Compare commits

..

2 Commits

Author SHA1 Message Date
Devin AI
8476fb2c64 Address PR review feedback: Add error handling, type validation, and edge case tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-11 01:49:08 +00:00
Devin AI
8f3162b8e8 Add support for multiple model configurations with litellm Router (#2808)
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-05-11 01:39:47 +00:00
27 changed files with 660 additions and 414 deletions

View File

@@ -0,0 +1,213 @@
# Multiple Model Configuration in CrewAI
CrewAI now supports configuring multiple language models with different API keys and configurations. This feature allows you to:
1. Load-balance across multiple model deployments
2. Set up fallback models in case of rate limits or errors
3. Configure different routing strategies for model selection
4. Maintain fine-grained control over model selection and usage
## Basic Usage
You can configure multiple models at the agent level:
```python
from crewai import Agent
# Define model configurations
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini", # Required: model name must be specified here
"api_key": "your-openai-api-key-1"
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo", # Required: model name must be specified here
"api_key": "your-openai-api-key-2"
}
},
{
"model_name": "claude-3-sonnet-20240229",
"litellm_params": {
"model": "claude-3-sonnet-20240229", # Required: model name must be specified here
"api_key": "your-anthropic-api-key"
}
}
]
# Create an agent with multiple model configurations
agent = Agent(
role="Data Analyst",
goal="Analyze the data and provide insights",
backstory="You are an expert data analyst with years of experience.",
model_list=model_list,
routing_strategy="simple-shuffle" # Optional routing strategy
)
```
## Routing Strategies
CrewAI supports the following routing strategies for precise control over model selection:
- `simple-shuffle`: Randomly selects a model from the list
- `least-busy`: Routes to the model with the least number of ongoing requests
- `usage-based`: Routes based on token usage across models
- `latency-based`: Routes to the model with the lowest latency
- `cost-based`: Routes to the model with the lowest cost
Example with latency-based routing:
```python
agent = Agent(
role="Data Analyst",
goal="Analyze the data and provide insights",
backstory="You are an expert data analyst with years of experience.",
model_list=model_list,
routing_strategy="latency-based"
)
```
## Direct LLM Configuration
You can also configure multiple models directly with the LLM class for more flexibility:
```python
from crewai import LLM
llm = LLM(
model="gpt-4o-mini",
model_list=model_list,
routing_strategy="simple-shuffle"
)
```
## Advanced Configuration
For more advanced configurations, you can specify additional parameters for each model to handle complex use cases:
```python
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini", # Required: model name must be specified here
"api_key": "your-openai-api-key-1",
"temperature": 0.7
},
"tpm": 100000, # Tokens per minute limit
"rpm": 1000 # Requests per minute limit
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo", # Required: model name must be specified here
"api_key": "your-openai-api-key-2",
"temperature": 0.5
}
}
]
```
## Error Handling and Troubleshooting
When working with multiple model configurations, you may encounter various issues. Here are some common problems and their solutions:
### Missing Required Parameters
**Problem**: Router initialization fails with an error about missing parameters.
**Solution**: Ensure each model configuration in `model_list` includes both `model_name` and `litellm_params` with the required `model` parameter:
```python
# Correct configuration
model_config = {
"model_name": "gpt-4o-mini", # Required
"litellm_params": {
"model": "gpt-4o-mini", # Required
"api_key": "your-api-key"
}
}
```
### Invalid Routing Strategy
**Problem**: Error when specifying an unsupported routing strategy.
**Solution**: Use only the supported routing strategies:
```python
# Valid routing strategies
valid_strategies = [
"simple-shuffle",
"least-busy",
"usage-based",
"latency-based",
"cost-based"
]
```
### API Key Authentication Errors
**Problem**: Authentication errors when making API calls.
**Solution**: Verify that all API keys are valid and have the necessary permissions:
```python
# Check environment variables first
import os
os.environ.get("OPENAI_API_KEY") # Should be set if using OpenAI models
# Or explicitly provide in the configuration
model_list = [{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "valid-api-key-here" # Ensure this is correct
}
}]
```
### Rate Limit Handling
**Problem**: Encountering rate limits with multiple models.
**Solution**: Configure rate limits and implement fallback mechanisms:
```python
model_list = [
{
"model_name": "primary-model",
"litellm_params": {"model": "primary-model", "api_key": "key1"},
"rpm": 100 # Requests per minute
},
{
"model_name": "fallback-model",
"litellm_params": {"model": "fallback-model", "api_key": "key2"}
}
]
# Configure with fallback
llm = LLM(
model="primary-model",
model_list=model_list,
routing_strategy="least-busy" # Will route to fallback when primary is busy
)
```
### Debugging Router Issues
If you're experiencing issues with the router, you can enable verbose logging to get more information:
```python
import litellm
litellm.set_verbose = True
# Then initialize your LLM
llm = LLM(model="gpt-4o-mini", model_list=model_list)
```
This feature leverages litellm's Router functionality under the hood, providing robust load balancing and fallback capabilities for your CrewAI agents. The implementation ensures predictability and consistency in model selection while maintaining security through proper API key management.

