mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-05 22:28:29 +00:00
Compare commits
6 Commits
theCyberTe
...
devin/1746
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5b03d0e0db | ||
|
|
ee308ed322 | ||
|
|
cb1a98cabf | ||
|
|
369e6d109c | ||
|
|
2c011631f9 | ||
|
|
d3fc2b4477 |
@@ -169,19 +169,55 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Google">
|
||||
Set the following environment variables in your `.env` file:
|
||||
<Accordion title="Google (Gemini API)">
|
||||
Set your API key in your `.env` file. If you need a key, or need to find an
|
||||
existing key, check [AI Studio](https://aistudio.google.com/apikey).
|
||||
|
||||
```toml Code
|
||||
# Option 1: Gemini accessed with an API key.
|
||||
```toml .env
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2: Vertex AI IAM credentials for Gemini, Anthropic, and Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file with the following code:
|
||||
Example usage in your CrewAI project:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7,
|
||||
)
|
||||
```
|
||||
|
||||
### Gemini models
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases.
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
|
||||
|
||||
### Gemma
|
||||
|
||||
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
|
||||
|
||||
| Model | Context Window |
|
||||
|----------------|----------------|
|
||||
| gemma-3-1b-it | 32k tokens |
|
||||
| gemma-3-4b-it | 32k tokens |
|
||||
| gemma-3-12b-it | 32k tokens |
|
||||
| gemma-3-27b-it | 128k tokens |
|
||||
|
||||
</Accordion>
|
||||
<Accordion title="Google (Vertex AI)">
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
|
||||
```python Code
|
||||
import json
|
||||
|
||||
@@ -205,14 +241,18 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
vertex_credentials=vertex_credentials_json
|
||||
)
|
||||
```
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases:
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|-----------------------|----------------|------------------------------------------------------------------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Azure">
|
||||
|
||||
@@ -68,7 +68,13 @@ We'll create a CrewAI application where two agents collaborate to research and w
|
||||
```python
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai_tools import SerperDevTool
|
||||
from openinference.instrumentation.crewai import CrewAIInstrumentor
|
||||
from phoenix.otel import register
|
||||
|
||||
# setup monitoring for your crew
|
||||
tracer_provider = register(
|
||||
endpoint="http://localhost:6006/v1/traces")
|
||||
CrewAIInstrumentor().instrument(skip_dep_check=True, tracer_provider=tracer_provider)
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
|
||||
@@ -13,7 +13,7 @@ ENV_VARS = {
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"prompt": "Enter your GEMINI API key from https://ai.dev/apikey (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
|
||||
@@ -246,6 +246,9 @@ class AccumulatedToolArgs(BaseModel):
|
||||
|
||||
|
||||
class LLM(BaseLLM):
|
||||
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
|
||||
GEMINI_IDENTIFIERS = ("gemini", "gemma-")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
@@ -319,8 +322,55 @@ class LLM(BaseLLM):
|
||||
Returns:
|
||||
bool: True if the model is from Anthropic, False otherwise.
|
||||
"""
|
||||
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
|
||||
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
|
||||
if not isinstance(model, str):
|
||||
return False
|
||||
return any(prefix in model.lower() for prefix in self.ANTHROPIC_PREFIXES)
|
||||
|
||||
def _is_gemini_model(self, model: str) -> bool:
|
||||
"""Determine if the model is from Google Gemini provider.
|
||||
|
||||
Args:
|
||||
model: The model identifier string.
|
||||
|
||||
Returns:
|
||||
bool: True if the model is from Gemini, False otherwise.
|
||||
"""
|
||||
if not isinstance(model, str):
|
||||
return False
|
||||
return any(identifier in model.lower() for identifier in self.GEMINI_IDENTIFIERS)
|
||||
|
||||
def _normalize_gemini_model(self, model: str) -> str:
|
||||
"""Normalize Gemini model name to the format expected by LiteLLM.
|
||||
|
||||
Handles formats like "models/gemini-pro" or "gemini-pro" and converts
|
||||
them to "gemini/gemini-pro" format.
