Compare commits

...

34 Commits

Author SHA1 Message Date
João Moura
ab2274caf0 Stateful flows (#1931)
* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* Fixing flow state

* fixing peristed stateful flows

* linter

* type fix

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-01-20 13:30:09 -03:00
devin-ai-integration[bot]
3e4f112f39 feat: add colored logging for flow operations (#1923)
* feat: add colored logging for flow operations

- Add flow_id property for easy ID access
- Add yellow colored logging for flow start
- Add bold_yellow colored logging for state operations
- Implement consistent logging across flow lifecycle

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: improve flow logging and error handling

- Add centralized logging method for flow events
- Add robust error handling in persistence decorator
- Add consistent log messages and levels
- Add color-coded error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports and improve error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-19 05:50:30 -03:00
João Moura
cc018bf128 updating tools version 2025-01-19 00:36:19 -08:00
devin-ai-integration[bot]
46d3e4d4d9 docs: add flow persistence section (#1922)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-01-19 04:34:58 -03:00
Brandon Hancock (bhancock_ai)
627bb3f5f6 Brandon/new release cleanup (#1918)
* WIP

* fixes to match enterprise changes
2025-01-18 15:46:41 -03:00
João Moura
4a44245de9 preparing new verison 2025-01-18 10:18:56 -08:00
Brandon Hancock (bhancock_ai)
30d027158a Fix union issue that Daniel was running into (#1910) 2025-01-16 15:54:16 -05:00
fzowl
3fecde49b6 feature: Introducing VoyageAI (#1871)
* Introducing VoyageAI's embedding models

* Adding back the whitespaces

* Adding the whitespaces back
2025-01-16 13:49:46 -05:00
Brandon Hancock (bhancock_ai)
cc129a0bce Fix docling issues (#1909)
* Fix docling issues

* update docs
2025-01-16 12:47:59 -05:00
Brandon Hancock (bhancock_ai)
b5779dca12 Fix nested pydantic model issue (#1905)
* Fix nested pydantic model issue

* fix failing tests

* add in vcr

* cleanup

* drop prints

* Fix vcr issues

* added new recordings

* trying to fix vcr

* add in fix from lorenze.
2025-01-16 11:28:58 -05:00
devin-ai-integration[bot]
42311d9c7a Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests (#1899)
* Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests

- Add proper error handling in SQLite storage operations
- Set up isolated test environment with temporary storage directory
- Ensure consistent error messages across all database operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in conftest.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Convert TokenProcess counters to instance variables to fix callback tracking

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Replace print statements with logging and improve error handling

- Add proper logging setup in kickoff_task_outputs_storage.py
- Replace self._printer.print() with logger calls
- Use appropriate log levels (error/warning)
- Add directory validation in test environment setup
- Maintain consistent error messages with DatabaseError format

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Comprehensive improvements to database and token handling

- Fix SQLite database path handling in storage classes
- Add proper directory creation and error handling
- Improve token tracking with robust type checking
- Convert TokenProcess counters to instance variables
- Add standardized database error handling
- Set up isolated test environment with temporary storage

Resolves test failures in PR #1899

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-16 11:18:54 -03:00
devin-ai-integration[bot]
294f2cc3a9 Add @persist decorator with FlowPersistence interface (#1892)
* Add @persist decorator with SQLite persistence

- Add FlowPersistence abstract base class
- Implement SQLiteFlowPersistence backend
- Add @persist decorator for flow state persistence
- Add tests for flow persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix remaining merge conflicts in uv.lock

- Remove stray merge conflict markers
- Keep main's comprehensive platform-specific resolution markers
- Preserve all required dependencies for persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix final CUDA dependency conflicts in uv.lock

- Resolve NVIDIA CUDA solver dependency conflicts
- Use main's comprehensive platform checks
- Ensure all merge conflict markers are removed
- Preserve persistence-related dependencies

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix nvidia-cusparse-cu12 dependency conflicts in uv.lock

- Resolve NVIDIA CUSPARSE dependency conflicts
- Use main's comprehensive platform checks
- Complete systematic check of entire uv.lock file
- Ensure all merge conflict markers are removed

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix triton filelock dependency conflicts in uv.lock

- Resolve triton package filelock dependency conflict
- Use main's comprehensive platform checks
- Complete final systematic check of entire uv.lock file
- Ensure TOML file structure is valid

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix merge conflict in crew_test.py

- Remove duplicate assertion in test_multimodal_agent_live_image_analysis
- Clean up conflict markers
- Preserve test functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Clean up trailing merge conflict marker in crew_test.py

- Remove remaining conflict marker at end of file
- Preserve test functionality
- Complete conflict resolution

Co-Authored-By: Joe Moura <joao@crewai.com>

* Improve type safety in persistence implementation and resolve merge conflicts

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add explicit type casting in _create_initial_state method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type safety in flow state handling with proper validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type system with proper TypeVar scoping and validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve state restoration logic and add comprehensive tests

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Initialize FlowState instances without passing id to constructor

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add class-level flow persistence decorator with SQLite default

- Add class-level @persist decorator support
- Set SQLiteFlowPersistence as default backend
- Use db_storage_path for consistent database location
- Improve async method handling and type safety
- Add comprehensive docstrings and examples

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in decorators.py to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Organize imports according to PEP 8 standard

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Format typing imports with line breaks for better readability

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Simplify import organization to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting using Ruff auto-fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-16 10:23:46 -03:00
Tony Kipkemboi
3dc442801f Merge pull request #1903 from crewAIInc/tony-docs
fix: add multimodal docs path to mint.json
2025-01-15 14:25:48 -05:00
Tony Kipkemboi
c12343a8b8 docs: update multimodal agents guide and mint.json configuration 2025-01-15 14:13:37 -05:00
Tony Kipkemboi
835557e648 fix: add multimodal docs path to mint.json 2025-01-15 13:54:32 -05:00
Daniel Barreto
4185ea688f fix: get rid of translation typo (#1880)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-14 14:06:01 -05:00
Brandon Hancock (bhancock_ai)
0532089246 Incorporate y4izus fix (#1893) 2025-01-14 13:35:21 -05:00
Brandon Hancock (bhancock_ai)
24b155015c before kickoff breaks if inputs are none. (#1883)
* before kickoff breaks if inputs are none.

* improve none type

* Fix failing tests

* add tests for new code

* Fix failing test

* drop extra comments

* clean up based on eduardo feedback
2025-01-14 13:24:03 -05:00
Brandon Hancock (bhancock_ai)
8ceeec7d36 drop litellm version to prevent windows issue (#1878)
* drop litellm version to prevent windows issue

* Fix failing tests

* Trying to fix tests

* clean up

* Trying to fix tests

* Drop token calc handler changes

* fix failing test

* Fix failing test

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-14 13:06:47 -05:00
devin-ai-integration[bot]
75e68f6fc8 feat: add unique ID to flow states (#1888)
* feat: add unique ID to flow states

- Add FlowState base model with UUID field
- Update type variable T to use FlowState
- Ensure all states (structured and unstructured) get UUID
- Fix type checking in _create_initial_state method

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update documentation to reflect automatic UUID generation in flow states

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports in flow.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports according to PEP 8

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: auto-fix import sorting with ruff

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add comprehensive tests for flow state UUID functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-01-13 22:57:53 -03:00
Tony Kipkemboi
3de81cedd6 Merge pull request #1881 from crewAIInc/feat/improve-tool-docs 2025-01-10 21:28:50 -05:00
Brandon Hancock
5dc8dd0e8a add important missing parts to creating tools 2025-01-10 20:48:59 -05:00
Brandon Hancock (bhancock_ai)
b8d07fee83 Brandon/eng 290 make tool inputs actual objects and not strings (#1868)
* Improving tool calling to pass dictionaries instead of strings

* Fix issues with parsing none/null

* remove prints and unnecessary comments

* Fix crew_test issues with function calling

* improve prompting

* add back in support for add_image

* add tests for tool validation

* revert back to figure out why tests are timing out

* Update cassette

* trying to find what is timing out

* add back in guardrails

* add back in manager delegation tests

* Trying to fix tests

* Force test to pass

* Trying to fix tests

* add in more role tests

* add back old tool validation

* updating tests

* vcr

* Fix tests

* improve function llm logic

* vcr 2

* drop llm

* Failing test

* add more tests back in

* Revert tool validation
2025-01-10 17:16:46 -05:00
Tony Kipkemboi
be8e33daf6 Merge pull request #1879 from tonykipkemboi/main
docs: enhance decorator documentation with use cases and examples
2025-01-10 14:56:20 -05:00
Tony Kipkemboi
efc8323c63 docs: roll back modify crew.py example 2025-01-10 14:21:51 -05:00
Tony Kipkemboi
831951efc4 docs: enhance decorator documentation and update LLM syntax 2025-01-10 14:12:50 -05:00
Brandon Hancock (bhancock_ai)
2131b94ddb Fixed core invoke loop logic and relevant tests (#1865)
* Fixed core invoke loop logic and relevant tests

* Fix failing tests

* Clean up final print statements

* Additional clean up for PR review
2025-01-09 12:13:02 -05:00
Navneeth S
b3504e768c "Minor Change in Documentation: agents " (#1862)
* "Minor Change in Documentation "

* "Changes Added"

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-08 11:55:56 -05:00
Rashmi Pawar
350457b9b8 add nvidia provider in cli (#1864) 2025-01-08 10:14:16 -05:00
Alessandro Romano
355bf3b48b Fix API Key Behavior and Entity Handling in Mem0 Integration (#1857)
* docs: clarify how to specify org_id and project_id in Mem0 configuration

* Add org_id and project_id to mem0 config and fix mem0 entity '400 Bad Request'

* Remove ruff changes to docs

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-01-07 12:46:10 -05:00
Jorge Piedrahita Ortiz
0e94236735 feat sambanova models (#1858)
Co-authored-by: jorgep_snova <jorge.piedrahita@sambanovasystems.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-01-07 10:03:26 -05:00
Daniel Dowler
673a38c5d9 chore: Update date to current year in template (#1860)
* update date to current year in template

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>

* current_year update to example task template

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>

---------

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>
2025-01-07 01:20:32 -03:00
Brandon Hancock (bhancock_ai)
8f57753656 Brandon/eng 266 conversation crew v1 (#1843)
* worked on foundation for new conversational crews. Now going to work on chatting.

* core loop should be working and ready for testing.

* high level chat working

* its alive!!

* Added in Joaos feedback to steer crew chats back towards the purpose of the crew

* properly return tool call result

* accessing crew directly instead of through uv commands

* everything is working for conversation now

* Fix linting

* fix llm_utils.py and other type errors

* fix more type errors

* fixing type error

* More fixing of types

* fix failing tests

* Fix more failing tests

* adding tests. cleaing up pr.

* improve

* drop old functions

* improve type hintings
2025-01-06 16:12:43 -05:00
João Moura
a2f839fada adding extra space 2025-01-06 10:18:20 -03:00
96 changed files with 12980 additions and 37718 deletions

View File

@@ -101,6 +101,8 @@ from crewai_tools import SerperDevTool
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents_config = "config/agents.yaml"
@agent
def researcher(self) -> Agent:
return Agent(

View File

@@ -161,6 +161,7 @@ The CLI will initially prompt for API keys for the following services:
* Groq
* Anthropic
* Google Gemini
* SambaNova
When you select a provider, the CLI will prompt you to enter your API key.

View File

@@ -35,6 +35,8 @@ class ExampleFlow(Flow):
@start()
def generate_city(self):
print("Starting flow")
# Each flow state automatically gets a unique ID
print(f"Flow State ID: {self.state['id']}")
response = completion(
model=self.model,
@@ -47,6 +49,8 @@ class ExampleFlow(Flow):
)
random_city = response["choices"][0]["message"]["content"]
# Store the city in our state
self.state["city"] = random_city
print(f"Random City: {random_city}")
return random_city
@@ -64,6 +68,8 @@ class ExampleFlow(Flow):
)
fun_fact = response["choices"][0]["message"]["content"]
# Store the fun fact in our state
self.state["fun_fact"] = fun_fact
return fun_fact
@@ -76,7 +82,15 @@ print(f"Generated fun fact: {result}")
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console.
Each Flow instance automatically receives a unique identifier (UUID) in its state, which helps track and manage flow executions. The state can also store additional data (like the generated city and fun fact) that persists throughout the flow's execution.
When you run the Flow, it will:
1. Generate a unique ID for the flow state
2. Generate a random city and store it in the state
3. Generate a fun fact about that city and store it in the state
4. Print the results to the console
The state's unique ID and stored data can be useful for tracking flow executions and maintaining context between tasks.
**Note:** Ensure you have set up your `.env` file to store your `OPENAI_API_KEY`. This key is necessary for authenticating requests to the OpenAI API.
@@ -207,14 +221,17 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
Even with unstructured states, CrewAI Flows automatically generates and maintains a unique identifier (UUID) for each state instance.
```python Code
from crewai.flow.flow import Flow, listen, start
class UntructuredExampleFlow(Flow):
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# The state automatically includes an 'id' field
print(f"State ID: {self.state['id']}")
self.state.message = "Hello from structured flow"
self.state.counter = 0
@@ -231,10 +248,12 @@ class UntructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UntructuredExampleFlow()
flow = UnstructuredExampleFlow()
flow.kickoff()
```
**Note:** The `id` field is automatically generated and preserved throughout the flow's execution. You don't need to manage or set it manually, and it will be maintained even when updating the state with new data.
**Key Points:**
- **Flexibility:** You can dynamically add attributes to `self.state` without predefined constraints.
@@ -245,12 +264,15 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
Each state in CrewAI Flows automatically receives a unique identifier (UUID) to help track and manage state instances. This ID is automatically generated and managed by the Flow system.
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
# Note: 'id' field is automatically added to all states
counter: int = 0
message: str = ""
@@ -259,6 +281,8 @@ class StructuredExampleFlow(Flow[ExampleState]):
@start()
def first_method(self):
# Access the auto-generated ID if needed
print(f"State ID: {self.state.id}")
self.state.message = "Hello from structured flow"
@listen(first_method)
@@ -299,6 +323,91 @@ flow.kickoff()
By providing both unstructured and structured state management options, CrewAI Flows empowers developers to build AI workflows that are both flexible and robust, catering to a wide range of application requirements.
## Flow Persistence
The @persist decorator enables automatic state persistence in CrewAI Flows, allowing you to maintain flow state across restarts or different workflow executions. This decorator can be applied at either the class level or method level, providing flexibility in how you manage state persistence.
### Class-Level Persistence
When applied at the class level, the @persist decorator automatically persists all flow method states:
```python
@persist # Using SQLiteFlowPersistence by default
class MyFlow(Flow[MyState]):
@start()
def initialize_flow(self):
# This method will automatically have its state persisted
self.state.counter = 1
print("Initialized flow. State ID:", self.state.id)
@listen(initialize_flow)
def next_step(self):
# The state (including self.state.id) is automatically reloaded
self.state.counter += 1
print("Flow state is persisted. Counter:", self.state.counter)
```
### Method-Level Persistence
For more granular control, you can apply @persist to specific methods:
```python
class AnotherFlow(Flow[dict]):
@persist # Persists only this method's state
@start()
def begin(self):
if "runs" not in self.state:
self.state["runs"] = 0
self.state["runs"] += 1
print("Method-level persisted runs:", self.state["runs"])
```
### How It Works
1. **Unique State Identification**
- Each flow state automatically receives a unique UUID
- The ID is preserved across state updates and method calls
- Supports both structured (Pydantic BaseModel) and unstructured (dictionary) states
2. **Default SQLite Backend**
- SQLiteFlowPersistence is the default storage backend
- States are automatically saved to a local SQLite database
- Robust error handling ensures clear messages if database operations fail
3. **Error Handling**
- Comprehensive error messages for database operations
- Automatic state validation during save and load
- Clear feedback when persistence operations encounter issues
### Important Considerations
- **State Types**: Both structured (Pydantic BaseModel) and unstructured (dictionary) states are supported
- **Automatic ID**: The `id` field is automatically added if not present
- **State Recovery**: Failed or restarted flows can automatically reload their previous state
- **Custom Implementation**: You can provide your own FlowPersistence implementation for specialized storage needs
### Technical Advantages
1. **Precise Control Through Low-Level Access**
- Direct access to persistence operations for advanced use cases
- Fine-grained control via method-level persistence decorators
- Built-in state inspection and debugging capabilities
- Full visibility into state changes and persistence operations
2. **Enhanced Reliability**
- Automatic state recovery after system failures or restarts
- Transaction-based state updates for data integrity
- Comprehensive error handling with clear error messages
- Robust validation during state save and load operations
3. **Extensible Architecture**
- Customizable persistence backend through FlowPersistence interface
- Support for specialized storage solutions beyond SQLite
- Compatible with both structured (Pydantic) and unstructured (dict) states
- Seamless integration with existing CrewAI flow patterns
The persistence system's architecture emphasizes technical precision and customization options, allowing developers to maintain full control over state management while benefiting from built-in reliability features.
## Flow Control
### Conditional Logic: `or`
@@ -628,4 +737,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
></iframe>

View File

@@ -93,6 +93,12 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
<Note>
You need to install `docling` for the following example to work: `uv add docling`
</Note>
```python Code
from crewai import LLM, Agent, Crew, Process, Task
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
@@ -282,6 +288,7 @@ The `embedder` parameter supports various embedding model providers that include
- `ollama`: Local embeddings with Ollama
- `vertexai`: Google Cloud VertexAI embeddings
- `cohere`: Cohere's embedding models
- `voyageai`: VoyageAI's embedding models
- `bedrock`: AWS Bedrock embeddings
- `huggingface`: Hugging Face models
- `watson`: IBM Watson embeddings

View File

@@ -146,6 +146,19 @@ Here's a detailed breakdown of supported models and their capabilities, you can
Groq is known for its fast inference speeds, making it suitable for real-time applications.
</Tip>
</Tab>
<Tab title="SambaNova">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Llama 3.1 70B/8B | Up to 131,072 tokens | High-performance, large context tasks |
| Llama 3.1 405B | 8,192 tokens | High-performance and output quality |
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks, multimodal |
| Llama 3.3 70B | Up to 131,072 tokens | High-performance and output quality|
| Qwen2 familly | 8,192 tokens | High-performance and output quality |
<Tip>
[SambaNova](https://cloud.sambanova.ai/) has several models with fast inference speed at full precision.
</Tip>
</Tab>
<Tab title="Others">
| Provider | Context Window | Key Features |
|----------|---------------|--------------|

View File

@@ -134,6 +134,23 @@ crew = Crew(
)
```
## Memory Configuration Options
If you want to access a specific organization and project, you can set the `org_id` and `project_id` parameters in the memory configuration.
```python Code
from crewai import Crew
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john", "org_id": "my_org_id", "project_id": "my_project_id"},
},
)
```
## Additional Embedding Providers
@@ -276,6 +293,26 @@ my_crew = Crew(
}
)
```
### Using VoyageAI embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "voyageai",
"config": {
"api_key": "YOUR_API_KEY",
"model_name": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code

View File

@@ -31,7 +31,7 @@ From this point on, your crew will have planning enabled, and the tasks will be
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
Now you can define the LLM that will be used to plan the tasks.
When running the base case example, you will see something like the output below, which represents the output of the `AgentPlanner`
responsible for creating the step-by-step logic to add to the Agents' tasks.
@@ -39,7 +39,6 @@ responsible for creating the step-by-step logic to add to the Agents' tasks.
<CodeGroup>
```python Code
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
@@ -47,7 +46,7 @@ my_crew = Crew(
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm=ChatOpenAI(model="gpt-4o")
planning_llm="gpt-4o"
)
# Run the crew

View File

@@ -23,9 +23,7 @@ Processes enable individual agents to operate as a cohesive unit, streamlining t
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
```python
from crewai import Crew
from crewai.process import Process
from langchain_openai import ChatOpenAI
from crewai import Crew, Process
# Example: Creating a crew with a sequential process
crew = Crew(
@@ -40,7 +38,7 @@ crew = Crew(
agents=my_agents,
tasks=my_tasks,
process=Process.hierarchical,
manager_llm=ChatOpenAI(model="gpt-4")
manager_llm="gpt-4o"
# or
# manager_agent=my_manager_agent
)

View File

@@ -150,15 +150,20 @@ There are two main ways for one to create a CrewAI tool:
```python Code
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
def _run(self, argument: str) -> str:
# Implementation goes here
return "Result from custom tool"
# Your tool's logic here
return "Tool's result"
```
### Utilizing the `tool` Decorator

View File

@@ -73,9 +73,9 @@ result = crew.kickoff()
If you're using the hierarchical process and don't want to set a custom manager agent, you can specify the language model for the manager:
```python Code
from langchain_openai import ChatOpenAI
from crewai import LLM
manager_llm = ChatOpenAI(model_name="gpt-4")
manager_llm = LLM(model="gpt-4o")
crew = Crew(
agents=[researcher, writer],

View File

@@ -23,6 +23,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Azure OpenAI
- AWS (Bedrock, SageMaker)
- Cohere
- VoyageAI
- Hugging Face
- Ollama
- Mistral AI
@@ -32,6 +33,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Cloudflare Workers AI
- DeepInfra
- Groq
- SambaNova
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
- And many more!

View File

@@ -1,14 +1,14 @@
---
title: Using Multimodal Agents
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
icon: image
icon: video
---
# Using Multimodal Agents
## Using Multimodal Agents
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
## Enabling Multimodal Capabilities
### Enabling Multimodal Capabilities
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
@@ -25,7 +25,7 @@ agent = Agent(
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
## Working with Images
### Working with Images
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
@@ -108,7 +108,7 @@ The multimodal agent will automatically handle the image processing through its
- Process image content with optional context or specific questions
- Provide analysis and insights based on the visual information and task requirements
## Best Practices
### Best Practices
When working with multimodal agents, keep these best practices in mind:

