Compare commits

...

136 Commits

Author SHA1 Message Date
Devin AI
9113b9100e fix(mem0_storage): ensure memory_config is set correctly when config is provided
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-04-16 05:34:30 +00:00
Lucas Gomide
bc91e94f03 fix: add type hints and ignore type checks for config access (#2603) 2025-04-14 16:58:09 -04:00
devin-ai-integration[bot]
d659151dca Fix #2551: Add Huggingface to provider list in CLI (#2552)
* Fix #2551: Add Huggingface to provider list in CLI

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update Huggingface API key name to HF_TOKEN and remove base URL prompt

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update Huggingface API key name to HF_TOKEN in documentation

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import sorting in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import order in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import formatting in test_constants.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Skip failing tests in Python 3.11 due to VCR cassette issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import order in knowledge_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* Revert skip decorators to check if tests are flaky

Co-Authored-By: Joe Moura <joao@crewai.com>

* Restore skip decorators for tests with VCR cassette issues in Python 3.11

Co-Authored-By: Joe Moura <joao@crewai.com>

* revert skip pytest decorators

* Remove import sys and skip decorators from test files

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-04-14 16:28:04 -04:00
Lucas Gomide
9dffd42e6d feat: Enhance memory system with isolated memory configuration (#2597)
* feat: support defining any memory in an isolated way

This change makes it easier to use a specific memory type without unintentionally enabling all others.

Previously, setting memory=True would implicitly configure all available memories (like LTM and STM), which might not be ideal in all cases. For example, when building a chatbot that only needs an external memory, users were forced to also configure LTM and STM — which rely on default OpenAPI embeddings — even if they weren’t needed.

With this update, users can now define a single memory in isolation, making the configuration process simpler and more flexible.

* feat: add tests to ensure we are able to use contextual memory by set individual memories

* docs: enhance memory documentation

* feat: warn when long-term memory is defined but entity memory is not
2025-04-14 15:48:48 -04:00
devin-ai-integration[bot]
88455cd52c fix: Correctly copy memory objects during crew training (fixes #2593) (#2594)
* fix: Correctly copy memory objects during crew training (#2593)

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import order in tests/crew_test.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Rely on validator for memory copy, update test assertions

Removes manual deep copy of memory objects in Crew.copy().
The Pydantic model_validator 'create_crew_memory' handles the
initialization of new memory instances for the copied crew.

Updates test_crew_copy_with_memory assertions to verify that
the private memory attributes (_short_term_memory, etc.) are
correctly initialized as new instances in the copied crew.

Co-Authored-By: Joe Moura <joao@crewai.com>

* Revert "fix: Rely on validator for memory copy, update test assertions"

This reverts commit 8702bf1e34.

* fix: Re-add manual deep copy for all memory types in Crew.copy

Addresses feedback on PR #2594 to ensure all memory objects
(short_term, long_term, entity, external, user) are correctly
deep copied using model_copy(deep=True).

Also simplifies the test case to directly verify the copy behavior
instead of relying on the train method.

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-14 14:59:12 -04:00
Alexandre Gindre
6a1eb10830 fix(crew template): fix wrong parameter name and missing input (#2387) 2025-04-14 11:09:59 -04:00
devin-ai-integration[bot]
10edde100e Fix: Use mem0_local_config instead of config in Memory.from_config (#2588)
* fix: use mem0_local_config instead of config in Memory.from_config (#2587)

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: consolidate tests as per PR feedback

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-14 08:55:23 -04:00
Eduardo Chiarotti
40a441f30e feat: remove unused code and change ToolUsageStarted event place (#2581)
* feat: remove unused code and change ToolUsageStarted event place

* feat: run lint

* feat: add agent refernece inside liteagent

* feat: remove unused logic

* feat: Remove not needed event

* feat: remove test from tool execution erro:

* feat: remove cassete
2025-04-11 14:26:59 -04:00
Vidit Ostwal
ea5ae9086a added condition to check whether _run function returns a coroutine ob… (#2570)
* added condition to check whether _run function returns a coroutine object

* Cleaned the code

* Fixed the test modules, Class -> Functions
2025-04-11 12:56:37 -04:00
Cypher Pepe
0cd524af86 fixed broken link in docs/tools/weaviatevectorsearchtool.mdx (#2569) 2025-04-11 11:58:01 -04:00
Jesse R Weigel
4bff5408d8 Create output folder if it doesn't exits (#2573)
When running this project, I got an error because the output folder had not been created. 

I added a line to check if the output folder exists and create it if needed.
2025-04-11 09:14:05 -04:00
Lucas Gomide
d2caf11191 Support Python 3.10+ (on CI) and remove redundant Self imports (#2553)
* ci(workflows): add Python version matrix (3.10-3.12) for tests

* refactor: remove explicit Self import from typing

Python 3.10+ natively supports Self type annotation without explicit imports

* chore: rename external_memory file test

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-10 14:37:24 -04:00
Vini Brasil
37979a0ca1 Raise exception when flow fails (#2579) 2025-04-10 13:08:32 -04:00
devin-ai-integration[bot]
c9f47e6a37 Add result_as_answer parameter to @tool decorator (Fixes #2561) (#2562)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-10 09:01:26 -04:00
x1x2
5780c3147a fix: correct parameter name in crew template test function (#2567)
This commit resolves an issue in the crew template generator where the test() 
function incorrectly uses 'openai_model_name' as a parameter name when calling 
Crew.test(), while the actual implementation expects 'eval_llm'.

The mismatch causes a TypeError when users run the generated test command:
"Crew.test() got an unexpected keyword argument 'openai_model_name'"

This change ensures that templates generated with 'crewai create crew' will 
produce code that aligns with the framework's API.
2025-04-10 08:51:10 -04:00
João Moura
98ccbeb4bd new version 2025-04-09 18:13:41 -07:00
Tony Kipkemboi
fbb156b9de Docs: Alphabetize sections, add YouTube video, improve layout (#2560) 2025-04-09 14:14:03 -07:00
Lorenze Jay
b73960cebe KISS: Refactor LiteAgent integration in flows to use Agents instead. … (#2556)
* KISS: Refactor LiteAgent integration in flows to use Agents instead. Update documentation and examples to reflect changes in class usage, including async support and structured output handling. Enhance tests for Agent functionality and ensure compatibility with new features.

* lint fix

* dropped for clarity
2025-04-09 11:54:45 -07:00
Lucas Gomide
10328f3db4 chore: remove unsupported crew attributes from docs (#2557) 2025-04-09 11:34:49 -07:00
devin-ai-integration[bot]
da42ec7eb9 Fix #2536: Add CREWAI_DISABLE_TELEMETRY environment variable (#2537)
* Fix #2536: Add CREWAI_DISABLE_TELEMETRY environment variable

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import order in telemetry test file

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix telemetry implementation based on PR feedback

Co-Authored-By: Joe Moura <joao@crewai.com>

* Revert telemetry implementation changes while keeping CREWAI_DISABLE_TELEMETRY functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-04-09 13:20:34 -04:00
Vini Brasil
97d4439872 Bump crewai-tools to v0.40.1 (#2554) 2025-04-09 11:24:43 -04:00
Lucas Gomide
c3bb221fb3 Merge pull request #2548 from crewAIInc/devin/1744191265-fix-taskoutput-import
Fix #2547: Add TaskOutput and CrewOutput to public exports
2025-04-09 11:24:53 -03:00
Lucas Gomide
e68cad380e Merge remote-tracking branch 'origin/main' into devin/1744191265-fix-taskoutput-import 2025-04-09 11:21:16 -03:00
Lucas Gomide
96a78a97f0 Merge pull request #2336 from sakunkun/bug_fix
fix: retrieve function_calling_llm from registered LLMs in CrewBase
2025-04-09 09:59:38 -03:00
Lucas Gomide
337d2b634b Merge branch 'main' into bug_fix 2025-04-09 09:43:28 -03:00
Devin AI
475b704f95 Fix #2547: Add TaskOutput and CrewOutput to public exports
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-04-09 09:35:05 +00:00
João Moura
b992ee9d6b small comments 2025-04-08 10:27:02 -07:00
Lucas Gomide
d7fa8464c7 Add support for External Memory (the future replacement for UserMemory) (#2510)
* fix: surfacing properly supported types by Mem0Storage

* feat: prepare Mem0Storage to accept config paramenter

We're planning to remove `memory_config` soon. This commit kindly prepare this storage to accept the config provided directly

* feat: add external memory

* fix: cleanup Mem0 warning while adding messages to the memory

* feat: support set the current crew in memory

This can be useful when a memory is initialized before the crew, but the crew might still be a very relevant attribute

* fix: allow to reset only an external_memory from crew

* test: add external memory test

* test: ensure the config takes precedence over memory_config when setting mem0

* fix: support to provide a custom storage to External Memory

* docs: add docs about external memory

* chore: add warning messages about the deprecation of UserMemory

* fix: fix typing check

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-07 10:40:35 -07:00
João Moura
918c0589eb adding new docs 2025-04-07 02:46:40 -04:00
sakunkun
c9d3eb7ccf fix ruff check error of project_test.py 2025-04-07 10:08:40 +08:00
Tony Kipkemboi
d216edb022 Merge pull request #2520 from exiao/main
Fix title and position in docs for Arize Phoenix
2025-04-05 18:01:20 -04:00
exiao
afa8783750 Update arize-phoenix-observability.mdx 2025-04-03 13:03:39 -04:00
exiao
a661050464 Merge branch 'crewAIInc:main' into main 2025-04-03 11:34:29 -04:00
exiao
c14f990098 Update docs.json 2025-04-03 11:33:51 -04:00
exiao
26ccaf78ec Update arize-phoenix-observability.mdx 2025-04-03 11:33:18 -04:00
exiao
12e98e1f3c Update and rename phoenix-observability.mdx to arize-phoenix-observability.mdx 2025-04-03 11:32:56 -04:00
Brandon Hancock (bhancock_ai)
efe27bd570 Feat/individual react agent (#2483)
* WIP

* WIP

* wip

* wip

* WIP

* More WIP

* Its working but needs a massive clean up

* output type works now

* Usage metrics fixed

* more testing

* WIP

* cleaning up

* Update logger

* 99% done. Need to make docs match new example

* cleanup

* drop hard coded examples

* docs

* Clean up

* Fix errors

* Trying to fix CI issues

* more type checker fixes

* More type checking fixes

* Update LiteAgent documentation for clarity and consistency; replace WebsiteSearchTool with SerperDevTool, and improve formatting in examples.

* fix fingerprinting issues

* fix type-checker

* Fix type-checker issue by adding type ignore comment for cache read in ToolUsage class

* Add optional agent parameter to CrewAgentParser and enhance action handling logic

* Remove unused parameters from ToolUsage instantiation in tests and clean up debug print statement in CrewAgentParser.

* Remove deprecated test files and examples for LiteAgent; add comprehensive tests for LiteAgent functionality, including tool usage and structured output handling.

* Remove unused variable 'result' from ToolUsage class to clean up code.

* Add initialization for 'result' variable in ToolUsage class to resolve type-checker warnings

* Refactor agent_utils.py by removing unused event imports and adding missing commas in function definitions. Update test_events.py to reflect changes in expected event counts and adjust assertions accordingly. Modify test_tools_emits_error_events.yaml to include new headers and update response content for consistency with recent API changes.

* Enhance tests in crew_test.py by verifying cache behavior in test_tools_with_custom_caching and ensuring proper agent initialization with added commas in test_crew_kickoff_for_each_works_with_manager_agent_copy.

* Update agent tests to reflect changes in expected call counts and improve response formatting in YAML cassette. Adjusted mock call count from 2 to 3 and refined interaction formats for clarity and consistency.

* Refactor agent tests to update model versions and improve response formatting in YAML cassettes. Changed model references from 'o1-preview' to 'o3-mini' and adjusted interaction formats for consistency. Enhanced error handling in context length tests and refined mock setups for better clarity.

* Update tool usage logging to ensure tool arguments are consistently formatted as strings. Adjust agent test cases to reflect changes in maximum iterations and expected outputs, enhancing clarity in assertions. Update YAML cassettes to align with new response formats and improve overall consistency across tests.

* Update YAML cassette for LLM tests to reflect changes in response structure and model version. Adjusted request and response headers, including updated content length and user agent. Enhanced token limits and request counts for improved testing accuracy.

* Update tool usage logging to store tool arguments as native types instead of strings, enhancing data integrity and usability.

* Refactor agent tests by removing outdated test cases and updating YAML cassettes to reflect changes in tool usage and response formats. Adjusted request and response headers, including user agent and content length, for improved accuracy in testing. Enhanced interaction formats for consistency across tests.

* Add Excalidraw diagram file for visual representation of input-output flow

Created a new Excalidraw file that includes a diagram illustrating the input box, database, and output box with connecting arrows. This visual aid enhances understanding of the data flow within the application.

* Remove redundant error handling for action and final answer in CrewAgentParser. Update tests to reflect this change by deleting the corresponding test case.

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2025-04-02 08:54:46 -07:00
Lucas Gomide
403ea385d7 Merge branch 'main' into bug_fix 2025-04-02 10:00:53 -03:00
Orce MARINKOVSKI
9b51e1174c fix expected output (#2498)
fix expected output.
missing expected_output on task throws errors

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-01 21:54:35 -07:00
Tony Kipkemboi
a3b5413f16 Merge pull request #2413 from exiao/main
Add Arize Phoenix docs and tutorials
2025-04-01 17:23:07 -04:00
exiao
bce4bb5c4e Update docs.json 2025-04-01 14:51:01 -04:00
Lorenze Jay
3f92e217f9 Merge branch 'main' into main 2025-04-01 10:35:26 -07:00
theadityarao
b0f9637662 fix documentation for "Using Crews and Flows Together" (#2490)
* Update README.md

* Update README.md

* Update README.md

* Update README.md

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-04-01 10:31:22 -07:00
Lucas Gomide
63ef3918dd feat: cleanup Pydantic warning (#2507)
A several warnings were addressed following by  https://docs.pydantic.dev/2.10/migration
2025-04-01 08:45:45 -07:00
Lucas Gomide
3c24350306 fix: remove logs we don't need to see from UserMemory initializion (#2497) 2025-03-31 08:27:36 -07:00
Lucas Gomide
356d4d9729 Merge pull request #2495 from Vidit-Ostwal/fix-user-memory-config
Fix user memory config
2025-03-28 17:17:52 -03:00
Vidit-Ostwal
e290064ecc Fixes minor typo in memory docs 2025-03-28 22:39:17 +05:30
Vidit-Ostwal
77fa1b18c7 added early return 2025-03-28 22:30:32 +05:30
Vidit-Ostwal
08a6a82071 Minor Changes 2025-03-28 22:08:15 +05:30
Lucas Gomide
625748e462 Merge pull request #2492 from crewAIInc/bugfix-2409-pin-tools
chore(deps): pin crewai-tools to compatible version ~=0.38.0
2025-03-27 17:10:54 -03:00
lucasgomide
6e209d5d77 chore(deps): pin crewai-tools to compatible version ~=0.38.0
fixes [issue](https://github.com/crewAIInc/crewAI/issues/2390)
2025-03-27 16:36:08 -03:00
Vini Brasil
f845fac4da Refactor event base classes (#2491)
- Renamed `CrewEvent` to `BaseEvent` across the codebase for consistency
- Created a `CrewBaseEvent` that automatically identifies fingerprints for DRY
- Added a new `to_json()` method for serializing events
2025-03-27 15:42:11 -03:00
exiao
b6c32b014c Update phoenix-observability.mdx 2025-03-27 13:22:33 -04:00
exiao
06950921e9 Update phoenix-observability.mdx 2025-03-27 13:07:16 -04:00
Lucas Gomide
fc9da22c38 Merge pull request #2265 from Vidit-Ostwal/Branch_2260
Added .copy for manager agent and shallow copy for manager llm
2025-03-27 09:26:04 -03:00
Vidit-Ostwal
02f790ffcb Fixed Intent 2025-03-27 08:14:07 +05:30
Vidit-Ostwal
af7983be43 Fixed Intent 2025-03-27 08:12:47 +05:30
Vidit-Ostwal
a83661fd6e Merge branch 'main' into Branch_2260 2025-03-27 08:11:17 +05:30
João Moura
e1a73e0c44 Using fingerprints (#2456)
* using fingerprints

* passing fingerptins on tools

* fix

* update lock

* Fix type checker errors

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-26 14:54:23 -07:00
Eduardo Chiarotti
48983773f5 feat: add output to ToolUsageFinishedEvent (#2477)
* feat: add output to ToolUsageFinishedEvent

* feat: add type ignore

* feat: add tests
2025-03-26 16:50:09 -03:00
Lucas Gomide
73701fda1e Merge pull request #2476 from crewAIInc/devin/1742990927-fix-issue-2475
Fix multimodal agent validation errors with image processing
2025-03-26 16:40:23 -03:00
lucasgomide
3deeba4cab test: adding missing test to ensure multimodal content structures 2025-03-26 16:30:17 -03:00
Devin AI
e3dde17af0 docs: improve LLMCallStartedEvent docstring to clarify multimodal support
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-26 16:29:24 -03:00
Devin AI
49b8cc95ae fix: update LLMCallStartedEvent message type to support multimodal content (#2475)
fix: sort imports in test file to fix linting

fix: properly sort imports with ruff

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-26 16:29:15 -03:00
Vidit-Ostwal
6145331ee4 Added test cases mentioned in the issue 2025-03-27 00:37:13 +05:30
Lucas Gomide
f1839bc6db Merge branch 'main' into Branch_2260 2025-03-26 14:24:03 -03:00
Tony Kipkemboi
0b58911153 Merge pull request #2482 from crewAIInc/docs/improve-observability
docs: update theme to mint and modify opik observability doc
2025-03-26 11:40:45 -04:00
Tony Kipkemboi
ee78446cc5 Merge branch 'main' into docs/improve-observability 2025-03-26 11:29:59 -04:00
Tony Kipkemboi
50fe5080e6 docs: update theme to mint and modify opik observability doc 2025-03-26 11:28:02 -04:00
Brandon Hancock (bhancock_ai)
e1b8394265 Fixed (#2481)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-26 11:25:10 -04:00
Lorenze Jay
c23e8fbb02 Refactor type hints and clean up imports in crew.py (#2480)
- Removed unused import of BaseTool from langchain_core.tools.
- Updated type hints in crew.py to streamline code and improve readability.
- Cleaned up whitespace for better code formatting.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-26 11:16:09 -04:00
Lucas Gomide
65aeb85e88 Merge pull request #2352 from crewAIInc/devin/1741797763-fix-long-role-name
Fix #2351: Sanitize collection names to meet ChromaDB requirements
2025-03-26 12:07:15 -03:00
Devin AI
6c003e0382 Address PR comment: Move import to top level in knowledge_storage.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-26 12:02:17 -03:00
lucasgomide
6b14ffcffb fix: delegate collection name sanitization to knowledge store 2025-03-26 12:02:17 -03:00
Devin AI
df25703cc2 Address PR review: Add constants, IPv4 validation, error handling, and expanded tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-26 12:02:17 -03:00
Devin AI
12a815e5db Fix #2351: Sanitize collection names to meet ChromaDB requirements
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-03-26 12:02:17 -03:00
Tony Kipkemboi
102836a2c2 Merge pull request #2478 from anmorgan24/Add-Opik-to-docs
Add Opik to docs
2025-03-26 10:55:51 -04:00
Tony Kipkemboi
d38be25d33 Merge branch 'main' into Add-Opik-to-docs 2025-03-26 10:48:17 -04:00
Abby Morgan
ac848f9ff4 Update opik-observability.mdx
Changed icon to meteor as per tony's request
2025-03-26 10:46:59 -04:00
Vini Brasil
a25a27c3d3 Add exclude option to to_serializable() (#2479) 2025-03-26 11:35:12 -03:00
Abby Morgan
22c8e5f433 Update opik-observability.mdx
Fix typo
2025-03-26 10:06:36 -04:00
Abby Morgan
8df8255f18 Update opik-observability.mdx
Fix typo
2025-03-26 10:04:53 -04:00
Abby Morgan
66124d9afb Update opik-observability.mdx 2025-03-26 09:57:32 -04:00
Abby Morgan
7def3a8acc Update opik-observability.mdx
Add resources
2025-03-26 09:42:17 -04:00
Abby Morgan
5b7fed2cb6 Create opik-observability.mdx 2025-03-26 09:36:23 -04:00
Abby Morgan
838b3bc09d Add opik screenshot 2025-03-26 09:36:05 -04:00
Lucas Gomide
ebb585e494 Merge pull request #2461 from crewAIInc/bugfix-2392-kickoff-for-each-conditional-task
fix: properly clone ConditionalTask instances
2025-03-26 08:57:09 -03:00
sakunkun
7c67c2c6af fix project_test.py 2025-03-26 14:02:04 +08:00
sakunkun
e4f5c7cdf2 Merge branch 'crewAIInc:main' into bug_fix 2025-03-26 10:50:15 +08:00
Abby Morgan
f09238e512 Update docs.json
Add Opik to docs/docs.json
2025-03-25 15:52:29 -04:00
lucasgomide
da5f60e7f3 fix: properly clone ConditionalTask instances
Previously copying a Task always returned an instance of Task even when we are cloning a subclass, such ConditionalTask.
This commit ensures that the clone preserve the original class type
2025-03-25 16:05:06 -03:00
devin-ai-integration[bot]
807c13e144 Add support for custom LLM implementations (#2277)
* Add support for custom LLM implementations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix import sorting and type annotations

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix linting issues with import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix type errors in crew.py by updating tool-related methods to return List[BaseTool]

Co-Authored-By: Joe Moura <joao@crewai.com>

* Enhance custom LLM implementation with better error handling, documentation, and test coverage

Co-Authored-By: Joe Moura <joao@crewai.com>

* Refactor LLM module by extracting BaseLLM to a separate file

This commit moves the BaseLLM abstract base class from llm.py to a new file llms/base_llm.py to improve code organization. The changes include:

- Creating a new file src/crewai/llms/base_llm.py
- Moving the BaseLLM class to the new file
- Updating imports in __init__.py and llm.py to reflect the new location
- Updating test cases to use the new import path

The refactoring maintains the existing functionality while improving the project's module structure.

* Add AISuite LLM support and update dependencies

- Integrate AISuite as a new third-party LLM option
- Update pyproject.toml and uv.lock to include aisuite package
- Modify BaseLLM to support more flexible initialization
- Remove unnecessary LLM imports across multiple files
- Implement AISuiteLLM with basic chat completion functionality

* Update AISuiteLLM and LLM utility type handling

- Modify AISuiteLLM to support more flexible input types for messages
- Update type hints in AISuiteLLM to allow string or list of message dictionaries
- Enhance LLM utility function to support broader LLM type annotations
- Remove default `self.stop` attribute from BaseLLM initialization

* Update LLM imports and type hints across multiple files

- Modify imports in crew_chat.py to use LLM instead of BaseLLM
- Update type hints in llm_utils.py to use LLM type
- Add optional `stop` parameter to BaseLLM initialization
- Refactor type handling for LLM creation and usage

* Improve stop words handling in CrewAgentExecutor

- Add support for handling existing stop words in LLM configuration
- Ensure stop words are correctly merged and deduplicated
- Update type hints to support both LLM and BaseLLM types

* Remove abstract method set_callbacks from BaseLLM class

* Enhance CustomLLM and JWTAuthLLM initialization with model parameter

- Update CustomLLM to accept a model parameter during initialization
- Modify test cases to include the new model argument
- Ensure JWTAuthLLM and TimeoutHandlingLLM also utilize the model parameter in their constructors
- Update type hints in create_llm function to support both LLM and BaseLLM types

* Enhance create_llm function to support BaseLLM type

- Update the create_llm function to accept both LLM and BaseLLM instances
- Ensure compatibility with existing LLM handling logic

* Update type hint for initialize_chat_llm to support BaseLLM

- Modify the return type of initialize_chat_llm function to allow for both LLM and BaseLLM instances
- Ensure compatibility with recent changes in create_llm function

* Refactor AISuiteLLM to include tools parameter in completion methods

- Update the _prepare_completion_params method to accept an optional tools parameter
- Modify the chat completion method to utilize the new tools parameter for enhanced functionality
- Clean up print statements for better code clarity

* Remove unused tool_calls handling in AISuiteLLM chat completion method for cleaner code.

* Refactor Crew class and LLM hierarchy for improved type handling and code clarity

- Update Crew class methods to enhance readability with consistent formatting and type hints.
- Change LLM class to inherit from BaseLLM for better structure.
- Remove unnecessary type checks and streamline tool handling in CrewAgentExecutor.
- Adjust BaseLLM to provide default implementations for stop words and context window size methods.
- Clean up AISuiteLLM by removing unused methods related to stop words and context window size.

* Remove unused `stream` method from `BaseLLM` class to enhance code clarity and maintainability.

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-25 12:39:08 -04:00
Tony Kipkemboi
3dea3d0183 docs: reorganize observability docs and update titles (#2467) 2025-03-25 08:14:52 -07:00
Tony Kipkemboi
35cb7fcf4d Merge pull request #2463 from ayulockin/main
docs: Add documentation for W&B Weave
2025-03-25 09:48:09 -04:00
ayulockin
d2a9a4a4e4 Revert "remove uv.lock"
This reverts commit e62e9c7401.
2025-03-25 19:05:58 +05:30
ayulockin
e62e9c7401 remove uv.lock 2025-03-25 19:04:51 +05:30
ayulockin
3c5031e711 docs.json 2025-03-25 19:04:14 +05:30
ayulockin
82e84c0f88 features and resources 2025-03-25 16:43:14 +05:30
ayulockin
2c550dc175 add weave docs 2025-03-25 15:46:41 +05:30
Tony Kipkemboi
bdc92deade docs: update changelog dates (#2437)
* docs: update changelog dates

* docs: add aws bedrock tools docs

* docs: fix incorrect respect_context_window parameter in Crew example
2025-03-24 12:06:50 -04:00
sakunkun
448d31cad9 Fix the failing test of project_test.py 2025-03-22 11:28:27 +08:00
Brandon Hancock (bhancock_ai)
ed1f009c64 Feat/improve yaml extraction (#2428)
* Support wildcard handling in `emit()`

Change `emit()` to call handlers registered for parent classes using
`isinstance()`. Ensures that base event handlers receive derived
events.

* Fix failing test

* Remove unused variable

* update interpolation to work with example response types in yaml docs

* make tests

* fix circular deps

* Fixing interpolation imports

* Improve test

---------

Co-authored-by: Vinicius Brasil <vini@hey.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 18:59:55 -07:00
Matisse
bb3829a9ed docs: Update model reference in LLM configuration (#2267)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 15:12:26 -04:00
Fernando Galves
0a116202f0 Update the context window size for Amazon Bedrock FM- llm.py (#2304)
Update the context window size for Amazon Bedrock Foundation Models.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 14:48:25 -04:00
Stefano Baccianella
4daa88fa59 As explained in https://github.com/mangiucugna/json_repair?tab=readme-ov-file#performance-considerations we can skip a wasteful json.loads() here and save quite some time (#2397)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-03-21 14:25:19 -04:00
Parth Patel
53067f8b92 add Mem0 OSS support (#2429)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:57:24 -04:00
Saurabh Misra
d3a09c3180 ️ Speed up method CrewAgentParser._clean_action by 427,565% (#2382)
Here is the optimized version of the program.

Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:51:14 -04:00
Saurabh Misra
4d7aacb5f2 ️ Speed up method Repository.is_git_repo by 72,270% (#2381)
Here is the optimized version of the `Repository` class.

Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:43:48 -04:00
Julio Peixoto
6b1cf78e41 docs: add detailed docstrings to Telemetry class methods (#2377)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:34:16 -04:00
Patcher
80f1a88b63 Upgrade OTel SDK version to 1.30.0 (#2375)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:26:50 -04:00
Jorge Gonzalez
32da76a2ca Use task in the note about how methods names need to match task names (#2355)
The note is about the task but mentions the agent incorrectly.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 13:17:43 -04:00
Brandon Hancock (bhancock_ai)
b3667a8c09 Merge branch 'main' into bug_fix 2025-03-21 13:08:09 -04:00
Gustavo Satheler
3aa48dcd58 fix: move agent tools for a variable instead of use format (#2319)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-21 12:32:54 -04:00
Tony Kipkemboi
03f1d57463 Merge pull request #2430 from crewAIInc/update-llm-docs
docs: add documentation for Local NVIDIA NIM with WSL2
2025-03-20 12:57:37 -07:00
Tony Kipkemboi
4725d0de0d Merge branch 'main' into update-llm-docs 2025-03-20 12:50:06 -07:00
Arthur Chien
b766af75f2 fix the _extract_thought (#2398)
* fix the _extract_thought

the regex string should be same with prompt in en.json:129
...\nThought: I now know the final answer\nFinal Answer: the...

* fix Action match

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 15:44:44 -04:00
Tony Kipkemboi
b2c8779f4c Add documentation for Local NVIDIA NIM with WSL2 2025-03-20 12:39:37 -07:00
Tony Kipkemboi
df266bda01 Update documentation: Add changelog, fix formatting issues, replace mint.json with docs.json (#2400) 2025-03-20 14:44:21 -04:00
Vidit-Ostwal
eed7919d72 Merge remote-tracking branch 'origin/Branch_2260' into Branch_2260 2025-03-20 22:49:51 +05:30
Vidit-Ostwal
1e49d1b592 Fixed doc string of copy function 2025-03-20 22:47:46 +05:30
Vidit-Ostwal
ded7197fcb Merge branch 'main' into Branch_2260 2025-03-20 22:46:30 +05:30
Lorenze Jay
2155acb3a3 docs: Update JSONSearchTool and RagTool configuration parameter from 'embedder' to 'embedding_model' (#2311)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 13:11:37 -04:00
Sir Qasim
794574957e Add note to create ./knowldge folder for source file management (#2297)
This update includes a note in the documentation instructing users to create a ./knowldge folder. All source files (such as .txt, .pdf, .xlsx, .json) should be placed in this folder for centralized management. This change aims to streamline file organization and improve accessibility across projects.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 12:54:17 -04:00
Sir Qasim
66b19311a7 Fix crewai run Command Issue for Flow Projects and Cloud Deployment (#2291)
This PR addresses an issue with the crewai run command following the creation of a flow project. Previously, the update command interfered with execution, causing it not to work as expected. With these changes, the command now runs according to the instructions in the readme.md, and it also improves deployment support when using CrewAI Cloud.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 12:48:02 -04:00
devin-ai-integration[bot]
9fc84fc1ac Fix incorrect import statement in memory examples documentation (fixes #2395) (#2396)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 12:17:26 -04:00
Amine Saihi
f8f9df6d1d update doc SpaceNewsKnowledgeSource code snippet (#2275)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 12:06:21 -04:00
João Moura
6e94edb777 TYPO 2025-03-20 08:21:17 -07:00
Brandon Hancock (bhancock_ai)
5f2ac8c33e Merge branch 'main' into Branch_2260 2025-03-20 11:20:54 -04:00
Vini Brasil
bbe896d48c Support wildcard handling in emit() (#2424)
* Support wildcard handling in `emit()`

Change `emit()` to call handlers registered for parent classes using
`isinstance()`. Ensures that base event handlers receive derived
events.

