Compare commits

...

30 Commits

Author SHA1 Message Date
Eduardo Chiarotti
835f0065f1 test: change tests and gh action file 2024-05-16 21:15:20 -03:00
Eduardo Chiarotti
5865a2b899 fix: removed fix since it didnt changed the test 2024-05-16 21:07:39 -03:00
Eduardo Chiarotti
9629337f17 fix: fix test 2024-05-16 21:04:15 -03:00
Eduardo Chiarotti
2186f5c968 fix: test.yml 2024-05-16 20:49:58 -03:00
Eduardo Chiarotti
d34c2a2672 fix: fix typing hinting issue on code 2024-05-16 19:48:42 -03:00
Eduardo Chiarotti
2520f389f2 feat: add the tests 2024-05-16 19:43:42 -03:00
Eduardo Chiarotti
a958b31768 feat: add crewai train CLI command 2024-05-16 19:43:33 -03:00
Eduardo Chiarotti
5de494c99b fix: fix crewai-tools cli command 2024-05-15 19:54:26 -03:00
Jason Schrader
208c3a780c Add version command to CLI (#348)
* feat: add version command to cli with tools flag

* test: check output of version and tools flag

* fix: add version tool info to cli outputs
2024-05-15 19:50:49 -03:00
João Moura
1e112fa50a fixing crew base 2024-05-14 17:40:38 -03:00
João Moura
38fc5510ed ppreparing new version 0.30.9 2024-05-14 11:32:05 -03:00
João Moura
1a1f4717aa cutting new version with no yaml parsing 2024-05-13 23:09:29 -03:00
João Moura
977c6114ba preparing new version 2024-05-13 22:32:24 -03:00
João Moura
27fddae286 New version, updating dependencies, fixing memory 2024-05-13 22:26:41 -03:00
João Moura
615ac7f297 preparing new version 2024-05-13 12:59:55 -03:00
João Moura
87d28e896d preparing new version 2024-05-13 02:35:46 -03:00
Saif Mahmud
23f10418d7 Fixes #603 (#604) 2024-05-13 02:34:52 -03:00
João Moura
27e7f48a44 Adding new tests 2024-05-13 02:34:33 -03:00
João Moura
7fd8850ddb Small RC Fixes (#608)
* mentioning ollama on the docs as embedder

* lowering barrier to match tool with simialr name

* Fixing agent tools to support co_worker

* Adding new tests

* Fixing type"

* updating tests

* fixing conflict
2024-05-13 02:29:04 -03:00
Ítalo Vieira
7a4d3dd496 fix typo exectue -> execute (#607) 2024-05-13 02:19:06 -03:00
João Moura
c1d7936689 preparing new version 2024-05-12 19:56:40 -03:00
Eduardo Chiarotti
1ec4da6947 feat: add mypy as type checker, update code and add comment to reference (#591)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: add mypy as type checker, update code and add comment to reference

* feat: remove black linter

* feat: remove poetry to run the command

* feat: change logic to test mypy

* feat: update tests yml to try to fix the tests gh action

* feat: try to add just mypy to run on gh action

* feat: fix yml file

* feat: add comment to avoid issue on gh action

* feat: decouple pytest from the necessity of poetry install

* feat: change tests.yml to test different approach

* feat: change to poetry run

* fix: parameter field on yml file

* fix: update parameters to be on the pyproject

* fix: update pyproject to remove import untyped errors
2024-05-10 16:37:52 -03:00
Steven Edwards
8430c2f9af Task needs an expected_output field in docs. (#568)
* Task needs an expected_output field in docs..

* Add missing comma.
2024-05-10 11:55:10 -03:00
Ayo Ayibiowu
7cc6bccdec feat: adds support to automatically fallback to the default encoding (#596)
* feat: adds support to automatically fallbackk to the default encoding

* fix: use the correct method
2024-05-10 11:54:45 -03:00
Eduardo Chiarotti
aeba64feaf Feat: Add Ruff to improve linting/formatting (#588)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: remove black linter

* feat: update tests yml to try to fix the tests gh action
2024-05-10 11:53:53 -03:00
GabeKoga
04b4191de5 Fix/yaml formatting (#590)
* Bug/curly_braces_yaml

Added parser to help users on yaml syntax

* context error

Patch and later will prioritize this again to have context work with the yaml
2024-05-09 21:35:21 -03:00
Eduardo Chiarotti
1da7473f26 fix: fix test actually running (#587)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black
2024-05-09 21:33:48 -03:00
João Moura
95d13bd033 prepping new version 2024-05-09 09:12:57 -03:00
Eduardo Chiarotti
7eb4fcdaf4 fix: Add validation fix output_file issue when have '/' (#585)
* fix: Add validation fix output_file issue when have /

* fix: run black to format code

* fix: run black to format code
2024-05-09 08:11:00 -03:00
João Moura
809b4b227c Revert "Fix .md doc file 404 error on github (#564)" (#567)
This reverts commit 2bd30af72b.
2024-05-05 10:35:46 -03:00
74 changed files with 211430 additions and 4790 deletions

View File

@@ -1,10 +0,0 @@
name: Lint
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: psf/black@stable

16
.github/workflows/linter.yml vendored Normal file
View File

@@ -0,0 +1,16 @@
name: Lint
on: [pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install Requirements
run: |
pip install ruff
- name: Run Ruff Linter
run: ruff check --exclude "templates","__init__.py"

View File

@@ -14,19 +14,18 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
python-version: "3.11"
- name: Install Requirements
run: |
sudo apt-get update &&
pip install poetry &&
pip install poetry
poetry lock &&
poetry install
- name: Run tests
run: poetry run pytest
run: poetry run pytest tests

View File

@@ -1,4 +1,3 @@
name: Run Type Checks
on: [pull_request]
@@ -12,19 +11,16 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
python-version: "3.10"
- name: Install Requirements
run: |
sudo apt-get update &&
pip install poetry &&
poetry lock &&
poetry install
pip install mypy
- name: Run type checks
run: poetry run pyright
run: mypy src

View File

@@ -1,21 +1,9 @@
repos:
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 23.12.1
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.4.4
hooks:
- id: black
language_version: python3.11
files: \.(py)$
exclude: 'src/crewai/cli/templates/(crew|main)\.py'
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
args: ["--profile", "black", "--filter-files"]
- repo: https://github.com/PyCQA/autoflake
rev: v2.2.1
hooks:
- id: autoflake
args: ['--in-place', '--remove-all-unused-imports', '--remove-unused-variables', '--ignore-init-module-imports']
- id: ruff
args: ["--fix"]
exclude: "templates"
- id: ruff-format
exclude: "templates"

View File

@@ -231,7 +231,7 @@ poetry run pytest
### Running static type checks
```bash
poetry run pyright
poetry run mypy
```
### Packaging

View File

@@ -103,7 +103,8 @@ general_agent = Agent(role = "Math Professor",
verbose = True,
llm = llm)
task = Task (description="""what is 3 + 5""",
agent = general_agent)
agent = general_agent,
expected_output="A numerical answer.")
crew = Crew(
agents=[general_agent],

View File

@@ -9,32 +9,32 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<h2>Core Concepts</h2>
<ul>
<li>
<a href="./core-concepts/Agents.md">
<a href="./core-concepts/Agents">
Agents
</a>
</li>
<li>
<a href="./core-concepts/Tasks.md">
<a href="./core-concepts/Tasks">
Tasks
</a>
</li>
<li>
<a href="./core-concepts/Tools.md">
<a href="./core-concepts/Tools">
Tools
</a>
</li>
<li>
<a href="./core-concepts/Processes.md">
<a href="./core-concepts/Processes">
Processes
</a>
</li>
<li>
<a href="./core-concepts/Crews.md">
<a href="./core-concepts/Crews">
Crews
</a>
</li>
<li>
<a href="./core-concepts/Memory.md">
<a href="./core-concepts/Memory">
Memory
</a>
</li>
@@ -44,47 +44,47 @@ Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By
<h2>How-To Guides</h2>
<ul>
<li>
<a href="./how-to/Installing-CrewAI.md">
<a href="./how-to/Installing-CrewAI">
Installing crewAI
</a>
</li>
<li>
<a href="./how-to/Creating-a-Crew-and-kick-it-off.md">
<a href="./how-to/Creating-a-Crew-and-kick-it-off">
Getting Started
</a>
</li>
<li>
<a href="./how-to/Create-Custom-Tools.md">
<a href="./how-to/Create-Custom-Tools">
Create Custom Tools
</a>
</li>
<li>
<a href="./how-to/Sequential.md">
<a href="./how-to/Sequential">
Using Sequential Process
</a>
</li>
<li>
<a href="./how-to/Hierarchical.md">
<a href="./how-to/Hierarchical">
Using Hierarchical Process
</a>
</li>
<li>
<a href="./how-to/LLM-Connections.md">
<a href="./how-to/LLM-Connections">
Connecting to LLMs
</a>
</li>
<li>
<a href="./how-to/Customizing-Agents.md">
<a href="./how-to/Customizing-Agents">
Customizing Agents
</a>
</li>
<li>
<a href="./how-to/Human-Input-on-Execution.md">
<a href="./how-to/Human-Input-on-Execution">
Human Input on Execution
</a>
</li>
<li>
<a href="./how-to/AgentOps-Observability.md">
<a href="./how-to/AgentOps-Observability">
Agent Monitoring with AgentOps
</a>
</li>

View File

@@ -50,7 +50,7 @@ tool = CSVSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -53,7 +53,7 @@ tool = CodeDocsSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = DOCXSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -43,7 +43,7 @@ tool = DirectorySearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -55,7 +55,7 @@ tool = GithubSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = JSONSearchTool(
},
},
"embedder": {
"provider": "google",
"provider": "google", # or openai, ollama, ...
"config": {
"model": "models/embedding-001",
"task_type": "retrieval_document",

View File

@@ -49,7 +49,7 @@ tool = MDXSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = PDFSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = PGSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -50,7 +50,7 @@ tool = TXTSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = WebsiteSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = XMLSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -48,7 +48,7 @@ tool = YoutubeChannelSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

View File

@@ -52,7 +52,7 @@ tool = YoutubeVideoSearchTool(
),
),
embedder=dict(
provider="google",
provider="google", # or openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",

1234
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,10 @@
[tool.poetry]
name = "crewai"
version = "0.30.0rc6"
version = "0.30.11"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
authors = ["Joao Moura <joao@crewai.com>"]
readme = "README.md"
packages = [
{ include = "crewai", from = "src" },
]
packages = [{ include = "crewai", from = "src" }]
[tool.poetry.urls]
Homepage = "https://crewai.com"
@@ -23,7 +21,7 @@ opentelemetry-sdk = "^1.22.0"
opentelemetry-exporter-otlp-proto-http = "^1.22.0"
instructor = "^0.5.2"
regex = "^2023.12.25"
crewai-tools = { version = "^0.2.3", optional = true }
crewai-tools = { version = "^0.2.6", optional = true }
click = "^8.1.7"
python-dotenv = "^1.0.0"
embedchain = "^0.1.98"
@@ -34,22 +32,17 @@ tools = ["crewai-tools"]
[tool.poetry.group.dev.dependencies]
isort = "^5.13.2"
pyright = ">=1.1.350,<2.0.0"
mypy = "1.10.0"
autoflake = "^2.2.1"
pre-commit = "^3.6.0"
mkdocs = "^1.4.3"
mkdocstrings = "^0.22.0"
mkdocstrings-python = "^1.1.2"
mkdocs-material = {extras = ["imaging"], version = "^9.5.7"}
mkdocs-material = { extras = ["imaging"], version = "^9.5.7" }
mkdocs-material-extensions = "^1.3.1"
pillow = "^10.2.0"
cairosvg = "^2.7.1"
crewai-tools = "^0.2.3"
[tool.isort]
profile = "black"
known_first_party = ["crewai"]
crewai-tools = "^0.2.6"
[tool.poetry.group.test.dependencies]
pytest = "^8.0.0"
@@ -59,6 +52,11 @@ python-dotenv = "1.0.0"
[tool.poetry.scripts]
crewai = "crewai.cli.cli:crewai"
[tool.mypy]
ignore_missing_imports = true
disable_error_code = 'import-untyped'
exclude = ["cli/templates/main.py", "cli/templates/crew.py"]
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -204,7 +204,7 @@ class Agent(BaseModel):
Output of the agent
"""
if self.tools_handler:
self.tools_handler.last_used_tool = {}
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
@@ -224,7 +224,7 @@ class Agent(BaseModel):
task_prompt += self.i18n.slice("memory").format(memory=memory)
tools = tools or self.tools
parsed_tools = self._parse_tools(tools)
parsed_tools = self._parse_tools(tools) # type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
@@ -303,9 +303,9 @@ class Agent(BaseModel):
}
if self._rpm_controller:
executor_args[
"request_within_rpm_limit"
] = self._rpm_controller.check_or_wait
executor_args["request_within_rpm_limit"] = (
self._rpm_controller.check_or_wait
)
prompt = Prompts(
i18n=self.i18n,
@@ -364,7 +364,7 @@ class Agent(BaseModel):
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
"""Parse tools to be used for the task."""
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
tools_list = []