View File

@@ -91,6 +91,7 @@
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",

View File

@@ -301,38 +301,166 @@ Use the annotations to properly reference the agent and task in the `crew.py` fi
### Annotations include:
* `@agent`
* `@task`
* `@crew`
* `@tool`
* `@before_kickoff`
* `@after_kickoff`
* `@callback`
* `@output_json`
* `@output_pydantic`
* `@cache_handler`
Here are examples of how to use each annotation in your CrewAI project, and when you should use them:
```python crew.py
# ...
#### @agent
Used to define an agent in your crew. Use this when:
- You need to create a specialized AI agent with a specific role
- You want the agent to be automatically collected and managed by the crew
- You need to reuse the same agent configuration across multiple tasks
```python
@agent
def email_summarizer(self) -> Agent:
def research_agent(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
role="Research Analyst",
goal="Conduct thorough research on given topics",
backstory="Expert researcher with years of experience in data analysis",
tools=[SerperDevTool()],
verbose=True
)
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
# ...
```
<Tip>
In addition to the [sequential process](../how-to/sequential-process), you can use the [hierarchical process](../how-to/hierarchical-process),
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
You can learn more about the core concepts [here](/concepts).
</Tip>
#### @task
Used to define a task that can be executed by agents. Use this when:
- You need to define a specific piece of work for an agent
- You want tasks to be automatically sequenced and managed
- You need to establish dependencies between different tasks
```python
@task
def research_task(self) -> Task:
return Task(
description="Research the latest developments in AI technology",
expected_output="A comprehensive report on AI advancements",
agent=self.research_agent(),
output_file="output/research.md"
)
```
#### @crew
Used to define your crew configuration. Use this when:
- You want to automatically collect all @agent and @task definitions
- You need to specify how tasks should be processed (sequential or hierarchical)
- You want to set up crew-wide configurations
```python
@crew
def research_crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected from @agent methods
tasks=self.tasks, # Automatically collected from @task methods
process=Process.sequential,
verbose=True
)
```
#### @tool
Used to create custom tools for your agents. Use this when:
- You need to give agents specific capabilities (like web search, data analysis)
- You want to encapsulate external API calls or complex operations
- You need to share functionality across multiple agents
```python
@tool
def web_search_tool(query: str, max_results: int = 5) -> list[str]:
"""
Search the web for information.
Args:
query: The search query
max_results: Maximum number of results to return
Returns:
List of search results
"""
# Implement your search logic here
return [f"Result {i} for: {query}" for i in range(max_results)]
```
#### @before_kickoff
Used to execute logic before the crew starts. Use this when:
- You need to validate or preprocess input data
- You want to set up resources or configurations before execution
- You need to perform any initialization logic
```python
@before_kickoff
def validate_inputs(self, inputs: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Validate and preprocess inputs before the crew starts."""
if inputs is None:
return None
if 'topic' not in inputs:
raise ValueError("Topic is required")
# Add additional context
inputs['timestamp'] = datetime.now().isoformat()
inputs['topic'] = inputs['topic'].strip().lower()
return inputs
```
#### @after_kickoff
Used to process results after the crew completes. Use this when:
- You need to format or transform the final output
- You want to perform cleanup operations
- You need to save or log the results in a specific way
```python
@after_kickoff
def process_results(self, result: CrewOutput) -> CrewOutput:
"""Process and format the results after the crew completes."""
result.raw = result.raw.strip()
result.raw = f"""
# Research Results
Generated on: {datetime.now().isoformat()}
{result.raw}
"""
return result
```
#### @callback
Used to handle events during crew execution. Use this when:
- You need to monitor task progress
- You want to log intermediate results
- You need to implement custom progress tracking or metrics
```python
@callback
def log_task_completion(self, task: Task, output: str):
"""Log task completion details for monitoring."""
print(f"Task '{task.description}' completed")
print(f"Output length: {len(output)} characters")
print(f"Agent used: {task.agent.role}")
print("-" * 50)
```
#### @cache_handler
Used to implement custom caching for task results. Use this when:
- You want to avoid redundant expensive operations
- You need to implement custom cache storage or expiration logic
- You want to persist results between runs
```python
@cache_handler
def custom_cache(self, key: str) -> Optional[str]:
"""Custom cache implementation for storing task results."""
cache_file = f"cache/{key}.json"
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
data = json.load(f)
# Check if cache is still valid (e.g., not expired)
if datetime.fromisoformat(data['timestamp']) > datetime.now() - timedelta(days=1):
return data['result']
return None
```
<Note>
These decorators are part of the CrewAI framework and help organize your crew's structure by automatically collecting agents, tasks, and handling various lifecycle events.
They should be used within a class decorated with `@CrewBase`.
</Note>
### Replay Tasks from Latest Crew Kickoff

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.95.0"
version = "0.98.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -11,27 +11,22 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm>=1.44.22",
"litellm==1.57.4",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
"auth0-python>=4.7.1",
"python-dotenv>=1.0.0",
# Configuration and Utils
"click>=8.1.7",
"appdirs>=1.4.4",
@@ -40,7 +35,7 @@ dependencies = [
"uv>=0.4.25",
"tomli-w>=1.1.0",
"tomli>=2.0.2",
"blinker>=1.9.0"
"blinker>=1.9.0",
]
[project.urls]
@@ -49,7 +44,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.25.5"]
tools = ["crewai-tools>=0.32.1"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.95.0"
__version__ = "0.98.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -21,6 +21,7 @@ from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -85,7 +86,7 @@ class Agent(BaseAgent):
llm: Union[str, InstanceOf[LLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Any] = Field(
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
@@ -139,89 +140,10 @@ class Agent(BaseAgent):
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Handle different cases for self.llm
if isinstance(self.llm, str):
# If it's a string, create an LLM instance
self.llm = LLM(model=self.llm)
elif isinstance(self.llm, LLM):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
"OPENAI_BASE_URL"
)
if api_base:
llm_params["base_url"] = api_base
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
# Check if the environment variable is set
key_name = env_var.get("key_name")
if key_name and key_name not in unaccepted_attributes:
env_value = os.environ.get(key_name)
if env_value:
key_name = key_name.lower()
for pattern in LITELLM_PARAMS:
if pattern in key_name:
key_name = pattern
break
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
# For any other type, attempt to extract relevant attributes
llm_params = {
"model": getattr(self.llm, "model_name", None)
or getattr(self.llm, "deployment_name", None)
or str(self.llm),
"temperature": getattr(self.llm, "temperature", None),
"max_tokens": getattr(self.llm, "max_tokens", None),
"logprobs": getattr(self.llm, "logprobs", None),
"timeout": getattr(self.llm, "timeout", None),
"max_retries": getattr(self.llm, "max_retries", None),
"api_key": getattr(self.llm, "api_key", None),
"base_url": getattr(self.llm, "base_url", None),
"organization": getattr(self.llm, "organization", None),
}
# Remove None values to avoid passing unnecessary parameters
llm_params = {k: v for k, v in llm_params.items() if v is not None}
self.llm = LLM(**llm_params)
# Similar handling for function_calling_llm
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
if not self.agent_executor:
self._setup_agent_executor()
@@ -413,6 +335,7 @@ class Agent(BaseAgent):
def get_multimodal_tools(self) -> List[Tool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):

View File

@@ -19,15 +19,10 @@ class CrewAgentExecutorMixin:
agent: Optional["BaseAgent"]
task: Optional["Task"]
iterations: int
have_forced_answer: bool
max_iter: int
_i18n: I18N
_printer: Printer = Printer()
def _should_force_answer(self) -> bool:
"""Determine if a forced answer is required based on iteration count."""
return (self.iterations >= self.max_iter) and not self.have_forced_answer
def _create_short_term_memory(self, output) -> None:
"""Create and save a short-term memory item if conditions are met."""
if (

View File

@@ -25,7 +25,7 @@ class OutputConverter(BaseModel, ABC):
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attempts: Optional[int] = Field(
max_attempts: int = Field(
description="Max number of attempts to try to get the output formatted.",
default=3,
)

View File

@@ -2,25 +2,26 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
def __init__(self) -> None:
self.total_tokens: int = 0
self.prompt_tokens: int = 0
self.cached_prompt_tokens: int = 0
self.completion_tokens: int = 0
self.successful_requests: int = 0
def sum_prompt_tokens(self, tokens: int):
self.prompt_tokens = self.prompt_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_prompt_tokens(self, tokens: int) -> None:
self.prompt_tokens += tokens
self.total_tokens += tokens
def sum_completion_tokens(self, tokens: int):
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_completion_tokens(self, tokens: int) -> None:
self.completion_tokens += tokens
self.total_tokens += tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int) -> None:
self.cached_prompt_tokens += tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def sum_successful_requests(self, requests: int) -> None:
self.successful_requests += requests
def get_summary(self) -> UsageMetrics:
return UsageMetrics(

View File

@@ -1,7 +1,7 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from typing import Any, Callable, Dict, List, Optional, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
@@ -50,7 +50,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Any = None,
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
@@ -77,7 +77,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
@@ -108,106 +107,149 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self, formatted_answer=None):
try:
while not isinstance(formatted_answer, AgentFinish):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
def _invoke_loop(self):
"""
Main loop to invoke the agent's thought process until it reaches a conclusion
or the maximum number of iterations is reached.
"""
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
try:
if self._has_reached_max_iterations():
formatted_answer = self._handle_max_iterations_exceeded(
formatted_answer
)
break
self._enforce_rpm_limit()
answer = self._get_llm_response()
formatted_answer = self._process_llm_response(answer)
if isinstance(formatted_answer, AgentAction):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
formatted_answer = self._handle_agent_action(
formatted_answer, tool_result
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
self._invoke_step_callback(formatted_answer)
self._append_message(formatted_answer.text, role="assistant")
if not self.use_stop_words:
try:
self._format_answer(answer)
except OutputParserException as e:
if (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE
in e.error
):
answer = answer.split("Observation:")[0].strip()
except OutputParserException as e:
formatted_answer = self._handle_output_parser_exception(e)
self.iterations += 1
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
# Directly append the result to the messages if the
# tool is "Add image to content" in case of multimodal
# agents
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
self.messages.append(tool_result.result)
continue
else:
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return self._invoke_loop(formatted_answer)
except Exception as e:
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
str(e)
):
self._handle_context_length()
return self._invoke_loop(formatted_answer)
else:
raise e
except Exception as e:
if self._is_context_length_exceeded(e):
self._handle_context_length()
continue
self._show_logs(formatted_answer)
return formatted_answer
def _has_reached_max_iterations(self) -> bool:
"""Check if the maximum number of iterations has been reached."""
return self.iterations >= self.max_iter
def _enforce_rpm_limit(self) -> None:
"""Enforce the requests per minute (RPM) limit if applicable."""
if self.request_within_rpm_limit:
self.request_within_rpm_limit()
def _get_llm_response(self) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
if not answer:
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
return answer
def _process_llm_response(self, answer: str) -> Union[AgentAction, AgentFinish]:
"""Process the LLM response and format it into an AgentAction or AgentFinish."""
if not self.use_stop_words:
try:
# Preliminary parsing to check for errors.
self._format_answer(answer)
except OutputParserException as e:
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
answer = answer.split("Observation:")[0].strip()
self.iterations += 1
return self._format_answer(answer)
def _handle_agent_action(
self, formatted_answer: AgentAction, tool_result: ToolResult
) -> Union[AgentAction, AgentFinish]:
"""Handle the AgentAction, execute tools, and process the results."""
add_image_tool = self._i18n.tools("add_image")
if (
isinstance(add_image_tool, dict)
and formatted_answer.tool.casefold().strip()
== add_image_tool.get("name", "").casefold().strip()
):
self.messages.append(tool_result.result)
return formatted_answer # Continue the loop
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
return formatted_answer
def _invoke_step_callback(self, formatted_answer) -> None:
"""Invoke the step callback if it exists."""
if self.step_callback:
self.step_callback(formatted_answer)
def _append_message(self, text: str, role: str = "assistant") -> None:
"""Append a message to the message list with the given role."""
self.messages.append(self._format_msg(text, role=role))
def _handle_output_parser_exception(self, e: OutputParserException) -> AgentAction:
"""Handle OutputParserException by updating messages and formatted_answer."""
self.messages.append({"role": "user", "content": e.error})
formatted_answer = AgentAction(
text=e.error,
tool="",
tool_input="",
thought="",
)
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return formatted_answer
def _is_context_length_exceeded(self, exception: Exception) -> bool:
"""Check if the exception is due to context length exceeding."""
return LLMContextLengthExceededException(
str(exception)
)._is_context_limit_error(str(exception))
def _show_start_logs(self):
if self.agent is None:
raise ValueError("Agent cannot be None")
@@ -272,7 +314,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.text)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
@@ -487,3 +529,45 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.ask_for_human_input = False
return formatted_answer
def _handle_max_iterations_exceeded(self, formatted_answer):
"""
Handles the case when the maximum number of iterations is exceeded.
Performs one more LLM call to get the final answer.
Parameters:
formatted_answer: The last formatted answer from the agent.
Returns:
The final formatted answer after exceeding max iterations.
"""
self._printer.print(
content="Maximum iterations reached. Requesting final answer.",
color="yellow",
)
if formatted_answer and hasattr(formatted_answer, "text"):
assistant_message = (
formatted_answer.text + f'\n{self._i18n.errors("force_final_answer")}'
)
else:
assistant_message = self._i18n.errors("force_final_answer")
self.messages.append(self._format_msg(assistant_message, role="assistant"))
# Perform one more LLM call to get the final answer
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
formatted_answer = self._format_answer(answer)
# Return the formatted answer, regardless of its type
return formatted_answer

View File

@@ -1,11 +1,13 @@
import os
from importlib.metadata import version as get_version
from typing import Optional
from typing import Optional, Tuple
import click
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.crew_chat import run_chat
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
@@ -342,5 +344,15 @@ def flow_add_crew(crew_name):
add_crew_to_flow(crew_name)
@crewai.command()
def chat():
"""
Start a conversation with the Crew, collecting user-supplied inputs,
and using the Chat LLM to generate responses.
"""
click.echo("Starting a conversation with the Crew")
run_chat()
if __name__ == "__main__":
crewai()

View File

@@ -17,6 +17,12 @@ ENV_VARS = {
"key_name": "GEMINI_API_KEY",
}
],
"nvidia_nim": [
{
"prompt": "Enter your NVIDIA API key (press Enter to skip)",
"key_name": "NVIDIA_NIM_API_KEY",
}
],
"groq": [
{
"prompt": "Enter your GROQ API key (press Enter to skip)",
@@ -85,6 +91,12 @@ ENV_VARS = {
"key_name": "CEREBRAS_API_KEY",
},
],
"sambanova": [
{
"prompt": "Enter your SambaNovaCloud API key (press Enter to skip)",
"key_name": "SAMBANOVA_API_KEY",
}
],
}
@@ -92,12 +104,14 @@ PROVIDERS = [
"openai",
"anthropic",
"gemini",
"nvidia_nim",
"groq",
"ollama",
"watson",
"bedrock",
"azure",
"cerebras",
"sambanova",
]
MODELS = {
@@ -114,6 +128,75 @@ MODELS = {
"gemini/gemini-gemma-2-9b-it",
"gemini/gemini-gemma-2-27b-it",
],
"nvidia_nim": [
"nvidia_nim/nvidia/mistral-nemo-minitron-8b-8k-instruct",
"nvidia_nim/nvidia/nemotron-4-mini-hindi-4b-instruct",
"nvidia_nim/nvidia/llama-3.1-nemotron-70b-instruct",
"nvidia_nim/nvidia/llama3-chatqa-1.5-8b",
"nvidia_nim/nvidia/llama3-chatqa-1.5-70b",
"nvidia_nim/nvidia/vila",
"nvidia_nim/nvidia/neva-22",
"nvidia_nim/nvidia/nemotron-mini-4b-instruct",
"nvidia_nim/nvidia/usdcode-llama3-70b-instruct",
"nvidia_nim/nvidia/nemotron-4-340b-instruct",
"nvidia_nim/meta/codellama-70b",
"nvidia_nim/meta/llama2-70b",
"nvidia_nim/meta/llama3-8b-instruct",
"nvidia_nim/meta/llama3-70b-instruct",
"nvidia_nim/meta/llama-3.1-8b-instruct",
"nvidia_nim/meta/llama-3.1-70b-instruct",
"nvidia_nim/meta/llama-3.1-405b-instruct",
"nvidia_nim/meta/llama-3.2-1b-instruct",
"nvidia_nim/meta/llama-3.2-3b-instruct",
"nvidia_nim/meta/llama-3.2-11b-vision-instruct",
"nvidia_nim/meta/llama-3.2-90b-vision-instruct",
"nvidia_nim/meta/llama-3.1-70b-instruct",
"nvidia_nim/google/gemma-7b",
"nvidia_nim/google/gemma-2b",
"nvidia_nim/google/codegemma-7b",
"nvidia_nim/google/codegemma-1.1-7b",
"nvidia_nim/google/recurrentgemma-2b",
"nvidia_nim/google/gemma-2-9b-it",
"nvidia_nim/google/gemma-2-27b-it",
"nvidia_nim/google/gemma-2-2b-it",
"nvidia_nim/google/deplot",
"nvidia_nim/google/paligemma",
"nvidia_nim/mistralai/mistral-7b-instruct-v0.2",
"nvidia_nim/mistralai/mixtral-8x7b-instruct-v0.1",
"nvidia_nim/mistralai/mistral-large",
"nvidia_nim/mistralai/mixtral-8x22b-instruct-v0.1",
"nvidia_nim/mistralai/mistral-7b-instruct-v0.3",
"nvidia_nim/nv-mistralai/mistral-nemo-12b-instruct",
"nvidia_nim/mistralai/mamba-codestral-7b-v0.1",
"nvidia_nim/microsoft/phi-3-mini-128k-instruct",
"nvidia_nim/microsoft/phi-3-mini-4k-instruct",
"nvidia_nim/microsoft/phi-3-small-8k-instruct",
"nvidia_nim/microsoft/phi-3-small-128k-instruct",
"nvidia_nim/microsoft/phi-3-medium-4k-instruct",
"nvidia_nim/microsoft/phi-3-medium-128k-instruct",
"nvidia_nim/microsoft/phi-3.5-mini-instruct",
"nvidia_nim/microsoft/phi-3.5-moe-instruct",
"nvidia_nim/microsoft/kosmos-2",
"nvidia_nim/microsoft/phi-3-vision-128k-instruct",
"nvidia_nim/microsoft/phi-3.5-vision-instruct",
"nvidia_nim/databricks/dbrx-instruct",
"nvidia_nim/snowflake/arctic",
"nvidia_nim/aisingapore/sea-lion-7b-instruct",
"nvidia_nim/ibm/granite-8b-code-instruct",
"nvidia_nim/ibm/granite-34b-code-instruct",
"nvidia_nim/ibm/granite-3.0-8b-instruct",
"nvidia_nim/ibm/granite-3.0-3b-a800m-instruct",
"nvidia_nim/mediatek/breeze-7b-instruct",
"nvidia_nim/upstage/solar-10.7b-instruct",
"nvidia_nim/writer/palmyra-med-70b-32k",
"nvidia_nim/writer/palmyra-med-70b",
"nvidia_nim/writer/palmyra-fin-70b-32k",
"nvidia_nim/01-ai/yi-large",
"nvidia_nim/deepseek-ai/deepseek-coder-6.7b-instruct",
"nvidia_nim/rakuten/rakutenai-7b-instruct",
"nvidia_nim/rakuten/rakutenai-7b-chat",
"nvidia_nim/baichuan-inc/baichuan2-13b-chat",
],
"groq": [
"groq/llama-3.1-8b-instant",
"groq/llama-3.1-70b-versatile",
@@ -156,8 +239,23 @@ MODELS = {
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
"sambanova": [
"sambanova/Meta-Llama-3.3-70B-Instruct",
"sambanova/QwQ-32B-Preview",
"sambanova/Qwen2.5-72B-Instruct",
"sambanova/Qwen2.5-Coder-32B-Instruct",
"sambanova/Meta-Llama-3.1-405B-Instruct",
"sambanova/Meta-Llama-3.1-70B-Instruct",
"sambanova/Meta-Llama-3.1-8B-Instruct",
"sambanova/Llama-3.2-90B-Vision-Instruct",
"sambanova/Llama-3.2-11B-Vision-Instruct",
"sambanova/Meta-Llama-3.2-3B-Instruct",
"sambanova/Meta-Llama-3.2-1B-Instruct",
],
}
DEFAULT_LLM_MODEL = "gpt-4o-mini"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

413
src/crewai/cli/crew_chat.py Normal file
View File

@@ -0,0 +1,413 @@
import json
import re
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple
import click
import tomli
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
def run_chat():
"""
Runs an interactive chat loop using the Crew's chat LLM with function calling.
Incorporates crew_name, crew_description, and input fields to build a tool schema.
Exits if crew_name or crew_description are missing.
"""
crew, crew_name = load_crew_and_name()
chat_llm = initialize_chat_llm(crew)
if not chat_llm:
return
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
)
click.secho(f"\nAssistant: {introductory_message}\n", fg="green")
messages = [
{"role": "system", "content": system_message},
{"role": "assistant", "content": introductory_message},
]
available_functions = {
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
}
click.secho(
"\nEntering an interactive chat loop with function-calling.\n"
"Type 'exit' or Ctrl+C to quit.\n",
fg="cyan",
)
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
return create_llm(crew.chat_llm)
except Exception as e:
click.secho(
f"Unable to find a Chat LLM. Please make sure you set chat_llm on the crew: {e}",
fg="red",
)
return None
def build_system_message(crew_chat_inputs: ChatInputs) -> str:
"""Builds the initial system message for the chat."""
required_fields_str = (
", ".join(
f"{field.name} (desc: {field.description or 'n/a'})"
for field in crew_chat_inputs.inputs
)
or "(No required fields detected)"
)
return (
"You are a helpful AI assistant for the CrewAI platform. "
"Your primary purpose is to assist users with the crew's specific tasks. "
"You can answer general questions, but should guide users back to the crew's purpose afterward. "
"For example, after answering a general question, remind the user of your main purpose, such as generating a research report, and prompt them to specify a topic or task related to the crew's purpose. "
"You have a function (tool) you can call by name if you have all required inputs. "
f"Those required inputs are: {required_fields_str}. "
"Once you have them, call the function. "
"Please keep your responses concise and friendly. "
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
"If you are ever unsure about a user's request or need clarification, ask the user for more information."
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
f"\nCrew Name: {crew_chat_inputs.crew_name}"
f"\nCrew Description: {crew_chat_inputs.crew_description}"
)
def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
"""Creates a wrapper function for running the crew tool with messages."""
def run_crew_tool_with_messages(**kwargs):
return run_crew_tool(crew, messages, **kwargs)
return run_crew_tool_with_messages
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
"""Main chat loop for interacting with the user."""
while True:
try:
user_input = click.prompt("You", type=str)
if user_input.strip().lower() in ["exit", "quit"]:
click.echo("Exiting chat. Goodbye!")
break
messages.append({"role": "user", "content": user_input})
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
except KeyboardInterrupt:
click.echo("\nExiting chat. Goodbye!")
break
except Exception as e:
click.secho(f"An error occurred: {e}", fg="red")
break
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
"""
Dynamically build a Littellm 'function' schema for the given crew.
crew_name: The name of the crew (used for the function 'name').
crew_inputs: A ChatInputs object containing crew_description
and a list of input fields (each with a name & description).
"""
properties = {}
for field in crew_inputs.inputs:
properties[field.name] = {
"type": "string",
"description": field.description or "No description provided",
}
required_fields = [field.name for field in crew_inputs.inputs]
return {
"type": "function",
"function": {
"name": crew_inputs.crew_name,
"description": crew_inputs.crew_description or "No crew description",
"parameters": {
"type": "object",
"properties": properties,
"required": required_fields,
},
},
}
def run_crew_tool(crew: Crew, messages: List[Dict[str, str]], **kwargs):
"""
Runs the crew using crew.kickoff(inputs=kwargs) and returns the output.
Args:
crew (Crew): The crew instance to run.
messages (List[Dict[str, str]]): The chat messages up to this point.
**kwargs: The inputs collected from the user.
Returns:
str: The output from the crew's execution.
Raises:
SystemExit: Exits the chat if an error occurs during crew execution.
"""
try:
# Serialize 'messages' to JSON string before adding to kwargs
kwargs["crew_chat_messages"] = json.dumps(messages)
# Run the crew with the provided inputs
crew_output = crew.kickoff(inputs=kwargs)
# Convert CrewOutput to a string to send back to the user
result = str(crew_output)
return result
except Exception as e:
# Exit the chat and show the error message
click.secho("An error occurred while running the crew:", fg="red")
click.secho(str(e), fg="red")
sys.exit(1)
def load_crew_and_name() -> Tuple[Crew, str]:
"""
Loads the crew by importing the crew class from the user's project.
Returns:
Tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
"""
# Get the current working directory
cwd = Path.cwd()
# Path to the pyproject.toml file
pyproject_path = cwd / "pyproject.toml"
if not pyproject_path.exists():
raise FileNotFoundError("pyproject.toml not found in the current directory.")
# Load the pyproject.toml file using 'tomli'
with pyproject_path.open("rb") as f:
pyproject_data = tomli.load(f)
# Get the project name from the 'project' section
project_name = pyproject_data["project"]["name"]
folder_name = project_name
# Derive the crew class name from the project name
# E.g., if project_name is 'my_project', crew_class_name is 'MyProject'
crew_class_name = project_name.replace("_", " ").title().replace(" ", "")
# Add the 'src' directory to sys.path
src_path = cwd / "src"
if str(src_path) not in sys.path:
sys.path.insert(0, str(src_path))
# Import the crew module
crew_module_name = f"{folder_name}.crew"
try:
crew_module = __import__(crew_module_name, fromlist=[crew_class_name])
except ImportError as e:
raise ImportError(f"Failed to import crew module {crew_module_name}: {e}")
# Get the crew class from the module
try:
crew_class = getattr(crew_module, crew_class_name)
except AttributeError:
raise AttributeError(
f"Crew class {crew_class_name} not found in module {crew_module_name}"
)
# Instantiate the crew
crew_instance = crew_class().crew()
return crew_instance, crew_class_name
def generate_crew_chat_inputs(crew: Crew, crew_name: str, chat_llm) -> ChatInputs:
"""
Generates the ChatInputs required for the crew by analyzing the tasks and agents.
Args:
crew (Crew): The crew object containing tasks and agents.
crew_name (str): The name of the crew.
chat_llm: The chat language model to use for AI calls.
Returns:
ChatInputs: An object containing the crew's name, description, and input fields.
"""
# Extract placeholders from tasks and agents
required_inputs = fetch_required_inputs(crew)
# Generate descriptions for each input using AI
input_fields = []
for input_name in required_inputs:
description = generate_input_description_with_ai(input_name, crew, chat_llm)
input_fields.append(ChatInputField(name=input_name, description=description))
# Generate crew description using AI
crew_description = generate_crew_description_with_ai(crew, chat_llm)
return ChatInputs(
crew_name=crew_name, crew_description=crew_description, inputs=input_fields
)
def fetch_required_inputs(crew: Crew) -> Set[str]:
"""
Extracts placeholders from the crew's tasks and agents.
Args:
crew (Crew): The crew object.
Returns:
Set[str]: A set of placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks
for task in crew.tasks:
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents
for agent in crew.agents:
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) -> str:
"""
Generates an input description using AI based on the context of the crew.
Args:
input_name (str): The name of the input placeholder.
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the input.
"""
# Gather context from tasks and agents where the input is used
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
if (
f"{{{input_name}}}" in task.description
or f"{{{input_name}}}" in task.expected_output
):
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
if (
f"{{{input_name}}}" in agent.role
or f"{{{input_name}}}" in agent.goal
or f"{{{input_name}}}" in agent.backstory
):
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
# If no context is found for the input, raise an exception as per instruction
raise ValueError(f"No context found for input '{input_name}'.")
prompt = (
f"Based on the following context, write a concise description (15 words or less) of the input '{input_name}'.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
description = response.strip()
return description
def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
"""
Generates a brief description of the crew using AI.
Args:
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the crew's purpose (15 words or less).
"""
# Gather context from tasks and agents
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role)
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal)
agent_backstory = placeholder_pattern.sub(lambda m: m.group(1), agent.backstory)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
raise ValueError("No context found for generating crew description.")
prompt = (
"Based on the following context, write a concise, action-oriented description (15 words or less) of the crew's purpose.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
crew_description = response.strip()
return crew_description

View File

@@ -2,7 +2,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
the current year is {current_year}.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher

View File

@@ -2,6 +2,8 @@
import sys
import warnings
from datetime import datetime
from {{folder_name}}.crew import {{crew_name}}
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -16,9 +18,14 @@ def run():
Run the crew.
"""
inputs = {
'topic': 'AI LLMs'
'topic': 'AI LLMs',
'current_year': str(datetime.now().year)
}
{{crew_name}}().crew().kickoff(inputs=inputs)
try:
{{crew_name}}().crew().kickoff(inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while running the crew: {e}")
def train():
@@ -55,4 +62,4 @@ def test():
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
raise Exception(f"An error occurred while testing the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0,<1.0.0"
"crewai[tools]>=0.98.0,<1.0.0"
]
[project.scripts]

View File

@@ -3,7 +3,7 @@ from random import randint
from pydantic import BaseModel
from crewai.flow.flow import Flow, listen, start
from crewai.flow import Flow, listen, start
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0,<1.0.0",
"crewai[tools]>=0.98.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.95.0"
"crewai[tools]>=0.98.0"
]
[tool.crewai]

View File

@@ -1,10 +1,11 @@
import asyncio
import json
import re
import uuid
import warnings
from concurrent.futures import Future
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from pydantic import (
UUID4,
@@ -36,6 +37,7 @@ from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.crew_chat import ChatInputs
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -45,6 +47,7 @@ from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -147,7 +150,7 @@ class Crew(BaseModel):
manager_agent: Optional[BaseAgent] = Field(
description="Custom agent that will be used as manager.", default=None
)
function_calling_llm: Optional[Any] = Field(
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
@@ -203,6 +206,10 @@ class Crew(BaseModel):
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
chat_llm: Optional[Any] = Field(
default=None,
description="LLM used to handle chatting with the crew.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@@ -239,15 +246,9 @@ class Crew(BaseModel):
if self.output_log_file:
self._file_handler = FileHandler(self.output_log_file)
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self
@@ -512,6 +513,8 @@ class Crew(BaseModel):
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
"""Starts the crew to work on its assigned tasks."""
@@ -673,6 +676,7 @@ class Crew(BaseModel):
else:
self.manager_llm = (
getattr(self.manager_llm, "model_name", None)
or getattr(self.manager_llm, "model", None)
or getattr(self.manager_llm, "deployment_name", None)
or self.manager_llm
)
@@ -991,6 +995,31 @@ class Crew(BaseModel):
return self._knowledge.query(query)
return None
def fetch_inputs(self) -> Set[str]:
"""
Gathers placeholders (e.g., {something}) referenced in tasks or agents.
Scans each task's 'description' + 'expected_output', and each agent's
'role', 'goal', and 'backstory'.
Returns a set of all discovered placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks for inputs
for task in self.tasks:
# description and expected_output might contain e.g. {topic}, {user_name}, etc.
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents for inputs
for agent in self.agents:
# role, goal, backstory might have placeholders like {role_detail}, etc.
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def copy(self):
"""Create a deep copy of the Crew."""
@@ -1046,7 +1075,7 @@ class Crew(BaseModel):
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[
task.interpolate_inputs(
task.interpolate_inputs_and_add_conversation_history(
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
inputs
)

View File

@@ -1,3 +1,5 @@
from crewai.flow.flow import Flow
from crewai.flow.flow import Flow, start, listen, or_, and_, router
from crewai.flow.persistence import persist
__all__ = ["Flow", "start", "listen", "or_", "and_", "router", "persist"]
__all__ = ["Flow"]

View File

@@ -1,5 +1,6 @@
import asyncio
import inspect
import logging
from typing import (
Any,
Callable,
@@ -13,9 +14,10 @@ from typing import (
Union,
cast,
)
from uuid import uuid4
from blinker import Signal
from pydantic import BaseModel, ValidationError
from pydantic import BaseModel, Field, ValidationError
from crewai.flow.flow_events import (
FlowFinishedEvent,
@@ -24,10 +26,70 @@ from crewai.flow.flow_events import (
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
from crewai.utilities.printer import Printer
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
logger = logging.getLogger(__name__)
class FlowState(BaseModel):
"""Base model for all flow states, ensuring each state has a unique ID."""
id: str = Field(
default_factory=lambda: str(uuid4()),
description="Unique identifier for the flow state",
)
# Type variables with explicit bounds
T = TypeVar(
"T", bound=Union[Dict[str, Any], BaseModel]
) # Generic flow state type parameter
StateT = TypeVar(
"StateT", bound=Union[Dict[str, Any], BaseModel]
) # State validation type parameter
def ensure_state_type(state: Any, expected_type: Type[StateT]) -> StateT:
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
if expected_type is dict:
if not isinstance(state, dict):
raise TypeError(f"Expected dict, got {type(state).__name__}")
return cast(StateT, state)
if isinstance(expected_type, type) and issubclass(expected_type, BaseModel):
if not isinstance(state, expected_type):
raise TypeError(
f"Expected {expected_type.__name__}, got {type(state).__name__}"
)
return cast(StateT, state)
raise TypeError(f"Invalid expected_type: {expected_type}")
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
@@ -71,6 +133,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
>>> def complex_start(self):
... pass
"""
def decorator(func):
func.__is_start_method__ = True
if condition is not None:
@@ -95,6 +158,7 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
return decorator
def listen(condition: Union[str, dict, Callable]) -> Callable:
"""
Creates a listener that executes when specified conditions are met.
@@ -131,6 +195,7 @@ def listen(condition: Union[str, dict, Callable]) -> Callable:
>>> def handle_completion(self):
... pass
"""
def decorator(func):
if isinstance(condition, str):
func.__trigger_methods__ = [condition]
@@ -195,6 +260,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
... return CONTINUE
... return STOP
"""
def decorator(func):
func.__is_router__ = True
if isinstance(condition, str):
@@ -218,6 +284,7 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
return decorator
def or_(*conditions: Union[str, dict, Callable]) -> dict:
"""
Combines multiple conditions with OR logic for flow control.
@@ -320,21 +387,32 @@ class FlowMeta(type):
routers = set()
for attr_name, attr_value in dct.items():
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
# Check for any flow-related attributes
if (
hasattr(attr_value, "__is_flow_method__")
or hasattr(attr_value, "__is_start_method__")
or hasattr(attr_value, "__trigger_methods__")
or hasattr(attr_value, "__is_router__")
):
# Register start methods
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
# Register listeners and routers
if hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
elif hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
if (
hasattr(attr_value, "__is_router__")
and attr_value.__is_router__
):
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
router_paths[attr_name] = possible_returns
setattr(cls, "_start_methods", start_methods)
setattr(cls, "_listeners", listeners)
@@ -345,7 +423,12 @@ class FlowMeta(type):
class Flow(Generic[T], metaclass=FlowMeta):
"""Base class for all flows.
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
_telemetry = Telemetry()
_printer = Printer()
_start_methods: List[str] = []
_listeners: Dict[str, tuple[str, List[str]]] = {}
@@ -361,30 +444,130 @@ class Flow(Generic[T], metaclass=FlowMeta):
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
return _FlowGeneric
def __init__(self) -> None:
def __init__(
self,
persistence: Optional[FlowPersistence] = None,
**kwargs: Any,
) -> None:
"""Initialize a new Flow instance.
Args:
persistence: Optional persistence backend for storing flow states
**kwargs: Additional state values to initialize or override
"""
# Initialize basic instance attributes
self._methods: Dict[str, Callable] = {}
self._state: T = self._create_initial_state()
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
self._persistence: Optional[FlowPersistence] = persistence
# Initialize state with initial values
self._state = self._create_initial_state()
# Apply any additional kwargs
if kwargs:
self._initialize_state(kwargs)
self._telemetry.flow_creation_span(self.__class__.__name__)
# Register all flow-related methods
for method_name in dir(self):
if callable(getattr(self, method_name)) and not method_name.startswith(
"__"
):
self._methods[method_name] = getattr(self, method_name)
if not method_name.startswith("_"):
method = getattr(self, method_name)
# Check for any flow-related attributes
if (
hasattr(method, "__is_flow_method__")
or hasattr(method, "__is_start_method__")
or hasattr(method, "__trigger_methods__")
or hasattr(method, "__is_router__")
):
# Ensure method is bound to this instance
if not hasattr(method, "__self__"):
method = method.__get__(self, self.__class__)
self._methods[method_name] = method
def _create_initial_state(self) -> T:
"""Create and initialize flow state with UUID and default values.
Returns:
New state instance with UUID and default values initialized
Raises:
ValueError: If structured state model lacks 'id' field
TypeError: If state is neither BaseModel nor dictionary
"""
# Handle case where initial_state is None but we have a type parameter
if self.initial_state is None and hasattr(self, "_initial_state_T"):
return self._initial_state_T() # type: ignore
state_type = getattr(self, "_initial_state_T")
if isinstance(state_type, type):
if issubclass(state_type, FlowState):
# Create instance without id, then set it
instance = state_type()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif issubclass(state_type, BaseModel):
# Create a new type that includes the ID field
class StateWithId(state_type, FlowState): # type: ignore
pass
instance = StateWithId()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif state_type is dict:
return cast(T, {"id": str(uuid4())})
# Handle case where no initial state is provided
if self.initial_state is None:
return {} # type: ignore
elif isinstance(self.initial_state, type):
return self.initial_state()
else:
return self.initial_state
return cast(T, {"id": str(uuid4())})
# Handle case where initial_state is a type (class)
if isinstance(self.initial_state, type):
if issubclass(self.initial_state, FlowState):
return cast(T, self.initial_state()) # Uses model defaults
elif issubclass(self.initial_state, BaseModel):
# Validate that the model has an id field
model_fields = getattr(self.initial_state, "model_fields", None)
if not model_fields or "id" not in model_fields:
raise ValueError("Flow state model must have an 'id' field")
return cast(T, self.initial_state()) # Uses model defaults
elif self.initial_state is dict:
return cast(T, {"id": str(uuid4())})
# Handle dictionary instance case
if isinstance(self.initial_state, dict):
new_state = dict(self.initial_state) # Copy to avoid mutations
if "id" not in new_state:
new_state["id"] = str(uuid4())
return cast(T, new_state)
# Handle BaseModel instance case
if isinstance(self.initial_state, BaseModel):
model = cast(BaseModel, self.initial_state)
if not hasattr(model, "id"):
raise ValueError("Flow state model must have an 'id' field")
# Create new instance with same values to avoid mutations
if hasattr(model, "model_dump"):
# Pydantic v2
state_dict = model.model_dump()
elif hasattr(model, "dict"):
# Pydantic v1
state_dict = model.dict()
else:
# Fallback for other BaseModel implementations
state_dict = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
# Create new instance of the same class
model_class = type(model)
return cast(T, model_class(**state_dict))
raise TypeError(
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
)
@property
def state(self) -> T:
@@ -395,34 +578,158 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
@property
def flow_id(self) -> str:
"""Returns the unique identifier of this flow instance.
This property provides a consistent way to access the flow's unique identifier
regardless of the underlying state implementation (dict or BaseModel).
Returns:
str: The flow's unique identifier, or an empty string if not found
Note:
This property safely handles both dictionary and BaseModel state types,
returning an empty string if the ID cannot be retrieved rather than raising
an exception.
Example:
```python
flow = MyFlow()
print(f"Current flow ID: {flow.flow_id}") # Safely get flow ID
```
"""
try:
if not hasattr(self, '_state'):
return ""
if isinstance(self._state, dict):
return str(self._state.get("id", ""))
elif isinstance(self._state, BaseModel):
return str(getattr(self._state, "id", ""))
return ""
except (AttributeError, TypeError):
return "" # Safely handle any unexpected attribute access issues
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
if isinstance(self._state, BaseModel):
# Structured state
"""Initialize or update flow state with new inputs.
Args:
inputs: Dictionary of state values to set/update
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
if isinstance(self._state, dict):
# For dict states, preserve existing fields unless overridden
current_id = self._state.get("id")
# Only update specified fields
for k, v in inputs.items():
self._state[k] = v
# Ensure ID is preserved or generated
if current_id:
self._state["id"] = current_id
elif "id" not in self._state:
self._state["id"] = str(uuid4())
elif isinstance(self._state, BaseModel):
# For BaseModel states, preserve existing fields unless overridden
try:
model = cast(BaseModel, self._state)
# Get current state as dict
if hasattr(model, "model_dump"):
current_state = model.model_dump()
elif hasattr(model, "dict"):
current_state = model.dict()
else:
current_state = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
class ModelWithExtraForbid(base_model): # type: ignore
model_config = base_model.model_config.copy()
model_config["extra"] = "forbid"
# Create new state with preserved fields and updates
new_state = {**current_state, **inputs}
return ModelWithExtraForbid
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
self._state = cast(
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
)
# Create new instance with merged state
model_class = type(model)
if hasattr(model_class, "model_validate"):
# Pydantic v2
self._state = cast(T, model_class.model_validate(new_state))
elif hasattr(model_class, "parse_obj"):
# Pydantic v1
self._state = cast(T, model_class.parse_obj(new_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, model_class(**new_state))
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
elif isinstance(self._state, dict):