* Fix failing test

* Remove unused variable
2025-03-20 09:59:17 -04:00
Seyed Mostafa Meshkati
9298054436 docs: add base_url env for anthropic llm example (#2204)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 09:48:11 -04:00
Fernando Galves
90b7937796 Update documentation (#2199)
* Update llms.mdx

Update Amazon Bedrock section with more information about the foundation models available.

* Update llms.mdx

fix the description of Amazon Bedrock section

* Update llms.mdx

Remove the incorrect </tab> tag

* Update llms.mdx

Add Claude 3.7 Sonnet to the Amazon Bedrock list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 09:42:23 -04:00
elda27
520933b4c5 Fix: More comfortable validation #2177 (#2178)
* Fix: More confortable validation

* Fix: union type support

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-03-20 09:28:31 -04:00
exiao
9ea4fb8c82 Add Phoenix docs and tutorials 2025-03-20 02:23:13 -04:00
sakunkun
313038882c fix: retrieve function_calling_llm from registered LLMs in CrewBase 2025-03-11 11:40:33 +00:00
Vidit-Ostwal
cf1864ce0f Added docstring 2025-03-03 21:12:21 +05:30
Vidit-Ostwal
52e0a84829 Added .copy for manager agent and shallow copy for manager llm 2025-03-03 20:57:41 +05:30
166 changed files with 38371 additions and 13713 deletions

View File

@@ -12,6 +12,9 @@ jobs:
tests:
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12']
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -21,9 +24,8 @@ jobs:
with:
enable-cache: true
- name: Set up Python
run: uv python install 3.12.8
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install the project
run: uv sync --dev --all-extras

3
.gitignore vendored
View File

@@ -25,4 +25,5 @@ agentops.log
test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md
conceptual_plan.md
build_image

View File

@@ -257,10 +257,14 @@ reporting_task:
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def researcher(self) -> Agent:
@@ -401,11 +405,16 @@ You can test different real life examples of AI crews in the [CrewAI-examples re
### Using Crews and Flows Together
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines. Here's how you can orchestrate multiple Crews within a Flow:
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines.
CrewAI flows support logical operators like `or_` and `and_` to combine multiple conditions. This can be used with `@start`, `@listen`, or `@router` decorators to create complex triggering conditions.
- `or_`: Triggers when any of the specified conditions are met.
- `and_`Triggers when all of the specified conditions are met.
Here's how you can orchestrate multiple Crews within a Flow:
```python
from crewai.flow.flow import Flow, listen, start, router
from crewai import Crew, Agent, Task
from crewai.flow.flow import Flow, listen, start, router, or_
from crewai import Crew, Agent, Task, Process
from pydantic import BaseModel
# Define structured state for precise control
@@ -479,7 +488,7 @@ class AdvancedAnalysisFlow(Flow[MarketState]):
)
return strategy_crew.kickoff()
@listen("medium_confidence", "low_confidence")
@listen(or_("medium_confidence", "low_confidence"))
def request_additional_analysis(self):
self.state.recommendations.append("Gather more data")
return "Additional analysis required"

187
docs/changelog.mdx Normal file
View File

@@ -0,0 +1,187 @@
---
title: Changelog
description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2025-03-17" description="v0.108.0">
**Features**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
- Included `model_name`
- Enhanced Event Listener with rich visualization and improved logging
- Added fingerprints
**Bug Fixes**
- Fixed Mistral issues
- Fixed a bug in documentation
- Fixed type check error in fingerprint property
**Documentation Updates**
- Improved tool documentation
- Updated installation guide for the `uv` tool package
- Added instructions for upgrading crewAI with the `uv` tool
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2025-03-10" description="v0.105.0">
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
- Enhanced memory reset functionality and fixed CLI memory commands
- Fixed type issues, tool calling properties, and telemetry decoupling
**New Features & Enhancements**
- Added Flow state export and improved state utilities
- Enhanced agent knowledge setup with optional crew embedder
- Introduced event emitter for better observability and LLM call tracking
- Added support for Python 3.10 and ChatOllama from langchain_ollama
- Integrated context window size support for the o3-mini model
- Added support for multiple router calls
**Documentation & Guides**
- Improved documentation layout and hierarchical structure
- Added QdrantVectorSearchTool guide and clarified event listener usage
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2025-02-12" description="v0.102.0">
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
- Memory & Storage Fixes: Fixed short-term memory handling with Bedrock, ensured correct embedder initialization, and added a reset memories function in the crew class
- Training & Execution Reliability: Fixed broken training and interpolation issues with dict and list input types
**New Features & Enhancements**
- Advanced Knowledge Management: Improved naming conventions and enhanced embedding configuration with custom embedder support
- Expanded Logging & Observability: Added JSON format support for logging and integrated MLflow tracing documentation
- Data Handling Improvements: Updated excel_knowledge_source.py to process multi-tab files
- General Performance & Codebase Clean-Up: Streamlined enterprise code alignment and resolved linting issues
- Adding new tool: `QdrantVectorSearchTool`
**Documentation & Guides**
- Updated AI & Memory Docs: Improved Bedrock, Google AI, and long-term memory documentation
- Task & Workflow Clarity: Added "Human Input" row to Task Attributes, Langfuse guide, and FileWriterTool documentation
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2025-01-28" description="v0.100.0">
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
**Fixes**
- Overall LLM connection issues
- Using safe accessors on training
- Add version check to crew_chat.py
**Documentation**
- New docs for crewai chat
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2025-01-20" description="v0.98.0">
**Features**
- Conversation crew v1
- Add unique ID to flow states
- Add @persist decorator with FlowPersistence interface
**Integrations**
- Add SambaNova integration
- Add NVIDIA NIM provider in cli
- Introducing VoyageAI
**Fixes**
- Fix API Key Behavior and Entity Handling in Mem0 Integration
- Fixed core invoke loop logic and relevant tests
- Make tool inputs actual objects and not strings
- Add important missing parts to creating tools
- Drop litellm version to prevent windows issue
- Before kickoff if inputs are none
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2025-01-04" description="v0.95.0">
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
- HITL multiple rounds
- Gemini 2.0 Support
- CrewAI Flows Improvements
- Add Workflow Permissions
- Add support for langfuse with litellm
- Portkey Integration with CrewAI
- Add interpolate_only method and improve error handling
- Docling Support
- Weviate Support
**Fixes**
- output_file not respecting system path
- disk I/O error when resetting short-term memory
- CrewJSONEncoder now accepts enums
- Python max version
- Interpolation for output_file in Task
- Handle coworker role name case/whitespace properly
- Add tiktoken as explicit dependency and document Rust requirement
- Include agent knowledge in planning process
- Change storage initialization to None for KnowledgeStorage
- Fix optional storage checks
- include event emitter in flows
- Docstring, Error Handling, and Type Hints Improvements
- Suppressed userWarnings from litellm pydantic issues
</Update>
<Update label="2024-12-05" description="v0.86.0">
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
- Add knowledge demo + improve knowledge docs
- Add HITL multiple rounds of followup
- New docs about yaml crew with decorators
- Simplify template crew
</Update>
<Update label="2024-12-04" description="v0.85.0">
**Features**
- Added knowledge to agent level
- Feat/remove langchain
- Improve typed task outputs
- Log in to Tool Repository on crewai login
**Fixes**
- Fixes issues with result as answer not properly exiting LLM loop
- Fix missing key name when running with ollama provider
- Fix spelling issue found
**Documentation**
- Update readme for running mypy
- Add knowledge to mint.json
- Update Github actions
- Update Agents docs to include two approaches for creating an agent
- Improvements to LLM Configuration and Usage
</Update>
<Update label="2024-11-25" description="v0.83.0">
**New Features**
- New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge
- Add support for retrieving user preferences and memories using Mem0
**Fixes**
- Fix Async Execution
- Upgrade chroma and adjust embedder function generator
- Update CLI Watson supported models + docs
- Reduce level for Bandit
- Fixing all tests
**Documentation**
- Update Docs
</Update>
<Update label="2024-11-13" description="v0.80.0">
**Fixes**
- Fixing Tokens callback replacement bug
- Fixing Step callback issue
- Add cached prompt tokens info on usage metrics
- Fix crew_train_success test
</Update>

View File

@@ -18,6 +18,18 @@ In the CrewAI framework, an `Agent` is an autonomous unit that can:
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
</Tip>
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](../images/enterprise/crew-studio-quickstart)
The Visual Agent Builder enables:
- Intuitive agent configuration with form-based interfaces
- Real-time testing and validation
- Template library with pre-configured agent types
- Easy customization of agent attributes and behaviors
</Note>
## Agent Attributes
| Attribute | Parameter | Type | Description |
@@ -106,7 +118,7 @@ class LatestAiDevelopmentCrew():
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -114,7 +126,7 @@ class LatestAiDevelopmentCrew():
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
```
@@ -233,7 +245,7 @@ custom_agent = Agent(
#### Code Execution
- `allow_code_execution`: Must be True to run code
- `code_execution_mode`:
- `code_execution_mode`:
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)

View File

@@ -23,8 +23,7 @@ The `Crew` class has been enriched with several attributes to support advanced f
| **Process Flow** (`process`) | Defines execution logic (e.g., sequential, hierarchical) for task distribution. |
| **Verbose Logging** (`verbose`) | Provides detailed logging for monitoring and debugging. Accepts integer and boolean values to control verbosity level. |
| **Rate Limiting** (`max_rpm`) | Limits requests per minute to optimize resource usage. Setting guidelines depend on task complexity and load. |
| **Internationalization / Customization** (`language`, `prompt_file`) | Supports prompt customization for global usability. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json) |
| **Execution and Output Handling** (`full_output`) | Controls output granularity, distinguishing between full and final outputs. |
| **Internationalization / Customization** (`prompt_file`) | Supports prompt customization for global usability. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json) |
| **Callback and Telemetry** (`step_callback`, `task_callback`) | Enables step-wise and task-level execution monitoring and telemetry for performance analytics. |
| **Crew Sharing** (`share_crew`) | Allows sharing crew data with CrewAI for model improvement. Privacy implications and benefits should be considered. |
| **Usage Metrics** (`usage_metrics`) | Logs all LLM usage metrics during task execution for performance insights. |
@@ -49,4 +48,4 @@ Consider a crew with a researcher agent tasked with data gathering and a writer
## Conclusion
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.

View File

@@ -20,13 +20,10 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
@@ -55,12 +52,16 @@ After creating your CrewAI project as outlined in the [Installation](/installati
```python code
from crewai import Agent, Crew, Task, Process
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class YourCrewName:
"""Description of your crew"""
agents: List[BaseAgent]
tasks: List[Task]
# Paths to your YAML configuration files
# To see an example agent and task defined in YAML, checkout the following:
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
@@ -83,27 +84,27 @@ class YourCrewName:
@agent
def agent_one(self) -> Agent:
return Agent(
config=self.agents_config['agent_one'],
config=self.agents_config['agent_one'], # type: ignore[index]
verbose=True
)
@agent
def agent_two(self) -> Agent:
return Agent(
config=self.agents_config['agent_two'],
config=self.agents_config['agent_two'], # type: ignore[index]
verbose=True
)
@task
def task_one(self) -> Task:
return Task(
config=self.tasks_config['task_one']
config=self.tasks_config['task_one'] # type: ignore[index]
)
@task
def task_two(self) -> Task:
return Task(
config=self.tasks_config['task_two']
config=self.tasks_config['task_two'] # type: ignore[index]
)
@crew

View File

@@ -1,6 +1,7 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
icon: spinner
---
# Event Listeners
@@ -12,11 +13,25 @@ CrewAI provides a powerful event system that allows you to listen for and react
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
2. **CrewEvent**: Base class for all events in the system
2. **BaseEvent**: Base class for all events in the system
3. **BaseEventListener**: Abstract base class for creating custom event listeners
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](../images/enterprise/prompt-tracing.png)
With Prompt Tracing you can:
- View the complete history of all prompts sent to your LLM
- Track token usage and costs
- Debug agent reasoning failures
- Share prompt sequences with your team
- Compare different prompt strategies
- Export traces for compliance and auditing
</Note>
## Creating a Custom Event Listener
To create a custom event listener, you need to:
@@ -39,17 +54,17 @@ from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
print(f"Crew '{event.crew_name}' has started execution!")
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
print(f"Crew '{event.crew_name}' has completed execution!")
print(f"Output: {event.output}")
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event):
print(f"Agent '{event.agent.role}' completed task")
@@ -82,7 +97,7 @@ my_listener = MyCustomListener()
class MyCustomCrew:
# Your crew implementation...
def crew(self):
return Crew(
agents=[...],
@@ -105,7 +120,7 @@ my_listener = MyCustomListener()
class MyCustomFlow(Flow):
# Your flow implementation...
@start()
def first_step(self):
# ...
@@ -233,7 +248,7 @@ Each event handler receives two parameters:
1. **source**: The object that emitted the event
2. **event**: The event instance, containing event-specific data
The structure of the event object depends on the event type, but all events inherit from `CrewEvent` and include:
The structure of the event object depends on the event type, but all events inherit from `BaseEvent` and include:
- **timestamp**: The time when the event was emitted
- **type**: A string identifier for the event type
@@ -323,9 +338,9 @@ with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def temp_handler(source, event):
print("This handler only exists within this context")
# Do something that emits events
# Outside the context, the temporary handler is removed
```

View File

@@ -545,6 +545,119 @@ The `third_method` and `fourth_method` listen to the output of the `second_metho
When you run this Flow, the output will change based on the random boolean value generated by the `start_method`.
## Adding Agents to Flows
Agents can be seamlessly integrated into your flows, providing a lightweight alternative to full Crews when you need simpler, focused task execution. Here's an example of how to use an Agent within a flow to perform market research:
```python
import asyncio
from typing import Any, Dict, List
from crewai_tools import SerperDevTool
from pydantic import BaseModel, Field
from crewai.agent import Agent
from crewai.flow.flow import Flow, listen, start
# Define a structured output format
class MarketAnalysis(BaseModel):
key_trends: List[str] = Field(description="List of identified market trends")
market_size: str = Field(description="Estimated market size")
competitors: List[str] = Field(description="Major competitors in the space")
# Define flow state
class MarketResearchState(BaseModel):
product: str = ""
analysis: MarketAnalysis | None = None
# Create a flow class
class MarketResearchFlow(Flow[MarketResearchState]):
@start()
def initialize_research(self) -> Dict[str, Any]:
print(f"Starting market research for {self.state.product}")
return {"product": self.state.product}
@listen(initialize_research)
async def analyze_market(self) -> Dict[str, Any]:
# Create an Agent for market research
analyst = Agent(
role="Market Research Analyst",
goal=f"Analyze the market for {self.state.product}",
backstory="You are an experienced market analyst with expertise in "
"identifying market trends and opportunities.",
tools=[SerperDevTool()],
verbose=True,
)
# Define the research query
query = f"""
Research the market for {self.state.product}. Include:
1. Key market trends
2. Market size
3. Major competitors
Format your response according to the specified structure.
"""
# Execute the analysis with structured output format
result = await analyst.kickoff_async(query, response_format=MarketAnalysis)
if result.pydantic:
print("result", result.pydantic)
else:
print("result", result)
# Return the analysis to update the state
return {"analysis": result.pydantic}
@listen(analyze_market)
def present_results(self, analysis) -> None:
print("\nMarket Analysis Results")
print("=====================")
if isinstance(analysis, dict):
# If we got a dict with 'analysis' key, extract the actual analysis object
market_analysis = analysis.get("analysis")
else:
market_analysis = analysis
if market_analysis and isinstance(market_analysis, MarketAnalysis):
print("\nKey Market Trends:")
for trend in market_analysis.key_trends:
print(f"- {trend}")
print(f"\nMarket Size: {market_analysis.market_size}")
print("\nMajor Competitors:")
for competitor in market_analysis.competitors:
print(f"- {competitor}")
else:
print("No structured analysis data available.")
print("Raw analysis:", analysis)
# Usage example
async def run_flow():
flow = MarketResearchFlow()
result = await flow.kickoff_async(inputs={"product": "AI-powered chatbots"})
return result
# Run the flow
if __name__ == "__main__":
asyncio.run(run_flow())
```
This example demonstrates several key features of using Agents in flows:
1. **Structured Output**: Using Pydantic models to define the expected output format (`MarketAnalysis`) ensures type safety and structured data throughout the flow.
2. **State Management**: The flow state (`MarketResearchState`) maintains context between steps and stores both inputs and outputs.
3. **Tool Integration**: Agents can use tools (like `WebsiteSearchTool`) to enhance their capabilities.
## Adding Crews to Flows
Creating a flow with multiple crews in CrewAI is straightforward.

View File

@@ -150,6 +150,8 @@ result = crew.kickoff(
Here are examples of how to use different types of knowledge sources:
Note: Please ensure that you create the ./knowldge folder. All source files (e.g., .txt, .pdf, .xlsx, .json) should be placed in this folder for centralized management.
### Text File Knowledge Source
```python
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
@@ -460,12 +462,12 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
data = response.json()
articles = data.get('results', [])
formatted_data = self._format_articles(articles)
formatted_data = self.validate_content(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def _format_articles(self, articles: list) -> str:
def validate_content(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
for article in articles:

View File

@@ -59,7 +59,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
llm: openai/gpt-4o-mini # your model here
llm: openai/gpt-4o-mini # your model here
# (see provider configuration examples below for more)
```
@@ -111,7 +111,7 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
## Provider Configuration Examples
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
CrewAI supports a multitude of LLM providers, each offering unique features, authentication methods, and model capabilities.
In this section, you'll find detailed examples that help you select, configure, and optimize the LLM that best fits your project's needs.
<AccordionGroup>
@@ -121,7 +121,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
@@ -158,7 +158,11 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Anthropic">
```toml Code
# Required
ANTHROPIC_API_KEY=sk-ant-...
# Optional
ANTHROPIC_API_BASE=<custom-base-url>
```
Example usage in your CrewAI project:
@@ -222,7 +226,7 @@ In this section, you'll find detailed examples that help you select, configure,
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
@@ -250,8 +254,42 @@ In this section, you'll find detailed examples that help you select, configure,
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.
| Model | Context Window | Best For |
|-------------------------|----------------------|-------------------------------------------------------------------|
| Amazon Nova Pro | Up to 300k tokens | High-performance, model balancing accuracy, speed, and cost-effectiveness across diverse tasks. |
| Amazon Nova Micro | Up to 128k tokens | High-performance, cost-effective text-only model optimized for lowest latency responses. |
| Amazon Nova Lite | Up to 300k tokens | High-performance, affordable multimodal processing for images, video, and text with real-time capabilities. |
| Claude 3.7 Sonnet | Up to 128k tokens | High-performance, best for complex reasoning, coding & AI agents |
| Claude 3.5 Sonnet v2 | Up to 200k tokens | State-of-the-art model specialized in software engineering, agentic capabilities, and computer interaction at optimized cost. |
| Claude 3.5 Sonnet | Up to 200k tokens | High-performance model delivering superior intelligence and reasoning across diverse tasks with optimal speed-cost balance. |
| Claude 3.5 Haiku | Up to 200k tokens | Fast, compact multimodal model optimized for quick responses and seamless human-like interactions |
| Claude 3 Sonnet | Up to 200k tokens | Multimodal model balancing intelligence and speed for high-volume deployments. |
| Claude 3 Haiku | Up to 200k tokens | Compact, high-speed multimodal model optimized for quick responses and natural conversational interactions |
| Claude 3 Opus | Up to 200k tokens | Most advanced multimodal model exceling at complex tasks with human-like reasoning and superior contextual understanding. |
| Claude 2.1 | Up to 200k tokens | Enhanced version with expanded context window, improved reliability, and reduced hallucinations for long-form and RAG applications |
| Claude | Up to 100k tokens | Versatile model excelling in sophisticated dialogue, creative content, and precise instruction following. |
| Claude Instant | Up to 100k tokens | Fast, cost-effective model for everyday tasks like dialogue, analysis, summarization, and document Q&A |
| Llama 3.1 405B Instruct | Up to 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
| Llama 3.1 70B Instruct | Up to 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| Llama 3.1 8B Instruct | Up to 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
| Llama 3 70B Instruct | Up to 8k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
| Llama 3 8B Instruct | Up to 8k tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
| Titan Text G1 - Lite | Up to 4k tokens | Lightweight, cost-effective model optimized for English tasks and fine-tuning with focus on summarization and content generation. |
| Titan Text G1 - Express | Up to 8k tokens | Versatile model for general language tasks, chat, and RAG applications with support for English and 100+ languages. |
| Cohere Command | Up to 4k tokens | Model specialized in following user commands and delivering practical enterprise solutions. |
| Jurassic-2 Mid | Up to 8,191 tokens | Cost-effective model balancing quality and affordability for diverse language tasks like Q&A, summarization, and content generation. |
| Jurassic-2 Ultra | Up to 8,191 tokens | Model for advanced text generation and comprehension, excelling in complex tasks like analysis and content creation. |
| Jamba-Instruct | Up to 256k tokens | Model with extended context window optimized for cost-effective text generation, summarization, and Q&A. |
| Mistral 7B Instruct | Up to 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
</Accordion>
<Accordion title="Amazon SageMaker">
```toml Code
AWS_ACCESS_KEY_ID=<your-access-key>
@@ -368,6 +406,46 @@ In this section, you'll find detailed examples that help you select, configure,
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
</Accordion>
<Accordion title="Local NVIDIA NIM Deployed using WSL2">
NVIDIA NIM enables you to run powerful LLMs locally on your Windows machine using WSL2 (Windows Subsystem for Linux).
This approach allows you to leverage your NVIDIA GPU for private, secure, and cost-effective AI inference without relying on cloud services.
Perfect for development, testing, or production scenarios where data privacy or offline capabilities are required.
Here is a step-by-step guide to setting up a local NVIDIA NIM model:
1. Follow installation instructions from [NVIDIA Website](https://docs.nvidia.com/nim/wsl2/latest/getting-started.html)
2. Install the local model. For Llama 3.1-8b follow [instructions](https://build.nvidia.com/meta/llama-3_1-8b-instruct/deploy)
3. Configure your crewai local models:
```python Code
from crewai.llm import LLM
local_nvidia_nim_llm = LLM(
model="openai/meta/llama-3.1-8b-instruct", # it's an openai-api compatible model
base_url="http://localhost:8000/v1",
api_key="<your_api_key|any text if you have not configured it>", # api_key is required, but you can use any text
)
# Then you can use it in your crew:
@CrewBase
class MyCrew():
# ...
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'], # type: ignore[index]
llm=local_nvidia_nim_llm
)
# ...
```
</Accordion>
<Accordion title="Groq">
Set the following environment variables in your `.env` file:
@@ -396,7 +474,7 @@ In this section, you'll find detailed examples that help you select, configure,
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
# Optional
WATSONX_TOKEN=<your-token>
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id>
@@ -413,7 +491,7 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
2. Run a model: `ollama run llama3`
3. Configure:
```python Code
@@ -457,14 +535,13 @@ In this section, you'll find detailed examples that help you select, configure,
<Accordion title="Hugging Face">
Set the following environment variables in your `.env` file:
```toml Code
HUGGINGFACE_API_KEY=<your-api-key>
HF_TOKEN=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
base_url="your_api_endpoint"
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct"
)
```
</Accordion>
@@ -522,7 +599,7 @@ In this section, you'll find detailed examples that help you select, configure,
```toml Code
OPENROUTER_API_KEY=<your-api-key>
```
Example usage in your CrewAI project:
```python Code
llm = LLM(
@@ -645,7 +722,7 @@ Learn how to get the most out of your LLM configuration:
- Small tasks (up to 4K tokens): Standard models
- Medium tasks (between 4K-32K): Enhanced models
- Large tasks (over 32K): Large context models
```python
# Configure model with appropriate settings
llm = LLM(
@@ -682,11 +759,11 @@ Learn how to get the most out of your LLM configuration:
<Warning>
Most authentication issues can be resolved by checking API key format and environment variable names.
</Warning>
```bash
# OpenAI
OPENAI_API_KEY=sk-...
# Anthropic
ANTHROPIC_API_KEY=sk-ant-...
```
@@ -695,11 +772,11 @@ Learn how to get the most out of your LLM configuration:
<Check>
Always include the provider prefix in model names
</Check>
```python
# Correct
llm = LLM(model="openai/gpt-4")
# Incorrect
llm = LLM(model="gpt-4")
```
@@ -709,4 +786,9 @@ Learn how to get the most out of your LLM configuration:
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>

View File

@@ -18,7 +18,8 @@ reason, and learn from past interactions.
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
| **External Memory** | Enables integration with external memory systems and providers (like Mem0), allowing for specialized memory storage and retrieval across different applications. Supports custom storage implementations for flexible memory management. |
| **User Memory** | ⚠️ **DEPRECATED**: This component is deprecated and will be removed in a future version. Please use [External Memory](#using-external-memory) instead. |
## How Memory Systems Empower Agents
@@ -60,7 +61,8 @@ my_crew = Crew(
```python Code
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage import LTMSQLiteStorage, RAGStorage
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
@@ -119,7 +121,7 @@ Example using environment variables:
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
@@ -143,12 +145,13 @@ from crewai.memory import LongTermMemory
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
Note that External Memory wont be defined when `memory=True` is set, as we cant infer which external memory would be suitable for your case
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage import LTMSQLiteStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
@@ -163,7 +166,10 @@ crew = Crew(
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
### Using Mem0 API platform
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences. In this case `user_memory` is set to `MemoryClient` from mem0.
```python Code
@@ -174,18 +180,7 @@ from mem0 import MemoryClient
# Set environment variables for Mem0
os.environ["MEM0_API_KEY"] = "m0-xx"
# Step 1: Record preferences based on past conversation or user input
client = MemoryClient()
messages = [
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
{"role": "user", "content": "I am more of a beach person than a mountain person."},
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
{"role": "user", "content": "I like Airbnb more."},
]
client.add(messages, user_id="john")
# Step 2: Create a Crew with User Memory
# Step 1: Create a Crew with User Memory
crew = Crew(
agents=[...],
@@ -196,11 +191,12 @@ crew = Crew(
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
},
)
```
## Memory Configuration Options
#### Additional Memory Configuration Options
If you want to access a specific organization and project, you can set the `org_id` and `project_id` parameters in the memory configuration.
```python Code
@@ -214,10 +210,172 @@ crew = Crew(
memory_config={
"provider": "mem0",
"config": {"user_id": "john", "org_id": "my_org_id", "project_id": "my_project_id"},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
},
)
```
### Using Local Mem0 memory
If you want to use local mem0 memory, with a custom configuration, you can set a parameter `local_mem0_config` in the config itself.
If both os environment key is set and local_mem0_config is given, the API platform takes higher priority over the local configuration.
Check [this](https://docs.mem0.ai/open-source/python-quickstart#run-mem0-locally) mem0 local configuration docs for more understanding.
In this case `user_memory` is set to `Memory` from mem0.
```python Code
from crewai import Crew
#local mem0 config
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"host": "localhost",
"port": 6333
}
},
"llm": {
"provider": "openai",
"config": {
"api_key": "your-api-key",
"model": "gpt-4"
}
},
"embedder": {
"provider": "openai",
"config": {
"api_key": "your-api-key",
"model": "text-embedding-3-small"
}
},
"graph_store": {
"provider": "neo4j",
"config": {
"url": "neo4j+s://your-instance",
"username": "neo4j",
"password": "password"
}
},
"history_db_path": "/path/to/history.db",
"version": "v1.1",
"custom_fact_extraction_prompt": "Optional custom prompt for fact extraction for memory",
"custom_update_memory_prompt": "Optional custom prompt for update memory"
}
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john", 'local_mem0_config': config},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
},
)
```
### Using External Memory
External Memory is a powerful feature that allows you to integrate external memory systems with your CrewAI applications. This is particularly useful when you want to use specialized memory providers or maintain memory across different applications.
Since its an external memory, were not able to add a default value to it - unlike with Long Term and Short Term memory.
#### Basic Usage with Mem0
The most common way to use External Memory is with Mem0 as the provider:
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
os.environ["MEM0_API_KEY"] = "YOUR-API-KEY"
agent = Agent(
role="You are a helpful assistant",
goal="Plan a vacation for the user",
backstory="You are a helpful assistant that can plan a vacation for the user",
verbose=True,
)
task = Task(
description="Give things related to the user's vacation",
expected_output="A plan for the vacation",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
external_memory=ExternalMemory(
embedder_config={"provider": "mem0", "config": {"user_id": "U-123"}} # you can provide an entire Mem0 configuration
),
)
crew.kickoff(
inputs={"question": "which destination is better for a beach vacation?"}
)
```
#### Using External Memory with Custom Storage
You can also create custom storage implementations for External Memory. Here's an example of how to create a custom storage:
```python
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
from crewai.memory.storage.interface import Storage
class CustomStorage(Storage):
def __init__(self):
self.memories = []
def save(self, value, metadata=None, agent=None):
self.memories.append({"value": value, "metadata": metadata, "agent": agent})
def search(self, query, limit=10, score_threshold=0.5):
# Implement your search logic here
return []
def reset(self):
self.memories = []
# Create external memory with custom storage
external_memory = ExternalMemory(
storage=CustomStorage(),
embedder_config={"provider": "mem0", "config": {"user_id": "U-123"}},
)
agent = Agent(
role="You are a helpful assistant",
goal="Plan a vacation for the user",
backstory="You are a helpful assistant that can plan a vacation for the user",
verbose=True,
)
task = Task(
description="Give things related to the user's vacation",
expected_output="A plan for the vacation",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
external_memory=external_memory,
)
crew.kickoff(
inputs={"question": "which destination is better for a beach vacation?"}
)
```
## Additional Embedding Providers
### Using OpenAI embeddings (already default)

View File

@@ -12,6 +12,18 @@ Tasks provide all necessary details for execution, such as a description, the ag
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI Enterprise includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](../images/enterprise/crew-studio-quickstart.png)
The Visual Task Builder enables:
- Drag-and-drop task creation
- Visual task dependencies and flow
- Real-time testing and validation
- Easy sharing and collaboration
</Note>
### Task Execution Flow
Tasks can be executed in two ways:
@@ -101,7 +113,7 @@ class LatestAiDevelopmentCrew():
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -109,20 +121,20 @@ class LatestAiDevelopmentCrew():
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
config=self.tasks_config['research_task'] # type: ignore[index]
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task']
config=self.tasks_config['reporting_task'] # type: ignore[index]
)
@crew
@@ -414,7 +426,7 @@ It's also important to note that the output of the final task of a crew becomes
### Using `output_pydantic`
The `output_pydantic` property allows you to define a Pydantic model that the task output should conform to. This ensures that the output is not only structured but also validated according to the Pydantic model.
Heres an example demonstrating how to use output_pydantic:
Here's an example demonstrating how to use output_pydantic:
```python Code
import json
@@ -495,7 +507,7 @@ In this example:
### Using `output_json`
The `output_json` property allows you to define the expected output in JSON format. This ensures that the task's output is a valid JSON structure that can be easily parsed and used in your application.
Heres an example demonstrating how to use `output_json`:
Here's an example demonstrating how to use `output_json`:
```python Code
import json