View File

@@ -35,7 +35,7 @@ class CrewAgentExecutor(AgentExecutor):
crew: Any = None
function_calling_llm: Any = None
request_within_rpm_limit: Any = None
tools_handler: InstanceOf[ToolsHandler] = None
tools_handler: Optional[InstanceOf[ToolsHandler]] = None
max_iterations: Optional[int] = 15
have_forced_answer: bool = False
force_answer_max_iterations: Optional[int] = None
@@ -189,7 +189,7 @@ class CrewAgentExecutor(AgentExecutor):
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
# Call the LLM to see what to do.
output = self.agent.plan(
output = self.agent.plan( # type: ignore # Incompatible types in assignment (expression has type "AgentAction | AgentFinish | list[AgentAction]", variable has type "AgentAction")
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
@@ -275,8 +275,8 @@ class CrewAgentExecutor(AgentExecutor):
run_manager.on_agent_action(agent_action, color="green")
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
tools_handler=self.tools_handler, # type: ignore # Argument "tools_handler" to "ToolUsage" has incompatible type "ToolsHandler | None"; expected "ToolsHandler"
tools=self.tools, # type: ignore # Argument "tools" to "ToolUsage" has incompatible type "Sequence[BaseTool]"; expected "list[BaseTool]"
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,

View File

@@ -8,13 +8,13 @@ from .cache.cache_handler import CacheHandler
class ToolsHandler:
"""Callback handler for tool usage."""
last_used_tool: ToolCalling = {}
cache: CacheHandler
last_used_tool: ToolCalling = {} # type: ignore # BUG?: Incompatible types in assignment (expression has type "Dict[...]", variable has type "ToolCalling")
cache: Optional[CacheHandler]
def __init__(self, cache: Optional[CacheHandler] = None):
"""Initialize the callback handler."""
self.cache = cache
self.last_used_tool = {}
self.last_used_tool = {} # type: ignore # BUG?: same as above
def on_tool_use(
self,
@@ -23,7 +23,7 @@ class ToolsHandler:
should_cache: bool = True,
) -> Any:
"""Run when tool ends running."""
self.last_used_tool = calling
self.last_used_tool = calling # type: ignore # BUG?: Incompatible types in assignment (expression has type "Union[ToolCalling, InstructorToolCalling]", variable has type "ToolCalling")
if self.cache and should_cache and calling.tool_name != CacheTools().name:
self.cache.add(
tool=calling.tool_name,

View File

@@ -1,6 +1,8 @@
import click
import pkg_resources
from .create_crew import create_crew
from .train_crew import train_crew
@click.group()
@@ -15,5 +17,36 @@ def create(project_name):
create_crew(project_name)
@crewai.command()
@click.option(
"--tools", is_flag=True, help="Show the installed version of crewai tools"
)
def version(tools):
"""Show the installed version of crewai."""
crewai_version = pkg_resources.get_distribution("crewai").version
click.echo(f"crewai version: {crewai_version}")
if tools:
try:
tools_version = pkg_resources.get_distribution("crewai-tools").version
click.echo(f"crewai tools version: {tools_version}")
except pkg_resources.DistributionNotFound:
click.echo("crewai tools not installed")
@crewai.command()
@click.option(
"-n",
"--n_iterations",
type=int,
default=5,
help="Number of iterations to train the crew",
)
def train(n_iterations: int):
"""Train the crew."""
click.echo(f"Training the crew for {n_iterations} iterations")
train_crew(n_iterations)
if __name__ == "__main__":
crewai()

View File

@@ -1,4 +1,5 @@
#!/usr/bin/env python
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
@@ -7,4 +8,15 @@ def run():
inputs = {
'topic': 'AI LLMs'
}
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
def train():
"""
Train the crew for a given number of iterations.
"""
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]))
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")

View File

@@ -6,11 +6,12 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = {extras = ["tools"], version = "^0.28.8"}
crewai = { extras = ["tools"], version = "^0.30.11" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
build-backend = "poetry.core.masonry.api"

View File

@@ -3,7 +3,9 @@ from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "Clear description for what this tool is useful for, you agent will need this information to use it."
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -0,0 +1,29 @@
import subprocess
import click
def train_crew(n_iterations: int) -> None:
"""
Train the crew by running a command in the Poetry environment.
Args:
n_iterations (int): The number of iterations to train the crew.
"""
command = ["poetry", "run", "train", str(n_iterations)]
try:
if n_iterations <= 0:
raise ValueError("The number of iterations must be a positive integer.")
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while training the crew: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -164,8 +164,10 @@ class Crew(BaseModel):
"""Set private attributes."""
if self.memory:
self._long_term_memory = LongTermMemory()
self._short_term_memory = ShortTermMemory(embedder_config=self.embedder)
self._entity_memory = EntityMemory(embedder_config=self.embedder)
self._short_term_memory = ShortTermMemory(
crew=self, embedder_config=self.embedder
)
self._entity_memory = EntityMemory(crew=self, embedder_config=self.embedder)
return self
@model_validator(mode="after")
@@ -242,7 +244,7 @@ class Crew(BaseModel):
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self)
self._interpolate_inputs(inputs)
self._interpolate_inputs(inputs) # type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
self._set_tasks_callbacks()
i18n = I18N(prompt_file=self.prompt_file)
@@ -263,8 +265,8 @@ class Crew(BaseModel):
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result, manager_metrics = self._run_hierarchical_process()
metrics.append(manager_metrics)
result, manager_metrics = self._run_hierarchical_process() # type: ignore # Unpacking a string is disallowed
metrics.append(manager_metrics) # type: ignore # Cannot determine type of "manager_metrics"
else:
raise NotImplementedError(
@@ -280,11 +282,15 @@ class Crew(BaseModel):
return result
def train(self, n_iterations: int) -> None:
# TODO: Implement training
pass
def _run_sequential_process(self) -> str:
"""Executes tasks sequentially and returns the final output."""
task_output = ""
for task in self.tasks:
if task.agent.allow_delegation:
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
@@ -357,23 +363,23 @@ class Crew(BaseModel):
)
self._finish_execution(task_output)
return self._format_output(task_output), manager._token_process.get_summary()
return self._format_output(task_output), manager._token_process.get_summary() # type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
def _set_tasks_callbacks(self) -> str:
def _set_tasks_callbacks(self) -> None:
"""Sets callback for every task suing task_callback"""
for task in self.tasks:
if not task.callback:
task.callback = self.task_callback
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[task.interpolate_inputs(inputs) for task in self.tasks]
[agent.interpolate_inputs(inputs) for agent in self.agents]
[task.interpolate_inputs(inputs) for task in self.tasks] # type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
[agent.interpolate_inputs(inputs) for agent in self.agents] # type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
def _format_output(self, output: str) -> str:
"""Formats the output of the crew execution."""
if self.full_output:
return {
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
"final_output": output,
"tasks_outputs": [task.output for task in self.tasks if task],
}

View File

@@ -1,3 +1,5 @@
from typing import Optional
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
@@ -32,7 +34,7 @@ class ContextualMemory:
formatted_results = "\n".join([f"- {result}" for result in stm_results])
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> str:
def _fetch_ltm_context(self, task) -> Optional[str]:
"""
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
@@ -44,10 +46,10 @@ class ContextualMemory:
formatted_results = [
suggestion
for result in ltm_results
for suggestion in result["metadata"]["suggestions"]
for suggestion in result["metadata"]["suggestions"] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
]
formatted_results = list(dict.fromkeys(formatted_results))
formatted_results = "\n".join([f"- {result}" for result in formatted_results])
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
@@ -58,6 +60,6 @@ class ContextualMemory:
"""
em_results = self.em.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in em_results]
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
)
return f"Entities:\n{formatted_results}" if em_results else ""

View File

@@ -10,13 +10,16 @@ class EntityMemory(Memory):
Inherits from the Memory class.
"""
def __init__(self, embedder_config=None):
def __init__(self, crew=None, embedder_config=None):
storage = RAGStorage(
type="entities", allow_reset=False, embedder_config=embedder_config
type="entities",
allow_reset=False,
embedder_config=embedder_config,
crew=crew,
)
super().__init__(storage)
def save(self, item: EntityMemoryItem) -> None:
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)

View File

@@ -18,10 +18,10 @@ class LongTermMemory(Memory):
storage = LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None:
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
metadata = item.metadata
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
self.storage.save(
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
task_description=item.task,
score=metadata["quality"],
metadata=metadata,
@@ -29,4 +29,4 @@ class LongTermMemory(Memory):
)
def search(self, task: str, latest_n: int = 3) -> Dict[str, Any]:
return self.storage.load(task, latest_n)
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, Union
from typing import Any, Dict, Optional, Union
class LongTermMemoryItem:
@@ -8,8 +8,8 @@ class LongTermMemoryItem:
task: str,
expected_output: str,
datetime: str,
quality: Union[int, float] = None,
metadata: Dict[str, Any] = None,
quality: Optional[Union[int, float]] = None,
metadata: Optional[Dict[str, Any]] = None,
):
self.task = task
self.agent = agent

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict
from typing import Any, Dict, Optional
from crewai.memory.storage.interface import Storage
@@ -12,12 +12,16 @@ class Memory:
self.storage = storage
def save(
self, value: Any, metadata: Dict[str, Any] = None, agent: str = None
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
metadata = metadata or {}
if agent:
metadata["agent"] = agent
self.storage.save(value, metadata)
self.storage.save(value, metadata) # type: ignore # Maybe BUG? Should be self.storage.save(key, value, metadata)
def search(self, query: str) -> Dict[str, Any]:
return self.storage.search(query)

View File

@@ -12,12 +12,14 @@ class ShortTermMemory(Memory):
MemoryItem instances.
"""
def __init__(self, embedder_config=None):
storage = RAGStorage(type="short_term", embedder_config=embedder_config)
def __init__(self, crew=None, embedder_config=None):
storage = RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
)
super().__init__(storage)
def save(self, item: ShortTermMemoryItem) -> None:
def save(self, item: ShortTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
super().save(item.data, item.metadata, item.agent)
def search(self, query: str, score_threshold: float = 0.35):
return self.storage.search(query=query, score_threshold=score_threshold)
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters

View File

@@ -1,8 +1,10 @@
from typing import Any, Dict
from typing import Any, Dict, Optional
class ShortTermMemoryItem:
def __init__(self, data: Any, agent: str, metadata: Dict[str, Any] = None):
def __init__(
self, data: Any, agent: str, metadata: Optional[Dict[str, Any]] = None
):
self.data = data
self.agent = agent
self.metadata = metadata if metadata is not None else {}

View File

@@ -7,5 +7,5 @@ class Storage:
def save(self, key: str, value: Any, metadata: Dict[str, Any]) -> None:
pass
def search(self, key: str) -> Dict[str, Any]:
def search(self, key: str) -> Dict[str, Any]: # type: ignore
pass

View File

@@ -1,6 +1,6 @@
import json
import sqlite3
from typing import Any, Dict, Union
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
from crewai.utilities.paths import db_storage_path
@@ -11,7 +11,9 @@ class LTMSQLiteStorage:
An updated SQLite storage class for LTM data storage.
"""
def __init__(self, db_path=f"{db_storage_path()}/long_term_memory_storage.db"):
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
@@ -67,7 +69,9 @@ class LTMSQLiteStorage:
color="red",
)
def load(self, task_description: str, latest_n: int) -> Dict[str, Any]:
def load(
self, task_description: str, latest_n: int
) -> Optional[List[Dict[str, Any]]]:
"""Queries the LTM table by task description with error handling."""
try:
with sqlite3.connect(self.db_path) as conn:

View File

@@ -2,7 +2,7 @@ import contextlib
import io
import logging
import os
from typing import Any, Dict
from typing import Any, Dict, List, Optional
from embedchain import App
from embedchain.llm.base import BaseLlm
@@ -37,13 +37,18 @@ class RAGStorage(Storage):
search efficiency.
"""
def __init__(self, type, allow_reset=True, embedder_config=None):
def __init__(self, type, allow_reset=True, embedder_config=None, crew=None):
super().__init__()
if (
not os.getenv("OPENAI_API_KEY")
and not os.getenv("OPENAI_BASE_URL") == "https://api.openai.com/v1"
):
os.environ["OPENAI_API_KEY"] = "fake"
agents = crew.agents if crew else []
agents = [agent.role for agent in agents]
agents = "_".join(agents)
config = {
"app": {
"config": {"name": type, "collect_metrics": False, "log_level": "ERROR"}
@@ -58,7 +63,7 @@ class RAGStorage(Storage):
"provider": "chroma",
"config": {
"collection_name": type,
"dir": f"{db_storage_path()}/{type}",
"dir": f"{db_storage_path()}/{type}/{agents}",
"allow_reset": allow_reset,
},
},
@@ -72,16 +77,16 @@ class RAGStorage(Storage):
if allow_reset:
self.app.reset()
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
def save(self, value: Any, metadata: Dict[str, Any]) -> None: # type: ignore # BUG?: Should be save(key, value, metadata) Signature of "save" incompatible with supertype "Storage"
self._generate_embedding(value, metadata)
def search(
def search( # type: ignore # BUG?: Signature of "search" incompatible with supertype "Storage"
self,
query: str,
limit: int = 3,
filter: dict = None,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> Dict[str, Any]:
) -> List[Any]:
with suppress_logging():
try:
results = (

