-book
---
# `LlamaIndexTool`
## Description
The `LlamaIndexTool` is designed to be a general wrapper around LlamaIndex tools and query engines, enabling you to leverage LlamaIndex resources in terms of RAG/agentic pipelines as tools to plug into CrewAI agents. This tool allows you to seamlessly integrate LlamaIndex's powerful data processing and retrieval capabilities into your CrewAI workflows.
## Installation
To use this tool, you need to install LlamaIndex:
```shell
uv add llama-index
```
## Steps to Get Started
To effectively use the `LlamaIndexTool`, follow these steps:
1. **Install LlamaIndex**: Install the LlamaIndex package using the command above.
2. **Set Up LlamaIndex**: Follow the [LlamaIndex documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
3. **Create a Tool or Query Engine**: Create a LlamaIndex tool or query engine that you want to use with CrewAI.
## Example
The following examples demonstrate how to initialize the tool from different LlamaIndex components:
### From a LlamaIndex Tool
```python Code
from crewai_tools import LlamaIndexTool
from crewai import Agent
from llama_index.core.tools import FunctionTool
# Example 1: Initialize from FunctionTool
def search_data(query: str) -> str:
"""Search for information in the data."""
# Your implementation here
return f"Results for: {query}"
# Create a LlamaIndex FunctionTool
og_tool = FunctionTool.from_defaults(
search_data,
name="DataSearchTool",
description="Search for information in the data"
)
# Wrap it with LlamaIndexTool
tool = LlamaIndexTool.from_tool(og_tool)
# Define an agent that uses the tool
@agent
def researcher(self) -> Agent:
'''
This agent uses the LlamaIndexTool to search for information.
'''
return Agent(
config=self.agents_config["researcher"],
tools=[tool]
)
```
### From LlamaHub Tools
```python Code
from crewai_tools import LlamaIndexTool
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
# Initialize from LlamaHub Tools
wolfram_spec = WolframAlphaToolSpec(app_id="your_app_id")
wolfram_tools = wolfram_spec.to_tool_list()
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
```
### From a LlamaIndex Query Engine
```python Code
from crewai_tools import LlamaIndexTool
from llama_index.core import VectorStoreIndex
from llama_index.core.readers import SimpleDirectoryReader
# Load documents
documents = SimpleDirectoryReader("./data").load_data()
# Create an index
index = VectorStoreIndex.from_documents(documents)
# Create a query engine
query_engine = index.as_query_engine()
# Create a LlamaIndexTool from the query engine
query_tool = LlamaIndexTool.from_query_engine(
query_engine,
name="Company Data Query Tool",
description="Use this tool to lookup information in company documents"
)
```
## Class Methods
The `LlamaIndexTool` provides two main class methods for creating instances:
### from_tool
Creates a `LlamaIndexTool` from a LlamaIndex tool.
```python Code
@classmethod
def from_tool(cls, tool: Any, **kwargs: Any) -> "LlamaIndexTool":
# Implementation details
```
### from_query_engine
Creates a `LlamaIndexTool` from a LlamaIndex query engine.
```python Code
@classmethod
def from_query_engine(
cls,
query_engine: Any,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
**kwargs: Any,
) -> "LlamaIndexTool":
# Implementation details
```
## Parameters
The `from_query_engine` method accepts the following parameters:
- **query_engine**: Required. The LlamaIndex query engine to wrap.
- **name**: Optional. The name of the tool.
- **description**: Optional. The description of the tool.
- **return_direct**: Optional. Whether to return the response directly. Default is `False`.
## Conclusion
The `LlamaIndexTool` provides a powerful way to integrate LlamaIndex's capabilities into CrewAI agents. By wrapping LlamaIndex tools and query engines, it enables agents to leverage sophisticated data retrieval and processing functionalities, enhancing their ability to work with complex information sources.

128
docs/tools/multiontool.mdx Normal file
View File

@@ -0,0 +1,128 @@
---
title: MultiOn Tool
description: The `MultiOnTool` empowers CrewAI agents with the capability to navigate and interact with the web through natural language instructions.
icon: globe
---
# `MultiOnTool`
## Description
The `MultiOnTool` is designed to wrap [MultiOn's](https://docs.multion.ai/welcome) web browsing capabilities, enabling CrewAI agents to control web browsers using natural language instructions. This tool facilitates seamless web browsing, making it an essential asset for projects requiring dynamic web data interaction and automation of web-based tasks.
## Installation
To use this tool, you need to install the MultiOn package:
```shell
uv add multion
```
You'll also need to install the MultiOn browser extension and enable API usage.
## Steps to Get Started
To effectively use the `MultiOnTool`, follow these steps:
1. **Install CrewAI**: Ensure that the `crewai[tools]` package is installed in your Python environment.
2. **Install and use MultiOn**: Follow [MultiOn documentation](https://docs.multion.ai/learn/browser-extension) for installing the MultiOn Browser Extension.
3. **Enable API Usage**: Click on the MultiOn extension in the extensions folder of your browser (not the hovering MultiOn icon on the web page) to open the extension configurations. Click the API Enabled toggle to enable the API.
## Example
The following example demonstrates how to initialize the tool and execute a web browsing task:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import MultiOnTool
# Initialize the tool
multion_tool = MultiOnTool(api_key="YOUR_MULTION_API_KEY", local=False)
# Define an agent that uses the tool
browser_agent = Agent(
role="Browser Agent",
goal="Control web browsers using natural language",
backstory="An expert browsing agent.",
tools=[multion_tool],
verbose=True,
)
# Example task to search and summarize news
browse_task = Task(
description="Summarize the top 3 trending AI News headlines",
expected_output="A summary of the top 3 trending AI News headlines",
agent=browser_agent,
)
# Create and run the crew
crew = Crew(agents=[browser_agent], tasks=[browse_task])
result = crew.kickoff()
```
## Parameters
The `MultiOnTool` accepts the following parameters during initialization:
- **api_key**: Optional. Specifies the MultiOn API key. If not provided, it will look for the `MULTION_API_KEY` environment variable.
- **local**: Optional. Set to `True` to run the agent locally on your browser. Make sure the MultiOn browser extension is installed and API Enabled is checked. Default is `False`.
- **max_steps**: Optional. Sets the maximum number of steps the MultiOn agent can take for a command. Default is `3`.
## Usage
When using the `MultiOnTool`, the agent will provide natural language instructions that the tool translates into web browsing actions. The tool returns the results of the browsing session along with a status.
```python Code
# Example of using the tool with an agent
browser_agent = Agent(
role="Web Browser Agent",
goal="Search for and summarize information from the web",
backstory="An expert at finding and extracting information from websites.",
tools=[multion_tool],
verbose=True,
)
# Create a task for the agent
search_task = Task(
description="Search for the latest AI news on TechCrunch and summarize the top 3 headlines",
expected_output="A summary of the top 3 AI news headlines from TechCrunch",
agent=browser_agent,
)
# Run the task
crew = Crew(agents=[browser_agent], tasks=[search_task])
result = crew.kickoff()
```
If the status returned is `CONTINUE`, the agent should be instructed to reissue the same instruction to continue execution.
## Implementation Details
The `MultiOnTool` is implemented as a subclass of `BaseTool` from CrewAI. It wraps the MultiOn client to provide web browsing capabilities:
```python Code
class MultiOnTool(BaseTool):
"""Tool to wrap MultiOn Browse Capabilities."""
name: str = "Multion Browse Tool"
description: str = """Multion gives the ability for LLMs to control web browsers using natural language instructions.
If the status is 'CONTINUE', reissue the same instruction to continue execution
"""
# Implementation details...
def _run(self, cmd: str, *args: Any, **kwargs: Any) -> str:
"""
Run the Multion client with the given command.
Args:
cmd (str): The detailed and specific natural language instruction for web browsing
*args (Any): Additional arguments to pass to the Multion client
**kwargs (Any): Additional keyword arguments to pass to the Multion client
"""
# Implementation details...
```
## Conclusion
The `MultiOnTool` provides a powerful way to integrate web browsing capabilities into CrewAI agents. By enabling agents to interact with websites through natural language instructions, it opens up a wide range of possibilities for web-based tasks, from data collection and research to automated interactions with web services.

View File

@@ -0,0 +1,195 @@
---
title: Patronus Evaluation Tools
description: The Patronus evaluation tools enable CrewAI agents to evaluate and score model inputs and outputs using the Patronus AI platform.
icon: check
---
# `Patronus Evaluation Tools`
## Description
The [Patronus evaluation tools](https://patronus.ai) are designed to enable CrewAI agents to evaluate and score model inputs and outputs using the Patronus AI platform. These tools provide different levels of control over the evaluation process, from allowing agents to select the most appropriate evaluator and criteria to using predefined criteria or custom local evaluators.
There are three main Patronus evaluation tools:
1. **PatronusEvalTool**: Allows agents to select the most appropriate evaluator and criteria for the evaluation task.
2. **PatronusPredefinedCriteriaEvalTool**: Uses predefined evaluator and criteria specified by the user.
3. **PatronusLocalEvaluatorTool**: Uses custom function evaluators defined by the user.
## Installation
To use these tools, you need to install the Patronus package:
```shell
uv add patronus
```
You'll also need to set up your Patronus API key as an environment variable:
```shell
export PATRONUS_API_KEY="your_patronus_api_key"
```
## Steps to Get Started
To effectively use the Patronus evaluation tools, follow these steps:
1. **Install Patronus**: Install the Patronus package using the command above.
2. **Set Up API Key**: Set your Patronus API key as an environment variable.
3. **Choose the Right Tool**: Select the appropriate Patronus evaluation tool based on your needs.
4. **Configure the Tool**: Configure the tool with the necessary parameters.
## Examples
### Using PatronusEvalTool
The following example demonstrates how to use the `PatronusEvalTool`, which allows agents to select the most appropriate evaluator and criteria:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusEvalTool
# Initialize the tool
patronus_eval_tool = PatronusEvalTool()
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code and verify that the output is code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate and evaluate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
### Using PatronusPredefinedCriteriaEvalTool
The following example demonstrates how to use the `PatronusPredefinedCriteriaEvalTool`, which uses predefined evaluator and criteria:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusPredefinedCriteriaEvalTool
# Initialize the tool with predefined criteria
patronus_eval_tool = PatronusPredefinedCriteriaEvalTool(
evaluators=[{"evaluator": "judge", "criteria": "contains-code"}]
)
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
### Using PatronusLocalEvaluatorTool
The following example demonstrates how to use the `PatronusLocalEvaluatorTool`, which uses custom function evaluators:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusLocalEvaluatorTool
from patronus import Client, EvaluationResult
import random
# Initialize the Patronus client
client = Client()
# Register a custom evaluator
@client.register_local_evaluator("random_evaluator")
def random_evaluator(**kwargs):
score = random.random()
return EvaluationResult(
score_raw=score,
pass_=score >= 0.5,
explanation="example explanation",
)
# Initialize the tool with the custom evaluator
patronus_eval_tool = PatronusLocalEvaluatorTool(
patronus_client=client,
evaluator="random_evaluator",
evaluated_model_gold_answer="example label",
)
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
## Parameters
### PatronusEvalTool
The `PatronusEvalTool` does not require any parameters during initialization. It automatically fetches available evaluators and criteria from the Patronus API.
### PatronusPredefinedCriteriaEvalTool
The `PatronusPredefinedCriteriaEvalTool` accepts the following parameters during initialization:
- **evaluators**: Required. A list of dictionaries containing the evaluator and criteria to use. For example: `[{"evaluator": "judge", "criteria": "contains-code"}]`.
### PatronusLocalEvaluatorTool
The `PatronusLocalEvaluatorTool` accepts the following parameters during initialization:
- **patronus_client**: Required. The Patronus client instance.
- **evaluator**: Optional. The name of the registered local evaluator to use. Default is an empty string.
- **evaluated_model_gold_answer**: Optional. The gold answer to use for evaluation. Default is an empty string.
## Usage
When using the Patronus evaluation tools, you provide the model input, output, and context, and the tool returns the evaluation results from the Patronus API.
For the `PatronusEvalTool` and `PatronusPredefinedCriteriaEvalTool`, the following parameters are required when calling the tool:
- **evaluated_model_input**: The agent's task description in simple text.
- **evaluated_model_output**: The agent's output of the task.
- **evaluated_model_retrieved_context**: The agent's context.
For the `PatronusLocalEvaluatorTool`, the same parameters are required, but the evaluator and gold answer are specified during initialization.
## Conclusion
The Patronus evaluation tools provide a powerful way to evaluate and score model inputs and outputs using the Patronus AI platform. By enabling agents to evaluate their own outputs or the outputs of other agents, these tools can help improve the quality and reliability of CrewAI workflows.

View File

@@ -0,0 +1,271 @@
---
title: 'Qdrant Vector Search Tool'
description: 'Semantic search capabilities for CrewAI agents using Qdrant vector database'
icon: magnifying-glass-plus
---
# `QdrantVectorSearchTool`
The Qdrant Vector Search Tool enables semantic search capabilities in your CrewAI agents by leveraging [Qdrant](https://qdrant.tech/), a vector similarity search engine. This tool allows your agents to search through documents stored in a Qdrant collection using semantic similarity.
## Installation
Install the required packages:
```bash
uv add qdrant-client
```
## Basic Usage
Here's a minimal example of how to use the tool:
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool
# Initialize the tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
# Create an agent that uses the tool
agent = Agent(
role="Research Assistant",
goal="Find relevant information in documents",
tools=[qdrant_tool]
)
# The tool will automatically use OpenAI embeddings
# and return the 3 most relevant results with scores > 0.35
```
## Complete Working Example
Here's a complete example showing how to:
1. Extract text from a PDF
2. Generate embeddings using OpenAI
3. Store in Qdrant
4. Create a CrewAI agentic RAG workflow for semantic search
```python
import os
import uuid
import pdfplumber
from openai import OpenAI
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import QdrantVectorSearchTool
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams
# Load environment variables
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
text = []
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text.append(page_text.strip())
return text
# Generate OpenAI embeddings
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-small"
)
return response.data[0].embedding
# Store text and embeddings in Qdrant
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
)
# Store embeddings
points = []
for chunk in text_chunks:
embedding = get_openai_embedding(chunk)
points.append(PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={"text": chunk}
))
qdrant.upsert(collection_name=collection_name, points=points)
# Initialize Qdrant client and load data
qdrant = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY")
)
collection_name = "example_collection"
pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
)
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
)
# Define tasks
search_task = Task(
description="""Search for relevant documents about the {query}.
Your final answer should include:
- The relevant information found
- The similarity scores of the results
- The metadata of the relevant documents""",
agent=search_agent
)
answer_task = Task(
description="""Given the context and metadata of relevant documents,
generate a final answer based on the context.""",
agent=answer_agent
)
# Run CrewAI workflow
crew = Crew(
agents=[search_agent, answer_agent],
tasks=[search_task, answer_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff(
inputs={"query": "What is the role of X in the document?"}
)
print(result)
```
## Tool Parameters
### Required Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
### Optional Parameters
- `limit` (int): Maximum number of results to return (default: 3)
- `score_threshold` (float): Minimum similarity score threshold (default: 0.35)
- `custom_embedding_fn` (Callable[[str], list[float]]): Custom function for text vectorization
## Search Parameters
The tool accepts these parameters in its schema:
- `query` (str): The search query to find similar documents
- `filter_by` (str, optional): Metadata field to filter on
- `filter_value` (str, optional): Value to filter by
## Return Format
The tool returns results in JSON format:
```json
[
{
"metadata": {
// Any metadata stored with the document
},
"context": "The actual text content of the document",
"distance": 0.95 // Similarity score
}
]
```
## Default Embedding
By default, the tool uses OpenAI's `text-embedding-3-small` model for vectorization. This requires:
- OpenAI API key set in environment: `OPENAI_API_KEY`
## Custom Embeddings
Instead of using the default embedding model, you might want to use your own embedding function in cases where you:
1. Want to use a different embedding model (e.g., Cohere, HuggingFace, Ollama models)
2. Need to reduce costs by using open-source embedding models
3. Have specific requirements for vector dimensions or embedding quality
4. Want to use domain-specific embeddings (e.g., for medical or legal text)
Here's an example using a HuggingFace model:
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
tool = QdrantVectorSearchTool(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
## Error Handling
The tool handles these specific errors:
- Raises ImportError if `qdrant-client` is not installed (with option to auto-install)
- Raises ValueError if `QDRANT_URL` is not set
- Prompts to install `qdrant-client` if missing using `uv add qdrant-client`
## Environment Variables
Required environment variables:
```bash
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings

154
docs/tools/ragtool.mdx Normal file
View File

@@ -0,0 +1,154 @@
---
title: RAG Tool
description: The `RagTool` is a dynamic knowledge base tool for answering questions using Retrieval-Augmented Generation.
icon: vector-square
---
# `RagTool`
## Description
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
## Example
The following example demonstrates how to initialize the tool and use it with different data sources:
```python Code
from crewai_tools import RagTool
# Create a RAG tool with default settings
rag_tool = RagTool()
# Add content from a file
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
# Add content from a web page
rag_tool.add(data_type="web_page", url="https://example.com")
# Define an agent with the RagTool
@agent
def knowledge_expert(self) -> Agent:
'''
This agent uses the RagTool to answer questions about the knowledge base.
'''
return Agent(
config=self.agents_config["knowledge_expert"],
allow_delegation=False,
tools=[rag_tool]
)
```
## Supported Data Sources
The `RagTool` can be used with a wide variety of data sources, including:
- 📰 PDF files
- 📊 CSV files
- 📃 JSON files
- 📝 Text
- 📁 Directories/Folders
- 🌐 HTML Web pages
- 📽️ YouTube Channels
- 📺 YouTube Videos
- 📚 Documentation websites
- 📝 MDX files
- 📄 DOCX files
- 🧾 XML files
- 📬 Gmail
- 📝 GitHub repositories
- 🐘 PostgreSQL databases
- 🐬 MySQL databases
- 🤖 Slack conversations
- 💬 Discord messages
- 🗨️ Discourse forums
- 📝 Substack newsletters
- 🐝 Beehiiv content
- 💾 Dropbox files
- 🖼️ Images
- ⚙️ Custom data sources
## Parameters
The `RagTool` accepts the following parameters:
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
- **adapter**: Optional. A custom adapter for the knowledge base. If not provided, an EmbedchainAdapter will be used.
- **config**: Optional. Configuration for the underlying EmbedChain App.
## Adding Content
You can add content to the knowledge base using the `add` method:
```python Code
# Add a PDF file
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
# Add a web page
rag_tool.add(data_type="web_page", url="https://example.com")
# Add a YouTube video
rag_tool.add(data_type="youtube_video", url="https://www.youtube.com/watch?v=VIDEO_ID")
# Add a directory of files
rag_tool.add(data_type="directory", path="path/to/your/directory")
```
## Agent Integration Example
Here's how to integrate the `RagTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import RagTool
# Initialize the tool and add content
rag_tool = RagTool()
rag_tool.add(data_type="web_page", url="https://docs.crewai.com")
rag_tool.add(data_type="file", path="company_data.pdf")
# Define an agent with the RagTool
@agent
def knowledge_expert(self) -> Agent:
return Agent(
config=self.agents_config["knowledge_expert"],
allow_delegation=False,
tools=[rag_tool]
)
```
## Advanced Configuration
You can customize the behavior of the `RagTool` by providing a configuration dictionary:
```python Code
from crewai_tools import RagTool
# Create a RAG tool with custom configuration
config = {
"app": {
"name": "custom_app",
},
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4",
}
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-ada-002"
}
}
}
rag_tool = RagTool(config=config, summarize=True)
```
## Conclusion
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.

144
docs/tools/s3readertool.mdx Normal file
View File

@@ -0,0 +1,144 @@
---
title: S3 Reader Tool
description: The `S3ReaderTool` enables CrewAI agents to read files from Amazon S3 buckets.
icon: aws
---
# `S3ReaderTool`
## Description
The `S3ReaderTool` is designed to read files from Amazon S3 buckets. This tool allows CrewAI agents to access and retrieve content stored in S3, making it ideal for workflows that require reading data, configuration files, or any other content stored in AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3ReaderTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path**: Provide the S3 path to the file you want to read.
## Example
The following example demonstrates how to use the `S3ReaderTool` to read a file from an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3ReaderTool
# Initialize the tool
s3_reader_tool = S3ReaderTool()
# Define an agent that uses the tool
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Example task to read a configuration file
read_task = Task(
description="Read the configuration file from {my_bucket} and summarize its contents.",
expected_output="A summary of the configuration file contents.",
agent=file_reader_agent,
)
# Create and run the crew
crew = Crew(agents=[file_reader_agent], tasks=[read_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Parameters
The `S3ReaderTool` accepts the following parameter when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3ReaderTool` with an agent, the agent will need to provide the S3 file path:
```python Code
# Example of using the tool with an agent
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Create a task for the agent to read a specific file
read_config_task = Task(
description="Read the application configuration file from {my_bucket} and extract the database connection settings.",
expected_output="The database connection settings from the configuration file.",
agent=file_reader_agent,
)
# Run the task
crew = Crew(agents=[file_reader_agent], tasks=[read_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Error Handling
The `S3ReaderTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Missing or inaccessible files
- Permission issues
- AWS credential problems
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3ReaderTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3ReaderTool(BaseTool):
name: str = "S3 Reader Tool"
description: str = "Reads a file from Amazon S3 given an S3 file path"
def _run(self, file_path: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
# Read file content from S3
response = s3.get_object(Bucket=bucket_name, Key=object_key)
file_content = response['Body'].read().decode('utf-8')
return file_content
except ClientError as e:
return f"Error reading file from S3: {str(e)}"
```
## Conclusion
The `S3ReaderTool` provides a straightforward way to read files from Amazon S3 buckets. By enabling agents to access content stored in S3, it facilitates workflows that require cloud-based file access. This tool is particularly useful for data processing, configuration management, and any task that involves retrieving information from AWS S3 storage.