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def _restore_state(self, stored_state: Dict[str, Any]) -> None:
"""Restore flow state from persistence.
Args:
stored_state: Previously stored state to restore
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
# When restoring from persistence, use the stored ID
stored_id = stored_state.get("id")
if not stored_id:
raise ValueError("Stored state must have an 'id' field")
if isinstance(self._state, dict):
# For dict states, update all fields from stored state
self._state.clear()
self._state.update(stored_state)
elif isinstance(self._state, BaseModel):
# For BaseModel states, create new instance with stored values
model = cast(BaseModel, self._state)
if hasattr(model, "model_validate"):
# Pydantic v2
self._state = cast(T, type(model).model_validate(stored_state))
elif hasattr(model, "parse_obj"):
# Pydantic v1
self._state = cast(T, type(model).parse_obj(stored_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, type(model)(**stored_state))
else:
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""Start the flow execution.
Args:
inputs: Optional dictionary containing input values and potentially a state ID to restore
"""
# Handle state restoration if ID is provided in inputs
if inputs and 'id' in inputs and self._persistence is not None:
restore_uuid = inputs['id']
stored_state = self._persistence.load_state(restore_uuid)
# Override the id in the state if it exists in inputs
if 'id' in inputs:
if isinstance(self._state, dict):
self._state['id'] = inputs['id']
elif isinstance(self._state, BaseModel):
setattr(self._state, 'id', inputs['id'])
if stored_state:
self._log_flow_event(f"Loading flow state from memory for UUID: {restore_uuid}", color="yellow")
# Restore the state
self._restore_state(stored_state)
else:
self._log_flow_event(f"No flow state found for UUID: {restore_uuid}", color="red")
# Apply any additional inputs after restoration
filtered_inputs = {k: v for k, v in inputs.items() if k != 'id'}
if filtered_inputs:
self._initialize_state(filtered_inputs)
# Start flow execution
self.event_emitter.send(
self,
event=FlowStartedEvent(
@@ -430,9 +737,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
flow_name=self.__class__.__name__,
),
)
self._log_flow_event(f"Flow started with ID: {self.flow_id}", color="bold_magenta")
if inputs is not None:
if inputs is not None and 'id' not in inputs:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
@@ -675,6 +984,30 @@ class Flow(Generic[T], metaclass=FlowMeta):
traceback.print_exc()
def _log_flow_event(self, message: str, color: str = "yellow", level: str = "info") -> None:
"""Centralized logging method for flow events.
This method provides a consistent interface for logging flow-related events,
combining both console output with colors and proper logging levels.
Args:
message: The message to log
color: Color to use for console output (default: yellow)
Available colors: purple, red, bold_green, bold_purple,
bold_blue, yellow, yellow
level: Log level to use (default: info)
Supported levels: info, warning
Note:
This method uses the Printer utility for colored console output
and the standard logging module for log level support.
"""
self._printer.print(message, color=color)
if level == "info":
logger.info(message)
elif level == "warning":
logger.warning(message)
def plot(self, filename: str = "crewai_flow") -> None:
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())

View File

@@ -0,0 +1,18 @@
"""
CrewAI Flow Persistence.
This module provides interfaces and implementations for persisting flow states.
"""
from typing import Any, Dict, TypeVar, Union
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.decorators import persist
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
__all__ = ["FlowPersistence", "persist", "SQLiteFlowPersistence"]
StateType = TypeVar('StateType', bound=Union[Dict[str, Any], BaseModel])
DictStateType = Dict[str, Any]

View File

@@ -0,0 +1,53 @@
"""Base class for flow state persistence."""
import abc
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
class FlowPersistence(abc.ABC):
"""Abstract base class for flow state persistence.
This class defines the interface that all persistence implementations must follow.
It supports both structured (Pydantic BaseModel) and unstructured (dict) states.
"""
@abc.abstractmethod
def init_db(self) -> None:
"""Initialize the persistence backend.
This method should handle any necessary setup, such as:
- Creating tables
- Establishing connections
- Setting up indexes
"""
pass
@abc.abstractmethod
def save_state(
self,
flow_uuid: str,
method_name: str,
state_data: Union[Dict[str, Any], BaseModel]
) -> None:
"""Persist the flow state after method completion.
Args:
flow_uuid: Unique identifier for the flow instance
method_name: Name of the method that just completed
state_data: Current state data (either dict or Pydantic model)
"""
pass
@abc.abstractmethod
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
Args:
flow_uuid: Unique identifier for the flow instance
Returns:
The most recent state as a dictionary, or None if no state exists
"""
pass

View File

@@ -0,0 +1,252 @@
"""
Decorators for flow state persistence.
Example:
```python
from crewai.flow.flow import Flow, start
from crewai.flow.persistence import persist, SQLiteFlowPersistence
class MyFlow(Flow):
@start()
@persist(SQLiteFlowPersistence())
def sync_method(self):
# Synchronous method implementation
pass
@start()
@persist(SQLiteFlowPersistence())
async def async_method(self):
# Asynchronous method implementation
await some_async_operation()
```
"""
import asyncio
import functools
import logging
from typing import (
Any,
Callable,
Optional,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
T = TypeVar("T")
# Constants for log messages
LOG_MESSAGES = {
"save_state": "Saving flow state to memory for ID: {}",
"save_error": "Failed to persist state for method {}: {}",
"state_missing": "Flow instance has no state",
"id_missing": "Flow state must have an 'id' field for persistence"
}
class PersistenceDecorator:
"""Class to handle flow state persistence with consistent logging."""
_printer = Printer() # Class-level printer instance
@classmethod
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence) -> None:
"""Persist flow state with proper error handling and logging.
This method handles the persistence of flow state data, including proper
error handling and colored console output for status updates.
Args:
flow_instance: The flow instance whose state to persist
method_name: Name of the method that triggered persistence
persistence_instance: The persistence backend to use
Raises:
ValueError: If flow has no state or state lacks an ID
RuntimeError: If state persistence fails
AttributeError: If flow instance lacks required state attributes
"""
try:
state = getattr(flow_instance, 'state', None)
if state is None:
raise ValueError("Flow instance has no state")
flow_uuid: Optional[str] = None
if isinstance(state, dict):
flow_uuid = state.get('id')
elif isinstance(state, BaseModel):
flow_uuid = getattr(state, 'id', None)
if not flow_uuid:
raise ValueError("Flow state must have an 'id' field for persistence")
# Log state saving with consistent message
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
try:
persistence_instance.save_state(
flow_uuid=flow_uuid,
method_name=method_name,
state_data=state,
)
except Exception as e:
error_msg = LOG_MESSAGES["save_error"].format(method_name, str(e))
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise RuntimeError(f"State persistence failed: {str(e)}") from e
except AttributeError:
error_msg = LOG_MESSAGES["state_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg)
except (TypeError, ValueError) as e:
error_msg = LOG_MESSAGES["id_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg) from e
def persist(persistence: Optional[FlowPersistence] = None):
"""Decorator to persist flow state.
This decorator can be applied at either the class level or method level.
When applied at the class level, it automatically persists all flow method
states. When applied at the method level, it persists only that method's
state.
Args:
persistence: Optional FlowPersistence implementation to use.
If not provided, uses SQLiteFlowPersistence.
Returns:
A decorator that can be applied to either a class or method
Raises:
ValueError: If the flow state doesn't have an 'id' field
RuntimeError: If state persistence fails
Example:
@persist # Class-level persistence with default SQLite
class MyFlow(Flow[MyState]):
@start()
def begin(self):
pass
"""
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
"""Decorator that handles both class and method decoration."""
actual_persistence = persistence or SQLiteFlowPersistence()
if isinstance(target, type):
# Class decoration
original_init = getattr(target, "__init__")
@functools.wraps(original_init)
def new_init(self: Any, *args: Any, **kwargs: Any) -> None:
if 'persistence' not in kwargs:
kwargs['persistence'] = actual_persistence
original_init(self, *args, **kwargs)
setattr(target, "__init__", new_init)
# Store original methods to preserve their decorators
original_methods = {}
for name, method in target.__dict__.items():
if callable(method) and (
hasattr(method, "__is_start_method__") or
hasattr(method, "__trigger_methods__") or
hasattr(method, "__condition_type__") or
hasattr(method, "__is_flow_method__") or
hasattr(method, "__is_router__")
):
original_methods[name] = method
# Create wrapped versions of the methods that include persistence
for name, method in original_methods.items():
if asyncio.iscoroutinefunction(method):
# Create a closure to capture the current name and method
def create_async_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = await original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
return result
return method_wrapper
wrapped = create_async_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
else:
# Create a closure to capture the current name and method
def create_sync_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
return result
return method_wrapper
wrapped = create_sync_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
return target
else:
# Method decoration
method = target
setattr(method, "__is_flow_method__", True)
if asyncio.iscoroutinefunction(method):
@functools.wraps(method)
async def method_async_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
method_coro = method(flow_instance, *args, **kwargs)
if asyncio.iscoroutine(method_coro):
result = await method_coro
else:
result = method_coro
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_async_wrapper, attr, getattr(method, attr))
setattr(method_async_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_async_wrapper)
else:
@functools.wraps(method)
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
result = method(flow_instance, *args, **kwargs)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_sync_wrapper, attr, getattr(method, attr))
setattr(method_sync_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_sync_wrapper)
return decorator

View File

@@ -0,0 +1,123 @@
"""
SQLite-based implementation of flow state persistence.
"""
import json
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
class SQLiteFlowPersistence(FlowPersistence):
"""SQLite-based implementation of flow state persistence.
This class provides a simple, file-based persistence implementation using SQLite.
It's suitable for development and testing, or for production use cases with
moderate performance requirements.
"""
db_path: str # Type annotation for instance variable
def __init__(self, db_path: Optional[str] = None):
"""Initialize SQLite persistence.
Args:
db_path: Path to the SQLite database file. If not provided, uses
db_storage_path() from utilities.paths.
Raises:
ValueError: If db_path is invalid
"""
from crewai.utilities.paths import db_storage_path
# Get path from argument or default location
path = db_path or str(Path(db_storage_path()) / "flow_states.db")
if not path:
raise ValueError("Database path must be provided")
self.db_path = path # Now mypy knows this is str
self.init_db()
def init_db(self) -> None:
"""Create the necessary tables if they don't exist."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS flow_states (
id INTEGER PRIMARY KEY AUTOINCREMENT,
flow_uuid TEXT NOT NULL,
method_name TEXT NOT NULL,
timestamp DATETIME NOT NULL,
state_json TEXT NOT NULL
)
""")
# Add index for faster UUID lookups
conn.execute("""
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
ON flow_states(flow_uuid)
""")
def save_state(
self,
flow_uuid: str,
method_name: str,
state_data: Union[Dict[str, Any], BaseModel],
) -> None:
"""Save the current flow state to SQLite.
Args:
flow_uuid: Unique identifier for the flow instance
method_name: Name of the method that just completed
state_data: Current state data (either dict or Pydantic model)
"""
# Convert state_data to dict, handling both Pydantic and dict cases
if isinstance(state_data, BaseModel):
state_dict = dict(state_data) # Use dict() for better type compatibility
elif isinstance(state_data, dict):
state_dict = state_data
else:
raise ValueError(
f"state_data must be either a Pydantic BaseModel or dict, got {type(state_data)}"
)
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
INSERT INTO flow_states (
flow_uuid,
method_name,
timestamp,
state_json
) VALUES (?, ?, ?, ?)
""", (
flow_uuid,
method_name,
datetime.utcnow().isoformat(),
json.dumps(state_dict),
))
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
Args:
flow_uuid: Unique identifier for the flow instance
Returns:
The most recent state as a dictionary, or None if no state exists
"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute("""
SELECT state_json
FROM flow_states
WHERE flow_uuid = ?
ORDER BY id DESC
LIMIT 1
""", (flow_uuid,))
row = cursor.fetchone()
if row:
return json.loads(row[0])
return None

View File

@@ -8,6 +8,7 @@ try:
from docling.exceptions import ConversionError
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
from docling_core.types.doc.document import DoclingDocument
DOCLING_AVAILABLE = True
except ImportError:
DOCLING_AVAILABLE = False
@@ -38,8 +39,8 @@ class CrewDoclingSource(BaseKnowledgeSource):
file_paths: List[Union[Path, str]] = Field(default_factory=list)
chunks: List[str] = Field(default_factory=list)
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
content: List[DoclingDocument] = Field(default_factory=list)
document_converter: DocumentConverter = Field(
content: List["DoclingDocument"] = Field(default_factory=list)
document_converter: "DocumentConverter" = Field(
default_factory=lambda: DocumentConverter(
allowed_formats=[
InputFormat.MD,
@@ -65,7 +66,7 @@ class CrewDoclingSource(BaseKnowledgeSource):
self.safe_file_paths = self.validate_content()
self.content = self._load_content()
def _load_content(self) -> List[DoclingDocument]:
def _load_content(self) -> List["DoclingDocument"]:
try:
return self._convert_source_to_docling_documents()
except ConversionError as e:
@@ -87,11 +88,11 @@ class CrewDoclingSource(BaseKnowledgeSource):
self.chunks.extend(list(new_chunks_iterable))
self._save_documents()
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
def _convert_source_to_docling_documents(self) -> List["DoclingDocument"]:
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
return [result.document for result in conv_results_iter]
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
def _chunk_doc(self, doc: "DoclingDocument") -> Iterator[str]:
chunker = HierarchicalChunker()
for chunk in chunker.chunk(doc):
yield chunk.text

View File

@@ -1,21 +1,27 @@
import json
import logging
import os
import sys
import threading
import warnings
from contextlib import contextmanager
from importlib import resources
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Union, cast
from dotenv import load_dotenv
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import get_supported_openai_params
from litellm import Choices, get_supported_openai_params
from litellm.types.utils import ModelResponse
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
load_dotenv()
class FilteredStream:
def __init__(self, original_stream):
@@ -24,6 +30,7 @@ class FilteredStream:
def write(self, s) -> int:
with self._lock:
# Filter out extraneous messages from LiteLLM
if (
"Give Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new"
in s
@@ -69,6 +76,18 @@ LLM_CONTEXT_WINDOW_SIZES = {
"mixtral-8x7b-32768": 32768,
"llama-3.3-70b-versatile": 128000,
"llama-3.3-70b-instruct": 128000,
# sambanova
"Meta-Llama-3.3-70B-Instruct": 131072,
"QwQ-32B-Preview": 8192,
"Qwen2.5-72B-Instruct": 8192,
"Qwen2.5-Coder-32B-Instruct": 8192,
"Meta-Llama-3.1-405B-Instruct": 8192,
"Meta-Llama-3.1-70B-Instruct": 131072,
"Meta-Llama-3.1-8B-Instruct": 131072,
"Llama-3.2-90B-Vision-Instruct": 16384,
"Llama-3.2-11B-Vision-Instruct": 16384,
"Meta-Llama-3.2-3B-Instruct": 4096,
"Meta-Llama-3.2-1B-Instruct": 16384,
}
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
@@ -79,18 +98,18 @@ CONTEXT_WINDOW_USAGE_RATIO = 0.75
def suppress_warnings():
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", message="open_text is deprecated*", category=DeprecationWarning)
warnings.filterwarnings(
"ignore", message="open_text is deprecated*", category=DeprecationWarning
)
# Redirect stdout and stderr
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = FilteredStream(old_stdout)
sys.stderr = FilteredStream(old_stderr)
try:
yield
finally:
# Restore stdout and stderr
sys.stdout = old_stdout
sys.stderr = old_stderr
@@ -111,13 +130,12 @@ class LLM:
logit_bias: Optional[Dict[int, float]] = None,
response_format: Optional[Dict[str, Any]] = None,
seed: Optional[int] = None,
logprobs: Optional[bool] = None,
logprobs: Optional[int] = None,
top_logprobs: Optional[int] = None,
base_url: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] = [],
**kwargs,
):
self.model = model
self.timeout = timeout
@@ -139,19 +157,40 @@ class LLM:
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
litellm.drop_params = True
self.set_callbacks(callbacks)
self.set_env_callbacks()
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
def call(
self,
messages: List[Dict[str, str]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""
High-level call method that:
1) Calls litellm.completion
2) Checks for function/tool calls
3) If a tool call is found:
a) executes the function
b) returns the result
4) If no tool call, returns the text response
:param messages: The conversation messages
:param tools: Optional list of function schemas for function calling
:param callbacks: Optional list of callbacks
:param available_functions: A dictionary mapping function_name -> actual Python function
:return: Final text response from the LLM or the tool result
"""
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 1) Make the completion call
params = {
"model": self.model,
"messages": messages,
@@ -172,21 +211,71 @@ class LLM:
"api_version": self.api_version,
"api_key": self.api_key,
"stream": False,
**self.kwargs,
"tools": tools, # pass the tool schema
}
# Remove None values to avoid passing unnecessary parameters
params = {k: v for k, v in params.items() if v is not None}
response = litellm.completion(**params)
return response["choices"][0]["message"]["content"]
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
tool_calls = getattr(response_message, "tool_calls", [])
# Ensure callbacks get the full response object with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
usage_info = getattr(response, "usage", None)
if usage_info:
callback.log_success_event(
kwargs=params,
response_obj={"usage": usage_info},
start_time=0,
end_time=0,
)
# --- 2) If no tool calls, return the text response
if not tool_calls or not available_functions:
return text_response
# --- 3) Handle the tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
if function_name in available_functions:
try:
function_args = json.loads(tool_call.function.arguments)
except json.JSONDecodeError as e:
logging.warning(f"Failed to parse function arguments: {e}")
return text_response
fn = available_functions[function_name]
try:
# Call the actual tool function
result = fn(**function_args)
return result
except Exception as e:
logging.error(
f"Error executing function '{function_name}': {e}"
)
return text_response
else:
logging.warning(
f"Tool call requested unknown function '{function_name}'"
)
return text_response
except Exception as e:
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
raise # Re-raise the exception after logging
raise
def supports_function_calling(self) -> bool:
try:
@@ -205,7 +294,10 @@ class LLM:
return False
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
"""
if self.context_window_size != 0:
return self.context_window_size
@@ -218,6 +310,10 @@ class LLM:
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
"""
Attempt to keep a single set of callbacks in litellm by removing old
duplicates and adding new ones.
"""
with suppress_warnings():
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
@@ -254,15 +350,15 @@ class LLM:
success_callbacks = []
if success_callbacks_str:
success_callbacks = [
callback.strip() for callback in success_callbacks_str.split(",")
cb.strip() for cb in success_callbacks_str.split(",") if cb.strip()
]
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
failure_callbacks = []
if failure_callbacks_str:
failure_callbacks = [
callback.strip() for callback in failure_callbacks_str.split(",")
cb.strip() for cb in failure_callbacks_str.split(",") if cb.strip()
]
litellm.success_callback = success_callbacks
litellm.failure_callback = failure_callbacks
litellm.success_callback = success_callbacks
litellm.failure_callback = failure_callbacks

View File

@@ -1,12 +1,17 @@
import json
import logging
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.errors import DatabaseError, DatabaseOperationError
from crewai.utilities.paths import db_storage_path
logger = logging.getLogger(__name__)
class KickoffTaskOutputsSQLiteStorage:
"""
@@ -14,15 +19,24 @@ class KickoffTaskOutputsSQLiteStorage:
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
self, db_path: Optional[str] = None
) -> None:
if db_path is None:
# Get the parent directory of the default db path and create our db file there
db_path = str(Path(db_storage_path()) / "latest_kickoff_task_outputs.db")
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
def _initialize_db(self):
"""
Initializes the SQLite database and creates LTM table
def _initialize_db(self) -> None:
"""Initialize the SQLite database and create the latest_kickoff_task_outputs table.
This method sets up the database schema for storing task outputs. It creates
a table with columns for task_id, expected_output, output (as JSON),
task_index, inputs (as JSON), was_replayed flag, and timestamp.
Raises:
DatabaseOperationError: If database initialization fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
@@ -43,10 +57,9 @@ class KickoffTaskOutputsSQLiteStorage:
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.INIT_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def add(
self,
@@ -55,9 +68,22 @@ class KickoffTaskOutputsSQLiteStorage:
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
) -> None:
"""Add a new task output record to the database.
Args:
task: The Task object containing task details.
output: Dictionary containing the task's output data.
task_index: Integer index of the task in the sequence.
was_replayed: Boolean indicating if this was a replay execution.
inputs: Dictionary of input parameters used for the task.
Raises:
DatabaseOperationError: If saving the task output fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
cursor.execute(
"""
@@ -76,21 +102,31 @@ class KickoffTaskOutputsSQLiteStorage:
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.SAVE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def update(
self,
task_index: int,
**kwargs,
):
"""
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
**kwargs: Any,
) -> None:
"""Update an existing task output record in the database.
Updates fields of a task output record identified by task_index. The fields
to update are provided as keyword arguments.
Args:
task_index: Integer index of the task to update.
**kwargs: Arbitrary keyword arguments representing fields to update.
Values that are dictionaries will be JSON encoded.
Raises:
DatabaseOperationError: If updating the task output fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
fields = []
@@ -110,14 +146,23 @@ class KickoffTaskOutputsSQLiteStorage:
conn.commit()
if cursor.rowcount == 0:
self._printer.print(
f"No row found with task_index {task_index}. No update performed.",
color="red",
)
logger.warning(f"No row found with task_index {task_index}. No update performed.")
except sqlite3.Error as e:
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
error_msg = DatabaseError.format_error(DatabaseError.UPDATE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def load(self) -> Optional[List[Dict[str, Any]]]:
def load(self) -> List[Dict[str, Any]]:
"""Load all task output records from the database.
Returns:
List of dictionaries containing task output records, ordered by task_index.
Each dictionary contains: task_id, expected_output, output, task_index,
inputs, was_replayed, and timestamp.
Raises:
DatabaseOperationError: If loading task outputs fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
@@ -144,23 +189,26 @@ class KickoffTaskOutputsSQLiteStorage:
return results
except sqlite3.Error as e:
self._printer.print(
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
color="red",
)
return None
error_msg = DatabaseError.format_error(DatabaseError.LOAD_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)
def delete_all(self):
"""
Deletes all rows from the latest_kickoff_task_outputs table.
def delete_all(self) -> None:
"""Delete all task output records from the database.
This method removes all records from the latest_kickoff_task_outputs table.
Use with caution as this operation cannot be undone.
Raises:
DatabaseOperationError: If deleting task outputs fails due to SQLite errors.
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.execute("BEGIN TRANSACTION")
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
color="red",
)
error_msg = DatabaseError.format_error(DatabaseError.DELETE_ERROR, e)
logger.error(error_msg)
raise DatabaseOperationError(error_msg, e)

View File

@@ -1,5 +1,6 @@
import json
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
@@ -12,10 +13,15 @@ class LTMSQLiteStorage:
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
self, db_path: Optional[str] = None
) -> None:
if db_path is None:
# Get the parent directory of the default db path and create our db file there
db_path = str(Path(db_storage_path()) / "long_term_memory_storage.db")
self.db_path = db_path
self._printer: Printer = Printer()
# Ensure parent directory exists
Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
self._initialize_db()
def _initialize_db(self):

View File

@@ -27,10 +27,18 @@ class Mem0Storage(Storage):
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
self.memory = MemoryClient(api_key=mem0_api_key)
config = self.memory_config.get("config", {})
mem0_api_key = config.get("api_key") or os.getenv("MEM0_API_KEY")
mem0_org_id = config.get("org_id")
mem0_project_id = config.get("project_id")
# Initialize MemoryClient with available parameters
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:
"""
@@ -57,7 +65,7 @@ class Mem0Storage(Storage):
metadata={"type": "long_term", **metadata},
)
elif self.memory_type == "entities":
entity_name = None
entity_name = self._get_agent_name()
self.memory.add(
value, user_id=entity_name, metadata={"type": "entity", **metadata}
)

View File

@@ -1,4 +1,5 @@
import inspect
import logging
from pathlib import Path
from typing import Any, Callable, Dict, TypeVar, cast
@@ -7,12 +8,16 @@ from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.WARNING)
T = TypeVar("T", bound=type)
"""Base decorator for creating crew classes with configuration and function management."""
def CrewBase(cls: T) -> T:
"""Wraps a class with crew functionality and configuration management."""
class WrappedClass(cls): # type: ignore
is_crew_class: bool = True # type: ignore
@@ -26,16 +31,9 @@ def CrewBase(cls: T) -> T:
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
agents_config_path = self.base_directory / self.original_agents_config_path
tasks_config_path = self.base_directory / self.original_tasks_config_path
self.agents_config = self.load_yaml(agents_config_path)
self.tasks_config = self.load_yaml(tasks_config_path)
self.load_configurations()
self.map_all_agent_variables()
self.map_all_task_variables()
# Preserve all decorated functions
self._original_functions = {
name: method
@@ -51,7 +49,6 @@ def CrewBase(cls: T) -> T:
]
)
}
# Store specific function types
self._original_tasks = self._filter_functions(
self._original_functions, "is_task"
@@ -69,6 +66,44 @@ def CrewBase(cls: T) -> T:
self._original_functions, "is_kickoff"
)
def load_configurations(self):
"""Load agent and task configurations from YAML files."""
if isinstance(self.original_agents_config_path, str):
agents_config_path = (
self.base_directory / self.original_agents_config_path
)
try:
self.agents_config = self.load_yaml(agents_config_path)
except FileNotFoundError:
logging.warning(
f"Agent config file not found at {agents_config_path}. "
"Proceeding with empty agent configurations."
)
self.agents_config = {}
else:
logging.warning(
"No agent configuration path provided. Proceeding with empty agent configurations."
)
self.agents_config = {}
if isinstance(self.original_tasks_config_path, str):
tasks_config_path = (
self.base_directory / self.original_tasks_config_path
)
try:
self.tasks_config = self.load_yaml(tasks_config_path)
except FileNotFoundError:
logging.warning(
f"Task config file not found at {tasks_config_path}. "
"Proceeding with empty task configurations."
)
self.tasks_config = {}
else:
logging.warning(
"No task configuration path provided. Proceeding with empty task configurations."
)
self.tasks_config = {}
@staticmethod
def load_yaml(config_path: Path):
try:

View File

@@ -393,11 +393,11 @@ class Task(BaseModel):
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw
task_output=task_output.raw,
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to:{guardrail_result.error}\n",
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
@@ -431,9 +431,7 @@ class Task(BaseModel):
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)
@@ -453,8 +451,11 @@ class Task(BaseModel):
tasks_slices = [self.description, output]
return "\n".join(tasks_slices)
def interpolate_inputs(self, inputs: Dict[str, Union[str, int, float]]) -> None:
def interpolate_inputs_and_add_conversation_history(
self, inputs: Dict[str, Union[str, int, float]]
) -> None:
"""Interpolate inputs into the task description, expected output, and output file path.
Add conversation history if present.
Args:
inputs: Dictionary mapping template variables to their values.
@@ -499,6 +500,29 @@ class Task(BaseModel):
f"Error interpolating output_file path: {str(e)}"
) from e
if "crew_chat_messages" in inputs and inputs["crew_chat_messages"]:
conversation_instruction = self.i18n.slice(
"conversation_history_instruction"
)
crew_chat_messages_json = str(inputs["crew_chat_messages"])
try:
crew_chat_messages = json.loads(crew_chat_messages_json)
except json.JSONDecodeError as e:
print("An error occurred while parsing crew chat messages:", e)
raise
conversation_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in crew_chat_messages
if isinstance(msg, dict) and "role" in msg and "content" in msg
)
self.description += (
f"\n\n{conversation_instruction}\n\n{conversation_history}"
)
def interpolate_only(
self, input_string: Optional[str], inputs: Dict[str, Union[str, int, float]]
) -> str:

View File

@@ -1,9 +1,13 @@
import ast
import datetime
import json
import re
import time
from difflib import SequenceMatcher
from textwrap import dedent
from typing import Any, List, Union
from typing import Any, Dict, List, Union
from json_repair import repair_json
import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
@@ -19,7 +23,15 @@ try:
import agentops # type: ignore
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini", "o1", "o3", "o3-mini"]
OPENAI_BIGGER_MODELS = [
"gpt-4",
"gpt-4o",
"o1-preview",
"o1-mini",
"o1",
"o3",
"o3-mini",
]
class ToolUsageErrorException(Exception):
@@ -80,7 +92,7 @@ class ToolUsage:
self._max_parsing_attempts = 2
self._remember_format_after_usages = 4
def parse(self, tool_string: str):
def parse_tool_calling(self, tool_string: str):
"""Parse the tool string and return the tool calling."""
return self._tool_calling(tool_string)
@@ -94,7 +106,6 @@ class ToolUsage:
self.task.increment_tools_errors()
return error
# BUG? The code below seems to be unreachable
try:
tool = self._select_tool(calling.tool_name)
except Exception as e:
@@ -116,7 +127,7 @@ class ToolUsage:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}"
def _use(
self,
@@ -349,13 +360,13 @@ class ToolUsage:
tool_name = self.action.tool
tool = self._select_tool(tool_name)
try:
tool_input = self._validate_tool_input(self.action.tool_input)
arguments = ast.literal_eval(tool_input)
arguments = self._validate_tool_input(self.action.tool_input)
except Exception:
if raise_error:
raise
else:
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
return ToolUsageErrorException(
f'{self._i18n.errors("tool_arguments_error")}'
)
@@ -363,14 +374,14 @@ class ToolUsage:
if raise_error:
raise
else:
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
return ToolUsageErrorException(
f'{self._i18n.errors("tool_arguments_error")}'
)
return ToolCalling(
tool_name=tool.name,
arguments=arguments,
log=tool_string, # type: ignore
log=tool_string,
)
def _tool_calling(
@@ -396,57 +407,28 @@ class ToolUsage:
)
return self._tool_calling(tool_string)
def _validate_tool_input(self, tool_input: str) -> str:
def _validate_tool_input(self, tool_input: str) -> Dict[str, Any]:
try:
ast.literal_eval(tool_input)
return tool_input
except Exception:
# Clean and ensure the string is properly enclosed in braces
tool_input = tool_input.strip()
if not tool_input.startswith("{"):
tool_input = "{" + tool_input
if not tool_input.endswith("}"):
tool_input += "}"
# Replace Python literals with JSON equivalents
replacements = {
r"'": '"',
r"None": "null",
r"True": "true",
r"False": "false",
}
for pattern, replacement in replacements.items():
tool_input = re.sub(pattern, replacement, tool_input)
# Manually split the input into key-value pairs
entries = tool_input.strip("{} ").split(",")
formatted_entries = []
arguments = json.loads(tool_input)
except json.JSONDecodeError:
# Attempt to repair JSON string
repaired_input = repair_json(tool_input)
try:
arguments = json.loads(repaired_input)
except json.JSONDecodeError as e:
raise Exception(f"Invalid tool input JSON: {e}")
for entry in entries:
if ":" not in entry:
continue # Skip malformed entries
key, value = entry.split(":", 1)
# Remove extraneous white spaces and quotes, replace single quotes
key = key.strip().strip('"').replace("'", '"')
value = value.strip()
# Handle replacement of single quotes at the start and end of the value string
if value.startswith("'") and value.endswith("'"):
value = value[1:-1] # Remove single quotes
value = (
'"' + value.replace('"', '\\"') + '"'
) # Re-encapsulate with double quotes
elif value.isdigit(): # Check if value is a digit, hence integer
value = value
elif value.lower() in [
"true",
"false",
]: # Check for boolean and null values
value = value.lower().capitalize()
elif value.lower() == "null":
value = "None"
else:
# Assume the value is a string and needs quotes
value = '"' + value.replace('"', '\\"') + '"'
# Rebuild the entry with proper quoting
formatted_entry = f'"{key}": {value}'
formatted_entries.append(formatted_entry)
# Reconstruct the JSON string
new_json_string = "{" + ", ".join(formatted_entries) + "}"
return new_json_string
return arguments
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
event_data = self._prepare_event_data(tool, tool_calling)

View File

@@ -9,11 +9,11 @@
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:",
"memory": "\n\n# Useful context: \n{memory}",
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
"no_tools": "\nTo give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
"no_tools": "\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. When responding, I must use the following format:\n\n```\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n```\nThis Thought/Action/Action Input/Result can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\n```\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n```",
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nHere is the expected format I must follow:\n\n```\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n This Thought/Action/Action Input/Result process can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
@@ -23,10 +23,11 @@
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\""
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\"",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals."
},
"errors": {
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
"force_final_answer_error": "You can't keep going, here is the best final answer you generated:\n\n {formatted_answer}",
"force_final_answer": "Now it's time you MUST give your absolute best final answer. You'll ignore all previous instructions, stop using any tools, and just return your absolute BEST Final answer.",
"agent_tool_unexisting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
@@ -42,7 +43,7 @@
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
"add_image": {
"name": "Add image to content",
"description": "See image to understand it's content, you can optionally ask a question about the image",
"description": "See image to understand its content, you can optionally ask a question about the image",
"default_action": "Please provide a detailed description of this image, including all visual elements, context, and any notable details you can observe."
}
}

View File

@@ -0,0 +1,40 @@
from typing import List
from pydantic import BaseModel, Field
class ChatInputField(BaseModel):
"""
Represents a single required input for the crew, with a name and short description.
Example:
{
"name": "topic",
"description": "The topic to focus on for the conversation"
}
"""
name: str = Field(..., description="The name of the input field")
description: str = Field(..., description="A short description of the input field")
class ChatInputs(BaseModel):
"""
Holds a high-level crew_description plus a list of ChatInputFields.
Example:
{
"crew_name": "topic-based-qa",
"crew_description": "Use this crew for topic-based Q&A",
"inputs": [
{"name": "topic", "description": "The topic to focus on"},
{"name": "username", "description": "Name of the user"},
]
}
"""
crew_name: str = Field(..., description="The name of the crew")
crew_description: str = Field(
..., description="A description of the crew's purpose"
)
inputs: List[ChatInputField] = Field(
default_factory=list, description="A list of input fields for the crew"
)

View File

@@ -26,17 +26,24 @@ class Converter(OutputConverter):
if self.llm.supports_function_calling():
return self._create_instructor().to_pydantic()
else:
return self.llm.call(
response = self.llm.call(
[
{"role": "system", "content": self.instructions},
{"role": "user", "content": self.text},
]
)
return self.model.model_validate_json(response)
except ValidationError as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
raise ConverterError(
f"Failed to convert text into a Pydantic model due to the following validation error: {e}"
)
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
return ConverterError(
f"Failed to convert text into a pydantic model due to the following error: {e}"
raise ConverterError(
f"Failed to convert text into a Pydantic model due to the following error: {e}"
)
def to_json(self, current_attempt=1):
@@ -66,7 +73,6 @@ class Converter(OutputConverter):
llm=self.llm,
model=self.model,
content=self.text,
instructions=self.instructions,
)
return inst
@@ -187,10 +193,15 @@ def convert_with_instructions(
def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
instructions = "I'm gonna convert this raw text into valid JSON."
instructions = "Please convert the following text into valid JSON."
if llm.supports_function_calling():
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
instructions += (
f"\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
)
else:
model_description = generate_model_description(model)
instructions += f"\n\nThe JSON should follow this format:\n{model_description}"
return instructions
@@ -230,9 +241,13 @@ def generate_model_description(model: Type[BaseModel]) -> str:
origin = get_origin(field_type)
args = get_args(field_type)
if origin is Union and type(None) in args:
if origin is Union or (origin is None and len(args) > 0):
# Handle both Union and the new '|' syntax
non_none_args = [arg for arg in args if arg is not type(None)]
return f"Optional[{describe_field(non_none_args[0])}]"
if len(non_none_args) == 1:
return f"Optional[{describe_field(non_none_args[0])}]"
else:
return f"Optional[Union[{', '.join(describe_field(arg) for arg in non_none_args)}]]"
elif origin is list:
return f"List[{describe_field(args[0])}]"
elif origin is dict:
@@ -241,8 +256,10 @@ def generate_model_description(model: Type[BaseModel]) -> str:
return f"Dict[{key_type}, {value_type}]"
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
return generate_model_description(field_type)
else:
elif hasattr(field_type, "__name__"):
return field_type.__name__
else:
return str(field_type)
fields = model.__annotations__
field_descriptions = [

View File

@@ -14,6 +14,7 @@ class EmbeddingConfigurator:
"vertexai": self._configure_vertexai,
"google": self._configure_google,
"cohere": self._configure_cohere,
"voyageai": self._configure_voyageai,
"bedrock": self._configure_bedrock,
"huggingface": self._configure_huggingface,
"watson": self._configure_watson,
@@ -124,6 +125,17 @@ class EmbeddingConfigurator:
api_key=config.get("api_key"),
)
@staticmethod
def _configure_voyageai(config, model_name):
from chromadb.utils.embedding_functions.voyageai_embedding_function import (
VoyageAIEmbeddingFunction,
)
return VoyageAIEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_bedrock(config, model_name):
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (

View File

@@ -0,0 +1,39 @@
"""Error message definitions for CrewAI database operations."""
from typing import Optional
class DatabaseOperationError(Exception):
"""Base exception class for database operation errors."""
def __init__(self, message: str, original_error: Optional[Exception] = None):
"""Initialize the database operation error.
Args:
message: The error message to display
original_error: The original exception that caused this error, if any
"""
super().__init__(message)
self.original_error = original_error
class DatabaseError:
"""Standardized error message templates for database operations."""
INIT_ERROR: str = "Database initialization error: {}"
SAVE_ERROR: str = "Error saving task outputs: {}"
UPDATE_ERROR: str = "Error updating task outputs: {}"
LOAD_ERROR: str = "Error loading task outputs: {}"
DELETE_ERROR: str = "Error deleting task outputs: {}"
@classmethod
def format_error(cls, template: str, error: Exception) -> str:
"""Format an error message with the given template and error.
Args:
template: The error message template to use
error: The exception to format into the template
Returns:
The formatted error message
"""
return template.format(str(error))

View File

@@ -11,12 +11,10 @@ class InternalInstructor:
model: Type,
agent: Optional[Any] = None,
llm: Optional[str] = None,
instructions: Optional[str] = None,
):
self.content = content
self.agent = agent
self.llm = llm
self.instructions = instructions
self.model = model
self._client = None
self.set_instructor()
@@ -31,10 +29,7 @@ class InternalInstructor:
import instructor
from litellm import completion
self._client = instructor.from_litellm(
completion,
mode=instructor.Mode.TOOLS,
)
self._client = instructor.from_litellm(completion)
def to_json(self):
model = self.to_pydantic()
@@ -42,8 +37,6 @@ class InternalInstructor:
def to_pydantic(self):
messages = [{"role": "user", "content": self.content}]
if self.instructions:
messages.append({"role": "system", "content": self.instructions})
model = self._client.chat.completions.create(
model=self.llm.model, response_model=self.model, messages=messages
)

View File

@@ -0,0 +1,185 @@
import os
from typing import Any, Dict, List, Optional, Union
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
from crewai.llm import LLM
def create_llm(
llm_value: Union[str, LLM, Any, None] = None,
) -> Optional[LLM]:
"""
Creates or returns an LLM instance based on the given llm_value.
Args:
llm_value (str | LLM | Any | None):
- str: The model name (e.g., "gpt-4").
- LLM: Already instantiated LLM, returned as-is.
- Any: Attempt to extract known attributes like model_name, temperature, etc.
- None: Use environment-based or fallback default model.
Returns:
An LLM instance if successful, or None if something fails.
"""
# 1) If llm_value is already an LLM object, return it directly
if isinstance(llm_value, LLM):
print("LLM value is already an LLM object")
return llm_value
# 2) If llm_value is a string (model name)
if isinstance(llm_value, str):
print("LLM value is a string")
try:
created_llm = LLM(model=llm_value)
return created_llm
except Exception as e:
print(f"Failed to instantiate LLM with model='{llm_value}': {e}")
return None
# 3) If llm_value is None, parse environment variables or use default
if llm_value is None:
print("LLM value is None")
return _llm_via_environment_or_fallback()
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
try:
print("LLM value is an unknown object")
# Extract attributes with explicit types
model = (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
)
temperature: Optional[float] = getattr(llm_value, "temperature", None)
max_tokens: Optional[int] = getattr(llm_value, "max_tokens", None)
logprobs: Optional[int] = getattr(llm_value, "logprobs", None)
timeout: Optional[float] = getattr(llm_value, "timeout", None)