View File

@@ -4,13 +4,15 @@ from pathlib import Path
import yaml
from dotenv import load_dotenv
from pydantic import ConfigDict
load_dotenv()
def CrewBase(cls):
class WrappedClass(cls):
is_crew_class = True
model_config = ConfigDict(arbitrary_types_allowed=True)
is_crew_class: bool = True # type: ignore
base_directory = None
for frame_info in inspect.stack():
@@ -40,6 +42,7 @@ def CrewBase(cls):
@staticmethod
def load_yaml(config_path: str):
with open(config_path, "r") as file:
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
return WrappedClass

View File

@@ -1,8 +1,8 @@
import os
import re
import threading
import uuid
from typing import Any, Dict, List, Optional, Type
import os
from langchain_openai import ChatOpenAI
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
@@ -41,7 +41,7 @@ class Task(BaseModel):
tools_errors: int = 0
delegations: int = 0
i18n: I18N = I18N()
thread: threading.Thread = None
thread: Optional[threading.Thread] = None
prompt_context: Optional[str] = None
description: str = Field(description="Description of the actual task.")
expected_output: str = Field(
@@ -109,6 +109,14 @@ class Task(BaseModel):
"may_not_set_field", "This field is not to be set by the user.", {}
)
@field_validator("output_file")
@classmethod
def output_file_validattion(cls, value: str) -> str:
"""Validate the output file path by removing the / from the beginning of the path."""
if value.startswith("/"):
return value[1:]
return value
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Task":
"""Set attributes based on the agent configuration."""
@@ -136,7 +144,7 @@ class Task(BaseModel):
)
return self
def execute(
def execute( # type: ignore # Missing return statement
self,
agent: Agent | None = None,
context: Optional[str] = None,
@@ -155,13 +163,13 @@ class Task(BaseModel):
)
if self.context:
context = []
context = [] # type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
for task in self.context:
if task.async_execution:
task.thread.join()
task.thread.join() # type: ignore # Item "None" of "Thread | None" has no attribute "join"
if task and task.output:
context.append(task.output.raw_output)
context = "\n".join(context)
context.append(task.output.raw_output) # type: ignore # Item "str" of "str | None" has no attribute "append"
context = "\n".join(context) # type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
self.prompt_context = context
tools = tools or self.tools
@@ -242,26 +250,26 @@ class Task(BaseModel):
# try to convert task_output directly to pydantic/json
try:
exported_result = model.model_validate_json(result)
exported_result = model.model_validate_json(result) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
if self.output_json:
return exported_result.model_dump()
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result
except Exception:
# sometimes the response contains valid JSON in the middle of text
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0))
if self.output_json:
return exported_result.model_dump()
return exported_result
except Exception:
pass
# sometimes the response contains valid JSON in the middle of text
match = re.search(r"({.*})", result, re.DOTALL)
if match:
try:
exported_result = model.model_validate_json(match.group(0)) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
if self.output_json:
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
return exported_result
except Exception:
pass
llm = self.agent.function_calling_llm or self.agent.llm
llm = self.agent.function_calling_llm or self.agent.llm # type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
if not self._is_gpt(llm):
model_schema = PydanticSchemaParser(model=model).get_schema()
model_schema = PydanticSchemaParser(model=model).get_schema() # type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
@@ -282,22 +290,22 @@ class Task(BaseModel):
if self.output_file:
content = (
exported_result if not self.output_pydantic else exported_result.json()
exported_result if not self.output_pydantic else exported_result.json() # type: ignore # "str" has no attribute "json"
)
self._save_file(content)
return exported_result
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _save_file(self, result: Any) -> None:
directory = os.path.dirname(self.output_file)
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
if not os.path.exists(directory):
if directory and not os.path.exists(directory):
os.makedirs(directory)
with open(self.output_file, "w") as file:
with open(self.output_file, "w", encoding="utf-8") as file: # type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
file.write(result)
return None

View File

@@ -256,9 +256,11 @@ class Telemetry:
"async_execution?": task.async_execution,
"output": task.expected_output,
"agent_role": task.agent.role if task.agent else "None",
"context": [task.description for task in task.context]
if task.context
else "None",
"context": (
[task.description for task in task.context]
if task.context
else "None"
),
"tools_names": [
tool.name.casefold() for tool in task.tools
],

View File

@@ -1,4 +1,4 @@
from typing import List
from typing import List, Union
from langchain.tools import StructuredTool
from pydantic import BaseModel, Field
@@ -33,12 +33,26 @@ class AgentTools(BaseModel):
]
return tools
def delegate_work(self, coworker: str, task: str, context: str):
def delegate_work(
self, task: str, context: str, coworker: Union[str, None] = None, **kwargs
):
"""Useful to delegate a specific task to a co-worker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("co-worker")
if coworker is not None:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, task, context)
def ask_question(self, coworker: str, question: str, context: str):
def ask_question(
self, question: str, context: str, coworker: Union[str, None] = None, **kwargs
):
"""Useful to ask a question, opinion or take from a co-worker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("co-worker")
if coworker is not None:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, question, context)
def _execute(self, agent, task, context):
@@ -49,7 +63,7 @@ class AgentTools(BaseModel):
for available_agent in self.agents
if available_agent.role.casefold().strip() == agent.casefold().strip()
]
except:
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]

View File

@@ -64,7 +64,7 @@ class ToolUsage:
# Set the maximum parsing attempts for bigger models
if (isinstance(self.function_calling_llm, ChatOpenAI)) and (
self.function_calling_llm.openai_api_base == None
self.function_calling_llm.openai_api_base is None
):
if self.function_calling_llm.model_name in OPENAI_BIGGER_MODELS:
self._max_parsing_attempts = 2
@@ -82,6 +82,8 @@ class ToolUsage:
self._printer.print(content=f"\n\n{error}\n", color="red")
self.task.increment_tools_errors()
return error
# BUG? The code below seems to be unreachable
try:
tool = self._select_tool(calling.tool_name)
except Exception as e:
@@ -89,15 +91,15 @@ class ToolUsage:
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
def _use(
self,
tool_string: str,
tool: BaseTool,
calling: Union[ToolCalling, InstructorToolCalling],
) -> None:
if self._check_tool_repeated_usage(calling=calling):
) -> None: # TODO: Fix this return type
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
tool_names=self.tools_names
@@ -108,15 +110,16 @@ class ToolUsage:
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result)
return result
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # Fix the reutrn type of this function
except Exception:
self.task.increment_tools_errors()
result = None
result = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
if self.tools_handler.cache:
result = self.tools_handler.cache.read(
result = self.tools_handler.cache.read( # type: ignore # Incompatible types in assignment (expression has type "str | None", variable has type "str")
tool=calling.tool_name, input=calling.arguments
)
@@ -130,7 +133,7 @@ class ToolUsage:
if calling.arguments:
try:
acceptable_args = tool.args_schema.schema()["properties"].keys()
acceptable_args = tool.args_schema.schema()["properties"].keys() # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "schema"
arguments = {
k: v
for k, v in calling.arguments.items()
@@ -142,7 +145,7 @@ class ToolUsage:
arguments = calling.arguments
result = tool._run(**arguments)
else:
arguments = calling.arguments.values()
arguments = calling.arguments.values() # type: ignore # Incompatible types in assignment (expression has type "dict_values[str, Any]", variable has type "dict[str, Any]")
result = tool._run(*arguments)
else:
result = tool._run()
@@ -158,9 +161,10 @@ class ToolUsage:
).message
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{error_message}\n", color="red")
return error
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
return self.use(calling=calling, tool_string=tool_string)
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
if self.tools_handler:
should_cache = True
@@ -169,9 +173,9 @@ class ToolUsage:
)
if (
hasattr(original_tool, "cache_function")
and original_tool.cache_function
and original_tool.cache_function # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
should_cache = original_tool.cache_function(
should_cache = original_tool.cache_function( # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
calling.arguments, result
)
@@ -185,13 +189,13 @@ class ToolUsage:
tool_name=tool.name,
attempts=self._run_attempts,
)
result = self._format_result(result=result)
return result
result = self._format_result(result=result) # type: ignore # "_format_result" of "ToolUsage" does not return a value (it only ever returns None)
return result # type: ignore # No return value expected
def _format_result(self, result: Any) -> None:
self.task.used_tools += 1
if self._should_remember_format():
result = self._remember_format(result=result)
if self._should_remember_format(): # type: ignore # "_should_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
return result
def _should_remember_format(self) -> None:
@@ -202,26 +206,33 @@ class ToolUsage:
result += "\n\n" + self._i18n.slice("tools").format(
tools=self.tools_description, tool_names=self.tools_names
)
return result
return result # type: ignore # No return value expected
def _check_tool_repeated_usage(
self, calling: Union[ToolCalling, InstructorToolCalling]
) -> None:
if not self.tools_handler:
return False
return False # type: ignore # No return value expected
if last_tool_usage := self.tools_handler.last_used_tool:
return (calling.tool_name == last_tool_usage.tool_name) and (
return (calling.tool_name == last_tool_usage.tool_name) and ( # type: ignore # No return value expected
calling.arguments == last_tool_usage.arguments
)
def _select_tool(self, tool_name: str) -> BaseTool:
for tool in self.tools:
order_tools = sorted(
self.tools,
key=lambda tool: SequenceMatcher(
None, tool.name.lower().strip(), tool_name.lower().strip()
).ratio(),
reverse=True,
)
for tool in order_tools:
if (
tool.name.lower().strip() == tool_name.lower().strip()
or SequenceMatcher(
None, tool.name.lower().strip(), tool_name.lower().strip()
).ratio()
> 0.9
> 0.85
):
return tool
self.task.increment_tools_errors()
@@ -254,7 +265,7 @@ class ToolUsage:
return "\n--\n".join(descriptions)
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def _tool_calling(
self, tool_string: str
@@ -292,14 +303,14 @@ class ToolUsage:
tool_input = self._validate_tool_input(self.action.tool_input)
arguments = ast.literal_eval(tool_input)
except Exception:
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
if not isinstance(arguments, dict):
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_arguments_error")}'
)
calling = ToolCalling(
calling = ToolCalling( # type: ignore # Unexpected keyword argument "log" for "ToolCalling"
tool_name=tool.name,
arguments=arguments,
log=tool_string,
@@ -310,7 +321,7 @@ class ToolUsage:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
self.task.increment_tools_errors()
self._printer.print(content=f"\n\n{e}\n", color="red")
return ToolUsageErrorException(
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_usage_error").format(error=e)}\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
)
return self._tool_calling(tool_string)

View File

@@ -29,7 +29,7 @@
"tool_usage_exception": "I encountered an error while trying to use the tool. This was the error: {error}.\n Tool {tool} accepts these inputs: {tool_inputs}"
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following co-workers: {coworkers}\nThe input to this tool should be the co-worker, the task you want them to do, and ALL necessary context to exectue the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"delegate_work": "Delegate a specific task to one of the following co-workers: {coworkers}\nThe input to this tool should be the co-worker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following co-workers: {coworkers}\nThe input to this tool should be the co-worker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them."
}
}

View File

@@ -6,3 +6,4 @@ from .printer import Printer
from .prompts import Prompts
from .rpm_controller import RPMController
from .fileHandler import FileHandler
from .parser import YamlParser

View File

@@ -83,5 +83,5 @@ class Converter(BaseModel):
)
return new_prompt | self.llm | parser
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
def _is_gpt(self, llm) -> bool: # type: ignore # BUG? Name "_is_gpt" defined on line 20 hides name from outer scope
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None

View File

@@ -58,4 +58,4 @@ class TaskEvaluator:
return converter.to_pydantic()
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None

View File

@@ -21,14 +21,14 @@ class I18N(BaseModel):
self._prompts = json.load(f)
else:
dir_path = os.path.dirname(os.path.realpath(__file__))
prompts_path = os.path.join(dir_path, f"../translations/en.json")
prompts_path = os.path.join(dir_path, "../translations/en.json")
with open(prompts_path, "r") as f:
self._prompts = json.load(f)
except FileNotFoundError:
raise Exception(f"Prompt file '{self.prompt_file}' not found.")
except json.JSONDecodeError:
raise Exception(f"Error decoding JSON from the prompts file.")
raise Exception("Error decoding JSON from the prompts file.")
if not self._prompts:
self._prompts = {}
@@ -47,5 +47,5 @@ class I18N(BaseModel):
def retrieve(self, kind, key) -> str:
try:
return self._prompts[kind][key]
except:
except Exception as _:
raise Exception(f"Prompt for '{kind}':'{key}' not found.")