150
docs/tools/s3writertool.mdx Normal file
View File

@@ -0,0 +1,150 @@
---
title: S3 Writer Tool
description: The `S3WriterTool` enables CrewAI agents to write content to files in Amazon S3 buckets.
icon: aws
---
# `S3WriterTool`
## Description
The `S3WriterTool` is designed to write content to files in Amazon S3 buckets. This tool allows CrewAI agents to create or update files in S3, making it ideal for workflows that require storing data, saving configuration files, or persisting any other content to AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3WriterTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path and Content**: Provide the S3 path where you want to write the file and the content to be written.
## Example
The following example demonstrates how to use the `S3WriterTool` to write content to a file in an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3WriterTool
# Initialize the tool
s3_writer_tool = S3WriterTool()
# Define an agent that uses the tool
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Example task to write a report
write_task = Task(
description="Generate a summary report of the quarterly sales data and save it to {my_bucket}.",
expected_output="Confirmation that the report was successfully saved to S3.",
agent=file_writer_agent,
)
# Create and run the crew
crew = Crew(agents=[file_writer_agent], tasks=[write_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/reports/quarterly-summary.txt"})
```
## Parameters
The `S3WriterTool` accepts the following parameters when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
- **content**: Required. The content to write to the file.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3WriterTool` with an agent, the agent will need to provide both the S3 file path and the content to write:
```python Code
# Example of using the tool with an agent
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Create a task for the agent to write a specific file
write_config_task = Task(
description="""
Create a configuration file with the following database settings:
- host: db.example.com
- port: 5432
- username: app_user
- password: secure_password
Save this configuration as JSON to {my_bucket}.
""",
expected_output="Confirmation that the configuration file was successfully saved to S3.",
agent=file_writer_agent,
)
# Run the task
crew = Crew(agents=[file_writer_agent], tasks=[write_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/db-config.json"})
```
## Error Handling
The `S3WriterTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Permission issues (e.g., no write access to the bucket)
- AWS credential problems
- Bucket does not exist
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3WriterTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3WriterTool(BaseTool):
name: str = "S3 Writer Tool"
description: str = "Writes content to a file in Amazon S3 given an S3 file path"
def _run(self, file_path: str, content: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
s3.put_object(Bucket=bucket_name, Key=object_key, Body=content.encode('utf-8'))
return f"Successfully wrote content to {file_path}"
except ClientError as e:
return f"Error writing file to S3: {str(e)}"
```
## Conclusion
The `S3WriterTool` provides a straightforward way to write content to files in Amazon S3 buckets. By enabling agents to create and update files in S3, it facilitates workflows that require cloud-based file storage. This tool is particularly useful for data persistence, configuration management, report generation, and any task that involves storing information in AWS S3 storage.

View File

@@ -0,0 +1,139 @@
---
title: Scrape Element From Website Tool
description: The `ScrapeElementFromWebsiteTool` enables CrewAI agents to extract specific elements from websites using CSS selectors.
icon: code
---
# `ScrapeElementFromWebsiteTool`
## Description
The `ScrapeElementFromWebsiteTool` is designed to extract specific elements from websites using CSS selectors. This tool allows CrewAI agents to scrape targeted content from web pages, making it useful for data extraction tasks where only specific parts of a webpage are needed.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add requests beautifulsoup4
```
## Steps to Get Started
To effectively use the `ScrapeElementFromWebsiteTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Identify CSS Selectors**: Determine the CSS selectors for the elements you want to extract from the website.
3. **Initialize the Tool**: Create an instance of the tool with the necessary parameters.
## Example
The following example demonstrates how to use the `ScrapeElementFromWebsiteTool` to extract specific elements from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapeElementFromWebsiteTool
# Initialize the tool
scrape_tool = ScrapeElementFromWebsiteTool()
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract headlines from a news website
scrape_task = Task(
description="Extract the main headlines from the CNN homepage. Use the CSS selector '.headline' to target the headline elements.",
expected_output="A list of the main headlines from CNN.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
scrape_tool = ScrapeElementFromWebsiteTool(
website_url="https://www.example.com",
css_element=".main-content"
)
```
## Parameters
The `ScrapeElementFromWebsiteTool` accepts the following parameters during initialization:
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **css_element**: Optional. The CSS selector for the elements to extract. If provided during initialization, the agent won't need to specify it when using the tool.
- **cookies**: Optional. A dictionary containing cookies to be sent with the request. This can be useful for websites that require authentication.
## Usage
When using the `ScrapeElementFromWebsiteTool` with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
- **website_url**: The URL of the website to scrape.
- **css_element**: The CSS selector for the elements to extract.
The tool will return the text content of all elements matching the CSS selector, joined by newlines.
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific elements from websites",
backstory="An expert in web scraping who can extract targeted content using CSS selectors.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent to extract specific elements
extract_task = Task(
description="""
Extract all product titles from the featured products section on example.com.
Use the CSS selector '.product-title' to target the title elements.
""",
expected_output="A list of product titles from the website",
agent=web_scraper_agent,
)
# Run the task through a crew
crew = Crew(agents=[web_scraper_agent], tasks=[extract_task])
result = crew.kickoff()
```
## Implementation Details
The `ScrapeElementFromWebsiteTool` uses the `requests` library to fetch the web page and `BeautifulSoup` to parse the HTML and extract the specified elements:
```python Code
class ScrapeElementFromWebsiteTool(BaseTool):
name: str = "Read a website content"
description: str = "A tool that can be used to read a website content."
# Implementation details...
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
css_element = kwargs.get("css_element", self.css_element)
page = requests.get(
website_url,
headers=self.headers,
cookies=self.cookies if self.cookies else {},
)
parsed = BeautifulSoup(page.content, "html.parser")
elements = parsed.select(css_element)
return "\n".join([element.get_text() for element in elements])
```
## Conclusion
The `ScrapeElementFromWebsiteTool` provides a powerful way to extract specific elements from websites using CSS selectors. By enabling agents to target only the content they need, it makes web scraping tasks more efficient and focused. This tool is particularly useful for data extraction, content monitoring, and research tasks where specific information needs to be extracted from web pages.

View File

@@ -0,0 +1,196 @@
---
title: Scrapegraph Scrape Tool
description: The `ScrapegraphScrapeTool` leverages Scrapegraph AI's SmartScraper API to intelligently extract content from websites.
icon: chart-area
---
# `ScrapegraphScrapeTool`
## Description
The `ScrapegraphScrapeTool` is designed to leverage Scrapegraph AI's SmartScraper API to intelligently extract content from websites. This tool provides advanced web scraping capabilities with AI-powered content extraction, making it ideal for targeted data collection and content analysis tasks. Unlike traditional web scrapers, it can understand the context and structure of web pages to extract the most relevant information based on natural language prompts.
## Installation
To use this tool, you need to install the Scrapegraph Python client:
```shell
uv add scrapegraph-py
```
You'll also need to set up your Scrapegraph API key as an environment variable:
```shell
export SCRAPEGRAPH_API_KEY="your_api_key"
```
You can obtain an API key from [Scrapegraph AI](https://scrapegraphai.com).
## Steps to Get Started
To effectively use the `ScrapegraphScrapeTool`, follow these steps:
1. **Install Dependencies**: Install the required package using the command above.
2. **Set Up API Key**: Set your Scrapegraph API key as an environment variable or provide it during initialization.
3. **Initialize the Tool**: Create an instance of the tool with the necessary parameters.
4. **Define Extraction Prompts**: Create natural language prompts to guide the extraction of specific content.
## Example
The following example demonstrates how to use the `ScrapegraphScrapeTool` to extract content from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapegraphScrapeTool
# Initialize the tool
scrape_tool = ScrapegraphScrapeTool(api_key="your_api_key")
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract product information from an e-commerce site
scrape_task = Task(
description="Extract product names, prices, and descriptions from the featured products section of example.com.",
expected_output="A structured list of product information including names, prices, and descriptions.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
scrape_tool = ScrapegraphScrapeTool(
website_url="https://www.example.com",
user_prompt="Extract all product prices and descriptions",
api_key="your_api_key"
)
```
## Parameters
The `ScrapegraphScrapeTool` accepts the following parameters during initialization:
- **api_key**: Optional. Your Scrapegraph API key. If not provided, it will look for the `SCRAPEGRAPH_API_KEY` environment variable.
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **user_prompt**: Optional. Custom instructions for content extraction. If provided during initialization, the agent won't need to specify it when using the tool.
- **enable_logging**: Optional. Whether to enable logging for the Scrapegraph client. Default is `False`.
## Usage
When using the `ScrapegraphScrapeTool` with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
- **website_url**: The URL of the website to scrape.
- **user_prompt**: Optional. Custom instructions for content extraction. Default is "Extract the main content of the webpage".
The tool will return the extracted content based on the provided prompt.
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent to extract specific content
extract_task = Task(
description="Extract the main heading and summary from example.com",
expected_output="The main heading and summary from the website",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(agents=[web_scraper_agent], tasks=[extract_task])
result = crew.kickoff()
```
## Error Handling
The `ScrapegraphScrapeTool` may raise the following exceptions:
- **ValueError**: When API key is missing or URL format is invalid.
- **RateLimitError**: When API rate limits are exceeded.
- **RuntimeError**: When scraping operation fails (network issues, API errors).
It's recommended to instruct agents to handle potential errors gracefully:
```python Code
# Create a task that includes error handling instructions
robust_extract_task = Task(
description="""
Extract the main heading from example.com.
Be aware that you might encounter errors such as:
- Invalid URL format
- Missing API key
- Rate limit exceeded
- Network or API errors
If you encounter any errors, provide a clear explanation of what went wrong
and suggest possible solutions.
""",
expected_output="Either the extracted heading or a clear error explanation",
agent=web_scraper_agent,
)
```
## Rate Limiting
The Scrapegraph API has rate limits that vary based on your subscription plan. Consider the following best practices:
- Implement appropriate delays between requests when processing multiple URLs.
- Handle rate limit errors gracefully in your application.
- Check your API plan limits on the Scrapegraph dashboard.
## Implementation Details
The `ScrapegraphScrapeTool` uses the Scrapegraph Python client to interact with the SmartScraper API:
```python Code
class ScrapegraphScrapeTool(BaseTool):
"""
A tool that uses Scrapegraph AI to intelligently scrape website content.
"""
# Implementation details...
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
user_prompt = (
kwargs.get("user_prompt", self.user_prompt)
or "Extract the main content of the webpage"
)
if not website_url:
raise ValueError("website_url is required")
# Validate URL format
self._validate_url(website_url)
try:
# Make the SmartScraper request
response = self._client.smartscraper(
website_url=website_url,
user_prompt=user_prompt,
)
return response
# Error handling...
```
## Conclusion
The `ScrapegraphScrapeTool` provides a powerful way to extract content from websites using AI-powered understanding of web page structure. By enabling agents to target specific information using natural language prompts, it makes web scraping tasks more efficient and focused. This tool is particularly useful for data extraction, content monitoring, and research tasks where specific information needs to be extracted from web pages.

View File

@@ -0,0 +1,220 @@
---
title: Scrapfly Scrape Website Tool
description: The `ScrapflyScrapeWebsiteTool` leverages Scrapfly's web scraping API to extract content from websites in various formats.
icon: spider
---
# `ScrapflyScrapeWebsiteTool`
## Description
The `ScrapflyScrapeWebsiteTool` is designed to leverage [Scrapfly](https://scrapfly.io/)'s web scraping API to extract content from websites. This tool provides advanced web scraping capabilities with headless browser support, proxies, and anti-bot bypass features. It allows for extracting web page data in various formats, including raw HTML, markdown, and plain text, making it ideal for a wide range of web scraping tasks.
## Installation
To use this tool, you need to install the Scrapfly SDK:
```shell
uv add scrapfly-sdk
```
You'll also need to obtain a Scrapfly API key by registering at [scrapfly.io/register](https://www.scrapfly.io/register/).
## Steps to Get Started
To effectively use the `ScrapflyScrapeWebsiteTool`, follow these steps:
1. **Install Dependencies**: Install the Scrapfly SDK using the command above.
2. **Obtain API Key**: Register at Scrapfly to get your API key.
3. **Initialize the Tool**: Create an instance of the tool with your API key.
4. **Configure Scraping Parameters**: Customize the scraping parameters based on your needs.
## Example
The following example demonstrates how to use the `ScrapflyScrapeWebsiteTool` to extract content from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapflyScrapeWebsiteTool
# Initialize the tool
scrape_tool = ScrapflyScrapeWebsiteTool(api_key="your_scrapfly_api_key")
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract content from a website
scrape_task = Task(
description="Extract the main content from the product page at https://web-scraping.dev/products and summarize the available products.",
expected_output="A summary of the products available on the website.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also customize the scraping parameters:
```python Code
# Example with custom scraping parameters
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites with custom parameters",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# The agent will use the tool with parameters like:
# url="https://web-scraping.dev/products"
# scrape_format="markdown"
# ignore_scrape_failures=True
# scrape_config={
# "asp": True, # Bypass scraping blocking solutions, like Cloudflare
# "render_js": True, # Enable JavaScript rendering with a cloud headless browser
# "proxy_pool": "public_residential_pool", # Select a proxy pool
# "country": "us", # Select a proxy location
# "auto_scroll": True, # Auto scroll the page
# }
scrape_task = Task(
description="Extract the main content from the product page at https://web-scraping.dev/products using advanced scraping options including JavaScript rendering and proxy settings.",
expected_output="A detailed summary of the products with all available information.",
agent=web_scraper_agent,
)
```
## Parameters
The `ScrapflyScrapeWebsiteTool` accepts the following parameters:
### Initialization Parameters
- **api_key**: Required. Your Scrapfly API key.
### Run Parameters
- **url**: Required. The URL of the website to scrape.
- **scrape_format**: Optional. The format in which to extract the web page content. Options are "raw" (HTML), "markdown", or "text". Default is "markdown".
- **scrape_config**: Optional. A dictionary containing additional Scrapfly scraping configuration options.
- **ignore_scrape_failures**: Optional. Whether to ignore failures during scraping. If set to `True`, the tool will return `None` instead of raising an exception when scraping fails.
## Scrapfly Configuration Options
The `scrape_config` parameter allows you to customize the scraping behavior with the following options:
- **asp**: Enable anti-scraping protection bypass.
- **render_js**: Enable JavaScript rendering with a cloud headless browser.
- **proxy_pool**: Select a proxy pool (e.g., "public_residential_pool", "datacenter").
- **country**: Select a proxy location (e.g., "us", "uk").
- **auto_scroll**: Automatically scroll the page to load lazy-loaded content.
- **js**: Execute custom JavaScript code by the headless browser.
For a complete list of configuration options, refer to the [Scrapfly API documentation](https://scrapfly.io/docs/scrape-api/getting-started).
## Usage
When using the `ScrapflyScrapeWebsiteTool` with an agent, the agent will need to provide the URL of the website to scrape and can optionally specify the format and additional configuration options:
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent
scrape_task = Task(
description="Extract the main content from example.com in markdown format.",
expected_output="The main content of example.com in markdown format.",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
For more advanced usage with custom configuration:
```python Code
# Create a task with more specific instructions
advanced_scrape_task = Task(
description="""
Extract content from example.com with the following requirements:
- Convert the content to plain text format
- Enable JavaScript rendering
- Use a US-based proxy
- Handle any scraping failures gracefully
""",
expected_output="The extracted content from example.com",
agent=web_scraper_agent,
)
```
## Error Handling
By default, the `ScrapflyScrapeWebsiteTool` will raise an exception if scraping fails. Agents can be instructed to handle failures gracefully by specifying the `ignore_scrape_failures` parameter:
```python Code
# Create a task that instructs the agent to handle errors
error_handling_task = Task(
description="""
Extract content from a potentially problematic website and make sure to handle any
scraping failures gracefully by setting ignore_scrape_failures to True.
""",
expected_output="Either the extracted content or a graceful error message",
agent=web_scraper_agent,
)
```
## Implementation Details
The `ScrapflyScrapeWebsiteTool` uses the Scrapfly SDK to interact with the Scrapfly API:
```python Code
class ScrapflyScrapeWebsiteTool(BaseTool):
name: str = "Scrapfly web scraping API tool"
description: str = (
"Scrape a webpage url using Scrapfly and return its content as markdown or text"
)
# Implementation details...
def _run(
self,
url: str,
scrape_format: str = "markdown",
scrape_config: Optional[Dict[str, Any]] = None,
ignore_scrape_failures: Optional[bool] = None,
):
from scrapfly import ScrapeApiResponse, ScrapeConfig
scrape_config = scrape_config if scrape_config is not None else {}
try:
response: ScrapeApiResponse = self.scrapfly.scrape(
ScrapeConfig(url, format=scrape_format, **scrape_config)
)
return response.scrape_result["content"]
except Exception as e:
if ignore_scrape_failures:
logger.error(f"Error fetching data from {url}, exception: {e}")
return None
else:
raise e
```
## Conclusion
The `ScrapflyScrapeWebsiteTool` provides a powerful way to extract content from websites using Scrapfly's advanced web scraping capabilities. With features like headless browser support, proxies, and anti-bot bypass, it can handle complex websites and extract content in various formats. This tool is particularly useful for data extraction, content monitoring, and research tasks where reliable web scraping is required.

View File

@@ -13,64 +13,183 @@ icon: clipboard-user
## Description
The SeleniumScrapingTool is crafted for high-efficiency web scraping tasks.
The `SeleniumScrapingTool` is crafted for high-efficiency web scraping tasks.
It allows for precise extraction of content from web pages by using CSS selectors to target specific elements.
Its design caters to a wide range of scraping needs, offering flexibility to work with any provided website URL.
## Installation
To get started with the SeleniumScrapingTool, install the crewai_tools package using pip:
To use this tool, you need to install the CrewAI tools package and Selenium:
```shell
pip install 'crewai[tools]'
uv add selenium webdriver-manager
```
## Usage Examples
You'll also need to have Chrome installed on your system, as the tool uses Chrome WebDriver for browser automation.
Below are some scenarios where the SeleniumScrapingTool can be utilized:
## Example
The following example demonstrates how to use the `SeleniumScrapingTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew, Process
from crewai_tools import SeleniumScrapingTool
# Example 1:
# Initialize the tool without any parameters to scrape
# the current page it navigates to
tool = SeleniumScrapingTool()
# Initialize the tool
selenium_tool = SeleniumScrapingTool()
# Example 2:
# Scrape the entire webpage of a given URL
tool = SeleniumScrapingTool(website_url='https://example.com')
# Example 3:
# Target and scrape a specific CSS element from a webpage
tool = SeleniumScrapingTool(
website_url='https://example.com',
css_element='.main-content'
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites using Selenium",
backstory="An expert web scraper who can extract content from dynamic websites.",
tools=[selenium_tool],
verbose=True,
)
# Example 4:
# Perform scraping with additional parameters for a customized experience
tool = SeleniumScrapingTool(
# Example task to scrape content from a website
scrape_task = Task(
description="Extract the main content from the homepage of example.com. Use the CSS selector 'main' to target the main content area.",
expected_output="The main content from example.com's homepage.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(
agents=[web_scraper_agent],
tasks=[scrape_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
selenium_tool = SeleniumScrapingTool(
website_url='https://example.com',
css_element='.main-content',
cookie={'name': 'user', 'value': 'John Doe'},
wait_time=10
wait_time=5
)
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites using Selenium",
backstory="An expert web scraper who can extract content from dynamic websites.",
tools=[selenium_tool],
verbose=True,
)
```
## Arguments
## Parameters
The following parameters can be used to customize the SeleniumScrapingTool's scraping process:
The `SeleniumScrapingTool` accepts the following parameters during initialization:
| Argument | Type | Description |
|:---------------|:---------|:-------------------------------------------------------------------------------------------------------------------------------------|
| **website_url** | `string` | **Mandatory**. Specifies the URL of the website from which content is to be scraped. |
| **css_element** | `string` | **Mandatory**. The CSS selector for a specific element to target on the website, enabling focused scraping of a particular part of a webpage. |
| **cookie** | `object` | **Optional**. A dictionary containing cookie information, useful for simulating a logged-in session to access restricted content. |
| **wait_time** | `int` | **Optional**. Specifies the delay (in seconds) before scraping, allowing the website and any dynamic content to fully load. |
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **css_element**: Optional. The CSS selector for the elements to extract. If provided during initialization, the agent won't need to specify it when using the tool.
- **cookie**: Optional. A dictionary containing cookie information, useful for simulating a logged-in session to access restricted content.
- **wait_time**: Optional. Specifies the delay (in seconds) before scraping, allowing the website and any dynamic content to fully load. Default is `3` seconds.
- **return_html**: Optional. Whether to return the HTML content instead of just the text. Default is `False`.
When using the tool with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
<Warning>
Since the `SeleniumScrapingTool` is under active development, the parameters and functionality may evolve over time.
Users are encouraged to keep the tool updated and report any issues or suggestions for enhancements.
</Warning>
- **website_url**: Required. The URL of the website to scrape.
- **css_element**: Required. The CSS selector for the elements to extract.
## Agent Integration Example
Here's a more detailed example of how to integrate the `SeleniumScrapingTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew, Process
from crewai_tools import SeleniumScrapingTool
# Initialize the tool
selenium_tool = SeleniumScrapingTool()
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract and analyze information from dynamic websites",
backstory="""You are an expert web scraper who specializes in extracting
content from dynamic websites that require browser automation. You have
extensive knowledge of CSS selectors and can identify the right selectors
to target specific content on any website.""",
tools=[selenium_tool],
verbose=True,
)
# Create a task for the agent
scrape_task = Task(
description="""
Extract the following information from the news website at {website_url}:
1. The headlines of all featured articles (CSS selector: '.headline')
2. The publication dates of these articles (CSS selector: '.pub-date')
3. The author names where available (CSS selector: '.author')
Compile this information into a structured format with each article's details grouped together.