|
||||
|
||||
Args:
|
||||
model: The model identifier string.
|
||||
|
||||
Returns:
|
||||
str: Normalized model name.
|
||||
|
||||
Raises:
|
||||
ValueError: If model is not a string or is empty.
|
||||
"""
|
||||
if not isinstance(model, str):
|
||||
raise ValueError(f"Model must be a string, got {type(model)}")
|
||||
|
||||
if not model.strip():
|
||||
raise ValueError("Model name cannot be empty")
|
||||
|
||||
if model.startswith("gemini/"):
|
||||
return model
|
||||
|
||||
if model.startswith("models/"):
|
||||
model_name = model.split("/", 1)[1]
|
||||
return f"gemini/{model_name}"
|
||||
|
||||
if self._is_gemini_model(model) and "/" not in model:
|
||||
return f"gemini/{model}"
|
||||
|
||||
return model
|
||||
|
||||
def _prepare_completion_params(
|
||||
self,
|
||||
@@ -343,9 +393,23 @@ class LLM(BaseLLM):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
formatted_messages = self._format_messages_for_provider(messages)
|
||||
|
||||
# --- 2) Prepare the parameters for the completion call
|
||||
model = self.model
|
||||
if self._is_gemini_model(model):
|
||||
try:
|
||||
model = self._normalize_gemini_model(model)
|
||||
logging.info(f"Normalized Gemini model name from '{self.model}' to '{model}'")
|
||||
|
||||
# --- 2.1) Map GOOGLE_API_KEY to GEMINI_API_KEY if needed
|
||||
if not os.environ.get("GEMINI_API_KEY") and os.environ.get("GOOGLE_API_KEY"):
|
||||
os.environ["GEMINI_API_KEY"] = os.environ["GOOGLE_API_KEY"]
|
||||
logging.info("Mapped GOOGLE_API_KEY to GEMINI_API_KEY for Gemini model")
|
||||
except ValueError as e:
|
||||
logging.error(f"Error normalizing Gemini model: {str(e)}")
|
||||
model = self.model
|
||||
|
||||
# --- 3) Prepare the parameters for the completion call
|
||||
params = {
|
||||
"model": self.model,
|
||||
"model": model,
|
||||
"messages": formatted_messages,
|
||||
"timeout": self.timeout,
|
||||
"temperature": self.temperature,
|
||||
|
||||
@@ -220,6 +220,37 @@ def test_get_custom_llm_provider_gemini():
|
||||
assert llm._get_custom_llm_provider() == "gemini"
|
||||
|
||||
|
||||
def test_is_gemini_model():
|
||||
"""Test the _is_gemini_model method with various model names."""
|
||||
llm = LLM(model="gpt-4") # Model doesn't matter for this test
|
||||
|
||||
assert llm._is_gemini_model("gemini-pro") == True
|
||||
assert llm._is_gemini_model("gemini/gemini-1.5-pro") == True
|
||||
assert llm._is_gemini_model("models/gemini-pro") == True
|
||||
assert llm._is_gemini_model("gemma-7b") == True
|
||||
|
||||
# Should not identify as Gemini models
|
||||
assert llm._is_gemini_model("gpt-4") == False
|
||||
assert llm._is_gemini_model("claude-3") == False
|
||||
assert llm._is_gemini_model("mistral-7b") == False
|
||||
|
||||
|
||||
def test_normalize_gemini_model():
|
||||
"""Test the _normalize_gemini_model method with various model formats."""