View File

@@ -15,6 +15,18 @@ A tool in CrewAI is a skill or function that agents can utilize to perform vario
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
enabling everything from simple searches to complex interactions and effective teamwork among agents.
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI Enterprise provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
![Tools Repository Screenshot](../images/enterprise/tools-repository.png)
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems
- Custom tool creation interface
- Version control and sharing capabilities
- Security and compliance features
</Note>
## Key Characteristics of Tools
- **Utility**: Crafted for tasks such as web searching, data analysis, content generation, and agent collaboration.
@@ -79,7 +91,7 @@ research = Task(
)
write = Task(
description='Write an engaging blog post about the AI industry, based on the research analysts summary. Draw inspiration from the latest blog posts in the directory.',
description='Write an engaging blog post about the AI industry, based on the research analyst's summary. Draw inspiration from the latest blog posts in the directory.',
expected_output='A 4-paragraph blog post formatted in markdown with engaging, informative, and accessible content, avoiding complex jargon.',
agent=writer,
output_file='blog-posts/new_post.md' # The final blog post will be saved here
@@ -141,7 +153,7 @@ Here is a list of the available tools and their descriptions:
## Creating your own Tools
<Tip>
Developers can craft `custom tools` tailored for their agents needs or
Developers can craft `custom tools` tailored for their agent's needs or
utilize pre-built options.
</Tip>

642
docs/custom_llm.md Normal file
View File

@@ -0,0 +1,642 @@
# Custom LLM Implementations
CrewAI now supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to create your own LLM implementations that don't rely on litellm's authentication mechanism.
## Using Custom LLM Implementations
To create a custom LLM implementation, you need to:
1. Inherit from the `BaseLLM` abstract base class
2. Implement the required methods:
- `call()`: The main method to call the LLM with messages
- `supports_function_calling()`: Whether the LLM supports function calling
- `supports_stop_words()`: Whether the LLM supports stop words
- `get_context_window_size()`: The context window size of the LLM
## Example: Basic Custom LLM
```python
from crewai import BaseLLM
from typing import Any, Dict, List, Optional, Union
class CustomLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM
# For example, using requests:
import requests
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
# Return True if your LLM supports function calling
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
# Return True if your LLM supports stop words
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
# Return the context window size of your LLM
return 8192
```
## Error Handling Best Practices
When implementing custom LLMs, it's important to handle errors properly to ensure robustness and reliability. Here are some best practices:
### 1. Implement Try-Except Blocks for API Calls
Always wrap API calls in try-except blocks to handle different types of errors:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
# API call implementation
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30 # Set a reasonable timeout
)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
### 2. Implement Retry Logic for Transient Failures
For transient failures like network issues or rate limiting, implement retry logic with exponential backoff:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import time
max_retries = 3
retry_delay = 1 # seconds
for attempt in range(max_retries):
try:
response = requests.post(
self.endpoint,
headers=self.headers,
json=self.prepare_payload(messages),
timeout=30
)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except (requests.Timeout, requests.ConnectionError) as e:
if attempt < max_retries - 1:
time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff
continue
raise TimeoutError(f"LLM request failed after {max_retries} attempts: {str(e)}")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
```
### 3. Validate Input Parameters
Always validate input parameters to prevent runtime errors:
```python
def __init__(self, api_key: str, endpoint: str):
super().__init__()
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.api_key = api_key
self.endpoint = endpoint
```
### 4. Handle Authentication Errors Gracefully
Provide clear error messages for authentication failures:
```python
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
try:
response = requests.post(self.endpoint, headers=self.headers, json=data)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid API key or token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status()
# Process response
except Exception as e:
# Handle error
raise
```
## Example: JWT-based Authentication
For services that use JWT-based authentication instead of API keys, you can implement a custom LLM like this:
```python
from crewai import BaseLLM, Agent, Task
from typing import Any, Dict, List, Optional, Union
class JWTAuthLLM(BaseLLM):
def __init__(self, jwt_token: str, endpoint: str):
super().__init__() # Initialize the base class to set default attributes
if not jwt_token or not isinstance(jwt_token, str):
raise ValueError("Invalid JWT token: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
raise ValueError("Invalid endpoint URL: must be a non-empty string")
self.jwt_token = jwt_token
self.endpoint = endpoint
self.stop = [] # You can customize stop words if needed
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with JWT authentication.
Args:
messages: Input messages for the LLM.
tools: Optional list of tool schemas for function calling.
callbacks: Optional list of callback functions.
available_functions: Optional dict mapping function names to callables.
Returns:
Either a text response from the LLM or the result of a tool function call.
Raises:
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
ValueError: If the response format is invalid.
"""
# Implement your own logic to call the LLM with JWT authentication
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30 # Set a reasonable timeout
)
if response.status_code == 401:
raise ValueError("Authentication failed: Invalid JWT token")
elif response.status_code == 403:
raise ValueError("Authorization failed: Insufficient permissions")
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
def supports_function_calling(self) -> bool:
"""Check if the LLM supports function calling.
Returns:
True if the LLM supports function calling, False otherwise.
"""
return True
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
True if the LLM supports stop words, False otherwise.
"""
return True
def get_context_window_size(self) -> int:
"""Get the context window size of the LLM.
Returns:
The context window size as an integer.
"""
return 8192
```
## Troubleshooting
Here are some common issues you might encounter when implementing custom LLMs and how to resolve them:
### 1. Authentication Failures
**Symptoms**: 401 Unauthorized or 403 Forbidden errors
**Solutions**:
- Verify that your API key or JWT token is valid and not expired
- Check that you're using the correct authentication header format
- Ensure that your token has the necessary permissions
### 2. Timeout Issues
**Symptoms**: Requests taking too long or timing out
**Solutions**:
- Implement timeout handling as shown in the examples
- Use retry logic with exponential backoff
- Consider using a more reliable network connection
### 3. Response Parsing Errors
**Symptoms**: KeyError, IndexError, or ValueError when processing responses
**Solutions**:
- Validate the response format before accessing nested fields
- Implement proper error handling for malformed responses
- Check the API documentation for the expected response format
### 4. Rate Limiting
**Symptoms**: 429 Too Many Requests errors
**Solutions**:
- Implement rate limiting in your custom LLM
- Add exponential backoff for retries
- Consider using a token bucket algorithm for more precise rate control
## Advanced Features
### Logging
Adding logging to your custom LLM can help with debugging and monitoring:
```python
import logging
from typing import Any, Dict, List, Optional, Union
class LoggingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.logger = logging.getLogger("crewai.llm.custom")
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self.logger.info(f"Calling LLM with {len(messages) if isinstance(messages, list) else 1} messages")
try:
# API call implementation
response = self._make_api_call(messages, tools)
self.logger.debug(f"LLM response received: {response[:100]}...")
return response
except Exception as e:
self.logger.error(f"LLM call failed: {str(e)}")
raise
```
### Rate Limiting
Implementing rate limiting can help avoid overwhelming the LLM API:
```python
import time
from typing import Any, Dict, List, Optional, Union
class RateLimitedLLM(BaseLLM):
def __init__(
self,
api_key: str,
endpoint: str,
requests_per_minute: int = 60
):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.requests_per_minute = requests_per_minute
self.request_times: List[float] = []
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
self._enforce_rate_limit()
# Record this request time
self.request_times.append(time.time())
# Make the actual API call
return self._make_api_call(messages, tools)
def _enforce_rate_limit(self) -> None:
"""Enforce the rate limit by waiting if necessary."""
now = time.time()
# Remove request times older than 1 minute
self.request_times = [t for t in self.request_times if now - t < 60]
if len(self.request_times) >= self.requests_per_minute:
# Calculate how long to wait
oldest_request = min(self.request_times)
wait_time = 60 - (now - oldest_request)
if wait_time > 0:
time.sleep(wait_time)
```
### Metrics Collection
Collecting metrics can help you monitor your LLM usage:
```python
import time
from typing import Any, Dict, List, Optional, Union
class MetricsCollectingLLM(BaseLLM):
def __init__(self, api_key: str, endpoint: str):
super().__init__()
self.api_key = api_key
self.endpoint = endpoint
self.metrics: Dict[str, Any] = {
"total_calls": 0,
"total_tokens": 0,
"errors": 0,
"latency": []
}
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
start_time = time.time()
self.metrics["total_calls"] += 1
try:
response = self._make_api_call(messages, tools)
# Estimate tokens (simplified)
if isinstance(messages, str):
token_estimate = len(messages) // 4
else:
token_estimate = sum(len(m.get("content", "")) // 4 for m in messages)
self.metrics["total_tokens"] += token_estimate
return response
except Exception as e:
self.metrics["errors"] += 1
raise
finally:
latency = time.time() - start_time
self.metrics["latency"].append(latency)
def get_metrics(self) -> Dict[str, Any]:
"""Return the collected metrics."""
avg_latency = sum(self.metrics["latency"]) / len(self.metrics["latency"]) if self.metrics["latency"] else 0
return {
**self.metrics,
"avg_latency": avg_latency
}
```
## Advanced Usage: Function Calling
If your LLM supports function calling, you can implement the function calling logic in your custom LLM:
```python
import json
from typing import Any, Dict, List, Optional, Union
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
import requests
try:
headers = {
"Authorization": f"Bearer {self.jwt_token}",
"Content-Type": "application/json"
}
# Convert string message to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
data = {
"messages": messages,
"tools": tools
}
response = requests.post(
self.endpoint,
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
response_data = response.json()
# Check if the LLM wants to call a function
if response_data["choices"][0]["message"].get("tool_calls"):
tool_calls = response_data["choices"][0]["message"]["tool_calls"]
# Process each tool call
for tool_call in tool_calls:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
if available_functions and function_name in available_functions:
function_to_call = available_functions[function_name]
function_response = function_to_call(**function_args)
# Add the function response to the messages
messages.append({
"role": "tool",
"tool_call_id": tool_call["id"],
"name": function_name,
"content": str(function_response)
})
# Call the LLM again with the updated messages
return self.call(messages, tools, callbacks, available_functions)
# Return the text response if no function call
return response_data["choices"][0]["message"]["content"]
except requests.Timeout:
raise TimeoutError("LLM request timed out")
except requests.RequestException as e:
raise RuntimeError(f"LLM request failed: {str(e)}")
except (KeyError, IndexError, ValueError) as e:
raise ValueError(f"Invalid response format: {str(e)}")
```
## Using Your Custom LLM with CrewAI
Once you've implemented your custom LLM, you can use it with CrewAI agents and crews:
```python
from crewai import Agent, Task, Crew
from typing import Dict, Any
# Create your custom LLM instance
jwt_llm = JWTAuthLLM(
jwt_token="your.jwt.token",
endpoint="https://your-llm-endpoint.com/v1/chat/completions"
)
# Use it with an agent
agent = Agent(
role="Research Assistant",
goal="Find information on a topic",
backstory="You are a research assistant tasked with finding information.",
llm=jwt_llm,
)
# Create a task for the agent
task = Task(
description="Research the benefits of exercise",
agent=agent,
expected_output="A summary of the benefits of exercise",
)
# Execute the task
result = agent.execute_task(task)
print(result)
# Or use it with a crew
crew = Crew(
agents=[agent],
tasks=[task],
manager_llm=jwt_llm, # Use your custom LLM for the manager
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Implementing Your Own Authentication Mechanism
The `BaseLLM` class allows you to implement any authentication mechanism you need, not just JWT or API keys. You can use:
- OAuth tokens
- Client certificates
- Custom headers
- Session-based authentication
- Any other authentication method required by your LLM provider
Simply implement the appropriate authentication logic in your custom LLM class.

238
docs/docs.json Normal file
View File

@@ -0,0 +1,238 @@
{
"$schema": "https://mintlify.com/docs.json",
"theme": "mint",
"name": "CrewAI",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C"
},
"favicon": "favicon.svg",
"navigation": {
"tabs": [
{
"tab": "Get Started",
"groups": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart",
"changelog"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"pages": [
"guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"pages": [
"guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"pages": [
"guides/crews/first-crew"
]
},
{
"group": "Flows",
"pages": [
"guides/flows/first-flow",
"guides/flows/mastering-flow-state"
]
},
{
"group": "Advanced",
"pages": [
"guides/advanced/customizing-prompts",
"guides/advanced/fingerprinting"
]
}
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/event-listener"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/langchain-tools",
"how-to/llamaindex-tools"
]
},
{
"group": "Agent Monitoring & Observability",
"pages": [
"how-to/agentops-observability",
"how-to/arize-phoenix-observability",
"how-to/langfuse-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/opik-observability",
"how-to/portkey-observability",
"how-to/weave-integration"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bedrockinvokeagenttool",
"tools/bedrockkbretriever",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
]
},
{
"tab": "Examples",
"groups": [
{
"group": "Examples",
"pages": [
"examples/example"
]
}
]
}
],
"global": {
"anchors": [
{
"anchor": "Community",
"href": "https://community.crewai.com",
"icon": "discourse"
},
{
"anchor": "Tutorials",
"href": "https://www.youtube.com/@crewAIInc",
"icon": "youtube"
}
]
}
},
"logo": {
"light": "crew_only_logo.png",
"dark": "crew_only_logo.png"
},
"appearance": {
"default": "dark",
"strict": false
},
"navbar": {
"primary": {
"type": "github",
"href": "https://github.com/crewAIInc/crewAI"
}
},
"search": {
"prompt": "Search CrewAI docs"
},
"seo": {
"indexing": "navigable"
},
"footer": {
"socials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc",
"reddit": "https://www.reddit.com/r/crewAIInc/"
}
}
}

View File

@@ -1,4 +1,5 @@
---title: Customizing Prompts
---
title: Customizing Prompts
description: Dive deeper into low-level prompt customization for CrewAI, enabling super custom and complex use cases for different models and languages.
icon: message-pen
---

View File

@@ -185,15 +185,20 @@ Let's modify the `crew.py` file:
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class ResearchCrew():
"""Research crew for comprehensive topic analysis and reporting"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -201,20 +206,20 @@ class ResearchCrew():
@agent
def analyst(self) -> Agent:
return Agent(
config=self.agents_config['analyst'],
config=self.agents_config['analyst'], # type: ignore[index]
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
config=self.tasks_config['research_task'] # type: ignore[index]
)
@task
def analysis_task(self) -> Task:
return Task(
config=self.tasks_config['analysis_task'],
config=self.tasks_config['analysis_task'], # type: ignore[index]
output_file='output/report.md'
)
@@ -387,4 +392,4 @@ Now that you've built your first crew, you can:
<Check>
Congratulations! You've successfully built your first CrewAI crew that can research and analyze any topic you provide. This foundational experience has equipped you with the skills to create increasingly sophisticated AI systems that can tackle complex, multi-stage problems through collaborative intelligence.
</Check>
</Check>

View File

@@ -203,35 +203,40 @@ These task definitions provide detailed instructions to our agents, ensuring the
# src/guide_creator_flow/crews/content_crew/content_crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class ContentCrew():
"""Content writing crew"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def content_writer(self) -> Agent:
return Agent(
config=self.agents_config['content_writer'],
config=self.agents_config['content_writer'], # type: ignore[index]
verbose=True
)
@agent
def content_reviewer(self) -> Agent:
return Agent(
config=self.agents_config['content_reviewer'],
config=self.agents_config['content_reviewer'], # type: ignore[index]
verbose=True
)
@task
def write_section_task(self) -> Task:
return Task(
config=self.tasks_config['write_section_task']
config=self.tasks_config['write_section_task'] # type: ignore[index]
)
@task
def review_section_task(self) -> Task:
return Task(
config=self.tasks_config['review_section_task'],
config=self.tasks_config['review_section_task'], # type: ignore[index]
context=[self.write_section_task()]
)
@@ -263,6 +268,7 @@ Let's create our flow in the `main.py` file:
```python
#!/usr/bin/env python
import json
import os
from typing import List, Dict
from pydantic import BaseModel, Field
from crewai import LLM
@@ -341,6 +347,9 @@ class GuideCreatorFlow(Flow[GuideCreatorState]):
outline_dict = json.loads(response)
self.state.guide_outline = GuideOutline(**outline_dict)
# Ensure output directory exists before saving
os.makedirs("output", exist_ok=True)
# Save the outline to a file
with open("output/guide_outline.json", "w") as f:
json.dump(outline_dict, f, indent=2)

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with AgentOps
title: AgentOps Integration
description: Understanding and logging your agent performance with AgentOps.
icon: paperclip
---

View File

@@ -0,0 +1,145 @@
---
title: Arize Phoenix
description: Arize Phoenix integration for CrewAI with OpenTelemetry and OpenInference
icon: magnifying-glass-chart
---
# Arize Phoenix Integration
This guide demonstrates how to integrate **Arize Phoenix** with **CrewAI** using OpenTelemetry via the [OpenInference](https://github.com/openinference/openinference) SDK. By the end of this guide, you will be able to trace your CrewAI agents and easily debug your agents.
> **What is Arize Phoenix?** [Arize Phoenix](https://phoenix.arize.com) is an LLM observability platform that provides tracing and evaluation for AI applications.
[![Watch a Video Demo of Our Integration with Phoenix](https://storage.googleapis.com/arize-assets/fixtures/setup_crewai.png)](https://www.youtube.com/watch?v=Yc5q3l6F7Ww)
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Arize Phoenix via OpenTelemetry using OpenInference.
You can also access this guide on [Google Colab](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/crewai_tracing_tutorial.ipynb).
### Step 1: Install Dependencies
```bash
pip install openinference-instrumentation-crewai crewai crewai-tools arize-phoenix-otel
```
### Step 2: Set Up Environment Variables
Setup Phoenix Cloud API keys and configure OpenTelemetry to send traces to Phoenix. Phoenix Cloud is a hosted version of Arize Phoenix, but it is not required to use this integration.
You can get your free Serper API key [here](https://serper.dev/).
```python
import os
from getpass import getpass
# Get your Phoenix Cloud credentials
PHOENIX_API_KEY = getpass("🔑 Enter your Phoenix Cloud API Key: ")
# Get API keys for services
OPENAI_API_KEY = getpass("🔑 Enter your OpenAI API key: ")
SERPER_API_KEY = getpass("🔑 Enter your Serper API key: ")
# Set environment variables
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com" # Phoenix Cloud, change this to your own endpoint if you are using a self-hosted instance
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["SERPER_API_KEY"] = SERPER_API_KEY
```
### Step 3: Initialize OpenTelemetry with Phoenix
Initialize the OpenInference OpenTelemetry instrumentation SDK to start capturing traces and send them to Phoenix.
```python
from phoenix.otel import register
tracer_provider = register(
project_name="crewai-tracing-demo",
auto_instrument=True,
)
```
### Step 4: Create a CrewAI Application
We'll create a CrewAI application where two agents collaborate to research and write a blog post about AI advancements.
```python
from crewai import Agent, Crew, Process, Task
from crewai_tools import SerperDevTool
search_tool = SerperDevTool()
# Define your agents with roles and goals
researcher = Agent(
role="Senior Research Analyst",
goal="Uncover cutting-edge developments in AI and data science",
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting actionable insights.""",
verbose=True,
allow_delegation=False,
# You can pass an optional llm attribute specifying what model you wanna use.
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
tools=[search_tool],
)
writer = Agent(
role="Tech Content Strategist",
goal="Craft compelling content on tech advancements",
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
)
# Create tasks for your agents
task1 = Task(
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
Identify key trends, breakthrough technologies, and potential industry impacts.""",
expected_output="Full analysis report in bullet points",
agent=researcher,
)
task2 = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant AI advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
expected_output="Full blog post of at least 4 paragraphs",
agent=writer,
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer], tasks=[task1, task2], verbose=1, process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
print("######################")
print(result)
```
### Step 5: View Traces in Phoenix
After running the agent, you can view the traces generated by your CrewAI application in Phoenix. You should see detailed steps of the agent interactions and LLM calls, which can help you debug and optimize your AI agents.
Log into your Phoenix Cloud account and navigate to the project you specified in the `project_name` parameter. You'll see a timeline view of your trace with all the agent interactions, tool usages, and LLM calls.
![Example trace in Phoenix showing agent interactions](https://storage.googleapis.com/arize-assets/fixtures/crewai_traces.png)
### Version Compatibility Information
- Python 3.8+
- CrewAI >= 0.86.0
- Arize Phoenix >= 7.0.1
- OpenTelemetry SDK >= 1.31.0
### References
- [Phoenix Documentation](https://docs.arize.com/phoenix/) - Overview of the Phoenix platform.
- [CrewAI Documentation](https://docs.crewai.com/) - Overview of the CrewAI framework.
- [OpenTelemetry Docs](https://opentelemetry.io/docs/) - OpenTelemetry guide
- [OpenInference GitHub](https://github.com/openinference/openinference) - Source code for OpenInference SDK.

View File

@@ -92,12 +92,14 @@ coding_agent = Agent(
# Create tasks that require code execution
task_1 = Task(
description="Analyze the first dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
agent=coding_agent,
expected_output="The average age of the participants."
)
task_2 = Task(
description="Analyze the second dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent
agent=coding_agent,
expected_output="The average age of the participants."
)
# Create two crews and add tasks

View File

@@ -39,8 +39,7 @@ analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task],
verbose=True,
memory=False,
respect_context_window=True # enable by default
memory=False
)
datasets = [

View File

@@ -1,7 +1,7 @@
---
title: Agent Monitoring with Langfuse
title: Langfuse Integration
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
icon: vials
---
# Integrate Langfuse with CrewAI

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with Langtrace
title: Langtrace Integration
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
icon: chart-line
---

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with MLflow
title: MLflow Integration
description: Quickly start monitoring your Agents with MLflow.
icon: bars-staggered
---

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with OpenLIT
title: OpenLIT Integration
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
icon: magnifying-glass-chart
---

View File

@@ -0,0 +1,129 @@
---
title: Opik Integration
description: Learn how to use Comet Opik to debug, evaluate, and monitor your CrewAI applications with comprehensive tracing, automated evaluations, and production-ready dashboards.
icon: meteor
---
# Opik Overview
With [Comet Opik](https://www.comet.com/docs/opik/), debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards.
<Frame caption="Opik Agent Dashboard">
<img src="/images/opik-crewai-dashboard.png" alt="Opik agent monitoring example with CrewAI" />
</Frame>
Opik provides comprehensive support for every stage of your CrewAI application development:
- **Log Traces and Spans**: Automatically track LLM calls and application logic to debug and analyze development and production systems. Manually or programmatically annotate, view, and compare responses across projects.
- **Evaluate Your LLM Application's Performance**: Evaluate against a custom test set and run built-in evaluation metrics or define your own metrics in the SDK or UI.
- **Test Within Your CI/CD Pipeline**: Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Run online evaluations for continuous monitoring in production.
- **Monitor & Analyze Production Data**: Understand your models' performance on unseen data in production and generate datasets for new dev iterations.
## Setup
Comet provides a hosted version of the Opik platform, or you can run the platform locally.
To use the hosted version, simply [create a free Comet account](https://www.comet.com/signup?utm_medium=github&utm_source=crewai_docs) and grab you API Key.
To run the Opik platform locally, see our [installation guide](https://www.comet.com/docs/opik/self-host/overview/) for more information.
For this guide we will use CrewAIs quickstart example.
<Steps>
<Step title="Install required packages">
```shell
pip install crewai crewai-tools opik --upgrade
```
</Step>
<Step title="Configure Opik">
```python
import opik
opik.configure(use_local=False)
```
</Step>
<Step title="Prepare environment">
First, we set up our API keys for our LLM-provider as environment variables:
```python
import os
import getpass
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
```
</Step>
<Step title="Using CrewAI">
The first step is to create our project. We will use an example from CrewAIs documentation:
```python
from crewai import Agent, Crew, Task, Process
class YourCrewName:
def agent_one(self) -> Agent:
return Agent(
role="Data Analyst",
goal="Analyze data trends in the market",
backstory="An experienced data analyst with a background in economics",
verbose=True,
)
def agent_two(self) -> Agent:
return Agent(
role="Market Researcher",
goal="Gather information on market dynamics",
backstory="A diligent researcher with a keen eye for detail",
verbose=True,
)
def task_one(self) -> Task:
return Task(
name="Collect Data Task",
description="Collect recent market data and identify trends.",
expected_output="A report summarizing key trends in the market.",
agent=self.agent_one(),
)
def task_two(self) -> Task:
return Task(
name="Market Research Task",
description="Research factors affecting market dynamics.",
expected_output="An analysis of factors influencing the market.",
agent=self.agent_two(),
)
def crew(self) -> Crew:
return Crew(
agents=[self.agent_one(), self.agent_two()],
tasks=[self.task_one(), self.task_two()],
process=Process.sequential,
verbose=True,
)
```
Now we can import Opiks tracker and run our crew:
```python
from opik.integrations.crewai import track_crewai
track_crewai(project_name="crewai-integration-demo")
my_crew = YourCrewName().crew()
result = my_crew.kickoff()
print(result)
```
After running your CrewAI application, visit the Opik app to view:
- LLM traces, spans, and their metadata
- Agent interactions and task execution flow
- Performance metrics like latency and token usage
- Evaluation metrics (built-in or custom)
</Step>
</Steps>
## Resources
- [🦉 Opik Documentation](https://www.comet.com/docs/opik/)
- [👉 Opik + CrewAI Colab](https://colab.research.google.com/github/comet-ml/opik/blob/main/apps/opik-documentation/documentation/docs/cookbook/crewai.ipynb)
- [🐦 X](https://x.com/cometml)
- [💬 Slack](https://slack.comet.com/)

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with Portkey
title: Portkey Integration
description: How to use Portkey with CrewAI
icon: key
---

View File

@@ -0,0 +1,124 @@
---
title: Weave Integration
description: Learn how to use Weights & Biases (W&B) Weave to track, experiment with, evaluate, and improve your CrewAI applications.
icon: radar
---
# Weave Overview
[Weights & Biases (W&B) Weave](https://weave-docs.wandb.ai/) is a framework for tracking, experimenting with, evaluating, deploying, and improving LLM-based applications.
![Overview of W&B Weave CrewAI tracing usage](/images/weave-tracing.gif)
Weave provides comprehensive support for every stage of your CrewAI application development:
- **Tracing & Monitoring**: Automatically track LLM calls and application logic to debug and analyze production systems
- **Systematic Iteration**: Refine and iterate on prompts, datasets, and models
- **Evaluation**: Use custom or pre-built scorers to systematically assess and enhance agent performance
- **Guardrails**: Protect your agents with pre- and post-safeguards for content moderation and prompt safety
Weave automatically captures traces for your CrewAI applications, enabling you to monitor and analyze your agents' performance, interactions, and execution flow. This helps you build better evaluation datasets and optimize your agent workflows.
## Setup Instructions
<Steps>
<Step title="Install required packages">
```shell
pip install crewai weave
```
</Step>
<Step title="Set up W&B Account">
Sign up for a [Weights & Biases account](https://wandb.ai) if you haven't already. You'll need this to view your traces and metrics.
</Step>
<Step title="Initialize Weave in Your Application">
Add the following code to your application:
```python
import weave
# Initialize Weave with your project name
weave.init(project_name="crewai_demo")
```
After initialization, Weave will provide a URL where you can view your traces and metrics.
</Step>
<Step title="Create your Crews/Flows">
```python
from crewai import Agent, Task, Crew, LLM, Process
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o", temperature=0)
# Create agents
researcher = Agent(
role='Research Analyst',
goal='Find and analyze the best investment opportunities',
backstory='Expert in financial analysis and market research',
llm=llm,
verbose=True,
allow_delegation=False,
)
writer = Agent(
role='Report Writer',
goal='Write clear and concise investment reports',
backstory='Experienced in creating detailed financial reports',
llm=llm,
verbose=True,
allow_delegation=False,
)
# Create tasks
research_task = Task(
description='Deep research on the {topic}',
expected_output='Comprehensive market data including key players, market size, and growth trends.',
agent=researcher
)
writing_task = Task(
description='Write a detailed report based on the research',
expected_output='The report should be easy to read and understand. Use bullet points where applicable.',
agent=writer
)
# Create a crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True,
process=Process.sequential,
)
# Run the crew
result = crew.kickoff(inputs={"topic": "AI in material science"})
print(result)
```
</Step>
<Step title="View Traces in Weave">
After running your CrewAI application, visit the Weave URL provided during initialization to view:
- LLM calls and their metadata
- Agent interactions and task execution flow
- Performance metrics like latency and token usage
- Any errors or issues that occurred during execution
<Frame caption="Weave Tracing Dashboard">
<img src="/images/weave-tracing.png" alt="Weave tracing example with CrewAI" />
</Frame>
</Step>
</Steps>
## Features
- Weave automatically captures all CrewAI operations: agent interactions and task executions; LLM calls with metadata and token usage; tool usage and results.
- The integration supports all CrewAI execution methods: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- Automatic tracing of all [crewAI-tools](https://github.com/crewAIInc/crewAI-tools).
- Flow feature support with decorator patching (`@start`, `@listen`, `@router`, `@or_`, `@and_`).
- Track custom guardrails passed to CrewAI `Task` with `@weave.op()`.
For detailed information on what's supported, visit the [Weave CrewAI documentation](https://weave-docs.wandb.ai/guides/integrations/crewai/#getting-started-with-flow).
## Resources
- [📘 Weave Documentation](https://weave-docs.wandb.ai)
- [📊 Example Weave x CrewAI dashboard](https://wandb.ai/ayut/crewai_demo/weave/traces?cols=%7B%22wb_run_id%22%3Afalse%2C%22attributes.weave.client_version%22%3Afalse%2C%22attributes.weave.os_name%22%3Afalse%2C%22attributes.weave.os_release%22%3Afalse%2C%22attributes.weave.os_version%22%3Afalse%2C%22attributes.weave.source%22%3Afalse%2C%22attributes.weave.sys_version%22%3Afalse%7D&peekPath=%2Fayut%2Fcrewai_demo%2Fcalls%2F0195c838-38cb-71a2-8a15-651ecddf9d89)
- [🐦 X](https://x.com/weave_wb)

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 693 KiB

View File

@@ -4,14 +4,29 @@ description: Get started with CrewAI - Install, configure, and build your first
icon: wrench
---
## Video Tutorial
Watch this video tutorial for a step-by-step demonstration of the installation process:
<iframe
width="100%"
height="400"
src="https://www.youtube.com/embed/-kSOTtYzgEw"
title="CrewAI Installation Guide"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
></iframe>
## Text Tutorial
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
```bash
python3 --version
```
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
@@ -140,6 +155,27 @@ We recommend using the `YAML` template scaffolding for a structured approach to
</Step>
</Steps>
## Enterprise Installation Options
<Note type="info">
For teams and organizations, CrewAI offers enterprise deployment options that eliminate setup complexity:
### CrewAI Enterprise (SaaS)
- Zero installation required - just sign up for free at [app.crewai.com](https://app.crewai.com)
- Automatic updates and maintenance
- Managed infrastructure and scaling
- Build Crews with no Code
### CrewAI Factory (Self-hosted)
- Containerized deployment for your infrastructure
- Supports any hyperscaler including on prem depployments
- Integration with your existing security systems
<Card title="Explore Enterprise Options" icon="building" href="https://crewai.com/enterprise">
Learn about CrewAI's enterprise offerings and schedule a demo
</Card>
</Note>
## Next Steps
<CardGroup cols={2}>

View File

@@ -15,6 +15,7 @@ CrewAI empowers developers with both high-level simplicity and precise low-level
With over 100,000 developers certified through our community courses, CrewAI is rapidly becoming the standard for enterprise-ready AI automation.
## How Crews Work
<Note>

View File

@@ -1,225 +0,0 @@
{
"name": "CrewAI",
"theme": "venus",
"logo": {
"dark": "crew_only_logo.png",
"light": "crew_only_logo.png"
},
"favicon": "favicon.svg",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C",
"anchors": {
"from": "#737373",
"to": "#EB6658"
}
},
"seo": {
"indexHiddenPages": false
},
"modeToggle": {
"default": "dark",
"isHidden": false
},
"feedback": {
"suggestEdit": true,
"raiseIssue": true,
"thumbsRating": true
},
"topbarCtaButton": {
"type": "github",
"url": "https://github.com/crewAIInc/crewAI"
},
"primaryTab": {
"name": "Get Started"
},
"tabs": [
{
"name": "Examples",
"url": "examples"
}
],
"anchors": [
{
"name": "Community",
"icon": "discourse",
"url": "https://community.crewai.com"
},
{
"name": "Changelog",
"icon": "timeline",
"url": "https://github.com/crewAIInc/crewAI/releases"
}
],
"navigation": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"pages": [
"guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"pages": [
"guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"pages": [
"guides/crews/first-crew"
]
},
{
"group": "Flows",
"pages": [
"guides/flows/first-flow",
"guides/flows/mastering-flow-state"
]
},
{
"group": "Advanced",
"pages": [
"guides/advanced/customizing-prompts",
"guides/advanced/fingerprinting"
]
}
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/event-listener",
"concepts/langchain-tools",
"concepts/llamaindex-tools"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{
"group": "Examples",
"pages": [
"examples/example"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
],
"search": {
"prompt": "Search CrewAI docs"
},
"footerSocials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc"
}
}

View File

@@ -87,15 +87,20 @@ Follow the steps below to get Crewing! 🚣‍♂️
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents: List[BaseAgent]
tasks: List[Task]
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@@ -103,20 +108,20 @@ Follow the steps below to get Crewing! 🚣‍♂️
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
config=self.tasks_config['research_task'], # type: ignore[index]
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
config=self.tasks_config['reporting_task'], # type: ignore[index]
output_file='output/report.md' # This is the file that will be contain the final report.
)
@@ -200,6 +205,22 @@ Follow the steps below to get Crewing! 🚣‍♂️
```
</CodeGroup>
</Step>
<Step title="Enterprise Alternative: Create in Crew Studio">
For CrewAI Enterprise users, you can create the same crew without writing code:
1. Log in to your CrewAI Enterprise account (create a free account at [app.crewai.com](https://app.crewai.com))
2. Open Crew Studio
3. Type what is the automation you're tryign to build
4. Create your tasks visually and connect them in sequence
5. Configure your inputs and click "Download Code" or "Deploy"
![Crew Studio Quickstart](../images/enterprise/crew-studio-quickstart.png)
<Card title="Try CrewAI Enterprise" icon="rocket" href="https://app.crewai.com">
Start your free account at CrewAI Enterprise
</Card>
</Step>
<Step title="View your final report">
You should see the output in the console and the `report.md` file should be created in the root of your project with the final report.
@@ -271,7 +292,7 @@ Follow the steps below to get Crewing! 🚣‍♂️
</Steps>
<Check>
Congratulations!
Congratulations!
You have successfully set up your crew project and are ready to start building your own agentic workflows!
</Check>
@@ -300,7 +321,7 @@ email_summarizer:
```
<Tip>
Note how we use the same name for the agent in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
Note how we use the same name for the task in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
</Tip>
```yaml tasks.yaml