""",
expected_output="A structured list of articles with their headlines, publication dates, and authors.",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(
agents=[web_scraper_agent],
tasks=[scrape_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff(inputs={"website_url": "https://news-example.com"})
```
## Implementation Details
The `SeleniumScrapingTool` uses Selenium WebDriver to automate browser interactions:
```python Code
class SeleniumScrapingTool(BaseTool):
name: str = "Read a website content"
description: str = "A tool that can be used to read a website content."
args_schema: Type[BaseModel] = SeleniumScrapingToolSchema
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
css_element = kwargs.get("css_element", self.css_element)
return_html = kwargs.get("return_html", self.return_html)
driver = self._create_driver(website_url, self.cookie, self.wait_time)
content = self._get_content(driver, css_element, return_html)
driver.close()
return "\n".join(content)
```
The tool performs the following steps:
1. Creates a headless Chrome browser instance
2. Navigates to the specified URL
3. Waits for the specified time to allow the page to load
4. Adds any cookies if provided
5. Extracts content based on the CSS selector
6. Returns the extracted content as text or HTML
7. Closes the browser instance
## Handling Dynamic Content
The `SeleniumScrapingTool` is particularly useful for scraping websites with dynamic content that is loaded via JavaScript. By using a real browser instance, it can:
1. Execute JavaScript on the page
2. Wait for dynamic content to load
3. Interact with elements if needed
4. Extract content that would not be available with simple HTTP requests
You can adjust the `wait_time` parameter to ensure that all dynamic content has loaded before extraction.
## Conclusion
The `SeleniumScrapingTool` provides a powerful way to extract content from websites using browser automation. By enabling agents to interact with websites as a real user would, it facilitates scraping of dynamic content that would be difficult or impossible to extract using simpler methods. This tool is particularly useful for research, data collection, and monitoring tasks that involve modern web applications with JavaScript-rendered content.

View File

@@ -0,0 +1,202 @@
---
title: Snowflake Search Tool
description: The `SnowflakeSearchTool` enables CrewAI agents to execute SQL queries and perform semantic search on Snowflake data warehouses.
icon: snowflake
---
# `SnowflakeSearchTool`
## Description
The `SnowflakeSearchTool` is designed to connect to Snowflake data warehouses and execute SQL queries with advanced features like connection pooling, retry logic, and asynchronous execution. This tool allows CrewAI agents to interact with Snowflake databases, making it ideal for data analysis, reporting, and business intelligence tasks that require access to enterprise data stored in Snowflake.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add cryptography snowflake-connector-python snowflake-sqlalchemy
```
Or alternatively:
```shell
uv sync --extra snowflake
```
## Steps to Get Started
To effectively use the `SnowflakeSearchTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using one of the commands above.
2. **Configure Snowflake Connection**: Create a `SnowflakeConfig` object with your Snowflake credentials.
3. **Initialize the Tool**: Create an instance of the tool with the necessary configuration.
4. **Execute Queries**: Use the tool to run SQL queries against your Snowflake database.
## Example
The following example demonstrates how to use the `SnowflakeSearchTool` to query data from a Snowflake database:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SnowflakeSearchTool, SnowflakeConfig
# Create Snowflake configuration
config = SnowflakeConfig(
account="your_account",
user="your_username",
password="your_password",
warehouse="COMPUTE_WH",
database="your_database",
snowflake_schema="your_schema"
)
# Initialize the tool
snowflake_tool = SnowflakeSearchTool(config=config)
# Define an agent that uses the tool
data_analyst_agent = Agent(
role="Data Analyst",
goal="Analyze data from Snowflake database",
backstory="An expert data analyst who can extract insights from enterprise data.",
tools=[snowflake_tool],
verbose=True,
)
# Example task to query sales data
query_task = Task(
description="Query the sales data for the last quarter and summarize the top 5 products by revenue.",
expected_output="A summary of the top 5 products by revenue for the last quarter.",
agent=data_analyst_agent,
)
# Create and run the crew
crew = Crew(agents=[data_analyst_agent],
tasks=[query_task])
result = crew.kickoff()
```
You can also customize the tool with additional parameters:
```python Code
# Initialize the tool with custom parameters
snowflake_tool = SnowflakeSearchTool(
config=config,
pool_size=10,
max_retries=5,
retry_delay=2.0,
enable_caching=True
)
```
## Parameters
### SnowflakeConfig Parameters
The `SnowflakeConfig` class accepts the following parameters:
- **account**: Required. Snowflake account identifier.
- **user**: Required. Snowflake username.
- **password**: Optional*. Snowflake password.
- **private_key_path**: Optional*. Path to private key file (alternative to password).
- **warehouse**: Required. Snowflake warehouse name.
- **database**: Required. Default database.
- **snowflake_schema**: Required. Default schema.
- **role**: Optional. Snowflake role.
- **session_parameters**: Optional. Custom session parameters as a dictionary.
*Either `password` or `private_key_path` must be provided.
### SnowflakeSearchTool Parameters
The `SnowflakeSearchTool` accepts the following parameters during initialization:
- **config**: Required. A `SnowflakeConfig` object containing connection details.
- **pool_size**: Optional. Number of connections in the pool. Default is 5.
- **max_retries**: Optional. Maximum retry attempts for failed queries. Default is 3.
- **retry_delay**: Optional. Delay between retries in seconds. Default is 1.0.
- **enable_caching**: Optional. Whether to enable query result caching. Default is True.
## Usage
When using the `SnowflakeSearchTool`, you need to provide the following parameters:
- **query**: Required. The SQL query to execute.
- **database**: Optional. Override the default database specified in the config.
- **snowflake_schema**: Optional. Override the default schema specified in the config.
- **timeout**: Optional. Query timeout in seconds. Default is 300.
The tool will return the query results as a list of dictionaries, where each dictionary represents a row with column names as keys.
```python Code
# Example of using the tool with an agent
data_analyst = Agent(
role="Data Analyst",
goal="Analyze sales data from Snowflake",
backstory="An expert data analyst with experience in SQL and data visualization.",
tools=[snowflake_tool],
verbose=True
)
# The agent will use the tool with parameters like:
# query="SELECT product_name, SUM(revenue) as total_revenue FROM sales GROUP BY product_name ORDER BY total_revenue DESC LIMIT 5"
# timeout=600
# Create a task for the agent
analysis_task = Task(
description="Query the sales database and identify the top 5 products by revenue for the last quarter.",
expected_output="A detailed analysis of the top 5 products by revenue.",
agent=data_analyst
)
# Run the task
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task]
)
result = crew.kickoff()
```
## Advanced Features
### Connection Pooling
The `SnowflakeSearchTool` implements connection pooling to improve performance by reusing database connections. You can control the pool size with the `pool_size` parameter.
### Automatic Retries
The tool automatically retries failed queries with exponential backoff. You can configure the retry behavior with the `max_retries` and `retry_delay` parameters.
### Query Result Caching
To improve performance for repeated queries, the tool can cache query results. This feature is enabled by default but can be disabled by setting `enable_caching=False`.
### Key-Pair Authentication
In addition to password authentication, the tool supports key-pair authentication for enhanced security:
```python Code
config = SnowflakeConfig(
account="your_account",
user="your_username",
private_key_path="/path/to/your/private/key.p8",
warehouse="COMPUTE_WH",
database="your_database",
snowflake_schema="your_schema"
)
```
## Error Handling
The `SnowflakeSearchTool` includes comprehensive error handling for common Snowflake issues:
- Connection failures
- Query timeouts
- Authentication errors
- Database and schema errors
When an error occurs, the tool will attempt to retry the operation (if configured) and provide detailed error information.
## Conclusion
The `SnowflakeSearchTool` provides a powerful way to integrate Snowflake data warehouses with CrewAI agents. With features like connection pooling, automatic retries, and query caching, it enables efficient and reliable access to enterprise data. This tool is particularly useful for data analysis, reporting, and business intelligence tasks that require access to structured data stored in Snowflake.

View File

@@ -0,0 +1,164 @@
---
title: Weaviate Vector Search
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents.
icon: database
---
# `WeaviateVectorSearchTool`
## Description
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector embeddings for more accurate and contextually relevant search results.
[Weaviate](https://weaviate.io/) is a vector database that stores and queries vector embeddings, enabling semantic search capabilities.
## Installation
To incorporate this tool into your project, you need to install the Weaviate client:
```shell
uv add weaviate-client
```
## Steps to Get Started
To effectively use the `WeaviateVectorSearchTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` and `weaviate-client` packages are installed in your Python environment.
2. **Weaviate Setup**: Set up a Weaviate cluster. You can follow the [Weaviate documentation](https://weaviate.io/developers/wcs/connect) for instructions.
3. **API Keys**: Obtain your Weaviate cluster URL and API key.
4. **OpenAI API Key**: Ensure you have an OpenAI API key set in your environment variables as `OPENAI_API_KEY`.
## Example
The following example demonstrates how to initialize the tool and execute a search:
```python Code
from crewai_tools import WeaviateVectorSearchTool
# Initialize the tool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@agent
def search_agent(self) -> Agent:
'''
This agent uses the WeaviateVectorSearchTool to search for
semantically similar documents in a Weaviate vector database.
'''
return Agent(
config=self.agents_config["search_agent"],
tools=[tool]
)
```
## Parameters
The `WeaviateVectorSearchTool` accepts the following parameters:
- **collection_name**: Required. The name of the collection to search within.
- **weaviate_cluster_url**: Required. The URL of the Weaviate cluster.
- **weaviate_api_key**: Required. The API key for the Weaviate cluster.
- **limit**: Optional. The number of results to return. Default is `3`.
- **vectorizer**: Optional. The vectorizer to use. If not provided, it will use `text2vec_openai` with the `nomic-embed-text` model.
- **generative_model**: Optional. The generative model to use. If not provided, it will use OpenAI's `gpt-4o`.
## Advanced Configuration
You can customize the vectorizer and generative model used by the tool:
```python Code
from crewai_tools import WeaviateVectorSearchTool
from weaviate.classes.config import Configure
# Setup custom model for vectorizer and generative model
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
vectorizer=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_model=Configure.Generative.openai(model="gpt-4o-mini"),
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
```
## Preloading Documents
You can preload your Weaviate database with documents before using the tool:
```python Code
import os
from crewai_tools import WeaviateVectorSearchTool
import weaviate
from weaviate.classes.init import Auth
# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
cluster_url="https://your-weaviate-cluster-url.com",
auth_credentials=Auth.api_key("your-weaviate-api-key"),
headers={"X-OpenAI-Api-Key": "your-openai-api-key"}
)
# Get or create collection
test_docs = client.collections.get("example_collections")
if not test_docs:
test_docs = client.collections.create(
name="example_collections",
vectorizer_config=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_config=Configure.Generative.openai(model="gpt-4o"),
)
# Load documents
docs_to_load = os.listdir("knowledge")
with test_docs.batch.dynamic() as batch:
for d in docs_to_load:
with open(os.path.join("knowledge", d), "r") as f:
content = f.read()
batch.add_object(
{
"content": content,
"year": d.split("_")[0],
}
)
# Initialize the tool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
```
## Agent Integration Example
Here's how to integrate the `WeaviateVectorSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai_tools import WeaviateVectorSearchTool
# Initialize the tool
weaviate_tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
# Create an agent with the tool
rag_agent = Agent(
name="rag_agent",
role="You are a helpful assistant that can answer questions with the help of the WeaviateVectorSearchTool.",
llm="gpt-4o-mini",
tools=[weaviate_tool],
)
```
## Conclusion
The `WeaviateVectorSearchTool` provides a powerful way to search for semantically similar documents in a Weaviate vector database. By leveraging vector embeddings, it enables more accurate and contextually relevant search results compared to traditional keyword-based searches. This tool is particularly useful for applications that require finding information based on meaning rather than exact matches.

View File

@@ -27,31 +27,73 @@ pip install 'crewai[tools]'
## Example
To begin using the YoutubeChannelSearchTool, follow the example below.
This demonstrates initializing the tool with a specific Youtube channel handle and conducting a search within that channel's content.
The following example demonstrates how to use the `YoutubeChannelSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeChannelSearchTool
# Initialize the tool to search within any Youtube channel's content the agent learns about during its execution
tool = YoutubeChannelSearchTool()
# Initialize the tool for general YouTube channel searches
youtube_channel_tool = YoutubeChannelSearchTool()
# OR
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract relevant information from YouTube channels",
backstory="An expert researcher who specializes in analyzing YouTube channel content.",
tools=[youtube_channel_tool],
verbose=True,
)
# Initialize the tool with a specific Youtube channel handle to target your search
tool = YoutubeChannelSearchTool(youtube_channel_handle='@exampleChannel')
# Example task to search for information in a specific channel
research_task = Task(
description="Search for information about machine learning tutorials in the YouTube channel {youtube_channel_handle}",
expected_output="A summary of the key machine learning tutorials available on the channel.",
agent=channel_researcher,
)
# Create and run the crew
crew = Crew(agents=[channel_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_channel_handle": "@exampleChannel"})
```
## Arguments
You can also initialize the tool with a specific YouTube channel handle:
- `youtube_channel_handle` : A mandatory string representing the Youtube channel handle. This parameter is crucial for initializing the tool to specify the channel you want to search within. The tool is designed to only search within the content of the provided channel handle.
```python Code
# Initialize the tool with a specific YouTube channel handle
youtube_channel_tool = YoutubeChannelSearchTool(
youtube_channel_handle='@exampleChannel'
)
## Custom model and embeddings
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract relevant information from a specific YouTube channel",
backstory="An expert researcher who specializes in analyzing YouTube channel content.",
tools=[youtube_channel_tool],
verbose=True,
)
```
## Parameters
The `YoutubeChannelSearchTool` accepts the following parameters:
- **youtube_channel_handle**: Optional. The handle of the YouTube channel to search within. If provided during initialization, the agent won't need to specify it when using the tool. If the handle doesn't start with '@', it will be automatically added.
- **config**: Optional. Configuration for the underlying RAG system, including LLM and embedder settings.
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
When using the tool with an agent, the agent will need to provide:
- **search_query**: Required. The search query to find relevant information in the channel content.
- **youtube_channel_handle**: Required only if not provided during initialization. The handle of the YouTube channel to search within.
## Custom Model and Embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
tool = YoutubeChannelSearchTool(
```python Code
youtube_channel_tool = YoutubeChannelSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
@@ -72,4 +114,81 @@ tool = YoutubeChannelSearchTool(
),
)
)
```
```
## Agent Integration Example
Here's a more detailed example of how to integrate the `YoutubeChannelSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeChannelSearchTool
# Initialize the tool
youtube_channel_tool = YoutubeChannelSearchTool()
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract and analyze information from YouTube channels",
backstory="""You are an expert channel researcher who specializes in extracting
and analyzing information from YouTube channels. You have a keen eye for detail
and can quickly identify key points and insights from video content across an entire channel.""",
tools=[youtube_channel_tool],
verbose=True,
)
# Create a task for the agent
research_task = Task(
description="""
Search for information about data science projects and tutorials
in the YouTube channel {youtube_channel_handle}.
Focus on:
1. Key data science techniques covered
2. Popular tutorial series
3. Most viewed or recommended videos
Provide a comprehensive summary of these points.
""",
expected_output="A detailed summary of data science content available on the channel.",
agent=channel_researcher,
)
# Run the task
crew = Crew(agents=[channel_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_channel_handle": "@exampleDataScienceChannel"})
```
## Implementation Details
The `YoutubeChannelSearchTool` is implemented as a subclass of `RagTool`, which provides the base functionality for Retrieval-Augmented Generation:
```python Code
class YoutubeChannelSearchTool(RagTool):
name: str = "Search a Youtube Channels content"
description: str = "A tool that can be used to semantic search a query from a Youtube Channels content."
args_schema: Type[BaseModel] = YoutubeChannelSearchToolSchema
def __init__(self, youtube_channel_handle: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if youtube_channel_handle is not None:
kwargs["data_type"] = DataType.YOUTUBE_CHANNEL
self.add(youtube_channel_handle)
self.description = f"A tool that can be used to semantic search a query the {youtube_channel_handle} Youtube Channels content."
self.args_schema = FixedYoutubeChannelSearchToolSchema
self._generate_description()
def add(
self,
youtube_channel_handle: str,
**kwargs: Any,
) -> None:
if not youtube_channel_handle.startswith("@"):
youtube_channel_handle = f"@{youtube_channel_handle}"
super().add(youtube_channel_handle, **kwargs)
```
## Conclusion
The `YoutubeChannelSearchTool` provides a powerful way to search and extract information from YouTube channel content using RAG techniques. By enabling agents to search across an entire channel's videos, it facilitates information extraction and analysis tasks that would otherwise be difficult to perform. This tool is particularly useful for research, content analysis, and knowledge extraction from YouTube channels.

View File

@@ -29,35 +29,73 @@ pip install 'crewai[tools]'
## Example
To integrate the YoutubeVideoSearchTool into your Python projects, follow the example below.
This demonstrates how to use the tool both for general Youtube content searches and for targeted searches within a specific video's content.
The following example demonstrates how to use the `YoutubeVideoSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeVideoSearchTool
# General search across Youtube content without specifying a video URL,
# so the agent can search within any Youtube video content
# it learns about its url during its operation
tool = YoutubeVideoSearchTool()
# Initialize the tool for general YouTube video searches
youtube_search_tool = YoutubeVideoSearchTool()
# Targeted search within a specific Youtube video's content
tool = YoutubeVideoSearchTool(
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract relevant information from YouTube videos",
backstory="An expert researcher who specializes in analyzing video content.",
tools=[youtube_search_tool],
verbose=True,
)
# Example task to search for information in a specific video
research_task = Task(
description="Search for information about machine learning frameworks in the YouTube video at {youtube_video_url}",
expected_output="A summary of the key machine learning frameworks mentioned in the video.",
agent=video_researcher,
)
# Create and run the crew
crew = Crew(agents=[video_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_video_url": "https://youtube.com/watch?v=example"})
```
You can also initialize the tool with a specific YouTube video URL:
```python Code
# Initialize the tool with a specific YouTube video URL
youtube_search_tool = YoutubeVideoSearchTool(
youtube_video_url='https://youtube.com/watch?v=example'
)
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract relevant information from a specific YouTube video",
backstory="An expert researcher who specializes in analyzing video content.",
tools=[youtube_search_tool],
verbose=True,
)
```
## Arguments
## Parameters
The YoutubeVideoSearchTool accepts the following initialization arguments:
The `YoutubeVideoSearchTool` accepts the following parameters:
- `youtube_video_url`: An optional argument at initialization but required if targeting a specific Youtube video. It specifies the Youtube video URL path you want to search within.
- **youtube_video_url**: Optional. The URL of the YouTube video to search within. If provided during initialization, the agent won't need to specify it when using the tool.
- **config**: Optional. Configuration for the underlying RAG system, including LLM and embedder settings.
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
## Custom model and embeddings
When using the tool with an agent, the agent will need to provide:
- **search_query**: Required. The search query to find relevant information in the video content.
- **youtube_video_url**: Required only if not provided during initialization. The URL of the YouTube video to search within.
## Custom Model and Embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
tool = YoutubeVideoSearchTool(
youtube_search_tool = YoutubeVideoSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
@@ -78,4 +116,72 @@ tool = YoutubeVideoSearchTool(
),
)
)
```
```
## Agent Integration Example
Here's a more detailed example of how to integrate the `YoutubeVideoSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeVideoSearchTool
# Initialize the tool
youtube_search_tool = YoutubeVideoSearchTool()
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract and analyze information from YouTube videos",
backstory="""You are an expert video researcher who specializes in extracting
and analyzing information from YouTube videos. You have a keen eye for detail
and can quickly identify key points and insights from video content.""",
tools=[youtube_search_tool],
verbose=True,
)
# Create a task for the agent
research_task = Task(
description="""
Search for information about recent advancements in artificial intelligence
in the YouTube video at {youtube_video_url}.
Focus on:
1. Key AI technologies mentioned
2. Real-world applications discussed
3. Future predictions made by the speaker
Provide a comprehensive summary of these points.
""",
expected_output="A detailed summary of AI advancements, applications, and future predictions from the video.",
agent=video_researcher,
)
# Run the task
crew = Crew(agents=[video_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_video_url": "https://youtube.com/watch?v=example"})
```
## Implementation Details
The `YoutubeVideoSearchTool` is implemented as a subclass of `RagTool`, which provides the base functionality for Retrieval-Augmented Generation:
```python Code
class YoutubeVideoSearchTool(RagTool):
name: str = "Search a Youtube Video content"
description: str = "A tool that can be used to semantic search a query from a Youtube Video content."
args_schema: Type[BaseModel] = YoutubeVideoSearchToolSchema
def __init__(self, youtube_video_url: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if youtube_video_url is not None:
kwargs["data_type"] = DataType.YOUTUBE_VIDEO
self.add(youtube_video_url)
self.description = f"A tool that can be used to semantic search a query the {youtube_video_url} Youtube Video content."
self.args_schema = FixedYoutubeVideoSearchToolSchema
self._generate_description()
```
## Conclusion
The `YoutubeVideoSearchTool` provides a powerful way to search and extract information from YouTube video content using RAG techniques. By enabling agents to search within video content, it facilitates information extraction and analysis tasks that would otherwise be difficult to perform. This tool is particularly useful for research, content analysis, and knowledge extraction from video sources.