View File

@@ -0,0 +1,17 @@
import re
class YamlParser:
def parse(file):
content = file.read()
# Replace single { and } with doubled ones, while leaving already doubled ones intact and the other special characters {# and {%
modified_content = re.sub(r"(?<!\{){(?!\{)(?!\#)(?!\%)", "{{", content)
modified_content = re.sub(
r"(?<!\})(?<!\%)(?<!\#)\}(?!})", "}}", modified_content
)
# Check for 'context:' not followed by '[' and raise an error
if re.search(r"context:(?!\s*\[)", modified_content):
raise ValueError(
"Context is currently only supported in code when creating a task. Please use the 'context' key in the task configuration."
)
return modified_content

View File

@@ -22,7 +22,7 @@ class TokenProcess:
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> str:
def get_summary(self) -> Dict[str, Any]:
return {
"total_tokens": self.total_tokens,
"prompt_tokens": self.prompt_tokens,
@@ -42,12 +42,12 @@ class TokenCalcHandler(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
if "gpt" in self.model:
try:
encoding = tiktoken.encoding_for_model(self.model)
else:
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if self.token_cost_process == None:
if self.token_cost_process is None:
return
for prompt in prompts:

View File

@@ -31,8 +31,8 @@ def test_agent_default_values():
assert isinstance(agent.llm, ChatOpenAI)
assert agent.llm.model_name == "gpt-4"
assert agent.llm.temperature == 0.7
assert agent.llm.verbose == False
assert agent.allow_delegation == True
assert agent.llm.verbose is False
assert agent.allow_delegation is True
def test_custom_llm():
@@ -751,7 +751,7 @@ def test_agent_definition_based_on_dict():
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert agent.verbose == True
assert agent.verbose is True
assert agent.tools == []

View File

@@ -28,6 +28,20 @@ def test_delegate_work():
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegate_work_with_wrong_co_worker_variable():
result = tools.delegate_work(
co_worker="researcher",
task="share your take on AI Agents",
context="I heard you hate them",
)
assert (
result
== "AI Agents are essentially computer programs that are designed to perform tasks autonomously, with the ability to adapt and learn from their environment. These tasks range from simple ones such as setting alarms, to more complex ones like diagnosing diseases or driving cars. AI agents have the potential to revolutionize many industries, making processes more efficient and accurate. \n\nHowever, like any technology, AI agents have their downsides. They can be susceptible to biases based on the data they're trained on and they can also raise privacy concerns. Moreover, the widespread adoption of AI agents could result in significant job displacement in certain industries.\n\nDespite these concerns, it's important to note that the development and use of AI agents are heavily dependent on human decisions and policies. Therefore, the key to harnessing the benefits of AI agents while mitigating the risks lies in responsible and thoughtful development and implementation.\n\nWhether one 'loves' or 'hates' AI agents often comes down to individual perspectives and experiences. But as a researcher, it is my job to provide balanced and factual information, so I hope this explanation helps you understand better what AI Agents are and the implications they have."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question():
result = tools.ask_question(
@@ -41,6 +55,46 @@ def test_ask_question():
== "As an AI researcher, I don't have personal feelings or emotions like love or hate. However, I recognize the importance of AI Agents in today's technological landscape. They have the potential to greatly enhance our lives and make tasks more efficient. At the same time, it is crucial to consider the ethical implications and societal impacts that come with their use. My role is to provide objective research and analysis on these topics."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question_with_wrong_co_worker_variable():
result = tools.ask_question(
co_worker="researcher",
question="do you hate AI Agents?",
context="I heard you LOVE them",
)
assert (
result
== "No, I don't hate AI agents. In fact, I find them quite fascinating. They are powerful tools that can greatly assist in various tasks, including my research. As a technology researcher, AI and AI agents are subjects of interest to me due to their potential in advancing our understanding and capabilities in various fields. My supposed love for them stems from this professional interest and the potential they hold."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegate_work_withwith_coworker_as_array():
result = tools.delegate_work(
co_worker="[researcher]",
task="share your take on AI Agents",
context="I heard you hate them",
)
assert (
result
== "AI Agents are software entities which operate in an environment to achieve a particular goal. They can perceive their environment, reason about it, and take actions to fulfill their objectives. This includes everything from chatbots to self-driving cars. They are designed to act autonomously to a certain extent and are capable of learning from their experiences to improve their performance over time.\n\nDespite some people's fears or dislikes, AI Agents are not inherently good or bad. They are tools, and like any tool, their value depends on how they are used. For instance, AI Agents can be used to automate repetitive tasks, provide customer support, or analyze vast amounts of data far more quickly and accurately than a human could. They can also be used in ways that invade privacy or replace jobs, which is often where the apprehension comes from.\n\nThe key is to create regulations and ethical guidelines for the use of AI Agents, and to continue researching and developing them in a way that maximizes their benefits and minimizes their potential harm. From a research perspective, there's a lot of potential in AI Agents, and it's a fascinating field to be a part of."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ask_question_with_coworker_as_array():
result = tools.ask_question(
co_worker="[researcher]",
question="do you hate AI Agents?",
context="I heard you LOVE them",
)
assert (
result
== "I don't hate or love AI agents. My passion lies in understanding them, researching about their capabilities, implications, and potential for development. As a researcher, my feelings toward AI are more of fascination and interest rather than personal love or hate."
)
def test_delegate_work_to_wrong_agent():
result = tools.ask_question(

View File

@@ -0,0 +1,427 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "You are researcher. You''re
an expert researcher, specialized in technology\nYour personal goal is: make
the best research and analysis on content about AI and AI agentsTo give my best
complete final answer to the task use the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: my best complete final answer to
the task.\nYour final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!\nCurrent Task: do you hate AI Agents?\n\nThis is the expect criteria for
your final answer: Your best answer to your co-worker asking you this, accounting
for the context shared. \n you MUST return the actual complete content as the
final answer, not a summary.\n\nThis is the context you''re working with:\nI
heard you LOVE them\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:\n"}], "model":
"gpt-4", "n": 1, "stop": ["\nObservation"], "stream": true, "temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '1103'
content-type:
- application/json
cookie:
- _cfuvid=r7d0l_hEOM639ffTY.owt.2ZeXQN7IgsM0JmFM6FEiE-1715576040584-0.0.1.1-604800000;
__cf_bm=bHXznnX6IEnPWC4UFqVw22jiTLBlLvClKsTW4F99UPc-1715613132-1.0.1.1-5k2TYkm6.lsjrA1MkQ4uD2GxUGKPmwNVeYL_sKTpAPJ_trVvN3.uNZS4HljKfVPlku1XDNCYfU4y43hlt3e.RQ
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.25.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.25.1
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"As"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
researcher"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
specialized"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
technology"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
specifically"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
my"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
personal"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
feelings"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
towards"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
them"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
not"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
based"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
on"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
emotion"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
but"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
on"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
professional"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
interest"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
intellectual"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
curiosity"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
\n\n"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Final"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
Answer"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":":"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
I"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
don"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''t"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
hate"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
or"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
love"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
agents"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
My"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
passion"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
lies"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
in"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
understanding"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
them"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
researching"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
about"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
their"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
capabilities"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
implications"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
potential"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
for"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
development"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
As"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
a"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
researcher"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":","},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
my"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
feelings"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
toward"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
AI"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
are"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
more"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
of"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
fascination"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
and"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
interest"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
rather"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
than"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
personal"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
love"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
or"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
hate"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"."},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-9ORdkG4FJphn6RbqXUgZlUbRtXBIO","object":"chat.completion.chunk","created":1715613148,"model":"gpt-4-0613","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 883396429922624c-GRU
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 13 May 2024 15:12:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '514'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '300000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '299745'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 50ms
x-request-id:
- req_5a62449ef9052c3a350f1b47f268bbcc
status:
code: 200
message: OK
version: 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -11,7 +11,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [Researcher]\nThe input to this tool should be the coworker, the
task you want them to do, and ALL necessary context to exectue the task, they
task you want them to do, and ALL necessary context to execute the task, they
know nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nAsk question to co-worker: Ask question to
co-worker(coworker: str, question: str, context: str) - Ask a specific question
@@ -1030,7 +1030,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [Researcher]\nThe input to this tool should be the coworker, the
task you want them to do, and ALL necessary context to exectue the task, they
task you want them to do, and ALL necessary context to execute the task, they
know nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nAsk question to co-worker: Ask question to
co-worker(coworker: str, question: str, context: str) - Ask a specific question

View File

@@ -6,7 +6,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role2'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -326,7 +326,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role2'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -351,7 +351,7 @@ interactions:
Delegate work to co-worker(coworker: str, task: str, context: str) - Delegate
a specific task to one of the following co-workers: [''test role2'']\nThe input
to this tool should be the coworker, the task you want them to do, and ALL necessary
context to exectue the task, they know nothing about the task, so share absolute
context to execute the task, they know nothing about the task, so share absolute
everything you know, don''t reference things but instead explain them.\nAsk
question to co-worker: Ask question to co-worker(coworker: str, question: str,
context: str) - Ask a specific question to one of the following co-workers:
@@ -1027,7 +1027,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role2'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -1052,7 +1052,7 @@ interactions:
Delegate work to co-worker(coworker: str, task: str, context: str) - Delegate
a specific task to one of the following co-workers: [''test role2'']\nThe input
to this tool should be the coworker, the task you want them to do, and ALL necessary
context to exectue the task, they know nothing about the task, so share absolute
context to execute the task, they know nothing about the task, so share absolute
everything you know, don''t reference things but instead explain them.\nAsk
question to co-worker: Ask question to co-worker(coworker: str, question: str,
context: str) - Ask a specific question to one of the following co-workers:
@@ -1236,7 +1236,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role2'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -1485,7 +1485,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -2490,7 +2490,7 @@ interactions:
co-worker: Delegate work to co-worker(coworker: str, task: str, context: str)
- Delegate a specific task to one of the following co-workers: [''test role'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:

View File

@@ -67,7 +67,7 @@ interactions:
work to co-worker: Delegate work to co-worker(coworker: str, task: str, context:
str) - Delegate a specific task to one of the following co-workers: [''Researcher'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:
@@ -442,7 +442,7 @@ interactions:
work to co-worker: Delegate work to co-worker(coworker: str, task: str, context:
str) - Delegate a specific task to one of the following co-workers: [''Researcher'']\nThe
input to this tool should be the coworker, the task you want them to do, and
ALL necessary context to exectue the task, they know nothing about the task,
ALL necessary context to execute the task, they know nothing about the task,
so share absolute everything you know, don''t reference things but instead explain
them.\nAsk question to co-worker: Ask question to co-worker(coworker: str, question:
str, context: str) - Ask a specific question to one of the following co-workers:

View File

@@ -86,7 +86,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Senior Writer'']\nThe input to this tool should be the coworker,
the task you want them to do, and ALL necessary context to exectue the task,
the task you want them to do, and ALL necessary context to execute the task,
they know nothing about the task, so share absolute everything you know, don''t
reference things but instead explain them.\nAsk question to co-worker: Ask question
to co-worker(coworker: str, question: str, context: str) - Ask a specific question
@@ -1716,7 +1716,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Senior Writer'']\nThe input to this tool should be the coworker,
the task you want them to do, and ALL necessary context to exectue the task,
the task you want them to do, and ALL necessary context to execute the task,
they know nothing about the task, so share absolute everything you know, don''t
reference things but instead explain them.\nAsk question to co-worker: Ask question
to co-worker(coworker: str, question: str, context: str) - Ask a specific question

View File

@@ -67,7 +67,7 @@ interactions:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Researcher'', ''Senior Writer'']\nThe input to this tool should
be the coworker, the task you want them to do, and ALL necessary context to
exectue the task, they know nothing about the task, so share absolute everything
execute the task, they know nothing about the task, so share absolute everything
you know, don''t reference things but instead explain them.\nAsk question to
co-worker: Ask question to co-worker(coworker: str, question: str, context:
str) - Ask a specific question to one of the following co-workers: [''Researcher'',
@@ -2448,7 +2448,7 @@ interactions:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Researcher'', ''Senior Writer'']\nThe input to this tool should
be the coworker, the task you want them to do, and ALL necessary context to
exectue the task, they know nothing about the task, so share absolute everything
execute the task, they know nothing about the task, so share absolute everything
you know, don''t reference things but instead explain them.\nAsk question to
co-worker: Ask question to co-worker(coworker: str, question: str, context:
str) - Ask a specific question to one of the following co-workers: [''Researcher'',
@@ -5367,7 +5367,7 @@ interactions:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Researcher'', ''Senior Writer'']\nThe input to this tool should
be the coworker, the task you want them to do, and ALL necessary context to
exectue the task, they know nothing about the task, so share absolute everything
execute the task, they know nothing about the task, so share absolute everything
you know, don''t reference things but instead explain them.\nAsk question to
co-worker: Ask question to co-worker(coworker: str, question: str, context:
str) - Ask a specific question to one of the following co-workers: [''Researcher'',