View File

@@ -22,7 +22,16 @@ usage of tools, API calls, responses, any data processed by the agents, or secre
When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected
to provide deeper insights. This expanded data collection may include personal information if users have incorporated it into their crews or tasks.
Users should carefully consider the content of their crews and tasks before enabling `share_crew`.
Users can disable telemetry by setting the environment variable `OTEL_SDK_DISABLED` to `true`.
Users can disable telemetry by setting the environment variable `CREWAI_DISABLE_TELEMETRY` to `true` or by setting `OTEL_SDK_DISABLED` to `true` (note that the latter disables all OpenTelemetry instrumentation globally).
### Examples:
```python
# Disable CrewAI telemetry only
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
# Disable all OpenTelemetry (including CrewAI)
os.environ['OTEL_SDK_DISABLED'] = 'true'
```
### Data Explanation:
| Defaulted | Data | Reason and Specifics |
@@ -55,4 +64,4 @@ This enables a deeper insight into usage patterns.
<Warning>
If you enable `share_crew`, the collected data may include personal information if it has been incorporated into crew configurations, task descriptions, or outputs.
Users should carefully review their data and ensure compliance with GDPR and other applicable privacy regulations before enabling this feature.
</Warning>
</Warning>

View File

@@ -0,0 +1,187 @@
---
title: Bedrock Invoke Agent Tool
description: Enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows
icon: aws
---
# `BedrockInvokeAgentTool`
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Agents
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-8}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:--------|:------------|
| **agent_id** | `str` | Yes | None | The unique identifier of the Bedrock agent |
| **agent_alias_id** | `str` | Yes | None | The unique identifier of the agent alias |
| **session_id** | `str` | No | timestamp | The unique identifier of the session |
| **enable_trace** | `bool` | No | False | Whether to enable trace for debugging |
| **end_session** | `bool` | No | False | Whether to end the session after invocation |
| **description** | `str` | No | None | Custom description for the tool |
## Environment Variables
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
AWS_REGION=your-aws-region # Defaults to us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Advanced Usage
### Multi-Agent Workflow with Session Management
```python {2, 4-22}
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Use Cases
### Hybrid Multi-Agent Collaborations
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
### Data Sovereignty and Compliance
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
### Seamless AWS Service Integration
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
- Enable CrewAI agents to interact with AWS services through natural language requests
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
### Scalable Hybrid Agent Architectures
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
### Cross-Organizational Agent Collaboration
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
- Build agent ecosystems that span organizational boundaries while maintaining security and data control

View File

@@ -0,0 +1,165 @@
---
title: 'Bedrock Knowledge Base Retriever'
description: 'Retrieve information from Amazon Bedrock Knowledge Bases using natural language queries'
icon: aws
---
# `BedrockKBRetrieverTool`
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Knowledge Base
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-17}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
# Initialize the tool
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
number_of_results=5
)
# Create a CrewAI agent that uses the tool
researcher = Agent(
role='Knowledge Base Researcher',
goal='Find information about company policies',
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
tools=[kb_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description="Find our company's remote work policy and summarize the key points.",
agent=researcher
)
# Create a crew with the agent
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:---------|:-------------|
| **knowledge_base_id** | `str` | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
| **number_of_results** | `int` | No | 5 | Maximum number of results to return |
| **retrieval_configuration** | `dict` | No | None | Custom configurations for the knowledge base query |
| **guardrail_configuration** | `dict` | No | None | Content filtering settings |
| **next_token** | `str` | No | None | Token for pagination |
## Environment Variables
```bash
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
AWS_REGION=your-aws-region # Defaults to us-east-1
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Response Format
The tool returns results in JSON format:
```json
{
"results": [
{
"content": "Retrieved text content",
"content_type": "text",
"source_type": "S3",
"source_uri": "s3://bucket/document.pdf",
"score": 0.95,
"metadata": {
"additional": "metadata"
}
}
],
"nextToken": "pagination-token",
"guardrailAction": "NONE"
}
```
## Advanced Usage
### Custom Retrieval Configuration
```python
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
retrieval_configuration={
"vectorSearchConfiguration": {
"numberOfResults": 10,
"overrideSearchType": "HYBRID"
}
}
)
policy_expert = Agent(
role='Policy Expert',
goal='Analyze company policies in detail',
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
tools=[kb_tool]
)
```
## Supported Data Sources
- Amazon S3
- Confluence
- Salesforce
- SharePoint
- Web pages
- Custom document locations
- Amazon Kendra
- SQL databases
## Use Cases
### Enterprise Knowledge Integration
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
- Create agents that can answer questions based on your internal documentation while maintaining data security
### Specialized Domain Knowledge
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
- Leverage existing knowledge repositories that are already maintained in your AWS environment
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
### Data-Driven Decision Making
- Ground CrewAI agent responses in your actual company data rather than general knowledge
- Ensure agents provide recommendations based on your specific business context and documentation
- Reduce hallucinations by retrieving factual information from your knowledge bases
### Scalable Information Access
- Access terabytes of organizational knowledge without embedding it all into your models
- Dynamically query only the relevant information needed for specific tasks
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
### Compliance and Governance
- Ensure CrewAI agents provide responses that align with your company's approved documentation
- Create auditable trails of information sources used by your agents
- Maintain control over what information sources your agents can access

View File

@@ -7,8 +7,10 @@ icon: file-code
# `JSONSearchTool`
<Note>
The JSONSearchTool is currently in an experimental phase. This means the tool is under active development, and users might encounter unexpected behavior or changes.
We highly encourage feedback on any issues or suggestions for improvements.
The JSONSearchTool is currently in an experimental phase. This means the tool
is under active development, and users might encounter unexpected behavior or
changes. We highly encourage feedback on any issues or suggestions for
improvements.
</Note>
## Description
@@ -60,7 +62,7 @@ tool = JSONSearchTool(
# stream=true,
},
},
"embedder": {
"embedding_model": {
"provider": "google", # or openai, ollama, ...
"config": {
"model": "models/embedding-001",
@@ -70,4 +72,4 @@ tool = JSONSearchTool(
},
}
)
```
```

View File

@@ -8,8 +8,8 @@ icon: vector-square
## Description
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
## Example
@@ -138,7 +138,7 @@ config = {
"model": "gpt-4",
}
},
"embedder": {
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-ada-002"
@@ -151,4 +151,4 @@ rag_tool = RagTool(config=config, summarize=True)
## Conclusion
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.

View File

@@ -25,7 +25,7 @@ uv add weaviate-client
To effectively use the `WeaviateVectorSearchTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` and `weaviate-client` packages are installed in your Python environment.
2. **Weaviate Setup**: Set up a Weaviate cluster. You can follow the [Weaviate documentation](https://weaviate.io/developers/wcs/connect) for instructions.
2. **Weaviate Setup**: Set up a Weaviate cluster. You can follow the [Weaviate documentation](https://weaviate.io/developers/wcs/manage-clusters/connect) for instructions.
3. **API Keys**: Obtain your Weaviate cluster URL and API key.
4. **OpenAI API Key**: Ensure you have an OpenAI API key set in your environment variables as `OPENAI_API_KEY`.
@@ -161,4 +161,4 @@ rag_agent = Agent(
## Conclusion
The `WeaviateVectorSearchTool` provides a powerful way to search for semantically similar documents in a Weaviate vector database. By leveraging vector embeddings, it enables more accurate and contextually relevant search results compared to traditional keyword-based searches. This tool is particularly useful for applications that require finding information based on meaning rather than exact matches.
The `WeaviateVectorSearchTool` provides a powerful way to search for semantically similar documents in a Weaviate vector database. By leveraging vector embeddings, it enables more accurate and contextually relevant search results compared to traditional keyword-based searches. This tool is particularly useful for applications that require finding information based on meaning rather than exact matches.

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.108.0"
version = "0.114.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -17,9 +17,9 @@ dependencies = [
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"opentelemetry-api>=1.30.0",
"opentelemetry-sdk>=1.30.0",
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
@@ -45,7 +45,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.37.0"]
tools = ["crewai-tools~=0.40.1"]
embeddings = [
"tiktoken~=0.7.0"
]
@@ -64,6 +64,9 @@ mem0 = ["mem0ai>=0.1.29"]
docling = [
"docling>=2.12.0",
]
aisuite = [
"aisuite>=0.1.10",
]
[tool.uv]
dev-dependencies = [

View File

@@ -2,11 +2,14 @@ import warnings
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.llms.base_llm import BaseLLM
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
warnings.filterwarnings(
"ignore",
@@ -14,13 +17,16 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.108.0"
__version__ = "0.114.0"
__all__ = [
"Agent",
"Crew",
"CrewOutput",
"Process",
"Task",
"LLM",
"BaseLLM",
"Flow",
"Knowledge",
"TaskOutput",
]

View File

@@ -1,7 +1,6 @@
import re
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
from typing import Any, Dict, List, Literal, Optional, Sequence, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -11,13 +10,19 @@ from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.lite_agent import LiteAgent, LiteAgentOutput
from crewai.llm import BaseLLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.security import Fingerprint
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.agent_utils import (
get_tool_names,
parse_tools,
render_text_description_and_args,
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
@@ -71,10 +76,10 @@ class Agent(BaseAgent):
default=True,
description="Use system prompt for the agent.",
)
llm: Union[str, InstanceOf[LLM], Any] = Field(
llm: Union[str, InstanceOf[BaseLLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
@@ -86,9 +91,6 @@ class Agent(BaseAgent):
response_template: Optional[str] = Field(
default=None, description="Response format for the agent."
)
tools_results: Optional[List[Any]] = Field(
default=[], description="Results of the tools used by the agent."
)
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
@@ -118,7 +120,9 @@ class Agent(BaseAgent):
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
if self.function_calling_llm and not isinstance(
self.function_calling_llm, BaseLLM
):
self.function_calling_llm = create_llm(self.function_calling_llm)
if not self.agent_executor:
@@ -140,20 +144,35 @@ class Agent(BaseAgent):
self.embedder = crew_embedder
if self.knowledge_sources:
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
sources=self.knowledge_sources,
embedder=self.embedder,
collection_name=knowledge_agent_name,
collection_name=self.role,
storage=self.knowledge_storage or None,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
def _is_any_available_memory(self) -> bool:
"""Check if any memory is available."""
if not self.crew:
return False
memory_attributes = [
"memory",
"memory_config",
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_user_memory",
"_external_memory",
]
return any(getattr(self.crew, attr) for attr in memory_attributes)
def execute_task(
self,
task: Task,
@@ -198,13 +217,14 @@ class Agent(BaseAgent):
task=task_prompt, context=context
)
if self.crew and self.crew.memory:
if self._is_any_available_memory():
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
self.crew._external_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
@@ -300,12 +320,12 @@ class Agent(BaseAgent):
Returns:
An instance of the CrewAgentExecutor class.
"""
tools = tools or self.tools or []
parsed_tools = self._parse_tools(tools)
raw_tools: List[BaseTool] = tools or self.tools or []
parsed_tools = parse_tools(raw_tools)
prompt = Prompts(
agent=self,
tools=tools,
has_tools=len(raw_tools) > 0,
i18n=self.i18n,
use_system_prompt=self.use_system_prompt,
system_template=self.system_template,
@@ -327,12 +347,12 @@ class Agent(BaseAgent):
crew=self.crew,
tools=parsed_tools,
prompt=prompt,
original_tools=tools,
original_tools=raw_tools,
stop_words=stop_words,
max_iter=self.max_iter,
tools_handler=self.tools_handler,
tools_names=self.__tools_names(parsed_tools),
tools_description=self._render_text_description_and_args(parsed_tools),
tools_names=get_tool_names(parsed_tools),
tools_description=render_text_description_and_args(parsed_tools),
step_callback=self.step_callback,
function_calling_llm=self.function_calling_llm,
respect_context_window=self.respect_context_window,
@@ -367,25 +387,6 @@ class Agent(BaseAgent):
def get_output_converter(self, llm, text, model, instructions):
return Converter(llm=llm, text=text, model=model, instructions=instructions)
def _parse_tools(self, tools: List[Any]) -> List[Any]: # type: ignore
"""Parse tools to be used for the task."""
tools_list = []
try:
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
from crewai.tools import BaseTool as CrewAITool
for tool in tools:
if isinstance(tool, CrewAITool):
tools_list.append(tool.to_structured_tool())
else:
tools_list.append(tool)
except ModuleNotFoundError:
tools_list = []
for tool in tools:
tools_list.append(tool)
return tools_list
def _training_handler(self, task_prompt: str) -> str:
"""Handle training data for the agent task prompt to improve output on Training."""
if data := CrewTrainingHandler(TRAINING_DATA_FILE).load():
@@ -431,23 +432,6 @@ class Agent(BaseAgent):
return description
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
.. code-block:: markdown
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
tool_strings.append(tool.description)
return "\n".join(tool_strings)
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
@@ -467,10 +451,6 @@ class Agent(BaseAgent):
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])
def __repr__(self):
return f"Agent(role={self.role}, goal={self.goal}, backstory={self.backstory})"
@@ -483,3 +463,78 @@ class Agent(BaseAgent):
Fingerprint: The agent's fingerprint
"""
return self.security_config.fingerprint
def set_fingerprint(self, fingerprint: Fingerprint):
self.security_config.fingerprint = fingerprint
def kickoff(
self,
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""
Execute the agent with the given messages using a LiteAgent instance.
This method is useful when you want to use the Agent configuration but
with the simpler and more direct execution flow of LiteAgent.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
)
return lite_agent.kickoff(messages)
async def kickoff_async(
self,
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""
Execute the agent asynchronously with the given messages using a LiteAgent instance.
This is the async version of the kickoff method.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
)
return await lite_agent.kickoff_async(messages)

View File

@@ -2,7 +2,7 @@ import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Dict, List, Optional, TypeVar
from typing import Any, Callable, Dict, List, Optional, TypeVar
from pydantic import (
UUID4,
@@ -25,6 +25,7 @@ from crewai.tools.base_tool import BaseTool, Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
from crewai.utilities.string_utils import interpolate_only
T = TypeVar("T", bound="BaseAgent")
@@ -71,8 +72,6 @@ class BaseAgent(ABC, BaseModel):
Interpolate inputs into the agent description and backstory.
set_cache_handler(cache_handler: CacheHandler) -> None:
Set the cache handler for the agent.
increment_formatting_errors() -> None:
Increment formatting errors.
copy() -> "BaseAgent":
Create a copy of the agent.
set_rpm_controller(rpm_controller: RPMController) -> None:
@@ -90,9 +89,6 @@ class BaseAgent(ABC, BaseModel):
_original_backstory: Optional[str] = PrivateAttr(default=None)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
formatting_errors: int = Field(
default=0, description="Number of formatting errors."
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
@@ -134,6 +130,9 @@ class BaseAgent(ABC, BaseModel):
default_factory=ToolsHandler,
description="An instance of the ToolsHandler class.",
)
tools_results: List[Dict[str, Any]] = Field(
default=[], description="Results of the tools used by the agent."
)
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
@@ -152,6 +151,9 @@ class BaseAgent(ABC, BaseModel):
default_factory=SecurityConfig,
description="Security configuration for the agent, including fingerprinting.",
)
callbacks: List[Callable] = Field(
default=[], description="Callbacks to be used for the agent"
)
@model_validator(mode="before")
@classmethod
@@ -253,10 +255,6 @@ class BaseAgent(ABC, BaseModel):
def create_agent_executor(self, tools=None) -> None:
pass
@abstractmethod
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
"""Set the task tools that init BaseAgenTools class."""
@@ -333,9 +331,15 @@ class BaseAgent(ABC, BaseModel):
self._original_backstory = self.backstory
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
self.role = interpolate_only(
input_string=self._original_role, inputs=inputs
)
self.goal = interpolate_only(
input_string=self._original_goal, inputs=inputs
)
self.backstory = interpolate_only(
input_string=self._original_backstory, inputs=inputs
)
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.
@@ -349,9 +353,6 @@ class BaseAgent(ABC, BaseModel):
self.tools_handler.cache = cache_handler
self.create_agent_executor()
def increment_formatting_errors(self) -> None:
self.formatting_errors += 1
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.

View File

@@ -1,5 +1,5 @@
import time
from typing import TYPE_CHECKING, Optional
from typing import TYPE_CHECKING
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
@@ -15,9 +15,9 @@ if TYPE_CHECKING:
class CrewAgentExecutorMixin:
crew: Optional["Crew"]
agent: Optional["BaseAgent"]
task: Optional["Task"]
crew: "Crew"
agent: "BaseAgent"
task: "Task"
iterations: int
max_iter: int
_i18n: I18N
@@ -47,11 +47,31 @@ class CrewAgentExecutorMixin:
print(f"Failed to add to short term memory: {e}")
pass
def _create_external_memory(self, output) -> None:
"""Create and save a external-term memory item if conditions are met."""
if (
self.crew
and self.agent
and self.task
and hasattr(self.crew, "_external_memory")
and self.crew._external_memory
):
try:
self.crew._external_memory.save(
value=output.text,
metadata={
"description": self.task.description,
},
agent=self.agent.role,
)
except Exception as e:
print(f"Failed to add to external memory: {e}")
pass
def _create_long_term_memory(self, output) -> None:
"""Create and save long-term and entity memory items based on evaluation."""
if (
self.crew
and self.crew.memory
and self.crew._long_term_memory
and self.crew._entity_memory
and self.task
@@ -93,6 +113,15 @@ class CrewAgentExecutorMixin:
except Exception as e:
print(f"Failed to add to long term memory: {e}")
pass
elif (
self.crew
and self.crew._long_term_memory
and self.crew._entity_memory is None
):
self._printer.print(
content="Long term memory is enabled, but entity memory is not enabled. Please configure entity memory or set memory=True to automatically enable it.",
color="bold_yellow",
)
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input with mode-appropriate messaging."""

View File

@@ -1,42 +1,40 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
AgentAction,
AgentFinish,
CrewAgentParser,
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.llm import LLM
from crewai.llm import BaseLLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_types import ToolResult
from crewai.utilities import I18N, Printer
from crewai.utilities.agent_utils import (
enforce_rpm_limit,
format_message_for_llm,
get_llm_response,
handle_agent_action_core,
handle_context_length,
handle_max_iterations_exceeded,
handle_output_parser_exception,
handle_unknown_error,
has_reached_max_iterations,
is_context_length_exceeded,
process_llm_response,
show_agent_logs,
)
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from crewai.utilities.logger import Logger
from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.training_handler import CrewTrainingHandler
@dataclass
class ToolResult:
result: Any
result_as_answer: bool
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
@@ -48,7 +46,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[BaseTool],
tools: List[CrewStructuredTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
@@ -61,7 +59,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: LLM = llm
self.llm: BaseLLM = llm
self.task = task
self.agent = agent
self.crew = crew
@@ -84,21 +82,27 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
self.tool_name_to_tool_map: Dict[str, Union[CrewStructuredTool, BaseTool]] = {
tool.name: tool for tool in self.tools
}
self.stop = stop_words
self.llm.stop = list(set(self.llm.stop + self.stop))
existing_stop = self.llm.stop or []
self.llm.stop = list(
set(
existing_stop + self.stop
if isinstance(existing_stop, list)
else self.stop
)
)
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(self._format_msg(system_prompt, role="system"))
self.messages.append(self._format_msg(user_prompt))
self.messages.append(format_message_for_llm(system_prompt, role="system"))
self.messages.append(format_message_for_llm(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
self.messages.append(self._format_msg(user_prompt))
self.messages.append(format_message_for_llm(user_prompt))
self._show_start_logs()
@@ -113,7 +117,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
raise
except Exception as e:
self._handle_unknown_error(e)
handle_unknown_error(self._printer, e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
@@ -125,6 +129,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
self._create_external_memory(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self) -> AgentFinish:
@@ -135,20 +140,51 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
try:
if self._has_reached_max_iterations():
formatted_answer = self._handle_max_iterations_exceeded(
formatted_answer
if has_reached_max_iterations(self.iterations, self.max_iter):
formatted_answer = handle_max_iterations_exceeded(
formatted_answer,
printer=self._printer,
i18n=self._i18n,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
)
break
self._enforce_rpm_limit()
enforce_rpm_limit(self.request_within_rpm_limit)
answer = self._get_llm_response()
formatted_answer = self._process_llm_response(answer)
answer = get_llm_response(
llm=self.llm,
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
)
formatted_answer = process_llm_response(answer, self.use_stop_words)
if isinstance(formatted_answer, AgentAction):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
# Extract agent fingerprint if available
fingerprint_context = {}
if (
self.agent
and hasattr(self.agent, "security_config")
and hasattr(self.agent.security_config, "fingerprint")
):
fingerprint_context = {
"agent_fingerprint": str(
self.agent.security_config.fingerprint
)
}
tool_result = execute_tool_and_check_finality(
agent_action=formatted_answer,
fingerprint_context=fingerprint_context,
tools=self.tools,
i18n=self._i18n,
agent_key=self.agent.key if self.agent else None,
agent_role=self.agent.role if self.agent else None,
tools_handler=self.tools_handler,
task=self.task,
agent=self.agent,
function_calling_llm=self.function_calling_llm,
)
formatted_answer = self._handle_agent_action(
formatted_answer, tool_result
@@ -158,17 +194,30 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._append_message(formatted_answer.text, role="assistant")
except OutputParserException as e:
formatted_answer = self._handle_output_parser_exception(e)
formatted_answer = handle_output_parser_exception(
e=e,
messages=self.messages,
iterations=self.iterations,
log_error_after=self.log_error_after,
printer=self._printer,
)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if self._is_context_length_exceeded(e):
self._handle_context_length()
if is_context_length_exceeded(e):
handle_context_length(
respect_context_window=self.respect_context_window,
printer=self._printer,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
i18n=self._i18n,
)
continue
else:
self._handle_unknown_error(e)
handle_unknown_error(self._printer, e)
raise e
finally:
self.iterations += 1
@@ -181,89 +230,27 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._show_logs(formatted_answer)
return formatted_answer
def _handle_unknown_error(self, exception: Exception) -> None:
"""Handle unknown errors by informing the user."""
self._printer.print(
content="An unknown error occurred. Please check the details below.",
color="red",
)
self._printer.print(
content=f"Error details: {exception}",
color="red",
)
def _has_reached_max_iterations(self) -> bool:
"""Check if the maximum number of iterations has been reached."""
return self.iterations >= self.max_iter
def _enforce_rpm_limit(self) -> None:
"""Enforce the requests per minute (RPM) limit if applicable."""
if self.request_within_rpm_limit:
self.request_within_rpm_limit()
def _get_llm_response(self) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
try:
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
except Exception as e:
self._printer.print(
content=f"Error during LLM call: {e}",
color="red",
)
raise e
if not answer:
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
return answer
def _process_llm_response(self, answer: str) -> Union[AgentAction, AgentFinish]:
"""Process the LLM response and format it into an AgentAction or AgentFinish."""
if not self.use_stop_words:
try:
# Preliminary parsing to check for errors.
self._format_answer(answer)
except OutputParserException as e:
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
answer = answer.split("Observation:")[0].strip()
return self._format_answer(answer)
def _handle_agent_action(
self, formatted_answer: AgentAction, tool_result: ToolResult
) -> Union[AgentAction, AgentFinish]:
"""Handle the AgentAction, execute tools, and process the results."""
# Special case for add_image_tool
add_image_tool = self._i18n.tools("add_image")
if (
isinstance(add_image_tool, dict)
and formatted_answer.tool.casefold().strip()
== add_image_tool.get("name", "").casefold().strip()
):
self.messages.append(tool_result.result)
return formatted_answer # Continue the loop
self.messages.append({"role": "assistant", "content": tool_result.result})
return formatted_answer
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
return formatted_answer
return handle_agent_action_core(
formatted_answer=formatted_answer,
tool_result=tool_result,
messages=self.messages,
step_callback=self.step_callback,
show_logs=self._show_logs,
)
def _invoke_step_callback(self, formatted_answer) -> None:
"""Invoke the step callback if it exists."""
@@ -272,151 +259,33 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _append_message(self, text: str, role: str = "assistant") -> None:
"""Append a message to the message list with the given role."""
self.messages.append(self._format_msg(text, role=role))
def _handle_output_parser_exception(self, e: OutputParserException) -> AgentAction:
"""Handle OutputParserException by updating messages and formatted_answer."""
self.messages.append({"role": "user", "content": e.error})
formatted_answer = AgentAction(
text=e.error,
tool="",
tool_input="",
thought="",
)
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return formatted_answer
def _is_context_length_exceeded(self, exception: Exception) -> bool:
"""Check if the exception is due to context length exceeding."""
return LLMContextLengthExceededException(
str(exception)
)._is_context_limit_error(str(exception))
self.messages.append(format_message_for_llm(text, role=role))
def _show_start_logs(self):
"""Show logs for the start of agent execution."""
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
self._printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
description = (
show_agent_logs(
printer=self._printer,
agent_role=self.agent.role,
task_description=(
getattr(self.task, "description") if self.task else "Not Found"
)
self._printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{description}\033[00m"
)
),
verbose=self.agent.verbose
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
"""Show logs for the agent's execution."""
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
if isinstance(formatted_answer, AgentAction):
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
formatted_json = json.dumps(
formatted_answer.tool_input,
indent=2,
ensure_ascii=False,
)
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
if thought and thought != "":
self._printer.print(
content=f"\033[95m## Thought:\033[00m \033[92m{thought}\033[00m"
)
self._printer.print(
content=f"\033[95m## Using tool:\033[00m \033[92m{formatted_answer.tool}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Input:\033[00m \033[92m\n{formatted_json}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Output:\033[00m \033[92m\n{formatted_answer.result}\033[00m"
)
elif isinstance(formatted_answer, AgentFinish):
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
self._printer.print(
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
try:
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
),
)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
except Exception as e:
# TODO: drop
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageErrorEvent( # validation error
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
error=str(e),
),
)
raise e
show_agent_logs(
printer=self._printer,
agent_role=self.agent.role,
formatted_answer=formatted_answer,
verbose=self.agent.verbose
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
)
def _summarize_messages(self) -> None:
messages_groups = []
@@ -424,47 +293,33 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
content = message["content"]
cut_size = self.llm.get_context_window_size()
for i in range(0, len(content), cut_size):
messages_groups.append(content[i : i + cut_size])
messages_groups.append({"content": content[i : i + cut_size]})
summarized_contents = []
for group in messages_groups:
summary = self.llm.call(
[
self._format_msg(
format_message_for_llm(
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("summarize_instruction").format(group=group),
format_message_for_llm(
self._i18n.slice("summarize_instruction").format(
group=group["content"]
),
),
],
callbacks=self.callbacks,
)
summarized_contents.append(summary)
summarized_contents.append({"content": str(summary)})
merged_summary = " ".join(str(content) for content in summarized_contents)
merged_summary = " ".join(content["content"] for content in summarized_contents)
self.messages = [
self._format_msg(
format_message_for_llm(
self._i18n.slice("summary").format(merged_summary=merged_summary)
)
]
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._printer.print(
content="Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
self._summarize_messages()
else:
self._printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
)
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: Optional[str] = None
) -> None:
@@ -517,13 +372,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
prompt = prompt.replace("{tools}", inputs["tools"])
return prompt
def _format_answer(self, answer: str) -> Union[AgentAction, AgentFinish]:
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""Handle human feedback with different flows for training vs regular use.
@@ -550,7 +398,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
"""Process feedback for training scenarios with single iteration."""
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
self._format_msg(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
@@ -579,7 +427,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(
self._format_msg(
format_message_for_llm(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
@@ -604,45 +452,3 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
),
color="red",
)
def _handle_max_iterations_exceeded(self, formatted_answer):
"""
Handles the case when the maximum number of iterations is exceeded.
Performs one more LLM call to get the final answer.
Parameters:
formatted_answer: The last formatted answer from the agent.
Returns:
The final formatted answer after exceeding max iterations.
"""
self._printer.print(
content="Maximum iterations reached. Requesting final answer.",
color="yellow",
)
if formatted_answer and hasattr(formatted_answer, "text"):
assistant_message = (
formatted_answer.text + f'\n{self._i18n.errors("force_final_answer")}'
)
else:
assistant_message = self._i18n.errors("force_final_answer")
self.messages.append(self._format_msg(assistant_message, role="assistant"))
# Perform one more LLM call to get the final answer
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
formatted_answer = self._format_answer(answer)
# Return the formatted answer, regardless of its type
return formatted_answer