View File

@@ -152,6 +152,7 @@ nav:
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Agent Monitoring with OpenLIT: 'how-to/openlit-Observability.md'
- Agent Monitoring with MLflow: 'how-to/mlflow-Observability.md'
- Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.95.0"
version = "0.102.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -11,27 +11,22 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.57.4",
"litellm==1.60.2",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
"auth0-python>=4.7.1",
"python-dotenv>=1.0.0",
# Configuration and Utils
"click>=8.1.7",
"appdirs>=1.4.4",
@@ -40,7 +35,8 @@ dependencies = [
"uv>=0.4.25",
"tomli-w>=1.1.0",
"tomli>=2.0.2",
"blinker>=1.9.0"
"blinker>=1.9.0",
"json5>=0.10.0",
]
[project.urls]
@@ -49,7 +45,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.25.5"]
tools = ["crewai-tools>=0.36.0"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.95.0"
__version__ = "0.102.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,14 +1,13 @@
import os
import re
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Union
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
@@ -17,29 +16,20 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
@track_agent()
class Agent(BaseAgent):
"""Represents an agent in a system.
@@ -56,13 +46,13 @@ class Agent(BaseAgent):
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
max_iter: Maximum number of iterations for an agent to execute a task.
memory: Whether the agent should have memory or not.
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
embedder: Embedder configuration for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -72,9 +62,6 @@ class Agent(BaseAgent):
)
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
step_callback: Optional[Any] = Field(
default=None,
description="Callback to be executed after each step of the agent execution.",
@@ -108,10 +95,6 @@ class Agent(BaseAgent):
default=True,
description="Keep messages under the context window size by summarizing content.",
)
max_iter: int = Field(
default=20,
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
)
max_retry_limit: int = Field(
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
@@ -124,21 +107,13 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder_config: Optional[Dict[str, Any]] = Field(
embedder: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
@@ -158,17 +133,22 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def _set_knowledge(self):
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
if self.knowledge_sources:
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
self.knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder_config,
embedder=self.embedder,
collection_name=knowledge_agent_name,
storage=self.knowledge_storage or None,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
@@ -202,13 +182,15 @@ class Agent(BaseAgent):
if task.output_json:
# schema = json.dumps(task.output_json, indent=2)
schema = generate_model_description(task.output_json)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
elif task.output_pydantic:
schema = generate_model_description(task.output_pydantic)
task_prompt += "\n" + self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
if context:
task_prompt = self.i18n.slice("task_with_context").format(
@@ -227,8 +209,8 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if self.knowledge:
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
@@ -252,6 +234,15 @@ class Agent(BaseAgent):
task_prompt = self._use_trained_data(task_prompt=task_prompt)
try:
crewai_event_bus.emit(
self,
event=AgentExecutionStartedEvent(
agent=self,
tools=self.tools,
task_prompt=task_prompt,
task=task,
),
)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -261,8 +252,27 @@ class Agent(BaseAgent):
}
)["output"]
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
result = self.execute_task(task, context, tools)
@@ -275,7 +285,10 @@ class Agent(BaseAgent):
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
return result
def create_agent_executor(
@@ -333,14 +346,14 @@ class Agent(BaseAgent):
tools = agent_tools.tools()
return tools
def get_multimodal_tools(self) -> List[Tool]:
def get_multimodal_tools(self) -> Sequence[BaseTool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool
from crewai_tools import CodeInterpreterTool # type: ignore
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"

View File

@@ -18,10 +18,12 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.tools.base_tool import BaseTool, Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
T = TypeVar("T", bound="BaseAgent")
@@ -40,7 +42,7 @@ class BaseAgent(ABC, BaseModel):
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
allow_delegation (bool): Allow delegation of tasks to agents.
tools (Optional[List[Any]]): Tools at the agent's disposal.
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
max_iter (int): Maximum iterations for an agent to execute a task.
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
llm (Any): Language model that will run the agent.
crew (Any): Crew to which the agent belongs.
@@ -48,6 +50,8 @@ class BaseAgent(ABC, BaseModel):
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
knowledge_sources: Knowledge sources for the agent.
knowledge_storage: Custom knowledge storage for the agent.
Methods:
@@ -107,10 +111,10 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
max_iter: int = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
agent_executor: InstanceOf = Field(
@@ -121,15 +125,27 @@ class BaseAgent(ABC, BaseModel):
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
cache_handler: InstanceOf[CacheHandler] = Field(
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
default=None, description="An instance of the CacheHandler class."
)
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
default_factory=ToolsHandler,
description="An instance of the ToolsHandler class.",
)
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
knowledge: Optional[Knowledge] = Field(
default=None, description="Knowledge for the agent."
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
knowledge_storage: Optional[Any] = Field(
default=None,
description="Custom knowledge storage for the agent.",
)
@model_validator(mode="before")
@classmethod
@@ -239,7 +255,7 @@ class BaseAgent(ABC, BaseModel):
@abstractmethod
def get_output_converter(
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
):
) -> Converter:
"""Get the converter class for the agent to create json/pydantic outputs."""
pass
@@ -256,13 +272,44 @@ class BaseAgent(ABC, BaseModel):
"tools_handler",
"cache_handler",
"llm",
"knowledge_sources",
"knowledge_storage",
"knowledge",
}
# Copy llm and clear callbacks
# Copy llm
existing_llm = shallow_copy(self.llm)
copied_knowledge = shallow_copy(self.knowledge)
copied_knowledge_storage = shallow_copy(self.knowledge_storage)
# Properly copy knowledge sources if they exist
existing_knowledge_sources = None
if self.knowledge_sources:
# Create a shared storage instance for all knowledge sources
shared_storage = (
self.knowledge_sources[0].storage if self.knowledge_sources else None
)
existing_knowledge_sources = []
for source in self.knowledge_sources:
copied_source = (
source.model_copy()
if hasattr(source, "model_copy")
else shallow_copy(source)
)
# Ensure all copied sources use the same storage instance
copied_source.storage = shared_storage
existing_knowledge_sources.append(copied_source)
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
copied_agent = type(self)(
**copied_data,
llm=existing_llm,
tools=self.tools,
knowledge_sources=existing_knowledge_sources,
knowledge=copied_knowledge,
knowledge_storage=copied_knowledge_storage,
)
return copied_agent
@@ -304,3 +351,6 @@ class BaseAgent(ABC, BaseModel):
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
pass

View File

@@ -95,18 +95,34 @@ class CrewAgentExecutorMixin:
pass
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input for final decision making."""
"""Prompt human input with mode-appropriate messaging."""
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
self._printer.print(
content=(
# Training mode prompt (single iteration)
if self.crew and getattr(self.crew, "_train", False):
prompt = (
"\n\n=====\n"
"## Please provide feedback on the Final Result and the Agent's actions. "
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
"This will be used to train better versions of the agent.\n"
"Please provide detailed feedback about the result quality and reasoning process.\n"
"=====\n"
),
color="bold_yellow",
)
return input()
)
# Regular human-in-the-loop prompt (multiple iterations)
else:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
)
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response

View File

@@ -25,17 +25,17 @@ class OutputConverter(BaseModel, ABC):
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attempts: Optional[int] = Field(
max_attempts: int = Field(
description="Max number of attempts to try to get the output formatted.",
default=3,
)
@abstractmethod
def to_pydantic(self, current_attempt=1):
def to_pydantic(self, current_attempt=1) -> BaseModel:
"""Convert text to pydantic."""
pass
@abstractmethod
def to_json(self, current_attempt=1):
def to_json(self, current_attempt=1) -> dict:
"""Convert text to json."""
pass

View File

@@ -2,25 +2,26 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
def __init__(self) -> None:
self.total_tokens: int = 0
self.prompt_tokens: int = 0
self.cached_prompt_tokens: int = 0
self.completion_tokens: int = 0
self.successful_requests: int = 0
def sum_prompt_tokens(self, tokens: int):
self.prompt_tokens = self.prompt_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_prompt_tokens(self, tokens: int) -> None:
self.prompt_tokens += tokens
self.total_tokens += tokens
def sum_completion_tokens(self, tokens: int):
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_completion_tokens(self, tokens: int) -> None:
self.completion_tokens += tokens
self.total_tokens += tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int) -> None:
self.cached_prompt_tokens += tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def sum_successful_requests(self, requests: int) -> None:
self.successful_requests += requests
def get_summary(self) -> UsageMetrics:
return UsageMetrics(

View File

@@ -13,10 +13,17 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.llm import LLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -54,7 +61,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm = llm
self.llm: LLM = llm
self.task = task
self.agent = agent
self.crew = crew
@@ -80,10 +87,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
self.llm.stop = self.stop
self.stop = stop_words
self.llm.stop = list(set(self.llm.stop + self.stop))
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
@@ -98,7 +103,22 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
formatted_answer = self._invoke_loop()
try:
formatted_answer = self._invoke_loop()
except AssertionError:
self._printer.print(
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
color="red",
)
raise
except Exception as e:
self._handle_unknown_error(e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
raise e
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
@@ -107,7 +127,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self):
def _invoke_loop(self) -> AgentFinish:
"""
Main loop to invoke the agent's thought process until it reaches a conclusion
or the maximum number of iterations is reached.
@@ -124,7 +144,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._enforce_rpm_limit()
answer = self._get_llm_response()
formatted_answer = self._process_llm_response(answer)
if isinstance(formatted_answer, AgentAction):
@@ -142,13 +161,37 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._handle_output_parser_exception(e)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if self._is_context_length_exceeded(e):
self._handle_context_length()
continue
else:
self._handle_unknown_error(e)
raise e
finally:
self.iterations += 1
# During the invoke loop, formatted_answer alternates between AgentAction
# (when the agent is using tools) and eventually becomes AgentFinish
# (when the agent reaches a final answer). This assertion confirms we've
# reached a final answer and helps type checking understand this transition.
assert isinstance(formatted_answer, AgentFinish)
self._show_logs(formatted_answer)
return formatted_answer
def _handle_unknown_error(self, exception: Exception) -> None:
"""Handle unknown errors by informing the user."""
self._printer.print(
content="An unknown error occurred. Please check the details below.",
color="red",
)
self._printer.print(
content=f"Error details: {exception}",
color="red",
)
def _has_reached_max_iterations(self) -> bool:
"""Check if the maximum number of iterations has been reached."""
return self.iterations >= self.max_iter
@@ -160,10 +203,17 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _get_llm_response(self) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
try:
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
except Exception as e:
self._printer.print(
content=f"Error during LLM call: {e}",
color="red",
)
raise e
if not answer:
self._printer.print(
@@ -184,7 +234,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
answer = answer.split("Observation:")[0].strip()
self.iterations += 1
return self._format_answer(answer)
def _handle_agent_action(
@@ -260,8 +309,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
description = (
getattr(self.task, "description") if self.task else "Not Found"
)
self._printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
content=f"\033[95m## Task:\033[00m \033[92m{description}\033[00m"
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
@@ -303,40 +355,68 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
try:
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
),
)
return ToolResult(result=tool_result, result_as_answer=False)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
except Exception as e:
# TODO: drop
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageErrorEvent( # validation error
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
error=str(e),
),
)
raise e
def _summarize_messages(self) -> None:
messages_groups = []
@@ -386,58 +466,50 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: str | None = None
self, result: AgentFinish, human_feedback: Optional[str] = None
) -> None:
"""Function to handle the process of the training data."""
"""Handle the process of saving training data."""
agent_id = str(self.agent.id) # type: ignore
train_iteration = (
getattr(self.crew, "_train_iteration", None) if self.crew else None
)
if train_iteration is None or not isinstance(train_iteration, int):
self._printer.print(
content="Invalid or missing train iteration. Cannot save training data.",
color="red",
)
return
# Load training data
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load()
training_data = training_handler.load() or {}
# Check if training data exists, human input is not requested, and self.crew is valid
if training_data and not self.ask_for_human_input:
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._printer.print(
content="Invalid train iteration type or agent_id not in training data.",
color="red",
)
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
# Initialize or retrieve agent's training data
agent_training_data = training_data.get(agent_id, {})
if self.ask_for_human_input and human_feedback is not None:
training_data = {
if human_feedback is not None:
# Save initial output and human feedback
agent_training_data[train_iteration] = {
"initial_output": result.output,
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.agent.role, # type: ignore
}
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if isinstance(train_iteration, int):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
train_iteration, agent_id, training_data
)
else:
self._printer.print(
content="Invalid train iteration type. Expected int.",
color="red",
)
else:
# Save improved output
if train_iteration in agent_training_data:
agent_training_data[train_iteration]["improved_output"] = result.output
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
content=(
f"No existing training data for agent {agent_id} and iteration "
f"{train_iteration}. Cannot save improved output."
),
color="red",
)
return
# Update the training data and save
training_data[agent_id] = agent_training_data
training_handler.save(training_data)
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
@@ -453,82 +525,85 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""
Handles the human feedback loop, allowing the user to provide feedback
on the agent's output and determining if additional iterations are needed.
"""Handle human feedback with different flows for training vs regular use.
Parameters:
formatted_answer (AgentFinish): The initial output from the agent.
Args:
formatted_answer: The initial AgentFinish result to get feedback on
Returns:
AgentFinish: The final output after incorporating human feedback.
AgentFinish: The final answer after processing feedback
"""
human_feedback = self._ask_human_input(formatted_answer.output)
if self._is_training_mode():
return self._handle_training_feedback(formatted_answer, human_feedback)
return self._handle_regular_feedback(formatted_answer, human_feedback)
def _is_training_mode(self) -> bool:
"""Check if crew is in training mode."""
return bool(self.crew and self.crew._train)
def _handle_training_feedback(
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process feedback for training scenarios with single iteration."""
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
self._format_msg(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
improved_answer = self._invoke_loop()
self._handle_crew_training_output(improved_answer)
self.ask_for_human_input = False
return improved_answer
def _handle_regular_feedback(
self, current_answer: AgentFinish, initial_feedback: str
) -> AgentFinish:
"""Process feedback for regular use with potential multiple iterations."""
feedback = initial_feedback
answer = current_answer
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Make an LLM call to verify if additional changes are requested based on human feedback
additional_changes_prompt = self._i18n.slice(
"human_feedback_classification"
).format(feedback=human_feedback)
retry_count = 0
llm_call_successful = False
additional_changes_response = None
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
try:
additional_changes_response = (
self.llm.call(
[
self._format_msg(
additional_changes_prompt, role="system"
)
],
callbacks=self.callbacks,
)
.strip()
.lower()
)
llm_call_successful = True
except Exception as e:
retry_count += 1
self._printer.print(
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
color="red",
)
if not llm_call_successful:
self._printer.print(
content="Error processing feedback after multiple attempts.",
color="red",
)
# If the user provides a blank response, assume they are happy with the result
if feedback.strip() == "":
self.ask_for_human_input = False
break
if additional_changes_response == "false":
self.ask_for_human_input = False
elif additional_changes_response == "true":
self.ask_for_human_input = True
# Add human feedback to messages
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
# Invoke the loop again with updated messages
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
else:
# Unexpected response
self._printer.print(
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
color="red",
)
self.ask_for_human_input = False
answer = self._process_feedback_iteration(feedback)
feedback = self._ask_human_input(answer.output)
return formatted_answer
return answer
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(
self._format_msg(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
return self._invoke_loop()
def _log_feedback_error(self, retry_count: int, error: Exception) -> None:
"""Log feedback processing errors."""
self._printer.print(
content=(
f"Error processing feedback: {error}. "
f"Retrying... ({retry_count + 1}/{MAX_LLM_RETRY})"
),
color="red",
)
def _log_max_retries_exceeded(self) -> None:
"""Log when max retries for feedback processing are exceeded."""
self._printer.print(
content=(
f"Failed to process feedback after {MAX_LLM_RETRY} attempts. "
"Ending feedback loop."
),
color="red",
)
def _handle_max_iterations_exceeded(self, formatted_answer):
"""

View File

@@ -94,6 +94,13 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -117,11 +124,15 @@ class CrewAgentParser:
)
def _extract_thought(self, text: str) -> str:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
return ""
thought_index = text.find("\n\nAction")
if thought_index == -1:
thought_index = text.find("\n\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""

View File

@@ -203,7 +203,6 @@ def install(context):
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()
@@ -350,7 +349,10 @@ def chat():
Start a conversation with the Crew, collecting user-supplied inputs,
and using the Chat LLM to generate responses.
"""
click.echo("Starting a conversation with the Crew")
click.secho(
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
)
run_chat()

View File

@@ -216,10 +216,43 @@ MODELS = {
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/us.amazon.nova-pro-v1:0",
"bedrock/us.amazon.nova-micro-v1:0",
"bedrock/us.amazon.nova-lite-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/us.anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/us.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/us.anthropic.claude-3-opus-20240229-v1:0",
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
"bedrock/us.meta.llama3-2-90b-instruct-v1:0",
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
"bedrock/us.meta.llama3-1-8b-instruct-v1:0",
"bedrock/us.meta.llama3-1-70b-instruct-v1:0",
"bedrock/us.meta.llama3-3-70b-instruct-v1:0",
"bedrock/us.meta.llama3-1-405b-instruct-v1:0",
"bedrock/eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/eu.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/eu.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/eu.meta.llama3-2-3b-instruct-v1:0",
"bedrock/eu.meta.llama3-2-1b-instruct-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/apac.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/apac.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/amazon.nova-pro-v1:0",
"bedrock/amazon.nova-micro-v1:0",
"bedrock/amazon.nova-lite-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
@@ -234,8 +267,6 @@ MODELS = {
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],

View File

@@ -1,17 +1,52 @@
import json
import platform
import re
import sys
import threading
import time
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple
import click
import tomli
from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
MIN_REQUIRED_VERSION = "0.98.0"
def check_conversational_crews_version(
crewai_version: str, pyproject_data: dict
) -> bool:
"""
Check if the installed crewAI version supports conversational crews.
Args:
crewai_version: The current version of crewAI.
pyproject_data: Dictionary containing pyproject.toml data.
Returns:
bool: True if version check passes, False otherwise.
"""
try:
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
click.secho(
"You are using an older version of crewAI that doesn't support conversational crews. "
"Run 'uv upgrade crewai' to get the latest version.",
fg="red",
)
return False
except version.InvalidVersion:
click.secho("Invalid crewAI version format detected.", fg="red")
return False
return True
def run_chat():
"""
@@ -19,20 +54,47 @@ def run_chat():
Incorporates crew_name, crew_description, and input fields to build a tool schema.
Exits if crew_name or crew_description are missing.
"""
crewai_version = get_crewai_version()
pyproject_data = read_toml()
if not check_conversational_crews_version(crewai_version, pyproject_data):
return
crew, crew_name = load_crew_and_name()
chat_llm = initialize_chat_llm(crew)
if not chat_llm:
return
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
# Indicate that the crew is being analyzed
click.secho(
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
"depending on the complexity of your crew.",
fg="white",
)
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
# Start loading indicator
loading_complete = threading.Event()
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
loading_thread.start()
try:
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
)
finally:
# Stop loading indicator
loading_complete.set()
loading_thread.join()
# Indicate that the analysis is complete
click.secho("\nFinished analyzing crew.\n", fg="white")
click.secho(f"Assistant: {introductory_message}\n", fg="green")
messages = [
{"role": "system", "content": system_message},
@@ -43,15 +105,17 @@ def run_chat():
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
}
click.secho(
"\nEntering an interactive chat loop with function-calling.\n"
"Type 'exit' or Ctrl+C to quit.\n",
fg="cyan",
)
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
def show_loading(event: threading.Event):
"""Display animated loading dots while processing."""
while not event.is_set():
print(".", end="", flush=True)
time.sleep(1)
print()
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
@@ -85,7 +149,7 @@ def build_system_message(crew_chat_inputs: ChatInputs) -> str:
"Please keep your responses concise and friendly. "
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
f"\nCrew Name: {crew_chat_inputs.crew_name}"
@@ -102,25 +166,33 @@ def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
return run_crew_tool_with_messages
def flush_input():
"""Flush any pending input from the user."""
if platform.system() == "Windows":
# Windows platform
import msvcrt
while msvcrt.kbhit():
msvcrt.getch()
else:
# Unix-like platforms (Linux, macOS)
import termios
termios.tcflush(sys.stdin, termios.TCIFLUSH)
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
"""Main chat loop for interacting with the user."""
while True:
try:
user_input = click.prompt("You", type=str)
if user_input.strip().lower() in ["exit", "quit"]:
click.echo("Exiting chat. Goodbye!")
break
# Flush any pending input before accepting new input
flush_input()
messages.append({"role": "user", "content": user_input})
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
user_input = get_user_input()
handle_user_input(
user_input, chat_llm, messages, crew_tool_schema, available_functions
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
except KeyboardInterrupt:
click.echo("\nExiting chat. Goodbye!")
break
@@ -129,6 +201,55 @@ def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
break
def get_user_input() -> str:
"""Collect multi-line user input with exit handling."""
click.secho(
"\nYou (type your message below. Press 'Enter' twice when you're done):",
fg="blue",
)
user_input_lines = []
while True:
line = input()
if line.strip().lower() == "exit":
return "exit"
if line == "":
break
user_input_lines.append(line)
return "\n".join(user_input_lines)
def handle_user_input(
user_input: str,
chat_llm: LLM,
messages: List[Dict[str, str]],
crew_tool_schema: Dict[str, Any],
available_functions: Dict[str, Any],
) -> None:
if user_input.strip().lower() == "exit":
click.echo("Exiting chat. Goodbye!")
return
if not user_input.strip():
click.echo("Empty message. Please provide input or type 'exit' to quit.")
return
messages.append({"role": "user", "content": user_input})
# Indicate that assistant is processing
click.echo()
click.secho("Assistant is processing your input. Please wait...", fg="green")
# Process assistant's response
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
"""
Dynamically build a Littellm 'function' schema for the given crew.