View File

@@ -60,7 +60,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Scorer'']\nThe input to this tool should be the coworker, the
task you want them to do, and ALL necessary context to exectue the task, they
task you want them to do, and ALL necessary context to execute the task, they
know nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nAsk question to co-worker: Ask question to
co-worker(coworker: str, question: str, context: str) - Ask a specific question
@@ -3200,7 +3200,7 @@ interactions:
are not listed here:\n\nDelegate work to co-worker: Delegate work to co-worker(coworker:
str, task: str, context: str) - Delegate a specific task to one of the following
co-workers: [''Scorer'']\nThe input to this tool should be the coworker, the
task you want them to do, and ALL necessary context to exectue the task, they
task you want them to do, and ALL necessary context to execute the task, they
know nothing about the task, so share absolute everything you know, don''t reference
things but instead explain them.\nAsk question to co-worker: Ask question to
co-worker(coworker: str, question: str, context: str) - Ask a specific question

File diff suppressed because it is too large Load Diff

59
tests/cli/cli_test.py Normal file
View File

@@ -0,0 +1,59 @@
from unittest import mock
import pytest
from click.testing import CliRunner
from crewai.cli.cli import train, version
@pytest.fixture
def runner():
return CliRunner()
@mock.patch("crewai.cli.cli.train_crew")
def test_train_default_iterations(train_crew, runner):
result = runner.invoke(train)
train_crew.assert_called_once_with(5)
assert result.exit_code == 0
assert "Training the crew for 5 iterations" in result.output
@mock.patch("crewai.cli.cli.train_crew")
def test_train_custom_iterations(train_crew, runner):
result = runner.invoke(train, ["--n_iterations", "10"])
train_crew.assert_called_once_with(10)
assert result.exit_code == 0
assert "Training the crew for 10 iterations" in result.output
@mock.patch("crewai.cli.cli.train_crew")
def test_train_invalid_string_iterations(train_crew, runner):
result = runner.invoke(train, ["--n_iterations", "invalid"])
train_crew.assert_not_called()
assert result.exit_code == 2
assert (
"Usage: train [OPTIONS]\nTry 'train --help' for help.\n\nError: Invalid value for '-n' / '--n_iterations': 'invalid' is not a valid integer.\n"
in result.output
)
def test_version_command(runner):
result = runner.invoke(version)
assert result.exit_code == 0
assert "crewai version:" in result.output
def test_version_command_with_tools(runner):
result = runner.invoke(version, ["--tools"])
assert result.exit_code == 0
assert "crewai version:" in result.output
assert (
"crewai tools version:" in result.output
or "crewai tools not installed" in result.output
)

View File

@@ -0,0 +1,87 @@
import subprocess
from unittest import mock
from crewai.cli.train_crew import train_crew
@mock.patch("crewai.cli.train_crew.subprocess.run")
def test_train_crew_positive_iterations(mock_subprocess_run):
# Arrange
n_iterations = 5
mock_subprocess_run.return_value = subprocess.CompletedProcess(
args=["poetry", "run", "train", str(n_iterations)],
returncode=0,
stdout="Success",
stderr="",
)
# Act
train_crew(n_iterations)
# Assert
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "train", str(n_iterations)],
capture_output=False,
text=True,
check=True,
)
@mock.patch("crewai.cli.train_crew.click")
def test_train_crew_zero_iterations(click):
train_crew(0)
click.echo.assert_called_once_with(
"An unexpected error occurred: The number of iterations must be a positive integer.",
err=True,
)
@mock.patch("crewai.cli.train_crew.click")
def test_train_crew_negative_iterations(click):
train_crew(-2)
click.echo.assert_called_once_with(
"An unexpected error occurred: The number of iterations must be a positive integer.",
err=True,
)
@mock.patch("crewai.cli.train_crew.click")
@mock.patch("crewai.cli.train_crew.subprocess.run")
def test_train_crew_called_process_error(mock_subprocess_run, click):
n_iterations = 5
mock_subprocess_run.side_effect = subprocess.CalledProcessError(
returncode=1,
cmd=["poetry", "run", "train", str(n_iterations)],
output="Error",
stderr="Some error occurred",
)
train_crew(n_iterations)
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "train", "5"], capture_output=False, text=True, check=True
)
click.echo.assert_has_calls(
[
mock.call.echo(
"An error occurred while training the crew: Command '['poetry', 'run', 'train', '5']' returned non-zero exit status 1.",
err=True,
),
mock.call.echo("Error", err=True),
]
)
@mock.patch("crewai.cli.train_crew.click")
@mock.patch("crewai.cli.train_crew.subprocess.run")
def test_train_crew_unexpected_exception(mock_subprocess_run, click):
# Arrange
n_iterations = 5
mock_subprocess_run.side_effect = Exception("Unexpected error")
train_crew(n_iterations)
mock_subprocess_run.assert_called_once_with(
["poetry", "run", "train", "5"], capture_output=False, text=True, check=True
)
click.echo.assert_called_once_with(
"An unexpected error occurred: Unexpected error", err=True
)

View File

@@ -437,6 +437,7 @@ def test_async_task_execution():
process=Process.sequential,
tasks=[list_ideas, list_important_history, write_article],
)
output = TaskOutput(description="A 4 paragraph article about AI.", raw_output="ok")
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
@@ -444,13 +445,11 @@ def test_async_task_execution():
thread = threading.Thread(target=lambda: None, args=()).start()
start.return_value = thread
with patch.object(threading.Thread, "join", wraps=thread.join()) as join:
list_ideas.output = TaskOutput(
description="A 4 paragraph article about AI.", raw_output="ok"
)
list_important_history.output = TaskOutput(
description="A 4 paragraph article about AI.", raw_output="ok"
)
list_ideas.output = output
list_important_history.output = output
crew.kickoff()
start.assert_called()
join.assert_called()
@@ -678,8 +677,8 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
result = crew.kickoff()
assert result == '"Howdy!"'
assert crew.usage_metrics == {
"total_tokens": 1650,
"prompt_tokens": 1367,
"total_tokens": 1666,
"prompt_tokens": 1383,
"completion_tokens": 283,
"successful_requests": 3,
}
@@ -698,6 +697,8 @@ def test_crew_inputs_interpolate_both_agents_and_tasks():
)
crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI", "points": 5})
inputs = {"topic": "AI", "points": 5}
crew._interpolate_inputs(inputs=inputs) # Manual call for now
assert crew.tasks[0].description == "Give me an analysis around AI."
assert crew.tasks[0].expected_output == "5 bullet points about AI."
@@ -706,7 +707,7 @@ def test_crew_inputs_interpolate_both_agents_and_tasks():
assert crew.agents[0].backstory == "You have a lot of experience with AI."
def test_crew_inputs_interpolate_both_agents_and_tasks():
def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
from unittest.mock import patch
agent = Agent(
@@ -828,9 +829,7 @@ def test_tools_with_custom_caching():
with patch.object(
CacheHandler, "add", wraps=crew._cache_handler.add
) as add_to_cache:
with patch.object(
CacheHandler, "read", wraps=crew._cache_handler.read
) as read_from_cache:
with patch.object(CacheHandler, "read", wraps=crew._cache_handler.read) as _:
result = crew.kickoff()
add_to_cache.assert_called_once_with(
tool="multiplcation_tool",
@@ -907,8 +906,6 @@ def test_crew_log_file_output(tmp_path):
)
]
test_message = {"agent": "Researcher", "task": "Say Hi"}
crew = Crew(agents=[researcher], tasks=tasks, output_log_file=str(test_file))
crew.kickoff()
assert test_file.exists()
@@ -939,13 +936,11 @@ def test_manager_agent():
with patch.object(Task, "execute") as execute:
crew.kickoff()
assert manager.allow_delegation == True
assert manager.allow_delegation is True
execute.assert_called()
def test_manager_agent_in_agents_raises_exception():
pass
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -959,7 +954,7 @@ def test_manager_agent_in_agents_raises_exception():
)
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
crew = Crew(
Crew(
agents=[researcher, writer, manager],
process=Process.hierarchical,
manager_agent=manager,
@@ -968,7 +963,12 @@ def test_manager_agent_in_agents_raises_exception():
def test_manager_agent_with_tools_raises_exception():
pass
from crewai_tools import tool
@tool
def testing_tool(first_number: int, second_number: int) -> int:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
@@ -980,6 +980,7 @@ def test_manager_agent_with_tools_raises_exception():
goal="Manage the crew and ensure the tasks are completed efficiently.",
backstory="You're an experienced manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=False,
tools=[testing_tool],
)
crew = Crew(
@@ -991,3 +992,35 @@ def test_manager_agent_with_tools_raises_exception():
with pytest.raises(Exception):
crew.kickoff()
def test_crew_train_success():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
)
crew.train(n_iterations=2)
def test_crew_train_error():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
)
with pytest.raises(TypeError) as e:
crew.train()
assert "train() missing 1 required positional argument: 'n_iterations'" in str(
e
)