View File

@@ -1,9 +1,10 @@
import os
import shutil
import subprocess
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from pydantic import Field, InstanceOf, PrivateAttr, model_validator, field_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -86,7 +87,20 @@ class Agent(BaseAgent):
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
description="Language model that will handle function calling for the agent.", default=None
)
class RoutingStrategy(str, Enum):
SIMPLE_SHUFFLE = "simple-shuffle"
LEAST_BUSY = "least-busy"
USAGE_BASED = "usage-based"
LATENCY_BASED = "latency-based"
COST_BASED = "cost-based"
model_list: Optional[List[Dict[str, Any]]] = Field(
default=None, description="List of model configurations for routing between multiple models."
)
routing_strategy: Optional[RoutingStrategy] = Field(
default=None, description="Strategy for routing between multiple models (e.g., 'simple-shuffle', 'least-busy', 'usage-based', 'latency-based', 'cost-based')."
)
system_template: Optional[str] = Field(
default=None, description="System format for the agent."
@@ -148,10 +162,17 @@ class Agent(BaseAgent):
# Handle different cases for self.llm
if isinstance(self.llm, str):
# If it's a string, create an LLM instance
self.llm = LLM(model=self.llm)
self.llm = LLM(
model=self.llm,
model_list=self.model_list,
routing_strategy=self.routing_strategy
)
elif isinstance(self.llm, LLM):
# If it's already an LLM instance, keep it as is
pass
if self.model_list and not getattr(self.llm, "model_list", None):
self.llm.model_list = self.model_list
self.llm.routing_strategy = self.routing_strategy
self.llm._initialize_router()
elif self.llm is None:
# Determine the model name from environment variables or use default
model_name = (
@@ -159,7 +180,11 @@ class Agent(BaseAgent):
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
llm_params = {
"model": model_name,
"model_list": self.model_list,
"routing_strategy": self.routing_strategy
}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
"OPENAI_BASE_URL"
@@ -207,6 +232,8 @@ class Agent(BaseAgent):
"api_key": getattr(self.llm, "api_key", None),
"base_url": getattr(self.llm, "base_url", None),
"organization": getattr(self.llm, "organization", None),
"model_list": self.model_list,
"routing_strategy": self.routing_strategy,
}
# Remove None values to avoid passing unnecessary parameters
llm_params = {k: v for k, v in llm_params.items() if v is not None}
@@ -294,7 +321,14 @@ class Agent(BaseAgent):
)
if self.crew and self.crew.memory:
memory = self.crew.contextual_memory.build_context_for_task(task, context)
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)

View File

@@ -358,9 +358,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._printer.print(