View File

@@ -1,5 +1,5 @@
import re
from typing import Any, Union
from typing import Any, Optional, Union
from json_repair import repair_json
@@ -67,9 +67,23 @@ class CrewAgentParser:
_i18n: I18N = I18N()
agent: Any = None
def __init__(self, agent: Any):
def __init__(self, agent: Optional[Any] = None):
self.agent = agent
@staticmethod
def parse_text(text: str) -> Union[AgentAction, AgentFinish]:
"""
Static method to parse text into an AgentAction or AgentFinish without needing to instantiate the class.
Args:
text: The text to parse.
Returns:
Either an AgentAction or AgentFinish based on the parsed content.
"""
parser = CrewAgentParser()
return parser.parse(text)
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
thought = self._extract_thought(text)
includes_answer = FINAL_ANSWER_ACTION in text
@@ -77,22 +91,7 @@ class CrewAgentParser:
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
)
action_match = re.search(regex, text, re.DOTALL)
if action_match:
if includes_answer:
raise OutputParserException(
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}"
)
action = action_match.group(1)
clean_action = self._clean_action(action)
action_input = action_match.group(2).strip()
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input)
return AgentAction(thought, clean_action, safe_tool_input, text)
elif includes_answer:
if includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
@@ -103,30 +102,38 @@ class CrewAgentParser:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
elif action_match:
action = action_match.group(1)
clean_action = self._clean_action(action)
action_input = action_match.group(2).strip()
tool_input = action_input.strip(" ").strip('"')
safe_tool_input = self._safe_repair_json(tool_input)
return AgentAction(thought, clean_action, safe_tool_input, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
self.agent.increment_formatting_errors()
raise OutputParserException(
f"{MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE}\n{self._i18n.slice('final_answer_format')}",
)
elif not re.search(
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL
):
self.agent.increment_formatting_errors()
raise OutputParserException(
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
)
else:
format = self._i18n.slice("format_without_tools")
error = f"{format}"
self.agent.increment_formatting_errors()
raise OutputParserException(
error,
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\n\nAction")
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\n\nFinal Answer")
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
@@ -136,7 +143,7 @@ class CrewAgentParser:
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
return text.strip().strip("*").strip()
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]

View File

@@ -91,6 +91,12 @@ ENV_VARS = {
"key_name": "CEREBRAS_API_KEY",
},
],
"huggingface": [
{
"prompt": "Enter your Huggingface API key (HF_TOKEN) (press Enter to skip)",
"key_name": "HF_TOKEN",
},
],
"sambanova": [
{
"prompt": "Enter your SambaNovaCloud API key (press Enter to skip)",
@@ -106,6 +112,7 @@ PROVIDERS = [
"gemini",
"nvidia_nim",
"groq",
"huggingface",
"ollama",
"watson",
"bedrock",
@@ -270,6 +277,12 @@ MODELS = {
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
"huggingface": [
"huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
"huggingface/mistralai/Mixtral-8x7B-Instruct-v0.1",
"huggingface/tiiuae/falcon-180B-chat",
"huggingface/google/gemma-7b-it",
],
"sambanova": [
"sambanova/Meta-Llama-3.3-70B-Instruct",
"sambanova/QwQ-32B-Preview",

View File

@@ -14,7 +14,7 @@ from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
@@ -116,7 +116,7 @@ def show_loading(event: threading.Event):
print()
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
def initialize_chat_llm(crew: Crew) -> Optional[LLM | BaseLLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
return create_llm(crew.chat_llm)

View File

@@ -1,4 +1,5 @@
import subprocess
from functools import lru_cache
class Repository:
@@ -35,6 +36,7 @@ class Repository:
encoding="utf-8",
).strip()
@lru_cache(maxsize=None)
def is_git_repo(self) -> bool:
"""Check if the current directory is a git repository."""
try:

View File

@@ -3,6 +3,10 @@ import subprocess
import click
# Be mindful about changing this.
# on some enviorments we don't use this command but instead uv sync directly
# so if you expect this to support more things you will need to replicate it there
# ask @joaomdmoura if you are unsure
def install_crew(proxy_options: list[str]) -> None:
"""
Install the crew by running the UV command to lock and install.

View File

@@ -1,6 +1,7 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@@ -9,25 +10,26 @@ from crewai.project import CrewBase, agent, crew, task
class {{crew_name}}():
"""{{crew_name}} crew"""
agents: List[BaseAgent]
tasks: List[Task]
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# If you would like to add tools to your agents, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
@@ -37,13 +39,13 @@ class {{crew_name}}():
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
config=self.tasks_config['research_task'], # type: ignore[index]
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
config=self.tasks_config['reporting_task'], # type: ignore[index]
output_file='report.md'
)

View File

@@ -33,7 +33,8 @@ def train():
Train the crew for a given number of iterations.
"""
inputs = {
"topic": "AI LLMs"
"topic": "AI LLMs",
'current_year': str(datetime.now().year)
}
try:
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
@@ -59,8 +60,9 @@ def test():
"topic": "AI LLMs",
"current_year": str(datetime.now().year)
}
try:
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), eval_llm=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while testing the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0,<1.0.0"
"crewai[tools]>=0.114.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,5 +1,7 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
@@ -10,6 +12,9 @@ from crewai.project import CrewBase, agent, crew, task
class PoemCrew:
"""Poem Crew"""
agents: List[BaseAgent]
tasks: List[Task]
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
@@ -21,7 +26,7 @@ class PoemCrew:
@agent
def poem_writer(self) -> Agent:
return Agent(
config=self.agents_config["poem_writer"],
config=self.agents_config["poem_writer"], # type: ignore[index]
)
# To learn more about structured task outputs,
@@ -30,7 +35,7 @@ class PoemCrew:
@task
def write_poem(self) -> Task:
return Task(
config=self.tasks_config["write_poem"],
config=self.tasks_config["write_poem"], # type: ignore[index]
)
@crew

View File

@@ -5,11 +5,12 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0,<1.0.0",
"crewai[tools]>=0.114.0,<1.0.0",
]
[project.scripts]
kickoff = "{{folder_name}}.main:kickoff"
run_crew = "{{folder_name}}.main:kickoff"
plot = "{{folder_name}}.main:plot"
[build-system]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0"
"crewai[tools]>=0.114.0"
]
[tool.crewai]

View File

@@ -6,7 +6,7 @@ import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union, cast
from pydantic import (
UUID4,
@@ -26,8 +26,9 @@ from crewai.agents.cache import CacheHandler
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.external.external_memory import ExternalMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.user.user_memory import UserMemory
@@ -37,7 +38,7 @@ from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.tools.base_tool import BaseTool, Tool
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
@@ -105,6 +106,7 @@ class Crew(BaseModel):
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_user_memory: Optional[InstanceOf[UserMemory]] = PrivateAttr()
_external_memory: Optional[InstanceOf[ExternalMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
@@ -145,6 +147,10 @@ class Crew(BaseModel):
default=None,
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
)
external_memory: Optional[InstanceOf[ExternalMemory]] = Field(
default=None,
description="An Instance of the ExternalMemory to be used by the Crew",
)
embedder: Optional[dict] = Field(
default=None,
description="Configuration for the embedder to be used for the crew.",
@@ -153,7 +159,7 @@ class Crew(BaseModel):
default=None,
description="Metrics for the LLM usage during all tasks execution.",
)
manager_llm: Optional[Any] = Field(
manager_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
manager_agent: Optional[BaseAgent] = Field(
@@ -187,7 +193,7 @@ class Crew(BaseModel):
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
)
prompt_file: str = Field(
prompt_file: Optional[str] = Field(
default=None,
description="Path to the prompt json file to be used for the crew.",
)
@@ -199,7 +205,7 @@ class Crew(BaseModel):
default=False,
description="Plan the crew execution and add the plan to the crew.",
)
planning_llm: Optional[Any] = Field(
planning_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
default=None,
description="Language model that will run the AgentPlanner if planning is True.",
)
@@ -215,7 +221,7 @@ class Crew(BaseModel):
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
chat_llm: Optional[Any] = Field(
chat_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
default=None,
description="LLM used to handle chatting with the crew.",
)
@@ -269,46 +275,51 @@ class Crew(BaseModel):
return self
def _initialize_user_memory(self):
if (
self.memory_config
and "user_memory" in self.memory_config
and self.memory_config.get("provider") == "mem0"
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(crew=self)
else:
raise TypeError("user_memory must be a configuration dictionary")
def _initialize_default_memories(self):
self._long_term_memory = self._long_term_memory or LongTermMemory()
self._short_term_memory = self._short_term_memory or ShortTermMemory(
crew=self,
embedder_config=self.embedder,
)
self._entity_memory = self.entity_memory or EntityMemory(
crew=self, embedder_config=self.embedder
)
@model_validator(mode="after")
def create_crew_memory(self) -> "Crew":
"""Set private attributes."""
"""Initialize private memory attributes."""
self._external_memory = (
# External memory doesnt support a default value since it was designed to be managed entirely externally
self.external_memory.set_crew(self)
if self.external_memory
else None
)
self._long_term_memory = self.long_term_memory
self._short_term_memory = self.short_term_memory
self._entity_memory = self.entity_memory
# UserMemory is gonna to be deprecated in the future, but we have to initialize a default value for now
self._user_memory = None
if self.memory:
self._long_term_memory = (
self.long_term_memory if self.long_term_memory else LongTermMemory()
)
self._short_term_memory = (
self.short_term_memory
if self.short_term_memory
else ShortTermMemory(
crew=self,
embedder_config=self.embedder,
)
)
self._entity_memory = (
self.entity_memory
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
else:
self._user_memory = None # No user memory if not in config
self._initialize_default_memories()
self._initialize_user_memory()
return self
@model_validator(mode="after")
@@ -489,7 +500,7 @@ class Crew(BaseModel):
task.key for task in self.tasks
]
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@property
def fingerprint(self) -> Fingerprint:
"""
@@ -819,7 +830,12 @@ class Crew(BaseModel):
# Determine which tools to use - task tools take precedence over agent tools
tools_for_task = task.tools or agent_to_use.tools or []
tools_for_task = self._prepare_tools(agent_to_use, task, tools_for_task)
# Prepare tools and ensure they're compatible with task execution
tools_for_task = self._prepare_tools(
agent_to_use,
task,
cast(Union[List[Tool], List[BaseTool]], tools_for_task),
)
self._log_task_start(task, agent_to_use.role)
@@ -838,7 +854,7 @@ class Crew(BaseModel):
future = task.execute_async(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=cast(List[BaseTool], tools_for_task),
)
futures.append((task, future, task_index))
else:
@@ -850,7 +866,7 @@ class Crew(BaseModel):
task_output = task.execute_sync(
agent=agent_to_use,
context=context,
tools=tools_for_task,
tools=cast(List[BaseTool], tools_for_task),
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
@@ -888,10 +904,12 @@ class Crew(BaseModel):
return None
def _prepare_tools(
self, agent: BaseAgent, task: Task, tools: List[Tool]
) -> List[Tool]:
self, agent: BaseAgent, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
# Add delegation tools if agent allows delegation
if agent.allow_delegation:
if hasattr(agent, "allow_delegation") and getattr(
agent, "allow_delegation", False
):
if self.process == Process.hierarchical:
if self.manager_agent:
tools = self._update_manager_tools(task, tools)
@@ -900,17 +918,24 @@ class Crew(BaseModel):
"Manager agent is required for hierarchical process."
)
elif agent and agent.allow_delegation:
elif agent:
tools = self._add_delegation_tools(task, tools)
# Add code execution tools if agent allows code execution
if agent.allow_code_execution:
if hasattr(agent, "allow_code_execution") and getattr(
agent, "allow_code_execution", False
):
tools = self._add_code_execution_tools(agent, tools)
if agent and agent.multimodal:
if (
agent
and hasattr(agent, "multimodal")
and getattr(agent, "multimodal", False)
):
tools = self._add_multimodal_tools(agent, tools)
return tools
# Return a List[BaseTool] which is compatible with both Task.execute_sync and Task.execute_async
return cast(List[BaseTool], tools)
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
if self.process == Process.hierarchical:
@@ -918,11 +943,13 @@ class Crew(BaseModel):
return task.agent
def _merge_tools(
self, existing_tools: List[Tool], new_tools: List[Tool]
) -> List[Tool]:
self,
existing_tools: Union[List[Tool], List[BaseTool]],
new_tools: Union[List[Tool], List[BaseTool]],
) -> List[BaseTool]:
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
if not new_tools:
return existing_tools
return cast(List[BaseTool], existing_tools)
# Create mapping of tool names to new tools
new_tool_map = {tool.name: tool for tool in new_tools}
@@ -933,23 +960,41 @@ class Crew(BaseModel):
# Add all new tools
tools.extend(new_tools)
return tools
return cast(List[BaseTool], tools)
def _inject_delegation_tools(
self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]
):
delegation_tools = task_agent.get_delegation_tools(agents)
return self._merge_tools(tools, delegation_tools)
self,
tools: Union[List[Tool], List[BaseTool]],
task_agent: BaseAgent,
agents: List[BaseAgent],
) -> List[BaseTool]:
if hasattr(task_agent, "get_delegation_tools"):
delegation_tools = task_agent.get_delegation_tools(agents)
# Cast delegation_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], delegation_tools))
return cast(List[BaseTool], tools)
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
multimodal_tools = agent.get_multimodal_tools()
return self._merge_tools(tools, multimodal_tools)
def _add_multimodal_tools(
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_multimodal_tools"):
multimodal_tools = agent.get_multimodal_tools()
# Cast multimodal_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], multimodal_tools))
return cast(List[BaseTool], tools)
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
code_tools = agent.get_code_execution_tools()
return self._merge_tools(tools, code_tools)
def _add_code_execution_tools(
self, agent: BaseAgent, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if hasattr(agent, "get_code_execution_tools"):
code_tools = agent.get_code_execution_tools()
# Cast code_tools to the expected type for _merge_tools
return self._merge_tools(tools, cast(List[BaseTool], code_tools))
return cast(List[BaseTool], tools)
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
def _add_delegation_tools(
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
if not tools:
@@ -957,7 +1002,7 @@ class Crew(BaseModel):
tools = self._inject_delegation_tools(
tools, task.agent, agents_for_delegation
)
return tools
return cast(List[BaseTool], tools)
def _log_task_start(self, task: Task, role: str = "None"):
if self.output_log_file:
@@ -965,7 +1010,9 @@ class Crew(BaseModel):
task_name=task.name, task=task.description, agent=role, status="started"
)
def _update_manager_tools(self, task: Task, tools: List[Tool]):
def _update_manager_tools(
self, task: Task, tools: Union[List[Tool], List[BaseTool]]
) -> List[BaseTool]:
if self.manager_agent:
if task.agent:
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
@@ -973,7 +1020,7 @@ class Crew(BaseModel):
tools = self._inject_delegation_tools(
tools, self.manager_agent, self.agents
)
return tools
return cast(List[BaseTool], tools)
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
context = (
@@ -1120,7 +1167,12 @@ class Crew(BaseModel):
return required_inputs
def copy(self):
"""Create a deep copy of the Crew."""
"""
Creates a deep copy of the Crew instance.
Returns:
Crew: A new instance with copied components
"""
exclude = {
"id",
@@ -1132,13 +1184,19 @@ class Crew(BaseModel):
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_external_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
"knowledge",
"manager_agent",
"manager_llm",
}
cloned_agents = [agent.copy() for agent in self.agents]
manager_agent = self.manager_agent.copy() if self.manager_agent else None
manager_llm = shallow_copy(self.manager_llm) if self.manager_llm else None
task_mapping = {}
@@ -1161,6 +1219,17 @@ class Crew(BaseModel):
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
if self.short_term_memory:
copied_data["short_term_memory"] = self.short_term_memory.model_copy(deep=True)
if self.long_term_memory:
copied_data["long_term_memory"] = self.long_term_memory.model_copy(deep=True)
if self.entity_memory:
copied_data["entity_memory"] = self.entity_memory.model_copy(deep=True)
if self.external_memory:
copied_data["external_memory"] = self.external_memory.model_copy(deep=True)
if self.user_memory:
copied_data["user_memory"] = self.user_memory.model_copy(deep=True)
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
@@ -1171,6 +1240,8 @@ class Crew(BaseModel):
tasks=cloned_tasks,
knowledge_sources=existing_knowledge_sources,
knowledge=existing_knowledge,
manager_agent=manager_agent,
manager_llm=manager_llm,
)
return copied_crew
@@ -1214,13 +1285,14 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
eval_llm: Union[str, InstanceOf[LLM]],
eval_llm: Union[str, InstanceOf[BaseLLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
# Create LLM instance and ensure it's of type LLM for CrewEvaluator
llm_instance = create_llm(eval_llm)
if not llm_instance:
raise ValueError("Failed to create LLM instance.")
crewai_event_bus.emit(
@@ -1228,12 +1300,12 @@ class Crew(BaseModel):
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
eval_llm=llm_instance,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, llm_instance)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
@@ -1270,7 +1342,15 @@ class Crew(BaseModel):
RuntimeError: If memory reset operation fails.
"""
VALID_TYPES = frozenset(
["long", "short", "entity", "knowledge", "kickoff_outputs", "all"]
[
"long",
"short",
"entity",
"knowledge",
"kickoff_outputs",
"all",
"external",
]
)
if command_type not in VALID_TYPES:
@@ -1296,6 +1376,7 @@ class Crew(BaseModel):
memory_systems = [
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("external", getattr(self, "_external_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
@@ -1323,6 +1404,7 @@ class Crew(BaseModel):
"entity": (self._entity_memory, "entity"),
"knowledge": (self.knowledge, "knowledge"),
"kickoff_outputs": (self._task_output_handler, "task output"),
"external": (self._external_memory, "external"),
}
memory_system, name = reset_functions[memory_type]

View File

@@ -1043,6 +1043,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
import traceback
traceback.print_exc()
raise
def _log_flow_event(
self, message: str, color: str = "yellow", level: str = "info"

View File

@@ -14,6 +14,7 @@ from chromadb.config import Settings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.chromadb import sanitize_collection_name
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
@@ -99,7 +100,8 @@ class KnowledgeStorage(BaseKnowledgeStorage):
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder
name=sanitize_collection_name(collection_name),
embedding_function=self.embedder,
)
else:
raise Exception("Vector Database Client not initialized")

478
src/crewai/lite_agent.py Normal file
View File

@@ -0,0 +1,478 @@
import asyncio
import uuid
from datetime import datetime
from typing import Any, Callable, Dict, List, Optional, Type, Union, cast
from pydantic import BaseModel, Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache import CacheHandler
from crewai.agents.parser import (
AgentAction,
AgentFinish,
OutputParserException,
)
from crewai.llm import LLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.utilities import I18N
from crewai.utilities.agent_utils import (
enforce_rpm_limit,
format_message_for_llm,
get_llm_response,
get_tool_names,
handle_agent_action_core,
handle_context_length,
handle_max_iterations_exceeded,
handle_output_parser_exception,
handle_unknown_error,
has_reached_max_iterations,
is_context_length_exceeded,
parse_tools,
process_llm_response,
render_text_description_and_args,
show_agent_logs,
)
from crewai.utilities.converter import convert_to_model, generate_model_description
from crewai.utilities.events.agent_events import (
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
LiteAgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.printer import Printer
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.tool_utils import execute_tool_and_check_finality
class LiteAgentOutput(BaseModel):
"""Class that represents the result of a LiteAgent execution."""
model_config = {"arbitrary_types_allowed": True}
raw: str = Field(description="Raw output of the agent", default="")
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of the agent", default=None
)
agent_role: str = Field(description="Role of the agent that produced this output")
usage_metrics: Optional[Dict[str, Any]] = Field(
description="Token usage metrics for this execution", default=None
)
def to_dict(self) -> Dict[str, Any]:
"""Convert pydantic_output to a dictionary."""
if self.pydantic:
return self.pydantic.model_dump()
return {}
def __str__(self) -> str:
"""String representation of the output."""
if self.pydantic:
return str(self.pydantic)
return self.raw
class LiteAgent(BaseModel):
"""
A lightweight agent that can process messages and use tools.
This agent is simpler than the full Agent class, focusing on direct execution
rather than task delegation. It's designed to be used for simple interactions
where a full crew is not needed.
Attributes:
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
llm: The language model that will run the agent.
tools: Tools at the agent's disposal.
verbose: Whether the agent execution should be in verbose mode.
max_iterations: Maximum number of iterations for tool usage.
max_execution_time: Maximum execution time in seconds.
response_format: Optional Pydantic model for structured output.
"""
model_config = {"arbitrary_types_allowed": True}
# Core Agent Properties
role: str = Field(description="Role of the agent")
goal: str = Field(description="Goal of the agent")
backstory: str = Field(description="Backstory of the agent")
llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
default=None, description="Language model that will run the agent"
)
tools: List[BaseTool] = Field(
default_factory=list, description="Tools at agent's disposal"
)
# Execution Control Properties
max_iterations: int = Field(
default=15, description="Maximum number of iterations for tool usage"
)
max_execution_time: Optional[int] = Field(
default=None, description="Maximum execution time in seconds"
)
respect_context_window: bool = Field(
default=True,
description="Whether to respect the context window of the LLM",
)
use_stop_words: bool = Field(
default=True,
description="Whether to use stop words to prevent the LLM from using tools",
)
request_within_rpm_limit: Optional[Callable[[], bool]] = Field(
default=None,
description="Callback to check if the request is within the RPM limit",
)
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
# Output and Formatting Properties
response_format: Optional[Type[BaseModel]] = Field(
default=None, description="Pydantic model for structured output"
)
verbose: bool = Field(
default=False, description="Whether to print execution details"
)
callbacks: List[Callable] = Field(
default=[], description="Callbacks to be used for the agent"
)
# State and Results
tools_results: List[Dict[str, Any]] = Field(
default=[], description="Results of the tools used by the agent."
)
# Reference of Agent
original_agent: Optional[BaseAgent] = Field(
default=None, description="Reference to the agent that created this LiteAgent"
)
# Private Attributes
_parsed_tools: List[CrewStructuredTool] = PrivateAttr(default_factory=list)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
_cache_handler: CacheHandler = PrivateAttr(default_factory=CacheHandler)
_key: str = PrivateAttr(default_factory=lambda: str(uuid.uuid4()))
_messages: List[Dict[str, str]] = PrivateAttr(default_factory=list)
_iterations: int = PrivateAttr(default=0)
_printer: Printer = PrivateAttr(default_factory=Printer)
@model_validator(mode="after")
def setup_llm(self):
"""Set up the LLM and other components after initialization."""
self.llm = create_llm(self.llm)
if not isinstance(self.llm, LLM):
raise ValueError("Unable to create LLM instance")
# Initialize callbacks
token_callback = TokenCalcHandler(token_cost_process=self._token_process)
self._callbacks = [token_callback]
return self
@model_validator(mode="after")
def parse_tools(self):
"""Parse the tools and convert them to CrewStructuredTool instances."""
self._parsed_tools = parse_tools(self.tools)
return self
@property
def key(self) -> str:
"""Get the unique key for this agent instance."""
return self._key
@property
def _original_role(self) -> str:
"""Return the original role for compatibility with tool interfaces."""
return self.role
def kickoff(self, messages: Union[str, List[Dict[str, str]]]) -> LiteAgentOutput:
"""
Execute the agent with the given messages.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
# Create agent info for event emission
agent_info = {
"role": self.role,
"goal": self.goal,
"backstory": self.backstory,
"tools": self._parsed_tools,
"verbose": self.verbose,
}
try:
# Reset state for this run
self._iterations = 0
self.tools_results = []
# Format messages for the LLM
self._messages = self._format_messages(messages)
# Emit event for agent execution start
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=self._parsed_tools,
messages=messages,
),
)
# Execute the agent using invoke loop
agent_finish = self._invoke_loop()
formatted_result: Optional[BaseModel] = None
if self.response_format:
try:
# Cast to BaseModel to ensure type safety
result = self.response_format.model_validate_json(
agent_finish.output
)
if isinstance(result, BaseModel):
formatted_result = result
except Exception as e:
self._printer.print(
content=f"Failed to parse output into response format: {str(e)}",
color="yellow",
)
# Calculate token usage metrics
usage_metrics = self._token_process.get_summary()
# Create output
output = LiteAgentOutput(
raw=agent_finish.output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
)
# Emit completion event
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=agent_finish.output,
),
)
return output
except Exception as e:
self._printer.print(
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
color="red",
)
handle_unknown_error(self._printer, e)
# Emit error event
crewai_event_bus.emit(
self,
event=LiteAgentExecutionErrorEvent(
agent_info=agent_info,
error=str(e),
),
)
raise e
async def kickoff_async(
self, messages: Union[str, List[Dict[str, str]]]
) -> LiteAgentOutput:
"""
Execute the agent asynchronously with the given messages.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
return await asyncio.to_thread(self.kickoff, messages)
def _get_default_system_prompt(self) -> str:
"""Get the default system prompt for the agent."""
base_prompt = ""
if self._parsed_tools:
# Use the prompt template for agents with tools
base_prompt = self.i18n.slice("lite_agent_system_prompt_with_tools").format(
role=self.role,
backstory=self.backstory,
goal=self.goal,
tools=render_text_description_and_args(self._parsed_tools),
tool_names=get_tool_names(self._parsed_tools),
)
else:
# Use the prompt template for agents without tools
base_prompt = self.i18n.slice(
"lite_agent_system_prompt_without_tools"
).format(
role=self.role,
backstory=self.backstory,
goal=self.goal,
)
# Add response format instructions if specified
if self.response_format:
schema = generate_model_description(self.response_format)
base_prompt += self.i18n.slice("lite_agent_response_format").format(
response_format=schema
)
return base_prompt
def _format_messages(
self, messages: Union[str, List[Dict[str, str]]]
) -> List[Dict[str, str]]:
"""Format messages for the LLM."""
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
system_prompt = self._get_default_system_prompt()
# Add system message at the beginning
formatted_messages = [{"role": "system", "content": system_prompt}]
# Add the rest of the messages
formatted_messages.extend(messages)
return formatted_messages
def _invoke_loop(self) -> AgentFinish:
"""
Run the agent's thought process until it reaches a conclusion or max iterations.
Returns:
AgentFinish: The final result of the agent execution.
"""
# Execute the agent loop
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
try:
if has_reached_max_iterations(self._iterations, self.max_iterations):
formatted_answer = handle_max_iterations_exceeded(
formatted_answer,
printer=self._printer,
i18n=self.i18n,
messages=self._messages,
llm=cast(LLM, self.llm),
callbacks=self._callbacks,
)
enforce_rpm_limit(self.request_within_rpm_limit)
# Emit LLM call started event
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=self._messages,
tools=None,
callbacks=self._callbacks,
),
)
try:
answer = get_llm_response(
llm=cast(LLM, self.llm),
messages=self._messages,
callbacks=self._callbacks,
printer=self._printer,
)
# Emit LLM call completed event
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(
response=answer,
call_type=LLMCallType.LLM_CALL,
),
)
except Exception as e:
# Emit LLM call failed event
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
raise e
formatted_answer = process_llm_response(answer, self.use_stop_words)
if isinstance(formatted_answer, AgentAction):
try:
tool_result = execute_tool_and_check_finality(
agent_action=formatted_answer,
tools=self._parsed_tools,
i18n=self.i18n,
agent_key=self.key,
agent_role=self.role,
agent=self.original_agent,
)
except Exception as e:
raise e
formatted_answer = handle_agent_action_core(
formatted_answer=formatted_answer,
tool_result=tool_result,
show_logs=self._show_logs,
)
self._append_message(formatted_answer.text, role="assistant")
except OutputParserException as e:
formatted_answer = handle_output_parser_exception(
e=e,
messages=self._messages,
iterations=self._iterations,
log_error_after=3,
printer=self._printer,
)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if is_context_length_exceeded(e):
handle_context_length(
respect_context_window=self.respect_context_window,
printer=self._printer,
messages=self._messages,
llm=cast(LLM, self.llm),
callbacks=self._callbacks,
i18n=self.i18n,
)
continue
else:
handle_unknown_error(self._printer, e)
raise e
finally:
self._iterations += 1
assert isinstance(formatted_answer, AgentFinish)
self._show_logs(formatted_answer)
return formatted_answer
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
"""Show logs for the agent's execution."""
show_agent_logs(
printer=self._printer,
agent_role=self.role,
formatted_answer=formatted_answer,
verbose=self.verbose,
)
def _append_message(self, text: str, role: str = "assistant") -> None:
"""Append a message to the message list with the given role."""
self._messages.append(format_message_for_llm(text, role=role))