View File

@@ -0,0 +1,405 @@
interactions:
- request:
body: '{"input": ["test value test value test value test value test value test
value test value test value test value test value test value test value test
value test value test value test value test value test value"], "model": "text-embedding-ada-002",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '292'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.25.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.25.1
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
YXyDACB/th//38/PZLRrT7ldIgJZnBmfn4CJAiq+LyCiIKJAAqSrdXLgkEHeFhU8w8wDSxSD5oc6
WflNKJzM7Iut//7nz5+/fdFU5fT33z9/369x+vuff/78+XvPp/zvv3/+1z9//vz5899R6Vh1RXW/
vz51iwDwor7+/fePmAWQRvTvn787bSEMK+stofY5z+A4vzmmFLXFYr0KgCU+lpRH0gctwh5hOJ+6
HYvObV7Q6fuREQhFifllnkK6uJ9cVo5fC0uvRuPrc9leAFNbInanzsWsykWOWutesQOUh2G7vg4V
aklssHCBapjux2yGNjkR9sju72au1duMYlZlhDC8onGvhisqFPvOyLUmDReMY4rq92QzXXxci/Hy
3ACMpx9hnvS7J9PozDV8TqZJDt/hhvjz3VIwPq5EtVyshsZS31jTLmZINwyvfClP+xGqIULkUC44
3JXfWABr6TbEWycvmYd1e4SyrlsSbOqlWbUqi+G8JR0LHts45GFaC9rvt7HxHO9wM27epxi66e2z
Qyae+DyzDSD2KUqs3ZdPM3/TAqCXnRML9nbV8CvcbWAs6/Gqf3XEydJncChMkdLa/hbTN9uPcPVP
PYWZdAOvpdRE8tbwyP449M0aGNOsnqfCwLNc8mGKyliFm1CMeHOuTT7Lez4i6j8JifLnbNFQBxFa
Sb4ST2vNZneqNy/4WUHNdKKGfFWepYnGbSzgXeS8i1lRogsIX0/ENDrKRVc4L139jFKEBe8SFfzh
hTk62UVAokflIL6ZawGEcywRwkNize/r7QjcFnTiFt93yJStH6AsaVz6zi5BSPfm8ahF6BYz++TG
zRJOAVZ1ndyp0Nhs4Dg5vKD+0h/dST8tWUZHrpUbFlaC80BrpgZGF0bl2BLsXaJieQoOwCS+TOYI
yC/WOEp1sKblQ6wTvxZDfDRWIMolJf7XPTbcUcIUaZUuMOdzEDhVljgHT+IPKqWjOXAafWtQ0XjC
y8M+D1x5GzP8YuGEP3sfis9l2mO4Hu2OmXFdhiwVniVkYR2zw3VXoPV0sAE+TjER6/us+frR0pe6
aEjAqUdm9NwooQQPNbkS53T7FGtSfEv4vVaTHYi2b7az1frwEXc6VoIFEI3HR4TkxXiywAiihB+f
L12rzygh1kEqwmW2Rh/t8OVMTBoaXDppbg15QHaMXGrJWmb+HuHxKjmLTh87YfNgSptbsInwZgnN
ZPldsxk1yQ5IwL/Ap6ZkKbwvz5ocOroLl/JkjNDYeksVdGisZS/8KvDCNGS4NZxmdMsiB+FQnoi7
5ErIxUz5Ie+3SYnf7p8hPx+0DK3vS8UcXNrNgsAIwIl+Bzo/h85iG6Oa0XnfWfRjYYkvZuK+4Gxw
l37D5ZJQXE0RXAwzIHkhn9FSHR8YlHEo6SAqXrPml1OqhdHTYcQbq2G+j10E+6U6YunRFeGq+7cU
DOtOial/dcT9C1rh1Jojc8fc4cu+mijSbWLRb/ZWEdv2h1ohyhmxSIxenJ8nNQBrmnXi+tuJz/rs
mzDN48CM3NugT1bUAsSszFhFji1nZKlzhPPkQdzvvbH444M7FLMyY54X8nB6IxPDfqmOLNjbVbN4
5CYCH7szMbP8g1ZL2pTIOm8sEmi1jfiCvF7dNiePeU8FELuO2RFMPIWUXg8qYoJxvCD7acZ4paHB
Fx/Xsvb8hi0xnW4upneo/8B6ryIxf9hpVsOrc6jCzw1r5YItLiw3Fe1NU6M/YkxouKk8AkNVD7gW
buUwkdy3gbGsx7Kq0oQ/nQ9A6auYGfOWoVn+CioIt7hk1pG34eLUqqugxs/Y+XT7JNS1Bxte/uLS
l9PNxdg7bo1KuFDii9rDWvS2T2H4RT6x9ZgmPd7hUomT75YdtPJjTeOli6F7t2cSYCMtFtbeRBCc
h8NC4LU1ObXqgjhaBK+yaQ2/lrxneNP0zgqBj4ieg32ELuPPwfPySoefKS06RJ82ZcfxLaC53+57
9MDbH/NeipRQq9tTuA7qjOFZsHBtybQiigSfufPVtNhm7gV4pe8T89/7NJmVmxFo/WxXzFi234LL
b5VCZWVXRnCjW2v601LE+1Vgrr898MVePhJAxVVm6t8azcvDxMiPiwIzwaEhO+lwkYe8EAj+CX3I
1fYaA1adI4ueBQmXG78dIbjbIZbryOYNLWkKrRdviVldj4j6iavDtXU4iR7Vo5m1jgcogCll9rB7
cLqLdy8Yp/LGrLFqhvlGuhkSqTawqAx3viDY+yh/ixG5pOOrWc5uUqLddi6JIbO+mBOr+qFr5t0Y
mXBnfVS7dOEpa2cs2iRoZq3jPkzteGLVJbCQJFlND1plClSOz5a13Pgp1iS1FvBuntJkKRZNRK9j
a1PBuGkhsxXxCGH0dIj1+hTD9PPyDFzeYNxeLD/Zpp6dwQNvf8wOoymcRL3OtL6OJ6IXiz6suxWO
YE38QyLYy5xPWmrClckXUj6qTbOyzMAgby0Py8ZTbpYuuAQgveqQOPsH5qO5KWQIWnkmTvDoi0WJ
5Bqy4fxjpL5eOf8eLxGyD7c9cQTUJ3yguxfck43Nwq3ytOZvm6dwe31exCeZnmzX2LOhcIYWP2vB
SL728sxAu1grZrJjJLP5yKiqRweJzpH6HlbRTjuob6qCN9/Tl3PByFLIiotFnDJxE340phixpKuI
4SW0GSfjJMGrvZl0Te/DMCdNkkGtvQyiN0PMZ5PEKcpz02CH68602p3aYZh/W2DeOnnJcnaLChXf
40gCM3AQb/nxCGb1AmLvqNgse9raYAbTm/jpebZmvV5bYE1GiJHZrFinL1ORdRcI3Wntq/kZn6GD
G21TEjlTyNfp+y1BRUzG0u8uFau8himS1ueK47gurXl+cB9u8RoQcwwpp8W2aSEwTj0xYLSH3dY3
UzVGccNI3Nz4Ui62rO00Toi3/f2sNiN1CnllYcpwU4dj+npVEDUdZVH2tIq1mZMKOGQuHS7YaBbW
nkT1eNjHLLgiZRgOlj4i4X40mdEKKFxFO23BUxeH2Dc9tHhKBxfpHzEkx0C7WOwykR7GU0+Ybuu8
mbaPtdfGb8XxdgiexTLziYKLXjnxtPbVLMrU/qC4VQjXbe9z6aj5LsiL9STeQ2F8GqTGBLaJboQI
Drbmzn0C7LF1YX6UJZy+lihDy8sRsbDKdTPHojlC1LSUWemsJzPXmheyvmvOMDm2aF6FskT5W4qI
kXsPxMlS5+BaqsOC52oM2+eUYXilnxMzs/zDx+B3yMGetz8WOVOIVt2/XZDUsQ+L1IgNc/8OYyCH
MWOGyrbh+g0VF0kXquP1ej9xHopjgJbgXtFnElgJl7yHhPrswegybxmaoCgq2L1hYDOYHrXgXDGR
vFhPLI7iFg0kTlsoI6Vg+21yHfiBm0dQsp4Q97Baw2RwwHD9KAFxtoYV8v7p1CCcY4kFnndOpvLp
1pDGYYsbfcNDdtYkgC9PGZZu39iav2kBMM3jQIzguCTLt9dtZAxuOanP1WjmX/ORwDneI+LlUBdj
rZ5WhD7hm0Swl/k0vdEIIYIMC6tcD7xbpxm1j6RnlrnZ8GVZxRkMSf3geq+9OF9vrw6sadVZ+DVj
vqQfrwVBVDPmHU2jmbnWvFBgJD1dLp4biuUhEZCm/FQs6WibrKKdduqxnQ2il3Qu+IyMCNZ3WpFD
rEYF319MEYRDeWIPYzyhnp4uPRyhfTM7cR/JYvLwiDotU9jhukNoWV5CjlaHAlXy94TWA7ldAKrW
Jnt9t2vW7KO0iJHFJda7bYe5EHQd0jyYGX54SbJUx0eEcH56MMd+3cLF2yQ5oE/4xuO1nRLu9qkO
SWinVK7IueC4CWXwVxKR/Wl4hXx/CUT0iAeTeYG/RVP3y2Vkds+ZBPftu5jtifeArumBXZVPV8yN
L85gCn5F1X6sm3W/nkQonG9LPBNbw9ZsbBXIYcyIJRVRQ32L/ND4vh+Yeb474Zb8IhUKzbbIrStf
w/i+PkbQKl3At3CRCqoseQ5PJ+3YfritIVe2ug/X1uP4+lQAzai/m7BufcKCC+qKydsUOWwiCliB
g9Rweau4IE/4hXda+xpmdzzNIBvthzhbownZdIhL7eRnMyG40S3JPseZhuPjyCJ7voSS8Wk6iHa3
kfLr7DZr5omidqvWhoTHU1ysWpXFwDjWib2P6mT1eTAjPTVFZm2LxJqR18twhPbNDIUVw2Ivzxxy
82CzZK2OCXu1fIaD1M/MV1QRLaes/SEtIB9m7puxmU+pXMHVjgvaqJnPx7W6xUD9JyHkkfcWy9Ug
huVlH1hYhgHnI9V9zRBQThf/aA/8sbMBpNcrxODNZbEan6FF+OXeMS2CnbXodtNpk2Mz5rivyJrC
g1PCoslXZipO3iy/XSFAYVQ+00s6F1z6lB3a33ce8eg8WHwNzoEq1qZEkZsfm+maSjl008efttdb
GnId/B78oJUYHoSiWDV8k6H4HkeqfMot70n38JHbTHfM1cznq+FREWqlLth5/6B8UUG14ej4DxZg
I02WzCY2IrdxZWaP12bsuslHrfWo2J5dcDF5jwxDYVQ+3Q28T+YgJyYAnhNyqJanNV3e04iuHxQQ
Szi/rWl5CTkc5y4i++oVhPScYxM867Khw/WUDUtTfi7IFPyKGOI6WuM+91tIzUvEoiW+D+tt51RQ
Zqyjl0dXWOPwmit4PoOFhXe/bli126owKnFLDlrphSts7Bxuv5ZSITk8rd6ibavWyqsgh1gdi/Vl
BJK6284lu5bKd6B92ecQJbPG9HiHG8aQ6sO3oDfiy6oxjFJ472A89YQFV6QMS1TGqlbqyMQMN7rF
Kw9SdYcvZxIp0SXkzt6YNV6uLcHKqiT0bm9ewAh36dCbt2QhqhXDgLuIBJnMhne8mysNPa4627uL
ZUnfcLHh0v8eJDp+fnwR9giDWOsSnqRXH87P769E8hPvqVYuNJwu515Vf+q6pZtrTYb5Kx4pZMP1
R2GJ78MySIMJhiR/sCaU9bAaXiehWqsNdpaMS/Gbvh8ZMU4+zPAS2lDmm5L6yHvM/MG1GlG9kRYN
guWSUL9/Bg4rn8FXzT3zrWfYjNlcVqi7zQFzFCEe1t8gxvDIhy1GVXgdFqJaMRiPk8wOT9qgVUxz
AS6GGRDd1nnDzTDtIM2DGb+u9xNafrtCQEGvXibZeMrDIlePCOH89KCyU6V8qeneh/tnLVgwjnmx
NCW7qD/Pd8nlsGoJrdJIULfW901+224saILGH3rkPSZ5aJ8aVl3VUe7e7ZmYP/xIRkHyW0g8lxLM
0LVZo2MQo8PDzLF072jRN764okAcn0Qv6Vzwx3W/grjb5izqzzRcdlU2q/Eu1uj2c6j49KCrC2X7
CrAcFMEwn9K5AppddSoMAkq4lb90oGjDmL/q5rAGS6+i0ZFsEtKNGYrn5/KCMkIF8X4c8ynQlBqc
/r5hWFmV5Ge6moruuy5izrFchjV3cwAeAcf8/ous/l4+cyTFNMcqas7JuNLKheJ0Z3SJDjXn71cP
UPoqJqRLPWt8DHaq4Tx5MDf/DgM7a3INaIU9w+5l5f1MYAXsVk8SzcQddv6Fr6qaeXsWLtCiqSl7
Gaxp+eDNtSbNlNmeC9GuGPE7vR3Q6iWSAJ2WK4w0VzsRsRfJwKx5wknX7vha2oqLklhWCKmvVzTu
AxNrsfXDzPq0S7EGSy3DZj6PzNTMC+L7iymqjW8tzM7009B/xUeASl/FzNkIj6Kr2jAFxsmHmOl9
aHgqPCvY2GhDY8lJrdn/CSk6KyTCryZ1m12shzmypuXD7GHnhi3XhhfaDnGC07tWo3X32sro/C0K
5uwMxn9S00lw3rcW3qzhdpiewgFQ6cuYldd2Sn5+E2XI9b0n2VuiXkzvwilR8U5cLBrxB434Y/TI
Cy8hwxMK+G+RfjUc5w9nOA+0gR7IdQXhnnyJZcKr4E1rSqCjYU9n6REU8yP0WtQZmwNzX01r9f5P
uKDZ0wXmsdluuP3VZGSfI49Z1c8Z5huhM3pX9cj8dv8MZ+0izoDC2mQ3dGjChRuPFbHhZjLnfYgt
iTtOrQy/yGelNZvDTh/No/Z7rSZeVLYNuQ56rxZG6ZNLtP7CWQrPHVjuPmZ+FkeF/MqQj+LrUBC3
radiNI5hjIwiHpgu3EwuFduhQ7/XarL9cikSpraPI7KULmSm5IghxdWE1euOIkzty4NToikmwC8n
RLf02qK7eFdDNLyfxIBRKCgWvgCu7zzxzwwctFxbcQXjcZKZHUYHa/44ioniXaxhyJ73cPZ/QooO
FtlhKR3NhvuSXEO9rbeEdKlnzV/xESDNjEQszdeXxbe9U4N1gy8p4pNTzIl1xNB+3I4FP7ZYq/3O