@@ -323,10 +444,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
):
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
@@ -337,10 +458,10 @@ def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) ->
or f"{{{input_name}}}" in agent.backstory
):
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
@@ -381,18 +502,20 @@ def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
for task in crew.tasks:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")

View File

@@ -2,11 +2,7 @@ import subprocess
import click
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.cli.utils import get_crew
def reset_memories_command(
@@ -30,30 +26,35 @@ def reset_memories_command(
"""
try:
crew = get_crew()
if not crew:
raise ValueError("No crew found.")
if all:
ShortTermMemory().reset()
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
KnowledgeStorage().reset()
crew.reset_memories(command_type="all")
click.echo("All memories have been reset.")
else:
if long:
LongTermMemory().reset()
click.echo("Long term memory has been reset.")
return
if short:
ShortTermMemory().reset()
click.echo("Short term memory has been reset.")
if entity:
EntityMemory().reset()
click.echo("Entity memory has been reset.")
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
KnowledgeStorage().reset()
click.echo("Knowledge has been reset.")
if not any([long, short, entity, kickoff_outputs, knowledge]):
click.echo(
"No memory type specified. Please specify at least one type to reset."
)
return
if long:
crew.reset_memories(command_type="long")
click.echo("Long term memory has been reset.")
if short:
crew.reset_memories(command_type="short")
click.echo("Short term memory has been reset.")
if entity:
crew.reset_memories(command_type="entity")
click.echo("Entity memory has been reset.")
if kickoff_outputs:
crew.reset_memories(command_type="kickoff_outputs")
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
crew.reset_memories(command_type="knowledge")
click.echo("Knowledge has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)

View File

@@ -1,4 +1,6 @@
import subprocess
from enum import Enum
from typing import List, Optional
import click
from packaging import version
@@ -7,16 +9,24 @@ from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
class CrewType(Enum):
STANDARD = "standard"
FLOW = "flow"
def run_crew() -> None:
"""
Run the crew by running a command in the UV environment.
Run the crew or flow by running a command in the UV environment.
Starting from version 0.103.0, this command can be used to run both
standard crews and flows. For flows, it detects the type from pyproject.toml
and automatically runs the appropriate command.
"""
command = ["uv", "run", "run_crew"]
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
pyproject_data = read_toml()
# Check for legacy poetry configuration
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
@@ -26,18 +36,54 @@ def run_crew() -> None:
fg="red",
)
# Determine crew type
is_flow = pyproject_data.get("tool", {}).get("crewai", {}).get("type") == "flow"
crew_type = CrewType.FLOW if is_flow else CrewType.STANDARD
# Display appropriate message
click.echo(f"Running the {'Flow' if is_flow else 'Crew'}")
# Execute the appropriate command
execute_command(crew_type)
def execute_command(crew_type: CrewType) -> None:
"""
Execute the appropriate command based on crew type.
Args:
crew_type: The type of crew to run
"""
command = ["uv", "run", "kickoff" if crew_type == CrewType.FLOW else "run_crew"]
try:
subprocess.run(command, capture_output=False, text=True, check=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)
handle_error(e, crew_type)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)
def handle_error(error: subprocess.CalledProcessError, crew_type: CrewType) -> None:
"""
Handle subprocess errors with appropriate messaging.
Args:
error: The subprocess error that occurred
crew_type: The type of crew that was being run
"""
entity_type = "flow" if crew_type == CrewType.FLOW else "crew"
click.echo(f"An error occurred while running the {entity_type}: {error}", err=True)
if error.output:
click.echo(error.output, err=True, nl=True)
pyproject_data = read_toml()
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, "
"please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)

View File

@@ -1,2 +1,3 @@
.env
__pycache__/
.DS_Store

View File

@@ -1,62 +1,62 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# If you want to run a snippet of code before or after the crew starts,
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@CrewBase
class {{crew_name}}():
"""{{crew_name}} crew"""
"""{{crew_name}} crew"""
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# If you would like to add tools to your agents, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
# If you would like to add tools to your agents, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)

View File

@@ -56,7 +56,8 @@ def test():
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs"
"topic": "AI LLMs",
"current_year": str(datetime.now().year)
}
try:
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0,<1.0.0"
"crewai[tools]>=0.102.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,3 +1,4 @@
.env
__pycache__/
lib/
.DS_Store

View File

@@ -30,13 +30,13 @@ crewai install
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
To kickstart your flow and begin execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This command initializes the {{name}} Flow as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.

View File

@@ -3,7 +3,7 @@ from random import randint
from pydantic import BaseModel
from crewai.flow.flow import Flow, listen, start
from crewai.flow import Flow, listen, start
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0,<1.0.0",
"crewai[tools]>=0.102.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0"
"crewai[tools]>=0.102.0"
]
[tool.crewai]

View File

@@ -9,6 +9,7 @@ import tomli
from rich.console import Console
from crewai.cli.constants import ENV_VARS
from crewai.crew import Crew
if sys.version_info >= (3, 11):
import tomllib
@@ -247,3 +248,66 @@ def write_env_file(folder_path, env_vars):
with open(env_file_path, "w") as file:
for key, value in env_vars.items():
file.write(f"{key}={value}\n")
def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
"""Get the crew instance from the crew.py file."""
try:
import importlib.util
import os
for root, _, files in os.walk("."):
if crew_path in files:
crew_os_path = os.path.join(root, crew_path)
try:
spec = importlib.util.spec_from_file_location(
"crew_module", crew_os_path
)
if not spec or not spec.loader:
continue
module = importlib.util.module_from_spec(spec)
try:
sys.modules[spec.name] = module
spec.loader.exec_module(module)
for attr_name in dir(module):
attr = getattr(module, attr_name)
try:
if isinstance(attr, Crew) and hasattr(attr, "kickoff"):
print(
f"Found valid crew object in attribute '{attr_name}' at {crew_os_path}."
)
return attr
except Exception as e:
print(f"Error processing attribute {attr_name}: {e}")
continue
except Exception as exec_error:
print(f"Error executing module: {exec_error}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
except (ImportError, AttributeError) as e:
if require:
console.print(
f"Error importing crew from {crew_path}: {str(e)}",
style="bold red",
)
continue
break
if require:
console.print("No valid Crew instance found in crew.py", style="bold red")
raise SystemExit
return None
except Exception as e:
if require:
console.print(
f"Unexpected error while loading crew: {str(e)}", style="bold red"
)
raise SystemExit
return None

View File

@@ -4,6 +4,7 @@ import re
import uuid
import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
@@ -34,15 +35,25 @@ from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.crew_chat import ChatInputs
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -52,12 +63,6 @@ from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
try:
import agentops # type: ignore
except ImportError:
agentops = None
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -84,6 +89,7 @@ class Crew(BaseModel):
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
planning: Plan the crew execution and add the plan to the crew.
chat_llm: The language model used for orchestrating chat interactions with the crew.
"""
__hash__ = object.__hash__ # type: ignore
@@ -178,13 +184,13 @@ class Crew(BaseModel):
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
)
prompt_file: str = Field(
prompt_file: Optional[str] = Field(
default=None,
description="Path to the prompt json file to be used for the crew.",
)
output_log_file: Optional[str] = Field(
output_log_file: Optional[Union[bool, str]] = Field(
default=None,
description="output_log_file",
description="Path to the log file to be saved",
)
planning: Optional[bool] = Field(
default=False,
@@ -210,8 +216,9 @@ class Crew(BaseModel):
default=None,
description="LLM used to handle chatting with the crew.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
knowledge: Optional[Knowledge] = Field(
default=None,
description="Knowledge for the crew.",
)
@field_validator("id", mode="before")
@@ -249,8 +256,6 @@ class Crew(BaseModel):
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self
@model_validator(mode="after")
@@ -273,12 +278,26 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
else:
self._user_memory = None
self._user_memory = None # No user memory if not in config
return self
@model_validator(mode="after")
@@ -289,9 +308,9 @@ class Crew(BaseModel):
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
self.knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder,
embedder=self.embedder,
collection_name="crew",
)
@@ -378,6 +397,22 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_must_have_non_conditional_task(self) -> "Crew":
"""Ensure that a crew has at least one non-conditional task."""
if not self.tasks:
return self
non_conditional_count = sum(
1 for task in self.tasks if not isinstance(task, ConditionalTask)
)
if non_conditional_count == 0:
raise PydanticCustomError(
"only_conditional_tasks",
"Crew must include at least one non-conditional task",
{},
)
return self
@model_validator(mode="after")
def validate_first_task(self) -> "Crew":
"""Ensure the first task is not a ConditionalTask."""
@@ -489,83 +524,121 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
train_crew = self.copy()
train_crew._setup_for_training(filename)
try:
crewai_event_bus.emit(
self,
CrewTrainStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
inputs=inputs,
),
)
train_crew = self.copy()
train_crew._setup_for_training(filename)
for n_iteration in range(n_iterations):
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
for n_iteration in range(n_iterations):
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in train_crew.agents:
if training_data.get(str(agent.id)):
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
for agent in train_crew.agents:
if training_data.get(str(agent.id)):
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
crewai_event_bus.emit(
self,
CrewTrainCompletedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTrainFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
self._logger.log("error", f"Training failed: {e}", color="red")
CrewTrainingHandler(TRAINING_DATA_FILE).clear()
CrewTrainingHandler(filename).clear()
raise
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
try:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
crewai_event_bus.emit(
self,
CrewKickoffStartedEvent(crew_name=self.name or "crew", inputs=inputs),
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
# Starts the crew to work on its assigned tasks.
self._task_output_handler.reset()
self._logging_color = "bold_purple"
metrics += [agent._token_process.get_summary() for agent in self.agents]
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
i18n = I18N(prompt_file=self.prompt_file)
return result
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
agent.set_knowledge(crew_embedder=self.embedder)
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
metrics += [agent._token_process.get_summary() for agent in self.agents]
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
return result
except Exception as e:
crewai_event_bus.emit(
self,
CrewKickoffFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
@@ -674,12 +747,7 @@ class Crew(BaseModel):
manager.tools = []
raise Exception("Manager agent should not have tools")
else:
self.manager_llm = (
getattr(self.manager_llm, "model_name", None)
or getattr(self.manager_llm, "model", None)
or getattr(self.manager_llm, "deployment_name", None)
or self.manager_llm
)
self.manager_llm = create_llm(self.manager_llm)
manager = Agent(
role=i18n.retrieve("hierarchical_manager_agent", "role"),
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
@@ -739,6 +807,8 @@ class Crew(BaseModel):
task, task_outputs, futures, task_index, was_replayed
)
if skipped_task_output:
task_outputs.append(skipped_task_output)
last_sync_output = skipped_task_output
continue
if task.async_execution:
@@ -752,8 +822,10 @@ class Crew(BaseModel):
)
futures.append((task, future, task_index))
else:
# Process any pending async tasks before executing a sync task
if futures:
task_outputs = self._process_async_tasks(futures, was_replayed)
processed_outputs = self._process_async_tasks(futures, was_replayed)
task_outputs.extend(processed_outputs)
futures.clear()
context = self._get_context(task, task_outputs)
@@ -762,12 +834,15 @@ class Crew(BaseModel):
context=context,
tools=tools_for_task,
)
task_outputs = [task_output]
task_outputs.append(task_output)
last_sync_output = task_output
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
# Process any remaining async tasks at the end
if futures:
task_outputs = self._process_async_tasks(futures, was_replayed)
processed_outputs = self._process_async_tasks(futures, was_replayed)
task_outputs.extend(processed_outputs)
return self._create_crew_output(task_outputs)
@@ -779,12 +854,17 @@ class Crew(BaseModel):
task_index: int,
was_replayed: bool,
) -> Optional[TaskOutput]:
# Process any pending async tasks to ensure we have the most up-to-date context
if futures:
task_outputs = self._process_async_tasks(futures, was_replayed)
processed_outputs = self._process_async_tasks(futures, was_replayed)
task_outputs.extend(processed_outputs)
futures.clear()
previous_output = task_outputs[task_index - 1] if task_outputs else None
if previous_output is not None and not task.should_execute(previous_output):
# Get the previous output to evaluate the condition
previous_output = task_outputs[-1] if task_outputs else None
# If there's no previous output or the condition evaluates to False, skip the task
if previous_output is None or not task.should_execute(previous_output):
self._logger.log(
"debug",
f"Skipping conditional task: {task.description}",
@@ -792,8 +872,13 @@ class Crew(BaseModel):
)
skipped_task_output = task.get_skipped_task_output()
# Store the execution log for the skipped task
if not was_replayed:
self._store_execution_log(task, skipped_task_output, task_index)
# Set the output on the task itself so it can be referenced later
task.output = skipped_task_output
return skipped_task_output
return None
@@ -905,20 +990,29 @@ class Crew(BaseModel):
)
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
# Filter out empty outputs and get the last valid one as the main output
valid_outputs = [t for t in task_outputs if t.raw]
if not valid_outputs:
raise ValueError("No valid task outputs available to create crew output.")
final_task_output = valid_outputs[-1]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
crew_name=self.name or "crew", output=final_task_output
),
)
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
tasks_output=task_outputs,
token_usage=token_usage,
)
@@ -991,8 +1085,8 @@ class Crew(BaseModel):
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self._knowledge:
return self._knowledge.query(query)
if self.knowledge:
return self.knowledge.query(query)
return None
def fetch_inputs(self) -> Set[str]:
@@ -1033,9 +1127,10 @@ class Crew(BaseModel):
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
"knowledge",
}
cloned_agents = [agent.copy() for agent in self.agents]
@@ -1043,6 +1138,9 @@ class Crew(BaseModel):
task_mapping = {}
cloned_tasks = []
existing_knowledge_sources = shallow_copy(self.knowledge_sources)
existing_knowledge = shallow_copy(self.knowledge)
for task in self.tasks:
cloned_task = task.copy(cloned_agents, task_mapping)
cloned_tasks.append(cloned_task)
@@ -1062,7 +1160,13 @@ class Crew(BaseModel):
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
copied_crew = Crew(
**copied_data,
agents=cloned_agents,
tasks=cloned_tasks,
knowledge_sources=existing_knowledge_sources,
knowledge=existing_knowledge,
)
return copied_crew
@@ -1088,13 +1192,6 @@ class Crew(BaseModel):
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
if agentops:
agentops.end_session(
end_state="Success",
end_state_reason="Finished Execution",
is_auto_end=True,
)
self._telemetry.end_crew(self, final_string_output)
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
@@ -1112,25 +1209,122 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
eval_llm: Union[str, InstanceOf[LLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
test_crew = self.copy()
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
raise ValueError("Failed to create LLM instance.")
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
crewai_event_bus.emit(
self,
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
evaluator.print_crew_evaluation_result()
crewai_event_bus.emit(
self,
CrewTestCompletedEvent(
crew_name=self.name or "crew",
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTestFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
def reset_memories(self, command_type: str) -> None:
"""Reset specific or all memories for the crew.
Args:
command_type: Type of memory to reset.
Valid options: 'long', 'short', 'entity', 'knowledge',
'kickoff_outputs', or 'all'
Raises:
ValueError: If an invalid command type is provided.
RuntimeError: If memory reset operation fails.
"""
VALID_TYPES = frozenset(
["long", "short", "entity", "knowledge", "kickoff_outputs", "all"]
)
if command_type not in VALID_TYPES:
raise ValueError(
f"Invalid command type. Must be one of: {', '.join(sorted(VALID_TYPES))}"
)
try:
if command_type == "all":
self._reset_all_memories()
else:
self._reset_specific_memory(command_type)
self._logger.log("info", f"{command_type} memory has been reset")
except Exception as e:
error_msg = f"Failed to reset {command_type} memory: {str(e)}"
self._logger.log("error", error_msg)
raise RuntimeError(error_msg) from e
def _reset_all_memories(self) -> None:
"""Reset all available memory systems."""
memory_systems = [
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
]
for name, system in memory_systems:
if system is not None:
try:
system.reset()
except Exception as e:
raise RuntimeError(f"Failed to reset {name} memory") from e
def _reset_specific_memory(self, memory_type: str) -> None:
"""Reset a specific memory system.
Args:
memory_type: Type of memory to reset
Raises:
RuntimeError: If the specified memory system fails to reset
"""
reset_functions = {
"long": (self._long_term_memory, "long term"),
"short": (self._short_term_memory, "short term"),
"entity": (self._entity_memory, "entity"),
"knowledge": (self.knowledge, "knowledge"),
"kickoff_outputs": (self._task_output_handler, "task output"),
}
memory_system, name = reset_functions[memory_type]
if memory_system is None:
raise RuntimeError(f"{name} memory system is not initialized")
try:
memory_system.reset()
except Exception as e:
raise RuntimeError(f"Failed to reset {name} memory") from e

View File

@@ -1,3 +1,5 @@
from crewai.flow.flow import Flow
from crewai.flow.flow import Flow, start, listen, or_, and_, router
from crewai.flow.persistence import persist
__all__ = ["Flow", "start", "listen", "or_", "and_", "router", "persist"]
__all__ = ["Flow"]

View File

@@ -1,5 +1,7 @@
import asyncio
import copy
import inspect
import logging
from typing import (
Any,
Callable,
@@ -15,25 +17,82 @@ from typing import (
)
from uuid import uuid4
from blinker import Signal
from pydantic import BaseModel, Field, ValidationError
from crewai.flow.flow_events import (
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
FlowFinishedEvent,
FlowPlotEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
class FlowState(BaseModel):
"""Base model for all flow states, ensuring each state has a unique ID."""
id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the flow state")
T = TypeVar("T", bound=Union[FlowState, Dict[str, Any]])
id: str = Field(
default_factory=lambda: str(uuid4()),
description="Unique identifier for the flow state",
)
# Type variables with explicit bounds
T = TypeVar(
"T", bound=Union[Dict[str, Any], BaseModel]
) # Generic flow state type parameter
StateT = TypeVar(
"StateT", bound=Union[Dict[str, Any], BaseModel]
) # State validation type parameter
def ensure_state_type(state: Any, expected_type: Type[StateT]) -> StateT:
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
if expected_type is dict:
if not isinstance(state, dict):
raise TypeError(f"Expected dict, got {type(state).__name__}")
return cast(StateT, state)
if isinstance(expected_type, type) and issubclass(expected_type, BaseModel):
if not isinstance(state, expected_type):
raise TypeError(
f"Expected {expected_type.__name__}, got {type(state).__name__}"
)
return cast(StateT, state)
raise TypeError(f"Invalid expected_type: {expected_type}")
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
@@ -77,6 +136,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
>>> def complex_start(self):
... pass
"""
def decorator(func):
func.__is_start_method__ = True
if condition is not None:
@@ -101,6 +161,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
return decorator
def listen(condition: Union[str, dict, Callable]) -> Callable:
"""
Creates a listener that executes when specified conditions are met.
@@ -137,6 +198,7 @@ def listen(condition: Union[str, dict, Callable]) -> Callable:
>>> def handle_completion(self):
... pass
"""
def decorator(func):
if isinstance(condition, str):
func.__trigger_methods__ = [condition]
@@ -201,6 +263,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
... return CONTINUE
... return STOP
"""
def decorator(func):
func.__is_router__ = True
if isinstance(condition, str):
@@ -224,6 +287,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
return decorator
def or_(*conditions: Union[str, dict, Callable]) -> dict:
"""
Combines multiple conditions with OR logic for flow control.
@@ -326,21 +390,31 @@ class FlowMeta(type):
routers = set()
for attr_name, attr_value in dct.items():
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
# Check for any flow-related attributes
if (
hasattr(attr_value, "__is_flow_method__")
or hasattr(attr_value, "__is_start_method__")
or hasattr(attr_value, "__trigger_methods__")
or hasattr(attr_value, "__is_router__")
):
# Register start methods
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
# Register listeners and routers
if hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
elif hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
if (
hasattr(attr_value, "__is_router__")
and attr_value.__is_router__
):
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
setattr(cls, "_start_methods", start_methods)
setattr(cls, "_listeners", listeners)
@@ -351,14 +425,17 @@ class FlowMeta(type):
class Flow(Generic[T], metaclass=FlowMeta):
_telemetry = Telemetry()
"""Base class for all flows.
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
_printer = Printer()
_start_methods: List[str] = []
_listeners: Dict[str, tuple[str, List[str]]] = {}
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -367,53 +444,139 @@ class Flow(Generic[T], metaclass=FlowMeta):
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
return _FlowGeneric
def __init__(self) -> None:
def __init__(
self,
persistence: Optional[FlowPersistence] = None,
**kwargs: Any,
) -> None:
"""Initialize a new Flow instance.
Args:
persistence: Optional persistence backend for storing flow states
**kwargs: Additional state values to initialize or override
"""
# Initialize basic instance attributes
self._methods: Dict[str, Callable] = {}
self._state: T = self._create_initial_state()
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
self._persistence: Optional[FlowPersistence] = persistence
self._telemetry.flow_creation_span(self.__class__.__name__)
# Initialize state with initial values
self._state = self._create_initial_state()
# Apply any additional kwargs
if kwargs:
self._initialize_state(kwargs)
crewai_event_bus.emit(
self,
FlowCreatedEvent(
type="flow_created",
flow_name=self.__class__.__name__,
),
)
# Register all flow-related methods
for method_name in dir(self):
if callable(getattr(self, method_name)) and not method_name.startswith(
"__"
):
self._methods[method_name] = getattr(self, method_name)
if not method_name.startswith("_"):
method = getattr(self, method_name)
# Check for any flow-related attributes
if (
hasattr(method, "__is_flow_method__")
or hasattr(method, "__is_start_method__")
or hasattr(method, "__trigger_methods__")
or hasattr(method, "__is_router__")
):
# Ensure method is bound to this instance
if not hasattr(method, "__self__"):
method = method.__get__(self, self.__class__)
self._methods[method_name] = method
def _create_initial_state(self) -> T:
"""Create and initialize flow state with UUID and default values.