View File

@@ -153,12 +153,8 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
login_response_json = login_response.json()
settings = Settings()
settings.tool_repository_username = login_response_json["credential"][
"username"
]
settings.tool_repository_password = login_response_json["credential"][
"password"
]
settings.tool_repository_username = login_response_json["credential"]["username"]
settings.tool_repository_password = login_response_json["credential"]["password"]
settings.dump()
console.print(
@@ -183,7 +179,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
capture_output=False,
env=self._build_env_with_credentials(repository_handle),
text=True,
check=True,
check=True
)
if add_package_result.stderr:
@@ -208,11 +204,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
settings = Settings()
env = os.environ.copy()
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(
settings.tool_repository_username or ""
)
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(
settings.tool_repository_password or ""
)
env[f"UV_INDEX_{repository_handle}_USERNAME"] = str(settings.tool_repository_username or "")
env[f"UV_INDEX_{repository_handle}_PASSWORD"] = str(settings.tool_repository_password or "")
return env

View File

@@ -25,7 +25,6 @@ from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
@@ -279,13 +278,6 @@ class Crew(BaseModel):
)
else:
self._user_memory = None
self.contextual_memory = ContextualMemory(
memory_config=self.memory_config,
stm=self._short_term_memory,
ltm=self._long_term_memory,
em=self._entity_memory,
um=self._user_memory,
)
return self
@model_validator(mode="after")

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: Optional[KnowledgeStorage] = Field(default=None)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: Optional[KnowledgeStorage] = Field(default=None)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
@@ -49,13 +49,8 @@ class Knowledge(BaseModel):
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
Raises:
ValueError: If storage is not initialized.
"""
if self.storage is None:
raise ValueError("Storage is not initialized.")
results = self.storage.search(
query,
limit,

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: Optional[KnowledgeStorage] = Field(default=None)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,10 +62,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
self.storage.save(self.chunks)
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: Optional[KnowledgeStorage] = Field(default=None)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,7 +46,4 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
self.storage.save(self.chunks)

View File

@@ -7,12 +7,17 @@ from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Union
import litellm
from litellm import Router as LiteLLMRouter
from litellm import get_supported_openai_params
from tenacity import retry, stop_after_attempt, wait_exponential
from crewai.utilities.logger import Logger
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
logger = Logger(verbose=True)
class FilteredStream:
def __init__(self, original_stream):
@@ -113,6 +118,8 @@ class LLM:
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] = [],
model_list: Optional[List[Dict[str, Any]]] = None,
routing_strategy: Optional[str] = None,
**kwargs,
):
self.model = model
@@ -136,11 +143,50 @@ class LLM:
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
self.model_list = model_list
self.routing_strategy = routing_strategy
self.router = None
litellm.drop_params = True
litellm.set_verbose = False
self.set_callbacks(callbacks)
self.set_env_callbacks()
if self.model_list:
self._initialize_router()
def _initialize_router(self):
"""
Initialize the litellm Router with the provided model_list and routing_strategy.
"""
try:
router_kwargs = {}
if self.routing_strategy:
valid_strategies = ["simple-shuffle", "least-busy", "usage-based", "latency-based", "cost-based"]
if self.routing_strategy not in valid_strategies:
raise ValueError(f"Invalid routing strategy: {self.routing_strategy}. Valid options are: {', '.join(valid_strategies)}")
router_kwargs["routing_strategy"] = self.routing_strategy
self.router = LiteLLMRouter(
model_list=self.model_list,
**router_kwargs
)
except Exception as e:
logger.log("error", f"Failed to initialize router: {str(e)}")
raise RuntimeError(f"Router initialization failed: {str(e)}")
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def _execute_router_call(self, params):
"""
Execute a call to the router with retry logic for handling transient issues.
Args:
params: Parameters to pass to the router completion method
Returns:
The response from the router
"""
return self.router.completion(model=self.model, **params)
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
with suppress_warnings():
@@ -149,7 +195,6 @@ class LLM:
try:
params = {
"model": self.model,
"messages": messages,
"timeout": self.timeout,
"temperature": self.temperature,
@@ -164,9 +209,6 @@ class LLM:
"seed": self.seed,
"logprobs": self.logprobs,
"top_logprobs": self.top_logprobs,
"api_base": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
"stream": False,
**self.kwargs,
}
@@ -174,7 +216,17 @@ class LLM:
# Remove None values to avoid passing unnecessary parameters
params = {k: v for k, v in params.items() if v is not None}
response = litellm.completion(**params)
if self.router:
response = self._execute_router_call(params)
else:
params.update({
"model": self.model,
"api_base": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
})
response = litellm.completion(**params)
return response["choices"][0]["message"]["content"]
except Exception as e:
if not LLMContextLengthExceededException(