ZlDEOGS6peuWqGYZhsA49cSXtDhcNje/h8+ZVOxw2fkN18fgCE5/3zBDWjNEqaylYCSnBwnZ5lyw
RT3G8KiGAsMUW5xrL7tElvJZKRL4iLgq3nv4xcKJeZGzCcfyHl9U3LkWVZ/bhzVrrpCD8HVEclAe
AZrPJx7AoZM2BBs3q+CXycBIqkaO5/79ttatWPmonuiR+HVkI857WYfbr6VUtp5Ds9J+rtH3SjkW
RYqT3eO6XwEJ8GIEnCJcDkOfwlmLVkI+aV7w+pKJsDm+UgxjHBTzFvY/ABXrFH2c77Aqp3OPxoO0
I1YkeZy/+WWEQrHvpHDzueF3uc+Ayy1j8fn+tkZ6qnoYgq4j3skU+fdBVxtwcKfM/OIo3PqP6qdK
Mc2JzyylWVqEAqiKImA6UQe+I94jNP96l0Xafi3E1g8lAJd7xKmPZrM9fgsBlW2zEIfbfKCakJSa
aGcqiabY4ltxfgpw7BdMgkxmw+IcOUWRBysJoA6LFW22F6DZWcfNUl3QrLlCBtvkcaFLbQzDuot9
X7WUNmTpsNug1XQ1GZ2i7MJcWz41c+d+BcRt0Nn5cxDQJB+eFagNSklIUnOQ2k0vI7V0GZ3V0h1E
4hYCeGEakgKn35AbRQ7o6aQdKbV9XKybSKiQPe9+FNzJKXYMqT6iO+FFN/5XHMbUfFMYVKtmh/eg
h7MgeSaIvW4yO9pb1pxXgJGvmnuihxprFmeWSxid7UCwdZvDRlsDCfRI15mro3PCd13zA8N6UPoI
OgtJi/R7ASINIdbr8+RMiLGNlKwnGILfc+AJS3WId7HGQoGPfAnvoQRib5qMOF9sLZb5wKiJjCs7
xGpUcDBXDAP+cIZbw2nW6TbY0KflC8ujlRSz4Dqlqm5YxcxjTYrVcUodTq05EgtlZiGS7hqA5KqE
CqtcN9ztUxPeQoCJdeQaZ/DSckDWS2JeAcmw1ds61Q4/6U2VYCnReHnqrXLNnBsdi+e+meP0IKh6
I76ZwbeSNaVelKvbawkEh0k/rLeP36PutArM+AifgeHEqeEU5RfiyZ+I01F9YCRmB5no9RA161sQ
ctTPbsX8Il6HeVqKDNQdHejWe70bNmDxAvVJmdhhr3vW8rkNHdzA/6J14ruEDxguKACWYqV4e8Uo
jmKkGap6ILphzWjEO93Upr17Zu6jM5LZws9cu61FwgLXe4UsrUYKvd9fiRf4Zz5n9cUFULFOxatl
oKk4rT9w0Sun6pftms5LJAF0NOyJ3+0PfNYuMKO3SV9UOAdBIgVLraLutArEK5XvMIbfsoQ4+W6J
McmHcGlgdFXUBBnR6XtBK9EUE4rvcWQEOZ9m3Ea+Deza2cQwLo9kST+kU5K1LrAQH7xhceu9D4ak
frB4sfxkHX9xrn0MfCJ6/3astX20PqDk8mG4M+JipnqtIkNAOYUxDgppvmZHNKz6xMK7Xzc8xTRF
y8/T6cMbhWGSD98SZmIGeLvaeUifyzYFUb+llIfKwhmJyxa1H7ujAlqjZJXN/QrN7m4z3NismV5T
9VOjcN0T77z5DbM++6b6EjHHQu7poYSrKUKHwhSZ9fo8+XQ516omvN0PMWc/DCd7eeZQnB6MEMWX
C97yYwx+F60kkLrHsO7Xk6SdSuwRktbfhL6p0qIN+ISKytCGS3FaeySZ8pe5S34LF5wrOuqWrCae
9LMaujezo5bH5pbY6rAr1iHELSLbCyUGk/WQqW0mIjN+NYQcm4O1nPwuBi53jDjkUQzvXt5KKBre
TxY1hRlK2ZVHcHjtbtNG8k98xp/9D2bPFAgBp7C45N1y6LaZS3I2unw+npmE6hOacCZqG2tO49FV
5SfeM3Kuy2Fuer1Dfp59iMvyKNwuLykH8n01dNT2a8H2EtZRkisjfd8TpZmtqsNqobkWCaeN3+xc
Oc61OvB8Ru75NmTONwK1bJuFWfomCUcx2pXw958/f/78+Z9//vz5P//558+fv11/r95///3zd6qW
6b/sAum/8nv+X6IoWRE8HfO6+vuvC2H09zv03Xf6f1PfVp/x779/dvCfYpv6KX/L/vPnz//88z//
GAM=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 88142860ce7a82e2-GIG
Connection:
- keep-alive
Content-Encoding:
- br
Content-Type:
- application/json
Date:
- Thu, 09 May 2024 19:39:49 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=JUH9MsoOBdCquA9K9qOgVbrLUkBpuF4d2k7EvjnBOLg-1715283589-1.0.1.1-96.yHqUmYzRiWC7xZ4.TPKu5RqvB1EFecasHfb_ix62oXcsw_Sp.gz0gDk4Inl119IxRMINM613CI5HheoJM2A;
path=/; expires=Thu, 09-May-24 20:09:49 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=DPNTnqcoTitPoe12n1vvVltuYsIzavX_dftsSEhQQcc-1715283589489-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-ada-002
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '15'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999946'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ace5babe6674a08d07fce90792eef7eb
status:
code: 200
message: OK
- request:
body: '{"input": ["test value"], "model": "text-embedding-ada-002", "encoding_format":
"base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, br
connection:
- keep-alive
content-length:
- '89'
content-type:
- application/json
cookie:
- __cf_bm=JUH9MsoOBdCquA9K9qOgVbrLUkBpuF4d2k7EvjnBOLg-1715283589-1.0.1.1-96.yHqUmYzRiWC7xZ4.TPKu5RqvB1EFecasHfb_ix62oXcsw_Sp.gz0gDk4Inl119IxRMINM613CI5HheoJM2A;
_cfuvid=DPNTnqcoTitPoe12n1vvVltuYsIzavX_dftsSEhQQcc-1715283589489-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.25.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.25.1
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
YXSDACDztvb89z8/k9FeZ0rVEhBIuDPopTFBQMT3fiOISifSJEBqlQdcfLgwYYhq0ycWOOTwIO1h
81r/88/f379D0VTl8u9//v7t6nn597/++fv79/lYHv/+5+///PP39/f3P6StVV9Uz2f9fVcg2EV9
/vufPz418QbBf/7+TVtk0UC95xN7n/0a8PWNEcnICNjKbJqhe2gQ9Wr4Ayx1fzE8z0dC8Rr2gMLH
FcIu2zgCDvBbsI/U1ODVDA+MzOeXsVewcrAIswt25vo6rW2Gcinhp4bEvzc/bfr7kYK+dDWqR3IE
1ruc89CtpJLeh3xPyOkbRWA+zQG+nYE5bZoXxepzeYTUFCS7GW6dZQGJPC8UO20HmGwYqRrLTUm4
GHsNIec4h4P6OWLz6zRgsz8XAqtlMKjzDUtzAy1XQ8s0eBpeP0mzTtkvh0WYXtB+v61gu3O5AXdN
geiYPBW2mMc0hxUqFMInt7rZXHnJlCi57dQR2GnalFpHaujICvaAzwB15s8IKa0stGW+ybZ8NCP4
jBUJh8Jgsz3J5xUON0cnHPKbhF0KjVc/3sEna/oixfrVn7ESzsmLLJzTsf1sYAsG0VGjDrPbYuOF
HUJdH97YnC53ky2XkwHw8/bAzkKMYjGP6QNIZjTgsD7ObAHnOoIWi0aMlcMWzHeITqCSzwM6gsZK
xO4k1aA69SLVFtk2Se33FdwyG2Ebb12wnTvQw68RACTd42ewNt/VgHSkF3QctpptEbgoaq9/ZxyK
ij6x2y458KRMV7ROwZtNwqjx8O09ABHn27vY5W/cwvvX3vEJPeaEukYcqkpr+NQR2NCs1rqV0MPk
Q8+HXJ+O4Wr5sOJtmcjnOjEFv4Uh5Osbw37H6Q0rBc+AXHb9Yf/0aqfV3gMNZlS5U60d4oAJRj+D
Iswu+OxtXrP/hEiB3XZJkPQ9SAnzaLjCFPEVxl48BuQwoxGey+ZK1I4bwaYfSQsX7FbYFl6C+ZPP
fAmokl6x6yaoICD+VHC5HyiRw+hWEF4eWmDV3AWpx/Y1sSVRU/CuShdXjVAl+/KRU2C3WCCAfDOw
b60fQ2UMvhivsQBWiVkzJPLqUP325dnqbhIPL+qsYe0pfKepFHRN8bVpobrvOIl4zeNWjZsd4EDs
STDnzZCB72U/IPZyw2Y9em4Jiuf1QA0sGia/k2iA3zAVsdO4Avjxws4dmpHMNORL2Vw8OfGhey9T
XFEZMLb99FIt9iIkR2s9TNvunXJ472eRCPWwmJsS5gSO58Wn1ls9NsQdeANOpnHGVmb3gDn6aQAH
5/vCxrhHCbVmxsNXkun0nP6UZMkPbIczjxHZVEubWIM8BXagQkTUnE+zVNm9htETpeh1O9gFO5nT
CrOHcMZ5o+zBEiddDwE9dsgf0TNg/t2w1Iq3ZaofpGRiTf3mofvqNuy6CSr2w8HjFaqkV6wfydec
b/JkwDHvikXAWxcs83Z3oHf1RyRdzxn40mQ6Af0CZarxvdYI1R2J8HiOI+zi2G6ONz98gNq2L9Q3
vSn4HZEzQrNxb9Qev21CoenNgCivAhvbK2CTcP0psLbtC1Ln/h1QbRwVKDXIJoxFa7L7XJyqbJ54
bFyfB7Dp70cGeD2zsdv01UTUhBlw/3wINctWZcNGYQ7D7GRQ2/g8APtIzRvaSeiio6T0DTkfLrOa
WvEXIz+KE7ZcTgYIt2VAe734wTSCzwijJ0rRVsyFuR0/ugj9ydOpcb9FbLZ3U4Pn+XQnLZfZ0xJE
1whGquBgfzgCkxbhM4U2E2WqvZsJrHS5xPAOdoPanECKfQoLTbGG/E7Tcq+TldyGFX5eWkaYXb+n
fT63LcTG00diGBFzDYUiBV9HIeTNnSuTnq2Ig3GzA+rEXBz0+f3OQaFcW2yG1yAgfN/l8PmFFq1k
z0m2lY0G/O2igmBu1dP65G4WrG33Qi23UgoyN1cLEARzxBVdDbZzB1ooMvdK9ZQ7BtsROQPw/PiO
pC7oklVklQJDR1aoVXtWcRwjbYSTaZypN8RNsaltm4KYizE9a1c9YcJBzuCUV1eq94nbrMfSGME7
USIidJGRLI/Dp4em6Sn0fFeWZL7LkQhFt43pK/UVQL+tvMP4/j2QJ+fYbMXN660cE23HdtX0YE2l
aQQLvz2RUA9LsB9+90xxToqN9ubQgSn/oBKO8X7D3vtemEzTkhI0Fhdgb/l1RXf9BRI8XS8rdR6q
l+xqAgxoLlGMhK+sBZsbDi28Xj2MA9uCydKS0wpd1Js4FAabHYVZPEHffrwxcoIwILz87pXp3Fr0
Bog8/dLxO0It4D5IPpetyeahjABo2zuNr88D2GMDxsr1EXEkRdq72Xl4VUCD3waR19tvmiezR8Ac
mheSNmwA5uinAW7vwwuRB3qzOYuOKcjFl4ZWb9/Z6vrZDLcAqeTI2nOwKk9fg/ztVWPnkB6DqVNg
CdfumGPtKXyb9d7KCsxE84j9q9Ka223YCGgEOcOBnO7JmiHfgOHU+tgE2G32j1dKsIC9iy1AomL1
he4NR+as6GiiwSRhIs2gOB5TtIm3zmSvz6+C909M6Pld182+fOQUys2a4kc720xcpV8IldbwEddQ
Wiy7p+UQS96JekPcJO1OohHMjSKQY1HuATM0PYbTU3mS9QnEhjXSJQUogy6+/PSJjQYwNOhw3AG7
tXdu2HLRDCjk5kbPl1UDAvXmFZ4EfEarNDlsTyxbhMLiqNT0FgH88tGMoXMPK7TPZjPNSQ18wER+
xeGnuwTb9WdKsDqTDntfPTIZXO4nIJnRgANLdoMt+e4plJKDSqQN14BF+9OB71+aEw75ZsFu++qo
1fBO6Olsjsm6W14IN3sVsKWU6cSm1K3hKW0LUqPX21xfQ5rDJvpsVNu4IKEZn/DwJTs11p5AnPa5
uTrQX0NEz6N5MRfxJUVQtS0b3881M8mrrGMl82ueiKfsaRLrC0e4+iOhlngjCbsyPwL6fPRQa41u
sQ4G4UHwriyirGuTLFV2eUP2Pc9oAsdPsOpFcQKS585IUNaTuZvqIQUV78r4XA5bw85WBOF5vxyp
Zn1ebHfUB4RbZiOMnGAOFv7tV5BYjw8OtmthUik/GyCqORG9h9o0j44pcJDzdxOHsVwlM7+CHWRj
ecHa75Ca7H28Q9D1hUF4N7GDdbjWBvTH1cauGNbJHma9Bl3Um1TjZ9osz5saAxe1Jk3J+QM2X2kJ
iCXRxZ68GEDs3tYOP/wu0aBRQLG2P6+Hj0vdUof/AkbKrXjAblVu1BK0udjPVz8GnGNGNHiGx2Iv
t+IBC9i61ECjUGwKRgZ87vyVbNq6mFtphKt8IQ4kt1JSGmrpDxHkb/LCliXAqRjBb4T+uNsE9qIV