Returns:
New state instance with UUID and default values initialized
Raises:
ValueError: If structured state model lacks 'id' field
TypeError: If state is neither BaseModel nor dictionary
"""
# Handle case where initial_state is None but we have a type parameter
if self.initial_state is None and hasattr(self, "_initial_state_T"):
state_type = getattr(self, "_initial_state_T")
if isinstance(state_type, type):
if issubclass(state_type, FlowState):
return state_type() # type: ignore
# Create instance without id, then set it
instance = state_type()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif issubclass(state_type, BaseModel):
# Create a new type that includes the ID field
class StateWithId(state_type, FlowState): # type: ignore
pass
return StateWithId() # type: ignore
instance = StateWithId()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif state_type is dict:
return cast(T, {"id": str(uuid4())})
# Handle case where no initial state is provided
if self.initial_state is None:
return {"id": str(uuid4())} # type: ignore
return cast(T, {"id": str(uuid4())})
# Handle case where initial_state is a type (class)
if isinstance(self.initial_state, type):
if issubclass(self.initial_state, FlowState):
return self.initial_state() # type: ignore
return cast(T, self.initial_state()) # Uses model defaults
elif issubclass(self.initial_state, BaseModel):
# Create a new type that includes the ID field
class StateWithId(self.initial_state, FlowState): # type: ignore
pass
return StateWithId() # type: ignore
# Validate that the model has an id field
model_fields = getattr(self.initial_state, "model_fields", None)
if not model_fields or "id" not in model_fields:
raise ValueError("Flow state model must have an 'id' field")
return cast(T, self.initial_state()) # Uses model defaults
elif self.initial_state is dict:
return cast(T, {"id": str(uuid4())})
# Handle dictionary case
if isinstance(self.initial_state, dict) and "id" not in self.initial_state:
self.initial_state["id"] = str(uuid4())
# Handle dictionary instance case
if isinstance(self.initial_state, dict):
new_state = dict(self.initial_state) # Copy to avoid mutations
if "id" not in new_state:
new_state["id"] = str(uuid4())
return cast(T, new_state)
return self.initial_state # type: ignore
# Handle BaseModel instance case
if isinstance(self.initial_state, BaseModel):
model = cast(BaseModel, self.initial_state)
if not hasattr(model, "id"):
raise ValueError("Flow state model must have an 'id' field")
# Create new instance with same values to avoid mutations
if hasattr(model, "model_dump"):
# Pydantic v2
state_dict = model.model_dump()
elif hasattr(model, "dict"):
# Pydantic v1
state_dict = model.dict()
else:
# Fallback for other BaseModel implementations
state_dict = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
# Create new instance of the same class
model_class = type(model)
return cast(T, model_class(**state_dict))
raise TypeError(
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
)
def _copy_state(self) -> T:
return copy.deepcopy(self._state)
@property
def state(self) -> T:
@@ -424,72 +587,198 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
@property
def flow_id(self) -> str:
"""Returns the unique identifier of this flow instance.
This property provides a consistent way to access the flow's unique identifier
regardless of the underlying state implementation (dict or BaseModel).
Returns:
str: The flow's unique identifier, or an empty string if not found
Note:
This property safely handles both dictionary and BaseModel state types,
returning an empty string if the ID cannot be retrieved rather than raising
an exception.
Example:
```python
flow = MyFlow()
print(f"Current flow ID: {flow.flow_id}") # Safely get flow ID
```
"""
try:
if not hasattr(self, "_state"):
return ""
if isinstance(self._state, dict):
return str(self._state.get("id", ""))
elif isinstance(self._state, BaseModel):
return str(getattr(self._state, "id", ""))
return ""
except (AttributeError, TypeError):
return "" # Safely handle any unexpected attribute access issues
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
"""Initialize or update flow state with new inputs.
Args:
inputs: Dictionary of state values to set/update
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
if isinstance(self._state, dict):
# Preserve the ID when updating unstructured state
# For dict states, preserve existing fields unless overridden
current_id = self._state.get("id")
self._state.update(inputs)
# Only update specified fields
for k, v in inputs.items():
self._state[k] = v
# Ensure ID is preserved or generated
if current_id:
self._state["id"] = current_id
elif "id" not in self._state:
self._state["id"] = str(uuid4())
elif isinstance(self._state, BaseModel):
# Structured state
# For BaseModel states, preserve existing fields unless overridden
try:
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
class ModelWithExtraForbid(base_model): # type: ignore
model_config = base_model.model_config.copy()
model_config["extra"] = "forbid"
return ModelWithExtraForbid
# Get current state as dict, preserving the ID if it exists
state_model = cast(BaseModel, self._state)
current_state = (
state_model.model_dump()
if hasattr(state_model, "model_dump")
else state_model.dict()
if hasattr(state_model, "dict")
else {
k: v
for k, v in state_model.__dict__.items()
if not k.startswith("_")
model = cast(BaseModel, self._state)
# Get current state as dict
if hasattr(model, "model_dump"):
current_state = model.model_dump()
elif hasattr(model, "dict"):
current_state = model.dict()
else:
current_state = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
)
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
self._state = cast(
T, ModelWithExtraForbid(**{**current_state, **inputs})
)
# Create new state with preserved fields and updates
new_state = {**current_state, **inputs}
# Create new instance with merged state
model_class = type(model)
if hasattr(model_class, "model_validate"):
# Pydantic v2
self._state = cast(T, model_class.model_validate(new_state))
elif hasattr(model_class, "parse_obj"):
# Pydantic v1
self._state = cast(T, model_class.parse_obj(new_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, model_class(**new_state))
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
self.event_emitter.send(
self,
event=FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
),
)
def _restore_state(self, stored_state: Dict[str, Any]) -> None:
"""Restore flow state from persistence.
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
Args:
stored_state: Previously stored state to restore
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
# When restoring from persistence, use the stored ID
stored_id = stored_state.get("id")
if not stored_id:
raise ValueError("Stored state must have an 'id' field")
if isinstance(self._state, dict):
# For dict states, update all fields from stored state
self._state.clear()
self._state.update(stored_state)
elif isinstance(self._state, BaseModel):
# For BaseModel states, create new instance with stored values
model = cast(BaseModel, self._state)
if hasattr(model, "model_validate"):
# Pydantic v2
self._state = cast(T, type(model).model_validate(stored_state))
elif hasattr(model, "parse_obj"):
# Pydantic v1
self._state = cast(T, type(model).parse_obj(stored_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, type(model)(**stored_state))
else:
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution in a synchronous context.
This method wraps kickoff_async so that all state initialization and event
emission is handled in the asynchronous method.
"""
async def run_flow():
return await self.kickoff_async(inputs)
return asyncio.run(run_flow())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
if not self._start_methods:
raise ValueError("No start method defined")
"""
Start the flow execution asynchronously.
self._telemetry.flow_execution_span(
self.__class__.__name__, list(self._methods.keys())
This method performs state restoration (if an 'id' is provided and persistence is available)
and updates the flow state with any additional inputs. It then emits the FlowStartedEvent,
logs the flow startup, and executes all start methods. Once completed, it emits the
FlowFinishedEvent and returns the final output.
Args:
inputs: Optional dictionary containing input values and/or a state ID for restoration.
Returns:
The final output from the flow, which is the result of the last executed method.
"""
if inputs:
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
self._state["id"] = inputs["id"]
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
# Update state with any additional inputs (ignoring the 'id' key)
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
self,
FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
f"Flow started with ID: {self.flow_id}", color="bold_magenta"
)
if inputs is not None and "id" not in inputs:
self._initialize_state(inputs)
tasks = [
self._execute_start_method(start_method)
@@ -499,14 +788,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
final_output = self._method_outputs[-1] if self._method_outputs else None
self.event_emitter.send(
crewai_event_bus.emit(
self,
event=FlowFinishedEvent(
FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
@@ -535,16 +825,55 @@ class Flow(Generic[T], metaclass=FlowMeta):
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
try:
dumped_params = {f"_{i}": arg for i, arg in enumerate(args)} | (
kwargs or {}
)
crewai_event_bus.emit(
self,
MethodExecutionStartedEvent(
type="method_execution_started",
method_name=method_name,
flow_name=self.__class__.__name__,
params=dumped_params,
state=self._copy_state(),
),
)
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
crewai_event_bus.emit(
self,
MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=method_name,
flow_name=self.__class__.__name__,
state=self._copy_state(),
result=result,
),
)
return result
except Exception as e:
crewai_event_bus.emit(
self,
MethodExecutionFailedEvent(
type="method_execution_failed",
method_name=method_name,
flow_name=self.__class__.__name__,
error=e,
),
)
raise e
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
"""
@@ -565,35 +894,45 @@ class Flow(Generic[T], metaclass=FlowMeta):
Notes
-----
- Routers are executed sequentially to maintain flow control
- Each router's result becomes the new trigger_method
- Each router's result becomes a new trigger_method
- Normal listeners are executed in parallel for efficiency
- Listeners can receive the trigger method's result as a parameter
"""
# First, handle routers repeatedly until no router triggers anymore
router_results = []
current_trigger = trigger_method
while True:
routers_triggered = self._find_triggered_methods(
trigger_method, router_only=True
current_trigger, router_only=True
)
if not routers_triggered:
break
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
# The last router executed sets the trigger_method
# The router result is the last element in self._method_outputs
trigger_method = self._method_outputs[-1]
router_result = self._method_outputs[-1]
if router_result: # Only add non-None results
router_results.append(router_result)
current_trigger = (
router_result # Update for next iteration of router chain
)
# Now that no more routers are triggered by current trigger_method,
# execute normal listeners
listeners_triggered = self._find_triggered_methods(
trigger_method, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
# Now execute normal listeners for all router results and the original trigger
all_triggers = [trigger_method] + router_results
for current_trigger in all_triggers:
if current_trigger: # Skip None results
listeners_triggered = self._find_triggered_methods(
current_trigger, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
@@ -683,15 +1022,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
method_params = [p for p in params if p.name != "self"]
@@ -703,15 +1033,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
listener_result = await self._execute_method(listener_name, method)
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners (and possibly routers) of this listener
await self._execute_listeners(listener_name, listener_result)
@@ -723,8 +1044,38 @@ class Flow(Generic[T], metaclass=FlowMeta):
traceback.print_exc()
def _log_flow_event(
self, message: str, color: str = "yellow", level: str = "info"
) -> None:
"""Centralized logging method for flow events.
This method provides a consistent interface for logging flow-related events,
combining both console output with colors and proper logging levels.
Args:
message: The message to log
color: Color to use for console output (default: yellow)
Available colors: purple, red, bold_green, bold_purple,
bold_blue, yellow, yellow
level: Log level to use (default: info)
Supported levels: info, warning
Note:
This method uses the Printer utility for colored console output
and the standard logging module for log level support.
"""
self._printer.print(message, color=color)
if level == "info":
logger.info(message)
elif level == "warning":
logger.warning(message)
def plot(self, filename: str = "crewai_flow") -> None:
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())
crewai_event_bus.emit(
self,
FlowPlotEvent(
type="flow_plot",
flow_name=self.__class__.__name__,
),
)
plot_flow(self, filename)

View File

@@ -1,33 +0,0 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -0,0 +1,18 @@
"""
CrewAI Flow Persistence.
This module provides interfaces and implementations for persisting flow states.
"""
from typing import Any, Dict, TypeVar, Union
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.decorators import persist
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
__all__ = ["FlowPersistence", "persist", "SQLiteFlowPersistence"]
StateType = TypeVar('StateType', bound=Union[Dict[str, Any], BaseModel])
DictStateType = Dict[str, Any]

View File

@@ -0,0 +1,53 @@
"""Base class for flow state persistence."""
import abc
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
class FlowPersistence(abc.ABC):
"""Abstract base class for flow state persistence.
This class defines the interface that all persistence implementations must follow.
It supports both structured (Pydantic BaseModel) and unstructured (dict) states.
"""
@abc.abstractmethod
def init_db(self) -> None:
"""Initialize the persistence backend.
This method should handle any necessary setup, such as:
- Creating tables
- Establishing connections
- Setting up indexes
"""
pass
@abc.abstractmethod
def save_state(
self,
flow_uuid: str,
method_name: str,
state_data: Union[Dict[str, Any], BaseModel]
) -> None:
"""Persist the flow state after method completion.
Args:
flow_uuid: Unique identifier for the flow instance
method_name: Name of the method that just completed
state_data: Current state data (either dict or Pydantic model)
"""
pass
@abc.abstractmethod
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
Args:
flow_uuid: Unique identifier for the flow instance
Returns:
The most recent state as a dictionary, or None if no state exists
"""
pass

View File

@@ -0,0 +1,254 @@
"""
Decorators for flow state persistence.
Example:
```python
from crewai.flow.flow import Flow, start
from crewai.flow.persistence import persist, SQLiteFlowPersistence
class MyFlow(Flow):
@start()
@persist(SQLiteFlowPersistence())
def sync_method(self):
# Synchronous method implementation
pass
@start()
@persist(SQLiteFlowPersistence())
async def async_method(self):
# Asynchronous method implementation
await some_async_operation()
```
"""
import asyncio
import functools
import logging
from typing import (
Any,
Callable,
Optional,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
T = TypeVar("T")
# Constants for log messages
LOG_MESSAGES = {
"save_state": "Saving flow state to memory for ID: {}",
"save_error": "Failed to persist state for method {}: {}",
"state_missing": "Flow instance has no state",
"id_missing": "Flow state must have an 'id' field for persistence"
}
class PersistenceDecorator:
"""Class to handle flow state persistence with consistent logging."""
_printer = Printer() # Class-level printer instance
@classmethod
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence, verbose: bool = False) -> None:
"""Persist flow state with proper error handling and logging.
This method handles the persistence of flow state data, including proper
error handling and colored console output for status updates.
Args:
flow_instance: The flow instance whose state to persist
method_name: Name of the method that triggered persistence
persistence_instance: The persistence backend to use
verbose: Whether to log persistence operations
Raises:
ValueError: If flow has no state or state lacks an ID
RuntimeError: If state persistence fails
AttributeError: If flow instance lacks required state attributes
"""
try:
state = getattr(flow_instance, 'state', None)
if state is None:
raise ValueError("Flow instance has no state")
flow_uuid: Optional[str] = None
if isinstance(state, dict):
flow_uuid = state.get('id')
elif isinstance(state, BaseModel):
flow_uuid = getattr(state, 'id', None)
if not flow_uuid:
raise ValueError("Flow state must have an 'id' field for persistence")
# Log state saving only if verbose is True
if verbose:
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
try:
persistence_instance.save_state(
flow_uuid=flow_uuid,
method_name=method_name,
state_data=state,
)
except Exception as e:
error_msg = LOG_MESSAGES["save_error"].format(method_name, str(e))
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise RuntimeError(f"State persistence failed: {str(e)}") from e
except AttributeError:
error_msg = LOG_MESSAGES["state_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg)
except (TypeError, ValueError) as e:
error_msg = LOG_MESSAGES["id_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg) from e
def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False):
"""Decorator to persist flow state.
This decorator can be applied at either the class level or method level.
When applied at the class level, it automatically persists all flow method
states. When applied at the method level, it persists only that method's
state.
Args:
persistence: Optional FlowPersistence implementation to use.
If not provided, uses SQLiteFlowPersistence.
verbose: Whether to log persistence operations. Defaults to False.
Returns:
A decorator that can be applied to either a class or method
Raises:
ValueError: If the flow state doesn't have an 'id' field
RuntimeError: If state persistence fails
Example:
@persist(verbose=True) # Class-level persistence with logging
class MyFlow(Flow[MyState]):
@start()
def begin(self):
pass
"""
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
"""Decorator that handles both class and method decoration."""
actual_persistence = persistence or SQLiteFlowPersistence()
if isinstance(target, type):
# Class decoration
original_init = getattr(target, "__init__")
@functools.wraps(original_init)
def new_init(self: Any, *args: Any, **kwargs: Any) -> None:
if 'persistence' not in kwargs:
kwargs['persistence'] = actual_persistence
original_init(self, *args, **kwargs)
setattr(target, "__init__", new_init)
# Store original methods to preserve their decorators
original_methods = {}
for name, method in target.__dict__.items():
if callable(method) and (
hasattr(method, "__is_start_method__") or
hasattr(method, "__trigger_methods__") or
hasattr(method, "__condition_type__") or
hasattr(method, "__is_flow_method__") or
hasattr(method, "__is_router__")
):
original_methods[name] = method
# Create wrapped versions of the methods that include persistence
for name, method in original_methods.items():
if asyncio.iscoroutinefunction(method):
# Create a closure to capture the current name and method
def create_async_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = await original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
wrapped = create_async_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
else:
# Create a closure to capture the current name and method
def create_sync_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
wrapped = create_sync_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
return target
else:
# Method decoration
method = target
setattr(method, "__is_flow_method__", True)
if asyncio.iscoroutinefunction(method):
@functools.wraps(method)
async def method_async_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
method_coro = method(flow_instance, *args, **kwargs)
if asyncio.iscoroutine(method_coro):
result = await method_coro
else:
result = method_coro
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_async_wrapper, attr, getattr(method, attr))
setattr(method_async_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_async_wrapper)
else:
@functools.wraps(method)
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
result = method(flow_instance, *args, **kwargs)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_sync_wrapper, attr, getattr(method, attr))
setattr(method_sync_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_sync_wrapper)
return decorator

View File

@@ -0,0 +1,134 @@
"""
SQLite-based implementation of flow state persistence.
"""
import json
import sqlite3
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
class SQLiteFlowPersistence(FlowPersistence):
"""SQLite-based implementation of flow state persistence.
This class provides a simple, file-based persistence implementation using SQLite.
It's suitable for development and testing, or for production use cases with
moderate performance requirements.
"""
db_path: str # Type annotation for instance variable
def __init__(self, db_path: Optional[str] = None):
"""Initialize SQLite persistence.
Args:
db_path: Path to the SQLite database file. If not provided, uses
db_storage_path() from utilities.paths.
Raises:
ValueError: If db_path is invalid
"""
from crewai.utilities.paths import db_storage_path
# Get path from argument or default location
path = db_path or str(Path(db_storage_path()) / "flow_states.db")
if not path:
raise ValueError("Database path must be provided")
self.db_path = path # Now mypy knows this is str
self.init_db()
def init_db(self) -> None:
"""Create the necessary tables if they don't exist."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
CREATE TABLE IF NOT EXISTS flow_states (
id INTEGER PRIMARY KEY AUTOINCREMENT,
flow_uuid TEXT NOT NULL,
method_name TEXT NOT NULL,
timestamp DATETIME NOT NULL,
state_json TEXT NOT NULL
)
"""
)
# Add index for faster UUID lookups
conn.execute(
"""
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
ON flow_states(flow_uuid)
"""
)
def save_state(
self,
flow_uuid: str,
method_name: str,
state_data: Union[Dict[str, Any], BaseModel],
) -> None:
"""Save the current flow state to SQLite.
Args:
flow_uuid: Unique identifier for the flow instance
method_name: Name of the method that just completed
state_data: Current state data (either dict or Pydantic model)
"""
# Convert state_data to dict, handling both Pydantic and dict cases
if isinstance(state_data, BaseModel):
state_dict = dict(state_data) # Use dict() for better type compatibility
elif isinstance(state_data, dict):
state_dict = state_data
else:
raise ValueError(
f"state_data must be either a Pydantic BaseModel or dict, got {type(state_data)}"
)
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
INSERT INTO flow_states (
flow_uuid,
method_name,
timestamp,
state_json
) VALUES (?, ?, ?, ?)
""",
(
flow_uuid,
method_name,
datetime.now(timezone.utc).isoformat(),
json.dumps(state_dict),
),
)
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
Args:
flow_uuid: Unique identifier for the flow instance
Returns:
The most recent state as a dictionary, or None if no state exists
"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
"""
SELECT state_json
FROM flow_states
WHERE flow_uuid = ?
ORDER BY id DESC
LIMIT 1
""",
(flow_uuid,),
)
row = cursor.fetchone()
if row:
return json.loads(row[0])
return None

View File

@@ -0,0 +1,91 @@
import json
from datetime import date, datetime
from typing import Any, Dict, List, Union
from pydantic import BaseModel
from crewai.flow import Flow
SerializablePrimitive = Union[str, int, float, bool, None]
Serializable = Union[
SerializablePrimitive, List["Serializable"], Dict[str, "Serializable"]
]
def export_state(flow: Flow) -> dict[str, Serializable]:
"""Exports the Flow's internal state as JSON-compatible data structures.
Performs a one-way transformation of a Flow's state into basic Python types
that can be safely serialized to JSON. To prevent infinite recursion with
circular references, the conversion is limited to a depth of 5 levels.
Args:
flow: The Flow object whose state needs to be exported
Returns:
dict[str, Any]: The transformed state using JSON-compatible Python
types.
"""
result = to_serializable(flow._state)
assert isinstance(result, dict)
return result
def to_serializable(
obj: Any, max_depth: int = 5, _current_depth: int = 0
) -> Serializable:
"""Converts a Python object into a JSON-compatible representation.
Supports primitives, datetime objects, collections, dictionaries, and
Pydantic models. Recursion depth is limited to prevent infinite nesting.
Non-convertible objects default to their string representations.
Args:
obj (Any): Object to transform.
max_depth (int, optional): Maximum recursion depth. Defaults to 5.
Returns:
Serializable: A JSON-compatible structure.