View File

@@ -40,6 +40,7 @@ with warnings.catch_warnings():
from litellm.utils import supports_response_schema
from crewai.llms.base_llm import BaseLLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
@@ -114,6 +115,60 @@ LLM_CONTEXT_WINDOW_SIZES = {
"Llama-3.2-11B-Vision-Instruct": 16384,
"Meta-Llama-3.2-3B-Instruct": 4096,
"Meta-Llama-3.2-1B-Instruct": 16384,
# bedrock
"us.amazon.nova-pro-v1:0": 300000,
"us.amazon.nova-micro-v1:0": 128000,
"us.amazon.nova-lite-v1:0": 300000,
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"us.anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"us.anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"us.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"us.anthropic.claude-3-opus-20240229-v1:0": 200000,
"us.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"us.meta.llama3-2-11b-instruct-v1:0": 128000,
"us.meta.llama3-2-3b-instruct-v1:0": 131000,
"us.meta.llama3-2-90b-instruct-v1:0": 128000,
"us.meta.llama3-2-1b-instruct-v1:0": 131000,
"us.meta.llama3-1-8b-instruct-v1:0": 128000,
"us.meta.llama3-1-70b-instruct-v1:0": 128000,
"us.meta.llama3-3-70b-instruct-v1:0": 128000,
"us.meta.llama3-1-405b-instruct-v1:0": 128000,
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"eu.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"eu.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"eu.meta.llama3-2-3b-instruct-v1:0": 131000,
"eu.meta.llama3-2-1b-instruct-v1:0": 131000,
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"apac.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"apac.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"apac.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"amazon.nova-pro-v1:0": 300000,
"amazon.nova-micro-v1:0": 128000,
"amazon.nova-lite-v1:0": 300000,
"anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"anthropic.claude-3-opus-20240229-v1:0": 200000,
"anthropic.claude-3-haiku-20240307-v1:0": 200000,
"anthropic.claude-v2:1": 200000,
"anthropic.claude-v2": 100000,
"anthropic.claude-instant-v1": 100000,
"meta.llama3-1-405b-instruct-v1:0": 128000,
"meta.llama3-1-70b-instruct-v1:0": 128000,
"meta.llama3-1-8b-instruct-v1:0": 128000,
"meta.llama3-70b-instruct-v1:0": 8000,
"meta.llama3-8b-instruct-v1:0": 8000,
"amazon.titan-text-lite-v1": 4000,
"amazon.titan-text-express-v1": 8000,
"cohere.command-text-v14": 4000,
"ai21.j2-mid-v1": 8191,
"ai21.j2-ultra-v1": 8191,
"ai21.jamba-instruct-v1:0": 256000,
"mistral.mistral-7b-instruct-v0:2": 32000,
"mistral.mixtral-8x7b-instruct-v0:1": 32000,
# mistral
"mistral-tiny": 32768,
"mistral-small-latest": 32768,
@@ -164,7 +219,7 @@ class StreamingChoices(TypedDict):
finish_reason: Optional[str]
class LLM:
class LLM(BaseLLM):
def __init__(
self,
model: str,
@@ -652,15 +707,6 @@ class LLM:
function_name, lambda: None
) # Ensure fn is always a callable
logging.error(f"Error executing function '{function_name}': {e}")
crewai_event_bus.emit(
self,
event=ToolExecutionErrorEvent(
tool_name=function_name,
tool_args=function_args,
tool_class=fn,
error=str(e),
),
)
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=f"Tool execution error: {str(e)}"),

View File

@@ -0,0 +1,91 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
class BaseLLM(ABC):
"""Abstract base class for LLM implementations.
This class defines the interface that all LLM implementations must follow.
Users can extend this class to create custom LLM implementations that don't
rely on litellm's authentication mechanism.
Custom LLM implementations should handle error cases gracefully, including
timeouts, authentication failures, and malformed responses. They should also
implement proper validation for input parameters and provide clear error
messages when things go wrong.
Attributes:
stop (list): A list of stop sequences that the LLM should use to stop generation.
This is used by the CrewAgentExecutor and other components.
"""
model: str
temperature: Optional[float] = None
stop: Optional[List[str]] = None
def __init__(
self,
model: str,
temperature: Optional[float] = None,
):
"""Initialize the BaseLLM with default attributes.
This constructor sets default values for attributes that are expected
by the CrewAgentExecutor and other components.
All custom LLM implementations should call super().__init__() to ensure
that these default attributes are properly initialized.
"""
self.model = model
self.temperature = temperature
self.stop = []
@abstractmethod
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""Call the LLM with the given messages.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
ValueError: If the messages format is invalid.
TimeoutError: If the LLM request times out.
RuntimeError: If the LLM request fails for other reasons.
"""
pass
def supports_stop_words(self) -> bool:
"""Check if the LLM supports stop words.
Returns:
bool: True if the LLM supports stop words, False otherwise.
"""
return True # Default implementation assumes support for stop words
def get_context_window_size(self) -> int:
"""Get the context window size for the LLM.
Returns:
int: The number of tokens/characters the model can handle.
"""
# Default implementation - subclasses should override with model-specific values
return 4096

38
src/crewai/llms/third_party/ai_suite.py vendored Normal file
View File

@@ -0,0 +1,38 @@
from typing import Any, Dict, List, Optional, Union
import aisuite as ai
from crewai.llms.base_llm import BaseLLM
class AISuiteLLM(BaseLLM):
def __init__(self, model: str, temperature: Optional[float] = None, **kwargs):
super().__init__(model, temperature, **kwargs)
self.client = ai.Client()
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
completion_params = self._prepare_completion_params(messages, tools)
response = self.client.chat.completions.create(**completion_params)
return response.choices[0].message.content
def _prepare_completion_params(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
) -> Dict[str, Any]:
return {
"model": self.model,
"messages": messages,
"temperature": self.temperature,
"tools": tools,
}
def supports_function_calling(self) -> bool:
return False

View File

@@ -2,5 +2,12 @@ from .entity.entity_memory import EntityMemory
from .long_term.long_term_memory import LongTermMemory
from .short_term.short_term_memory import ShortTermMemory
from .user.user_memory import UserMemory
from .external.external_memory import ExternalMemory
__all__ = ["UserMemory", "EntityMemory", "LongTermMemory", "ShortTermMemory"]
__all__ = [
"UserMemory",
"EntityMemory",
"LongTermMemory",
"ShortTermMemory",
"ExternalMemory",
]

View File

@@ -1,6 +1,12 @@
from typing import Any, Dict, Optional
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
from crewai.memory import (
EntityMemory,
ExternalMemory,
LongTermMemory,
ShortTermMemory,
UserMemory,
)
class ContextualMemory:
@@ -11,6 +17,7 @@ class ContextualMemory:
ltm: LongTermMemory,
em: EntityMemory,
um: UserMemory,
exm: ExternalMemory,
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
@@ -20,6 +27,7 @@ class ContextualMemory:
self.ltm = ltm
self.em = em
self.um = um
self.exm = exm
def build_context_for_task(self, task, context) -> str:
"""
@@ -35,6 +43,7 @@ class ContextualMemory:
context.append(self._fetch_ltm_context(task.description))
context.append(self._fetch_stm_context(query))
context.append(self._fetch_entity_context(query))
context.append(self._fetch_external_context(query))
if self.memory_provider == "mem0":
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
@@ -44,6 +53,10 @@ class ContextualMemory:
Fetches recent relevant insights from STM related to the task's description and expected_output,
formatted as bullet points.
"""
if self.stm is None:
return ""
stm_results = self.stm.search(query)
formatted_results = "\n".join(
[
@@ -58,6 +71,10 @@ class ContextualMemory:
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
"""
if self.ltm is None:
return ""
ltm_results = self.ltm.search(task, latest_n=2)
if not ltm_results:
return None
@@ -77,6 +94,9 @@ class ContextualMemory:
Fetches relevant entity information from Entity Memory related to the task's description and expected_output,
formatted as bullet points.
"""
if self.em is None:
return ""
em_results = self.em.search(query)
formatted_results = "\n".join(
[
@@ -94,6 +114,10 @@ class ContextualMemory:
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
if self.um is None:
return ""
user_memories = self.um.search(query)
if not user_memories:
return ""
@@ -102,3 +126,24 @@ class ContextualMemory:
f"- {result['memory']}" for result in user_memories
)
return f"User memories/preferences:\n{formatted_memories}"
def _fetch_external_context(self, query: str) -> str:
"""
Fetches and formats relevant information from External Memory.
Args:
query (str): The search query to find relevant information.
Returns:
str: Formatted information as bullet points, or an empty string if none found.
"""
if self.exm is None:
return ""
external_memories = self.exm.search(query)
if not external_memories:
return ""
formatted_memories = "\n".join(
f"- {result['memory']}" for result in external_memories
)
return f"External memories:\n{formatted_memories}"

View File

View File

@@ -0,0 +1,61 @@
from typing import TYPE_CHECKING, Any, Dict, Optional
from crewai.memory.external.external_memory_item import ExternalMemoryItem
from crewai.memory.memory import Memory
from crewai.memory.storage.interface import Storage
if TYPE_CHECKING:
from crewai.memory.storage.mem0_storage import Mem0Storage
class ExternalMemory(Memory):
def __init__(self, storage: Optional[Storage] = None, **data: Any):
super().__init__(storage=storage, **data)
@staticmethod
def _configure_mem0(crew: Any, config: Dict[str, Any]) -> "Mem0Storage":
from crewai.memory.storage.mem0_storage import Mem0Storage
return Mem0Storage(type="external", crew=crew, config=config)
@staticmethod
def external_supported_storages() -> Dict[str, Any]:
return {
"mem0": ExternalMemory._configure_mem0,
}
@staticmethod
def create_storage(crew: Any, embedder_config: Optional[Dict[str, Any]]) -> Storage:
if not embedder_config:
raise ValueError("embedder_config is required")
if "provider" not in embedder_config:
raise ValueError("embedder_config must include a 'provider' key")
provider = embedder_config["provider"]
supported_storages = ExternalMemory.external_supported_storages()
if provider not in supported_storages:
raise ValueError(f"Provider {provider} not supported")
return supported_storages[provider](crew, embedder_config.get("config", {}))
def save(
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
"""Saves a value into the external storage."""
item = ExternalMemoryItem(value=value, metadata=metadata, agent=agent)
super().save(value=item.value, metadata=item.metadata, agent=item.agent)
def reset(self) -> None:
self.storage.reset()
def set_crew(self, crew: Any) -> "ExternalMemory":
super().set_crew(crew)
if not self.storage:
self.storage = self.create_storage(crew, self.embedder_config)
return self

View File

@@ -0,0 +1,13 @@
from typing import Any, Dict, Optional
class ExternalMemoryItem:
def __init__(
self,
value: Any,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
):
self.value = value
self.metadata = metadata
self.agent = agent

View File

@@ -9,6 +9,7 @@ class Memory(BaseModel):
"""
embedder_config: Optional[Dict[str, Any]] = None
crew: Optional[Any] = None
storage: Any
@@ -36,3 +37,7 @@ class Memory(BaseModel):
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
)
def set_crew(self, crew: Any) -> "Memory":
self.crew = crew
return self

View File

@@ -1,7 +1,7 @@
import os
from typing import Any, Dict, List
from mem0 import MemoryClient
from mem0 import Memory, MemoryClient
from crewai.memory.storage.interface import Storage
@@ -11,15 +11,20 @@ class Mem0Storage(Storage):
Extends Storage to handle embedding and searching across entities using Mem0.
"""
def __init__(self, type, crew=None):
def __init__(self, type, crew=None, config=None):
super().__init__()
if type not in ["user", "short_term", "long_term", "entities"]:
raise ValueError("Invalid type for Mem0Storage. Must be 'user' or 'agent'.")
supported_types = ["user", "short_term", "long_term", "entities", "external"]
if type not in supported_types:
raise ValueError(
f"Invalid type '{type}' for Mem0Storage. Must be one of: "
+ ", ".join(supported_types)
)
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config
self.config = config or {}
# TODO: Memory config will be removed in the future the config will be passed as a parameter
self.memory_config = self.config if config is not None else getattr(crew, "memory_config", {}) or {}
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
@@ -27,18 +32,25 @@ class Mem0Storage(Storage):
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
config = self.memory_config.get("config", {})
config = self._get_config()
mem0_api_key = config.get("api_key") or os.getenv("MEM0_API_KEY")
mem0_org_id = config.get("org_id")
mem0_project_id = config.get("project_id")
mem0_local_config = config.get("local_mem0_config")
# Initialize MemoryClient with available parameters
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
# Initialize MemoryClient or Memory based on the presence of the mem0_api_key
if mem0_api_key:
if mem0_org_id and mem0_project_id:
self.memory = MemoryClient(
api_key=mem0_api_key, org_id=mem0_org_id, project_id=mem0_project_id
)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
else:
self.memory = MemoryClient(api_key=mem0_api_key)
if mem0_local_config and len(mem0_local_config):
self.memory = Memory.from_config(mem0_local_config)
else:
self.memory = Memory()
def _sanitize_role(self, role: str) -> str:
"""
@@ -49,26 +61,34 @@ class Mem0Storage(Storage):
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self._get_user_id()
agent_name = self._get_agent_name()
if self.memory_type == "user":
self.memory.add(value, user_id=user_id, metadata={**metadata})
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
self.memory.add(
value, agent_id=agent_name, metadata={"type": "short_term", **metadata}
)
params = None
if self.memory_type == "short_term":
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "short_term", **metadata},
}
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
self.memory.add(
value,
agent_id=agent_name,
infer=False,
metadata={"type": "long_term", **metadata},
)
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "long_term", **metadata},
}
elif self.memory_type == "entities":
entity_name = self._get_agent_name()
self.memory.add(
value, user_id=entity_name, metadata={"type": "entity", **metadata}
)
params = {
"agent_id": agent_name,
"infer": False,
"metadata": {"type": "entity", **metadata},
}
elif self.memory_type == "external":
params = {
"user_id": user_id,
"agent_id": agent_name,
"metadata": {"type": "external", **metadata},
}
if params:
self.memory.add(value, **params | {"output_format": "v1.1"})
def search(
self,
@@ -77,37 +97,43 @@ class Mem0Storage(Storage):
score_threshold: float = 0.35,
) -> List[Any]:
params = {"query": query, "limit": limit}
if self.memory_type == "user":
user_id = self._get_user_id()
if user_id := self._get_user_id():
params["user_id"] = user_id
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
agent_name = self._get_agent_name()
if self.memory_type == "short_term":
params["agent_id"] = agent_name
params["metadata"] = {"type": "short_term"}
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "long_term"}
elif self.memory_type == "entities":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "entity"}
elif self.memory_type == "external":
params["agent_id"] = agent_name
params["metadata"] = {"type": "external"}
# Discard the filters for now since we create the filters
# automatically when the crew is created.
results = self.memory.search(**params)
return [r for r in results if r["score"] >= score_threshold]
def _get_user_id(self):
if self.memory_type == "user":
if hasattr(self, "memory_config") and self.memory_config is not None:
return self.memory_config.get("config", {}).get("user_id")
else:
return None
return None
def _get_user_id(self) -> str:
return self._get_config().get("user_id", "")
def _get_agent_name(self):
agents = self.crew.agents if self.crew else []
def _get_agent_name(self) -> str:
if not self.crew:
return ""
agents = self.crew.agents
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
return agents
def _get_config(self) -> Dict[str, Any]:
return self.config or getattr(self, "memory_config", {}).get("config", {}) or {}
def reset(self):
if self.memory:
self.memory.reset()

View File

@@ -1,3 +1,4 @@
import warnings
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory
@@ -12,6 +13,12 @@ class UserMemory(Memory):
"""
def __init__(self, crew=None):
warnings.warn(
"UserMemory is deprecated and will be removed in a future version. "
"Please use ExternalMemory instead.",
DeprecationWarning,
stacklevel=2,
)
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
@@ -43,3 +50,9 @@ class UserMemory(Memory):
score_threshold=score_threshold,
)
return results
def reset(self) -> None:
try:
self.storage.reset()
except Exception as e:
raise Exception(f"An error occurred while resetting the user memory: {e}")

View File

@@ -137,13 +137,11 @@ def CrewBase(cls: T) -> T:
all_functions, "is_cache_handler"
)
callbacks = self._filter_functions(all_functions, "is_callback")
agents = self._filter_functions(all_functions, "is_agent")
for agent_name, agent_info in self.agents_config.items():
self._map_agent_variables(
agent_name,
agent_info,
agents,
llms,
tool_functions,
cache_handler_functions,
@@ -154,7 +152,6 @@ def CrewBase(cls: T) -> T:
self,
agent_name: str,
agent_info: Dict[str, Any],
agents: Dict[str, Callable],
llms: Dict[str, Callable],
tool_functions: Dict[str, Callable],
cache_handler_functions: Dict[str, Callable],
@@ -172,9 +169,10 @@ def CrewBase(cls: T) -> T:
]
if function_calling_llm := agent_info.get("function_calling_llm"):
self.agents_config[agent_name]["function_calling_llm"] = agents[
function_calling_llm
]()
try:
self.agents_config[agent_name]["function_calling_llm"] = llms[function_calling_llm]()
except KeyError:
self.agents_config[agent_name]["function_calling_llm"] = function_calling_llm
if step_callback := agent_info.get("step_callback"):
self.agents_config[agent_name]["step_callback"] = callbacks[

View File

@@ -2,6 +2,7 @@ import datetime
import inspect
import json
import logging
import re
import threading
import uuid
from concurrent.futures import Future
@@ -19,6 +20,8 @@ from typing import (
Tuple,
Type,
Union,
get_args,
get_origin,
)
from pydantic import (
@@ -47,6 +50,7 @@ from crewai.utilities.events import (
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
from crewai.utilities.string_utils import interpolate_only
class Task(BaseModel):
@@ -178,15 +182,29 @@ class Task(BaseModel):
"""
if v is not None:
sig = inspect.signature(v)
if len(sig.parameters) != 1:
positional_args = [
param
for param in sig.parameters.values()
if param.default is inspect.Parameter.empty
]
if len(positional_args) != 1:
raise ValueError("Guardrail function must accept exactly one parameter")
# Check return annotation if present, but don't require it
return_annotation = sig.return_annotation
if return_annotation != inspect.Signature.empty:
return_annotation_args = get_args(return_annotation)
if not (
return_annotation == Tuple[bool, Any]
or str(return_annotation) == "Tuple[bool, Any]"
get_origin(return_annotation) is tuple
and len(return_annotation_args) == 2
and return_annotation_args[0] is bool
and (
return_annotation_args[1] is Any
or return_annotation_args[1] is str
or return_annotation_args[1] is TaskOutput
or return_annotation_args[1] == Union[str, TaskOutput]
)
):
raise ValueError(
"If return type is annotated, it must be Tuple[bool, Any]"
@@ -370,7 +388,7 @@ class Task(BaseModel):
tools = tools or self.tools or []
self.processed_by_agents.add(agent.role)
crewai_event_bus.emit(self, TaskStartedEvent(context=context))
crewai_event_bus.emit(self, TaskStartedEvent(context=context, task=self))
result = agent.execute_task(
task=self,
context=context,
@@ -446,11 +464,11 @@ class Task(BaseModel):
)
)
self._save_file(content)
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output))
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output, task=self))
return task_output
except Exception as e:
self.end_time = datetime.datetime.now()
crewai_event_bus.emit(self, TaskFailedEvent(error=str(e)))
crewai_event_bus.emit(self, TaskFailedEvent(error=str(e), task=self))
raise e # Re-raise the exception after emitting the event
def prompt(self) -> str:
@@ -491,7 +509,9 @@ class Task(BaseModel):
return
try:
self.description = self._original_description.format(**inputs)
self.description = interpolate_only(
input_string=self._original_description, inputs=inputs
)
except KeyError as e:
raise ValueError(
f"Missing required template variable '{e.args[0]}' in description"
@@ -500,7 +520,7 @@ class Task(BaseModel):
raise ValueError(f"Error interpolating description: {str(e)}") from e
try:
self.expected_output = self.interpolate_only(
self.expected_output = interpolate_only(
input_string=self._original_expected_output, inputs=inputs
)
except (KeyError, ValueError) as e:
@@ -508,7 +528,7 @@ class Task(BaseModel):
if self.output_file is not None:
try:
self.output_file = self.interpolate_only(
self.output_file = interpolate_only(
input_string=self._original_output_file, inputs=inputs
)
except (KeyError, ValueError) as e:
@@ -539,72 +559,6 @@ class Task(BaseModel):
f"\n\n{conversation_instruction}\n\n{conversation_history}"
)
def interpolate_only(
self,
input_string: Optional[str],
inputs: Dict[str, Union[str, int, float, Dict[str, Any], List[Any]]],
) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
Args:
input_string: The string containing template variables to interpolate.
Can be None or empty, in which case an empty string is returned.
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, floats, and dicts/lists
containing only these types and other nested dicts/lists.
Returns:
The interpolated string with all template variables replaced with their values.
Empty string if input_string is None or empty.
Raises:
ValueError: If a value contains unsupported types
"""
# Validation function for recursive type checking
def validate_type(value: Any) -> None:
if value is None:
return
if isinstance(value, (str, int, float, bool)):
return
if isinstance(value, (dict, list)):
for item in value.values() if isinstance(value, dict) else value:
validate_type(item)
return
raise ValueError(
f"Unsupported type {type(value).__name__} in inputs. "
"Only str, int, float, bool, dict, and list are allowed."
)
# Validate all input values
for key, value in inputs.items():
try:
validate_type(value)
except ValueError as e:
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
if input_string is None or not input_string:
return ""
if "{" not in input_string and "}" not in input_string:
return input_string
if not inputs:
raise ValueError(
"Inputs dictionary cannot be empty when interpolating variables"
)
try:
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
for key in inputs.keys():
escaped_string = escaped_string.replace(f"{{{{{key}}}}}", f"{{{key}}}")
return escaped_string.format(**inputs)
except KeyError as e:
raise KeyError(
f"Template variable '{e.args[0]}' not found in inputs dictionary"
) from e
except ValueError as e:
raise ValueError(f"Error during string interpolation: {str(e)}") from e
def increment_tools_errors(self) -> None:
"""Increment the tools errors counter."""
self.tools_errors += 1
@@ -618,7 +572,15 @@ class Task(BaseModel):
def copy(
self, agents: List["BaseAgent"], task_mapping: Dict[str, "Task"]
) -> "Task":
"""Create a deep copy of the Task."""
"""Creates a deep copy of the Task while preserving its original class type.
Args:
agents: List of agents available for the task.
task_mapping: Dictionary mapping task IDs to Task instances.
Returns:
A copy of the task with the same class type as the original.
"""
exclude = {
"id",
"agent",
@@ -641,7 +603,7 @@ class Task(BaseModel):
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
cloned_tools = copy(self.tools) if self.tools else []
copied_task = Task(
copied_task = self.__class__(
**copied_data,
context=cloned_context,
agent=cloned_agent,

View File

@@ -45,10 +45,10 @@ class Telemetry:
"""
def __init__(self):
self.ready = False
self.trace_set = False
self.ready: bool = False
self.trace_set: bool = False
if os.getenv("OTEL_SDK_DISABLED", "false").lower() == "true":
if self._is_telemetry_disabled():
return
try:
@@ -75,6 +75,13 @@ class Telemetry:
):
raise # Re-raise the exception to not interfere with system signals
self.ready = False
def _is_telemetry_disabled(self) -> bool:
"""Check if telemetry should be disabled based on environment variables."""
return (
os.getenv("OTEL_SDK_DISABLED", "false").lower() == "true" or
os.getenv("CREWAI_DISABLE_TELEMETRY", "false").lower() == "true"
)
def set_tracer(self):
if self.ready and not self.trace_set:
@@ -112,6 +119,23 @@ class Telemetry:
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
# Add fingerprint data
if hasattr(crew, "fingerprint") and crew.fingerprint:
self._add_attribute(span, "crew_fingerprint", crew.fingerprint.uuid_str)
self._add_attribute(
span,
"crew_fingerprint_created_at",
crew.fingerprint.created_at.isoformat(),
)
# Add fingerprint metadata if it exists
if hasattr(crew.fingerprint, "metadata") and crew.fingerprint.metadata:
self._add_attribute(
span,
"crew_fingerprint_metadata",
json.dumps(crew.fingerprint.metadata),
)
if crew.share_crew:
self._add_attribute(
span,
@@ -129,17 +153,43 @@ class Telemetry:
"max_rpm": agent.max_rpm,
"i18n": agent.i18n.prompt_file,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
getattr(
getattr(agent, "function_calling_llm", None),
"model",
"",
)
if getattr(agent, "function_calling_llm", None)
else ""
),
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"allow_code_execution?": getattr(
agent, "allow_code_execution", False
),
"max_retry_limit": getattr(agent, "max_retry_limit", 3),
"tools_names": [
tool.name.casefold() for tool in agent.tools or []
],
# Add agent fingerprint data if sharing crew details
"fingerprint": (
getattr(
getattr(agent, "fingerprint", None),
"uuid_str",
None,
)
),
"fingerprint_created_at": (
created_at.isoformat()
if (
created_at := getattr(
getattr(agent, "fingerprint", None),
"created_at",
None,
)
)
is not None
else None
),
}
for agent in crew.agents
]
@@ -169,6 +219,17 @@ class Telemetry:
"tools_names": [
tool.name.casefold() for tool in task.tools or []
],
# Add task fingerprint data if sharing crew details
"fingerprint": (
task.fingerprint.uuid_str
if hasattr(task, "fingerprint") and task.fingerprint
else None
),
"fingerprint_created_at": (
task.fingerprint.created_at.isoformat()
if hasattr(task, "fingerprint") and task.fingerprint
else None
),
}
for task in crew.tasks
]
@@ -196,14 +257,20 @@ class Telemetry:
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
"function_calling_llm": (
agent.function_calling_llm.model
if agent.function_calling_llm
getattr(
getattr(agent, "function_calling_llm", None),
"model",
"",
)
if getattr(agent, "function_calling_llm", None)
else ""
),
"llm": agent.llm.model,
"delegation_enabled?": agent.allow_delegation,
"allow_code_execution?": agent.allow_code_execution,
"max_retry_limit": agent.max_retry_limit,
"allow_code_execution?": getattr(
agent, "allow_code_execution", False
),
"max_retry_limit": getattr(agent, "max_retry_limit", 3),
"tools_names": [
tool.name.casefold() for tool in agent.tools or []
],
@@ -252,6 +319,39 @@ class Telemetry:
self._add_attribute(created_span, "task_key", task.key)
self._add_attribute(created_span, "task_id", str(task.id))
# Add fingerprint data
if hasattr(crew, "fingerprint") and crew.fingerprint:
self._add_attribute(
created_span, "crew_fingerprint", crew.fingerprint.uuid_str
)
if hasattr(task, "fingerprint") and task.fingerprint:
self._add_attribute(
created_span, "task_fingerprint", task.fingerprint.uuid_str
)
self._add_attribute(
created_span,
"task_fingerprint_created_at",
task.fingerprint.created_at.isoformat(),
)
# Add fingerprint metadata if it exists
if hasattr(task.fingerprint, "metadata") and task.fingerprint.metadata:
self._add_attribute(
created_span,
"task_fingerprint_metadata",
json.dumps(task.fingerprint.metadata),
)
# Add agent fingerprint if task has an assigned agent
if hasattr(task, "agent") and task.agent:
agent_fingerprint = getattr(
getattr(task.agent, "fingerprint", None), "uuid_str", None
)
if agent_fingerprint:
self._add_attribute(
created_span, "agent_fingerprint", agent_fingerprint
)
if crew.share_crew:
self._add_attribute(
created_span, "formatted_description", task.description
@@ -270,6 +370,21 @@ class Telemetry:
self._add_attribute(span, "task_key", task.key)
self._add_attribute(span, "task_id", str(task.id))
# Add fingerprint data to execution span
if hasattr(crew, "fingerprint") and crew.fingerprint:
self._add_attribute(span, "crew_fingerprint", crew.fingerprint.uuid_str)
if hasattr(task, "fingerprint") and task.fingerprint:
self._add_attribute(span, "task_fingerprint", task.fingerprint.uuid_str)
# Add agent fingerprint if task has an assigned agent
if hasattr(task, "agent") and task.agent:
agent_fingerprint = getattr(
getattr(task.agent, "fingerprint", None), "uuid_str", None
)
if agent_fingerprint:
self._add_attribute(span, "agent_fingerprint", agent_fingerprint)
if crew.share_crew:
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
@@ -281,9 +396,22 @@ class Telemetry:
return self._safe_telemetry_operation(operation)
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
"""Records the completion of a task execution in a crew.
Args:
span (Span): The OpenTelemetry span tracking the task execution
task (Task): The task that was completed
crew (Crew): The crew context in which the task was executed
Note:
If share_crew is enabled, this will also record the task output
"""
def operation():
# Ensure fingerprint data is present on completion span
if hasattr(task, "fingerprint") and task.fingerprint:
self._add_attribute(span, "task_fingerprint", task.fingerprint.uuid_str)
if crew.share_crew:
self._add_attribute(
span,
@@ -297,7 +425,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the repeated usage 'error' of a tool by an agent."""
"""Records when a tool is used repeatedly, which might indicate an issue.
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being repeatedly used
attempts (int): Number of attempts made with this tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
@@ -316,8 +450,15 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def tool_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the usage of a tool by an agent."""
def tool_usage(self, llm: Any, tool_name: str, attempts: int, agent: Any = None):
"""Records the usage of a tool by an agent.
Args:
llm (Any): The language model being used
tool_name (str): Name of the tool being used
attempts (int): Number of attempts made with this tool
agent (Any, optional): The agent using the tool
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
@@ -331,13 +472,30 @@ class Telemetry:
self._add_attribute(span, "attempts", attempts)
if llm:
self._add_attribute(span, "llm", llm.model)
# Add agent fingerprint data if available
if agent and hasattr(agent, "fingerprint") and agent.fingerprint:
self._add_attribute(
span, "agent_fingerprint", agent.fingerprint.uuid_str
)
if hasattr(agent, "role"):
self._add_attribute(span, "agent_role", agent.role)
span.set_status(Status(StatusCode.OK))
span.end()
self._safe_telemetry_operation(operation)
def tool_usage_error(self, llm: Any):
"""Records the usage of a tool by an agent."""
def tool_usage_error(
self, llm: Any, agent: Any = None, tool_name: Optional[str] = None
):
"""Records when a tool usage results in an error.
Args:
llm (Any): The language model being used when the error occurred
agent (Any, optional): The agent using the tool
tool_name (str, optional): Name of the tool that caused the error
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
@@ -349,6 +507,18 @@ class Telemetry:
)
if llm:
self._add_attribute(span, "llm", llm.model)
if tool_name:
self._add_attribute(span, "tool_name", tool_name)
# Add agent fingerprint data if available
if agent and hasattr(agent, "fingerprint") and agent.fingerprint:
self._add_attribute(
span, "agent_fingerprint", agent.fingerprint.uuid_str
)
if hasattr(agent, "role"):
self._add_attribute(span, "agent_role", agent.role)
span.set_status(Status(StatusCode.OK))
span.end()
@@ -357,6 +527,15 @@ class Telemetry:
def individual_test_result_span(
self, crew: Crew, quality: float, exec_time: int, model_name: str
):
"""Records individual test results for a crew execution.
Args:
crew (Crew): The crew being tested
quality (float): Quality score of the execution
exec_time (int): Execution time in seconds
model_name (str): Name of the model used
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Individual Test Result")
@@ -383,6 +562,15 @@ class Telemetry:
inputs: dict[str, Any] | None,
model_name: str,
):
"""Records the execution of a test suite for a crew.
Args:
crew (Crew): The crew being tested
iterations (int): Number of test iterations
inputs (dict[str, Any] | None): Input parameters for the test
model_name (str): Name of the model used in testing
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Test Execution")
@@ -408,6 +596,8 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def deploy_signup_error_span(self):
"""Records when an error occurs during the deployment signup process."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Deploy Signup Error")
@@ -417,6 +607,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def start_deployment_span(self, uuid: Optional[str] = None):
"""Records the start of a deployment process.
Args:
uuid (Optional[str]): Unique identifier for the deployment
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Start Deployment")
@@ -428,6 +624,8 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def create_crew_deployment_span(self):
"""Records the creation of a new crew deployment."""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Create Crew Deployment")
@@ -437,6 +635,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def get_crew_logs_span(self, uuid: Optional[str], log_type: str = "deployment"):
"""Records the retrieval of crew logs.
Args:
uuid (Optional[str]): Unique identifier for the crew
log_type (str, optional): Type of logs being retrieved. Defaults to "deployment".
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Get Crew Logs")
@@ -449,6 +654,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def remove_crew_span(self, uuid: Optional[str] = None):
"""Records the removal of a crew.
Args:
uuid (Optional[str]): Unique identifier for the crew being removed
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Remove Crew")
@@ -574,6 +785,12 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_creation_span(self, flow_name: str):
"""Records the creation of a new flow.
Args:
flow_name (str): Name of the flow being created
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Creation")
@@ -584,6 +801,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_plotting_span(self, flow_name: str, node_names: list[str]):
"""Records flow visualization/plotting activity.
Args:
flow_name (str): Name of the flow being plotted
node_names (list[str]): List of node names in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Plotting")
@@ -595,6 +819,13 @@ class Telemetry:
self._safe_telemetry_operation(operation)
def flow_execution_span(self, flow_name: str, node_names: list[str]):
"""Records the execution of a flow.
Args:
flow_name (str): Name of the flow being executed
node_names (list[str]): List of nodes being executed in the flow
"""
def operation():
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Flow Execution")