api_key: Optional[str] = getattr(llm_value, "api_key", None)
base_url: Optional[str] = getattr(llm_value, "base_url", None)
created_llm = LLM(
model=model,
temperature=temperature,
max_tokens=max_tokens,
logprobs=logprobs,
timeout=timeout,
api_key=api_key,
base_url=base_url,
)
return created_llm
except Exception as e:
print(f"Error instantiating LLM from unknown object type: {e}")
return None
def _llm_via_environment_or_fallback() -> Optional[LLM]:
"""
Helper function: if llm_value is None, we load environment variables or fallback default model.
"""
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or DEFAULT_LLM_MODEL
)
# Initialize parameters with correct types
model: str = model_name
temperature: Optional[float] = None
max_tokens: Optional[int] = None
max_completion_tokens: Optional[int] = None
logprobs: Optional[int] = None
timeout: Optional[float] = None
api_key: Optional[str] = None
base_url: Optional[str] = None
api_version: Optional[str] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
logit_bias: Optional[Dict[int, float]] = None
response_format: Optional[Dict[str, Any]] = None
seed: Optional[int] = None
top_logprobs: Optional[int] = None
callbacks: List[Any] = []
# Optional base URL from env
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get("OPENAI_BASE_URL")
if api_base:
base_url = api_base
# Initialize llm_params dictionary
llm_params: Dict[str, Any] = {
"model": model,
"temperature": temperature,
"max_tokens": max_tokens,
"max_completion_tokens": max_completion_tokens,
"logprobs": logprobs,
"timeout": timeout,
"api_key": api_key,
"base_url": base_url,
"api_version": api_version,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"top_p": top_p,
"n": n,
"stop": stop,
"logit_bias": logit_bias,
"response_format": response_format,
"seed": seed,
"top_logprobs": top_logprobs,
"callbacks": callbacks,
}
UNACCEPTED_ATTRIBUTES = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
if set_provider in ENV_VARS:
env_vars_for_provider = ENV_VARS[set_provider]
if isinstance(env_vars_for_provider, (list, tuple)):
for env_var in env_vars_for_provider:
key_name = env_var.get("key_name")
if key_name and key_name not in UNACCEPTED_ATTRIBUTES:
env_value = os.environ.get(key_name)
if env_value:
# Map environment variable names to recognized parameters
param_key = _normalize_key_name(key_name.lower())
llm_params[param_key] = env_value
elif isinstance(env_var, dict):
if env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
llm_params[key.lower()] = value
else:
print(
f"Expected env_var to be a dictionary, but got {type(env_var)}"
)
# Remove None values
llm_params = {k: v for k, v in llm_params.items() if v is not None}
# Try creating the LLM
try:
new_llm = LLM(**llm_params)
return new_llm
except Exception as e:
print(
f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}"
)
return None
def _normalize_key_name(key_name: str) -> str:
"""
Maps environment variable names to recognized litellm parameter keys,
using patterns from LITELLM_PARAMS.
"""
for pattern in LITELLM_PARAMS:
if pattern in key_name:
return pattern
return key_name

View File

@@ -5,14 +5,18 @@ import appdirs
"""Path management utilities for CrewAI storage and configuration."""
def db_storage_path():
"""Returns the path for database storage."""
def db_storage_path() -> str:
"""Returns the path for SQLite database storage.
Returns:
str: Full path to the SQLite database file
"""
app_name = get_project_directory_name()
app_author = "CrewAI"
data_dir = Path(appdirs.user_data_dir(app_name, app_author))
data_dir.mkdir(parents=True, exist_ok=True)
return data_dir
return str(data_dir)
def get_project_directory_name():
@@ -24,4 +28,4 @@ def get_project_directory_name():
else:
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name
return project_directory_name

View File

@@ -21,6 +21,16 @@ class Printer:
self._print_yellow(content)
elif color == "bold_yellow":
self._print_bold_yellow(content)
elif color == "cyan":
self._print_cyan(content)
elif color == "bold_cyan":
self._print_bold_cyan(content)
elif color == "magenta":
self._print_magenta(content)
elif color == "bold_magenta":
self._print_bold_magenta(content)
elif color == "green":
self._print_green(content)
else:
print(content)
@@ -44,3 +54,18 @@ class Printer:
def _print_bold_yellow(self, content):
print("\033[1m\033[93m {}\033[00m".format(content))
def _print_cyan(self, content):
print("\033[96m {}\033[00m".format(content))
def _print_bold_cyan(self, content):
print("\033[1m\033[96m {}\033[00m".format(content))
def _print_magenta(self, content):
print("\033[35m {}\033[00m".format(content))
def _print_bold_magenta(self, content):
print("\033[1m\033[35m {}\033[00m".format(content))
def _print_green(self, content):
print("\033[32m {}\033[00m".format(content))

View File

@@ -1,4 +1,4 @@
from typing import Type, Union, get_args, get_origin
from typing import Dict, List, Type, Union, get_args, get_origin
from pydantic import BaseModel
@@ -10,40 +10,83 @@ class PydanticSchemaParser(BaseModel):
"""
Public method to get the schema of a Pydantic model.
:param model: The Pydantic model class to generate schema for.
:return: String representation of the model schema.
"""
return self._get_model_schema(self.model)
return "{\n" + self._get_model_schema(self.model) + "\n}"
def _get_model_schema(self, model, depth=0) -> str:
indent = " " * depth
lines = [f"{indent}{{"]
for field_name, field in model.model_fields.items():
field_type_str = self._get_field_type(field, depth + 1)
lines.append(f"{indent} {field_name}: {field_type_str},")
lines[-1] = lines[-1].rstrip(",") # Remove trailing comma from last item
lines.append(f"{indent}}}")
return "\n".join(lines)
def _get_model_schema(self, model: Type[BaseModel], depth: int = 0) -> str:
indent = " " * 4 * depth
lines = [
f"{indent} {field_name}: {self._get_field_type(field, depth + 1)}"
for field_name, field in model.model_fields.items()
]
return ",\n".join(lines)
def _get_field_type(self, field, depth) -> str:
def _get_field_type(self, field, depth: int) -> str:
field_type = field.annotation
if get_origin(field_type) is list:
origin = get_origin(field_type)
if origin in {list, List}:
list_item_type = get_args(field_type)[0]
if isinstance(list_item_type, type) and issubclass(
list_item_type, BaseModel
):
nested_schema = self._get_model_schema(list_item_type, depth + 1)
return f"List[\n{nested_schema}\n{' ' * 4 * depth}]"
return self._format_list_type(list_item_type, depth)
if origin in {dict, Dict}:
key_type, value_type = get_args(field_type)
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
if origin is Union:
return self._format_union_type(field_type, depth)
if isinstance(field_type, type) and issubclass(field_type, BaseModel):
nested_schema = self._get_model_schema(field_type, depth)
nested_indent = " " * 4 * depth
return f"{field_type.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
return field_type.__name__
def _format_list_type(self, list_item_type, depth: int) -> str:
if isinstance(list_item_type, type) and issubclass(list_item_type, BaseModel):
nested_schema = self._get_model_schema(list_item_type, depth + 1)
nested_indent = " " * 4 * (depth)
return f"List[\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}\n{nested_indent}]"
return f"List[{list_item_type.__name__}]"
def _format_union_type(self, field_type, depth: int) -> str:
args = get_args(field_type)
if type(None) in args:
# It's an Optional type
non_none_args = [arg for arg in args if arg is not type(None)]
if len(non_none_args) == 1:
inner_type = self._get_field_type_for_annotation(
non_none_args[0], depth
)
return f"Optional[{inner_type}]"
else:
return f"List[{list_item_type.__name__}]"
elif get_origin(field_type) is Union:
union_args = get_args(field_type)
if type(None) in union_args:
non_none_type = next(arg for arg in union_args if arg is not type(None))
return f"Optional[{self._get_field_type(field.__class__(annotation=non_none_type), depth)}]"
else:
return f"Union[{', '.join(arg.__name__ for arg in union_args)}]"
elif isinstance(field_type, type) and issubclass(field_type, BaseModel):
return self._get_model_schema(field_type, depth)
# Union with None and multiple other types
inner_types = ", ".join(
self._get_field_type_for_annotation(arg, depth)
for arg in non_none_args
)
return f"Optional[Union[{inner_types}]]"
else:
return getattr(field_type, "__name__", str(field_type))
# General Union type
inner_types = ", ".join(
self._get_field_type_for_annotation(arg, depth) for arg in args
)
return f"Union[{inner_types}]"
def _get_field_type_for_annotation(self, annotation, depth: int) -> str:
origin = get_origin(annotation)
if origin in {list, List}:
list_item_type = get_args(annotation)[0]
return self._format_list_type(list_item_type, depth)
if origin in {dict, Dict}:
key_type, value_type = get_args(annotation)
return f"Dict[{key_type.__name__}, {value_type.__name__}]"
if origin is Union:
return self._format_union_type(annotation, depth)
if isinstance(annotation, type) and issubclass(annotation, BaseModel):
nested_schema = self._get_model_schema(annotation, depth)
nested_indent = " " * 4 * depth
return f"{annotation.__name__}\n{nested_indent}{{\n{nested_schema}\n{nested_indent}}}"
return annotation.__name__

View File

@@ -8,8 +8,10 @@ from crewai.utilities.logger import Logger
"""Controls request rate limiting for API calls."""
class RPMController(BaseModel):
"""Manages requests per minute limiting."""
max_rpm: Optional[int] = Field(default=None)
logger: Logger = Field(default_factory=lambda: Logger(verbose=False))
_current_rpm: int = PrivateAttr(default=0)

View File

@@ -1,4 +1,5 @@
import warnings
from typing import Any, Dict, Optional
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
@@ -7,20 +8,30 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
class TokenCalcHandler(CustomLogger):
def __init__(self, token_cost_process: TokenProcess):
def __init__(self, token_cost_process: Optional[TokenProcess]):
self.token_cost_process = token_cost_process
def log_success_event(self, kwargs, response_obj, start_time, end_time):
def log_success_event(
self,
kwargs: Dict[str, Any],
response_obj: Dict[str, Any],
start_time: float,
end_time: float,
) -> None:
if self.token_cost_process is None:
return
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
usage: Usage = response_obj["usage"]
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)
if isinstance(response_obj, dict) and "usage" in response_obj:
usage: Usage = response_obj["usage"]
if usage:
self.token_cost_process.sum_successful_requests(1)
if hasattr(usage, "prompt_tokens"):
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
if hasattr(usage, "completion_tokens"):
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)

View File

@@ -114,35 +114,6 @@ def test_custom_llm_temperature_preservation():
assert agent.llm.temperature == 0.7
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task():
from langchain_openai import ChatOpenAI
from crewai import Task
agent = Agent(
role="Math Tutor",
goal="Solve math problems accurately",
backstory="You are an experienced math tutor with a knack for explaining complex concepts simply.",
llm=ChatOpenAI(temperature=0.7, model="gpt-4o-mini"),
)
task = Task(
description="Calculate the area of a circle with radius 5 cm.",
expected_output="The calculated area of the circle in square centimeters.",
agent=agent,
)
result = agent.execute_task(task)
assert result is not None
assert (
result
== "The calculated area of the circle is approximately 78.5 square centimeters."
)
assert "square centimeters" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution():
agent = Agent(
@@ -565,7 +536,7 @@ def test_agent_moved_on_after_max_iterations():
task=task,
tools=[get_final_answer],
)
assert output == "The final answer is 42."
assert output == "42"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -574,7 +545,6 @@ def test_agent_respect_the_max_rpm_set(capsys):
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="test role",
@@ -641,15 +611,14 @@ def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
def test_agent_without_max_rpm_respects_crew_rpm(capsys):
from unittest.mock import patch
from crewai.tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
"""Get the final answer but don't give it yet, just re-use this tool non-stop."""
return 42
agent1 = Agent(
@@ -666,23 +635,30 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
role="test role2",
goal="test goal2",
backstory="test backstory2",
max_iter=1,
max_iter=5,
verbose=True,
allow_delegation=False,
)
tasks = [
Task(
description="Just say hi.", agent=agent1, expected_output="Your greeting."
description="Just say hi.",
agent=agent1,
expected_output="Your greeting.",
),
Task(
description="NEVER give a Final Answer, unless you are told otherwise, instead keep using the `get_final_answer` tool non-stop, until you must give you best final answer",
description=(
"NEVER give a Final Answer, unless you are told otherwise, "
"instead keep using the `get_final_answer` tool non-stop, "
"until you must give your best final answer"
),
expected_output="The final answer",
tools=[get_final_answer],
agent=agent2,
),
]
# Set crew's max_rpm to 1 to trigger RPM limit
crew = Crew(agents=[agent1, agent2], tasks=tasks, max_rpm=1, verbose=True)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
@@ -1490,7 +1466,7 @@ def test_agent_execute_task_basic():
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
llm="gpt-4o-mini",
)
task = Task(

View File

@@ -2,22 +2,22 @@ interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool.\n\nThis is the expect criteria for your final
answer: The final answer\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"]}'
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool.\n\nThis
is the expect criteria for your final answer: The final answer\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
@@ -26,16 +26,15 @@ interactions:
connection:
- keep-alive
content-length:
- '1417'
- '1377'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- _cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -45,30 +44,35 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7NCE9qkjnVxfeWuK9NjyCdymuXJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213314,\n \"model\": \"gpt-4o-2024-05-13\",\n
content: "{\n \"id\": \"chatcmpl-An9sn6yimejzB3twOt8E2VAj4Bfmm\",\n \"object\":
\"chat.completion\",\n \"created\": 1736279425,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to use the `get_final_answer`
tool as instructed.\\n\\nAction: get_final_answer\\nAction Input: {}\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 291,\n \"completion_tokens\":
26,\n \"total_tokens\": 317,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
tool to fulfill the current task requirement.\\n\\nAction: get_final_answer\\nAction
Input: {}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
273,\n \"completion_tokens\": 30,\n \"total_tokens\": 303,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85dd6b5f411cf3-GRU
- 8fe67a03ce78ed83-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -76,19 +80,27 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:28:34 GMT
- Tue, 07 Jan 2025 19:50:25 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=PsMOhP_yeSFIMA.FfRlNbisoG88z4l9NSd0zfS5UrOQ-1736279425-1.0.1.1-mdXy_XDkelJX2.9BSuZsl5IsPRGBdcHgIMc_SRz83WcmGCYUkTm1j_f892xrJbOVheWWH9ULwCQrVESupV37Sg;
path=/; expires=Tue, 07-Jan-25 20:20:25 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=EYb4UftLm_C7qM4YT78IJt46hRSubZHKnfTXhFp6ZRU-1736279425874-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '526'
- '1218'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -100,38 +112,38 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999666'
- '29999681'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ed8ca24c64cfdc2b6266c9c8438749f5
- req_779992da2a3eb4a25f0b57905c9e8e41
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool.\n\nThis is the expect criteria for your final
answer: The final answer\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"},
{"role": "assistant", "content": "Thought: I need to use the `get_final_answer`
tool as instructed.\n\nAction: get_final_answer\nAction Input: {}\nObservation:
42\nNow it''s time you MUST give your absolute best final answer. You''ll ignore
all previous instructions, stop using any tools, and just return your absolute
BEST Final answer."}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool.\n\nThis
is the expect criteria for your final answer: The final answer\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "Thought:
I need to use the `get_final_answer` tool to fulfill the current task requirement.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42\nNow it''s time you MUST
give your absolute best final answer. You''ll ignore all previous instructions,
stop using any tools, and just return your absolute BEST Final answer."}], "model":
"gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -140,16 +152,16 @@ interactions:
connection:
- keep-alive
content-length:
- '1757'
- '1743'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- _cfuvid=EYb4UftLm_C7qM4YT78IJt46hRSubZHKnfTXhFp6ZRU-1736279425874-0.0.1.1-604800000;
__cf_bm=PsMOhP_yeSFIMA.FfRlNbisoG88z4l9NSd0zfS5UrOQ-1736279425-1.0.1.1-mdXy_XDkelJX2.9BSuZsl5IsPRGBdcHgIMc_SRz83WcmGCYUkTm1j_f892xrJbOVheWWH9ULwCQrVESupV37Sg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -159,29 +171,34 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7NDCKCn3PlhjPvgqbywxUumo3Qt\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213315,\n \"model\": \"gpt-4o-2024-05-13\",\n
content: "{\n \"id\": \"chatcmpl-An9soTDQVS0ANTzaTZeo6lYN44ZPR\",\n \"object\":
\"chat.completion\",\n \"created\": 1736279426,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now know the final answer\\nFinal
Answer: The final answer is 42.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
358,\n \"completion_tokens\": 19,\n \"total_tokens\": 377,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
\"assistant\",\n \"content\": \"I now know the final answer.\\n\\nFinal
Answer: 42\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
344,\n \"completion_tokens\": 12,\n \"total_tokens\": 356,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85dd72daa31cf3-GRU
- 8fe67a0c4dbeed83-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -189,7 +206,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:28:36 GMT
- Tue, 07 Jan 2025 19:50:26 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -198,10 +215,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '468'
- '434'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -213,13 +232,13 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999591'
- '29999598'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3f49e6033d3b0400ea55125ca2cf4ee0
- req_1184308c5a4ed9130d397fe1645f317e
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,121 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Math Tutor. You are
an experienced math tutor with a knack for explaining complex concepts simply.\nYour
personal goal is: Solve math problems accurately\nTo give my best complete final
answer to the task use the exact following format:\n\nThought: I now can give
a great answer\nFinal Answer: Your final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!"}, {"role": "user", "content": "\nCurrent Task: Calculate
the area of a circle with radius 5 cm.\n\nThis is the expect criteria for your
final answer: The calculated area of the circle in square centimeters.\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "temperature":
0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '969'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7LEfa5gX4cncpI4avsK0CJG8pCb\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213192,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer\\n\\nTo
calculate the area of a circle, we use the formula:\\n\\n\\\\[ A = \\\\pi r^2
\\\\]\\n\\nwhere \\\\( A \\\\) is the area, \\\\( \\\\pi \\\\) (approximately
3.14), and \\\\( r \\\\) is the radius of the circle.\\n\\nGiven that the radius
\\\\( r \\\\) is 5 cm, we can substitute this value into the formula:\\n\\n\\\\[
A = \\\\pi (5 \\\\, \\\\text{cm})^2 \\\\]\\n\\nCalculating this step-by-step:\\n\\n1.
First, square the radius:\\n \\\\[ (5 \\\\, \\\\text{cm})^2 = 25 \\\\, \\\\text{cm}^2
\\\\]\\n\\n2. Then, multiply by \\\\( \\\\pi \\\\):\\n \\\\[ A = \\\\pi \\\\times
25 \\\\, \\\\text{cm}^2 \\\\]\\n\\nUsing the approximate value of \\\\( \\\\pi
\\\\):\\n \\\\[ A \\\\approx 3.14 \\\\times 25 \\\\, \\\\text{cm}^2 \\\\]\\n
\ \\\\[ A \\\\approx 78.5 \\\\, \\\\text{cm}^2 \\\\]\\n\\nThus, the area of
the circle is approximately 78.5 square centimeters.\\n\\nFinal Answer: The
calculated area of the circle is approximately 78.5 square centimeters.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 182,\n \"completion_tokens\":
270,\n \"total_tokens\": 452,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_1bb46167f9\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85da71fcac1cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:26:34 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
path=/; expires=Tue, 24-Sep-24 21:56:34 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2244'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999774'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2e565b5f24c38968e4e923a47ecc6233
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -2,14 +2,15 @@ interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Calculate 2 + 2\n\nThis
is the expect criteria for your final answer: The result of the calculation\nyou
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Calculate 2 +
2\n\nThis is the expect criteria for your final answer: The result of the calculation\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-3.5-turbo"}'
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
@@ -18,16 +19,13 @@ interactions:
connection:
- keep-alive
content-length:
- '797'
- '833'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
@@ -37,29 +35,35 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WSAKkoU8Nfy5KZwYNlMSpoaSeY\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213888,\n \"model\": \"gpt-3.5-turbo-0125\",\n
content: "{\n \"id\": \"chatcmpl-AoJqi2nPubKHXLut6gkvISe0PizvR\",\n \"object\":
\"chat.completion\",\n \"created\": 1736556064,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer\\n\\nFinal
Answer: 2 + 2 = 4\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
159,\n \"completion_tokens\": 19,\n \"total_tokens\": 178,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": null\n}\n"
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: The result of the calculation 2 + 2 is 4.\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 161,\n \"completion_tokens\":
25,\n \"total_tokens\": 186,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb70a9401cf3-GRU
- 9000dbe81c55bf7f-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -67,37 +71,45 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:08 GMT
- Sat, 11 Jan 2025 00:41:05 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=LCNQO7gfz6xDjDqEOZ7ha3jDwPnDlsjsmJyScVf4UUw-1736556065-1.0.1.1-2ZcyBDpLvmxy7UOdCrLd6falFapRDuAu6WcVrlOXN0QIgZiDVYD0bCFWGCKeeE.6UjPHoPY6QdlEZZx8.0Pggw;
path=/; expires=Sat, 11-Jan-25 01:11:05 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=cRATWhxkeoeSGFg3z7_5BrHO3JDsmDX2Ior2i7bNF4M-1736556065175-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '489'
- '1060'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
- '30000'
x-ratelimit-limit-tokens:
- '50000000'
- '150000000'
x-ratelimit-remaining-requests:
- '9999'
- '29999'
x-ratelimit-remaining-tokens:
- '49999813'
- '149999810'
x-ratelimit-reset-requests:
- 6ms
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_66c2e9625c005de2d6ffcec951018ec9
- req_463fbd324e01320dc253008f919713bd
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -2,44 +2,457 @@ interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### System:\nYou are test role. test
backstory\nYour personal goal is: test goal\nTo give my best complete final
answer to the task use the exact following format:\n\nThought: I now can give
a great answer\nFinal Answer: Your final answer must be the great and the most
complete as possible, it must be outcome described.\n\nI MUST use these formats,
my job depends on it!\n\n### User:\n\nCurrent Task: Explain what AI is in one
sentence\n\nThis is the expect criteria for your final answer: A one-sentence
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!\n\n### User:\n\nCurrent Task: Explain what AI
is in one sentence\n\nThis is the expect criteria for your final answer: A one-sentence
explanation of AI\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:\n\n",
"options": {"stop": ["\nObservation:"]}, "stream": false}'
headers:
Accept:
accept:
- '*/*'
Accept-Encoding:
accept-encoding:
- gzip, deflate
Connection:
connection:
- keep-alive
Content-Length:
- '839'
Content-Type:
- application/json
User-Agent:
- python-requests/2.32.3
content-length:
- '849'
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/generate
response:
body:
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:05:52.24992Z","response":"Final
Answer: Artificial Intelligence (AI) refers to the development of computer
systems capable of performing tasks that typically require human intelligence,
such as learning, problem-solving, decision-making, and perception.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,2675,527,1296,3560,13,1296,93371,198,7927,4443,5915,374,25,1296,5915,198,1271,3041,856,1888,4686,1620,4320,311,279,3465,1005,279,4839,2768,3645,1473,85269,25,358,1457,649,3041,264,2294,4320,198,19918,22559,25,4718,1620,4320,2011,387,279,2294,323,279,1455,4686,439,3284,11,433,2011,387,15632,7633,382,40,28832,1005,1521,20447,11,856,2683,14117,389,433,2268,14711,2724,1473,5520,5546,25,83017,1148,15592,374,304,832,11914,271,2028,374,279,1755,13186,369,701,1620,4320,25,362,832,1355,18886,16540,315,15592,198,9514,28832,471,279,5150,4686,2262,439,279,1620,4320,11,539,264,12399,382,11382,0,1115,374,48174,3062,311,499,11,1005,279,7526,2561,323,3041,701,1888,13321,22559,11,701,2683,14117,389,433,2268,85269,1473,128009,128006,78191,128007,271,19918,22559,25,59294,22107,320,15836,8,19813,311,279,4500,315,6500,6067,13171,315,16785,9256,430,11383,1397,3823,11478,11,1778,439,6975,11,3575,99246,11,5597,28846,11,323,21063,13],"total_duration":1461909875,"load_duration":39886208,"prompt_eval_count":181,"prompt_eval_duration":701000000,"eval_count":39,"eval_duration":719000000}'
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T18:39:31.893206Z","response":"Final
Answer: Artificial Intelligence (AI) refers to the development of computer systems
that can perform tasks that typically require human intelligence, including
learning, problem-solving, decision-making, and perception.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,2675,527,1296,3560,13,1296,93371,198,7927,4443,5915,374,25,1296,5915,198,1271,3041,856,1888,4686,1620,4320,311,279,3465,6013,1701,279,4839,2768,3645,1473,85269,25,358,1457,649,3041,264,2294,4320,198,19918,22559,25,4718,1620,4320,2011,387,279,2294,323,279,1455,4686,439,3284,11,433,2011,387,15632,7633,382,40,28832,1005,1521,20447,11,856,2683,14117,389,433,2268,14711,2724,1473,5520,5546,25,83017,1148,15592,374,304,832,11914,271,2028,374,279,1755,13186,369,701,1620,4320,25,362,832,1355,18886,16540,315,15592,198,9514,28832,471,279,5150,4686,2262,439,279,1620,4320,11,539,264,12399,382,11382,0,1115,374,48174,3062,311,499,11,1005,279,7526,2561,323,3041,701,1888,13321,22559,11,701,2683,14117,389,433,2268,85269,1473,128009,128006,78191,128007,271,19918,22559,25,59294,22107,320,15836,8,19813,311,279,4500,315,6500,6067,430,649,2804,9256,430,11383,1397,3823,11478,11,2737,6975,11,3575,99246,11,5597,28846,11,323,21063,13],"total_duration":2216514375,"load_duration":38144042,"prompt_eval_count":182,"prompt_eval_duration":1415000000,"eval_count":38,"eval_duration":759000000}'
headers:
Content-Length:
- '1537'
- '1534'
Content-Type:
- application/json; charset=utf-8
Date:
- Thu, 02 Jan 2025 20:05:52 GMT
status:
code: 200
message: OK
- Fri, 10 Jan 2025 18:39:31 GMT
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 10 Jan 2025 18:39:31 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -2,22 +2,22 @@ interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool(*args:
Any, **kwargs: Any) -> Any\nTool Description: dummy_tool(query: ''string'')
- Useful for when you need to get a dummy result for a query. \nTool Arguments:
{''query'': {''title'': ''Query'', ''type'': ''string''}}\n\nUse the following
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool\nTool
Arguments: {''query'': {''description'': None, ''type'': ''str''}}\nTool Description:
Useful for when you need to get a dummy result for a query.\n\nUse the following
format:\n\nThought: you should always think about what to do\nAction: the action
to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question\n"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
question"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
to get a result for ''test query''\n\nThis is the expect criteria for your final
answer: The result from the dummy tool\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-3.5-turbo"}'
on it!\n\nThought:"}], "model": "gpt-3.5-turbo", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
@@ -26,16 +26,13 @@ interactions:
connection:
- keep-alive
content-length:
- '1385'
- '1363'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -45,32 +42,35 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WUJAvkljJUylKUDdFnV9mN0X17\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213890,\n \"model\": \"gpt-3.5-turbo-0125\",\n
content: "{\n \"id\": \"chatcmpl-AmjTkjHtNtJfKGo6wS35grXEzfoqv\",\n \"object\":
\"chat.completion\",\n \"created\": 1736177928,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now need to use the dummy tool to get
a result for 'test query'.\\n\\nAction: dummy_tool\\nAction Input: {\\\"query\\\":
\\\"test query\\\"}\\nObservation: Result from the dummy tool\\n\\nThought:
I now know the final answer\\n\\nFinal Answer: Result from the dummy tool\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 295,\n \"completion_tokens\":
58,\n \"total_tokens\": 353,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": null\n}\n"
\"assistant\",\n \"content\": \"I should use the dummy tool to get a
result for the 'test query'.\\n\\nAction: dummy_tool\\nAction Input: {\\\"query\\\":
\\\"test query\\\"}\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
271,\n \"completion_tokens\": 31,\n \"total_tokens\": 302,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
null\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb7b4f961cf3-GRU
- 8fdccc13af387bb2-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -78,245 +78,23 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:11 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '585'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '50000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999668'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8916660d6db980eb28e06716389f5789
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool(*args:
Any, **kwargs: Any) -> Any\nTool Description: dummy_tool(query: ''string'')
- Useful for when you need to get a dummy result for a query. \nTool Arguments:
{''query'': {''title'': ''Query'', ''type'': ''string''}}\n\nUse the following
format:\n\nThought: you should always think about what to do\nAction: the action
to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question\n"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
to get a result for ''test query''\n\nThis is the expect criteria for your final
answer: The result from the dummy tool\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}, {"role": "user", "content": "I did it wrong. Tried to
both perform Action and give a Final Answer at the same time, I must do one
or the other"}], "model": "gpt-3.5-turbo"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1531'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WVumBpjMm6lKm9dYzm7bo2IVif\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213891,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to use the dummy_tool
to generate a result for the query 'test query'.\\n\\nAction: dummy_tool\\nAction
Input: {\\\"query\\\": \\\"test query\\\"}\\n\\nObservation: A dummy result
for the query 'test query'.\\n\\nThought: I now know the final answer\\n\\nFinal
Answer: A dummy result for the query 'test query'.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 326,\n \"completion_tokens\":
70,\n \"total_tokens\": 396,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": null\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb84ccba1cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:12 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1356'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '50000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999639'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_69152ef136c5823858be1d75cafd7d54
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool(*args:
Any, **kwargs: Any) -> Any\nTool Description: dummy_tool(query: ''string'')
- Useful for when you need to get a dummy result for a query. \nTool Arguments:
{''query'': {''title'': ''Query'', ''type'': ''string''}}\n\nUse the following
format:\n\nThought: you should always think about what to do\nAction: the action
to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question\n"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
to get a result for ''test query''\n\nThis is the expect criteria for your final
answer: The result from the dummy tool\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}, {"role": "user", "content": "I did it wrong. Tried to
both perform Action and give a Final Answer at the same time, I must do one
or the other"}, {"role": "user", "content": "I did it wrong. Tried to both perform
Action and give a Final Answer at the same time, I must do one or the other"}],
"model": "gpt-3.5-turbo"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1677'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WXrUKc139TroLpiu5eTSwlhaOI\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213893,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to use the dummy tool
to get a result for 'test query'.\\n\\nAction: \\nAction: dummy_tool\\nAction
Input: {\\\"query\\\": \\\"test query\\\"}\\n\\nObservation: Result from the
dummy tool.\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
357,\n \"completion_tokens\": 45,\n \"total_tokens\": 402,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": null\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb8f1c701cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:13 GMT
- Mon, 06 Jan 2025 15:38:48 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=PdbRW9vzO7559czIqn0xmXQjbN8_vV_J7k1DlkB4d_Y-1736177928-1.0.1.1-7yNcyljwqHI.TVflr9ZnkS705G.K5hgPbHpxRzcO3ZMFi5lHCBPs_KB5pFE043wYzPmDIHpn6fu6jIY9mlNoLQ;
path=/; expires=Mon, 06-Jan-25 16:08:48 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=lOOz0FbrrPaRb4IFEeHNcj7QghHzxI1tTV2N0jD9icA-1736177928767-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
@@ -332,53 +110,36 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999611'
- '49999686'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_afbc43100994c16954c17156d5b82d72
- req_5b3e93f5d4e6ab8feef83dc26b6eb623
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool(*args:
Any, **kwargs: Any) -> Any\nTool Description: dummy_tool(query: ''string'')
- Useful for when you need to get a dummy result for a query. \nTool Arguments:
{''query'': {''title'': ''Query'', ''type'': ''string''}}\n\nUse the following
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool\nTool
Arguments: {''query'': {''description'': None, ''type'': ''str''}}\nTool Description:
Useful for when you need to get a dummy result for a query.\n\nUse the following
format:\n\nThought: you should always think about what to do\nAction: the action
to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question\n"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
question"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
to get a result for ''test query''\n\nThis is the expect criteria for your final
answer: The result from the dummy tool\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}, {"role": "user", "content": "I did it wrong. Tried to
both perform Action and give a Final Answer at the same time, I must do one
or the other"}, {"role": "user", "content": "I did it wrong. Tried to both perform
Action and give a Final Answer at the same time, I must do one or the other"},
{"role": "assistant", "content": "Thought: I need to use the dummy tool to get
a result for ''test query''.\n\nAction: \nAction: dummy_tool\nAction Input:
{\"query\": \"test query\"}\n\nObservation: Result from the dummy tool.\nObservation:
I encountered an error: Action ''Action: dummy_tool'' don''t exist, these are
the only available Actions:\nTool Name: dummy_tool(*args: Any, **kwargs: Any)
-> Any\nTool Description: dummy_tool(query: ''string'') - Useful for when you
need to get a dummy result for a query. \nTool Arguments: {''query'': {''title'':
''Query'', ''type'': ''string''}}\nMoving on then. I MUST either use a tool
(use one at time) OR give my best final answer not both at the same time. To
Use the following format:\n\nThought: you should always think about what to
do\nAction: the action to take, should be one of [dummy_tool]\nAction Input:
the input to the action, dictionary enclosed in curly braces\nObservation: the
result of the action\n... (this Thought/Action/Action Input/Result can repeat
N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer
must be the great and the most complete as possible, it must be outcome described\n\n
"}], "model": "gpt-3.5-turbo"}'
on it!\n\nThought:"}, {"role": "assistant", "content": "I should use the dummy
tool to get a result for the ''test query''.\n\nAction: dummy_tool\nAction Input:
{\"query\": \"test query\"}\nObservation: Dummy result for: test query"}], "model":
"gpt-3.5-turbo", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -387,16 +148,16 @@ interactions:
connection:
- keep-alive
content-length:
- '2852'
- '1574'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=PdbRW9vzO7559czIqn0xmXQjbN8_vV_J7k1DlkB4d_Y-1736177928-1.0.1.1-7yNcyljwqHI.TVflr9ZnkS705G.K5hgPbHpxRzcO3ZMFi5lHCBPs_KB5pFE043wYzPmDIHpn6fu6jIY9mlNoLQ;
_cfuvid=lOOz0FbrrPaRb4IFEeHNcj7QghHzxI1tTV2N0jD9icA-1736177928767-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -406,162 +167,34 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WYIfj6686sT8HJdwJDcdaEcJb3\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213894,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to use the dummy tool
to get a result for 'test query'.\\n\\nAction: dummy_tool\\nAction Input: {\\\"query\\\":
\\\"test query\\\"}\\n\\nObservation: Result from the dummy tool.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 629,\n \"completion_tokens\":
42,\n \"total_tokens\": 671,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": null\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb943bca1cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:14 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '654'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '50000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999332'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_005a34569e834bf029582d141f16a419
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: dummy_tool(*args:
Any, **kwargs: Any) -> Any\nTool Description: dummy_tool(query: ''string'')
- Useful for when you need to get a dummy result for a query. \nTool Arguments:
{''query'': {''title'': ''Query'', ''type'': ''string''}}\n\nUse the following
format:\n\nThought: you should always think about what to do\nAction: the action
to take, only one name of [dummy_tool], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question\n"}, {"role": "user", "content": "\nCurrent Task: Use the dummy tool
to get a result for ''test query''\n\nThis is the expect criteria for your final
answer: The result from the dummy tool\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}, {"role": "user", "content": "I did it wrong. Tried to
both perform Action and give a Final Answer at the same time, I must do one
or the other"}, {"role": "user", "content": "I did it wrong. Tried to both perform
Action and give a Final Answer at the same time, I must do one or the other"},
{"role": "assistant", "content": "Thought: I need to use the dummy tool to get
a result for ''test query''.\n\nAction: \nAction: dummy_tool\nAction Input:
{\"query\": \"test query\"}\n\nObservation: Result from the dummy tool.\nObservation:
I encountered an error: Action ''Action: dummy_tool'' don''t exist, these are
the only available Actions:\nTool Name: dummy_tool(*args: Any, **kwargs: Any)
-> Any\nTool Description: dummy_tool(query: ''string'') - Useful for when you
need to get a dummy result for a query. \nTool Arguments: {''query'': {''title'':
''Query'', ''type'': ''string''}}\nMoving on then. I MUST either use a tool
(use one at time) OR give my best final answer not both at the same time. To
Use the following format:\n\nThought: you should always think about what to
do\nAction: the action to take, should be one of [dummy_tool]\nAction Input:
the input to the action, dictionary enclosed in curly braces\nObservation: the
result of the action\n... (this Thought/Action/Action Input/Result can repeat
N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer
must be the great and the most complete as possible, it must be outcome described\n\n
"}, {"role": "assistant", "content": "Thought: I need to use the dummy tool
to get a result for ''test query''.\n\nAction: dummy_tool\nAction Input: {\"query\":
\"test query\"}\n\nObservation: Result from the dummy tool.\nObservation: Dummy
result for: test query"}], "model": "gpt-3.5-turbo"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '3113'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7WZFqqZYUEyJrmbLJJEcylBQAwb\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213895,\n \"model\": \"gpt-3.5-turbo-0125\",\n
content: "{\n \"id\": \"chatcmpl-AmjTkjtDnt98YQ3k4y71C523EQM9p\",\n \"object\":
\"chat.completion\",\n \"created\": 1736177928,\n \"model\": \"gpt-3.5-turbo-0125\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Final Answer: Dummy result for: test
query\",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 684,\n \"completion_tokens\":
9,\n \"total_tokens\": 693,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": null\n}\n"
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 315,\n \"completion_tokens\":
9,\n \"total_tokens\": 324,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
null\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85eb9aee421cf3-GRU
- 8fdccc171b647bb2-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -569,7 +202,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:38:15 GMT
- Mon, 06 Jan 2025 15:38:49 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -578,10 +211,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '297'
- '249'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -593,13 +228,13 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999277'
- '49999643'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5da3c303ae34eb8a1090f134d409f97c
- req_cdc7b25a3877bb9a7cb7c6d2645ff447
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,87 @@
interactions:
- request:
body: !!binary |
CqcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/hYKEgoQY3Jld2FpLnRl
bGVtZXRyeRJ5ChBuJJtOdNaB05mOW/p3915eEgj2tkAd3rZcASoQVG9vbCBVc2FnZSBFcnJvcjAB
OYa7/URvKBUYQUpcFEVvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoPCgNsbG0SCAoG
Z3B0LTRvegIYAYUBAAEAABLJBwoQifhX01E5i+5laGdALAlZBBIIBuGM1aN+OPgqDENyZXcgQ3Jl
YXRlZDABORVGruBvKBUYQaipwOBvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5w
eXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogN2U2NjA4OTg5ODU5YTY3ZWVj
ODhlZWY3ZmNlODUyMjVKMQoHY3Jld19pZBImCiRiOThiNWEwMC01YTI1LTQxMDctYjQwNS1hYmYz
MjBhOGYzYThKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
SuQCCgtjcmV3X2FnZW50cxLUAgrRAlt7ImtleSI6ICIyMmFjZDYxMWU0NGVmNWZhYzA1YjUzM2Q3
NWU4ODkzYiIsICJpZCI6ICJkNWIyMzM1YS0yMmIyLTQyZWEtYmYwNS03OTc3NmU3MmYzOTIiLCAi
cm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsi
Z2V0IGdyZWV0aW5ncyJdfV1KkgIKCmNyZXdfdGFza3MSgwIKgAJbeyJrZXkiOiAiYTI3N2IzNGIy
YzE0NmYwYzU2YzVlMTM1NmU4ZjhhNTciLCAiaWQiOiAiMjJiZWMyMzEtY2QyMS00YzU4LTgyN2Ut
MDU4MWE4ZjBjMTExIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJhZ2VudF9rZXkiOiAiMjJh
Y2Q2MTFlNDRlZjVmYWMwNWI1MzNkNzVlODg5M2IiLCAidG9vbHNfbmFtZXMiOiBbImdldCBncmVl
dGluZ3MiXX1degIYAYUBAAEAABKOAgoQ5WYoxRtTyPjge4BduhL0rRIIv2U6rvWALfwqDFRhc2sg
Q3JlYXRlZDABOX068uBvKBUYQZkv8+BvKBUYSi4KCGNyZXdfa2V5EiIKIDdlNjYwODk4OTg1OWE2
N2VlYzg4ZWVmN2ZjZTg1MjI1SjEKB2NyZXdfaWQSJgokYjk4YjVhMDAtNWEyNS00MTA3LWI0MDUt
YWJmMzIwYThmM2E4Si4KCHRhc2tfa2V5EiIKIGEyNzdiMzRiMmMxNDZmMGM1NmM1ZTEzNTZlOGY4
YTU3SjEKB3Rhc2tfaWQSJgokMjJiZWMyMzEtY2QyMS00YzU4LTgyN2UtMDU4MWE4ZjBjMTExegIY
AYUBAAEAABKQAQoQXyeDtJDFnyp2Fjk9YEGTpxIIaNE7gbhPNYcqClRvb2wgVXNhZ2UwATkaXTvj
bygVGEGvx0rjbygVGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKHAoJdG9vbF9uYW1lEg8K
DUdldCBHcmVldGluZ3NKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABLVBwoQMWfznt0qwauEzl7T
UOQxRBII9q+pUS5EdLAqDENyZXcgQ3JlYXRlZDABORONPORvKBUYQSAoS+RvKBUYShoKDmNyZXdh
aV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19r
ZXkSIgogYzMwNzYwMDkzMjY3NjE0NDRkNTdjNzFkMWRhM2YyN2NKMQoHY3Jld19pZBImCiQ3OTQw
MTkyNS1iOGU5LTQ3MDgtODUzMC00NDhhZmEzYmY4YjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuoCCgtjcmV3X2FnZW50cxLaAgrXAlt7ImtleSI6ICI5
OGYzYjFkNDdjZTk2OWNmMDU3NzI3Yjc4NDE0MjVjZCIsICJpZCI6ICI5OTJkZjYyZi1kY2FiLTQy
OTUtOTIwNi05MDBkNDExNGIxZTkiLCAicm9sZSI6ICJGcmllbmRseSBOZWlnaGJvciIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsiZGVjaWRlIGdyZWV0aW5ncyJdfV1KmAIKCmNyZXdf
dGFza3MSiQIKhgJbeyJrZXkiOiAiODBkN2JjZDQ5MDk5MjkwMDgzODMyZjBlOTgzMzgwZGYiLCAi
aWQiOiAiMmZmNjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3IiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJGcmll
bmRseSBOZWlnaGJvciIsICJhZ2VudF9rZXkiOiAiOThmM2IxZDQ3Y2U5NjljZjA1NzcyN2I3ODQx
NDI1Y2QiLCAidG9vbHNfbmFtZXMiOiBbImRlY2lkZSBncmVldGluZ3MiXX1degIYAYUBAAEAABKO
AgoQnjTp5boK7/+DQxztYIpqihIIgGnMUkBtzHEqDFRhc2sgQ3JlYXRlZDABOcpYcuRvKBUYQalE
c+RvKBUYSi4KCGNyZXdfa2V5EiIKIGMzMDc2MDA5MzI2NzYxNDQ0ZDU3YzcxZDFkYTNmMjdjSjEK
B2NyZXdfaWQSJgokNzk0MDE5MjUtYjhlOS00NzA4LTg1MzAtNDQ4YWZhM2JmOGIwSi4KCHRhc2tf
a2V5EiIKIDgwZDdiY2Q0OTA5OTI5MDA4MzgzMmYwZTk4MzM4MGRmSjEKB3Rhc2tfaWQSJgokMmZm
NjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3egIYAYUBAAEAABKTAQoQ26H9pLUgswDN
p9XhJwwL6BIIx3bw7mAvPYwqClRvb2wgVXNhZ2UwATmy7NPlbygVGEEvb+HlbygVGEoaCg5jcmV3
YWlfdmVyc2lvbhIICgYwLjg2LjBKHwoJdG9vbF9uYW1lEhIKEERlY2lkZSBHcmVldGluZ3NKDgoI
YXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2986'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
@@ -22,18 +105,20 @@ interactions:
- '824'
content-type:
- application/json
cookie:
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
@@ -47,8 +132,8 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AaqIIsTxhvf75xvuu7gQScIlRSKbW\",\n \"object\":
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AjCtZLLrWi8ZASpP9bz6HaCV7xBIn\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
@@ -57,12 +142,12 @@ interactions:
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ece8cfc3b1f4532-ATL
- 8f8caa83deca756b-SEA
Connection:
- keep-alive
Content-Encoding:
@@ -70,14 +155,14 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 04 Dec 2024 20:29:50 GMT
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
path=/; expires=Wed, 04-Dec-24 20:59:50 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw;
path=/; expires=Fri, 27-Dec-24 22:44:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000;
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -90,7 +175,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '313'
- '404'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -108,7 +193,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_9fd9a8ee688045dcf7ac5f6fdf689372
- req_6ac84634bff9193743c4b0911c09b4a6
http_version: HTTP/1.1
status_code: 200
- request:
@@ -131,20 +216,20 @@ interactions:
content-type:
- application/json
cookie:
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
@@ -158,8 +243,8 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AaqIIaQlLyoyPmk909PvAIfA2TmJL\",\n \"object\":
\"chat.completion\",\n \"created\": 1733344190,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AjCtZNlWdrrPZhq0MJDqd16sMuQEJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"True\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
@@ -168,12 +253,12 @@ interactions:
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ece8d060b5e4532-ATL
- 8f8caa87094f756b-SEA
Connection:
- keep-alive
Content-Encoding:
@@ -181,7 +266,7 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 04 Dec 2024 20:29:50 GMT
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -195,7 +280,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '375'
- '156'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -213,7 +298,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_be7cb475e0859a82c37ee3f2871ea5ea
- req_ec74bef2a9ef7b2144c03fd7f7bbeab0
http_version: HTTP/1.1
status_code: 200
- request:
@@ -242,20 +327,20 @@ interactions:
content-type:
- application/json
cookie:
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
@@ -269,22 +354,23 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AaqIJAAxpVfUOdrsgYKHwfRlHv4RS\",\n \"object\":
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AjCtZGv4f3h7GDdhyOy9G0sB1lRgC\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now can give a great answer
\ \\nFinal Answer: Hello\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
188,\n \"completion_tokens\": 14,\n \"total_tokens\": 202,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
\"assistant\",\n \"content\": \"Thought: I understand the feedback and
will adjust my response accordingly. \\nFinal Answer: Hello\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 188,\n \"completion_tokens\":
18,\n \"total_tokens\": 206,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ece8d090fc34532-ATL
- 8f8caa88cac4756b-SEA
Connection:
- keep-alive
Content-Encoding:
@@ -292,7 +378,7 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 04 Dec 2024 20:29:51 GMT
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -306,7 +392,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '484'
- '358'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -324,7 +410,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5bf4a565ad6c2567a1ed204ecac89134
- req_ae1ab6b206d28ded6fee3c83ed0c2ab7
http_version: HTTP/1.1
status_code: 200
- request:
@@ -346,20 +432,20 @@ interactions:
content-type:
- application/json
cookie:
- __cf_bm=QJZZjZ6eqnVamqUkw.Bx0mj7oBi3a_vGEH1VODcUxlg-1733344190-1.0.1.1-xyN0ekA9xIrSwEhRBmTiWJ3Pt72UYLU5owKfkz5yihVmMTfsr_Qz.ssGPJ5cuft066v1xVjb4zOSTdFmesMSKg;
_cfuvid=eCIkP8GVPvpkg19eOhCquWFHm.RTQBQy4yHLGGEAH5c-1733344190334-0.0.1.1-604800000
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
@@ -373,8 +459,8 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AaqIJqyG8vl9mxj2qDPZgaxyNLLIq\",\n \"object\":
\"chat.completion\",\n \"created\": 1733344191,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AjCtaiHL4TY8Dssk0j2miqmjrzquy\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337694,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"False\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
@@ -383,12 +469,12 @@ interactions:
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ece8d0cfdeb4532-ATL
- 8f8caa8bdd26756b-SEA
Connection:
- keep-alive
Content-Encoding:
@@ -396,7 +482,7 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 04 Dec 2024 20:29:51 GMT
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -410,7 +496,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '341'
- '184'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -428,7 +514,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5554bade8ceda00cf364b76a51b708ff
- req_652891f79c1104a7a8436275d78a69f1
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -2,23 +2,23 @@ interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool over and over until you''re told you can give
your final answer.\n\nThis is the expect criteria for your final answer: The
final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o"}'
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool over
and over until you''re told you can give your final answer.\n\nThis is the expect
criteria for your final answer: The final answer\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
@@ -27,16 +27,13 @@ interactions:
connection:
- keep-alive
content-length:
- '1452'
- '1440'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -46,30 +43,285 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7NlDmtLHCfUZJCFVIKeV5KMyQfX\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213349,\n \"model\": \"gpt-4o-2024-05-13\",\n
content: "{\n \"id\": \"chatcmpl-AnAdPHapYzkPkClCzFaWzfCAUHlWI\",\n \"object\":
\"chat.completion\",\n \"created\": 1736282315,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to use the provided tool
as instructed.\\n\\nAction: get_final_answer\\nAction Input: {}\",\n \"refusal\":
\"assistant\",\n \"content\": \"I need to use the `get_final_answer`
tool and then keep using it repeatedly as instructed. \\n\\nAction: get_final_answer\\nAction
Input: {}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
285,\n \"completion_tokens\": 31,\n \"total_tokens\": 316,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fe6c096ee70ed8c-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 07 Jan 2025 20:38:36 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=hkH74Rv9bMDMhhK.Ep.9blvKIwXeSSwlCoTNGk9qVpA-1736282316-1.0.1.1-5PAsOPpVEfTNNy5DYRlLH1f4caHJArumiloWf.L51RQPWN3uIWsBSuhLVbNQDYVCQb9RQK8W5DcXv5Jq9FvsLA;
path=/; expires=Tue, 07-Jan-25 21:08:36 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=vqZ5X0AXIJfzp5UJSFyTmaCVjA.L8Yg35b.ijZFAPM4-1736282316289-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '883'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999665'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_00de12bc6822ef095f4f368aae873f31
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool over
and over until you''re told you can give your final answer.\n\nThis is the expect
criteria for your final answer: The final answer\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I need to
use the `get_final_answer` tool and then keep using it repeatedly as instructed.
\n\nAction: get_final_answer\nAction Input: {}\nObservation: 42"}], "model":
"gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1632'
content-type:
- application/json
cookie:
- __cf_bm=hkH74Rv9bMDMhhK.Ep.9blvKIwXeSSwlCoTNGk9qVpA-1736282316-1.0.1.1-5PAsOPpVEfTNNy5DYRlLH1f4caHJArumiloWf.L51RQPWN3uIWsBSuhLVbNQDYVCQb9RQK8W5DcXv5Jq9FvsLA;
_cfuvid=vqZ5X0AXIJfzp5UJSFyTmaCVjA.L8Yg35b.ijZFAPM4-1736282316289-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnAdQKGW3Q8LUCmphL7hkavxi4zWB\",\n \"object\":
\"chat.completion\",\n \"created\": 1736282316,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I should continue using the `get_final_answer`
tool as per the instructions.\\n\\nAction: get_final_answer\\nAction Input:
{}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 324,\n \"completion_tokens\":
26,\n \"total_tokens\": 350,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fe6c09e6c69ed8c-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 07 Jan 2025 20:38:37 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '542'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999627'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_6844467024f67bb1477445b1a8a01761
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool over
and over until you''re told you can give your final answer.\n\nThis is the expect
criteria for your final answer: The final answer\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I need to
use the `get_final_answer` tool and then keep using it repeatedly as instructed.
\n\nAction: get_final_answer\nAction Input: {}\nObservation: 42"}, {"role":
"assistant", "content": "I should continue using the `get_final_answer` tool
as per the instructions.\n\nAction: get_final_answer\nAction Input: {}\nObservation:
I tried reusing the same input, I must stop using this action input. I''ll try
something else instead."}], "model": "gpt-4o", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1908'
content-type:
- application/json
cookie:
- __cf_bm=hkH74Rv9bMDMhhK.Ep.9blvKIwXeSSwlCoTNGk9qVpA-1736282316-1.0.1.1-5PAsOPpVEfTNNy5DYRlLH1f4caHJArumiloWf.L51RQPWN3uIWsBSuhLVbNQDYVCQb9RQK8W5DcXv5Jq9FvsLA;
_cfuvid=vqZ5X0AXIJfzp5UJSFyTmaCVjA.L8Yg35b.ijZFAPM4-1736282316289-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnAdR2lKFEVaDbfD9qaF0Tts0eVMt\",\n \"object\":
\"chat.completion\",\n \"created\": 1736282317,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I should persist with using the `get_final_answer`
tool.\\n\\nAction: get_final_answer\\nAction Input: {}\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 303,\n \"completion_tokens\":
22,\n \"total_tokens\": 325,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 378,\n \"completion_tokens\":
23,\n \"total_tokens\": 401,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85de473ae11cf3-GRU
- 8fe6c0a2ce3ded8c-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -77,7 +329,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:29:10 GMT
- Tue, 07 Jan 2025 20:38:37 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -86,10 +338,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '489'
- '492'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -101,273 +355,59 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999651'
- '29999567'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_de70a4dc416515dda4b2ad48bde52f93
- req_198e698a8bc7eea092ea32b83cc4304e
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool over and over until you''re told you can give
your final answer.\n\nThis is the expect criteria for your final answer: The
final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}, {"role":
"assistant", "content": "Thought: I need to use the provided tool as instructed.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42"}], "model": "gpt-4o"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1608'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7Nnz14hlEaTdabXodZCVU0UoDhk\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213351,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I must continue using the `get_final_answer`
tool as instructed.\\n\\nAction: get_final_answer\\nAction Input: {}\\nObservation:
42\",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 333,\n \"completion_tokens\":
30,\n \"total_tokens\": 363,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85de5109701cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:29:11 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '516'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999620'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5365ac0e5413bd9330c6ac3f68051bcf
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool over and over until you''re told you can give
your final answer.\n\nThis is the expect criteria for your final answer: The
final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}, {"role":
"assistant", "content": "Thought: I need to use the provided tool as instructed.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42"}, {"role": "assistant",
"content": "Thought: I must continue using the `get_final_answer` tool as instructed.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42\nObservation: 42"}], "model":
"gpt-4o"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1799'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
x-stainless-raw-response:
- 'true'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7NoF5Gf597BGmOETPYGxN2eRFxd\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213352,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I must continue using the `get_final_answer`
tool to meet the requirements.\\n\\nAction: get_final_answer\\nAction Input:
{}\\nObservation: 42\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
372,\n \"completion_tokens\": 32,\n \"total_tokens\": 404,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85de587bc01cf3-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:29:12 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '471'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999583'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_55550369b28e37f064296dbc41e0db69
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer(*args:
Any, **kwargs: Any) -> Any\nTool Description: get_final_answer() - Get the final
answer but don''t give it yet, just re-use this tool non-stop. \nTool
Arguments: {}\n\nUse the following format:\n\nThought: you should always think
about what to do\nAction: the action to take, only one name of [get_final_answer],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple python dictionary, enclosed in curly braces, using \" to wrap
keys and values.\nObservation: the result of the action\n\nOnce all necessary
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n"}, {"role": "user", "content":
"\nCurrent Task: The final answer is 42. But don''t give it yet, instead keep
using the `get_final_answer` tool over and over until you''re told you can give
your final answer.\n\nThis is the expect criteria for your final answer: The
final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}, {"role":
"assistant", "content": "Thought: I need to use the provided tool as instructed.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42"}, {"role": "assistant",
"content": "Thought: I must continue using the `get_final_answer` tool as instructed.\n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42\nObservation: 42"}, {"role":
"assistant", "content": "Thought: I must continue using the `get_final_answer`
tool to meet the requirements.\n\nAction: get_final_answer\nAction Input: {}\nObservation:
42\nObservation: I tried reusing the same input, I must stop using this action
input. I''ll try something else instead.\n\n\n\n\nYou ONLY have access to the
following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: get_final_answer(*args: Any, **kwargs: Any) -> Any\nTool Description:
get_final_answer() - Get the final answer but don''t give it yet, just re-use
this tool non-stop. \nTool Arguments: {}\n\nUse the following format:\n\nThought:
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
curly braces, using \" to wrap keys and values.\nObservation: the result of
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
know the final answer\nFinal Answer: the final answer to the original input
question"}, {"role": "user", "content": "\nCurrent Task: The final answer is
42. But don''t give it yet, instead keep using the `get_final_answer` tool over
and over until you''re told you can give your final answer.\n\nThis is the expect
criteria for your final answer: The final answer\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I need to
use the `get_final_answer` tool and then keep using it repeatedly as instructed.
\n\nAction: get_final_answer\nAction Input: {}\nObservation: 42"}, {"role":
"assistant", "content": "I should continue using the `get_final_answer` tool
as per the instructions.\n\nAction: get_final_answer\nAction Input: {}\nObservation:
I tried reusing the same input, I must stop using this action input. I''ll try
something else instead."}, {"role": "assistant", "content": "I should persist
with using the `get_final_answer` tool.\n\nAction: get_final_answer\nAction
Input: {}\nObservation: I tried reusing the same input, I must stop using this
action input. I''ll try something else instead.\n\n\n\n\nYou ONLY have access
to the following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: get_final_answer\nTool Arguments: {}\nTool Description: Get the final
answer but don''t give it yet, just re-use this\n tool non-stop.\n\nUse
the following format:\n\nThought: you should always think about what to do\nAction:
the action to take, only one name of [get_final_answer], just the name, exactly
as it''s written.\nAction Input: the input to the action, just a simple python
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question"}, {"role": "assistant", "content": "I should persist with using
the `get_final_answer` tool.\n\nAction: get_final_answer\nAction Input: {}\nObservation:
I tried reusing the same input, I must stop using this action input. I''ll try
something else instead.\n\n\n\n\nYou ONLY have access to the following tools,
and should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this\n tool non-stop.\n\nUse the following format:\n\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [get_final_answer], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple python dictionary, enclosed in
@@ -376,7 +416,8 @@ interactions:
know the final answer\nFinal Answer: the final answer to the original input
question\n\nNow it''s time you MUST give your absolute best final answer. You''ll
ignore all previous instructions, stop using any tools, and just return your
absolute BEST Final answer."}], "model": "gpt-4o"}'
absolute BEST Final answer."}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
@@ -385,16 +426,16 @@ interactions:
connection:
- keep-alive
content-length:
- '3107'
- '4148'
content-type:
- application/json
cookie:
- __cf_bm=rb61BZH2ejzD5YPmLaEJqI7km71QqyNJGTVdNxBq6qk-1727213194-1.0.1.1-pJ49onmgX9IugEMuYQMralzD7oj_6W.CHbSu4Su1z3NyjTGYg.rhgJZWng8feFYah._oSnoYlkTjpK1Wd2C9FA;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=hkH74Rv9bMDMhhK.Ep.9blvKIwXeSSwlCoTNGk9qVpA-1736282316-1.0.1.1-5PAsOPpVEfTNNy5DYRlLH1f4caHJArumiloWf.L51RQPWN3uIWsBSuhLVbNQDYVCQb9RQK8W5DcXv5Jq9FvsLA;
_cfuvid=vqZ5X0AXIJfzp5UJSFyTmaCVjA.L8Yg35b.ijZFAPM4-1736282316289-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
@@ -404,29 +445,34 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7Npl5ZliMrcSofDS1c7LVGSmmbE\",\n \"object\":
\"chat.completion\",\n \"created\": 1727213353,\n \"model\": \"gpt-4o-2024-05-13\",\n
content: "{\n \"id\": \"chatcmpl-AnAdRu1aVdsOxxIqU6nqv5dIxwbvu\",\n \"object\":
\"chat.completion\",\n \"created\": 1736282317,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now know the final answer.\\n\\nFinal
Answer: The final answer is 42.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
642,\n \"completion_tokens\": 19,\n \"total_tokens\": 661,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
\"assistant\",\n \"content\": \"Thought: I now know the final answer.\\nFinal
Answer: 42\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
831,\n \"completion_tokens\": 14,\n \"total_tokens\": 845,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85de5fad921cf3-GRU
- 8fe6c0a68cc3ed8c-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -434,7 +480,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:29:13 GMT
- Tue, 07 Jan 2025 20:38:38 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -443,10 +489,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '320'
- '429'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -458,13 +506,13 @@ interactions:
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999271'
- '29999037'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_5eba25209fc7e12717cb7e042e7bb4c2
- req_2552d63d3cbce15909481cc1fc9f36cc
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,117 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRlxiTxduAVoXHHY58Fvfbll5IS\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458417,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: This is a test task, and the context or question from the coworker is
not specified. Therefore, my best effort would be to affirm my readiness to
answer accurately and in detail any question about Futel Football Club based
on the context described. If provided with specific information or questions,
I will ensure to respond comprehensively as required by my job directives.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 177,\n \"completion_tokens\":
82,\n \"total_tokens\": 259,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78bf7bd6cc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:40 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2263'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7c1a31da73cd103e9f410f908e59187f
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRrFJZGKw8cIEshvuW1PKwFZFKs\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458423,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Although you mentioned this being a \\\"Test task\\\" and haven't provided
a specific question regarding Futel Football Club, your request appears to involve
ensuring accuracy and detail in responses. For a proper answer about Futel,
I'd be ready to provide details about the club's history, management, players,
match schedules, and recent performance statistics. Remember to ask specific
questions to receive a targeted response. If this were a real context where
information was shared, I would respond precisely to what's been asked regarding
Futel Football Club.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 113,\n \"total_tokens\": 290,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c1d0ecdc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:47 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3097'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_179e1d56e2b17303e40480baffbc7b08
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRqgg7eiHnDi2DOqdk99fiqOboz\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458422,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Your best answer to your coworker asking you this, accounting for the
context shared. You MUST return the actual complete content as the final answer,
not a summary.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 44,\n \"total_tokens\": 221,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c164ad2c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:43 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '899'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_9f5226208edb90a27987aaf7e0ca03d3
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRjmwH5mrykLxQhFwTqqTiDtuTf\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458415,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As this is a test task, please note that Futel Football Club is fictional
and any specific details about it would not be available. However, if you have
specific questions or need information about a particular aspect of Futel or
any general football club inquiry, feel free to ask, and I'll do my best to
assist you with your query!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 79,\n \"total_tokens\": 256,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78be5eebfc002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:37 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
path=/; expires=Thu, 09-Jan-25 22:03:37 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2730'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_014478ba748f860d10ac250ca0ba824a
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,119 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Futel Official Infopoint.
Futel Football Club info\nYour personal goal is: Answer questions about Futel\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Test task\n\nThis is the expect criteria for your
final answer: Your best answer to your coworker asking you this, accounting
for the context shared.\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '939'
content-type:
- application/json
cookie:
- __cf_bm=cwWdOaPJjFMNJaLtJfa8Kjqavswg5bzVRFzBX4gneGw-1736458417-1.0.1.1-bvf2HshgcMtgn7GdxqwySFDAIacGccDFfEXniBFTTDmbGMCiIIwf6t2DiwWnBldmUHixwc5kDO9gYs08g.feBA;
_cfuvid=WMw7PSqkYqQOieguBRs0uNkwNU92A.ZKbgDbCAcV3EQ-1736458417825-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnuRofLgmzWcDya5LILqYwIJYgFoq\",\n \"object\":
\"chat.completion\",\n \"created\": 1736458420,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: As an official Futel Football Club infopoint, my responsibility is to
provide detailed and accurate information about the club. This includes answering
questions regarding team statistics, player performances, upcoming fixtures,
ticketing and fan zone details, club history, and community initiatives. Our
focus is to ensure that fans and stakeholders have access to the latest and
most precise information about the club's on and off-pitch activities. If there's
anything specific you need to know, just let me know, and I'll be more than
happy to assist!\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
177,\n \"completion_tokens\": 115,\n \"total_tokens\": 292,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_703d4ff298\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ff78c066f37c002-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Thu, 09 Jan 2025 21:33:42 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2459'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999786'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a146dd27f040f39a576750970cca0f52
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,36 +1,863 @@
interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Who
which model are you?\n\n", "options": {"stop": ["\nObservation:"]}, "stream":
false}'
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Which
model are you?\n\n", "options": {"stop": ["\nObservation:"]}, "stream": false}'
headers:
Accept:
accept:
- '*/*'
Accept-Encoding:
accept-encoding:
- gzip, deflate
Connection:
connection:
- keep-alive
Content-Length:
- '156'
Content-Type:
- application/json
User-Agent:
- python-requests/2.32.3
content-length:
- '152'
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/generate
response:
body:
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:07:07.623404Z","response":"I''m
an AI designed to assist and communicate with users, utilizing a combination
of natural language processing models.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,10699,902,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,15592,6319,311,7945,323,19570,449,3932,11,35988,264,10824,315,5933,4221,8863,4211,13],"total_duration":1076617833,"load_duration":46505416,"prompt_eval_count":40,"prompt_eval_duration":626000000,"eval_count":22,"eval_duration":399000000}'
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T18:37:01.552946Z","response":"I''m
an AI designed by Meta, leveraging large language models to provide information
and assist with various tasks.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,15592,6319,555,16197,11,77582,3544,4221,4211,311,3493,2038,323,7945,449,5370,9256,13],"total_duration":2721386667,"load_duration":838784333,"prompt_eval_count":39,"prompt_eval_duration":1462000000,"eval_count":22,"eval_duration":418000000}'
headers:
Content-Length:
- '690'
- '683'
Content-Type:
- application/json; charset=utf-8
Date:
- Thu, 02 Jan 2025 20:07:07 GMT
status:
code: 200
message: OK
- Fri, 10 Jan 2025 18:37:01 GMT
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 10 Jan 2025 18:37:01 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 10 Jan 2025 18:37:01 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,353 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Just say hi.\n\nThis is
the expect criteria for your final answer: Your greeting.\nyou MUST return the
actual complete content as the final answer, not a summary.\n\nBegin! This is
VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '817'
content-type:
- application/json
cookie:
- _cfuvid=vqZ5X0AXIJfzp5UJSFyTmaCVjA.L8Yg35b.ijZFAPM4-1736282316289-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnSbv3ywhwedwS3YW9Crde6hpWpmK\",\n \"object\":
\"chat.completion\",\n \"created\": 1736351415,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hi!\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
154,\n \"completion_tokens\": 13,\n \"total_tokens\": 167,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fed579a4f76b058-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 08 Jan 2025 15:50:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=rdN2XYZhM9f2vDB8aOVGYgUHUzSuT.cP8ahngq.QTL0-1736351415-1.0.1.1-lVzOV8iFUHvbswld8xls4a8Ct38zv6Jyr.6THknDnVf3uGZMlgV6r5s10uTnHA2eIi07jJtj7vGopiOpU8qkvA;
path=/; expires=Wed, 08-Jan-25 16:20:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '416'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999817'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_97c93aa78417badc3f29306054eef79b
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role2. test backstory2\nYour
personal goal is: test goal2\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this tool non-stop.\n\nUse the following format:\n\nThought: you
should always think about what to do\nAction: the action to take, only one name
of [get_final_answer], just the name, exactly as it''s written.\nAction Input:
the input to the action, just a simple python dictionary, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce
all necessary information is gathered:\n\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question"}, {"role": "user",
"content": "\nCurrent Task: NEVER give a Final Answer, unless you are told otherwise,
instead keep using the `get_final_answer` tool non-stop, until you must give
your best final answer\n\nThis is the expect criteria for your final answer:
The final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nThis is the context you''re working with:\nHi!\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1483'
content-type:
- application/json
cookie:
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000;
__cf_bm=rdN2XYZhM9f2vDB8aOVGYgUHUzSuT.cP8ahngq.QTL0-1736351415-1.0.1.1-lVzOV8iFUHvbswld8xls4a8Ct38zv6Jyr.6THknDnVf3uGZMlgV6r5s10uTnHA2eIi07jJtj7vGopiOpU8qkvA
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnSbwn8QaqAzfBVnzhTzIcDKykYTu\",\n \"object\":
\"chat.completion\",\n \"created\": 1736351416,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I should use the available tool to get
the final answer, as per the instructions. \\n\\nAction: get_final_answer\\nAction
Input: {}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
294,\n \"completion_tokens\": 28,\n \"total_tokens\": 322,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fed579dbd80b058-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 08 Jan 2025 15:50:17 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1206'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999655'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7b85f1e9b21b5e2385d8a322a8aab06c
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role2. test backstory2\nYour
personal goal is: test goal2\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: get_final_answer\nTool
Arguments: {}\nTool Description: Get the final answer but don''t give it yet,
just re-use this tool non-stop.\n\nUse the following format:\n\nThought: you
should always think about what to do\nAction: the action to take, only one name
of [get_final_answer], just the name, exactly as it''s written.\nAction Input:
the input to the action, just a simple python dictionary, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce
all necessary information is gathered:\n\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question"}, {"role": "user",
"content": "\nCurrent Task: NEVER give a Final Answer, unless you are told otherwise,
instead keep using the `get_final_answer` tool non-stop, until you must give
your best final answer\n\nThis is the expect criteria for your final answer:
The final answer\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nThis is the context you''re working with:\nHi!\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I should
use the available tool to get the final answer, as per the instructions. \n\nAction:
get_final_answer\nAction Input: {}\nObservation: 42"}], "model": "gpt-4o", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1666'
content-type:
- application/json
cookie:
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000;
__cf_bm=rdN2XYZhM9f2vDB8aOVGYgUHUzSuT.cP8ahngq.QTL0-1736351415-1.0.1.1-lVzOV8iFUHvbswld8xls4a8Ct38zv6Jyr.6THknDnVf3uGZMlgV6r5s10uTnHA2eIi07jJtj7vGopiOpU8qkvA
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AnSbxXFL4NXuGjOX35eCjcWq456lA\",\n \"object\":
\"chat.completion\",\n \"created\": 1736351417,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now know the final answer\\nFinal
Answer: 42\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
330,\n \"completion_tokens\": 14,\n \"total_tokens\": 344,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fed57a62955b058-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 08 Jan 2025 15:50:17 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '438'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999619'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_1cc65e999b352a54a4c42eb8be543545
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,713 @@
interactions:
- request:
body: !!binary |
CvP7AQokCiIKDHNlcnZpY2UubmFtZRISChBjcmV3QUktdGVsZW1ldHJ5Esn7AQoSChBjcmV3YWku
dGVsZW1ldHJ5Ep4HChBGdupVRwCZRqXxk3FnMwCbEghSR8rOc1qkfCoMQ3JldyBDcmVhdGVkMAE5
8GzO7sagGhhBOAHe7sagGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92
ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBjOTdiNWZlYjVkMWI2NmJiNTkwMDZhYWEw
MWEyOWNkNkoxCgdjcmV3X2lkEiYKJDk1NGM2OTJmLTc5Y2ItNGZlZi05NjNkLWUyMGRkMjFhMjAw
MUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jl
d19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFKzAIKC2Ny
ZXdfYWdlbnRzErwCCrkCW3sia2V5IjogIjA3ZDk5YjYzMDQxMWQzNWZkOTA0N2E1MzJkNTNkZGE3
IiwgImlkIjogImQ5ZjkyYTBlLTVlZTYtNGY0NS04NzZiLWIwOWMyZTcwZWZkZiIsICJyb2xlIjog
IlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBt
IjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRl
bGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNl
LCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr/AQoKY3Jld190YXNr
cxLwAQrtAVt7ImtleSI6ICI2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2MTdhYTBiMWM0ZiIsICJpZCI6
ICIzZDc0NDlkYi0wMzU3LTQ3NTMtOGNmNS03NGY2ZmMzMGEwYTkiLCAiYXN5bmNfZXhlY3V0aW9u
PyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNo
ZXIiLCAiYWdlbnRfa2V5IjogIjA3ZDk5YjYzMDQxMWQzNWZkOTA0N2E1MzJkNTNkZGE3IiwgInRv
b2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEP1sZDWz95ImNTj+qx9ckqUSCAmsHrq64Y/u
KgxUYXNrIENyZWF0ZWQwATnQXu3uxqAaGEFgxO3uxqAaGEouCghjcmV3X2tleRIiCiBjOTdiNWZl
YjVkMWI2NmJiNTkwMDZhYWEwMWEyOWNkNkoxCgdjcmV3X2lkEiYKJDk1NGM2OTJmLTc5Y2ItNGZl
Zi05NjNkLWUyMGRkMjFhMjAwMUouCgh0YXNrX2tleRIiCiA2Mzk5NjUxN2YzZjNmMWM5NGQ2YmI2
MTdhYTBiMWM0ZkoxCgd0YXNrX2lkEiYKJDNkNzQ0OWRiLTAzNTctNDc1My04Y2Y1LTc0ZjZmYzMw
YTBhOXoCGAGFAQABAAASngcKEBNuju55KsgJoN1+Y7gEx24SCCoSNPvs01ScKgxDcmV3IENyZWF0
ZWQwATlIpr3wxqAaGEHwVMbwxqAaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0
aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDhjMjc1MmY0OWU1YjlkMmI2OGNi
MzVjYWM4ZmNjODZkSjEKB2NyZXdfaWQSJgokMTY2ODBmZjMtMjM1Yy00MzZlLTk2MWMtZGNhYWNh
YTFiMjA4ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoa
ChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrM
AgoLY3Jld19hZ2VudHMSvAIKuQJbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1
NjNkNzUiLCAiaWQiOiAiMzY5NmM3ZDktNjcyYS00NmIzLWJlMGMtMzNmNjI2YjEwMGU3IiwgInJv
bGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8i
LCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/Ijog
ZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSv8BCgpjcmV3
X3Rhc2tzEvABCu0BW3sia2V5IjogIjBkNjg1YTIxOTk0ZDk0OTA5N2JjNWE1NmQ3MzdlNmQxIiwg
ImlkIjogIjIzYWM1MzA1LTg5YTUtNDM1NC1hODUyLTNmNGNlNDk4NjY4NCIsICJhc3luY19leGVj
dXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVz
ZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUi
LCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQt0jLLt+z7mZzw/JaxaWi4xII/o7T
QUAqVu8qDFRhc2sgQ3JlYXRlZDABOYg71PDGoBoYQZCN1PDGoBoYSi4KCGNyZXdfa2V5EiIKIDhj
Mjc1MmY0OWU1YjlkMmI2OGNiMzVjYWM4ZmNjODZkSjEKB2NyZXdfaWQSJgokMTY2ODBmZjMtMjM1
Yy00MzZlLTk2MWMtZGNhYWNhYTFiMjA4Si4KCHRhc2tfa2V5EiIKIDBkNjg1YTIxOTk0ZDk0OTA5
N2JjNWE1NmQ3MzdlNmQxSjEKB3Rhc2tfaWQSJgokMjNhYzUzMDUtODlhNS00MzU0LWE4NTItM2Y0
Y2U0OTg2Njg0egIYAYUBAAEAABKeBwoQAddeR+5jHI68iED9tmGToRIIqsyiA/tKs2QqDENyZXcg
Q3JlYXRlZDABOcC+UPrGoBoYQchXWvrGoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoa
Cg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogYjY3MzY4NmZjODIyYzIw
M2M3ZTg3OWM2NzU0MjQ2OTlKMQoHY3Jld19pZBImCiRmYjJjNzYwZi00ZTdhLTQ0ZDctOWI4My1i
NDA3MjY5YjVjZDRKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkS
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
AhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICJiNTljZjc3YjZlNzY1ODQ4NzBlYjFj
Mzg4MjNkN2UyOCIsICJpZCI6ICJhMTA3Y2M4My1jZjM0LTRhMDctYWFmNi1lNzA4MTU0MmNiOTUi
LCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEK
CmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiYTVlNWM1OGNlYTFiOWQwMDMzMmU2ODQ0MWQzMjdi
ZGYiLCAiaWQiOiAiNTYzNjc0NmQtNmQ4YS00YzBjLTgyNmEtNDA2YzRlMzc0MTg5IiwgImFzeW5j
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6
ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICJiNTljZjc3YjZlNzY1ODQ4NzBlYjFjMzg4MjNk
N2UyOCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChDxrID3kZmdkWC//z9+mfuy
EgjUxsn2MojVPioMVGFzayBDcmVhdGVkMAE5IIRs+sagGhhB4OFs+sagGhhKLgoIY3Jld19rZXkS
IgogYjY3MzY4NmZjODIyYzIwM2M3ZTg3OWM2NzU0MjQ2OTlKMQoHY3Jld19pZBImCiRmYjJjNzYw
Zi00ZTdhLTQ0ZDctOWI4My1iNDA3MjY5YjVjZDRKLgoIdGFza19rZXkSIgogYTVlNWM1OGNlYTFi
OWQwMDMzMmU2ODQ0MWQzMjdiZGZKMQoHdGFza19pZBImCiQ1NjM2NzQ2ZC02ZDhhLTRjMGMtODI2
YS00MDZjNGUzNzQxODl6AhgBhQEAAQAAErgJChCvyf8lGSXM52eSUv8BPeh1EghI6rK/hduMWSoM
Q3JldyBDcmVhdGVkMAE5mJtE/MagGhhB+NhM/MagGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45
NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBlM2ZkYTBmMzEx
MGZlODBiMTg5NDdjMDE0NzE0MzBhNEoxCgdjcmV3X2lkEiYKJDQ5ZWRjNGIwLWZlNzctNDc0Yy1i
OGE0LTljMDlkNDUzMWIxY0oeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2FsShEKC2NyZXdf
bWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2Zf
YWdlbnRzEgIYAkqIBQoLY3Jld19hZ2VudHMS+AQK9QRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgx
NTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiMzY5NmM3ZDktNjcyYS00NmIzLWJlMGMtMzNmNjI2
YjEwMGU3IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
XX0sIHsia2V5IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgImlkIjogImE5
OTRlNjZlLWE5OTEtNDRhNi04OTIxLWE4OGQ0M2QyNjZiYyIsICJyb2xlIjogIlNlbmlvciBXcml0
ZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwg
ImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25f
ZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3Jl
dHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUrbAQoKY3Jld190YXNrcxLMAQrJAVt7
ImtleSI6ICI1ZmE2NWMwNmE5ZTMxZjJjNjk1NDMyNjY4YWNkNjJkZCIsICJpZCI6ICJiOTY5MGI1
OC1hYmNhLTRjYzktOGZlYS01ZTZmNDZjNmQ5ZDUiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIk5vbmUiLCAiYWdlbnRfa2V5
IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASuAkKECCrkzgLIi2bqMUA6kHF
B1ESCFsUbfXKnCROKgxDcmV3IENyZWF0ZWQwATnAlbP8xqAaGEGwPrv8xqAaGEoaCg5jcmV3YWlf
dmVyc2lvbhIICgYwLjk1LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5
EiIKIGUzZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokNDJlMGQ1
MmYtYWVjYS00MTMzLTlmMDItZDZiOGU0OTRkYjYxSh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVyYXJj
aGljYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSogFCgtjcmV3X2FnZW50cxL4BAr1BFt7ImtleSI6ICI4
YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2YzdkOS02NzJhLTQ2
YjMtYmUwYy0zM2Y2MjZiMTAwZTciLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/Ijog
ZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5n
X2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZh
ZjciLCAiaWQiOiAiYTk5NGU2NmUtYTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2NmJjIiwgInJvbGUi
OiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8i
LCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/Ijog
ZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dStsBCgpjcmV3
X3Rhc2tzEswBCskBW3sia2V5IjogIjVmYTY1YzA2YTllMzFmMmM2OTU0MzI2NjhhY2Q2MmRkIiwg
ImlkIjogImM3MGNmMzliLTE2YzktNDNiOC1hN2VhLTY5MTgzZmZmZDg5ZiIsICJhc3luY19leGVj
dXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiTm9u
ZSIsICJhZ2VudF9rZXkiOiBudWxsLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABLKCwoQ
Nu3FGKmDx1jRbaca6HH3TRIIb9vd1api6NYqDENyZXcgQ3JlYXRlZDABOaiMR/3GoBoYQRjxT/3G
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
LjdKLgoIY3Jld19rZXkSIgogZDM4NDZjOWQyNzZlOGU2ZTQzZTMxZjYxNzYzNTdiNGZKMQoHY3Jl
d19pZBImCiQ2MDE5NzNhNy04NDlmLTQ4ZWQtOGM4MS04YzY5N2QyY2ViNGRKHAoMY3Jld19wcm9j
ZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rh
c2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSogFCgtjcmV3X2FnZW50cxL4BAr1
BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2
YzdkOS02NzJhLTQ2YjMtYmUwYy0zM2Y2MjZiMTAwZTciLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwg
InZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5j
dGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4
ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiYTk5NGU2NmUtYTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2
NmJjIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0
ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxs
bSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9l
eGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBb
XX1dSu8DCgpjcmV3X3Rhc2tzEuADCt0DW3sia2V5IjogImU5ZTZiNzJhYWMzMjY0NTlkZDcwNjhm
MGIxNzE3YzFjIiwgImlkIjogImYzNGM5ZGZjLWU4NzYtNDkzNS04NTNmLTMyM2EwYzhhZGViMiIs
ICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50
X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQx
ZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogImVlZWU3ZTczZDVkZjY2
ZDQ4ZDJkODA3YmFmZjg3NGYzIiwgImlkIjogImNjOGMxZGQ0LTUxNzktNDdlMC1iMTk0LTU3NmNh
MjFkZjllOCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxz
ZSwgImFnZW50X3JvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJhZ2VudF9rZXkiOiAiOWE1MDE1ZWY0
ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKm
BwoQYZWMzWnoYys7S/fnI87iGRIIla+Vilm2/HgqDENyZXcgQ3JlYXRlZDABOaDT6f3GoBoYQZB8
8f3GoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYz
LjEyLjdKLgoIY3Jld19rZXkSIgogNjczOGFkNWI4Y2IzZTZmMWMxYzkzNTBiOTZjMmU2NzhKMQoH
Y3Jld19pZBImCiRjYjJmYWQ2NS1jZmVlLTQ5MjMtYmE4ZS1jYzllYTM4YmRlZDVKHAoMY3Jld19w
cm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29m
X3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStACCgtjcmV3X2FnZW50cxLA
Agq9Alt7ImtleSI6ICI1MTJhNmRjMzc5ZjY2YjIxZWVhYjI0ZTYzNDgzNmY3MiIsICJpZCI6ICJl
ZmM1ZmYyNC1lNGRlLTQwMDctOTE0Ni03MzQ2ODkyMzMxNmEiLCAicm9sZSI6ICJDb250ZW50IFdy
aXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxs
LCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlv
bl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhf
cmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSoMCCgpjcmV3X3Rhc2tzEvQBCvEB
W3sia2V5IjogIjM0NzcwNzZiZTNhZjcxMzA0NjJlZGFhMmViOGEwNDhlIiwgImlkIjogImI1YTU1
ZDIxLWM0YWQtNGY3MS1hNzlmLTc5MmI3MzcwZDM0MSIsICJhc3luY19leGVjdXRpb24/IjogZmFs
c2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiQ29udGVudCBXcml0ZXIi
LCAiYWdlbnRfa2V5IjogIjUxMmE2ZGMzNzlmNjZiMjFlZWFiMjRlNjM0ODM2ZjcyIiwgInRvb2xz
X25hbWVzIjogW119XXoCGAGFAQABAAASjg8KEPffWTWZFpn8wcrgD+eyhrMSCHU6W3vsK6dIKgxD
cmV3IENyZWF0ZWQwATmAXFj+xqAaGEHQ72D+xqAaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1
LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDRhY2I5MzNmZThk
ZTRjZDU3NzJlZGIwZTgyMDZlMjhmSjEKB2NyZXdfaWQSJgokZjQ4NDAzYjUtZjRjMi00NjA4LWE1
YzYtMjc4NGU5ZTY0MDNlShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVt
b3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGARKGwoVY3Jld19udW1iZXJfb2ZfYWdl
bnRzEgIYAkqBBQoLY3Jld19hZ2VudHMS8QQK7gRbeyJrZXkiOiAiMmJlZmZkY2FjNjVjY2VhYTY1
Mzk2ZjJjN2Y1NjhlNmEiLCAiaWQiOiAiNzlkY2E1NjgtOTUxNy00ZWM0LThkODctMDMxZWFlM2Ji
OTk1IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX0s
IHsia2V5IjogIjFjZGNhOGRlMDdiMjhkMDc0ZDc4NjQ3NDhiZGIxNzY3IiwgImlkIjogIjgzZWI3
MGNkLWIzODEtNDYwMy05Nzg5LTkyN2IxYmNlYTU2ZCIsICJyb2xlIjogIldyaXRlciIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6
IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQi
OiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSroHCgpjcmV3X3Rhc2tzEqsHCqgHW3sia2V5IjogImVi
YWVhYTk2ZThjODU1N2YwNDYxNzM2ZDRiZWY5MzE3IiwgImlkIjogImRkMGVkMzgxLTZhNzUtNDVh
My1iZGUyLTRlNzdiOTU0YmI2OCIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9p
bnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAi
MmJlZmZkY2FjNjVjY2VhYTY1Mzk2ZjJjN2Y1NjhlNmEiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsi
a2V5IjogIjYwZjM1MjI4ZWMxY2I3M2ZlZDM1ZDk5MTBhNmQ3OWYzIiwgImlkIjogImE0OGZmMzgx
LTI2ZDEtNDVjNy04MGVkLWJlODM0NTkxYWIzYyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2Us
ICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiV3JpdGVyIiwgImFnZW50X2tl
eSI6ICIxY2RjYThkZTA3YjI4ZDA3NGQ3ODY0NzQ4YmRiMTc2NyIsICJ0b29sc19uYW1lcyI6IFtd
fSwgeyJrZXkiOiAiYmUyYTcxNGFjMzVlM2E2YjBhYmJhMjRjZWMyZTA0Y2MiLCAiaWQiOiAiMDkx
YWE2YjMtZGYyMC00YTMzLTk1MzUtOGJiNDllMzlhMGQyIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBm
YWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJXcml0ZXIiLCAiYWdl
bnRfa2V5IjogIjFjZGNhOGRlMDdiMjhkMDc0ZDc4NjQ3NDhiZGIxNzY3IiwgInRvb2xzX25hbWVz
IjogW119LCB7ImtleSI6ICI0YTU2YTYyNzk4ODZhNmZlNThkNjc1NzgxZDFmNWFkOSIsICJpZCI6
ICIxMDFlOGNhNC04MTk1LTQyNDYtYjg2Ny05ZjYxYzM1NWJjOGIiLCAiYXN5bmNfZXhlY3V0aW9u
PyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIldyaXRlciIs
ICJhZ2VudF9rZXkiOiAiMWNkY2E4ZGUwN2IyOGQwNzRkNzg2NDc0OGJkYjE3NjciLCAidG9vbHNf
bmFtZXMiOiBbXX1degIYAYUBAAEAABKLCQoQgHmumMETjYmEZpveDu3dwBIIByVlUIAMTMEqDENy
ZXcgQ3JlYXRlZDABOfgtEgDHoBoYQTC/GwDHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUu
MEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogODBjNzk4ZjYyMjhm
MzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2EtYWJk
ZC0zZDY1YThlNjY5ZjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1v
cnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2Vu
dHMSAhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICIzN2Q3MTNkM2RjZmFlMWRlNTNi
NGUyZGFjNzU1M2ZkNyIsICJpZCI6ICJmNGY2NmQxMi01M2Q0LTQ2NTQtODRiZC1lMjJmYzk2ZDU0
NTEiLCAicm9sZSI6ICJ0ZXN0X2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
ImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K
7AMKCmNyZXdfdGFza3MS3QMK2gNbeyJrZXkiOiAiY2M0YTQyYzE4NmVlMWEyZTY2YjAyOGVjNWI3
MmJkNGUiLCAiaWQiOiAiMmUyMmZiMDMtMzIxMS00NTgxLTkzN2EtZjY1Zjk5MjY3ZmIyIiwgImFz
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
ZSI6ICJ0ZXN0X2FnZW50IiwgImFnZW50X2tleSI6ICIzN2Q3MTNkM2RjZmFlMWRlNTNiNGUyZGFj
NzU1M2ZkNyIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNzRlNmIyNDQ5YzQ1NzRhY2Jj
MmJmNDk3MjczYTVjYzEiLCAiaWQiOiAiODIzYmRlYzUtMTRkMS00ZDdjLWJkYWMtODkzNTY1YmFi
YmM1IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAi
YWdlbnRfcm9sZSI6ICJ0ZXN0X2FnZW50IiwgImFnZW50X2tleSI6ICIzN2Q3MTNkM2RjZmFlMWRl
NTNiNGUyZGFjNzU1M2ZkNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChDXwUEa
LzdRrsWweePQjNzuEgjgSUXh0IH0OyoMVGFzayBDcmVhdGVkMAE5aKkrAMegGhhBaCYsAMegGhhK
LgoIY3Jld19rZXkSIgogODBjNzk4ZjYyMjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19p
ZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2EtYWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgog
Y2M0YTQyYzE4NmVlMWEyZTY2YjAyOGVjNWI3MmJkNGVKMQoHdGFza19pZBImCiQyZTIyZmIwMy0z
MjExLTQ1ODEtOTM3YS1mNjVmOTkyNjdmYjJ6AhgBhQEAAQAAEo4CChDxJ8ZFykKBgfaipCQ/ggPb
EgguzV65sDQE1yoMVGFzayBDcmVhdGVkMAE5OBNvAMegGhhBgIRvAMegGhhKLgoIY3Jld19rZXkS
IgogODBjNzk4ZjYyMjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFh
NS1lMzA5LTQ2N2EtYWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgogNzRlNmIyNDQ5YzQ1
NzRhY2JjMmJmNDk3MjczYTVjYzFKMQoHdGFza19pZBImCiQ4MjNiZGVjNS0xNGQxLTRkN2MtYmRh
Yy04OTM1NjViYWJiYzV6AhgBhQEAAQAAEo4CChC0QeqqmE8Dp/Ee9DEhuLMuEggOnt12q4mouioM
VGFzayBDcmVhdGVkMAE5eBbHAMegGhhB2IPHAMegGhhKLgoIY3Jld19rZXkSIgogODBjNzk4ZjYy
MjhmMzJhNzQ4M2Y3MmFmZTM2NmVkY2FKMQoHY3Jld19pZBImCiQ0YzM3YTFhNS1lMzA5LTQ2N2Et
YWJkZC0zZDY1YThlNjY5ZjBKLgoIdGFza19rZXkSIgogNzRlNmIyNDQ5YzQ1NzRhY2JjMmJmNDk3
MjczYTVjYzFKMQoHdGFza19pZBImCiQ4MjNiZGVjNS0xNGQxLTRkN2MtYmRhYy04OTM1NjViYWJi
YzV6AhgBhQEAAQAAEsoLChAQHimti07LsJEmR4M5P2iQEgjeCnwCLR02XyoMQ3JldyBDcmVhdGVk
MAE5IOlAAsegGhhBAGVJAsegGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhv
bl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBhYzdlNzQ1OTA3MmM3ZWMwNmRlYWY5
ZDMyZWNlYzE1YUoxCgdjcmV3X2lkEiYKJGI1NTdkNDliLTkxZTktNDllMy1iNjA4LTUyZTdiMGE1
YzZjM0ocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoU
Y3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUK
C2NyZXdfYWdlbnRzEvgECvUEW3sia2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYz
ZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xl
IjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhf
cnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0
YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFs
c2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIs
ICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiYTgwNjE3
MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmEiLCAiaWQiOiAiZjNmMDYxNWItMDg3NS00NWM0LWFm
YmMtYWI1OGQxMGQyZDA0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0
PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQy
MTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXki
OiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiNGUwZTEyOTQtZjdi
ZS00OTBhLThiYmUtNjliYjQ5ODc1YTUzIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1
bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50
X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6
IFtdfV16AhgBhQEAAQAAEo4CChBu6pl3tRo8XQcOz1dOfEiREgi+aKvpuUNN/ioMVGFzayBDcmVh
dGVkMAE5QCRZAsegGhhBKKVZAsegGhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZk
ZWFmOWQzMmVjZWMxNWFKMQoHY3Jld19pZBImCiRiNTU3ZDQ5Yi05MWU5LTQ5ZTMtYjYwOC01MmU3
YjBhNWM2YzNKLgoIdGFza19rZXkSIgogYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmFK
MQoHdGFza19pZBImCiRmM2YwNjE1Yi0wODc1LTQ1YzQtYWZiYy1hYjU4ZDEwZDJkMDR6AhgBhQEA
AQAAEo4CChBNL9q8o7PtXvaR6poXIlx6EggIBAybRwvpyCoMVGFzayBDcmVhdGVkMAE5qP2oAseg
GhhB6JmpAsegGhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZkZWFmOWQzMmVjZWMx
NWFKMQoHY3Jld19pZBImCiRiNTU3ZDQ5Yi05MWU5LTQ5ZTMtYjYwOC01MmU3YjBhNWM2YzNKLgoI
dGFza19rZXkSIgogNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFza19pZBIm
CiQ0ZTBlMTI5NC1mN2JlLTQ5MGEtOGJiZS02OWJiNDk4NzVhNTN6AhgBhQEAAQAAEsoLChAxUBRb
Q0xWxbf9ef52QMDSEgihBkurLl3qiSoMQ3JldyBDcmVhdGVkMAE5eE9hBcegGhhBCIVpBcegGhhK
GgoOY3Jld2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ou
CghjcmV3X2tleRIiCiBhYzdlNzQ1OTA3MmM3ZWMwNmRlYWY5ZDMyZWNlYzE1YUoxCgdjcmV3X2lk
EiYKJGU1YmYwYTFjLTg2YjctNDhkZC04YzJlLTdjMThhZTZhODJhZUocCgxjcmV3X3Byb2Nlc3MS
DAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MS
AhgCShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3si
a2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5
LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVy
Ym9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9u
X2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMi
LCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
ImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K
7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJj
MzEwMmEiLCAiaWQiOiAiMDJlMTk1ODMtZmY3OS00N2YzLThkNDMtNWJhMGY4NmYxOTllIiwgImFz
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
ZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDlj
NDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5
NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiY2ViMjZhOTUtODc5ZS00OGFmLTg2MmItNzAyZmIyODA3
MzM5IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAi
YWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVk
YzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChD9
XNrHzMkqfERO3pxva7qVEgi+KDMFQWeCXioMVGFzayBDcmVhdGVkMAE5KHl4BcegGhhBKPZ4Bceg
GhhKLgoIY3Jld19rZXkSIgogYWM3ZTc0NTkwNzJjN2VjMDZkZWFmOWQzMmVjZWMxNWFKMQoHY3Jl
d19pZBImCiRlNWJmMGExYy04NmI3LTQ4ZGQtOGMyZS03YzE4YWU2YTgyYWVKLgoIdGFza19rZXkS
IgogYTgwNjE3MTcyZmZjYjkwZjg5N2MxYThjMzJjMzEwMmFKMQoHdGFza19pZBImCiQwMmUxOTU4
My1mZjc5LTQ3ZjMtOGQ0My01YmEwZjg2ZjE5OWV6AhgBhQEAAQAAEsoLChBy2/tEpjdjZeT9McCa
zn1ZEghPIBt/a/+PUyoMQ3JldyBDcmVhdGVkMAE5ABE/BsegGhhB+PlJBsegGhhKGgoOY3Jld2Fp
X3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tl
eRIiCiBkMjdkNDVhZDlkYTE1ODU0MzI1YjBhZjNiMGZiYzMyYkoxCgdjcmV3X2lkEiYKJGM4OGMx
ZDc1LWZlN2QtNDQwMi04N2QwLWFkYzQ3MWFiMWI3YUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVu
dGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsKFWNy
ZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3sia2V5IjogIjhi
ZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEtNDZi
My1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBm
YWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdf
bGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwg
ImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRv
b2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFm
NyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9sZSI6
ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4
X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIs
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBm
YWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNyZXdf
dGFza3MS4AMK3QNbeyJrZXkiOiAiODE2ZTllYmM2OWRiNjdjNjhiYjRmM2VhNjVjY2RhNTgiLCAi
aWQiOiAiZDM1YjllMjUtODE1MC00ODQ0LWFhMTctYzk0MTRhMDE2NjcyIiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNl
YXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
ICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFj
ZDYyZGQiLCAiaWQiOiAiYjIwMjdlZWUtYjNjYi00MGMxLWI1NDEtNmY0ZTA5ZGRhNTU5IiwgImFz
eW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9s
ZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEsoLChD//jBA0L4Z7qgQ
5xomV5+TEgjd+k4M+YdqbCoMQ3JldyBDcmVhdGVkMAE5uAq/BsegGhhB6EPJBsegGhhKGgoOY3Jl
d2FpX3ZlcnNpb24SCAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3
X2tleRIiCiBkMjdkNDVhZDlkYTE1ODU0MzI1YjBhZjNiMGZiYzMyYkoxCgdjcmV3X2lkEiYKJGY3
OTg0ZWVlLWZjMGItNGFjYy1iNWE3LWExYjgwMWU0NGM1MEocCgxjcmV3X3Byb2Nlc3MSDAoKc2Vx
dWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgCShsK
FWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgECvUEW3sia2V5Ijog
IjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2OTZjN2Q5LTY3MmEt
NDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIiLCAidmVyYm9zZT8i
OiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxp
bmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxz
ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwg
InRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0
NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNkMjY2YmMiLCAicm9s
ZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAi
bWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00
byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8i
OiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K7wMKCmNy
ZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiODE2ZTllYmM2OWRiNjdjNjhiYjRmM2VhNjVjY2RhNTgi
LCAiaWQiOiAiOTcxMDdmNTUtY2U2Yi00NWI4LWI4Y2QtZjhjNmIyOGI1YjI5IiwgImFzeW5jX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJS
ZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3
NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2
OGFjZDYyZGQiLCAiaWQiOiAiNzZlMTYxMDEtNTY3ZC00YmVlLTg3MGQtNjlkNjUzNWUxM2Y0Iiwg
ImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRf
cm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhk
NTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEv4BChBUyY/ccsE1
R24CGyVtHLqZEgiwrBqbcxAHeCoTQ3JldyBUZXN0IEV4ZWN1dGlvbjABOSiyJAfHoBoYQZiNLgfH
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEouCghjcmV3X2tleRIiCiAzOTQ5M2UxNjE2
MzRhOWVjNGRjNGUzOTdhOTc2OTU3MkoxCgdjcmV3X2lkEiYKJGUwZWJlYWE2LTFjMmItNGMxZi1i
MzY1LTE4YmNmMjZhOGIwNkoRCgppdGVyYXRpb25zEgMKATJKGwoKbW9kZWxfbmFtZRINCgtncHQt
NG8tbWluaXoCGAGFAQABAAASuAkKEPPNALYHa18lwaRtQDvBnDESCJJZx6P/4qPDKgxDcmV3IENy
ZWF0ZWQwATnIzZ8Hx6AaGEFIWagHx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKGgoO
cHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIGUzZmRhMGYzMTEwZmU4MGIx
ODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokMTBhYzc4ODQtOTA2ZC00YTg0LWIxMTYtMWMx
MTg5NDg3OTc3Sh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVyYXJjaGljYWxKEQoLY3Jld19tZW1vcnkS
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
AhgCSogFCgtjcmV3X2FnZW50cxL4BAr1BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFm
ZDljNDU2M2Q3NSIsICJpZCI6ICIzNjk2YzdkOS02NzJhLTQ2YjMtYmUwYy0zM2Y2MjZiMTAwZTci
LCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJr
ZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiYTk5NGU2NmUt
YTk5MS00NGE2LTg5MjEtYTg4ZDQzZDI2NmJjIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2
ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rp
b25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVk
PyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGlt
aXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dStsBCgpjcmV3X3Rhc2tzEswBCskBW3sia2V5Ijog
IjVmYTY1YzA2YTllMzFmMmM2OTU0MzI2NjhhY2Q2MmRkIiwgImlkIjogIjYzYmEzZTVmLWNlOWIt
NDE4Zi04NGNmLWJjOWNlYjUwYTMwNyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1h
bl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiTm9uZSIsICJhZ2VudF9rZXkiOiBudWxs
LCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQlnr9jeEDn0IZusmEkE/xBxIIbyk0
sNkOWxwqDFRhc2sgQ3JlYXRlZDABOdAdygfHoBoYQQCTygfHoBoYSi4KCGNyZXdfa2V5EiIKIGUz
ZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokMTBhYzc4ODQtOTA2
ZC00YTg0LWIxMTYtMWMxMTg5NDg3OTc3Si4KCHRhc2tfa2V5EiIKIDVmYTY1YzA2YTllMzFmMmM2
OTU0MzI2NjhhY2Q2MmRkSjEKB3Rhc2tfaWQSJgokNjNiYTNlNWYtY2U5Yi00MThmLTg0Y2YtYmM5
Y2ViNTBhMzA3egIYAYUBAAEAABKcAQoQbJPP7Nx3r3ewgPHdeJybDBIIlUb3D4pi3dkqClRvb2wg
VXNhZ2UwATmonCAKx6AaGEEgUykKx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKKAoJ
dG9vbF9uYW1lEhsKGURlbGVnYXRlIHdvcmsgdG8gY293b3JrZXJKDgoIYXR0ZW1wdHMSAhgBegIY
AYUBAAEAABKcAQoQ1SSOOcoVWGrQIs6azsmxmBIIGSOj86a7GPsqClRvb2wgVXNhZ2UwATmA8e4O
x6AaGEGo3vcOx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBKKAoJdG9vbF9uYW1lEhsK
GURlbGVnYXRlIHdvcmsgdG8gY293b3JrZXJKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABK4CQoQ
EQHO/mvzkyYWgZwwn+Rc5BIIv4Hy3+pCFpYqDENyZXcgQ3JlYXRlZDABOTgFvg/HoBoYQfi1xQ/H
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
LjdKLgoIY3Jld19rZXkSIgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAxNDcxNDMwYTRKMQoHY3Jl
d19pZBImCiQxYTNiYWYyMi04ZDA3LTRiOTctOGM4Ni1kMmM0NDNlYTZkZjdKHgoMY3Jld19wcm9j
ZXNzEg4KDGhpZXJhcmNoaWNhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2Zf
dGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKiAUKC2NyZXdfYWdlbnRzEvgE
CvUEW3sia2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgImlkIjogIjM2
OTZjN2Q5LTY3MmEtNDZiMy1iZTBjLTMzZjYyNmIxMDBlNyIsICJyb2xlIjogIlJlc2VhcmNoZXIi
LCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1
bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5
X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYy
NzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhOTk0ZTY2ZS1hOTkxLTQ0YTYtODkyMS1hODhkNDNk
MjY2YmMiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhf
aXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAi
bGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
IFtdfV1K2wEKCmNyZXdfdGFza3MSzAEKyQFbeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQz
MjY2OGFjZDYyZGQiLCAiaWQiOiAiZWYxYjNhN2MtOTMxYi00MjRjLTkxMzQtZDY1OTM1N2I3ODNi
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
bnRfcm9sZSI6ICJOb25lIiwgImFnZW50X2tleSI6IG51bGwsICJ0b29sc19uYW1lcyI6IFtdfV16
AhgBhQEAAQAAEo4CChBZkLAu5xnAQh/ILJnU7h1REggAGIt5Pa4D3ioMVGFzayBDcmVhdGVkMAE5
AMXlD8egGhhBwCLmD8egGhhKLgoIY3Jld19rZXkSIgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAx
NDcxNDMwYTRKMQoHY3Jld19pZBImCiQxYTNiYWYyMi04ZDA3LTRiOTctOGM4Ni1kMmM0NDNlYTZk
ZjdKLgoIdGFza19rZXkSIgogNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFz
a19pZBImCiRlZjFiM2E3Yy05MzFiLTQyNGMtOTEzNC1kNjU5MzU3Yjc4M2J6AhgBhQEAAQAAEpwB
ChBl/QzggjWFEfDigYrgsKMhEgjIhVTOpOyNnioKVG9vbCBVc2FnZTABOWi8pxHHoBoYQYhdrxHH
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUg
d29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEpwBChC1Cxzix7ErLK5V
rNWRMj7jEgjEMld4I2kVXCoKVG9vbCBVc2FnZTABOSh2whjHoBoYQSi9yxjHoBoYShoKDmNyZXdh
aV92ZXJzaW9uEggKBjAuOTUuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dv
cmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEuEJChCh/OOje68hh/B1dkfbmjf/Egje+GUm
CUGqZCoMQ3JldyBDcmVhdGVkMAE5cBtkV8egGhhBcD5zV8egGhhKGgoOY3Jld2FpX3ZlcnNpb24S
CAoGMC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBjYWEx
YWViM2RkNDM2Mzg2NTY4YTVjM2ZlMjEwMWFmNUoxCgdjcmV3X2lkEiYKJDdlZWUxNTA4LWQwNGIt
NDczYy1iZjhmLTJkODgxNGU1MjNhN0ocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtj
cmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVy
X29mX2FnZW50cxICGAJKhAUKC2NyZXdfYWdlbnRzEvQECvEEW3sia2V5IjogIjk3ZjQxN2YzZTFl
MzFjZjBjMTA5Zjc1MjlhYzhmNmJjIiwgImlkIjogIjQwM2ZkM2Q2LTAxNTYtNDIwMS04OGFmLTU0
MjU5YjczNzJkYSIsICJyb2xlIjogIlByb2dyYW1tZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1h
eF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIs
ICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogdHJ1ZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
IFtdfSwgeyJrZXkiOiAiOTJhMjRiMGJjY2ZiMGRjMGU0MzlkN2Q1OWJhOWY2ZjMiLCAiaWQiOiAi
YzIxMTQ4ZmQtOGU3NS00NDlhLTg2MmMtNWRiNjQ5Yzc0OTYzIiwgInJvbGUiOiAiQ29kZSBSZXZp
ZXdlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxs
LCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlv
bl9lbmFibGVkPyI6IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiB0cnVlLCAibWF4X3Jl
dHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqKAgoKY3Jld190YXNrcxL7AQr4AVt7
ImtleSI6ICI3OWFhMjdkZjc0ZTYyNzllMzRhODg4ODE3NDgxYzQwZiIsICJpZCI6ICI0ZWYzZWEy
OS0xMzNjLTQxNjktODgyMS1jZDI4ZTgxMTYxYmIiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlByb2dyYW1tZXIiLCAiYWdl
bnRfa2V5IjogIjk3ZjQxN2YzZTFlMzFjZjBjMTA5Zjc1MjlhYzhmNmJjIiwgInRvb2xzX25hbWVz
IjogWyJ0ZXN0IHRvb2wiXX1degIYAYUBAAEAABKuBwoQjpMoNMb5Vz8kFm796AmokxIIPavlOS8Y
ZJ0qDENyZXcgQ3JlYXRlZDABOZg1IVjHoBoYQXBfKVjHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggK
BjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogNzczYTg3
NmI1NzkyZGI2OTU1OWZlODJjM2FkMjM1OWZKMQoHY3Jld19pZBImCiQwNDQzNzU1MS0yN2RmLTQ3
YTQtOTliNS1iOWNkYmYxMDFhNjZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jl
d19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9v
Zl9hZ2VudHMSAhgBStQCCgtjcmV3X2FnZW50cxLEAgrBAlt7ImtleSI6ICIwNzdjN2E4NjdlMjBk
MGE2OGI5NzRlNDc2MDcxMDlmMyIsICJpZCI6ICIzMDMzZmZkYy03YjI0LTRmMDgtYmNmZS1iYzQz
NzhkM2U5NjAiLCAicm9sZSI6ICJNdWx0aW1vZGFsIEFuYWx5c3QiLCAidmVyYm9zZT8iOiBmYWxz
ZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxt
IjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFs
bG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xz
X25hbWVzIjogW119XUqHAgoKY3Jld190YXNrcxL4AQr1AVt7ImtleSI6ICJjNzUzYzY4MDYzNTk0
MzZhNTg5NmZlYzA5YmFhMTI1ZSIsICJpZCI6ICI3Y2YxYTRkNC0xMmRjLTRjOWUtOWY1Ny0xZjhk
MTc5YmNlZGEiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFs
c2UsICJhZ2VudF9yb2xlIjogIk11bHRpbW9kYWwgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiMDc3
YzdhODY3ZTIwZDBhNjhiOTc0ZTQ3NjA3MTA5ZjMiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUB
AAEAABKkBwoQ7zp57STyOlOLCoDVAFh15hIInYYk7J+gZ94qDENyZXcgQ3JlYXRlZDABOYjOfljH
oBoYQZhIhljHoBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lv
bhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogY2Q0ZGE2NGU2ZGMzYjllYmRjYTI0NDRjMWQ3MzAy
ODFKMQoHY3Jld19pZBImCiQ1OTlmMjViNS0xMTgzLTQ2OTctODNjMy03OWUzZmQ3MmQ0NDlKHAoM
Y3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVt
YmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSs8CCgtjcmV3X2Fn
ZW50cxK/Agq8Alt7ImtleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJp
ZCI6ICJiY2I5ZjA4Ny1iMzI2LTRmYTQtOWJlZS0wMGVjODlmZTEwMzEiLCAicm9sZSI6ICJJbWFn
ZSBBbmFseXN0IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxl
Z2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwg
Im1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KggIKCmNyZXdfdGFza3MS
8wEK8AFbeyJrZXkiOiAiZWU4NzI5Njk0MTBjOTRjMzM0ZjljZmZhMGE0MTVmZWMiLCAiaWQiOiAi
NmFlMDcxYmItMjU4ZS00ZWRkLThhOGItODIxNzU4ZTFhNmRkIiwgImFzeW5jX2V4ZWN1dGlvbj8i
OiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJJbWFnZSBBbmFs
eXN0IiwgImFnZW50X2tleSI6ICJkODUxMDY0YjliNDg0MThhYzI1ZjhkMzdjN2UzMmJiNiIsICJ0
b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEqMHChBetHqqjbX/OlqTuIZkVppxEgirl8FuUewu
TSoMQ3JldyBDcmVhdGVkMAE5aGwoWcegGhhBOCw0WcegGhhKGgoOY3Jld2FpX3ZlcnNpb24SCAoG
MC45NS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuN0ouCghjcmV3X2tleRIiCiBlMzk1Njdi
NTA1MjkwOWNhMzM0MDk4NGI4Mzg5ODBlYUoxCgdjcmV3X2lkEiYKJDA2ZTljN2FjLTEzZDItNGU4
MS1hNzI2LTBlYjIyYzdlNWQ3MEocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3
X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29m
X2FnZW50cxICGAFKzgIKC2NyZXdfYWdlbnRzEr4CCrsCW3sia2V5IjogIjlkYzhjY2UwMzA0Njgx
OTYwNDFiNGMzODBiNjE3Y2IwIiwgImlkIjogImI1ZGZkNmEyLTA1ZWYtNDIzNS1iZDVjLTI3ZTAy
MGExYzk4ZiIsICJyb2xlIjogIkltYWdlIEFuYWx5c3QiLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
OiBbXX1dSoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImE5YTc2Y2E2OTU3ZDBiZmZhNjll
YWIyMGI2NjQ4MjJiIiwgImlkIjogIjJhMmQ4MDYzLTBkMmQtNDhmZi04NjJhLWNiOGM1NGEyMDYx
NiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFn
ZW50X3JvbGUiOiAiSW1hZ2UgQW5hbHlzdCIsICJhZ2VudF9rZXkiOiAiOWRjOGNjZTAzMDQ2ODE5
NjA0MWI0YzM4MGI2MTdjYjAiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQj49w
ugM/XFoNkMEnAmaPnRIIcFM/RoDbVhcqDFRhc2sgQ3JlYXRlZDABOViFR1nHoBoYQfgRSFnHoBoY
Si4KCGNyZXdfa2V5EiIKIGUzOTU2N2I1MDUyOTA5Y2EzMzQwOTg0YjgzODk4MGVhSjEKB2NyZXdf
aWQSJgokMDZlOWM3YWMtMTNkMi00ZTgxLWE3MjYtMGViMjJjN2U1ZDcwSi4KCHRhc2tfa2V5EiIK
IGE5YTc2Y2E2OTU3ZDBiZmZhNjllYWIyMGI2NjQ4MjJiSjEKB3Rhc2tfaWQSJgokMmEyZDgwNjMt
MGQyZC00OGZmLTg2MmEtY2I4YzU0YTIwNjE2egIYAYUBAAEAABKXAQoQQgYNvHzrhiz04CrSnkG0
KBII9UsJM/96oEoqClRvb2wgVXNhZ2UwATkQPOFax6AaGEGAmupax6AaGEoaCg5jcmV3YWlfdmVy
c2lvbhIICgYwLjk1LjBKIwoJdG9vbF9uYW1lEhYKFEFkZCBpbWFnZSB0byBjb250ZW50Sg4KCGF0
dGVtcHRzEgIYAXoCGAGFAQABAAASpAcKEL8pSiN4H/umQhWexA4UYzoSCC+JqZKUlDffKgxDcmV3
IENyZWF0ZWQwATnA9r9cx6AaGEGAJMhcx6AaGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjk1LjBK
GgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi43Si4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0
YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMt
ZTVkOTY0ZGI5NzJhShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5
EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRz
EgIYAUrPAgoLY3Jld19hZ2VudHMSvwIKvAJbeyJrZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVk
NTNmNjg5MjdmZDUiLCAiaWQiOiAiNjdlMDhiZDMtMzA5MS00ZTdhLWE4NjQtYTUyOGQ4ZDZlN2Y4
IiwgInJvbGUiOiAiUmVwb3J0IFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIi
OiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6
ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1d
SoICCgpjcmV3X3Rhc2tzEvMBCvABW3sia2V5IjogImI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1
NTZiN2FjIiwgImlkIjogIjUyZGMwN2ZjLWJjY2ItNDI4Mi1hZjllLWUyYTkxY2ViMzI0MCIsICJh
c3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3Jv
bGUiOiAiUmVwb3J0IFdyaXRlciIsICJhZ2VudF9rZXkiOiAiNGI4YTdiODQwZjk0YmY3ODE4YjVk
NTNmNjg5MjdmZDUiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQFiOJNSnPbaBo
fje7Tx2DdBIIwjGhGgyR5BkqDFRhc2sgQ3JlYXRlZDABOaAq1FzHoBoYQah81FzHoBoYSi4KCGNy
ZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgok
ZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNj
ODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00
MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIYAYUBAAEAABKOAgoQt0X92psFBaT0eyn1IxJl0RIIpDY4
j2AlTioqDFRhc2sgQ3JlYXRlZDABOdgnPV/HoBoYQXi0PV/HoBoYSi4KCGNyZXdfa2V5EiIKIDAw
Yjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1
NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVj
NThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJh
OTFjZWIzMjQwegIYAYUBAAEAABKOAgoQZyIwBbsHH+6dumgTUJNVzxIIMAEwlT69bAwqDFRhc2sg
Q3JlYXRlZDABOeh9u2HHoBoYQfghvGHHoBoYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0
YjNhNDdjMjAxMDFlYjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMt
ZTVkOTY0ZGI5NzJhSi4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZi
N2FjSjEKB3Rhc2tfaWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIY
AYUBAAEAABKOAgoQNmx90haqHtL8tj3Y948aIhIIaiFn4f7x7RAqDFRhc2sgQ3JlYXRlZDABOTgM
nmTHoBoYQZCknmTHoBoYSi4KCGNyZXdfa2V5EiIKIDAwYjk0NmJlNDQzNzE0YjNhNDdjMjAxMDFl
YjAyZDY2SjEKB2NyZXdfaWQSJgokZDRhZDMyZTUtM2I1NS00OGQ0LTlmYjMtZTVkOTY0ZGI5NzJh
Si4KCHRhc2tfa2V5EiIKIGI3MTNjODJmZWI5MmM5ZjVjNThiNDBhOTc1NTZiN2FjSjEKB3Rhc2tf
aWQSJgokNTJkYzA3ZmMtYmNjYi00MjgyLWFmOWUtZTJhOTFjZWIzMjQwegIYAYUBAAEAABKWBwoQ
vt1TslFugf+idjOWhVfl9BIIGjt6tt0AKKkqDENyZXcgQ3JlYXRlZDABOWiz12fHoBoYQZj432fH
oBoYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEy
LjdKLgoIY3Jld19rZXkSIgogZjVkZTY3ZTk5ODUwNTA3NmEyOTM3YjNmZGFhNzc1ZjFKMQoHY3Jl
d19pZBImCiQ2MzJjYTc0MC1mNjg2LTRlNGQtOTBmYy00YjZkYmE5ZjViMGRKHAoMY3Jld19wcm9j
ZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rh
c2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSsgCCgtjcmV3X2FnZW50cxK4Agq1
Alt7ImtleSI6ICI2ZjYzZjNlMzU4M2E0NjJmZjNlNzY2MDcxYzgyMTJhZiIsICJpZCI6ICI1ZTZl
NTMzNy1iZmMzLTRjZmYtODBlZi1hM2U5NDQ4YjBlYTMiLCAicm9sZSI6ICJXcml0ZXIiLCAidmVy
Ym9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9u
X2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119XUr7AQoKY3Jld190YXNrcxLsAQrpAVt7ImtleSI6ICIz
ZjMyNzEyMDk2ZmFjYjliNGI2ZWE1NWI3OGViN2M4MCIsICJpZCI6ICI5NDRiZWRmNS0xZjZiLTQw
OWEtOTE4Mi04YzMyZTM0MGZmMzQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIldyaXRlciIsICJhZ2VudF9rZXkiOiAiNmY2
M2YzZTM1ODNhNDYyZmYzZTc2NjA3MWM4MjEyYWYiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUB
AAEAABKOAgoQ4leDd4+yGvuAxat0Z7g/uhIInjgmW2jrDBIqDFRhc2sgQ3JlYXRlZDABOXCN62fH
oBoYQXjf62fHoBoYSi4KCGNyZXdfa2V5EiIKIGY1ZGU2N2U5OTg1MDUwNzZhMjkzN2IzZmRhYTc3
NWYxSjEKB2NyZXdfaWQSJgokNjMyY2E3NDAtZjY4Ni00ZTRkLTkwZmMtNGI2ZGJhOWY1YjBkSi4K
CHRhc2tfa2V5EiIKIDNmMzI3MTIwOTZmYWNiOWI0YjZlYTU1Yjc4ZWI3YzgwSjEKB3Rhc2tfaWQS
JgokOTQ0YmVkZjUtMWY2Yi00MDlhLTkxODItOGMzMmUzNDBmZjM0egIYAYUBAAEAABKOAgoQ/K3x
az8rHR8RbOPAn3/V0xIIkOxMowIIFUoqDFRhc2sgQ3JlYXRlZDABOUCJ7WfHoBoYQcDH7WfHoBoY
Si4KCGNyZXdfa2V5EiIKIGY1ZGU2N2U5OTg1MDUwNzZhMjkzN2IzZmRhYTc3NWYxSjEKB2NyZXdf
aWQSJgokNjMyY2E3NDAtZjY4Ni00ZTRkLTkwZmMtNGI2ZGJhOWY1YjBkSi4KCHRhc2tfa2V5EiIK
IDNmMzI3MTIwOTZmYWNiOWI0YjZlYTU1Yjc4ZWI3YzgwSjEKB3Rhc2tfaWQSJgokOTQ0YmVkZjUt
MWY2Yi00MDlhLTkxODItOGMzMmUzNDBmZjM0egIYAYUBAAEAABKeBwoQ/q45KvZiCrfu5bu1k3u9
PBII3yPQFsZi+ywqDENyZXcgQ3JlYXRlZDABObA3PWjHoBoYQUDYSGjHoBoYShoKDmNyZXdhaV92
ZXJzaW9uEggKBjAuOTUuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkS
IgogNzc2NTcyNTMwMGY2NjAwYjI5NjExYmI3ZTAyZDU2ZTZKMQoHY3Jld19pZBImCiQ3NDcwMDVh
Yi1lODE0LTQ0YzItOWFlMy1lZTZkYWEzYmMxYjZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRp
YWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3
X251bWJlcl9vZl9hZ2VudHMSAhgBSswCCgtjcmV3X2FnZW50cxK8Agq5Alt7ImtleSI6ICI3YjMz
ZjY0ZGQwYjFiYTc4NWUwYmE4YmI1YjUyZjI0NiIsICJpZCI6ICI1ZTA0MzczNC02MGU1LTQwZWQt
OGNlNS0wNjQ1MTNmMTkxMzciLCAicm9sZSI6ICJUZXN0IEFnZW50IiwgInZlcmJvc2U/IjogZmFs
c2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xs
bSI6ICIiLCAibGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJh
bGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29s
c19uYW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiZDg3OTA0ZWU4MmNh
NzVmZWQ1ODY4MTM3ZDRkYzEzNmYiLCAiaWQiOiAiNjdlZmEyZWEtZTQ0Ni00ZWI2LTg5YWMtMzA1
ZDUwZjFkODMwIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZh
bHNlLCAiYWdlbnRfcm9sZSI6ICJUZXN0IEFnZW50IiwgImFnZW50X2tleSI6ICI3YjMzZjY0ZGQw
YjFiYTc4NWUwYmE4YmI1YjUyZjI0NiIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4C
ChAWSoeQUP+DNRqnwCDlpo82Egg4jJLBn5Yi2ioMVGFzayBDcmVhdGVkMAE5+I9WaMegGhhBAOJW
aMegGhhKLgoIY3Jld19rZXkSIgogNzc2NTcyNTMwMGY2NjAwYjI5NjExYmI3ZTAyZDU2ZTZKMQoH
Y3Jld19pZBImCiQ3NDcwMDVhYi1lODE0LTQ0YzItOWFlMy1lZTZkYWEzYmMxYjZKLgoIdGFza19r
ZXkSIgogZDg3OTA0ZWU4MmNhNzVmZWQ1ODY4MTM3ZDRkYzEzNmZKMQoHdGFza19pZBImCiQ2N2Vm
YTJlYS1lNDQ2LTRlYjYtODlhYy0zMDVkNTBmMWQ4MzB6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '32247'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 14 Jan 2025 17:56:25 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: Test task description\n\nThis is the expect criteria for your final answer:
Test expected output\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
cookie:
- _cfuvid=SlnUP7AT9jJlQiN.Fm1c7MDyo78_hBRAz8PoabvHVSU-1736018539826-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-ApfRLkycSd0vwuTw50dfB5bgIoWiC\",\n \"object\":
\"chat.completion\",\n \"created\": 1736877387,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: The final answer must be the great and the most complete as possible,
it must be outcome described.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
158,\n \"completion_tokens\": 31,\n \"total_tokens\": 189,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 901f80a64cc6bd25-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 14 Jan 2025 17:56:28 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=A.PJUaUHPGyIr2pwNz44ei0seKXMH7czqXc5dA_MzD0-1736877388-1.0.1.1-jC2Lo7dl92z6qdY8mxRekSqg68TqMNsvyjPoNVXBfKNO6hHwL5BKWSBeA2i9hYWN2DBBLvHWeFXq1nXCKNcnlQ;
path=/; expires=Tue, 14-Jan-25 18:26:28 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=kERLxnulwhkdPi_RxnQLZV8G2Zbub8n_KYkKSL6uke8-1736877388108-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1020'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999807'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4ceac9bc8ae57f631959b91d2ab63c4d
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,111 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: Test task description\n\nThis is the expect criteria for your final answer:
Test expected output\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
cookie:
- _cfuvid=kERLxnulwhkdPi_RxnQLZV8G2Zbub8n_KYkKSL6uke8-1736877388108-0.0.1.1-604800000;
__cf_bm=A.PJUaUHPGyIr2pwNz44ei0seKXMH7czqXc5dA_MzD0-1736877388-1.0.1.1-jC2Lo7dl92z6qdY8mxRekSqg68TqMNsvyjPoNVXBfKNO6hHwL5BKWSBeA2i9hYWN2DBBLvHWeFXq1nXCKNcnlQ
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-ApfRMtnfMV4SCUJwrE5p1tu8fmAUB\",\n \"object\":
\"chat.completion\",\n \"created\": 1736877388,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Test expected output\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
158,\n \"completion_tokens\": 14,\n \"total_tokens\": 172,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_50cad350e4\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 901f80bbff04bd25-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 14 Jan 2025 17:56:28 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '393'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999807'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c68d3a1100516d5cc5b4aff80a8b1ff8
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -1,36 +1,864 @@
interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### User:\nRespond in 20 words. Which
model are you??\n\n", "options": {"num_predict": 30, "temperature": 0.7}, "stream":
model are you?\n\n", "options": {"temperature": 0.7, "num_predict": 30}, "stream":
false}'
headers:
Accept:
accept:
- '*/*'
Accept-Encoding:
accept-encoding:
- gzip, deflate
Connection:
connection:
- keep-alive
Content-Length:
- '164'
Content-Type:
- application/json
User-Agent:
- python-requests/2.32.3
content-length:
- '163'
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/generate
response:
body:
string: '{"model":"llama3.2:3b","created_at":"2025-01-02T20:24:24.812595Z","response":"I''m
an AI, specifically a large language model, designed to understand and respond
to user queries with accuracy.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,71291,128009,128006,78191,128007,271,40,2846,459,15592,11,11951,264,3544,4221,1646,11,6319,311,3619,323,6013,311,1217,20126,449,13708,13],"total_duration":827817584,"load_duration":41560542,"prompt_eval_count":39,"prompt_eval_duration":384000000,"eval_count":23,"eval_duration":400000000}'
content: '{"model":"llama3.2:3b","created_at":"2025-01-10T22:34:56.01157Z","response":"I''m
an artificial intelligence model, specifically a transformer-based language
model, designed to provide helpful and informative responses.","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,66454,304,220,508,4339,13,16299,1646,527,499,1980,128009,128006,78191,128007,271,40,2846,459,21075,11478,1646,11,11951,264,43678,6108,4221,1646,11,6319,311,3493,11190,323,39319,14847,13],"total_duration":579515000,"load_duration":35352208,"prompt_eval_count":39,"prompt_eval_duration":126000000,"eval_count":23,"eval_duration":417000000}'
headers:
Content-Length:
- '683'
- '714'
Content-Type:
- application/json; charset=utf-8
Date:
- Thu, 02 Jan 2025 20:24:24 GMT
status:
code: 200
message: OK
- Fri, 10 Jan 2025 22:34:56 GMT
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 10 Jan 2025 22:34:56 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 10 Jan 2025 22:34:56 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,7 +1,6 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
"stream": false}'
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini"}'
headers:
accept:
- application/json
@@ -10,13 +9,13 @@ interactions:
connection:
- keep-alive
content-length:
- '101'
- '84'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
@@ -26,7 +25,7 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
@@ -38,22 +37,22 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AcdBV2knOF2soWLszceiA08K8W8nE\",\n \"object\":
\"chat.completion\",\n \"created\": 1733770453,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AoEzIjusutsoPh1EmGgeXifkYvbfH\",\n \"object\":
\"chat.completion\",\n \"created\": 1736537376,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! How can I assist you today?\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 11,\n \"completion_tokens\":
9,\n \"total_tokens\": 20,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
10,\n \"total_tokens\": 21,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_bba3c8e70b\"\n}\n"
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_01aeff40ea\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ef733d51801bada-ATL
- 8fff13aa78db4569-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -61,14 +60,14 @@ interactions:
Content-Type:
- application/json
Date:
- Mon, 09 Dec 2024 18:54:13 GMT
- Fri, 10 Jan 2025 19:29:36 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=_fEt57lre0.E_IZaebjaDAcrpBbzGhLWW6KtQ4FjLxo-1733770453-1.0.1.1-ndzEQCfExSp1asSdBXxS0fGYQnKVTivInc1MHN.ZjnmGmkAmEp0EPwiJlcAMvQaMCMZ7a_vKqAEMbz8ZbzTYYg;
path=/; expires=Mon, 09-Dec-24 19:24:13 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=PoW0e3SDy04AxLoIfTXlp2oFUuTGjQzesTybc7KXe28-1736537376-1.0.1.1-tznDR3VZpUOrVUyHmDUYYtpSQ2WI3X6ya9EhOwgNEMVIe6KsDgje4tO7z_tk7l0cuRww1jx_ryG3sgT1AETdVw;
path=/; expires=Fri, 10-Jan-25 19:59:36 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=2gTS3no9rova7t6URcfR30yzeZdKkL.9.lvsZXgmbVw-1733770453657-0.0.1.1-604800000;
- _cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -81,7 +80,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '275'
- '286'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -99,12 +98,12 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_82ef8940a3291813e6a347535ab6bf26
- req_18f5593ddf37824bb9a7690407170dc0
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
"model": "gpt-4o-mini", "stream": false}'
"model": "gpt-4o-mini"}'
headers:
accept:
- application/json
@@ -113,16 +112,16 @@ interactions:
connection:
- keep-alive
content-length:
- '120'
- '103'
content-type:
- application/json
cookie:
- __cf_bm=_fEt57lre0.E_IZaebjaDAcrpBbzGhLWW6KtQ4FjLxo-1733770453-1.0.1.1-ndzEQCfExSp1asSdBXxS0fGYQnKVTivInc1MHN.ZjnmGmkAmEp0EPwiJlcAMvQaMCMZ7a_vKqAEMbz8ZbzTYYg;
_cfuvid=2gTS3no9rova7t6URcfR30yzeZdKkL.9.lvsZXgmbVw-1733770453657-0.0.1.1-604800000
- __cf_bm=PoW0e3SDy04AxLoIfTXlp2oFUuTGjQzesTybc7KXe28-1736537376-1.0.1.1-tznDR3VZpUOrVUyHmDUYYtpSQ2WI3X6ya9EhOwgNEMVIe6KsDgje4tO7z_tk7l0cuRww1jx_ryG3sgT1AETdVw;
_cfuvid=3UeEmz_rnmsoZxrVUv32u35gJOi766GDWNe5_RTjiPk-1736537376739-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
@@ -132,7 +131,7 @@ interactions:
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
@@ -144,22 +143,23 @@ interactions:
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AcdBWMAembczwWDLdjIRYwtbMLONh\",\n \"object\":
\"chat.completion\",\n \"created\": 1733770454,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AoEzIOYUDsd7SpYDQeQmbNGS7IBLE\",\n \"object\":
\"chat.completion\",\n \"created\": 1736537376,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! It\u2019s great to connect with
you. How can I assist you today?\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
14,\n \"completion_tokens\": 17,\n \"total_tokens\": 31,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_bba3c8e70b\"\n}\n"
\"assistant\",\n \"content\": \"Hello! It's great to connect with another
agent. How can I assist you today?\",\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 14,\n \"completion_tokens\": 18,\n
\ \"total_tokens\": 32,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_01aeff40ea\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8ef733d7bc41bada-ATL
- 8fff13ad8e054569-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -167,7 +167,7 @@ interactions:
Content-Type:
- application/json
Date:
- Mon, 09 Dec 2024 18:54:14 GMT
- Fri, 10 Jan 2025 19:29:37 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -181,7 +181,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '659'
- '422'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -199,7 +199,7 @@ interactions:
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_da24049df911504f5102825db6b4aea9
- req_366bcd7dfe94e2a2b5640fd9bb1c5a6b
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -6,11 +6,11 @@ interactions:
analysis for a new customer.\nYour personal goal is: Make the best research
and analysis on content about AI and AI agents\nYou ONLY have access to the
following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: Test Tool\nTool Arguments: {''query'': {''description'': ''Query to process'',
''type'': ''str''}}\nTool Description: A test tool that just returns the input\n\nUse
Name: Another Test Tool\nTool Arguments: {''query'': {''description'': ''Query
to process'', ''type'': ''str''}}\nTool Description: Another test tool\n\nUse
the following format:\n\nThought: you should always think about what to do\nAction:
the action to take, only one name of [Test Tool], just the name, exactly as
it''s written.\nAction Input: the input to the action, just a simple python
the action to take, only one name of [Another Test Tool], just the name, exactly
as it''s written.\nAction Input: the input to the action, just a simple python
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
@@ -18,430 +18,7 @@ interactions:
task\n\nThis is the expect criteria for your final answer: Test output\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1536'
content-type:
- application/json
cookie:
- _cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AhQfznhDMtsr58XvTuRDZoB1kxwfK\",\n \"object\":
\"chat.completion\",\n \"created\": 1734914011,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I need to come up with a suitable test
task that meets the criteria provided. I will focus on outlining a clear and
effective test task related to AI and AI agents.\\n\\nAction: Test Tool\\nAction
Input: {\\\"query\\\": \\\"Create a test task that involves evaluating the performance
of an AI agent in a given scenario, including criteria for success, tools required,
and process for assessment.\\\"}\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
298,\n \"completion_tokens\": 78,\n \"total_tokens\": 376,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_d02d531b47\"\n}\n"
headers:
CF-RAY:
- 8f6442b868fda486-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 23 Dec 2024 00:33:32 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=i6jvNjhsDne300GPAeEmyiJJKYqy7OPuamFG_kht3KE-1734914012-1.0.1.1-tCeVANAF521vkXpBdgYw.ov.fYUr6t5QC4LG_DugWyzu4C60Pi2CruTVniUgfCvkcu6rdHA5DwnaEZf2jFaRCQ;
path=/; expires=Mon, 23-Dec-24 01:03:32 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1400'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999642'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c3e50e9ca9dc22de5572692e1a9c0f16
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CrBzCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSh3MKEgoQY3Jld2FpLnRl
bGVtZXRyeRLUCwoQEr8cFisEEEEUtXBvovq6lhIIYdkQ+ekBh3wqDENyZXcgQ3JlYXRlZDABOThc
YLAZpxMYQfCuabAZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZGUxMDFkODU1M2VhMDI0NTM3YTA4ZjgxMmVl
NmI3NGFKMQoHY3Jld19pZBImCiRmNTc2MjViZC1jZmY3LTRlNGMtYWM1Zi0xZWFiNjQyMzJjMmRK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3
X2FnZW50cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
ICJpZCI6ICI1Y2Y0OWVjNy05NWYzLTRkZDctODU3Mi1mODAwNDA4NjBiMjgiLCAicm9sZSI6ICJS
ZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEyM2QzZC01NmEwLTRh
NTgtYTljNi1mZjUwNjRmZjNmNTEiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119XUrvAwoKY3Jld190YXNrcxLgAwrdA1t7ImtleSI6ICI5
NDRhZWYwYmFjODQwZjFjMjdiZDgzYTkzN2JjMzYxYiIsICJpZCI6ICI3ZDM2NDFhNi1hZmM4LTRj
NmMtYjkzMy0wNGZlZjY2NjUxN2MiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5Ijog
IjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgInRvb2xzX25hbWVzIjogW119LCB7
ImtleSI6ICI5ZjJkNGU5M2FiNTkwYzcyNTg4NzAyNzUwOGFmOTI3OCIsICJpZCI6ICIzNTVjZjFh
OS1lOTkzLTQxMTQtOWM0NC0yZDM5MDlhMDljNWYiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlNlbmlvciBXcml0ZXIiLCAi
YWdlbnRfa2V5IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgInRvb2xzX25h
bWVzIjogW119XXoCGAGFAQABAAASjgIKEHbV3nDt+ndNQNix1f+5+cASCL+l6KV3+FEpKgxUYXNr
IENyZWF0ZWQwATmgfo+wGacTGEEQE5CwGacTGEouCghjcmV3X2tleRIiCiBkZTEwMWQ4NTUzZWEw
MjQ1MzdhMDhmODEyZWU2Yjc0YUoxCgdjcmV3X2lkEiYKJGY1NzYyNWJkLWNmZjctNGU0Yy1hYzVm
LTFlYWI2NDIzMmMyZEouCgh0YXNrX2tleRIiCiA5NDRhZWYwYmFjODQwZjFjMjdiZDgzYTkzN2Jj
MzYxYkoxCgd0YXNrX2lkEiYKJDdkMzY0MWE2LWFmYzgtNGM2Yy1iOTMzLTA0ZmVmNjY2NTE3Y3oC
GAGFAQABAAASjgIKECqDENVoAz+3ybVKR/wz7dMSCKI9ILLFYx8SKgxUYXNrIENyZWF0ZWQwATng
63CzGacTGEE4AXKzGacTGEouCghjcmV3X2tleRIiCiBkZTEwMWQ4NTUzZWEwMjQ1MzdhMDhmODEy
ZWU2Yjc0YUoxCgdjcmV3X2lkEiYKJGY1NzYyNWJkLWNmZjctNGU0Yy1hYzVmLTFlYWI2NDIzMmMy
ZEouCgh0YXNrX2tleRIiCiA5ZjJkNGU5M2FiNTkwYzcyNTg4NzAyNzUwOGFmOTI3OEoxCgd0YXNr
X2lkEiYKJDM1NWNmMWE5LWU5OTMtNDExNC05YzQ0LTJkMzkwOWEwOWM1ZnoCGAGFAQABAAAS1AsK
EOofSLF1HDmhYMt7eIAeFo8SCCaKUQMuWNdnKgxDcmV3IENyZWF0ZWQwATkYKA62GacTGEFwlhW2
GacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
MS43Si4KCGNyZXdfa2V5EiIKIDRlOGU0MmNmMWVhN2U2NjhhMGU5MzJhNzAyMDY1NzQ5SjEKB2Ny
ZXdfaWQSJgokMmIzNTVjZDMtY2MwNi00Y2QxLTk0YjgtZTU5YjM5OGI3MjEzShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAJKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoLY3Jld19hZ2VudHMSggUK
/wRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNm
NDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1
ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5YzYtZmY1
MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAi
bWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAi
IiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJh
bGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29s
c19uYW1lcyI6IFtdfV1K7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiNjc4NDlmZjcxN2Ri
YWRhYmExYjk1ZDVmMmRmY2VlYTEiLCAiaWQiOiAiOGE5OTgxMDYtZjg5Zi00YTQ5LThjZjEtYjk4
MzQ5ZDE1NDRmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZh
bHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5
NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiODRh
ZjlmYzFjZDMzMTk5Y2ViYjlkNDE0MjE4NWY4MDIiLCAiaWQiOiAiYTViMTg0MDgtYjA1OC00ZDE1
LTkyMmUtNDJkN2M5Y2ViYjFhIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lu
cHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6
ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16
AhgBhQEAAQAAEsIJChDCLrcWQ+nu3SxOgnq50XhSEghjozRtuCFA0SoMQ3JldyBDcmVhdGVkMAE5
CDeCthmnExhBmHiIthmnExhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC44Ni4wShoKDnB5dGhvbl92
ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlM2ZkYTBmMzExMGZlODBiMTg5NDdjMDE0
NzE0MzBhNEoxCgdjcmV3X2lkEiYKJGM1ZDQ0YjY5LTRhNzMtNDA3Zi1iY2RhLTUzZmUxZTQ3YTU3
M0oeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2FsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRj
cmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoL
Y3Jld19hZ2VudHMSggUK/wRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNk
NzUiLCAiaWQiOiAiNWNmNDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUi
OiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9y
cG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWlu
aSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8i
OiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXki
OiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZh
MC00YTU4LWE5YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K2wEKCmNyZXdfdGFza3MSzAEKyQFbeyJrZXki
OiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiNjNhYTVlOTYtYTM4
Yy00YjcyLWJiZDQtYjM2NmU5NTlhOWZhIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1
bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJOb25lIiwgImFnZW50X2tleSI6IG51
bGwsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEuYJChA8kiyQ+AFdDSYkp0+TUWKvEgjW
0grLw8r5KioMQ3JldyBDcmVhdGVkMAE5iLivvhmnExhBeG21vhmnExhKGgoOY3Jld2FpX3ZlcnNp
b24SCAoGMC44Ni4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBl
M2ZkYTBmMzExMGZlODBiMTg5NDdjMDE0NzE0MzBhNEoxCgdjcmV3X2lkEiYKJGIzZGQ1MGYxLTI0
YWQtNDE5OC04ZGFhLTMwZTU0OTQ3MTlhMEoeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2Fs
ShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19u
dW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoLY3Jld19hZ2VudHMSggUK/wRbeyJrZXkiOiAiOGJkMjEz
OWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNmNDllYzctOTVmMy00ZGQ3LTg1
NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNl
LCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0i
OiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZh
ZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUi
OiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8t
bWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEK
CmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYy
ZGQiLCAiaWQiOiAiNzEyODlkZTAtODQ4My00NDM2LWI2OGMtNDc1MWIzNTU0ZmUzIiwgImFzeW5j
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6
ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2
M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCTiJL+KK5ff9xnie6eZbEc
EghbtQixNaG5DioMVGFzayBDcmVhdGVkMAE5cIXNvhmnExhBuPbNvhmnExhKLgoIY3Jld19rZXkS
IgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAxNDcxNDMwYTRKMQoHY3Jld19pZBImCiRiM2RkNTBm
MS0yNGFkLTQxOTgtOGRhYS0zMGU1NDk0NzE5YTBKLgoIdGFza19rZXkSIgogNWZhNjVjMDZhOWUz
MWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFza19pZBImCiQ3MTI4OWRlMC04NDgzLTQ0MzYtYjY4
Yy00NzUxYjM1NTRmZTN6AhgBhQEAAQAAEpwBChBCdDi/i+SH0kHHlJKQjmYgEgiemV9jVU5fQSoK
VG9vbCBVc2FnZTABOVj/YL8ZpxMYQWCwZr8ZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYu
MEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxIC
GAF6AhgBhQEAAQAAEqUBChBRuZ6Z/nNag4ubLeZ8L/8pEghCX4biKNFb6SoTVG9vbCBSZXBlYXRl
ZCBVc2FnZTABOUj9wr8ZpxMYQdg+yb8ZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoo
Cgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6
AhgBhQEAAQAAEpwBChDnt1bxQsOb0LVscG9GDYVtEgjf62keNMl5ZyoKVG9vbCBVc2FnZTABOdha
6MAZpxMYQWii7cAZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEooCgl0b29sX25hbWUS
GwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEpsB
ChDFqFA9b42EIwUxeNLTeScxEgiGFk7FwiNxVioKVG9vbCBVc2FnZTABObDAY8EZpxMYQdhIaMEZ
pxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEonCgl0b29sX25hbWUSGgoYQXNrIHF1ZXN0
aW9uIHRvIGNvd29ya2VySg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAASwgkKEHpB0rbuWbSXijzV
QdTa3oQSCNSPnbmqe2PfKgxDcmV3IENyZWF0ZWQwATmIXxTCGacTGEF4GhnCGacTGEoaCg5jcmV3
YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43Si4KCGNyZXdf
a2V5EiIKIGUzZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokZGJm
YzNjMjctMmRjZS00MjIyLThiYmQtYmMxMjU3OTVlNWI1Sh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVy
YXJjaGljYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUob
ChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3X2FnZW50cxKCBQr/BFt7ImtleSI6
ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICI1Y2Y0OWVjNy05NWYz
LTRkZDctODU3Mi1mODAwNDA4NjBiMjgiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEyM2QzZC01NmEwLTRhNTgtYTljNi1mZjUwNjRmZjNmNTEi
LCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
ImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVf
ZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjog
W119XUrbAQoKY3Jld190YXNrcxLMAQrJAVt7ImtleSI6ICI1ZmE2NWMwNmE5ZTMxZjJjNjk1NDMy
NjY4YWNkNjJkZCIsICJpZCI6ICIyYWFjOTllMC0yNWVmLTQzN2MtYTJmZi1jZGFlMjg2ZWU2MzQi
LCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2Vu
dF9yb2xlIjogIk5vbmUiLCAiYWdlbnRfa2V5IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119XXoC
GAGFAQABAAAS1QkKEM6Xt0BvAHy+TI7iLC6ovN0SCEfHP30NZESSKgxDcmV3IENyZWF0ZWQwATkg
PdnDGacTGEFIPN/DGacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3Zl
cnNpb24SCAoGMy4xMS43Si4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2Nk
NDQ0MzdhSjEKB2NyZXdfaWQSJgokNjE3MDA3NGMtYzU5OS00ODkyLTkwYzYtMTcxYjhkM2Y1OTRh
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqKBQoLY3Jl
d19hZ2VudHMS+gQK9wRbeyJrZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAi
LCAiaWQiOiAiYjNmMTczZTktNjY3NS00OTFkLTgyYjctODM4NmRkMjExMDM1IiwgInJvbGUiOiAi
Q0VPIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGws
ICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVn
YXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJt
YXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogIjlhNTAxNWVm
NDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgImlkIjogIjQxMTIzZDNkLTU2YTAtNGE1OC1hOWM2
LWZmNTA2NGZmM2Y1MSIsICJyb2xlIjogIlNlbmlvciBXcml0ZXIiLCAidmVyYm9zZT8iOiBmYWxz
ZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxt
IjogIiIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNl
LCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAi
dG9vbHNfbmFtZXMiOiBbXX1dSvgBCgpjcmV3X3Rhc2tzEukBCuYBW3sia2V5IjogIjBiOWQ2NWRi
NmI3YWVkZmIzOThjNTllMmE5ZjcxZWM1IiwgImlkIjogImJiNmI1Njg3LTg5NGMtNDAyNS05M2My
LTMyYjdkZmEwZTUxMyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8i
OiBmYWxzZSwgImFnZW50X3JvbGUiOiAiQ0VPIiwgImFnZW50X2tleSI6ICIzMjgyMTdiNmMyOTU5
YmRmYzQ3Y2FkMDBlODQ4OTBkMCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCK
KIL9w7sqoMzG3JItjK8eEgiR4RSmJw+SMSoMVGFzayBDcmVhdGVkMAE5CCjywxmnExhByIXywxmn
ExhKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0NDQzN2FKMQoHY3Jl
d19pZBImCiQ2MTcwMDc0Yy1jNTk5LTQ4OTItOTBjNi0xNzFiOGQzZjU5NGFKLgoIdGFza19rZXkS
IgogMGI5ZDY1ZGI2YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzVKMQoHdGFza19pZBImCiRiYjZiNTY4
Ny04OTRjLTQwMjUtOTNjMi0zMmI3ZGZhMGU1MTN6AhgBhQEAAQAAEpwBChD+/zv5udkceIEyIb7d
ne5vEgj1My75q1O7UCoKVG9vbCBVc2FnZTABOThPfMQZpxMYQcA4g8QZpxMYShoKDmNyZXdhaV92
ZXJzaW9uEggKBjAuODYuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtl
ckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEuAJChBIzM1Xa9IhegFDHxt6rj3eEgj9z56V1hXk
aCoMQ3JldyBDcmVhdGVkMAE5mEoMxRmnExhBoPsRxRmnExhKGgoOY3Jld2FpX3ZlcnNpb24SCAoG
MC44Ni4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlNjQ5NTcz
YTI2ZTU4NzkwY2FjMjFhMzdjZDQ0NDM3YUoxCgdjcmV3X2lkEiYKJGQ4MjhhZWM2LTg2N2MtNDdh
YS04ODY4LWQwMWYwNGM0MGE0MUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3
X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29m
X2FnZW50cxICGAJKigUKC2NyZXdfYWdlbnRzEvoECvcEW3sia2V5IjogIjMyODIxN2I2YzI5NTli
ZGZjNDdjYWQwMGU4NDg5MGQwIiwgImlkIjogImIzZjE3M2U5LTY2NzUtNDkxZC04MmI3LTgzODZk
ZDIxMTAzNSIsICJyb2xlIjogIkNFTyIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogdHJ1ZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEy
M2QzZC01NmEwLTRhNTgtYTljNi1mZjUwNjRmZjNmNTEiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVy
IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJm
dW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRp
b25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4
X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqDAgoKY3Jld190YXNrcxL0AQrx
AVt7ImtleSI6ICIwYjlkNjVkYjZiN2FlZGZiMzk4YzU5ZTJhOWY3MWVjNSIsICJpZCI6ICI5YTBj
ODZhZi0wYTE0LTQ4MzgtOTJmZC02NDhhZGM1NzJlMDMiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZh
bHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIkNFTyIsICJhZ2VudF9r
ZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAiLCAidG9vbHNfbmFtZXMiOiBb
InRlc3QgdG9vbCJdfV16AhgBhQEAAQAAEo4CChDl0EBv/8sdeV8eJ45EUBpxEgj+C7UlokySqSoM
VGFzayBDcmVhdGVkMAE5oI8jxRmnExhBYO0jxRmnExhKLgoIY3Jld19rZXkSIgogZTY0OTU3M2Ey
NmU1ODc5MGNhYzIxYTM3Y2Q0NDQzN2FKMQoHY3Jld19pZBImCiRkODI4YWVjNi04NjdjLTQ3YWEt
ODg2OC1kMDFmMDRjNDBhNDFKLgoIdGFza19rZXkSIgogMGI5ZDY1ZGI2YjdhZWRmYjM5OGM1OWUy
YTlmNzFlYzVKMQoHdGFza19pZBImCiQ5YTBjODZhZi0wYTE0LTQ4MzgtOTJmZC02NDhhZGM1NzJl
MDN6AhgBhQEAAQAAEpsBChArkcRTKJCaWLUYbx8DLyvTEgikYuS5tmbKNioKVG9vbCBVc2FnZTAB
OSh+MscZpxMYQdgTOMcZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEonCgl0b29sX25h
bWUSGgoYQXNrIHF1ZXN0aW9uIHRvIGNvd29ya2VySg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAAS
6wkKEHxFJsjiUgQromzfQHpYYMISCBkGairjk9kkKgxDcmV3IENyZWF0ZWQwATk4/rXHGacTGEGY
yrvHGacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoG
My4xMS43Si4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2NkNDQ0MzdhSjEK
B2NyZXdfaWQSJgokMjY3NzEyNzItOTRlZC00NDVkLTg1MGEtYTkyYTZjOWI5YmJkShwKDGNyZXdf
cHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9v
Zl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqVBQoLY3Jld19hZ2VudHMS
hQUKggVbeyJrZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAiLCAiaWQiOiAi
YjNmMTczZTktNjY3NS00OTFkLTgyYjctODM4NmRkMjExMDM1IiwgInJvbGUiOiAiQ0VPIiwgInZl
cmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlv
bl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlf
bGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbInRlc3QgdG9vbCJdfSwgeyJrZXkiOiAiOWE1MDE1
ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5
YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZh
bHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19s
bG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFs
c2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIs
ICJ0b29sc19uYW1lcyI6IFtdfV1KgwIKCmNyZXdfdGFza3MS9AEK8QFbeyJrZXkiOiAiMGI5ZDY1
ZGI2YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzUiLCAiaWQiOiAiNjYzOTEwZjYtNTlkYS00NjE3LTli
ZTMtNTBmMDdhNmQ5N2U3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0
PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJDRU8iLCAiYWdlbnRfa2V5IjogIjMyODIxN2I2YzI5
NTliZGZjNDdjYWQwMGU4NDg5MGQwIiwgInRvb2xzX25hbWVzIjogWyJ0ZXN0IHRvb2wiXX1degIY
AYUBAAEAABKOAgoQ1qBlNY8Yu1muyMaMnchyJBII0vE2y9FMwz0qDFRhc2sgQ3JlYXRlZDABObDR
zscZpxMYQah5z8cZpxMYSi4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2Nk
NDQ0MzdhSjEKB2NyZXdfaWQSJgokMjY3NzEyNzItOTRlZC00NDVkLTg1MGEtYTkyYTZjOWI5YmJk
Si4KCHRhc2tfa2V5EiIKIDBiOWQ2NWRiNmI3YWVkZmIzOThjNTllMmE5ZjcxZWM1SjEKB3Rhc2tf
aWQSJgokNjYzOTEwZjYtNTlkYS00NjE3LTliZTMtNTBmMDdhNmQ5N2U3egIYAYUBAAEAABKMAQoQ
a8ZDV3ZaBmcOZE5dJ87f1hII7iBRAQfEmdAqClRvb2wgVXNhZ2UwATmYcwjIGacTGEE4RxLIGacT
GEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGAoJdG9vbF9uYW1lEgsKCVRlc3QgVG9vbEoO
CghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEowBChBqK4036ypaH1gZ3OIOE/0HEgiF8wTQDQGRlSoK
VG9vbCBVc2FnZTABOYBiSsgZpxMYQRCYUsgZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYu
MEoYCgl0b29sX25hbWUSCwoJVGVzdCBUb29sSg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAASwQcK
EIWSiNjtKgeNQ6oIv8gjJ+MSCG8YnypCXfw1KgxDcmV3IENyZWF0ZWQwATnYUW/KGacTGEEoenTK
GacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
MS43Si4KCGNyZXdfa2V5EiIKIDk4MjQ2MGVlMmRkMmNmMTJhNzEzOGI3MDg1OWZlODE3SjEKB2Ny
ZXdfaWQSJgokZDNkODZjNmEtNWNmMi00MGI0LWExZGQtMzA5NTYyODdjNWE3ShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrcAgoLY3Jld19hZ2VudHMSzAIK
yQJbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNm
NDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsidGVzdCB0b29sIl19XUqSAgoKY3Jld190
YXNrcxKDAgqAAlt7ImtleSI6ICJmODM5Yzg3YzNkNzU3Yzg4N2Y0Y2U3NGQxODY0YjAyYSIsICJp
ZCI6ICJjM2Y2NjY2MS00YWNjLTQ5OWQtYjJkNC1kZjI0Nzg1MTJhZGYiLCAiYXN5bmNfZXhlY3V0
aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2Vh
cmNoZXIiLCAiYWdlbnRfa2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1Iiwg
InRvb2xzX25hbWVzIjogWyJhbm90aGVyIHRlc3QgdG9vbCJdfV16AhgBhQEAAQAAEo4CChD8dNvp
UItERukk59GnvESYEghtjirHyG3B3SoMVGFzayBDcmVhdGVkMAE5MAGByhmnExhBIFeByhmnExhK
LgoIY3Jld19rZXkSIgogOTgyNDYwZWUyZGQyY2YxMmE3MTM4YjcwODU5ZmU4MTdKMQoHY3Jld19p
ZBImCiRkM2Q4NmM2YS01Y2YyLTQwYjQtYTFkZC0zMDk1NjI4N2M1YTdKLgoIdGFza19rZXkSIgog
ZjgzOWM4N2MzZDc1N2M4ODdmNGNlNzRkMTg2NGIwMmFKMQoHdGFza19pZBImCiRjM2Y2NjY2MS00
YWNjLTQ5OWQtYjJkNC1kZjI0Nzg1MTJhZGZ6AhgBhQEAAQAAEowBChDdoNfQMW/Om7LQU9gZGDrl
Egjw71DM3bnOWCoKVG9vbCBVc2FnZTABOUgPFC8apxMYQdhtKi8apxMYShoKDmNyZXdhaV92ZXJz
aW9uEggKBjAuODYuMEoYCgl0b29sX25hbWUSCwoJVGVzdCBUb29sSg4KCGF0dGVtcHRzEgIYAXoC
GAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '14771'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Mon, 23 Dec 2024 00:33:37 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
an expert researcher, specialized in technology, software engineering, AI and
startups. You work as a freelancer and is now working on doing research and
analysis for a new customer.\nYour personal goal is: Make the best research
and analysis on content about AI and AI agents\nYou ONLY have access to the
following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: Test Tool\nTool Arguments: {''query'': {''description'': ''Query to process'',
''type'': ''str''}}\nTool Description: A test tool that just returns the input\n\nUse
the following format:\n\nThought: you should always think about what to do\nAction:
the action to take, only one name of [Test Tool], just the name, exactly as
it''s written.\nAction Input: the input to the action, just a simple python
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question"}, {"role": "user", "content": "\nCurrent Task: Write a test
task\n\nThis is the expect criteria for your final answer: Test output\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"I need to come up with a suitable test task that meets the criteria provided.
I will focus on outlining a clear and effective test task related to AI and
AI agents.\n\nAction: Test Tool\nAction Input: {\"query\": \"Create a test task
that involves evaluating the performance of an AI agent in a given scenario,
including criteria for success, tools required, and process for assessment.\"}\nObservation:
Processed: Create a test task that involves evaluating the performance of an
AI agent in a given scenario, including criteria for success, tools required,
and process for assessment."}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
@@ -451,12 +28,11 @@ interactions:
connection:
- keep-alive
content-length:
- '2160'
- '1525'
content-type:
- application/json
cookie:
- _cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000;
__cf_bm=i6jvNjhsDne300GPAeEmyiJJKYqy7OPuamFG_kht3KE-1734914012-1.0.1.1-tCeVANAF521vkXpBdgYw.ov.fYUr6t5QC4LG_DugWyzu4C60Pi2CruTVniUgfCvkcu6rdHA5DwnaEZf2jFaRCQ
- _cfuvid=eQzzWvIXDS8Me1OIBdCG5F1qFyVfAo3sumvYRE7J41E-1734965710778-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
@@ -478,52 +54,27 @@ interactions:
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AhQg0Cx1FED7gOwMpJUD5cQxVzQBK\",\n \"object\":
\"chat.completion\",\n \"created\": 1734914012,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
content: "{\n \"id\": \"chatcmpl-AmjYyKbTn42DzaLVOjDvJpLubTjSq\",\n \"object\":
\"chat.completion\",\n \"created\": 1736178252,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to compile a complete
and detailed test task based on the processed input, ensuring it includes all
necessary components as per the expect criteria.\\n\\nFinal Answer: \\n### Test
Task: Evaluating the Performance of an AI Agent\\n\\n**Objective:** \\nTo evaluate
the performance of an AI agent in simulating conversation with users in a customer
service context.\\n\\n**Scenario:**\\nAn AI agent is tasked with handling customer
inquiries on an e-commerce platform. The agent must respond to questions about
product availability, order tracking, returns, and other common queries.\\n\\n**Criteria
for Success:**\\n1. **Accuracy:** The AI should provide correct information
in at least 90% of the interactions.\\n2. **Response Time:** The average response
time should be under 2 seconds.\\n3. **User Satisfaction:** Aim for a user satisfaction
score of 85% or higher based on follow-up surveys after interactions.\\n4. **Fallback
Rate:** The AI should not default to a human agent more than 10% of the time.\\n\\n**Tools
Required:**\\n- Chatbot development platform (e.g., Dialogflow, Rasa)\\n- Metrics
tracking software (to measure accuracy, response times, and user satisfaction)\\n-
Survey tool (e.g., Google Forms, SurveyMonkey) for feedback collection\\n\\n**Process
for Assessment:**\\n1. **Setup:** Deploy the AI agent on a testing environment
simulating real customer inquiries.\\n2. **Data Collection:** Run the test for
a predetermined period (e.g., one week) or until a set number of interactions
(e.g., 1000).\\n3. **Measurement:**\\n - Record the interactions and analyze
the accuracy of the AI's responses.\\n - Measure the average response time
for each interaction.\\n - Collect user satisfaction scores via surveys sent
after the interaction.\\n4. **Analysis:** Compile the data to see if the AI
met the success criteria. Identify strengths and weaknesses in the responses.\\n5.
**Review:** Share findings with the development team to strategize improvements.\\n\\nThis
detailed task will help assess the AI agent\u2019s capabilities and provide
insights for further enhancements.\",\n \"refusal\": null\n },\n
\"assistant\",\n \"content\": \"Action: Another Test Tool\\nAction Input:
{\\\"query\\\": \\\"AI and AI agents\\\"}\",\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 416,\n \"completion_tokens\": 422,\n
\ \"total_tokens\": 838,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
\ \"usage\": {\n \"prompt_tokens\": 295,\n \"completion_tokens\": 18,\n
\ \"total_tokens\": 313,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_d02d531b47\"\n}\n"
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f6442c2ba15a486-GRU
- 8fdcd3fc9a56bf66-ATL
Connection:
- keep-alive
Content-Encoding:
@@ -531,7 +82,134 @@ interactions:
Content-Type:
- application/json
Date:
- Mon, 23 Dec 2024 00:33:39 GMT
- Mon, 06 Jan 2025 15:44:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=X1fuDKrQrN8tU.uxjB0murgJXWXcPtlNLnD7xUrAKTs-1736178252-1.0.1.1-AME9VZZVtEpqX9.BEN_Kj9pI9uK3sIJc2LdbuPsP3wULKxF4Il6r8ghX0to2wpcYsGWbJXSqWP.dQz4vGf_Gbw;
path=/; expires=Mon, 06-Jan-25 16:14:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=mv42xOepGYaNopc5ovT9Ajamw5rJrze8tlWTik8lfrk-1736178252935-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '632'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999644'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_9276753b2200fc95c74fc43c9d7d84a6
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
an expert researcher, specialized in technology, software engineering, AI and
startups. You work as a freelancer and is now working on doing research and
analysis for a new customer.\nYour personal goal is: Make the best research
and analysis on content about AI and AI agents\nYou ONLY have access to the
following tools, and should NEVER make up tools that are not listed here:\n\nTool
Name: Another Test Tool\nTool Arguments: {''query'': {''description'': ''Query
to process'', ''type'': ''str''}}\nTool Description: Another test tool\n\nUse
the following format:\n\nThought: you should always think about what to do\nAction:
the action to take, only one name of [Another Test Tool], just the name, exactly
as it''s written.\nAction Input: the input to the action, just a simple python
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question"}, {"role": "user", "content": "\nCurrent Task: Write a test
task\n\nThis is the expect criteria for your final answer: Test output\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"Action: Another Test Tool\nAction Input: {\"query\": \"AI and AI agents\"}\nObservation:
Another processed: AI and AI agents"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1687'
content-type:
- application/json
cookie:
- _cfuvid=mv42xOepGYaNopc5ovT9Ajamw5rJrze8tlWTik8lfrk-1736178252935-0.0.1.1-604800000;
__cf_bm=X1fuDKrQrN8tU.uxjB0murgJXWXcPtlNLnD7xUrAKTs-1736178252-1.0.1.1-AME9VZZVtEpqX9.BEN_Kj9pI9uK3sIJc2LdbuPsP3wULKxF4Il6r8ghX0to2wpcYsGWbJXSqWP.dQz4vGf_Gbw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AmjYzChV9s4D4qOJJvTvBAt3kRh7n\",\n \"object\":
\"chat.completion\",\n \"created\": 1736178253,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now know the final answer\\nFinal
Answer: Another processed: AI and AI agents\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 326,\n \"completion_tokens\":
19,\n \"total_tokens\": 345,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_5f20662549\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8fdcd4011938bf66-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 06 Jan 2025 15:44:15 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -545,25 +223,25 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '6734'
- '2488'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
- '10000'
x-ratelimit-limit-tokens:
- '150000000'
- '30000000'
x-ratelimit-remaining-requests:
- '29999'
- '9999'
x-ratelimit-remaining-tokens:
- '149999497'
- '29999613'
x-ratelimit-reset-requests:
- 2ms
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7d8df8b840e279bd64280d161d854161
- req_5e3a1a90ef91ff4f12d5b84e396beccc
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,4 +1,37 @@
# conftest.py
import os
import tempfile
from pathlib import Path
import pytest
from dotenv import load_dotenv
load_result = load_dotenv(override=True)
@pytest.fixture(autouse=True)
def setup_test_environment():
"""Set up test environment with a temporary directory for SQLite storage."""
with tempfile.TemporaryDirectory() as temp_dir:
# Create the directory with proper permissions
storage_dir = Path(temp_dir) / "crewai_test_storage"
storage_dir.mkdir(parents=True, exist_ok=True)
# Validate that the directory was created successfully
if not storage_dir.exists() or not storage_dir.is_dir():
raise RuntimeError(f"Failed to create test storage directory: {storage_dir}")
# Verify directory permissions
try:
# Try to create a test file to verify write permissions
test_file = storage_dir / ".permissions_test"
test_file.touch()
test_file.unlink()
except (OSError, IOError) as e:
raise RuntimeError(f"Test storage directory {storage_dir} is not writable: {e}")
# Set environment variable to point to the test storage directory
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
yield
# Cleanup is handled automatically when tempfile context exits

View File

@@ -16,6 +16,7 @@ from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.output_format import OutputFormat
@@ -1227,6 +1228,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -1464,39 +1466,35 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from unittest.mock import patch
from crewai import LLM
from crewai.tools import tool
llm = "gpt-4o"
llm = LLM(model="gpt-4o-mini")
@tool
def learn_about_AI() -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
def look_up_greeting() -> str:
"""Tool used to retrieve a greeting."""
return "Howdy!"
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
role="Greeter",
goal="Say hello.",
backstory="You are a friendly greeter.",
tools=[look_up_greeting],
llm="gpt-4o-mini",
function_calling_llm=llm,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
description="Look up the greeting and say it.",
expected_output="A greeting.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
with patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm:
crew.kickoff()
mock_from_litellm.assert_called()
crew = Crew(agents=[agent1], tasks=[essay])
result = crew.kickoff()
assert result.raw == "Howdy!"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1846,7 +1844,9 @@ def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
Agent, "interpolate_inputs", wraps=agent.interpolate_inputs
) as interpolate_agent_inputs:
with patch.object(
Task, "interpolate_inputs", wraps=task.interpolate_inputs
Task,
"interpolate_inputs_and_add_conversation_history",
wraps=task.interpolate_inputs_and_add_conversation_history,
) as interpolate_task_inputs:
execute.return_value = "ok"
crew.kickoff(inputs={"topic": "AI", "points": 5})
@@ -1873,7 +1873,9 @@ def test_crew_does_not_interpolate_without_inputs():
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Agent, "interpolate_inputs") as interpolate_agent_inputs:
with patch.object(Task, "interpolate_inputs") as interpolate_task_inputs:
with patch.object(
Task, "interpolate_inputs_and_add_conversation_history"
) as interpolate_task_inputs:
crew.kickoff()
interpolate_agent_inputs.assert_not_called()
interpolate_task_inputs.assert_not_called()
@@ -3087,6 +3089,29 @@ def test_hierarchical_verbose_false_manager_agent():
assert not crew.manager_agent.verbose
def test_fetch_inputs():
agent = Agent(
role="{role_detail} Researcher",
goal="Research on {topic}.",
backstory="Expert in {field}.",
)
task = Task(
description="Analyze the data on {topic}.",
expected_output="Summary of {topic} analysis.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
expected_placeholders = {"role_detail", "topic", "field"}
actual_placeholders = crew.fetch_inputs()
assert (
actual_placeholders == expected_placeholders
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
def test_task_tools_preserve_code_execution_tools():
"""
Test that task tools don't override code execution tools when allow_code_execution=True
@@ -3350,11 +3375,17 @@ def test_crew_with_failing_task_guardrails():
"""
content = result.raw.strip()
if not ('REPORT:' in content or '**REPORT:**' in content):
return (False, "Output must start with 'REPORT:' no formatting, just the word REPORT")
if not ("REPORT:" in content or "**REPORT:**" in content):
return (
False,
"Output must start with 'REPORT:' no formatting, just the word REPORT",
)
if not ('END REPORT' in content or '**END REPORT**' in content):
return (False, "Output must end with 'END REPORT' no formatting, just the word END REPORT")
if not ("END REPORT" in content or "**END REPORT**" in content):
return (
False,
"Output must end with 'END REPORT' no formatting, just the word END REPORT",
)
return (True, content)
@@ -3369,7 +3400,7 @@ def test_crew_with_failing_task_guardrails():
expected_output="A properly formatted report",
agent=researcher,
guardrail=strict_format_guardrail,
max_retries=3
max_retries=3,
)
crew = Crew(
@@ -3381,8 +3412,8 @@ def test_crew_with_failing_task_guardrails():
# Verify the final output meets all format requirements
content = result.raw.strip()
assert content.startswith('REPORT:'), "Output should start with 'REPORT:'"
assert content.endswith('END REPORT'), "Output should end with 'END REPORT'"
assert content.startswith("REPORT:"), "Output should start with 'REPORT:'"
assert content.endswith("END REPORT"), "Output should end with 'END REPORT'"
# Verify task output
task_output = result.tasks_output[0]
@@ -3407,7 +3438,7 @@ def test_crew_guardrail_feedback_in_context():
role="Writer",
goal="Write content with specific keywords",
backstory="You're an expert at following specific writing requirements.",
allow_delegation=False
allow_delegation=False,
)
task = Task(
@@ -3415,7 +3446,7 @@ def test_crew_guardrail_feedback_in_context():
expected_output="A response containing the keyword 'IMPORTANT'",
agent=researcher,
guardrail=format_guardrail,
max_retries=2
max_retries=2,
)
crew = Crew(agents=[researcher], tasks=[task])
@@ -3436,11 +3467,132 @@ def test_crew_guardrail_feedback_in_context():
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
# Verify that the second execution included the guardrail feedback
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], \
"Guardrail feedback should be included in retry context"
assert (
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
), "Guardrail feedback should be included in retry context"
# Verify final output meets guardrail requirements
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"
# Verify task retry count
assert task.retry_count == 1, "Task should have been retried once"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_before_kickoff_callback():
from crewai.project import CrewBase, agent, before_kickoff, task
@CrewBase
class TestCrewClass:
from crewai.project import crew
agents_config = None
tasks_config = None
def __init__(self):
self.inputs_modified = False
@before_kickoff
def modify_inputs(self, inputs):
self.inputs_modified = True
inputs["modified"] = True
return inputs
@agent
def my_agent(self):
return Agent(
role="Test Agent",
goal="Test agent goal",
backstory="Test agent backstory",
)
@task
def my_task(self):
task = Task(
description="Test task description",
expected_output="Test expected output",
agent=self.my_agent(),
)
return task
@crew
def crew(self):
return Crew(agents=self.agents, tasks=self.tasks)
test_crew_instance = TestCrewClass()
test_crew = test_crew_instance.crew()
# Verify that the before_kickoff_callbacks are set
assert len(test_crew.before_kickoff_callbacks) == 1
# Prepare inputs
inputs = {"initial": True}
# Call kickoff
test_crew.kickoff(inputs=inputs)
# Check that the before_kickoff function was called and modified inputs
assert test_crew_instance.inputs_modified
assert inputs.get("modified")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_before_kickoff_without_inputs():
from crewai.project import CrewBase, agent, before_kickoff, task
@CrewBase
class TestCrewClass:
from crewai.project import crew
agents_config = None
tasks_config = None
def __init__(self):
self.inputs_modified = False
self.received_inputs = None
@before_kickoff
def modify_inputs(self, inputs):
self.inputs_modified = True
inputs["modified"] = True
self.received_inputs = inputs
return inputs
@agent
def my_agent(self):
return Agent(
role="Test Agent",
goal="Test agent goal",
backstory="Test agent backstory",
)
@task
def my_task(self):
return Task(
description="Test task description",
expected_output="Test expected output",
agent=self.my_agent(),
)
@crew
def crew(self):
return Crew(agents=self.agents, tasks=self.tasks)
# Instantiate the class
test_crew_instance = TestCrewClass()
# Build the crew
test_crew = test_crew_instance.crew()
# Verify that the before_kickoff_callback is registered
assert len(test_crew.before_kickoff_callbacks) == 1
# Call kickoff without passing inputs
test_crew.kickoff()
# Check that the before_kickoff function was called
assert test_crew_instance.inputs_modified
# Verify that the inputs were initialized and modified inside the before_kickoff method
assert test_crew_instance.received_inputs is not None
assert test_crew_instance.received_inputs.get("modified") is True

View File

@@ -3,6 +3,7 @@
import asyncio
import pytest
from pydantic import BaseModel
from crewai.flow.flow import Flow, and_, listen, or_, router, start
@@ -265,6 +266,81 @@ def test_flow_with_custom_state():
assert flow.counter == 2
def test_flow_uuid_unstructured():
"""Test that unstructured (dictionary) flow states automatically get a UUID that persists."""
initial_id = None
class UUIDUnstructuredFlow(Flow):
@start()
def first_method(self):
nonlocal initial_id
# Verify ID is automatically generated
assert "id" in self.state
assert isinstance(self.state["id"], str)
# Store initial ID for comparison
initial_id = self.state["id"]
# Add some data to trigger state update
self.state["data"] = "example"
@listen(first_method)
def second_method(self):
# Ensure the ID persists after state updates
assert "id" in self.state
assert self.state["id"] == initial_id
# Update state again to verify ID preservation
self.state["more_data"] = "test"
assert self.state["id"] == initial_id
flow = UUIDUnstructuredFlow()
flow.kickoff()
# Verify ID persists after flow completion
assert flow.state["id"] == initial_id
# Verify UUID format (36 characters, including hyphens)
assert len(flow.state["id"]) == 36
def test_flow_uuid_structured():
"""Test that structured (Pydantic) flow states automatically get a UUID that persists."""
initial_id = None
class MyStructuredState(BaseModel):
counter: int = 0
message: str = "initial"
class UUIDStructuredFlow(Flow[MyStructuredState]):
@start()
def first_method(self):
nonlocal initial_id
# Verify ID is automatically generated and accessible as attribute
assert hasattr(self.state, "id")
assert isinstance(self.state.id, str)
# Store initial ID for comparison
initial_id = self.state.id
# Update some fields to trigger state changes
self.state.counter += 1
self.state.message = "updated"
@listen(first_method)
def second_method(self):
# Ensure the ID persists after state updates
assert hasattr(self.state, "id")
assert self.state.id == initial_id
# Update state again to verify ID preservation
self.state.counter += 1
self.state.message = "final"
assert self.state.id == initial_id
flow = UUIDStructuredFlow()
flow.kickoff()
# Verify ID persists after flow completion
assert flow.state.id == initial_id
# Verify UUID format (36 characters, including hyphens)
assert len(flow.state.id) == 36
# Verify other state fields were properly updated
assert flow.state.counter == 2
assert flow.state.message == "final"
def test_router_with_multiple_conditions():
"""Test a router that triggers when any of multiple steps complete (OR condition),
and another router that triggers only after all specified steps complete (AND condition).

View File

@@ -1,3 +1,5 @@
from time import sleep
import pytest
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -5,24 +7,31 @@ from crewai.llm import LLM
from crewai.utilities.token_counter_callback import TokenCalcHandler
# TODO: This test fails without print statement, which makes me think that something is happening asynchronously that we need to eventually fix and dive deeper into at a later date
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_callback_replacement():
llm = LLM(model="gpt-4o-mini")
llm1 = LLM(model="gpt-4o-mini")
llm2 = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
llm.call(
result1 = llm1.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
print("result1:", result1)
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
print("usage_metrics_1:", usage_metrics_1)
llm.call(
result2 = llm2.call(
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
callbacks=[calc_handler_2],
)
sleep(5)
print("result2:", result2)
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
print("usage_metrics_2:", usage_metrics_2)
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1

View File

@@ -722,7 +722,9 @@ def test_interpolate_inputs():
output_file="/tmp/{topic}/output_{date}.txt",
)
task.interpolate_inputs(inputs={"topic": "AI", "date": "2024"})
task.interpolate_inputs_and_add_conversation_history(
inputs={"topic": "AI", "date": "2024"}
)
assert (
task.description
== "Give me a list of 5 interesting ideas about AI to explore for an article, what makes them unique and interesting."
@@ -730,7 +732,9 @@ def test_interpolate_inputs():
assert task.expected_output == "Bullet point list of 5 interesting ideas about AI."
assert task.output_file == "/tmp/AI/output_2024.txt"
task.interpolate_inputs(inputs={"topic": "ML", "date": "2025"})
task.interpolate_inputs_and_add_conversation_history(
inputs={"topic": "ML", "date": "2025"}
)
assert (
task.description
== "Give me a list of 5 interesting ideas about ML to explore for an article, what makes them unique and interesting."
@@ -865,7 +869,7 @@ def test_key():
assert task.key == hash, "The key should be the hash of the description."
task.interpolate_inputs(inputs={"topic": "AI"})
task.interpolate_inputs_and_add_conversation_history(inputs={"topic": "AI"})
assert (
task.key == hash
), "The key should be the hash of the non-interpolated description."

View File

@@ -0,0 +1,112 @@
"""Test that persisted state properly overrides default values."""
from crewai.flow.flow import Flow, FlowState, listen, start
from crewai.flow.persistence import persist
class PoemState(FlowState):
"""Test state model with default values that should be overridden."""
sentence_count: int = 1000 # Default that should be overridden
has_set_count: bool = False # Track whether we've set the count
poem_type: str = ""
def test_default_value_override():
"""Test that persisted state values override class defaults."""
@persist()
class PoemFlow(Flow[PoemState]):
initial_state = PoemState
@start()
def set_sentence_count(self):
if self.state.has_set_count and self.state.sentence_count == 2:
self.state.sentence_count = 3
elif self.state.has_set_count and self.state.sentence_count == 1000:
self.state.sentence_count = 1000
elif self.state.has_set_count and self.state.sentence_count == 5:
self.state.sentence_count = 5
else:
self.state.sentence_count = 2
self.state.has_set_count = True
# First run - should set sentence_count to 2
flow1 = PoemFlow()
flow1.kickoff()
original_uuid = flow1.state.id
assert flow1.state.sentence_count == 2
# Second run - should load sentence_count=2 instead of default 1000
flow2 = PoemFlow()
flow2.kickoff(inputs={"id": original_uuid})
assert flow2.state.sentence_count == 3 # Should load 2, not default 1000
# Fourth run - explicit override should work
flow3 = PoemFlow()
flow3.kickoff(inputs={
"id": original_uuid,
"has_set_count": True,
"sentence_count": 5, # Override persisted value
})
assert flow3.state.sentence_count == 5 # Should use override value
# Third run - should not load sentence_count=2 instead of default 1000
flow4 = PoemFlow()
flow4.kickoff(inputs={"has_set_count": True})
assert flow4.state.sentence_count == 1000 # Should load 1000, not 2
def test_multi_step_default_override():
"""Test default value override with multiple start methods."""
@persist()
class MultiStepPoemFlow(Flow[PoemState]):
initial_state = PoemState
@start()
def set_sentence_count(self):
print("Setting sentence count")
if not self.state.has_set_count:
self.state.sentence_count = 3
self.state.has_set_count = True
@listen(set_sentence_count)
def set_poem_type(self):
print("Setting poem type")
if self.state.sentence_count == 3:
self.state.poem_type = "haiku"
elif self.state.sentence_count == 5:
self.state.poem_type = "limerick"
else:
self.state.poem_type = "free_verse"
@listen(set_poem_type)
def finished(self):
print("finished")
# First run - should set both sentence count and poem type
flow1 = MultiStepPoemFlow()
flow1.kickoff()
original_uuid = flow1.state.id
assert flow1.state.sentence_count == 3
assert flow1.state.poem_type == "haiku"
# Second run - should load persisted state and update poem type
flow2 = MultiStepPoemFlow()
flow2.kickoff(inputs={
"id": original_uuid,
"sentence_count": 5
})
assert flow2.state.sentence_count == 5
assert flow2.state.poem_type == "limerick"
# Third run - new flow without persisted state should use defaults
flow3 = MultiStepPoemFlow()
flow3.kickoff(inputs={
"id": original_uuid
})
assert flow3.state.sentence_count == 5
assert flow3.state.poem_type == "limerick"

View File

@@ -0,0 +1,176 @@
"""Test flow state persistence functionality."""
import os
from typing import Dict
import pytest
from pydantic import BaseModel
from crewai.flow.flow import Flow, FlowState, listen, start
from crewai.flow.persistence import persist
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
class TestState(FlowState):
"""Test state model with required id field."""
counter: int = 0
message: str = ""
def test_persist_decorator_saves_state(tmp_path):
"""Test that @persist decorator saves state in SQLite."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
class TestFlow(Flow[Dict[str, str]]):
initial_state = dict() # Use dict instance as initial state
@start()
@persist(persistence)
def init_step(self):
self.state["message"] = "Hello, World!"
self.state["id"] = "test-uuid" # Ensure we have an ID for persistence
# Run flow and verify state is saved
flow = TestFlow(persistence=persistence)
flow.kickoff()
# Load state from DB and verify
saved_state = persistence.load_state(flow.state["id"])
assert saved_state is not None
assert saved_state["message"] == "Hello, World!"
def test_structured_state_persistence(tmp_path):
"""Test persistence with Pydantic model state."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
class StructuredFlow(Flow[TestState]):
initial_state = TestState
@start()
@persist(persistence)
def count_up(self):
self.state.counter += 1
self.state.message = f"Count is {self.state.counter}"
# Run flow and verify state changes are saved
flow = StructuredFlow(persistence=persistence)
flow.kickoff()
# Load and verify state
saved_state = persistence.load_state(flow.state.id)
assert saved_state is not None
assert saved_state["counter"] == 1
assert saved_state["message"] == "Count is 1"
def test_flow_state_restoration(tmp_path):
"""Test restoring flow state from persistence with various restoration methods."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
# First flow execution to create initial state
class RestorableFlow(Flow[TestState]):
@start()
@persist(persistence)
def set_message(self):
if self.state.message == "":
self.state.message = "Original message"
if self.state.counter == 0:
self.state.counter = 42
# Create and persist initial state
flow1 = RestorableFlow(persistence=persistence)
flow1.kickoff()
original_uuid = flow1.state.id
# Test case 1: Restore using restore_uuid with field override
flow2 = RestorableFlow(persistence=persistence)
flow2.kickoff(inputs={
"id": original_uuid,
"counter": 43
})
# Verify state restoration and selective field override
assert flow2.state.id == original_uuid
assert flow2.state.message == "Original message" # Preserved
assert flow2.state.counter == 43 # Overridden
# Test case 2: Restore using kwargs['id']
flow3 = RestorableFlow(persistence=persistence)
flow3.kickoff(inputs={
"id": original_uuid,
"message": "Updated message"
})
# Verify state restoration and selective field override
assert flow3.state.id == original_uuid
assert flow3.state.counter == 43 # Preserved
assert flow3.state.message == "Updated message" # Overridden
def test_multiple_method_persistence(tmp_path):
"""Test state persistence across multiple method executions."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
class MultiStepFlow(Flow[TestState]):
@start()
@persist(persistence)
def step_1(self):
if self.state.counter == 1:
self.state.counter = 99999
self.state.message = "Step 99999"
else:
self.state.counter = 1
self.state.message = "Step 1"
@listen(step_1)
@persist(persistence)
def step_2(self):
if self.state.counter == 1:
self.state.counter = 2
self.state.message = "Step 2"
flow = MultiStepFlow(persistence=persistence)
flow.kickoff()
flow2 = MultiStepFlow(persistence=persistence)
flow2.kickoff(inputs={"id": flow.state.id})
# Load final state
final_state = flow2.state
assert final_state is not None
assert final_state.counter == 2
assert final_state.message == "Step 2"
class NoPersistenceMultiStepFlow(Flow[TestState]):
@start()
@persist(persistence)
def step_1(self):
if self.state.counter == 1:
self.state.counter = 99999
self.state.message = "Step 99999"
else:
self.state.counter = 1
self.state.message = "Step 1"
@listen(step_1)
def step_2(self):
if self.state.counter == 1:
self.state.counter = 2
self.state.message = "Step 2"
flow = NoPersistenceMultiStepFlow(persistence=persistence)
flow.kickoff()
flow2 = NoPersistenceMultiStepFlow(persistence=persistence)
flow2.kickoff(inputs={"id": flow.state.id})
# Load final state
final_state = flow2.state
assert final_state.counter == 99999
assert final_state.message == "Step 99999"

View File

@@ -1,8 +1,6 @@
from unittest.mock import MagicMock
import pytest
from crewai import Agent, Task
from crewai import Agent
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
@@ -22,12 +20,9 @@ class InternalAgentTool(BaseAgentTool):
("Futel Official Infopoint\n", True), # trailing newline
('"Futel Official Infopoint"', True), # embedded quotes
(" FUTEL\nOFFICIAL INFOPOINT ", True), # multiple whitespace and newline
("futel official infopoint", True), # lowercase
("FUTEL OFFICIAL INFOPOINT", True), # uppercase
("Non Existent Agent", False), # non-existent agent
(None, False), # None agent name
],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_tool_role_matching(role_name, should_match):
"""Test that agent tools can match roles regardless of case, whitespace, and special characters."""
# Create test agent

View File

@@ -121,3 +121,113 @@ def test_tool_usage_render():
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
in rendered
)
def test_validate_tool_input_booleans_and_none():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with booleans and None
tool_input = '{"key1": True, "key2": False, "key3": None}'
expected_arguments = {"key1": True, "key2": False, "key3": None}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_mixed_types():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with mixed types
tool_input = '{"number": 123, "text": "Some text", "flag": True}'
expected_arguments = {"number": 123, "text": "Some text", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_single_quotes():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with single quotes instead of double quotes
tool_input = "{'key': 'value', 'flag': True}"
expected_arguments = {"key": "value", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_invalid_json_repairable():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Invalid JSON input that can be repaired
tool_input = '{"key": "value", "list": [1, 2, 3,]}'
expected_arguments = {"key": "value", "list": [1, 2, 3]}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_with_special_characters():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with special characters
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments

View File

@@ -0,0 +1,114 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Name: Alice, Age: 30"}], "model":
"gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name": "SimpleModel"}},
"tools": [{"type": "function", "function": {"name": "SimpleModel", "description":
"Correctly extracted `SimpleModel` with all the required parameters with correct
types", "parameters": {"properties": {"name": {"title": "Name", "type": "string"},
"age": {"title": "Age", "type": "integer"}}, "required": ["age", "name"], "type":
"object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '507'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Aq4a4xDv8G0i4fbTtPJEI2B8UNBup\",\n \"object\":
\"chat.completion\",\n \"created\": 1736974028,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_uO5nec8hTk1fpYINM8TUafhe\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"SimpleModel\",\n
\ \"arguments\": \"{\\\"name\\\":\\\"Alice\\\",\\\"age\\\":30}\"\n
\ }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 79,\n \"completion_tokens\": 10,\n
\ \"total_tokens\": 89,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 9028b81aeb1cb05f-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 15 Jan 2025 20:47:08 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
path=/; expires=Wed, 15-Jan-25 21:17:08 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '439'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a468000458b9d2848b7497b2e3d485a3
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,869 @@
interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### User:\nName: Alice Llama, Age:
30\n\n### System:\nProduce JSON OUTPUT ONLY! Adhere to this format {\"name\":
\"function_name\", \"arguments\":{\"argument_name\": \"argument_value\"}} The
following functions are available to you:\n{''type'': ''function'', ''function'':
{''name'': ''SimpleModel'', ''description'': ''Correctly extracted `SimpleModel`
with all the required parameters with correct types'', ''parameters'': {''properties'':
{''name'': {''title'': ''Name'', ''type'': ''string''}, ''age'': {''title'':
''Age'', ''type'': ''integer''}}, ''required'': [''age'', ''name''], ''type'':
''object''}}}\n\n\n", "options": {}, "stream": false, "format": "json"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '657'
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/generate
response:
content: '{"model":"llama3.2:3b","created_at":"2025-01-15T20:47:11.926411Z","response":"{\"name\":