|
||||
llm = LLM(model="gpt-4") # Model doesn't matter for this test
|
||||
|
||||
assert llm._normalize_gemini_model("gemini/gemini-1.5-pro") == "gemini/gemini-1.5-pro"
|
||||
|
||||
assert llm._normalize_gemini_model("models/gemini-pro") == "gemini/gemini-pro"
|
||||
assert llm._normalize_gemini_model("models/gemini-1.5-flash") == "gemini/gemini-1.5-flash"
|
||||
|
||||
assert llm._normalize_gemini_model("gemini-pro") == "gemini/gemini-pro"
|
||||
assert llm._normalize_gemini_model("gemini-1.5-flash") == "gemini/gemini-1.5-flash"
|
||||
|
||||
assert llm._normalize_gemini_model("gpt-4") == "gpt-4"
|
||||
assert llm._normalize_gemini_model("claude-3") == "claude-3"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_openai():
|
||||
llm = LLM(model="gpt-4")
|
||||
assert llm._get_custom_llm_provider() == None
|
||||
@@ -274,6 +305,82 @@ def test_gemini_models(model):
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"], filter_query_parameters=["key"])
|
||||
@pytest.mark.parametrize(
|
||||
"model",
|
||||
[
|
||||
"models/gemini-pro", # Format from issue #2803
|
||||
"gemini-pro", # Format without provider prefix
|
||||
],
|
||||
)
|
||||
def test_gemini_model_normalization(model):
|
||||
"""Test that different Gemini model formats are normalized correctly."""
|
||||
llm = LLM(model=model)
|
||||
|
||||
with patch("litellm.completion") as mock_completion:
|
||||
# Create mocks for response structure
|
||||
mock_message = MagicMock()
|
||||
mock_message.content = "Paris"
|
||||
mock_choice = MagicMock()
|
||||
mock_choice.message = mock_message
|
||||
mock_response = MagicMock()
|
||||
mock_response.choices = [mock_choice]
|
||||
|
||||
# Set up the mocked completion to return the mock response
|
||||
mock_completion.return_value = mock_response
|
||||
|
||||
llm.call("What is the capital of France?")
|
||||
|
||||
# Check that the model was normalized correctly in the call to litellm
|
||||
args, kwargs = mock_completion.call_args
|
||||
assert kwargs["model"].startswith("gemini/")
|
||||
assert "gemini-pro" in kwargs["model"]
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"], filter_query_parameters=["key"])
|
||||
def test_gemini_api_key_mapping():
|
||||
"""Test that GOOGLE_API_KEY is mapped to GEMINI_API_KEY for Gemini models."""
|
||||
original_google_api_key = os.environ.get("GOOGLE_API_KEY")
|
||||
original_gemini_api_key = os.environ.get("GEMINI_API_KEY")
|
||||
|
||||
try:
|
||||
# Set up test environment
|
||||
test_api_key = "test_google_api_key"
|
||||
os.environ["GOOGLE_API_KEY"] = test_api_key
|
||||
if "GEMINI_API_KEY" in os.environ:
|
||||
del os.environ["GEMINI_API_KEY"]
|
||||
|
||||
llm = LLM(model="gemini-pro")
|
||||
|
||||
with patch("litellm.completion") as mock_completion:
|
||||
# Create mocks for response structure
|
||||
mock_message = MagicMock()
|
||||
mock_message.content = "Paris"
|
||||
mock_choice = MagicMock()
|
||||
mock_choice.message = mock_message
|
||||
mock_response = MagicMock()
|
||||
mock_response.choices = [mock_choice]
|
||||
|
||||
# Set up the mocked completion to return the mock response
|
||||
mock_completion.return_value = mock_response
|
||||
|
||||
llm.call("What is the capital of France?")
|
||||
|
||||
# Check that GEMINI_API_KEY was set from GOOGLE_API_KEY
|
||||
assert os.environ.get("GEMINI_API_KEY") == test_api_key
|
||||
|
||||
finally:
|
||||
if original_google_api_key is not None:
|
||||
os.environ["GOOGLE_API_KEY"] = original_google_api_key
|
||||
else:
|
||||
os.environ.pop("GOOGLE_API_KEY", None)
|
||||
|
||||
if original_gemini_api_key is not None:
|
||||
os.environ["GEMINI_API_KEY"] = original_gemini_api_key
|
||||
else:
|
||||
os.environ.pop("GEMINI_API_KEY", None)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"], filter_query_parameters=["key"])
|
||||
@pytest.mark.parametrize(
|
||||
"model",
|
||||
|
||||
Reference in New Issue
Block a user