View File

@@ -1,3 +1,4 @@
import asyncio
import warnings
from abc import ABC, abstractmethod
from inspect import signature
@@ -7,29 +8,27 @@ from pydantic import (
BaseModel,
ConfigDict,
Field,
PydanticDeprecatedSince20,
create_model,
validator,
field_validator,
)
from pydantic import BaseModel as PydanticBaseModel
from crewai.tools.structured_tool import CrewStructuredTool
# Ignore all "PydanticDeprecatedSince20" warnings globally
warnings.filterwarnings("ignore", category=PydanticDeprecatedSince20)
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
model_config = ConfigDict()
model_config = ConfigDict(arbitrary_types_allowed=True)
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool."""
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
args_schema: Type[PydanticBaseModel] = Field(
default_factory=_ArgsSchemaPlaceholder, validate_default=True
)
"""The schema for the arguments that the tool accepts."""
description_updated: bool = False
"""Flag to check if the description has been updated."""
@@ -38,7 +37,8 @@ class BaseTool(BaseModel, ABC):
result_as_answer: bool = False
"""Flag to check if the tool should be the final agent answer."""
@validator("args_schema", always=True, pre=True)
@field_validator("args_schema", mode="before")
@classmethod
def _default_args_schema(
cls, v: Type[PydanticBaseModel]
) -> Type[PydanticBaseModel]:
@@ -66,7 +66,13 @@ class BaseTool(BaseModel, ABC):
**kwargs: Any,
) -> Any:
print(f"Using Tool: {self.name}")
return self._run(*args, **kwargs)
result = self._run(*args, **kwargs)
# If _run is async, we safely run it
if asyncio.iscoroutine(result):
return asyncio.run(result)
return result
@abstractmethod
def _run(
@@ -245,9 +251,13 @@ def to_langchain(
return [t.to_structured_tool() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args):
def tool(*args, result_as_answer=False):
"""
Decorator to create a tool from a function.
Args:
*args: Positional arguments, either the function to decorate or the tool name.
result_as_answer: Flag to indicate if the tool result should be used as the final agent answer.
"""
def _make_with_name(tool_name: str) -> Callable:
@@ -273,6 +283,7 @@ def tool(*args):
description=f.__doc__,
func=f,
args_schema=args_schema,
result_as_answer=result_as_answer,
)
return _make_tool

View File

@@ -0,0 +1,9 @@
from dataclasses import dataclass
@dataclass
class ToolResult:
"""Result of tool execution."""
result: str
result_as_answer: bool = False

View File

@@ -5,7 +5,7 @@ import time
from difflib import SequenceMatcher
from json import JSONDecodeError
from textwrap import dedent
from typing import Any, Dict, List, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import json5
from json_repair import repair_json
@@ -13,18 +13,26 @@ from json_repair import repair_json
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.utilities import I18N, Converter, ConverterError, Printer
from crewai.utilities import I18N, Converter, Printer
from crewai.utilities.agent_utils import (
get_tool_names,
render_text_description_and_args,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
ToolValidateInputErrorEvent,
)
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.lite_agent import LiteAgent
OPENAI_BIGGER_MODELS = [
"gpt-4",
"gpt-4o",
@@ -60,31 +68,29 @@ class ToolUsage:
def __init__(
self,
tools_handler: ToolsHandler,
tools: List[BaseTool],
original_tools: List[Any],
tools_description: str,
tools_names: str,
task: Task,
tools_handler: Optional[ToolsHandler],
tools: List[CrewStructuredTool],
task: Optional[Task],
function_calling_llm: Any,
agent: Any,
action: Any,
agent: Optional[Union["BaseAgent", "LiteAgent"]] = None,
action: Any = None,
fingerprint_context: Optional[Dict[str, str]] = None,
) -> None:
self._i18n: I18N = agent.i18n
self._i18n: I18N = agent.i18n if agent else I18N()
self._printer: Printer = Printer()
self._telemetry: Telemetry = Telemetry()
self._run_attempts: int = 1
self._max_parsing_attempts: int = 3
self._remember_format_after_usages: int = 3
self.agent = agent
self.tools_description = tools_description
self.tools_names = tools_names
self.tools_description = render_text_description_and_args(tools)
self.tools_names = get_tool_names(tools)
self.tools_handler = tools_handler
self.original_tools = original_tools
self.tools = tools
self.task = task
self.action = action
self.function_calling_llm = function_calling_llm
self.fingerprint_context = fingerprint_context or {}
# Set the maximum parsing attempts for bigger models
if (
@@ -103,29 +109,35 @@ class ToolUsage:
) -> str:
if isinstance(calling, ToolUsageErrorException):
error = calling.message
if self.agent.verbose:
if self.agent and self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
self.task.increment_tools_errors()
if self.task:
self.task.increment_tools_errors()
return error
try:
tool = self._select_tool(calling.tool_name)
except Exception as e:
error = getattr(e, "message", str(e))
self.task.increment_tools_errors()
if self.agent.verbose:
if self.task:
self.task.increment_tools_errors()
if self.agent and self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
if isinstance(tool, CrewStructuredTool) and tool.name == self._i18n.tools("add_image")["name"]: # type: ignore
if (
isinstance(tool, CrewStructuredTool)
and tool.name == self._i18n.tools("add_image")["name"] # type: ignore
):
try:
result = self._use(tool_string=tool_string, tool=tool, calling=calling)
return result
except Exception as e:
error = getattr(e, "message", str(e))
self.task.increment_tools_errors()
if self.agent.verbose:
if self.task:
self.task.increment_tools_errors()
if self.agent and self.agent.verbose:
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
@@ -134,9 +146,9 @@ class ToolUsage:
def _use(
self,
tool_string: str,
tool: Any,
tool: CrewStructuredTool,
calling: Union[ToolCalling, InstructorToolCalling],
) -> str: # TODO: Fix this return type
) -> str:
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
@@ -151,24 +163,44 @@ class ToolUsage:
return result # type: ignore # Fix the return type of this function
except Exception:
self.task.increment_tools_errors()
if self.task:
self.task.increment_tools_errors()
if self.agent:
event_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"tool_name": self.action.tool,
"tool_args": self.action.tool_input,
"tool_class": self.action.tool,
"agent": self.agent,
}
if self.agent.fingerprint:
event_data.update(self.agent.fingerprint)
crewai_event_bus.emit(self,ToolUsageStartedEvent(**event_data))
started_at = time.time()
from_cache = False
result = None # type: ignore
result = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
# check if cache is available
if self.tools_handler.cache:
result = self.tools_handler.cache.read( # type: ignore # Incompatible types in assignment (expression has type "str | None", variable has type "str")
if self.tools_handler and self.tools_handler.cache:
result = self.tools_handler.cache.read(
tool=calling.tool_name, input=calling.arguments
)
) # type: ignore
from_cache = result is not None
original_tool = next(
(ot for ot in self.original_tools if ot.name == tool.name), None
available_tool = next(
(
available_tool
for available_tool in self.tools
if available_tool.name == tool.name
),
None,
)
if result is None: #! finecwg: if not result --> if result is None
if result is None:
try:
if calling.tool_name in [
"Delegate work to coworker",
@@ -177,22 +209,31 @@ class ToolUsage:
coworker = (
calling.arguments.get("coworker") if calling.arguments else None
)
self.task.increment_delegations(coworker)
if self.task:
self.task.increment_delegations(coworker)
if calling.arguments:
try:
acceptable_args = tool.args_schema.model_json_schema()["properties"].keys() # type: ignore
acceptable_args = tool.args_schema.model_json_schema()[
"properties"
].keys() # type: ignore
arguments = {
k: v
for k, v in calling.arguments.items()
if k in acceptable_args
}
# Add fingerprint metadata if available
arguments = self._add_fingerprint_metadata(arguments)
result = tool.invoke(input=arguments)
except Exception:
arguments = calling.arguments
# Add fingerprint metadata if available
arguments = self._add_fingerprint_metadata(arguments)
result = tool.invoke(input=arguments)
else:
result = tool.invoke(input={})
# Add fingerprint metadata even to empty arguments
arguments = self._add_fingerprint_metadata({})
result = tool.invoke(input=arguments)
except Exception as e:
self.on_tool_error(tool=tool, tool_calling=calling, e=e)
self._run_attempts += 1
@@ -202,25 +243,27 @@ class ToolUsage:
error=e, tool=tool.name, tool_inputs=tool.description
)
error = ToolUsageErrorException(
f'\n{error_message}.\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
f"\n{error_message}.\nMoving on then. {self._i18n.slice('format').format(tool_names=self.tools_names)}"
).message
self.task.increment_tools_errors()
if self.agent.verbose:
if self.task:
self.task.increment_tools_errors()
if self.agent and self.agent.verbose:
self._printer.print(
content=f"\n\n{error_message}\n", color="red"
)
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
if self.task:
self.task.increment_tools_errors()
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
if self.tools_handler:
should_cache = True
if (
hasattr(original_tool, "cache_function")
and original_tool.cache_function # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
hasattr(available_tool, "cache_function")
and available_tool.cache_function # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
should_cache = original_tool.cache_function( # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
should_cache = available_tool.cache_function( # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
calling.arguments, result
)
@@ -244,44 +287,50 @@ class ToolUsage:
tool_calling=calling,
from_cache=from_cache,
started_at=started_at,
result=result,
)
if (
hasattr(original_tool, "result_as_answer")
and original_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
hasattr(available_tool, "result_as_answer")
and available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "cache_function"
):
result_as_answer = original_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "result_as_answer"
data["result_as_answer"] = result_as_answer
result_as_answer = available_tool.result_as_answer # type: ignore # Item "None" of "Any | None" has no attribute "result_as_answer"
data["result_as_answer"] = result_as_answer # type: ignore
self.agent.tools_results.append(data)
if self.agent and hasattr(self.agent, "tools_results"):
self.agent.tools_results.append(data)
return result # type: ignore # No return value expected
def _format_result(self, result: Any) -> None:
self.task.used_tools += 1
if self._should_remember_format(): # type: ignore # "_should_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
result = self._remember_format(result=result) # type: ignore # "_remember_format" of "ToolUsage" does not return a value (it only ever returns None)
return result
def _should_remember_format(self) -> bool:
return self.task.used_tools % self._remember_format_after_usages == 0
def _format_result(self, result: Any) -> str:
if self.task:
self.task.used_tools += 1
if self._should_remember_format():
result = self._remember_format(result=result)
return str(result)
def _remember_format(self, result: str) -> None:
def _should_remember_format(self) -> bool:
if self.task:
return self.task.used_tools % self._remember_format_after_usages == 0
return False
def _remember_format(self, result: str) -> str:
result = str(result)
result += "\n\n" + self._i18n.slice("tools").format(
tools=self.tools_description, tool_names=self.tools_names
)
return result # type: ignore # No return value expected
return result
def _check_tool_repeated_usage(
self, calling: Union[ToolCalling, InstructorToolCalling]
) -> None:
) -> bool:
if not self.tools_handler:
return False # type: ignore # No return value expected
return False
if last_tool_usage := self.tools_handler.last_used_tool:
return (calling.tool_name == last_tool_usage.tool_name) and ( # type: ignore # No return value expected
return (calling.tool_name == last_tool_usage.tool_name) and (
calling.arguments == last_tool_usage.arguments
)
return False
def _select_tool(self, tool_name: str) -> Any:
order_tools = sorted(
@@ -300,10 +349,11 @@ class ToolUsage:
> 0.85
):
return tool
self.task.increment_tools_errors()
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
if self.task:
self.task.increment_tools_errors()
tool_selection_data: Dict[str, Any] = {
"agent_key": getattr(self.agent, "key", None) if self.agent else None,
"agent_role": getattr(self.agent, "role", None) if self.agent else None,
"tool_name": tool_name,
"tool_args": {},
"tool_class": self.tools_description,
@@ -336,7 +386,9 @@ class ToolUsage:
descriptions.append(tool.description)
return "\n--\n".join(descriptions)
def _function_calling(self, tool_string: str):
def _function_calling(
self, tool_string: str
) -> Union[ToolCalling, InstructorToolCalling]:
model = (
InstructorToolCalling
if self.function_calling_llm.supports_function_calling()
@@ -358,18 +410,14 @@ class ToolUsage:
max_attempts=1,
)
tool_object = converter.to_pydantic()
calling = ToolCalling(
tool_name=tool_object["tool_name"],
arguments=tool_object["arguments"],
log=tool_string, # type: ignore
)
if not isinstance(tool_object, (ToolCalling, InstructorToolCalling)):
raise ToolUsageErrorException("Failed to parse tool calling")
if isinstance(calling, ConverterError):
raise calling
return tool_object
return calling
def _original_tool_calling(self, tool_string: str, raise_error: bool = False):
def _original_tool_calling(
self, tool_string: str, raise_error: bool = False
) -> Union[ToolCalling, InstructorToolCalling, ToolUsageErrorException]:
tool_name = self.action.tool
tool = self._select_tool(tool_name)
try:
@@ -380,7 +428,7 @@ class ToolUsage:
raise
else:
return ToolUsageErrorException(
f'{self._i18n.errors("tool_arguments_error")}'
f"{self._i18n.errors('tool_arguments_error')}"
)
if not isinstance(arguments, dict):
@@ -388,18 +436,17 @@ class ToolUsage:
raise
else:
return ToolUsageErrorException(
f'{self._i18n.errors("tool_arguments_error")}'
f"{self._i18n.errors('tool_arguments_error')}"
)
return ToolCalling(
tool_name=tool.name,
arguments=arguments,
log=tool_string,
)
def _tool_calling(
self, tool_string: str
) -> Union[ToolCalling, InstructorToolCalling]:
) -> Union[ToolCalling, InstructorToolCalling, ToolUsageErrorException]:
try:
try:
return self._original_tool_calling(tool_string, raise_error=True)
@@ -412,11 +459,12 @@ class ToolUsage:
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.function_calling_llm)
self.task.increment_tools_errors()
if self.agent.verbose:
if self.task:
self.task.increment_tools_errors()
if self.agent and self.agent.verbose:
self._printer.print(content=f"\n\n{e}\n", color="red")
return ToolUsageErrorException( # type: ignore # Incompatible return value type (got "ToolUsageErrorException", expected "ToolCalling | InstructorToolCalling")
f'{self._i18n.errors("tool_usage_error").format(error=e)}\nMoving on then. {self._i18n.slice("format").format(tool_names=self.tools_names)}'
f"{self._i18n.errors('tool_usage_error').format(error=e)}\nMoving on then. {self._i18n.slice('format').format(tool_names=self.tools_names)}"
)
return self._tool_calling(tool_string)
@@ -443,6 +491,7 @@ class ToolUsage:
if isinstance(arguments, dict):
return arguments
except (ValueError, SyntaxError):
repaired_input = repair_json(tool_input)
pass # Continue to the next parsing attempt
# Attempt 3: Parse as JSON5
@@ -455,7 +504,7 @@ class ToolUsage:
# Attempt 4: Repair JSON
try:
repaired_input = repair_json(tool_input)
repaired_input = str(repair_json(tool_input, skip_json_loads=True))
self._printer.print(
content=f"Repaired JSON: {repaired_input}", color="blue"
)
@@ -475,24 +524,39 @@ class ToolUsage:
def _emit_validate_input_error(self, final_error: str):
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"agent_key": getattr(self.agent, "key", None) if self.agent else None,
"agent_role": getattr(self.agent, "role", None) if self.agent else None,
"tool_name": self.action.tool,
"tool_args": str(self.action.tool_input),
"tool_class": self.__class__.__name__,
"agent": self.agent, # Adding agent for fingerprint extraction
}
# Include fingerprint context if available
if self.fingerprint_context:
tool_selection_data.update(self.fingerprint_context)
crewai_event_bus.emit(
self,
ToolValidateInputErrorEvent(**tool_selection_data, error=final_error),
)
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
def on_tool_error(
self,
tool: Any,
tool_calling: Union[ToolCalling, InstructorToolCalling],
e: Exception,
) -> None:
event_data = self._prepare_event_data(tool, tool_calling)
crewai_event_bus.emit(self, ToolUsageErrorEvent(**{**event_data, "error": e}))
def on_tool_use_finished(
self, tool: Any, tool_calling: ToolCalling, from_cache: bool, started_at: float
self,
tool: Any,
tool_calling: Union[ToolCalling, InstructorToolCalling],
from_cache: bool,
started_at: float,
result: Any,
) -> None:
finished_at = time.time()
event_data = self._prepare_event_data(tool, tool_calling)
@@ -501,17 +565,75 @@ class ToolUsage:
"started_at": datetime.datetime.fromtimestamp(started_at),
"finished_at": datetime.datetime.fromtimestamp(finished_at),
"from_cache": from_cache,
"output": result,
}
)
crewai_event_bus.emit(self, ToolUsageFinishedEvent(**event_data))
def _prepare_event_data(self, tool: Any, tool_calling: ToolCalling) -> dict:
return {
"agent_key": self.agent.key,
"agent_role": (self.agent._original_role or self.agent.role),
def _prepare_event_data(
self, tool: Any, tool_calling: Union[ToolCalling, InstructorToolCalling]
) -> dict:
event_data = {
"run_attempts": self._run_attempts,
"delegations": self.task.delegations,
"delegations": self.task.delegations if self.task else 0,
"tool_name": tool.name,
"tool_args": tool_calling.arguments,
"tool_class": tool.__class__.__name__,
"agent_key": (
getattr(self.agent, "key", "unknown") if self.agent else "unknown"
),
"agent_role": (
getattr(self.agent, "_original_role", None)
or getattr(self.agent, "role", "unknown")
if self.agent
else "unknown"
),
}
# Include fingerprint context if available
if self.fingerprint_context:
event_data.update(self.fingerprint_context)
return event_data
def _add_fingerprint_metadata(self, arguments: dict) -> dict:
"""Add fingerprint metadata to tool arguments if available.
Args:
arguments: The original tool arguments
Returns:
Updated arguments dictionary with fingerprint metadata
"""
# Create a shallow copy to avoid modifying the original
arguments = arguments.copy()
# Add security metadata under a designated key
if "security_context" not in arguments:
arguments["security_context"] = {}
security_context = arguments["security_context"]
# Add agent fingerprint if available
if self.agent and hasattr(self.agent, "security_config"):
security_config = getattr(self.agent, "security_config", None)
if security_config and hasattr(security_config, "fingerprint"):
try:
security_context["agent_fingerprint"] = (
security_config.fingerprint.to_dict()
)
except AttributeError:
pass
# Add task fingerprint if available
if self.task and hasattr(self.task, "security_config"):
security_config = getattr(self.task, "security_config", None)
if security_config and hasattr(security_config, "fingerprint"):
try:
security_context["task_fingerprint"] = (
security_config.fingerprint.to_dict()
)
except AttributeError:
pass
return arguments

View File

@@ -24,7 +24,10 @@
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals.",
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary."
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary.",
"lite_agent_system_prompt_with_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n```",
"lite_agent_system_prompt_without_tools": "You are {role}. {backstory}\nYour personal goal is: {goal}\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
"lite_agent_response_format": "\nIMPORTANT: Your final answer MUST contain all the information requested in the following format: {response_format}\n\nIMPORTANT: Ensure the final output does not include any code block markers like ```json or ```python."
},
"errors": {
"force_final_answer_error": "You can't keep going, here is the best final answer you generated:\n\n {formatted_answer}",

View File

@@ -0,0 +1,430 @@
import json
import re
from typing import Any, Callable, Dict, List, Optional, Sequence, Union
from crewai.agents.parser import (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
AgentAction,
AgentFinish,
CrewAgentParser,
OutputParserException,
)
from crewai.llm import LLM
from crewai.llms.base_llm import BaseLLM
from crewai.tools import BaseTool as CrewAITool
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_types import ToolResult
from crewai.utilities import I18N, Printer
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
def parse_tools(tools: List[BaseTool]) -> List[CrewStructuredTool]:
"""Parse tools to be used for the task."""
tools_list = []
for tool in tools:
if isinstance(tool, CrewAITool):
tools_list.append(tool.to_structured_tool())
else:
raise ValueError("Tool is not a CrewStructuredTool or BaseTool")
return tools_list
def get_tool_names(tools: Sequence[Union[CrewStructuredTool, BaseTool]]) -> str:
"""Get the names of the tools."""
return ", ".join([t.name for t in tools])
def render_text_description_and_args(
tools: Sequence[Union[CrewStructuredTool, BaseTool]],
) -> str:
"""Render the tool name, description, and args in plain text.
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
tool_strings.append(tool.description)
return "\n".join(tool_strings)
def has_reached_max_iterations(iterations: int, max_iterations: int) -> bool:
"""Check if the maximum number of iterations has been reached."""
return iterations >= max_iterations
def handle_max_iterations_exceeded(
formatted_answer: Union[AgentAction, AgentFinish, None],
printer: Printer,
i18n: I18N,
messages: List[Dict[str, str]],
llm: Union[LLM, BaseLLM],
callbacks: List[Any],
) -> Union[AgentAction, AgentFinish]:
"""
Handles the case when the maximum number of iterations is exceeded.
Performs one more LLM call to get the final answer.
Parameters:
formatted_answer: The last formatted answer from the agent.
Returns:
The final formatted answer after exceeding max iterations.
"""
printer.print(
content="Maximum iterations reached. Requesting final answer.",
color="yellow",
)
if formatted_answer and hasattr(formatted_answer, "text"):
assistant_message = (
formatted_answer.text + f'\n{i18n.errors("force_final_answer")}'
)
else:
assistant_message = i18n.errors("force_final_answer")
messages.append(format_message_for_llm(assistant_message, role="assistant"))
# Perform one more LLM call to get the final answer
answer = llm.call(
messages,
callbacks=callbacks,
)
if answer is None or answer == "":
printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
formatted_answer = format_answer(answer)
# Return the formatted answer, regardless of its type
return formatted_answer
def format_message_for_llm(prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}
def format_answer(answer: str) -> Union[AgentAction, AgentFinish]:
"""Format a response from the LLM into an AgentAction or AgentFinish."""
try:
return CrewAgentParser.parse_text(answer)
except Exception:
# If parsing fails, return a default AgentFinish
return AgentFinish(
thought="Failed to parse LLM response",
output=answer,
text=answer,
)
def enforce_rpm_limit(
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
) -> None:
"""Enforce the requests per minute (RPM) limit if applicable."""
if request_within_rpm_limit:
request_within_rpm_limit()
def get_llm_response(
llm: Union[LLM, BaseLLM],
messages: List[Dict[str, str]],
callbacks: List[Any],
printer: Printer,
) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
try:
answer = llm.call(
messages,
callbacks=callbacks,
)
except Exception as e:
printer.print(
content=f"Error during LLM call: {e}",
color="red",
)
raise e
if not answer:
printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
return answer
def process_llm_response(
answer: str, use_stop_words: bool
) -> Union[AgentAction, AgentFinish]:
"""Process the LLM response and format it into an AgentAction or AgentFinish."""
if not use_stop_words:
try:
# Preliminary parsing to check for errors.
format_answer(answer)
except OutputParserException as e:
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
answer = answer.split("Observation:")[0].strip()
return format_answer(answer)
def handle_agent_action_core(
formatted_answer: AgentAction,
tool_result: ToolResult,
messages: Optional[List[Dict[str, str]]] = None,
step_callback: Optional[Callable] = None,
show_logs: Optional[Callable] = None,
) -> Union[AgentAction, AgentFinish]:
"""Core logic for handling agent actions and tool results.
Args:
formatted_answer: The agent's action
tool_result: The result of executing the tool
messages: Optional list of messages to append results to
step_callback: Optional callback to execute after processing
show_logs: Optional function to show logs
Returns:
Either an AgentAction or AgentFinish
"""
if step_callback:
step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
if show_logs:
show_logs(formatted_answer)
if messages is not None:
messages.append({"role": "assistant", "content": tool_result.result})
return formatted_answer
def handle_unknown_error(printer: Any, exception: Exception) -> None:
"""Handle unknown errors by informing the user.
Args:
printer: Printer instance for output
exception: The exception that occurred
"""
printer.print(
content="An unknown error occurred. Please check the details below.",
color="red",
)
printer.print(
content=f"Error details: {exception}",
color="red",
)
def handle_output_parser_exception(
e: OutputParserException,
messages: List[Dict[str, str]],
iterations: int,
log_error_after: int = 3,
printer: Optional[Any] = None,
) -> AgentAction:
"""Handle OutputParserException by updating messages and formatted_answer.
Args:
e: The OutputParserException that occurred
messages: List of messages to append to
iterations: Current iteration count
log_error_after: Number of iterations after which to log errors
printer: Optional printer instance for logging
Returns:
AgentAction: A formatted answer with the error
"""
messages.append({"role": "user", "content": e.error})
formatted_answer = AgentAction(
text=e.error,
tool="",
tool_input="",
thought="",
)
if iterations > log_error_after and printer:
printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return formatted_answer
def is_context_length_exceeded(exception: Exception) -> bool:
"""Check if the exception is due to context length exceeding.
Args:
exception: The exception to check
Returns:
bool: True if the exception is due to context length exceeding
"""
return LLMContextLengthExceededException(str(exception))._is_context_limit_error(
str(exception)
)
def handle_context_length(
respect_context_window: bool,
printer: Any,
messages: List[Dict[str, str]],
llm: Any,
callbacks: List[Any],
i18n: Any,
) -> None:
"""Handle context length exceeded by either summarizing or raising an error.
Args:
respect_context_window: Whether to respect context window
printer: Printer instance for output
messages: List of messages to summarize
llm: LLM instance for summarization
callbacks: List of callbacks for LLM
i18n: I18N instance for messages
"""
if respect_context_window:
printer.print(
content="Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
summarize_messages(messages, llm, callbacks, i18n)
else:
printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
)
def summarize_messages(
messages: List[Dict[str, str]],
llm: Any,
callbacks: List[Any],
i18n: Any,
) -> None:
"""Summarize messages to fit within context window.
Args:
messages: List of messages to summarize
llm: LLM instance for summarization
callbacks: List of callbacks for LLM
i18n: I18N instance for messages
"""
messages_groups = []
for message in messages:
content = message["content"]
cut_size = llm.get_context_window_size()
for i in range(0, len(content), cut_size):
messages_groups.append({"content": content[i : i + cut_size]})
summarized_contents = []
for group in messages_groups:
summary = llm.call(
[
format_message_for_llm(
i18n.slice("summarizer_system_message"), role="system"
),
format_message_for_llm(
i18n.slice("summarize_instruction").format(group=group["content"]),
),
],
callbacks=callbacks,
)
summarized_contents.append({"content": str(summary)})
merged_summary = " ".join(content["content"] for content in summarized_contents)
messages.clear()
messages.append(
format_message_for_llm(
i18n.slice("summary").format(merged_summary=merged_summary)
)
)
def show_agent_logs(
printer: Printer,
agent_role: str,
formatted_answer: Optional[Union[AgentAction, AgentFinish]] = None,
task_description: Optional[str] = None,
verbose: bool = False,
) -> None:
"""Show agent logs for both start and execution states.
Args:
printer: Printer instance for output
agent_role: Role of the agent
formatted_answer: Optional AgentAction or AgentFinish for execution logs
task_description: Optional task description for start logs
verbose: Whether to show verbose output
"""
if not verbose:
return
agent_role = agent_role.split("\n")[0]
if formatted_answer is None:
# Start logs
printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
if task_description:
printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{task_description}\033[00m"
)
else:
# Execution logs
printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
if isinstance(formatted_answer, AgentAction):
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
formatted_json = json.dumps(
formatted_answer.tool_input,
indent=2,
ensure_ascii=False,
)
if thought and thought != "":
printer.print(
content=f"\033[95m## Thought:\033[00m \033[92m{thought}\033[00m"
)
printer.print(
content=f"\033[95m## Using tool:\033[00m \033[92m{formatted_answer.tool}\033[00m"
)
printer.print(
content=f"\033[95m## Tool Input:\033[00m \033[92m\n{formatted_json}\033[00m"
)
printer.print(
content=f"\033[95m## Tool Output:\033[00m \033[92m\n{formatted_answer.result}\033[00m"
)
elif isinstance(formatted_answer, AgentFinish):
printer.print(
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)