"""
if _current_depth >= max_depth:
return repr(obj)
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, (date, datetime)):
return obj.isoformat()
elif isinstance(obj, (list, tuple, set)):
return [to_serializable(item, max_depth, _current_depth + 1) for item in obj]
elif isinstance(obj, dict):
return {
_to_serializable_key(key): to_serializable(
value, max_depth, _current_depth + 1
)
for key, value in obj.items()
}
elif isinstance(obj, BaseModel):
return to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
else:
return repr(obj)
def _to_serializable_key(key: Any) -> str:
if isinstance(key, (str, int)):
return str(key)
return f"key_{id(key)}_{repr(key)}"
def to_string(obj: Any) -> str | None:
"""Serializes an object into a JSON string.
Args:
obj (Any): Object to serialize.
Returns:
str | None: A JSON-formatted string or `None` if empty.
"""
serializable = to_serializable(obj)
if serializable is None:
return None
else:
return json.dumps(serializable)

View File

@@ -0,0 +1,50 @@
from functools import wraps
from typing import Any, Callable, Optional, Union, cast
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
def task(func: Callable) -> Callable:
"""
Decorator for Flow methods that return a Task.
This decorator ensures that when a method returns a ConditionalTask,
the condition is properly evaluated based on the previous task's output.
Args:
func: The method to decorate
Returns:
The decorated method
"""
setattr(func, "is_task", True)
@wraps(func)
def wrapper(self, *args, **kwargs):
result = func(self, *args, **kwargs)
# Set the task name if not already set
if hasattr(result, "name") and not result.name:
result.name = func.__name__
# If this is a ConditionalTask, ensure it has a valid condition
if isinstance(result, ConditionalTask):
# If the condition is a boolean, wrap it in a function
if isinstance(result.condition, bool):
bool_value = result.condition
result.condition = lambda _: bool_value
# Get the previous task output if available
previous_outputs = getattr(self, "_method_outputs", [])
previous_output = previous_outputs[-1] if previous_outputs else None
# If there's a previous output and it's a TaskOutput, check if we should execute
if previous_output and isinstance(previous_output, TaskOutput):
if not result.should_execute(previous_output):
# Return a skipped task output instead of the task
return result.get_skipped_task_output()
return result
return wrapper

View File

@@ -16,7 +16,8 @@ Example
import ast
import inspect
import textwrap
from typing import Any, Dict, List, Optional, Set, Union
from collections import defaultdict, deque
from typing import Any, Deque, Dict, List, Optional, Set, Union
def get_possible_return_constants(function: Any) -> Optional[List[str]]:
@@ -118,7 +119,7 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
- Processes router paths separately
"""
levels: Dict[str, int] = {}
queue: List[str] = []
queue: Deque[str] = deque()
visited: Set[str] = set()
pending_and_listeners: Dict[str, Set[str]] = {}
@@ -128,28 +129,35 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
levels[method_name] = 0
queue.append(method_name)
# Precompute listener dependencies
or_listeners = defaultdict(list)
and_listeners = defaultdict(set)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
for method in trigger_methods:
or_listeners[method].append(listener_name)
elif condition_type == "AND":
and_listeners[listener_name] = set(trigger_methods)
# Breadth-first traversal to assign levels
while queue:
current = queue.pop(0)
current = queue.popleft()
current_level = levels[current]
visited.add(current)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
if current in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
elif condition_type == "AND":
for listener_name in or_listeners[current]:
if listener_name not in levels or levels[listener_name] > current_level + 1:
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
for listener_name, required_methods in and_listeners.items():
if current in required_methods:
if listener_name not in pending_and_listeners:
pending_and_listeners[listener_name] = set()
if current in trigger_methods:
pending_and_listeners[listener_name].add(current)
if set(trigger_methods) == pending_and_listeners[listener_name]:
pending_and_listeners[listener_name].add(current)
if required_methods == pending_and_listeners[listener_name]:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
@@ -159,22 +167,7 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
queue.append(listener_name)
# Handle router connections
if current in flow._routers:
router_method_name = current
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
process_router_paths(flow, current, current_level, levels, queue)
return levels
@@ -227,10 +220,7 @@ def build_ancestor_dict(flow: Any) -> Dict[str, Set[str]]:
def dfs_ancestors(
node: str,
ancestors: Dict[str, Set[str]],
visited: Set[str],
flow: Any
node: str, ancestors: Dict[str, Set[str]], visited: Set[str], flow: Any
) -> None:
"""
Perform depth-first search to build ancestor relationships.
@@ -274,7 +264,9 @@ def dfs_ancestors(
dfs_ancestors(listener_name, ancestors, visited, flow)
def is_ancestor(node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]) -> bool:
def is_ancestor(
node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]
) -> bool:
"""
Check if one node is an ancestor of another.
@@ -339,7 +331,9 @@ def build_parent_children_dict(flow: Any) -> Dict[str, List[str]]:
return parent_children
def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str]]) -> int:
def get_child_index(
parent: str, child: str, parent_children: Dict[str, List[str]]
) -> int:
"""
Get the index of a child node in its parent's sorted children list.
@@ -360,3 +354,23 @@ def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str
children = parent_children.get(parent, [])
children.sort()
return children.index(child)
def process_router_paths(flow, current, current_level, levels, queue):
"""
Handle the router connections for the current node.
"""
if current in flow._routers:
paths = flow._router_paths.get(current, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
queue.append(listener_name)

View File

@@ -15,20 +15,20 @@ class Knowledge(BaseModel):
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
embedder: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
embedder: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
def __init__(
self,
collection_name: str,
sources: List[BaseKnowledgeSource],
embedder_config: Optional[Dict[str, Any]] = None,
embedder: Optional[Dict[str, Any]] = None,
storage: Optional[KnowledgeStorage] = None,
**data,
):
@@ -37,25 +37,23 @@ class Knowledge(BaseModel):
self.storage = storage
else:
self.storage = KnowledgeStorage(
embedder_config=embedder_config, collection_name=collection_name
embedder=embedder, collection_name=collection_name
)
self.sources = sources
self.storage.initialize_knowledge_storage()
for source in sources:
source.storage = self.storage
source.add()
self._add_sources()
def query(self, query: List[str], limit: int = 3) -> List[Dict[str, Any]]:
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,
@@ -63,6 +61,15 @@ class Knowledge(BaseModel):
return results
def _add_sources(self):
for source in self.sources:
source.storage = self.storage
source.add()
try:
for source in self.sources:
source.storage = self.storage
source.add()
except Exception as e:
raise e
def reset(self) -> None:
if self.storage:
self.storage.reset()
else:
raise ValueError("Storage is not initialized.")

View File

@@ -29,7 +29,13 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if v is None and info.data.get("file_path" if info.field_name == "file_paths" else "file_paths") is None:
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
raise ValueError("Either file_path or file_paths must be provided")
return v

View File

@@ -8,6 +8,7 @@ try:
from docling.exceptions import ConversionError
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
from docling_core.types.doc.document import DoclingDocument
DOCLING_AVAILABLE = True
except ImportError:
DOCLING_AVAILABLE = False
@@ -38,8 +39,8 @@ class CrewDoclingSource(BaseKnowledgeSource):
file_paths: List[Union[Path, str]] = Field(default_factory=list)
chunks: List[str] = Field(default_factory=list)
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
content: List[DoclingDocument] = Field(default_factory=list)
document_converter: DocumentConverter = Field(
content: List["DoclingDocument"] = Field(default_factory=list)
document_converter: "DocumentConverter" = Field(
default_factory=lambda: DocumentConverter(
allowed_formats=[
InputFormat.MD,
@@ -65,7 +66,7 @@ class CrewDoclingSource(BaseKnowledgeSource):
self.safe_file_paths = self.validate_content()
self.content = self._load_content()
def _load_content(self) -> List[DoclingDocument]:
def _load_content(self) -> List["DoclingDocument"]:
try:
return self._convert_source_to_docling_documents()
except ConversionError as e:
@@ -87,11 +88,11 @@ class CrewDoclingSource(BaseKnowledgeSource):
self.chunks.extend(list(new_chunks_iterable))
self._save_documents()
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
def _convert_source_to_docling_documents(self) -> List["DoclingDocument"]:
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
return [result.document for result in conv_results_iter]
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
def _chunk_doc(self, doc: "DoclingDocument") -> Iterator[str]:
chunker = HierarchicalChunker()
for chunk in chunker.chunk(doc):
yield chunk.text

View File

@@ -1,28 +1,138 @@
from pathlib import Path
from typing import Dict, List
from typing import Dict, Iterator, List, Optional, Union
from urllib.parse import urlparse
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
from pydantic import Field, field_validator
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
class ExcelKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
pd = self._import_dependencies()
# override content to be a dict of file paths to sheet names to csv content
_logger: Logger = Logger(verbose=True)
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default=None,
description="[Deprecated] The path to the file. Use file_paths instead.",
)
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default_factory=list, description="The path to the file"
)
chunks: List[str] = Field(default_factory=list)
content: Dict[Path, Dict[str, str]] = Field(default_factory=dict)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
raise ValueError("Either file_path or file_paths must be provided")
return v
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
if hasattr(self, "file_path") and self.file_path is not None:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
if self.file_paths is None:
raise ValueError("Your source must be provided with a file_paths: []")
# Convert single path to list
path_list: List[Union[Path, str]] = (
[self.file_paths]
if isinstance(self.file_paths, (str, Path))
else list(self.file_paths)
if isinstance(self.file_paths, list)
else []
)
if not path_list:
raise ValueError(
"file_path/file_paths must be a Path, str, or a list of these types"
)
return [self.convert_to_path(path) for path in path_list]
def validate_content(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
self._logger.log(
"error",
f"Path is not a file: {path}",
color="red",
)
def model_post_init(self, _) -> None:
if self.file_path:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
self.safe_file_paths = self._process_file_paths()
self.validate_content()
self.content = self._load_content()
def _load_content(self) -> Dict[Path, Dict[str, str]]:
"""Load and preprocess Excel file content from multiple sheets.
Each sheet's content is converted to CSV format and stored.
Returns:
Dict[Path, Dict[str, str]]: A mapping of file paths to their respective sheet contents.
Raises:
ImportError: If required dependencies are missing.
FileNotFoundError: If the specified Excel file cannot be opened.
"""
pd = self._import_dependencies()
content_dict = {}
for file_path in self.safe_file_paths:
file_path = self.convert_to_path(file_path)
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
content_dict[file_path] = content
with pd.ExcelFile(file_path) as xl:
sheet_dict = {
str(sheet_name): str(
pd.read_excel(xl, sheet_name).to_csv(index=False)
)
for sheet_name in xl.sheet_names
}
content_dict[file_path] = sheet_dict
return content_dict
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
@@ -38,10 +148,14 @@ class ExcelKnowledgeSource(BaseFileKnowledgeSource):
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
# Updated to account for .xlsx workbooks with multiple tabs/sheets
content_str = ""
for value in self.content.values():
if isinstance(value, dict):
for sheet_value in value.values():
content_str += str(sheet_value) + "\n"
else:
content_str += str(value) + "\n"
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)

View File

@@ -48,11 +48,11 @@ class KnowledgeStorage(BaseKnowledgeStorage):
def __init__(
self,
embedder_config: Optional[Dict[str, Any]] = None,
embedder: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.collection_name = collection_name
self._set_embedder_config(embedder_config)
self._set_embedder_config(embedder)
def search(
self,
@@ -76,7 +76,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold: # type: ignore
if result["score"] >= score_threshold:
results.append(result)
return results
else:
@@ -99,7 +99,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder_config
name=collection_name, embedding_function=self.embedder
)
else:
raise Exception("Vector Database Client not initialized")
@@ -187,17 +187,15 @@ class KnowledgeStorage(BaseKnowledgeStorage):
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
def _set_embedder_config(
self, embedder_config: Optional[Dict[str, Any]] = None
) -> None:
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder_config = (
EmbeddingConfigurator().configure_embedder(embedder_config)
if embedder_config
self.embedder = (
EmbeddingConfigurator().configure_embedder(embedder)
if embedder
else self._create_default_embedding_function()
)

View File

@@ -5,17 +5,42 @@ import sys
import threading
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Union, cast
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Type,
TypedDict,
Union,
cast,
)
from dotenv import load_dotenv
from pydantic import BaseModel
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
LLMStreamChunkEvent,
)
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices, get_supported_openai_params
from litellm import Choices
from litellm.litellm_core_utils.get_supported_openai_params import (
get_supported_openai_params,
)
from litellm.types.utils import ModelResponse
from litellm.utils import supports_response_schema
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -53,6 +78,7 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
"o3-mini": 200000, # Based on official o3-mini specifications
# gemini
"gemini-2.0-flash": 1048576,
"gemini-1.5-pro": 2097152,
@@ -114,6 +140,17 @@ def suppress_warnings():
sys.stderr = old_stderr
class Delta(TypedDict):
content: Optional[str]
role: Optional[str]
class StreamingChoices(TypedDict):
delta: Delta
index: int
finish_reason: Optional[str]
class LLM:
def __init__(
self,
@@ -128,21 +165,24 @@ class LLM:
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[int, float]] = None,
response_format: Optional[Dict[str, Any]] = None,
response_format: Optional[Type[BaseModel]] = None,
seed: Optional[int] = None,
logprobs: Optional[int] = None,
top_logprobs: Optional[int] = None,
base_url: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] = [],
reasoning_effort: Optional[Literal["none", "low", "medium", "high"]] = None,
stream: bool = False,
**kwargs,
):
self.model = model
self.timeout = timeout
self.temperature = temperature
self.top_p = top_p
self.n = n
self.stop = stop
self.max_completion_tokens = max_completion_tokens
self.max_tokens = max_tokens
self.presence_penalty = presence_penalty
@@ -153,129 +193,657 @@ class LLM:
self.logprobs = logprobs
self.top_logprobs = top_logprobs
self.base_url = base_url
self.api_base = api_base
self.api_version = api_version
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.reasoning_effort = reasoning_effort
self.additional_params = kwargs
self.is_anthropic = self._is_anthropic_model(model)
self.stream = stream
litellm.drop_params = True
# Normalize self.stop to always be a List[str]
if stop is None:
self.stop: List[str] = []
elif isinstance(stop, str):
self.stop = [stop]
else:
self.stop = stop
self.set_callbacks(callbacks)
self.set_env_callbacks()
def call(
def _is_anthropic_model(self, model: str) -> bool:
"""Determine if the model is from Anthropic provider.
Args:
model: The model identifier string.
Returns:
bool: True if the model is from Anthropic, False otherwise.
"""
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
def _prepare_completion_params(
self,
messages: List[Dict[str, str]],
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
) -> Dict[str, Any]:
"""Prepare parameters for the completion call.
Args:
messages: Input messages for the LLM
tools: Optional list of tool schemas
callbacks: Optional list of callback functions
available_functions: Optional dict of available functions
Returns:
Dict[str, Any]: Parameters for the completion call
"""
# --- 1) Format messages according to provider requirements
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
formatted_messages = self._format_messages_for_provider(messages)
# --- 2) Prepare the parameters for the completion call
params = {
"model": self.model,
"messages": formatted_messages,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n,
"stop": self.stop,
"max_tokens": self.max_tokens or self.max_completion_tokens,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"logit_bias": self.logit_bias,
"response_format": self.response_format,
"seed": self.seed,
"logprobs": self.logprobs,
"top_logprobs": self.top_logprobs,
"api_base": self.api_base,
"base_url": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
"stream": self.stream,
"tools": tools,
"reasoning_effort": self.reasoning_effort,
**self.additional_params,
}
# Remove None values from params
return {k: v for k, v in params.items() if v is not None}
def _handle_streaming_response(
self,
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level call method that:
1) Calls litellm.completion
2) Checks for function/tool calls
3) If a tool call is found:
a) executes the function
b) returns the result
4) If no tool call, returns the text response
"""Handle a streaming response from the LLM.
:param messages: The conversation messages
:param tools: Optional list of function schemas for function calling
:param callbacks: Optional list of callbacks
:param available_functions: A dictionary mapping function_name -> actual Python function
:return: Final text response from the LLM or the tool result
Args:
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
Returns:
str: The complete response text
Raises:
Exception: If no content is received from the streaming response
"""
# --- 1) Initialize response tracking
full_response = ""
last_chunk = None
chunk_count = 0
usage_info = None
# --- 2) Make sure stream is set to True and include usage metrics
params["stream"] = True
params["stream_options"] = {"include_usage": True}
try:
# --- 3) Process each chunk in the stream
for chunk in litellm.completion(**params):
chunk_count += 1
last_chunk = chunk
# Extract content from the chunk
chunk_content = None
# Safely extract content from various chunk formats
try:
# Try to access choices safely
choices = None
if isinstance(chunk, dict) and "choices" in chunk:
choices = chunk["choices"]
elif hasattr(chunk, "choices"):
# Check if choices is not a type but an actual attribute with value
if not isinstance(getattr(chunk, "choices"), type):
choices = getattr(chunk, "choices")
# Try to extract usage information if available
if isinstance(chunk, dict) and "usage" in chunk:
usage_info = chunk["usage"]
elif hasattr(chunk, "usage"):
# Check if usage is not a type but an actual attribute with value
if not isinstance(getattr(chunk, "usage"), type):
usage_info = getattr(chunk, "usage")
if choices and len(choices) > 0:
choice = choices[0]
# Handle different delta formats
delta = None
if isinstance(choice, dict) and "delta" in choice:
delta = choice["delta"]
elif hasattr(choice, "delta"):
delta = getattr(choice, "delta")
# Extract content from delta
if delta:
# Handle dict format
if isinstance(delta, dict):
if "content" in delta and delta["content"] is not None:
chunk_content = delta["content"]
# Handle object format
elif hasattr(delta, "content"):
chunk_content = getattr(delta, "content")
# Handle case where content might be None or empty
if chunk_content is None and isinstance(delta, dict):
# Some models might send empty content chunks
chunk_content = ""
except Exception as e:
logging.debug(f"Error extracting content from chunk: {e}")
logging.debug(f"Chunk format: {type(chunk)}, content: {chunk}")
# Only add non-None content to the response
if chunk_content is not None:
# Add the chunk content to the full response
full_response += chunk_content
# Emit the chunk event
crewai_event_bus.emit(
self,
event=LLMStreamChunkEvent(chunk=chunk_content),
)
# --- 4) Fallback to non-streaming if no content received
if not full_response.strip() and chunk_count == 0:
logging.warning(
"No chunks received in streaming response, falling back to non-streaming"
)
non_streaming_params = params.copy()
non_streaming_params["stream"] = False
non_streaming_params.pop(
"stream_options", None
) # Remove stream_options for non-streaming call
return self._handle_non_streaming_response(
non_streaming_params, callbacks, available_functions
)
# --- 5) Handle empty response with chunks
if not full_response.strip() and chunk_count > 0:
logging.warning(
f"Received {chunk_count} chunks but no content was extracted"
)
if last_chunk is not None:
try:
# Try to extract content from the last chunk's message
choices = None
if isinstance(last_chunk, dict) and "choices" in last_chunk:
choices = last_chunk["choices"]
elif hasattr(last_chunk, "choices"):
if not isinstance(getattr(last_chunk, "choices"), type):
choices = getattr(last_chunk, "choices")
if choices and len(choices) > 0:
choice = choices[0]
# Try to get content from message
message = None
if isinstance(choice, dict) and "message" in choice:
message = choice["message"]
elif hasattr(choice, "message"):
message = getattr(choice, "message")
if message:
content = None
if isinstance(message, dict) and "content" in message:
content = message["content"]
elif hasattr(message, "content"):
content = getattr(message, "content")
if content:
full_response = content
logging.info(
f"Extracted content from last chunk message: {full_response}"
)
except Exception as e:
logging.debug(f"Error extracting content from last chunk: {e}")
logging.debug(
f"Last chunk format: {type(last_chunk)}, content: {last_chunk}"
)
# --- 6) If still empty, raise an error instead of using a default response
if not full_response.strip():
raise Exception(
"No content received from streaming response. Received empty chunks or failed to extract content."
)
# --- 7) Check for tool calls in the final response
tool_calls = None
try:
if last_chunk:
choices = None
if isinstance(last_chunk, dict) and "choices" in last_chunk:
choices = last_chunk["choices"]
elif hasattr(last_chunk, "choices"):
if not isinstance(getattr(last_chunk, "choices"), type):
choices = getattr(last_chunk, "choices")
if choices and len(choices) > 0:
choice = choices[0]
message = None
if isinstance(choice, dict) and "message" in choice:
message = choice["message"]
elif hasattr(choice, "message"):
message = getattr(choice, "message")
if message:
if isinstance(message, dict) and "tool_calls" in message:
tool_calls = message["tool_calls"]
elif hasattr(message, "tool_calls"):
tool_calls = getattr(message, "tool_calls")
except Exception as e:
logging.debug(f"Error checking for tool calls: {e}")
# --- 8) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
# Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
# --- 9) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 10) Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# --- 11) Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
except Exception as e:
logging.error(f"Error in streaming response: {str(e)}")
if full_response.strip():
logging.warning(f"Returning partial response despite error: {str(e)}")
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
# Emit failed event and re-raise the exception
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
raise Exception(f"Failed to get streaming response: {str(e)}")
def _handle_streaming_callbacks(
self,
callbacks: Optional[List[Any]],
usage_info: Optional[Dict[str, Any]],
last_chunk: Optional[Any],
) -> None:
"""Handle callbacks with usage info for streaming responses.
Args:
callbacks: Optional list of callback functions
usage_info: Usage information collected during streaming
last_chunk: The last chunk received from the streaming response
"""
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
# Use the usage_info we've been tracking
if not usage_info:
# Try to get usage from the last chunk if we haven't already
try:
if last_chunk:
if (
isinstance(last_chunk, dict)
and "usage" in last_chunk
):
usage_info = last_chunk["usage"]
elif hasattr(last_chunk, "usage"):
if not isinstance(
getattr(last_chunk, "usage"), type
):
usage_info = getattr(last_chunk, "usage")
except Exception as e:
logging.debug(f"Error extracting usage info: {e}")
if usage_info:
callback.log_success_event(
kwargs={}, # We don't have the original params here
response_obj={"usage": usage_info},
start_time=0,
end_time=0,
)
def _handle_non_streaming_response(
self,
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""Handle a non-streaming response from the LLM.