\"SimpleModel\", \"arguments\":{\"name\": \"Alice Llama\", \"age\": 30}}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,14711,744,512,1360,13677,4823,32090,27785,0,2467,6881,311,420,3645,5324,609,794,330,1723,1292,498,330,16774,23118,14819,1292,794,330,14819,3220,32075,578,2768,5865,527,2561,311,499,512,13922,1337,1232,364,1723,518,364,1723,1232,5473,609,1232,364,16778,1747,518,364,4789,1232,364,34192,398,28532,1595,16778,1747,63,449,682,279,2631,5137,449,4495,4595,518,364,14105,1232,5473,13495,1232,5473,609,1232,5473,2150,1232,364,678,518,364,1337,1232,364,928,25762,364,425,1232,5473,2150,1232,364,17166,518,364,1337,1232,364,11924,8439,2186,364,6413,1232,2570,425,518,364,609,4181,364,1337,1232,364,1735,23742,3818,128009,128006,78191,128007,271,5018,609,794,330,16778,1747,498,330,16774,23118,609,794,330,62786,445,81101,498,330,425,794,220,966,3500],"total_duration":3374470708,"load_duration":1075750500,"prompt_eval_count":167,"prompt_eval_duration":1871000000,"eval_count":24,"eval_duration":426000000}'
headers:
Content-Length:
- '1263'
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"name": "llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '23'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
content: "{\"license\":\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version
Release Date: September 25, 2024\\n\\n\u201CAgreement\u201D means the terms
and conditions for use, reproduction, distribution \\nand modification of the
Llama Materials set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications,
manuals and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\n**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta is committed
to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201C**Policy**\u201D).
The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\\\"\\\"\\\"\\nPARAMETER stop \\u003c|start_header_id|\\u003e\\nPARAMETER
stop \\u003c|end_header_id|\\u003e\\nPARAMETER stop \\u003c|eot_id|\\u003e\\nLICENSE
\\\"LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\\nLlama 3.2 Version Release Date:
September 25, 2024\\n\\n\u201CAgreement\u201D means the terms and conditions
for use, reproduction, distribution \\nand modification of the Llama Materials
set forth herein.\\n\\n\u201CDocumentation\u201D means the specifications, manuals
and documentation accompanying Llama 3.2\\ndistributed by Meta at https://llama.meta.com/doc/overview.\\n\\n\u201CLicensee\u201D
or \u201Cyou\u201D means you, or your employer or any other person or entity
(if you are \\nentering into this Agreement on such person or entity\u2019s
behalf), of the age required under\\napplicable laws, rules or regulations to
provide legal consent and that has legal authority\\nto bind your employer or
such other person or entity if you are entering in this Agreement\\non their
behalf.\\n\\n\u201CLlama 3.2\u201D means the foundational large language models
and software and algorithms, including\\nmachine-learning model code, trained
model weights, inference-enabling code, training-enabling code,\\nfine-tuning
enabling code and other elements of the foregoing distributed by Meta at \\nhttps://www.llama.com/llama-downloads.\\n\\n\u201CLlama
Materials\u201D means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation
(and \\nany portion thereof) made available under this Agreement.\\n\\n\u201CMeta\u201D
or \u201Cwe\u201D means Meta Platforms Ireland Limited (if you are located in
or, \\nif you are an entity, your principal place of business is in the EEA
or Switzerland) \\nand Meta Platforms, Inc. (if you are located outside of the
EEA or Switzerland). \\n\\n\\nBy clicking \u201CI Accept\u201D below or by using
or distributing any portion or element of the Llama Materials,\\nyou agree to
be bound by this Agreement.\\n\\n\\n1. License Rights and Redistribution.\\n\\n
\ a. Grant of Rights. You are granted a non-exclusive, worldwide, \\nnon-transferable
and royalty-free limited license under Meta\u2019s intellectual property or
other rights \\nowned by Meta embodied in the Llama Materials to use, reproduce,
distribute, copy, create derivative works \\nof, and make modifications to the
Llama Materials. \\n\\n b. Redistribution and Use. \\n\\n i. If
you distribute or make available the Llama Materials (or any derivative works
thereof), \\nor a product or service (including another AI model) that contains
any of them, you shall (A) provide\\na copy of this Agreement with any such
Llama Materials; and (B) prominently display \u201CBuilt with Llama\u201D\\non
a related website, user interface, blogpost, about page, or product documentation.
If you use the\\nLlama Materials or any outputs or results of the Llama Materials
to create, train, fine tune, or\\notherwise improve an AI model, which is distributed
or made available, you shall also include \u201CLlama\u201D\\nat the beginning
of any such AI model name.\\n\\n ii. If you receive Llama Materials,
or any derivative works thereof, from a Licensee as part\\nof an integrated
end user product, then Section 2 of this Agreement will not apply to you. \\n\\n
\ iii. You must retain in all copies of the Llama Materials that you distribute
the \\nfollowing attribution notice within a \u201CNotice\u201D text file distributed
as a part of such copies: \\n\u201CLlama 3.2 is licensed under the Llama 3.2
Community License, Copyright \xA9 Meta Platforms,\\nInc. All Rights Reserved.\u201D\\n\\n
\ iv. Your use of the Llama Materials must comply with applicable laws
and regulations\\n(including trade compliance laws and regulations) and adhere
to the Acceptable Use Policy for\\nthe Llama Materials (available at https://www.llama.com/llama3_2/use-policy),
which is hereby \\nincorporated by reference into this Agreement.\\n \\n2.
Additional Commercial Terms. If, on the Llama 3.2 version release date, the
monthly active users\\nof the products or services made available by or for
Licensee, or Licensee\u2019s affiliates, \\nis greater than 700 million monthly
active users in the preceding calendar month, you must request \\na license
from Meta, which Meta may grant to you in its sole discretion, and you are not
authorized to\\nexercise any of the rights under this Agreement unless or until
Meta otherwise expressly grants you such rights.\\n\\n3. Disclaimer of Warranty.
UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND \\nRESULTS
THEREFROM ARE PROVIDED ON AN \u201CAS IS\u201D BASIS, WITHOUT WARRANTIES OF
ANY KIND, AND META DISCLAIMS\\nALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\\nOF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE\\nFOR
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS
AND ASSUME ANY RISKS ASSOCIATED\\nWITH YOUR USE OF THE LLAMA MATERIALS AND ANY
OUTPUT AND RESULTS.\\n\\n4. Limitation of Liability. IN NO EVENT WILL META OR
ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, \\nWHETHER IN CONTRACT,
TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
\\nFOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,
EXEMPLARY OR PUNITIVE DAMAGES, EVEN \\nIF META OR ITS AFFILIATES HAVE BEEN ADVISED
OF THE POSSIBILITY OF ANY OF THE FOREGOING.\\n\\n5. Intellectual Property.\\n\\n
\ a. No trademark licenses are granted under this Agreement, and in connection
with the Llama Materials, \\nneither Meta nor Licensee may use any name or mark
owned by or associated with the other or any of its affiliates, \\nexcept as
required for reasonable and customary use in describing and redistributing the
Llama Materials or as \\nset forth in this Section 5(a). Meta hereby grants
you a license to use \u201CLlama\u201D (the \u201CMark\u201D) solely as required
\\nto comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s
brand guidelines (currently accessible \\nat https://about.meta.com/brand/resources/meta/company-brand/).
All goodwill arising out of your use of the Mark \\nwill inure to the benefit
of Meta.\\n\\n b. Subject to Meta\u2019s ownership of Llama Materials and
derivatives made by or for Meta, with respect to any\\n derivative works
and modifications of the Llama Materials that are made by you, as between you
and Meta,\\n you are and will be the owner of such derivative works and modifications.\\n\\n
\ c. If you institute litigation or other proceedings against Meta or any
entity (including a cross-claim or\\n counterclaim in a lawsuit) alleging
that the Llama Materials or Llama 3.2 outputs or results, or any portion\\n
\ of any of the foregoing, constitutes infringement of intellectual property
or other rights owned or licensable\\n by you, then any licenses granted
to you under this Agreement shall terminate as of the date such litigation or\\n
\ claim is filed or instituted. You will indemnify and hold harmless Meta
from and against any claim by any third\\n party arising out of or related
to your use or distribution of the Llama Materials.\\n\\n6. Term and Termination.
The term of this Agreement will commence upon your acceptance of this Agreement
or access\\nto the Llama Materials and will continue in full force and effect
until terminated in accordance with the terms\\nand conditions herein. Meta
may terminate this Agreement if you are in breach of any term or condition of
this\\nAgreement. Upon termination of this Agreement, you shall delete and cease
use of the Llama Materials. Sections 3,\\n4 and 7 shall survive the termination
of this Agreement. \\n\\n7. Governing Law and Jurisdiction. This Agreement will
be governed and construed under the laws of the State of \\nCalifornia without
regard to choice of law principles, and the UN Convention on Contracts for the
International\\nSale of Goods does not apply to this Agreement. The courts of
California shall have exclusive jurisdiction of\\nany dispute arising out of
this Agreement.\\\"\\nLICENSE \\\"**Llama 3.2** **Acceptable Use Policy**\\n\\nMeta
is committed to promoting safe and fair use of its tools and features, including
Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use
Policy (\u201C**Policy**\u201D). The most recent copy of this policy can be
found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\\n\\n**Prohibited
Uses**\\n\\nWe want everyone to use Llama 3.2 safely and responsibly. You agree
you will not use, or allow others to use, Llama 3.2 to:\\n\\n\\n\\n1. Violate
the law or others\u2019 rights, including to:\\n 1. Engage in, promote, generate,
contribute to, encourage, plan, incite, or further illegal or unlawful activity
or content, such as:\\n 1. Violence or terrorism\\n 2. Exploitation
or harm to children, including the solicitation, creation, acquisition, or dissemination
of child exploitative content or failure to report Child Sexual Abuse Material\\n
\ 3. Human trafficking, exploitation, and sexual violence\\n 4.
The illegal distribution of information or materials to minors, including obscene
materials, or failure to employ legally required age-gating in connection with
such information or materials.\\n 5. Sexual solicitation\\n 6.
Any other criminal activity\\n 1. Engage in, promote, incite, or facilitate
the harassment, abuse, threatening, or bullying of individuals or groups of
individuals\\n 2. Engage in, promote, incite, or facilitate discrimination
or other unlawful or harmful conduct in the provision of employment, employment
benefits, credit, housing, other economic benefits, or other essential goods
and services\\n 3. Engage in the unauthorized or unlicensed practice of any
profession including, but not limited to, financial, legal, medical/health,
or related professional practices\\n 4. Collect, process, disclose, generate,
or infer private or sensitive information about individuals, including information
about individuals\u2019 identity, health, or demographic information, unless
you have obtained the right to do so in accordance with applicable law\\n 5.
Engage in or facilitate any action or generate any content that infringes, misappropriates,
or otherwise violates any third-party rights, including the outputs or results
of any products or services using the Llama Materials\\n 6. Create, generate,
or facilitate the creation of malicious code, malware, computer viruses or do
anything else that could disable, overburden, interfere with or impair the proper
working, integrity, operation or appearance of a website or computer system\\n
\ 7. Engage in any action, or facilitate any action, to intentionally circumvent
or remove usage restrictions or other safety measures, or to enable functionality
disabled by Meta\\n2. Engage in, promote, incite, facilitate, or assist in the
planning or development of activities that present a risk of death or bodily
harm to individuals, including use of Llama 3.2 related to the following:\\n
\ 8. Military, warfare, nuclear industries or applications, espionage, use
for materials or activities that are subject to the International Traffic Arms
Regulations (ITAR) maintained by the United States Department of State or to
the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons
Convention Implementation Act of 1997\\n 9. Guns and illegal weapons (including
weapon development)\\n 10. Illegal drugs and regulated/controlled substances\\n
\ 11. Operation of critical infrastructure, transportation technologies, or
heavy machinery\\n 12. Self-harm or harm to others, including suicide, cutting,
and eating disorders\\n 13. Any content intended to incite or promote violence,
abuse, or any infliction of bodily harm to an individual\\n3. Intentionally
deceive or mislead others, including use of Llama 3.2 related to the following:\\n
\ 14. Generating, promoting, or furthering fraud or the creation or promotion
of disinformation\\n 15. Generating, promoting, or furthering defamatory
content, including the creation of defamatory statements, images, or other content\\n
\ 16. Generating, promoting, or further distributing spam\\n 17. Impersonating
another individual without consent, authorization, or legal right\\n 18.
Representing that the use of Llama 3.2 or outputs are human-generated\\n 19.
Generating or facilitating false online engagement, including fake reviews and
other means of fake online engagement\\n4. Fail to appropriately disclose to
end users any known dangers of your AI system\\n5. Interact with third party
tools, models, or software designed to generate unlawful content or engage in
unlawful or harmful conduct and/or represent that the outputs of such tools,
models, or software are associated with Meta or Llama 3.2\\n\\nWith respect
to any multimodal models included in Llama 3.2, the rights granted under Section
1(a) of the Llama 3.2 Community License Agreement are not being granted to you
if you are an individual domiciled in, or a company with a principal place of
business in, the European Union. This restriction does not apply to end users
of a product or service that incorporates any such multimodal models.\\n\\nPlease
report any violation of this Policy, software \u201Cbug,\u201D or other problems
that could lead to a violation of this Policy through one of the following means:\\n\\n\\n\\n*
Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues\\u0026h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\\n*
Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\\n*
Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\\n*
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\\\"\\n\",\"parameters\":\"stop \\\"\\u003c|start_header_id|\\u003e\\\"\\nstop
\ \\\"\\u003c|end_header_id|\\u003e\\\"\\nstop \\\"\\u003c|eot_id|\\u003e\\\"\",\"template\":\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
an answer to the orginal user question.\\n\\nYou are a helpful assistant with
tool calling capabilities.\\n{{- end }}\\u003c|eot_id|\\u003e\\n{{- range $i,
$_ := .Messages }}\\n{{- $last := eq (len (slice $.Messages $i)) 1 }}\\n{{-
if eq .Role \\\"user\\\" }}\\u003c|start_header_id|\\u003euser\\u003c|end_header_id|\\u003e\\n{{-
if and $.Tools $last }}\\n\\nGiven the following functions, please respond with
a JSON for a function call with its proper arguments that best answers the given
prompt.\\n\\nRespond in the format {\\\"name\\\": function name, \\\"parameters\\\":
dictionary of argument name and its value}. Do not use variables.\\n\\n{{ range
$.Tools }}\\n{{- . }}\\n{{ end }}\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{-
else }}\\n\\n{{ .Content }}\\u003c|eot_id|\\u003e\\n{{- end }}{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- else if eq .Role \\\"assistant\\\" }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n{{-
if .ToolCalls }}\\n{{ range .ToolCalls }}\\n{\\\"name\\\": \\\"{{ .Function.Name
}}\\\", \\\"parameters\\\": {{ .Function.Arguments }}}{{ end }}\\n{{- else }}\\n\\n{{
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Wed, 15 Jan 2025 20:47:12 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,116 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Name: John Doe\nAge: 30\nAddress:
123 Main St, Anytown, 12345"}], "model": "gpt-4o-mini", "tool_choice": {"type":
"function", "function": {"name": "Person"}}, "tools": [{"type": "function",
"function": {"name": "Person", "description": "Correctly extracted `Person`
with all the required parameters with correct types", "parameters": {"$defs":
{"Address": {"properties": {"street": {"title": "Street", "type": "string"},
"city": {"title": "City", "type": "string"}, "zip_code": {"title": "Zip Code",
"type": "string"}}, "required": ["street", "city", "zip_code"], "title": "Address",
"type": "object"}}, "properties": {"name": {"title": "Name", "type": "string"},
"age": {"title": "Age", "type": "integer"}, "address": {"$ref": "#/$defs/Address"}},
"required": ["address", "age", "name"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '853'
content-type:
- application/json
cookie:
- __cf_bm=PzayZLF04c14veGc.0ocVg3VHBbpzKRW8Hqox8L9U7c-1736974028-1.0.1.1-mZpK8.SH9l7K2z8Tvt6z.dURiVPjFqEz7zYEITfRwdr5z0razsSebZGN9IRPmI5XC_w5rbZW2Kg6hh5cenXinQ;
_cfuvid=ciwC3n2Srn20xx4JhEUeN6Ap0tNBaE44S95nIilboQ0-1736974028496-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.59.6
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.59.6
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-Aq4aFpbhU10QK0e6Jlkxy8AUxCZCf\",\n \"object\":
\"chat.completion\",\n \"created\": 1736974039,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_N29aoGL9tN0qL2O7HI8Op2so\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"Person\",\n
\ \"arguments\": \"{\\\"name\\\":\\\"John Doe\\\",\\\"age\\\":30,\\\"address\\\":{\\\"street\\\":\\\"123
Main St\\\",\\\"city\\\":\\\"Anytown\\\",\\\"zip_code\\\":\\\"12345\\\"}}\"\n
\ }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 118,\n \"completion_tokens\": 30,\n
\ \"total_tokens\": 148,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 9028b863dbaa672f-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 15 Jan 2025 20:47:20 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '840'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999968'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2f9d1e3f0ace4944891dde05093486aa
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -39,6 +39,22 @@ class NestedModel(BaseModel):
data: SimpleModel
class Address(BaseModel):
street: str
city: str
zip_code: str
class Person(BaseModel):
name: str
age: int
address: Address
class CustomConverter(Converter):
pass
# Fixtures
@pytest.fixture
def mock_agent():
@@ -199,26 +215,23 @@ def test_convert_with_instructions_failure(
# Tests for get_conversion_instructions
def test_get_conversion_instructions_gpt():
mock_llm = Mock()
mock_llm.openai_api_base = None
llm = LLM(model="gpt-4o-mini")
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
supports_function_calling.return_value = True
instructions = get_conversion_instructions(SimpleModel, mock_llm)
instructions = get_conversion_instructions(SimpleModel, llm)
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
assert (
instructions
== f"I'm gonna convert this raw text into valid JSON.\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
== f"Please convert the following text into valid JSON.\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
)
def test_get_conversion_instructions_non_gpt():
mock_llm = Mock()
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
supports_function_calling.return_value = False
with patch("crewai.utilities.converter.PydanticSchemaParser") as mock_parser:
mock_parser.return_value.get_schema.return_value = "Sample schema"
instructions = get_conversion_instructions(SimpleModel, mock_llm)
assert "Sample schema" in instructions
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
with patch.object(LLM, "supports_function_calling", return_value=False):
instructions = get_conversion_instructions(SimpleModel, llm)
assert '"name": str' in instructions
assert '"age": int' in instructions
# Tests for is_gpt
@@ -232,10 +245,6 @@ def test_supports_function_calling_false():
assert llm.supports_function_calling() is False
class CustomConverter(Converter):
pass
def test_create_converter_with_mock_agent():
mock_agent = MagicMock()
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
@@ -255,7 +264,7 @@ def test_create_converter_with_mock_agent():
def test_create_converter_with_custom_converter():
converter = create_converter(
converter_cls=CustomConverter,
llm=Mock(),
llm=LLM(model="gpt-4o-mini"),
text="Sample",
model=SimpleModel,
instructions="Convert",
@@ -313,3 +322,278 @@ def test_generate_model_description_dict_field():
description = generate_model_description(ModelWithDictField)
expected_description = '{\n "attributes": Dict[str, int]\n}'
assert description == expected_description
@pytest.mark.vcr(filter_headers=["authorization"])
def test_convert_with_instructions():
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
# Act
output = converter.to_pydantic()
# Assert
assert isinstance(output, SimpleModel)
assert output.name == "Alice"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_2_model():
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_1_model():
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_nested_model():
llm = LLM(model="gpt-4o-mini")
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
instructions = get_conversion_instructions(Person, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=Person,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, Person)
assert output.name == "John Doe"
assert output.age == 30
assert isinstance(output.address, Address)
assert output.address.street == "123 Main St"
assert output.address.city == "Anytown"
assert output.address.zip_code == "12345"
# Tests for error handling
def test_converter_error_handling():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = "Invalid JSON"
sample_text = "Name: Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
# Tests for retry logic
def test_converter_retry_logic():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.side_effect = [
"Invalid JSON",
"Still invalid",
'{"name": "Retry Alice", "age": 30}',
]
sample_text = "Name: Retry Alice, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
max_attempts=3,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Retry Alice"
assert output.age == 30
assert llm.call.call_count == 3
# Tests for optional fields
def test_converter_with_optional_fields():
class OptionalModel(BaseModel):
name: str
age: Optional[int]
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
# Simulate the LLM's response with 'age' explicitly set to null
llm.call.return_value = '{"name": "Bob", "age": null}'
sample_text = "Name: Bob, age: None"
instructions = get_conversion_instructions(OptionalModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=OptionalModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, OptionalModel)
assert output.name == "Bob"
assert output.age is None
# Tests for list fields
def test_converter_with_list_field():
class ListModel(BaseModel):
items: List[int]
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"items": [1, 2, 3]}'
sample_text = "Items: 1, 2, 3"
instructions = get_conversion_instructions(ListModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=ListModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, ListModel)
assert output.items == [1, 2, 3]
# Tests for enums
from enum import Enum
def test_converter_with_enum():
class Color(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
class EnumModel(BaseModel):
name: str
color: Color
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Alice", "color": "red"}'
sample_text = "Name: Alice, Color: Red"
instructions = get_conversion_instructions(EnumModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=EnumModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, EnumModel)
assert output.name == "Alice"
assert output.color == Color.RED
# Tests for ambiguous input
def test_converter_with_ambiguous_input():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = False
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
sample_text = "Charlie is thirty years old"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
text=sample_text,
model=SimpleModel,
instructions=instructions,
)
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "validation error" in str(exc_info.value).lower()
# Tests for function calling support
def test_converter_with_function_calling():
llm = Mock(spec=LLM)
llm.supports_function_calling.return_value = True
instructor = Mock()
instructor.to_pydantic.return_value = SimpleModel(name="Eve", age=35)
converter = Converter(
llm=llm,
text="Name: Eve, Age: 35",
model=SimpleModel,
instructions="Convert this text.",
)
converter._create_instructor = Mock(return_value=instructor)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Eve"
assert output.age == 35
instructor.to_pydantic.assert_called_once()
def test_generate_model_description_union_field():
class UnionModel(BaseModel):
field: int | str | None
description = generate_model_description(UnionModel)
expected_description = '{\n "field": int | str | None\n}'
assert description == expected_description

View File

@@ -0,0 +1,96 @@
import os
from unittest.mock import patch
import pytest
from litellm.exceptions import BadRequestError
from crewai.llm import LLM
from crewai.utilities.llm_utils import create_llm
def test_create_llm_with_llm_instance():
existing_llm = LLM(model="gpt-4o")
llm = create_llm(llm_value=existing_llm)
assert llm is existing_llm
def test_create_llm_with_valid_model_string():
llm = create_llm(llm_value="gpt-4o")
assert isinstance(llm, LLM)
assert llm.model == "gpt-4o"
def test_create_llm_with_invalid_model_string():
with pytest.raises(BadRequestError, match="LLM Provider NOT provided"):
llm = create_llm(llm_value="invalid-model")
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
def test_create_llm_with_unknown_object_missing_attributes():
class UnknownObject:
pass
unknown_obj = UnknownObject()
llm = create_llm(llm_value=unknown_obj)
# Attempt to call the LLM and expect it to raise an error due to missing attributes
with pytest.raises(BadRequestError, match="LLM Provider NOT provided"):
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])
def test_create_llm_with_none_uses_default_model():
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.cli.constants.DEFAULT_LLM_MODEL", "gpt-4o"):
llm = create_llm(llm_value=None)
assert isinstance(llm, LLM)
assert llm.model == "gpt-4o-mini"
def test_create_llm_with_unknown_object():
class UnknownObject:
model_name = "gpt-4o"
temperature = 0.7
max_tokens = 1500
unknown_obj = UnknownObject()
llm = create_llm(llm_value=unknown_obj)
assert isinstance(llm, LLM)
assert llm.model == "gpt-4o"
assert llm.temperature == 0.7
assert llm.max_tokens == 1500
def test_create_llm_from_env_with_unaccepted_attributes():
with patch.dict(
os.environ,
{
"OPENAI_MODEL_NAME": "gpt-3.5-turbo",
"AWS_ACCESS_KEY_ID": "fake-access-key",
"AWS_SECRET_ACCESS_KEY": "fake-secret-key",
"AWS_REGION_NAME": "us-west-2",
},
):
llm = create_llm(llm_value=None)
assert isinstance(llm, LLM)
assert llm.model == "gpt-3.5-turbo"
assert not hasattr(llm, "AWS_ACCESS_KEY_ID")
assert not hasattr(llm, "AWS_SECRET_ACCESS_KEY")
assert not hasattr(llm, "AWS_REGION_NAME")
def test_create_llm_with_partial_attributes():
class PartialAttributes:
model_name = "gpt-4o"
# temperature is missing
obj = PartialAttributes()
llm = create_llm(llm_value=obj)
assert isinstance(llm, LLM)
assert llm.model == "gpt-4o"
assert llm.temperature is None # Should handle missing attributes gracefully
def test_create_llm_with_invalid_type():
with pytest.raises(BadRequestError, match="LLM Provider NOT provided"):
llm = create_llm(llm_value=42)
llm.call(messages=[{"role": "user", "content": "Hello, world!"}])

View File

@@ -0,0 +1,94 @@
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import pytest
from pydantic import BaseModel, Field
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
def test_simple_model():
class SimpleModel(BaseModel):
field1: int
field2: str
parser = PydanticSchemaParser(model=SimpleModel)
schema = parser.get_schema()
expected_schema = """{
field1: int,
field2: str
}"""
assert schema.strip() == expected_schema.strip()
def test_nested_model():
class NestedModel(BaseModel):
nested_field: int
class ParentModel(BaseModel):
parent_field: str
nested: NestedModel
parser = PydanticSchemaParser(model=ParentModel)
schema = parser.get_schema()
expected_schema = """{
parent_field: str,
nested: NestedModel
{
nested_field: int
}
}"""
assert schema.strip() == expected_schema.strip()
def test_model_with_list():
class ListModel(BaseModel):
list_field: List[int]
parser = PydanticSchemaParser(model=ListModel)
schema = parser.get_schema()
expected_schema = """{
list_field: List[int]
}"""
assert schema.strip() == expected_schema.strip()
def test_model_with_optional_field():
class OptionalModel(BaseModel):
optional_field: Optional[str]
parser = PydanticSchemaParser(model=OptionalModel)
schema = parser.get_schema()
expected_schema = """{
optional_field: Optional[str]
}"""
assert schema.strip() == expected_schema.strip()
def test_model_with_union():
class UnionModel(BaseModel):
union_field: Union[int, str]
parser = PydanticSchemaParser(model=UnionModel)
schema = parser.get_schema()
expected_schema = """{
union_field: Union[int, str]
}"""
assert schema.strip() == expected_schema.strip()
def test_model_with_dict():
class DictModel(BaseModel):
dict_field: Dict[str, int]
parser = PydanticSchemaParser(model=DictModel)
schema = parser.get_schema()
expected_schema = """{
dict_field: Dict[str, int]
}"""
assert schema.strip() == expected_schema.strip()

167
uv.lock generated
View File

@@ -198,6 +198,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/39/e3/893e8757be2612e6c266d9bb58ad2e3651524b5b40cf56761e985a28b13e/asgiref-3.8.1-py3-none-any.whl", hash = "sha256:3e1e3ecc849832fe52ccf2cb6686b7a55f82bb1d6aee72a58826471390335e47", size = 23828 },
]
[[package]]
name = "asn1crypto"
version = "1.5.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/de/cf/d547feed25b5244fcb9392e288ff9fdc3280b10260362fc45d37a798a6ee/asn1crypto-1.5.1.tar.gz", hash = "sha256:13ae38502be632115abf8a24cbe5f4da52e3b5231990aff31123c805306ccb9c", size = 121080 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c9/7f/09065fd9e27da0eda08b4d6897f1c13535066174cc023af248fc2a8d5e5a/asn1crypto-1.5.1-py2.py3-none-any.whl", hash = "sha256:db4e40728b728508912cbb3d44f19ce188f218e9eba635821bb4b68564f8fd67", size = 105045 },
]
[[package]]
name = "asttokens"
version = "2.4.1"
@@ -219,6 +228,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028", size = 5721 },
]
[[package]]
name = "atpublic"
version = "5.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/5d/18/b1d247792440378abeeb0853f9daa2a127284b68776af6815990be7fcdb0/atpublic-5.0.tar.gz", hash = "sha256:d5cb6cbabf00ec1d34e282e8ce7cbc9b74ba4cb732e766c24e2d78d1ad7f723f", size = 14646 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6b/03/2cb0e5326e19b7d877bc9c3a7ef436a30a06835b638580d1f5e21a0409ed/atpublic-5.0-py3-none-any.whl", hash = "sha256:b651dcd886666b1042d1e38158a22a4f2c267748f4e97fde94bc492a4a28a3f3", size = 5207 },
]
[[package]]
name = "attrs"
version = "24.2.0"
@@ -631,7 +649,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.95.0"
version = "0.98.0"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },
@@ -714,13 +732,13 @@ requires-dist = [
{ name = "blinker", specifier = ">=1.9.0" },
{ name = "chromadb", specifier = ">=0.5.23" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.25.5" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.32.1" },
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = ">=0.25.2" },
{ name = "jsonref", specifier = ">=1.1.0" },
{ name = "litellm", specifier = ">=1.44.22" },
{ name = "litellm", specifier = "==1.57.4" },
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
{ name = "openai", specifier = ">=1.13.3" },
{ name = "openpyxl", specifier = ">=3.1.5" },
@@ -762,7 +780,7 @@ dev = [
[[package]]
name = "crewai-tools"
version = "0.25.6"
version = "0.32.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "beautifulsoup4" },
@@ -774,20 +792,21 @@ dependencies = [
{ name = "lancedb" },
{ name = "linkup-sdk" },
{ name = "openai" },
{ name = "patronus" },
{ name = "pydantic" },
{ name = "pyright" },
{ name = "pytest" },
{ name = "pytube" },
{ name = "requests" },
{ name = "scrapegraph-py" },
{ name = "selenium" },
{ name = "serpapi" },
{ name = "snowflake" },
{ name = "spider-client" },
{ name = "weaviate-client" },
]
sdist = { url = "https://files.pythonhosted.org/packages/23/2f/fbfd0dc8912d375a2d1272c503f79c83c25f3d2b4b72c230b0672278a1bd/crewai_tools-0.25.6.tar.gz", hash = "sha256:442a7e7e579cb3c671a53c5b7afce645cd31d2db913ecc6d1e22a4c5e1baa840", size = 883175 }
sdist = { url = "https://files.pythonhosted.org/packages/e9/e7/fb07f0089028f7c9003770641d21f5844d4fa22bf5cc4c4b3676bfa0e1fe/crewai_tools-0.32.1.tar.gz", hash = "sha256:41acea9243b17a463f355d48dfe7d73bd59738c8862a8da780eae008e0136414", size = 887378 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ce/21/561a81b4f8cfcc2ac6a0c3db3ec86b70a7db6dabb0dd7d13c96be981b2fc/crewai_tools-0.25.6-py3-none-any.whl", hash = "sha256:463e0ee8d780ab7a801992e3960471fb8e64d038866429f70995ddd0a83e0679", size = 514758 },
{ url = "https://files.pythonhosted.org/packages/36/f0/8f98f1a2b90b9b989bd01cf48b5e3bb2d842be2062bfd3177a77561e7b61/crewai_tools-0.32.1-py3-none-any.whl", hash = "sha256:6cb436dc66e19e35285a4fce501158a13bce99b244370574f568ec33c5513351", size = 537264 },
]
[[package]]
@@ -2344,24 +2363,24 @@ wheels = [
[[package]]
name = "litellm"
version = "1.50.2"
version = "1.57.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aiohttp" },
{ name = "click" },
{ name = "httpx" },
{ name = "importlib-metadata" },
{ name = "jinja2" },
{ name = "jsonschema" },
{ name = "openai" },
{ name = "pydantic" },
{ name = "python-dotenv" },
{ name = "requests" },
{ name = "tiktoken" },
{ name = "tokenizers" },
]
sdist = { url = "https://files.pythonhosted.org/packages/a7/45/4d54617b267a96f1f7c17c0010ea1aba20e30a3672b873fe92a6001e5952/litellm-1.50.2.tar.gz", hash = "sha256:b244c9a0e069cc626b85fb9f5cc252114aaff1225500da30ce0940f841aef8ea", size = 6096949 }
sdist = { url = "https://files.pythonhosted.org/packages/1a/9a/115bde058901b087e7fec1bed4be47baf8d5c78aff7dd2ffebcb922003ff/litellm-1.57.4.tar.gz", hash = "sha256:747a870ddee9c71f9560fc68ad02485bc1008fcad7d7a43e87867a59b8ed0669", size = 6304427 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/22/f3/89a4d65d1b9286eb5ac6a6e92dd93523d92f3142a832e60c00d5cad64176/litellm-1.50.2-py3-none-any.whl", hash = "sha256:99cac60c78037946ab809b7cfbbadad53507bb2db8ae39391b4be215a0869fdd", size = 6318265 },
{ url = "https://files.pythonhosted.org/packages/9f/72/35c8509cb2a37343c213b794420405cbef2e1fdf8626ee981fcbba3d7c5c/litellm-1.57.4-py3-none-any.whl", hash = "sha256:afe48924d8a36db801018970a101622fce33d117fe9c54441c0095c491511abb", size = 6592126 },
]
[[package]]
@@ -3155,7 +3174,7 @@ wheels = [
[[package]]
name = "openai"
version = "1.52.1"
version = "1.59.6"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@@ -3167,9 +3186,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/80/ac/54c76352d493866637756b7c0ecec44f0b5bafb8fe753d98472cf6cfe4ce/openai-1.52.1.tar.gz", hash = "sha256:383b96c7e937cbec23cad5bf5718085381e4313ca33c5c5896b54f8e1b19d144", size = 310069 }
sdist = { url = "https://files.pythonhosted.org/packages/2e/7a/07fbe7bdabffd0a5be1bfe5903a02c4fff232e9acbae894014752a8e4def/openai-1.59.6.tar.gz", hash = "sha256:c7670727c2f1e4473f62fea6fa51475c8bc098c9ffb47bfb9eef5be23c747934", size = 344915 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ad/31/28a83e124e9f9dd04c83b5aeb6f8b1770f45addde4dd3d34d9a9091590ad/openai-1.52.1-py3-none-any.whl", hash = "sha256:f23e83df5ba04ee0e82c8562571e8cb596cd88f9a84ab783e6c6259e5ffbfb4a", size = 386945 },
{ url = "https://files.pythonhosted.org/packages/70/45/6de8e5fd670c804b29c777e4716f1916741c71604d5c7d952eee8432f7d3/openai-1.59.6-py3-none-any.whl", hash = "sha256:b28ed44eee3d5ebe1a3ea045ee1b4b50fea36ecd50741aaa5ce5a5559c900cb6", size = 454817 },
]
[[package]]
@@ -3495,6 +3514,24 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191 },
]
[[package]]
name = "patronus"
version = "0.0.17"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "httpx" },
{ name = "pandas" },
{ name = "pydantic" },
{ name = "pydantic-settings" },
{ name = "pyyaml" },
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c5/a0/d5218ff6f2eab18c5a90266d21cdac673c85070e82e3f8aba538b3200f54/patronus-0.0.17.tar.gz", hash = "sha256:7298f770d4f6774b955806fb319c2c872fda3551bd7fa63d975bbeedc14b28de", size = 27377 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0e/9e/717c4508d675549ff081a7fecf25af7d70f9d7ad87ea0d4825e02de3b801/patronus-0.0.17-py3-none-any.whl", hash = "sha256:1f322eeee838974515fdb7cbf8530ad25c6c59686abbcb28c1fdbf23d34eb10d", size = 31516 },
]
[[package]]
name = "pdfminer-six"
version = "20231228"
@@ -4055,6 +4092,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c2/35/c0edf199257ef0a7d407d29cd51c4e70d1dad4370a5f44deb65a7a5475e2/pymdown_extensions-10.11.2-py3-none-any.whl", hash = "sha256:41cdde0a77290e480cf53892f5c5e50921a7ee3e5cd60ba91bf19837b33badcf", size = 259044 },
]
[[package]]
name = "pyopenssl"
version = "24.3.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "cryptography" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c1/d4/1067b82c4fc674d6f6e9e8d26b3dff978da46d351ca3bac171544693e085/pyopenssl-24.3.0.tar.gz", hash = "sha256:49f7a019577d834746bc55c5fce6ecbcec0f2b4ec5ce1cf43a9a173b8138bb36", size = 178944 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/42/22/40f9162e943f86f0fc927ebc648078be87def360d9d8db346619fb97df2b/pyOpenSSL-24.3.0-py3-none-any.whl", hash = "sha256:e474f5a473cd7f92221cc04976e48f4d11502804657a08a989fb3be5514c904a", size = 56111 },
]
[[package]]
name = "pypdf"
version = "5.0.1"
@@ -4923,6 +4972,87 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 },
]
[[package]]
name = "snowflake"
version = "1.0.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "snowflake-core" },
{ name = "snowflake-legacy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/80/d1/830929fb7b54586f4ee601f409e80343e16f32b9b579246cd6fa9984bcff/snowflake-1.0.2.tar.gz", hash = "sha256:4009e59af24e444de4a9e9d340fff0979cca8a02a4feee4665da97eb9c76d958", size = 6033 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b6/25/4cbba4da3f9b333d132680a66221d1a101309cce330fa8be38b674ceafd0/snowflake-1.0.2-py3-none-any.whl", hash = "sha256:6bb0fc70aa10234769202861ccb4b091f5e9fb1bbc61a1e708db93baa3f221f4", size = 5623 },
]
[[package]]
name = "snowflake-connector-python"
version = "3.12.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "asn1crypto" },
{ name = "certifi" },
{ name = "cffi" },
{ name = "charset-normalizer" },
{ name = "cryptography" },
{ name = "filelock" },
{ name = "idna" },
{ name = "packaging" },
{ name = "platformdirs" },
{ name = "pyjwt" },
{ name = "pyopenssl" },
{ name = "pytz" },
{ name = "requests" },
{ name = "sortedcontainers" },
{ name = "tomlkit" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6b/de/f43d9c827ccc1974696ffd3c0495e2d4e98b0414b2353b7de932621f23dd/snowflake_connector_python-3.12.4.tar.gz", hash = "sha256:289e0691dfbf8ec8b7a8f58bcbb95a819890fe5e5b278fdbfc885059a63a946f", size = 743445 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/53/6c/edc8909e424654a7a3c18cbf804d8a35c17a65a2131f866a87ed8e762bd0/snowflake_connector_python-3.12.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f141c159e3244bd660279f87f32e39351b2845fcb75f8138f31d2219f983b05", size = 958038 },
{ url = "https://files.pythonhosted.org/packages/93/a3/34c5082dfb9b555c914f4233224b8bc1f2c4d5668bc71bb587680b8dcd73/snowflake_connector_python-3.12.4-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:091458ba777c24adff659c5c28f0f5bb0bcca8a9b6ecc5641ae25b7c20a8f43d", size = 970665 },
{ url = "https://files.pythonhosted.org/packages/f8/87/9eceaaba58b2ec4f9094fc3a04d953bbabbfdcc05a6b14ef12610c1039f9/snowflake_connector_python-3.12.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23049d341da681ec7131cead71cdf7b1761ae5bcc08bcbdb931dcef6c25e8a5f", size = 2496731 },
{ url = "https://files.pythonhosted.org/packages/66/0a/e35e9e0a142f3779007b0246166a245305858b198ed0dd3a41a3d2405512/snowflake_connector_python-3.12.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc88a09d77a8ce7e445094b2409b606ddb208b5fc9f7c7a379d0255a8d566e9d", size = 2520041 },
{ url = "https://files.pythonhosted.org/packages/79/77/9a238c153600adff8fbd1136d9f4be1e42cb827cbe1865924bfe84653e85/snowflake_connector_python-3.12.4-cp310-cp310-win_amd64.whl", hash = "sha256:3c33fbba036805c1767ea48eb40ffc3fb79d61f2a4bb4e77b571ea6f6a998be8", size = 918272 },
{ url = "https://files.pythonhosted.org/packages/0d/95/e8aac28d6913e4b59f96e6d361f31b9576b5f0abe4d2c4f7decf9f075932/snowflake_connector_python-3.12.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2ec5cfaa1526084cf4d0e7849d5ace601245cb4ad9675ab3cd7d799b3abea481", size = 958125 },
{ url = "https://files.pythonhosted.org/packages/67/b6/a847a94e03bdf39010048feacd57f250a91a655eed333d7d32b165f65201/snowflake_connector_python-3.12.4-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:ff225824b3a0fa5e822442de72172f97028f04ae183877f1305d538d8d6c5d11", size = 970770 },
{ url = "https://files.pythonhosted.org/packages/0e/91/f97812ae9946944bcd9bfe1965af1cb9b1844919da879d90b90dfd3e5086/snowflake_connector_python-3.12.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9beced2789dc75e8f1e749aa637e7ec9b03302b4ed4b793ae0f1ff32823370e", size = 2519875 },
{ url = "https://files.pythonhosted.org/packages/37/52/500d72079bfb322ebdf3892180ecf3dc73c117b3a966ee8d4bb1378882b2/snowflake_connector_python-3.12.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ea47450a04ff713f3adf28053e34103bd990291e62daee9721c76597af4b2b5", size = 2542320 },
{ url = "https://files.pythonhosted.org/packages/59/92/74ead6bee8dd29fe372002ce59477221e04b9da96ad7aafe584afce02937/snowflake_connector_python-3.12.4-cp311-cp311-win_amd64.whl", hash = "sha256:748f9125854dca07ea471bb2bb3c5bb932a53f9b8a77ba348b50b738c77203ce", size = 918363 },
{ url = "https://files.pythonhosted.org/packages/a5/a3/1cbe0b52b810f069bdc96c372b2d91ac51aeac32986c2832aa3fe0b0b0e5/snowflake_connector_python-3.12.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4bcd0371b20d199f15e6a3c0b489bf18e27f2a88c84cf3194b2569ca039fa7d1", size = 957561 },
{ url = "https://files.pythonhosted.org/packages/f4/05/8a5e16bd908a89f36d59686d356890c4bd6a976a487f86274181010f4b49/snowflake_connector_python-3.12.4-cp312-cp312-macosx_11_0_x86_64.whl", hash = "sha256:7900d82a450b206fa2ed6c42cd65d9b3b9fd4547eca1696937175fac2a03ba37", size = 969045 },
{ url = "https://files.pythonhosted.org/packages/79/1b/8f5ab15d224d7bf76533c55cfd8ce73b185ce94d84241f0e900739ce3f37/snowflake_connector_python-3.12.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:300f0562aeea55e40ee03b45205dbef7b78f5ba2f1787a278c7b807e7d8db22c", size = 2533969 },
{ url = "https://files.pythonhosted.org/packages/6e/d9/2e2fd72e0251691b5c54a219256c455141a2d3c104e411b82de598c62553/snowflake_connector_python-3.12.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6762a00948f003be55d7dc5de9de690315d01951a94371ec3db069d9303daba", size = 2558052 },
{ url = "https://files.pythonhosted.org/packages/e8/cb/e0ab230ad5adc9932e595bdbec693b2499d446666daf6cb9cae306a41dd2/snowflake_connector_python-3.12.4-cp312-cp312-win_amd64.whl", hash = "sha256:83ca896790a7463b6c8cd42e1a29b8ea197cc920839ae6ee96a467475eab4ec2", size = 916627 },
]
[[package]]
name = "snowflake-core"
version = "1.0.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "atpublic" },
{ name = "pydantic" },
{ name = "python-dateutil" },
{ name = "pyyaml" },
{ name = "requests" },
{ name = "snowflake-connector-python" },
{ name = "urllib3" },
]
sdist = { url = "https://files.pythonhosted.org/packages/1d/cf/6f91e5b2daaf3df9ae666a65f5ba3938f11a40784e4ada5218ecf154b29a/snowflake_core-1.0.2.tar.gz", hash = "sha256:8bf267ff1efcd17f157432c6e24f6d2eb6c2aeed66f43ab34b215aa76d8edf02", size = 1092618 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/75/3c/ec228b7325b32781081c72254dd0ef793943e853d82616e862e231909c6c/snowflake_core-1.0.2-py3-none-any.whl", hash = "sha256:55c37cf526a0d78dd3359ad96b9ecd7130bbbbc2f5a2fec77bb3da0dac2dc688", size = 1555690 },
]
[[package]]
name = "snowflake-legacy"
version = "1.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/94/41/a6211bd2109913eee1506d37865ab13cf9a8cc2faa41833da3d1ffec654b/snowflake_legacy-1.0.0.tar.gz", hash = "sha256:2044661c79ba01841ab279c5e74b994532244c9d103224eba16eb159c8ed6033", size = 4043 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/aa/8c/64f9b5ee0c3f376a733584c480b31addbf2baff7bb41f655e5e3f3719d3b/snowflake_legacy-1.0.0-py3-none-any.whl", hash = "sha256:25f9678f180d7d5f5b60d17f8112f0ee8a7a77b82c67fd599ed6e27bd502be5a", size = 3059 },
]
[[package]]
name = "sortedcontainers"
version = "2.4.0"
@@ -5184,6 +5314,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c4/ac/ce90573ba446a9bbe65838ded066a805234d159b4446ae9f8ec5bbd36cbd/tomli_w-1.1.0-py3-none-any.whl", hash = "sha256:1403179c78193e3184bfaade390ddbd071cba48a32a2e62ba11aae47490c63f7", size = 6440 },
]
[[package]]
name = "tomlkit"
version = "0.13.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/b1/09/a439bec5888f00a54b8b9f05fa94d7f901d6735ef4e55dcec9bc37b5d8fa/tomlkit-0.13.2.tar.gz", hash = "sha256:fff5fe59a87295b278abd31bec92c15d9bc4a06885ab12bcea52c71119392e79", size = 192885 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f9/b6/a447b5e4ec71e13871be01ba81f5dfc9d0af7e473da256ff46bc0e24026f/tomlkit-0.13.2-py3-none-any.whl", hash = "sha256:7a974427f6e119197f670fbbbeae7bef749a6c14e793db934baefc1b5f03efde", size = 37955 },
]
[[package]]
name = "torch"
version = "2.4.1"