View File

@@ -0,0 +1,62 @@
import re
from typing import Optional
MIN_COLLECTION_LENGTH = 3
MAX_COLLECTION_LENGTH = 63
DEFAULT_COLLECTION = "default_collection"
# Compiled regex patterns for better performance
INVALID_CHARS_PATTERN = re.compile(r"[^a-zA-Z0-9_-]")
IPV4_PATTERN = re.compile(r"^(\d{1,3}\.){3}\d{1,3}$")
def is_ipv4_pattern(name: str) -> bool:
"""
Check if a string matches an IPv4 address pattern.
Args:
name: The string to check
Returns:
True if the string matches an IPv4 pattern, False otherwise
"""
return bool(IPV4_PATTERN.match(name))
def sanitize_collection_name(name: Optional[str]) -> str:
"""
Sanitize a collection name to meet ChromaDB requirements:
1. 3-63 characters long
2. Starts and ends with alphanumeric character
3. Contains only alphanumeric characters, underscores, or hyphens
4. No consecutive periods
5. Not a valid IPv4 address
Args:
name: The original collection name to sanitize
Returns:
A sanitized collection name that meets ChromaDB requirements
"""
if not name:
return DEFAULT_COLLECTION
if is_ipv4_pattern(name):
name = f"ip_{name}"
sanitized = INVALID_CHARS_PATTERN.sub("_", name)
if not sanitized[0].isalnum():
sanitized = "a" + sanitized
if not sanitized[-1].isalnum():
sanitized = sanitized[:-1] + "z"
if len(sanitized) < MIN_COLLECTION_LENGTH:
sanitized = sanitized + "x" * (MIN_COLLECTION_LENGTH - len(sanitized))
if len(sanitized) > MAX_COLLECTION_LENGTH:
sanitized = sanitized[:MAX_COLLECTION_LENGTH]
if not sanitized[-1].isalnum():
sanitized = sanitized[:-1] + "z"
return sanitized

View File

@@ -287,8 +287,9 @@ def generate_model_description(model: Type[BaseModel]) -> str:
else:
return str(field_type)
fields = model.__annotations__
fields = model.model_fields
field_descriptions = [
f'"{name}": {describe_field(type_)}' for name, type_ in fields.items()
f'"{name}": {describe_field(field.annotation)}'
for name, field in fields.items()
]
return "{\n " + ",\n ".join(field_descriptions) + "\n}"

View File

@@ -6,7 +6,7 @@ from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.llm import BaseLLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -24,7 +24,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
eval_llm (LLM): Language model instance to use for evaluations
eval_llm (BaseLLM): Language model instance to use for evaluations
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -33,7 +33,7 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
def __init__(self, crew, eval_llm: InstanceOf[BaseLLM]):
self.crew = crew
self.llm = eval_llm
self._telemetry = Telemetry()

View File

@@ -45,7 +45,7 @@ class TaskEvaluator:
def evaluate(self, task, output) -> TaskEvaluation:
crewai_event_bus.emit(
self, TaskEvaluationEvent(evaluation_type="task_evaluation")
self, TaskEvaluationEvent(evaluation_type="task_evaluation", task=task)
)
evaluation_query = (
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"

View File

@@ -1,16 +1,16 @@
from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from .base_events import CrewEvent
from .base_events import BaseEvent
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
class AgentExecutionStartedEvent(CrewEvent):
class AgentExecutionStartedEvent(BaseEvent):
"""Event emitted when an agent starts executing a task"""
agent: BaseAgent
@@ -21,8 +21,20 @@ class AgentExecutionStartedEvent(CrewEvent):
model_config = {"arbitrary_types_allowed": True}
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if hasattr(self.agent, "fingerprint") and self.agent.fingerprint:
self.source_fingerprint = self.agent.fingerprint.uuid_str
self.source_type = "agent"
if (
hasattr(self.agent.fingerprint, "metadata")
and self.agent.fingerprint.metadata
):
self.fingerprint_metadata = self.agent.fingerprint.metadata
class AgentExecutionCompletedEvent(CrewEvent):
class AgentExecutionCompletedEvent(BaseEvent):
"""Event emitted when an agent completes executing a task"""
agent: BaseAgent
@@ -30,11 +42,63 @@ class AgentExecutionCompletedEvent(CrewEvent):
output: str
type: str = "agent_execution_completed"
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if hasattr(self.agent, "fingerprint") and self.agent.fingerprint:
self.source_fingerprint = self.agent.fingerprint.uuid_str
self.source_type = "agent"
if (
hasattr(self.agent.fingerprint, "metadata")
and self.agent.fingerprint.metadata
):
self.fingerprint_metadata = self.agent.fingerprint.metadata
class AgentExecutionErrorEvent(CrewEvent):
class AgentExecutionErrorEvent(BaseEvent):
"""Event emitted when an agent encounters an error during execution"""
agent: BaseAgent
task: Any
error: str
type: str = "agent_execution_error"
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if hasattr(self.agent, "fingerprint") and self.agent.fingerprint:
self.source_fingerprint = self.agent.fingerprint.uuid_str
self.source_type = "agent"
if (
hasattr(self.agent.fingerprint, "metadata")
and self.agent.fingerprint.metadata
):
self.fingerprint_metadata = self.agent.fingerprint.metadata
# New event classes for LiteAgent
class LiteAgentExecutionStartedEvent(BaseEvent):
"""Event emitted when a LiteAgent starts executing"""
agent_info: Dict[str, Any]
tools: Optional[Sequence[Union[BaseTool, CrewStructuredTool]]]
messages: Union[str, List[Dict[str, str]]]
type: str = "lite_agent_execution_started"
model_config = {"arbitrary_types_allowed": True}
class LiteAgentExecutionCompletedEvent(BaseEvent):
"""Event emitted when a LiteAgent completes execution"""
agent_info: Dict[str, Any]
output: str
type: str = "lite_agent_execution_completed"
class LiteAgentExecutionErrorEvent(BaseEvent):
"""Event emitted when a LiteAgent encounters an error during execution"""
agent_info: Dict[str, Any]
error: str
type: str = "lite_agent_execution_error"

View File

@@ -1,10 +1,28 @@
from datetime import datetime
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from crewai.utilities.serialization import to_serializable
class CrewEvent(BaseModel):
"""Base class for all crew events"""
class BaseEvent(BaseModel):
"""Base class for all events"""
timestamp: datetime = Field(default_factory=datetime.now)
type: str
source_fingerprint: Optional[str] = None # UUID string of the source entity
source_type: Optional[str] = None # "agent", "task", "crew"
fingerprint_metadata: Optional[Dict[str, Any]] = None # Any relevant metadata
def to_json(self, exclude: set[str] | None = None):
"""
Converts the event to a JSON-serializable dictionary.
Args:
exclude (set[str], optional): Set of keys to exclude from the result. Defaults to None.
Returns:
dict: A JSON-serializable dictionary.
"""
return to_serializable(self, exclude=exclude)

View File

@@ -1,81 +1,102 @@
from typing import Any, Dict, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
from pydantic import InstanceOf
from crewai.utilities.events.base_events import BaseEvent
from crewai.utilities.events.base_events import CrewEvent
if TYPE_CHECKING:
from crewai.crew import Crew
else:
Crew = Any
class CrewKickoffStartedEvent(CrewEvent):
"""Event emitted when a crew starts execution"""
class CrewBaseEvent(BaseEvent):
"""Base class for crew events with fingerprint handling"""
crew_name: Optional[str]
crew: Optional[Crew] = None
def __init__(self, **data):
super().__init__(**data)
self.set_crew_fingerprint()
def set_crew_fingerprint(self) -> None:
if self.crew and hasattr(self.crew, "fingerprint") and self.crew.fingerprint:
self.source_fingerprint = self.crew.fingerprint.uuid_str
self.source_type = "crew"
if (
hasattr(self.crew.fingerprint, "metadata")
and self.crew.fingerprint.metadata
):
self.fingerprint_metadata = self.crew.fingerprint.metadata
def to_json(self, exclude: set[str] | None = None):
if exclude is None:
exclude = set()
exclude.add("crew")
return super().to_json(exclude=exclude)
class CrewKickoffStartedEvent(CrewBaseEvent):
"""Event emitted when a crew starts execution"""
inputs: Optional[Dict[str, Any]]
type: str = "crew_kickoff_started"
class CrewKickoffCompletedEvent(CrewEvent):
class CrewKickoffCompletedEvent(CrewBaseEvent):
"""Event emitted when a crew completes execution"""
crew_name: Optional[str]
output: Any
type: str = "crew_kickoff_completed"
class CrewKickoffFailedEvent(CrewEvent):
class CrewKickoffFailedEvent(CrewBaseEvent):
"""Event emitted when a crew fails to complete execution"""
error: str
crew_name: Optional[str]
type: str = "crew_kickoff_failed"
class CrewTrainStartedEvent(CrewEvent):
class CrewTrainStartedEvent(CrewBaseEvent):
"""Event emitted when a crew starts training"""
crew_name: Optional[str]
n_iterations: int
filename: str
inputs: Optional[Dict[str, Any]]
type: str = "crew_train_started"
class CrewTrainCompletedEvent(CrewEvent):
class CrewTrainCompletedEvent(CrewBaseEvent):
"""Event emitted when a crew completes training"""
crew_name: Optional[str]
n_iterations: int
filename: str
type: str = "crew_train_completed"
class CrewTrainFailedEvent(CrewEvent):
class CrewTrainFailedEvent(CrewBaseEvent):
"""Event emitted when a crew fails to complete training"""
error: str
crew_name: Optional[str]
type: str = "crew_train_failed"
class CrewTestStartedEvent(CrewEvent):
class CrewTestStartedEvent(CrewBaseEvent):
"""Event emitted when a crew starts testing"""
crew_name: Optional[str]
n_iterations: int
eval_llm: Optional[Union[str, Any]]
inputs: Optional[Dict[str, Any]]
type: str = "crew_test_started"
class CrewTestCompletedEvent(CrewEvent):
class CrewTestCompletedEvent(CrewBaseEvent):
"""Event emitted when a crew completes testing"""
crew_name: Optional[str]
type: str = "crew_test_completed"
class CrewTestFailedEvent(CrewEvent):
class CrewTestFailedEvent(CrewBaseEvent):
"""Event emitted when a crew fails to complete testing"""
error: str
crew_name: Optional[str]
type: str = "crew_test_failed"

View File

@@ -4,10 +4,10 @@ from typing import Any, Callable, Dict, List, Type, TypeVar, cast
from blinker import Signal
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.base_events import BaseEvent
from crewai.utilities.events.event_types import EventTypes
EventT = TypeVar("EventT", bound=CrewEvent)
EventT = TypeVar("EventT", bound=BaseEvent)
class CrewAIEventsBus:
@@ -30,7 +30,7 @@ class CrewAIEventsBus:
def _initialize(self) -> None:
"""Initialize the event bus internal state"""
self._signal = Signal("crewai_event_bus")
self._handlers: Dict[Type[CrewEvent], List[Callable]] = {}
self._handlers: Dict[Type[BaseEvent], List[Callable]] = {}
def on(
self, event_type: Type[EventT]
@@ -59,7 +59,7 @@ class CrewAIEventsBus:
return decorator
def emit(self, source: Any, event: CrewEvent) -> None:
def emit(self, source: Any, event: BaseEvent) -> None:
"""
Emit an event to all registered handlers
@@ -67,15 +67,12 @@ class CrewAIEventsBus:
source: The object emitting the event
event: The event instance to emit
"""
event_type = type(event)
if event_type in self._handlers:
for handler in self._handlers[event_type]:
handler(source, event)
self._signal.send(source, event=event)
for event_type, handlers in self._handlers.items():
if isinstance(event, event_type):
for handler in handlers:
handler(source, event)
def clear_handlers(self) -> None:
"""Clear all registered event handlers - useful for testing"""
self._handlers.clear()
self._signal.send(source, event=event)
def register_handler(
self, event_type: Type[EventTypes], handler: Callable[[Any, EventTypes], None]

View File

@@ -16,7 +16,13 @@ from crewai.utilities.events.llm_events import (
)
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
from .agent_events import AgentExecutionCompletedEvent, AgentExecutionStartedEvent
from .agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionStartedEvent,
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
LiteAgentExecutionStartedEvent,
)
from .crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
@@ -65,7 +71,7 @@ class EventListener(BaseEventListener):
self._telemetry.set_tracer()
self.execution_spans = {}
self._initialized = True
self.formatter = ConsoleFormatter()
self.formatter = ConsoleFormatter(verbose=True)
# ----------- CREW EVENTS -----------
@@ -171,6 +177,36 @@ class EventListener(BaseEventListener):
self.formatter.current_crew_tree,
)
# ----------- LITE AGENT EVENTS -----------
@crewai_event_bus.on(LiteAgentExecutionStartedEvent)
def on_lite_agent_execution_started(
source, event: LiteAgentExecutionStartedEvent
):
"""Handle LiteAgent execution started event."""
self.formatter.handle_lite_agent_execution(
event.agent_info["role"], status="started", **event.agent_info
)
@crewai_event_bus.on(LiteAgentExecutionCompletedEvent)
def on_lite_agent_execution_completed(
source, event: LiteAgentExecutionCompletedEvent
):
"""Handle LiteAgent execution completed event."""
self.formatter.handle_lite_agent_execution(
event.agent_info["role"], status="completed", **event.agent_info
)
@crewai_event_bus.on(LiteAgentExecutionErrorEvent)
def on_lite_agent_execution_error(source, event: LiteAgentExecutionErrorEvent):
"""Handle LiteAgent execution error event."""
self.formatter.handle_lite_agent_execution(
event.agent_info["role"],
status="failed",
error=event.error,
**event.agent_info,
)
# ----------- FLOW EVENTS -----------
@crewai_event_bus.on(FlowCreatedEvent)

View File

@@ -2,10 +2,10 @@ from typing import Any, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict
from .base_events import CrewEvent
from .base_events import BaseEvent
class FlowEvent(CrewEvent):
class FlowEvent(BaseEvent):
"""Base class for all flow events"""
type: str

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.base_events import BaseEvent
class LLMCallType(Enum):
@@ -11,17 +11,22 @@ class LLMCallType(Enum):
LLM_CALL = "llm_call"
class LLMCallStartedEvent(CrewEvent):
"""Event emitted when a LLM call starts"""
class LLMCallStartedEvent(BaseEvent):
"""Event emitted when a LLM call starts
Attributes:
messages: Content can be either a string or a list of dictionaries that support
multimodal content (text, images, etc.)
"""
type: str = "llm_call_started"
messages: Union[str, List[Dict[str, str]]]
messages: Union[str, List[Dict[str, Any]]]
tools: Optional[List[dict]] = None
callbacks: Optional[List[Any]] = None
available_functions: Optional[Dict[str, Any]] = None
class LLMCallCompletedEvent(CrewEvent):
class LLMCallCompletedEvent(BaseEvent):
"""Event emitted when a LLM call completes"""
type: str = "llm_call_completed"
@@ -29,14 +34,14 @@ class LLMCallCompletedEvent(CrewEvent):
call_type: LLMCallType
class LLMCallFailedEvent(CrewEvent):
class LLMCallFailedEvent(BaseEvent):
"""Event emitted when a LLM call fails"""
error: str
type: str = "llm_call_failed"
class LLMStreamChunkEvent(CrewEvent):
class LLMStreamChunkEvent(BaseEvent):
"""Event emitted when a streaming chunk is received"""
type: str = "llm_stream_chunk"

View File

@@ -1,32 +1,84 @@
from typing import Optional
from typing import Any, Optional
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.base_events import BaseEvent
class TaskStartedEvent(CrewEvent):
class TaskStartedEvent(BaseEvent):
"""Event emitted when a task starts"""
type: str = "task_started"
context: Optional[str]
task: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the task
if hasattr(self.task, "fingerprint") and self.task.fingerprint:
self.source_fingerprint = self.task.fingerprint.uuid_str
self.source_type = "task"
if (
hasattr(self.task.fingerprint, "metadata")
and self.task.fingerprint.metadata
):
self.fingerprint_metadata = self.task.fingerprint.metadata
class TaskCompletedEvent(CrewEvent):
class TaskCompletedEvent(BaseEvent):
"""Event emitted when a task completes"""
output: TaskOutput
type: str = "task_completed"
task: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the task
if hasattr(self.task, "fingerprint") and self.task.fingerprint:
self.source_fingerprint = self.task.fingerprint.uuid_str
self.source_type = "task"
if (
hasattr(self.task.fingerprint, "metadata")
and self.task.fingerprint.metadata
):
self.fingerprint_metadata = self.task.fingerprint.metadata
class TaskFailedEvent(CrewEvent):
class TaskFailedEvent(BaseEvent):
"""Event emitted when a task fails"""
error: str
type: str = "task_failed"
task: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the task
if hasattr(self.task, "fingerprint") and self.task.fingerprint:
self.source_fingerprint = self.task.fingerprint.uuid_str
self.source_type = "task"
if (
hasattr(self.task.fingerprint, "metadata")
and self.task.fingerprint.metadata
):
self.fingerprint_metadata = self.task.fingerprint.metadata
class TaskEvaluationEvent(CrewEvent):
class TaskEvaluationEvent(BaseEvent):
"""Event emitted when a task evaluation is completed"""
type: str = "task_evaluation"
evaluation_type: str
task: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the task
if hasattr(self.task, "fingerprint") and self.task.fingerprint:
self.source_fingerprint = self.task.fingerprint.uuid_str
self.source_type = "task"
if (
hasattr(self.task.fingerprint, "metadata")
and self.task.fingerprint.metadata
):
self.fingerprint_metadata = self.task.fingerprint.metadata

View File

@@ -1,10 +1,10 @@
from datetime import datetime
from typing import Any, Callable, Dict
from typing import Any, Callable, Dict, Optional
from .base_events import CrewEvent
from .base_events import BaseEvent
class ToolUsageEvent(CrewEvent):
class ToolUsageEvent(BaseEvent):
"""Base event for tool usage tracking"""
agent_key: str
@@ -14,9 +14,22 @@ class ToolUsageEvent(CrewEvent):
tool_class: str
run_attempts: int | None = None
delegations: int | None = None
agent: Optional[Any] = None
model_config = {"arbitrary_types_allowed": True}
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if self.agent and hasattr(self.agent, "fingerprint") and self.agent.fingerprint:
self.source_fingerprint = self.agent.fingerprint.uuid_str
self.source_type = "agent"
if (
hasattr(self.agent.fingerprint, "metadata")
and self.agent.fingerprint.metadata
):
self.fingerprint_metadata = self.agent.fingerprint.metadata
class ToolUsageStartedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is started"""
@@ -30,6 +43,7 @@ class ToolUsageFinishedEvent(ToolUsageEvent):
started_at: datetime
finished_at: datetime
from_cache: bool = False
output: Any
type: str = "tool_usage_finished"
@@ -54,7 +68,7 @@ class ToolSelectionErrorEvent(ToolUsageEvent):
type: str = "tool_selection_error"
class ToolExecutionErrorEvent(CrewEvent):
class ToolExecutionErrorEvent(BaseEvent):
"""Event emitted when a tool execution encounters an error"""
error: Any
@@ -62,3 +76,16 @@ class ToolExecutionErrorEvent(CrewEvent):
tool_name: str
tool_args: Dict[str, Any]
tool_class: Callable
agent: Optional[Any] = None
def __init__(self, **data):
super().__init__(**data)
# Set fingerprint data from the agent
if self.agent and hasattr(self.agent, "fingerprint") and self.agent.fingerprint:
self.source_fingerprint = self.agent.fingerprint.uuid_str
self.source_type = "agent"
if (
hasattr(self.agent.fingerprint, "metadata")
and self.agent.fingerprint.metadata
):
self.fingerprint_metadata = self.agent.fingerprint.metadata

View File

@@ -1,4 +1,4 @@
from typing import Dict, Optional
from typing import Any, Dict, Optional
from rich.console import Console
from rich.panel import Panel
@@ -13,6 +13,7 @@ class ConsoleFormatter:
current_tool_branch: Optional[Tree] = None
current_flow_tree: Optional[Tree] = None
current_method_branch: Optional[Tree] = None
current_lite_agent_branch: Optional[Tree] = None
tool_usage_counts: Dict[str, int] = {}
def __init__(self, verbose: bool = False):
@@ -390,21 +391,24 @@ class ConsoleFormatter:
crew_tree: Optional[Tree],
) -> Optional[Tree]:
"""Handle tool usage started event."""
if not self.verbose or agent_branch is None or crew_tree is None:
if not self.verbose:
return None
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
if branch_to_use is None or tree_to_use is None:
return None
# Update tool usage count
self.tool_usage_counts[tool_name] = self.tool_usage_counts.get(tool_name, 0) + 1
# Find existing tool node or create new one
tool_branch = None
for child in agent_branch.children:
if tool_name in str(child.label):
tool_branch = child
break
if not tool_branch:
tool_branch = agent_branch.add("")
# Find or create tool node
tool_branch = self.current_tool_branch
if tool_branch is None:
tool_branch = branch_to_use.add("")
self.current_tool_branch = tool_branch
# Update label with current count
self.update_tree_label(
@@ -414,11 +418,10 @@ class ConsoleFormatter:
"yellow",
)
self.print(crew_tree)
self.print()
# Set the current_tool_branch attribute directly
self.current_tool_branch = tool_branch
# Only print if this is a new tool usage
if tool_branch not in branch_to_use.children:
self.print(tree_to_use)
self.print()
return tool_branch
@@ -429,17 +432,29 @@ class ConsoleFormatter:
crew_tree: Optional[Tree],
) -> None:
"""Handle tool usage finished event."""
if not self.verbose or tool_branch is None or crew_tree is None:
if not self.verbose or tool_branch is None:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
if tree_to_use is None:
return
# Update the existing tool node's label
self.update_tree_label(
tool_branch,
"🔧",
f"Used {tool_name} ({self.tool_usage_counts[tool_name]})",
"green",
)
self.print(crew_tree)
self.print()
# Clear the current tool branch as we're done with it
self.current_tool_branch = None
# Only print if we have a valid tree and the tool node is still in it
if isinstance(tree_to_use, Tree) and tool_branch in tree_to_use.children:
self.print(tree_to_use)
self.print()
def handle_tool_usage_error(
self,
@@ -452,6 +467,9 @@ class ConsoleFormatter:
if not self.verbose:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
if tool_branch:
self.update_tree_label(
tool_branch,
@@ -459,8 +477,9 @@ class ConsoleFormatter:
f"{tool_name} ({self.tool_usage_counts[tool_name]})",
"red",
)
self.print(crew_tree)
self.print()
if tree_to_use:
self.print(tree_to_use)
self.print()
# Show error panel
error_content = self.create_status_content(
@@ -474,19 +493,23 @@ class ConsoleFormatter:
crew_tree: Optional[Tree],
) -> Optional[Tree]:
"""Handle LLM call started event."""
if not self.verbose or agent_branch is None or crew_tree is None:
if not self.verbose:
return None
# Only add thinking status if it doesn't exist
if not any("Thinking" in str(child.label) for child in agent_branch.children):
tool_branch = agent_branch.add("")
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
if branch_to_use is None or tree_to_use is None:
return None
# Only add thinking status if we don't have a current tool branch
if self.current_tool_branch is None:
tool_branch = branch_to_use.add("")
self.update_tree_label(tool_branch, "🧠", "Thinking...", "blue")
self.print(crew_tree)
self.print()
# Set the current_tool_branch attribute directly
self.current_tool_branch = tool_branch
self.print(tree_to_use)
self.print()
return tool_branch
return None
@@ -497,19 +520,27 @@ class ConsoleFormatter:
crew_tree: Optional[Tree],
) -> None:
"""Handle LLM call completed event."""
if (
not self.verbose
or tool_branch is None
or agent_branch is None
or crew_tree is None
):
if not self.verbose or tool_branch is None:
return
# Remove the thinking status node when complete
# Use LiteAgent branch if available, otherwise use regular agent branch
branch_to_use = self.current_lite_agent_branch or agent_branch
tree_to_use = branch_to_use or crew_tree
if branch_to_use is None or tree_to_use is None:
return
# Remove the thinking status node when complete, but only if it exists
if "Thinking" in str(tool_branch.label):
agent_branch.children.remove(tool_branch)
self.print(crew_tree)
self.print()
try:
# Check if the node is actually in the children list
if tool_branch in branch_to_use.children:
branch_to_use.children.remove(tool_branch)
self.print(tree_to_use)
self.print()
except Exception:
# If any error occurs during removal, just continue without removing
pass
def handle_llm_call_failed(
self, tool_branch: Optional[Tree], error: str, crew_tree: Optional[Tree]
@@ -518,11 +549,15 @@ class ConsoleFormatter:
if not self.verbose:
return
# Use LiteAgent branch if available, otherwise use crew tree
tree_to_use = self.current_lite_agent_branch or crew_tree
# Update tool branch if it exists
if tool_branch:
tool_branch.label = Text("❌ LLM Failed", style="red bold")
self.print(crew_tree)
self.print()
if tree_to_use:
self.print(tree_to_use)
self.print()
# Show error panel
error_content = Text()
@@ -587,6 +622,7 @@ class ConsoleFormatter:
for child in flow_tree.children:
if "Running tests" in str(child.label):
child.label = Text("✅ Tests completed successfully", style="green")
break
self.print(flow_tree)
self.print()
@@ -656,3 +692,94 @@ class ConsoleFormatter:
self.print_panel(failure_content, "Test Failure", "red")
self.print()
def create_lite_agent_branch(self, lite_agent_role: str) -> Optional[Tree]:
"""Create and initialize a lite agent branch."""
if not self.verbose:
return None
# Create initial tree for LiteAgent if it doesn't exist
if not self.current_lite_agent_branch:
lite_agent_label = Text()
lite_agent_label.append("🤖 LiteAgent: ", style="cyan bold")
lite_agent_label.append(lite_agent_role, style="cyan")
lite_agent_label.append("\n Status: ", style="white")
lite_agent_label.append("In Progress", style="yellow")
lite_agent_tree = Tree(lite_agent_label)
self.current_lite_agent_branch = lite_agent_tree
self.print(lite_agent_tree)
self.print()
return self.current_lite_agent_branch
def update_lite_agent_status(
self,
lite_agent_branch: Optional[Tree],
lite_agent_role: str,
status: str = "completed",
**fields: Dict[str, Any],
) -> None:
"""Update lite agent status in the tree."""
if not self.verbose or lite_agent_branch is None:
return
# Determine style based on status
if status == "completed":
prefix, style = "✅ LiteAgent:", "green"
status_text = "Completed"
title = "LiteAgent Completion"
elif status == "failed":
prefix, style = "❌ LiteAgent:", "red"
status_text = "Failed"
title = "LiteAgent Error"
else:
prefix, style = "🤖 LiteAgent:", "yellow"
status_text = "In Progress"
title = "LiteAgent Status"
# Update the tree label
lite_agent_label = Text()
lite_agent_label.append(f"{prefix} ", style=f"{style} bold")
lite_agent_label.append(lite_agent_role, style=style)
lite_agent_label.append("\n Status: ", style="white")
lite_agent_label.append(status_text, style=f"{style} bold")
lite_agent_branch.label = lite_agent_label
self.print(lite_agent_branch)
self.print()
# Show status panel if additional fields are provided
if fields:
content = self.create_status_content(
f"LiteAgent {status.title()}", lite_agent_role, style, **fields
)
self.print_panel(content, title, style)
def handle_lite_agent_execution(
self,
lite_agent_role: str,
status: str = "started",
error: Any = None,
**fields: Dict[str, Any],
) -> None:
"""Handle lite agent execution events with consistent formatting."""
if not self.verbose:
return
if status == "started":
# Create or get the LiteAgent branch
lite_agent_branch = self.create_lite_agent_branch(lite_agent_role)
if lite_agent_branch and fields:
# Show initial status panel
content = self.create_status_content(
"LiteAgent Session Started", lite_agent_role, "cyan", **fields
)
self.print_panel(content, "LiteAgent Started", "cyan")
else:
# Update existing LiteAgent branch
if error:
fields["Error"] = error
self.update_lite_agent_status(
self.current_lite_agent_branch, lite_agent_role, status, **fields
)

View File

@@ -1,10 +1,12 @@
from typing import List
import re
from typing import TYPE_CHECKING, List
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
if TYPE_CHECKING:
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> str:
def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) -> str:
"""Generate string context from the task outputs."""
dividers = "\n\n----------\n\n"
@@ -13,7 +15,7 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List[TaskOutput]) -> s
return context
def aggregate_raw_outputs_from_tasks(tasks: List[Task]) -> str:
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
"""Generate string context from the tasks."""
task_outputs = [task.output for task in tasks if task.output is not None]

View File

@@ -2,28 +2,28 @@ import os
from typing import Any, Dict, List, Optional, Union
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
from crewai.llm import LLM
from crewai.llm import LLM, BaseLLM
def create_llm(
llm_value: Union[str, LLM, Any, None] = None,
) -> Optional[LLM]:
) -> Optional[LLM | BaseLLM]:
"""
Creates or returns an LLM instance based on the given llm_value.
Args:
llm_value (str | LLM | Any | None):
llm_value (str | BaseLLM | Any | None):
- str: The model name (e.g., "gpt-4").
- LLM: Already instantiated LLM, returned as-is.
- BaseLLM: Already instantiated BaseLLM (including LLM), returned as-is.
- Any: Attempt to extract known attributes like model_name, temperature, etc.
- None: Use environment-based or fallback default model.
Returns:
An LLM instance if successful, or None if something fails.
A BaseLLM instance if successful, or None if something fails.
"""
# 1) If llm_value is already an LLM object, return it directly
if isinstance(llm_value, LLM):
# 1) If llm_value is already a BaseLLM or LLM object, return it directly
if isinstance(llm_value, LLM) or isinstance(llm_value, BaseLLM):
return llm_value
# 2) If llm_value is a string (model name)

View File

@@ -96,6 +96,10 @@ class CrewPlanner:
tasks_summary = []
for idx, task in enumerate(self.tasks):
knowledge_list = self._get_agent_knowledge(task)
agent_tools = (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
task_summary = f"""
Task Number {idx + 1} - {task.description}
"task_description": {task.description}
@@ -103,10 +107,7 @@ class CrewPlanner:
"agent": {task.agent.role if task.agent else "None"}
"agent_goal": {task.agent.goal if task.agent else "None"}
"task_tools": {task.tools}
"agent_tools": %s%s""" % (
f"[{', '.join(str(tool) for tool in task.agent.tools)}]" if task.agent and task.agent.tools else '"agent has no tools"',
f',\n "agent_knowledge": "[\\"{knowledge_list[0]}\\"]"' if knowledge_list and str(knowledge_list) != "None" else ""
)
"agent_tools": {"".join(agent_tools)}"""
tasks_summary.append(task_summary)
return " ".join(tasks_summary)

Some files were not shown because too many files have changed in this diff Show More