Args:
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
Returns:
str: The response text
"""
# --- 1) Make the completion call
response = litellm.completion(**params)
# --- 2) Extract response message and content
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
# --- 3) Handle callbacks with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
usage_info = getattr(response, "usage", None)
if usage_info:
callback.log_success_event(
kwargs=params,
response_obj={"usage": usage_info},
start_time=0,
end_time=0,
)
# --- 4) Check for tool calls
tool_calls = getattr(response_message, "tool_calls", [])
# --- 5) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
# --- 6) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
def _handle_tool_call(
self,
tool_calls: List[Any],
available_functions: Optional[Dict[str, Any]] = None,
) -> Optional[str]:
"""Handle a tool call from the LLM.
Args:
tool_calls: List of tool calls from the LLM
available_functions: Dict of available functions
Returns:
Optional[str]: The result of the tool call, or None if no tool call was made
"""
# --- 1) Validate tool calls and available functions
if not tool_calls or not available_functions:
return None
# --- 2) Extract function name from first tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
function_args = {} # Initialize to empty dict to avoid unbound variable
# --- 3) Check if function is available
if function_name in available_functions:
try:
# --- 3.1) Parse function arguments
function_args = json.loads(tool_call.function.arguments)
fn = available_functions[function_name]
# --- 3.2) Execute function
result = fn(**function_args)
# --- 3.3) Emit success event
self._handle_emit_call_events(result, LLMCallType.TOOL_CALL)
return result
except Exception as e:
# --- 3.4) Handle execution errors
fn = available_functions.get(
function_name, lambda: None
) # Ensure fn is always a callable
logging.error(f"Error executing function '{function_name}': {e}")
crewai_event_bus.emit(
self,
event=ToolExecutionErrorEvent(
tool_name=function_name,
tool_args=function_args,
tool_class=fn,
error=str(e),
),
)
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=f"Tool execution error: {str(e)}"),
)
return None
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""High-level LLM call method.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
Union[str, Any]: Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
TypeError: If messages format is invalid
ValueError: If response format is not supported
LLMContextLengthExceededException: If input exceeds model's context limit
"""
# --- 1) Emit call started event
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
),
)
# --- 2) Validate parameters before proceeding with the call
self._validate_call_params()
# --- 3) Convert string messages to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# --- 4) Handle O1 model special case (system messages not supported)
if "o1" in self.model.lower():
for message in messages:
if message.get("role") == "system":
message["role"] = "assistant"
# --- 5) Set up callbacks if provided
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 1) Make the completion call
params = {
"model": self.model,
"messages": messages,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n,
"stop": self.stop,
"max_tokens": self.max_tokens or self.max_completion_tokens,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"logit_bias": self.logit_bias,
"response_format": self.response_format,
"seed": self.seed,
"logprobs": self.logprobs,
"top_logprobs": self.top_logprobs,
"api_base": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
"stream": False,
"tools": tools, # pass the tool schema
}
# --- 6) Prepare parameters for the completion call
params = self._prepare_completion_params(messages, tools)
params = {k: v for k, v in params.items() if v is not None}
response = litellm.completion(**params)
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
tool_calls = getattr(response_message, "tool_calls", [])
# --- 2) If no tool calls, return the text response
if not tool_calls or not available_functions:
return text_response
# --- 3) Handle the tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
if function_name in available_functions:
try:
function_args = json.loads(tool_call.function.arguments)
except json.JSONDecodeError as e:
logging.warning(f"Failed to parse function arguments: {e}")
return text_response
fn = available_functions[function_name]
try:
# Call the actual tool function
result = fn(**function_args)
return result
except Exception as e:
logging.error(
f"Error executing function '{function_name}': {e}"
)
return text_response
else:
logging.warning(
f"Tool call requested unknown function '{function_name}'"
# --- 7) Make the completion call and handle response
if self.stream:
return self._handle_streaming_response(
params, callbacks, available_functions
)
else:
return self._handle_non_streaming_response(
params, callbacks, available_functions
)
return text_response
except Exception as e:
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
"""Handle the events for the LLM call.
Args:
response (str): The response from the LLM call.
call_type (str): The type of call, either "tool_call" or "llm_call".
"""
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
)
def _format_messages_for_provider(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]:
"""Format messages according to provider requirements.
Args:
messages: List of message dictionaries with 'role' and 'content' keys.
Can be empty or None.
Returns:
List of formatted messages according to provider requirements.
For Anthropic models, ensures first message has 'user' role.
Raises:
TypeError: If messages is None or contains invalid message format.
"""
if messages is None:
raise TypeError("Messages cannot be None")
# Validate message format first
for msg in messages:
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise TypeError(
"Invalid message format. Each message must be a dict with 'role' and 'content' keys"
)
# Handle O1 models specially
if "o1" in self.model.lower():
formatted_messages = []
for msg in messages:
# Convert system messages to assistant messages
if msg["role"] == "system":
formatted_messages.append(
{"role": "assistant", "content": msg["content"]}
)
else:
formatted_messages.append(msg)
return formatted_messages
# Handle Anthropic models
if not self.is_anthropic:
return messages
# Anthropic requires messages to start with 'user' role
if not messages or messages[0]["role"] == "system":
# If first message is system or empty, add a placeholder user message
return [{"role": "user", "content": "."}, *messages]
return messages
def _get_custom_llm_provider(self) -> Optional[str]:
"""
Derives the custom_llm_provider from the model string.
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
- If the model is "gemini/gemini-1.5-pro", returns "gemini".
- If there is no '/', defaults to "openai".
"""
if "/" in self.model:
return self.model.split("/")[0]
return None
def _validate_call_params(self) -> None:
"""
Validate parameters before making a call. Currently this only checks if
a response_format is provided and whether the model supports it.
The custom_llm_provider is dynamically determined from the model:
- E.g., "openrouter/deepseek/deepseek-chat" yields "openrouter"
- "gemini/gemini-1.5-pro" yields "gemini"
- If no slash is present, "openai" is assumed.
"""
provider = self._get_custom_llm_provider()
if self.response_format is not None and not supports_response_schema(
model=self.model,
custom_llm_provider=provider,
):
raise ValueError(
f"The model {self.model} does not support response_format for provider '{provider}'. "
"Please remove response_format or use a supported model."
)
def supports_function_calling(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return "response_format" in params
provider = self._get_custom_llm_provider()
return litellm.utils.supports_function_calling(
self.model, custom_llm_provider=provider
)
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
logging.error(f"Failed to check function calling support: {str(e)}")
return False
def supports_stop_words(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return "stop" in params
return params is not None and "stop" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
@@ -284,10 +852,23 @@ class LLM:
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
Raises:
ValueError: If a model's context window size is outside valid bounds (1024-2097152)
"""
if self.context_window_size != 0:
return self.context_window_size
MIN_CONTEXT = 1024
MAX_CONTEXT = 2097152 # Current max from gemini-1.5-pro
# Validate all context window sizes
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if value < MIN_CONTEXT or value > MAX_CONTEXT:
raise ValueError(
f"Context window for {key} must be between {MIN_CONTEXT} and {MAX_CONTEXT}"
)
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)

View File

@@ -1,3 +1,7 @@
from typing import Optional
from pydantic import PrivateAttr
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.memory import Memory
from crewai.memory.storage.rag_storage import RAGStorage
@@ -10,13 +14,15 @@ class EntityMemory(Memory):
Inherits from the Memory class.
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
_memory_provider: Optional[str] = PrivateAttr()
if self.memory_provider == "mem0":
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
memory_provider = crew.memory_config.get("provider")
else:
memory_provider = None
if memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
@@ -36,11 +42,13 @@ class EntityMemory(Memory):
path=path,
)
)
super().__init__(storage)
super().__init__(storage=storage)
self._memory_provider = memory_provider
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
if self.memory_provider == "mem0":
if self._memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}

View File

@@ -17,7 +17,7 @@ class LongTermMemory(Memory):
def __init__(self, storage=None, path=None):
if not storage:
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
super().__init__(storage)
super().__init__(storage=storage)
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
metadata = item.metadata

View File

@@ -1,15 +1,19 @@
from typing import Any, Dict, List, Optional
from crewai.memory.storage.rag_storage import RAGStorage
from pydantic import BaseModel
class Memory:
class Memory(BaseModel):
"""
Base class for memory, now supporting agent tags and generic metadata.
"""
def __init__(self, storage: RAGStorage):
self.storage = storage
embedder_config: Optional[Dict[str, Any]] = None
storage: Any
def __init__(self, storage: Any, **data: Any):
super().__init__(storage=storage, **data)
def save(
self,

View File

@@ -1,5 +1,7 @@
from typing import Any, Dict, Optional
from pydantic import PrivateAttr
from crewai.memory.memory import Memory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.memory.storage.rag_storage import RAGStorage
@@ -14,13 +16,15 @@ class ShortTermMemory(Memory):
MemoryItem instances.
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
_memory_provider: Optional[str] = PrivateAttr()
if self.memory_provider == "mem0":
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
memory_provider = crew.memory_config.get("provider")
else:
memory_provider = None
if memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
@@ -39,7 +43,8 @@ class ShortTermMemory(Memory):
path=path,
)
)
super().__init__(storage)
super().__init__(storage=storage)
self._memory_provider = memory_provider
def save(
self,
@@ -48,7 +53,7 @@ class ShortTermMemory(Memory):
agent: Optional[str] = None,
) -> None:
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self.memory_provider == "mem0":
if self._memory_provider == "mem0":
item.data = f"Remember the following insights from Agent run: {item.data}"
super().save(value=item.data, metadata=item.metadata, agent=item.agent)

View File

@@ -13,7 +13,7 @@ class BaseRAGStorage(ABC):
self,
type: str,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
embedder_config: Optional[Dict[str, Any]] = None,
crew: Any = None,
):
self.type = type

View File

@@ -1,12 +1,17 @@
import json
import logging
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.errors import DatabaseError, DatabaseOperationError
from crewai.utilities.paths import db_storage_path
logger = logging.getLogger(__name__)
class KickoffTaskOutputsSQLiteStorage:
"""
@@ -14,15 +19,24 @@ class KickoffTaskOutputsSQLiteStorage:
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
self, db_path: Optional[str] = None
) -> None:
if db_path is None:
# Get the parent directory of the default db path and create our db file there
db_path = str(Path(db_storage_path()) / "latest_kickoff_task_outputs.db")
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
def _initialize_db(self):
"""
Initializes the SQLite database and creates LTM table
def _initialize_db(self) -> None:
"""Initialize the SQLite database and create the latest_kickoff_task_outputs table.
This method sets up the database schema for storing task outputs. It creates
a table with columns for task_id, expected_output, output (as JSON),
task_index, inputs (as JSON), was_replayed flag, and timestamp.
Raises:
DatabaseOperationError: If database initialization fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
@@ -43,10 +57,9 @@ class KickoffTaskOutputsSQLiteStorage:
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.INIT_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def add(
self,
@@ -55,9 +68,22 @@ class KickoffTaskOutputsSQLiteStorage:
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
) -> None:
"""Add a new task output record to the database.
Args:
task: The Task object containing task details.
output: Dictionary containing the task's output data.
task_index: Integer index of the task in the sequence.
was_replayed: Boolean indicating if this was a replay execution.
inputs: Dictionary of input parameters used for the task.
Raises:
DatabaseOperationError: If saving the task output fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
cursor.execute(
"""
@@ -76,21 +102,31 @@ class KickoffTaskOutputsSQLiteStorage:
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.SAVE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def update(
self,
task_index: int,
**kwargs,
):
"""
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
**kwargs: Any,
) -> None:
"""Update an existing task output record in the database.
Updates fields of a task output record identified by task_index. The fields
to update are provided as keyword arguments.
Args:
task_index: Integer index of the task to update.
**kwargs: Arbitrary keyword arguments representing fields to update.
Values that are dictionaries will be JSON encoded.
Raises:
DatabaseOperationError: If updating the task output fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
fields = []
@@ -110,14 +146,23 @@ class KickoffTaskOutputsSQLiteStorage:
conn.commit()
if cursor.rowcount == 0:
self._printer.print(
f"No row found with task_index {task_index}. No update performed.",
color="red",
)
logger.warning(f"No row found with task_index {task_index}. No update performed.")
except sqlite3.Error as e:
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
error_msg = DatabaseError.format_error(DatabaseError.UPDATE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def load(self) -> Optional[List[Dict[str, Any]]]:
def load(self) -> List[Dict[str, Any]]:
"""Load all task output records from the database.
Returns:
List of dictionaries containing task output records, ordered by task_index.
Each dictionary contains: task_id, expected_output, output, task_index,
inputs, was_replayed, and timestamp.
Raises:
DatabaseOperationError: If loading task outputs fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
@@ -144,23 +189,26 @@ class KickoffTaskOutputsSQLiteStorage:
return results
except sqlite3.Error as e:
self._printer.print(
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
color="red",
)
return None
error_msg = DatabaseError.format_error(DatabaseError.LOAD_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def delete_all(self):
"""
Deletes all rows from the latest_kickoff_task_outputs table.
def delete_all(self) -> None:
"""Delete all task output records from the database.
This method removes all records from the latest_kickoff_task_outputs table.
Use with caution as this operation cannot be undone.
Raises:
DatabaseOperationError: If deleting task outputs fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.DELETE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)

View File

@@ -1,5 +1,6 @@
import json
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
@@ -12,10 +13,15 @@ class LTMSQLiteStorage:
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
self, db_path: Optional[str] = None
) -> None:
if db_path is None:
# Get the parent directory of the default db path and create our db file there
db_path = str(Path(db_storage_path()) / "long_term_memory_storage.db")
self.db_path = db_path
self._printer: Printer = Printer()
# Ensure parent directory exists
Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
self._initialize_db()
def _initialize_db(self):

View File

@@ -1,8 +1,10 @@
from functools import wraps
from typing import Callable
from typing import Any, Callable, Optional, Union, cast
from crewai import Crew
from crewai.project.utils import memoize
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
"""Decorators for defining crew components and their behaviors."""
@@ -21,13 +23,35 @@ def after_kickoff(func):
def task(func):
"""Marks a method as a crew task."""
func.is_task = True
setattr(func, "is_task", True)
@wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if not result.name:
# Set the task name if not already set
if hasattr(result, "name") and not result.name:
result.name = func.__name__
# If this is a ConditionalTask, ensure it has a valid condition
if isinstance(result, ConditionalTask):
# If the condition is a boolean, wrap it in a function
if isinstance(result.condition, bool):
bool_value = result.condition
result.condition = lambda _: bool_value
# Get the previous task output if available
self = args[0] if args else None
if self and hasattr(self, "_method_outputs"):
previous_outputs = getattr(self, "_method_outputs", [])
previous_output = previous_outputs[-1] if previous_outputs else None
# If there's a previous output and it's a TaskOutput, check if we should execute
if previous_output and isinstance(previous_output, TaskOutput):
if not result.should_execute(previous_output):
# Return a skipped task output instead of the task
return result.get_skipped_task_output()
return result
return memoize(wrapper)

View File

@@ -21,7 +21,6 @@ from typing import (
Union,
)
from opentelemetry.trace import Span
from pydantic import (
UUID4,
BaseModel,
@@ -36,10 +35,15 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.guardrail_result import GuardrailResult
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
@@ -183,8 +187,6 @@ class Task(BaseModel):
)
return v
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
_execution_span: Optional[Span] = PrivateAttr(default=None)
_original_description: Optional[str] = PrivateAttr(default=None)
_original_expected_output: Optional[str] = PrivateAttr(default=None)
_original_output_file: Optional[str] = PrivateAttr(default=None)
@@ -348,94 +350,102 @@ class Task(BaseModel):
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
try:
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
self.start_time = datetime.datetime.now()
self.prompt_context = context
tools = tools or self.tools or []
self.processed_by_agents.add(agent.role)
crewai_event_bus.emit(self, TaskStartedEvent(context=context))
result = agent.execute_task(
task=self,
context=context,
tools=tools,
)
self.start_time = datetime.datetime.now()
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
self.prompt_context = context
tools = tools or self.tools or []
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(
self.guardrail(task_output)
)
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
self.processed_by_agents.add(agent.role)
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
result = agent.execute_task(
task=self,
context=context,
tools=tools,
)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(self.guardrail(task_output))
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
if guardrail_result.result is None:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
"Task guardrail returned None as result. This is not allowed."
)
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
crew = self.agent.crew # type: ignore[union-attr]
if crew and crew.task_callback and crew.task_callback != self.callback:
crew.task_callback(self.output)
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
if guardrail_result.result is None:
raise Exception(
"Task guardrail returned None as result. This is not allowed."
)
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self, agent.crew)
self._execution_span = None
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)
return task_output
self._save_file(content)
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output))
return task_output
except Exception as e:
self.end_time = datetime.datetime.now()
crewai_event_bus.emit(self, TaskFailedEvent(error=str(e)))
raise e # Re-raise the exception after emitting the event
def prompt(self) -> str:
"""Prompt the task.
@@ -452,7 +462,7 @@ class Task(BaseModel):
return "\n".join(tasks_slices)
def interpolate_inputs_and_add_conversation_history(
self, inputs: Dict[str, Union[str, int, float]]
self, inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]]
) -> None:
"""Interpolate inputs into the task description, expected output, and output file path.
Add conversation history if present.
@@ -524,7 +534,9 @@ class Task(BaseModel):
)
def interpolate_only(
self, input_string: Optional[str], inputs: Dict[str, Union[str, int, float]]
self,
input_string: Optional[str],
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
@@ -532,17 +544,39 @@ class Task(BaseModel):
input_string: The string containing template variables to interpolate.
Can be None or empty, in which case an empty string is returned.
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, and floats.
If input_string is empty or has no placeholders, inputs can be empty.
Supported value types are strings, integers, floats, and dicts/lists
containing only these types and other nested dicts/lists.
Returns:
The interpolated string with all template variables replaced with their values.
Empty string if input_string is None or empty.
Raises:
ValueError: If a required template variable is missing from inputs.
KeyError: If a template variable is not found in the inputs dictionary.
ValueError: If a value contains unsupported types
"""
# Validation function for recursive type checking
def validate_type(value: Any) -> None:
if value is None:
return
if isinstance(value, (str, int, float, bool)):
return
if isinstance(value, (dict, list)):
for item in value.values() if isinstance(value, dict) else value:
validate_type(item)
return
raise ValueError(
f"Unsupported type {type(value).__name__} in inputs. "
"Only str, int, float, bool, dict, and list are allowed."
)
# Validate all input values
for key, value in inputs.items():
try:
validate_type(value)
except ValueError as e:
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
if input_string is None or not input_string:
return ""
if "{" not in input_string and "}" not in input_string:
@@ -551,15 +585,7 @@ class Task(BaseModel):
raise ValueError(
"Inputs dictionary cannot be empty when interpolating variables"
)
try:
# Validate input types
for key, value in inputs.items():
if not isinstance(value, (str, int, float)):
raise ValueError(
f"Value for key '{key}' must be a string, integer, or float, got {type(value).__name__}"
)
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
for key in inputs.keys():
@@ -652,19 +678,32 @@ class Task(BaseModel):
return OutputFormat.PYDANTIC
return OutputFormat.RAW
def _save_file(self, result: Any) -> None:
def _save_file(self, result: Union[Dict, str, Any]) -> None:
"""Save task output to a file.
Note:
For cross-platform file writing, especially on Windows, consider using FileWriterTool
from the crewai_tools package:
pip install 'crewai[tools]'
from crewai_tools import FileWriterTool
Args:
result: The result to save to the file. Can be a dict or any stringifiable object.
Raises:
ValueError: If output_file is not set
RuntimeError: If there is an error writing to the file
RuntimeError: If there is an error writing to the file. For cross-platform
compatibility, especially on Windows, use FileWriterTool from crewai_tools
package.
"""
if self.output_file is None:
raise ValueError("output_file is not set.")
FILEWRITER_RECOMMENDATION = (
"For cross-platform file writing, especially on Windows, "
"use FileWriterTool from crewai_tools package."
)
try:
resolved_path = Path(self.output_file).expanduser().resolve()
directory = resolved_path.parent
@@ -680,7 +719,11 @@ class Task(BaseModel):
else:
file.write(str(result))
except (OSError, IOError) as e:
raise RuntimeError(f"Failed to save output file: {e}")
raise RuntimeError(
"\n".join(
[f"Failed to save output file: {e}", FILEWRITER_RECOMMENDATION]
)
)
return None
def __repr__(self):

View File

@@ -1,4 +1,4 @@
from typing import Any, Callable
from typing import Any, Callable, Union, cast
from pydantic import Field
@@ -14,17 +14,23 @@ class ConditionalTask(Task):
"""
condition: Callable[[TaskOutput], bool] = Field(
default=None,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
default=lambda _: True, # Default to always execute
description="Function that determines whether the task should be executed or a boolean value.",
)
def __init__(
self,
condition: Callable[[Any], bool],
condition: Union[Callable[[Any], bool], bool],
**kwargs,
):
super().__init__(**kwargs)
self.condition = condition
# If condition is a boolean, wrap it in a function that always returns that boolean
if isinstance(condition, bool):
bool_value = condition
self.condition = lambda _: bool_value
else:
self.condition = cast(Callable[[TaskOutput], bool], condition)
def should_execute(self, context: TaskOutput) -> bool:
"""

Some files were not shown because too many files have changed in this diff Show More