7IfkLcI2O1N8YtK7mXwHSQAdexl9T60+rXKxlrAWbi5aoCIHs8JXMQRppOFI2gTATvc0gkJubgRM
8t7Qm2/l8O44FpEavglW9RRJ8LnkIbnqlgeW2pAhfOhhQB1mW8l+mNGoSEmnox72zNzEY1hDfw0R
NvmPOW305Gnw2/MBtt19AUsELpLq3suUOlq4TjPy5RlG8fikesiPzf57vXPgot5EEt5IwgKr8RUt
43ckcWNdzJ+rq8EwOxnUbQov2X7PrIbsYmFyYJoM9mMU1Sqk5IUOoYaSFTevN1AEUyIM4O/ETvcy
gt85TqhnNwXYm4qFsA9fkPodp0/bsKkl7ETDoUZpC+bWl7cTEOLuR13ldpw2/SM68Pt5mPS8Tk4h
7vK+w/skdmhSJj5h+ySusICti9MDy6YV+dsMy9u+USeWTLMLlccbtFeeUcceJECCw6QA+JiSZfbi
N1tDoUhBQoCOxPM3MsmzhCVY5DrCzn1apvG+lhrIroZHA+0gBtMzNE/QTdMOqSxtg309ayGUmtCm
l58+AUrHQw7Dj5bQgDdfCYm0+wlUA8DYZL5eiBe9JiDshRs9/aJpWnhB4cC77TrqpZhMmyR/Rzjl
1RWbiDuBvTzRGT6l+Ek2J7wmmxX8ELwKzowEtQqLfa1XArP1SwmXwy7YXHHVwO0xu0TCGyrmmzwZ
MJIMA7uGAZK9/2QZvKizRrgqcYOtuiMehJlvYMzJtTm5Rhyqr9+zwucmcpojdqAFKxUWSEKPsBC8
s+LDNrhW1OAE26Tv4wWqVm5p+Ho5LxNbLpoBUQZdfKmRnmwz7+TghWKeyMxeJgKgJEGgLCLVLtsY
zOaTi8D3sh7o6+SoybJ6jx7kVxFRv7bWaX18vwiiYy9Ta48Hc/1loIe3B3Gxl2LSEKK8fDg3ioA9
yxkBtcith62wR0joF5ZQJ9tO6vnys+m540awvG6TpXBraVDTrt/TjkZlhViNjtQMC8XczioWoRCW
Aba4rGtovPsSKFU/I4CUn2bOomMGf7cxoo6h8NNmfy4zvEfcFetirSTduQO9onhvgTDmf4r5ezvv
wLiNR+o2PTdtfH1YQb8dazSrSxisXVoPwFuvKfracE6YM39GcJsWgQYvQTB38NVy9WBLPq2swyvZ
uvuHB9S3XhiFkjuxqGxbqMX2gXox64NdiMYZ1q/DhxqlfQ22o1Q5sMs2DgmlXSX7Ra8JxJJ3or4k
/KZZYtYMH1ulYzfWPEZO3ygGgVZ/se7o72CT5O8IPKXG5MDJddDtnpZDq4YXqlmfAyO/sAuhfmMq
DfrhMFGO8jHk6xtDwg1s0+8Cp0q5+j+FOp/RAhsLBAJ/7Cxib8jjZFV2pYbiTZlI0QVkYrH3QvBl
EhXB8+0bbJy0OfBDl4k65X1j++F3z2DjM0w9PXeaNQNohYJrmNijmpuMfKeP6sKzJ+Kt0S343dKR
ahzblBwr65tsu6flEPDSjiR3PwZ7ZKISvvgbRTdfj5s90u4+3AH5kd15nxgZRDhIRza1OBQVvdmN
AYlw2y4S4dyamNtUvFu4WM0XcZuPTcZZSQwFd8nJfNK6gJFDloI+WL/Y6WgQsIWzdsh1cKGGURjT
b3+XA+hEWlCzU27B3glqDN9V6aLve5+mPb9fIBCNk08rdM0n5pDzA6hX9qBWUt/A4jX1AE6twqPd
3K1GSGKdh3b1TLBh9EcwM/uxQovFI7VUXwKzZt0dMJ4Xnwbcqkz7tXAVeA/eIdZecT5tQXSNQUJq
mzoskifyDZIReBZ/wd7kiMl6l3MRrJ2QU1ucdLAVkzGCkzf72Hqrx+YbrtYJ1p5oIQYekM3olQ+w
THSOOvfpPO1VkRMAfNvCWll10zK6hQjIQW7w9zD40yCuvx5+9arH+OSoxcJJsgOO6tvBwQF+E7Iq
IQRh5hv4fOogY9+L2AJ/CnQEjEwy55WMPLiD3cCm1HtgO350EcqDZFJ/3sJg0z+cBWB3Gqivq1VC
63DNoPQzPRxK2RjM1iqX4E32N9WaG8fWi3h6QwrMkXpfPQrmgPdWOJ17C5/Tn1Ks1NRFaOcDxgjs
VrB2txeExfN2QEpKjgn5sDaDckVdMi2+Dfbw9wmhQ4Yen7WrngyMjgjOv0xFs51Ttp+vfgw5DYVE
UcKpYdD0ZgioH2HTOWzTb/XFVIWRW1KL5EeTqL+pVsB4f1JHb/aGSBwRYZmYHHbvBz0QnjchAqdW
4ak5XeRgSeA9AvAR3ait44O5/JhrAOPYpkjZz3wyyNWyw0ueFdT0ZaM5VudyhqfD44TPl1VjQqY5
BkjulYxmYbDBT6l1pF5UolEDhm4h1n5fgWu7JwThj52Q9/5YwQtFPPVZmxVs7GQfVsnLpbolsKSv
9hnCLkA52vYnbzLrFqTyhfke2TLfBJvduhqkvHJG+5ocTBYQpVW6AOWInfcyYNDqSuWu3y5oc/M6
WH8Z6BWusEp6EetHQd77Y4fBu7LQMbMjc/7q1xgogi5RhGeloTNkCNajsOMzv87T7O8SAqy8Fvhk
Liv7PbWfAWbUYOoOm8F+7xwOwM5HTB3N0aetNjYOikvGsKfnzsQ27boq9/L8odbDXwLmGnEI7o5l
0Zgcs2kKrOYEHxk3U4fZbbEgMFuSk74mImrOpyHgq+UqUKhIPuKtC1ZWfjWlrCeDGl1Bit35jhWU
GHgQ+dO5TBCCqQbW832i1+Wtgr2qkAb2goVkvcJDwaRFfSvGPJv4OffvYP0MPoL5xS6odioiIDms
bGEfPiH2BHYBu9AXIXjo4E0OTmsz3n65IizUpCSq9fg29IOPPCyN9EetpL6BPbHOoiJVvoSAWbeM
PWVXAr/zCSABb53J+mjRIE25FbvHX1LM5yCQwGavAhGMYgL04vwUADBi1E0JMren9tPA7N3fpE9x
V+wGMDR4pamPul9xbJZ8DCLgg9cD7ZzQmWuKUgRd1JtISsS0WbH4mKF5TgVclikXEMgZFbxd1ZSe
7rFqrrnCt9B/f33EOuVmbgm8x9Bf5QY75X0DdD1YJ+C/O59qidkx1nTZCdzBblDrVp7A+vh+Q3gu
eA2jUHKnzaqFCpo5dpAk33Eyj9Mpg4aqldQWXkKwtsnFgt9PbtLX0m4NXX/FCFbNOVK/uPQmW3/F
CD8vI8N6Lp2CjVQBgU8pfuKwF61gfz+ZCPrS1UijmArb5ZiNYGmfFsYn51kMKLyWMABZSlRIG7ad
VVcEj63UCQBH3eRprmQwOncR3fDOpeSQpRC0/R2fNlyD5XYV3xB/RYoO9TEL2KcGBgQKFYmcSXOx
QdmMYGRkFtasbGx2PnZKCNJIw8nvoCabEkYzbKJmo9rxwab5dFIg3KNawxbJj+ZSU26GW0diio2O
TNs1bTmo3AWE2lehmccX6mN46GtIrfY4NOswizEAvLQT9nLnSewENYbbdpHwWbvqCV8nTQQ8u+nx
qa+/CVOWJlWH+IbIgZMNU7jptx6iD59Tz6HDxPr+WkOJc67kfRWjYjBP9g6j5LpT3xP7aXcuG1Qf
u5eR9QoPBYO39wAprSx61ve9IEJUE6XVti91GldgzJzqCNz164VqVuY3K+RDB67+SLBxjcdpS75K
Cpa7SmlojMHEb/ngw7U75lg3qy0gl0k5wdUfCbbVai6W57hW8PY+duTdDnvAGuQpoPEfCXZgnwTr
R1UIhMJLp76uckmrBg4CE+l2bMcjNy2Lx3Hg/okJ9kekmvQVrBzwHu1ODj4FwfyGHx9+9bKnji8H
jOW8PsDfYuUY4Y9dHE8LQHBGfoJPDW8GZD7PvdJ0vYq4ojPAnlg2D50fYNQs2yfbwVd7qOTRcPT8
ro2JTGFhgK/hAWo3BxosF9hUUC/rlXox600m6gYHUAZd6m1kmn7guM3wG2Yi1Q8Sa1prlUsoPinF
56vgBnw7cQqE9jnAJ3F7mCsSdB+q17xCnNIfiwk70IFDCWxqSr0Hjqn7i+BYmQ3hcmgHLN4NBaCZ
DBiFXNas4vrrYZp2GmKHdAHtaygf8KY1IWK/g1qwpn7zAEZuSZEThAFjWtDCWri62JMlydxTY7SA
Z3967K4AF8yaGS/zYXeh5sbx04Yu6QD3oGTULy69uaqBg+CC7YoiwXqbzMlkH0buHtKgHw4NSyu1
Bvcsf1L99k3BJsl0gIfpYOHw3stg44Wdg+87Tal7P3zM+cm9HGgP3ECOvr43lPwWER704Eaa/HVr
1sN7fis+sCq0TlkWLGmSPGAjgIwo8xYGpPd9Bz6/0MIes8/NMm8XC9YHhUPNFPgmL9haD07XZMVB
lbfmfGnsFHTa8MFh6m8TvflhDub0smHzXRGwV0VEYCndG+pNTpasNFdS+EoyHWtT8GZL8qscwF3H
FKksbYOfgpEGbbLNaG3CX0NP9zRWtUs+Yudl4Gb1X6oGnst2ok6bewHb1HcORLeNkVhBbTryU9vC
63qTieRfHZO1cq1A8GpCtPlOn0xpqYXwZ3QW1o8yTAhrJAt+DQ/g0y8Kms2Rkh2Wg+sTbiL91E9h
YcATPsU0zWwHrKIrSPAOdgMjPCsTsaLhAWaJ03EQfKdgU8J8Bt/Pw6TOQuqEdMEiQmvI79gDVsto
uq0ERO4a4udZpICcD/cZHkB7IjC3jGbVrIujzr9MxdrhPjJyGu0W2AMcyFsf+oKpZCRQtS2bYgKS
aRsePwR+7CxirfwpgB5I/lbRsZfxySmuAVEToIEyVN6I659JszqsbMFzmO7YPH97MMjbm1PhashY
Ay+ZTbcXL8Hbg7hE0C0PiPWutWA+kQBtR/I1mXb7Emg96xPGMYmTfT1rCAbr+sQ5dJNmC6JrDHg9
tRHdfje2EmvpQbdKN8LsgU4rv4IVmPVcYFfrxmJVdqWG3vU0YuP35qfdjPYeBFlyoi5JHubmt3wI
OufVYWtMIrZ+R41TVV/2qC7YXrJb0fAANvdYqZXUN0aD4piDf//5+/v7+99//v7+n//65+/v3354
Vt2///n7d6m25b+rvqiez/r7/u/H8/HfPC/++1///P39S+bHu/r3P3//88/f39/fv79p6H/L/7cM
bfWd//3Pn/hf//z9/f39uwzLo/v/lqGtvvO///kT//n7+99//vcfAwM=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 88142862e9f182e2-GIG
Connection:
- keep-alive
Content-Encoding:
- br
Content-Type:
- application/json
Date:
- Thu, 09 May 2024 19:39:49 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
access-control-allow-origin:
- '*'
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-ada-002
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '22'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=15724800; includeSubDomains
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999998'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_834c84237ace9a79492cb9e8d1f68737
status:
code: 200
message: OK
version: 1

View File

@@ -1,15 +1,35 @@
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.task import Task
@pytest.fixture
def short_term_memory():
"""Fixture to create a ShortTermMemory instance"""
return ShortTermMemory()
agent = Agent(
role="Researcher",
goal="Search relevant data and provide results",
backstory="You are a researcher at a leading tech think tank.",
tools=[],
verbose=True,
)
task = Task(
description="Perform a search on specific topics.",
expected_output="A list of relevant URLs based on the search query.",
agent=agent,
)
return ShortTermMemory(crew=Crew(
agents=[agent],
tasks=[task]
))
@pytest.mark.vcr(filter_headers=["authorization"])
def test_save_and_search(short_term_memory):
memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value
@@ -19,6 +39,7 @@ def test_save_and_search(short_term_memory):
metadata={"task": "test_task"},
)
short_term_memory.save(memory)
find = short_term_memory.search("test value", score_threshold=0.01)[0]
assert find["context"] == memory.data, "Data value mismatch."
assert find["metadata"]["agent"] == "test_agent", "Agent value mismatch."