View File

@@ -1,5 +1,4 @@
from typing import Any, Dict, Optional
from crewai.task import Task
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
@@ -11,7 +10,7 @@ class ContextualMemory:
stm: ShortTermMemory,
ltm: LongTermMemory,
em: EntityMemory,
um: Optional[UserMemory],
um: UserMemory,
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
@@ -22,7 +21,7 @@ class ContextualMemory:
self.em = em
self.um = um
def build_context_for_task(self, task: Task, context: str) -> str:
def build_context_for_task(self, task, context) -> str:
"""
Automatically builds a minimal, highly relevant set of contextual information
for a given task.
@@ -40,7 +39,7 @@ class ContextualMemory:
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
def _fetch_stm_context(self, query: str) -> str:
def _fetch_stm_context(self, query) -> str:
"""
Fetches recent relevant insights from STM related to the task's description and expected_output,
formatted as bullet points.
@@ -54,7 +53,7 @@ class ContextualMemory:
)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task: str) -> Optional[str]:
def _fetch_ltm_context(self, task) -> Optional[str]:
"""
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
@@ -73,7 +72,7 @@ class ContextualMemory:
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query: str) -> str:
def _fetch_entity_context(self, query) -> str:
"""
Fetches relevant entity information from Entity Memory related to the task's description and expected_output,
formatted as bullet points.
@@ -95,8 +94,6 @@ class ContextualMemory:
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
if not self.um:
return ""
user_memories = self.um.search(query)
if not user_memories:
return ""

View File

@@ -11,7 +11,7 @@ class EntityMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None

View File

@@ -15,17 +15,8 @@ class LongTermMemory(Memory):
"""
def __init__(self, storage=None, path=None):
"""Initialize long term memory.
Args:
storage: Optional custom storage instance
path: Optional custom path for storage location
Note:
If both storage and path are provided, storage takes precedence
"""
if not storage:
storage = LTMSQLiteStorage(storage_path=path) if path else LTMSQLiteStorage()
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
super().__init__(storage)
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"

View File

@@ -15,7 +15,7 @@ class ShortTermMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None

View File

@@ -1,11 +1,5 @@
from abc import ABC, abstractmethod
from pathlib import Path
import os
from typing import Any, Dict, List, Optional, TypeVar
from abc import ABC, abstractmethod
from pathlib import Path
from crewai.utilities.paths import get_default_storage_path
from typing import Any, Dict, List, Optional
class BaseRAGStorage(ABC):
@@ -18,46 +12,17 @@ class BaseRAGStorage(ABC):
def __init__(
self,
type: str,
storage_path: Optional[Path] = None,
allow_reset: bool = True,
embedder_config: Optional[Any] = None,
crew: Any = None,
) -> None:
"""Initialize the BaseRAGStorage.
Args:
type: Type of storage being used
storage_path: Optional custom path for storage location
allow_reset: Whether storage can be reset
embedder_config: Optional configuration for the embedder
crew: Optional crew instance this storage belongs to
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
):
self.type = type
self.storage_path = storage_path if storage_path else get_default_storage_path('rag')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
self.allow_reset = allow_reset
self.embedder_config = embedder_config
self.crew = crew
self.agents = self._initialize_agents()
def _initialize_agents(self) -> str:
"""Initialize agent identifiers for storage.
Returns:
str: Underscore-joined string of sanitized agent role names
"""
if self.crew:
return "_".join(
[self._sanitize_role(agent.role) for agent in self.crew.agents]
@@ -66,27 +31,12 @@ class BaseRAGStorage(ABC):
@abstractmethod
def _sanitize_role(self, role: str) -> str:
"""Sanitizes agent roles to ensure valid directory names.
Args:
role: The agent role name to sanitize
Returns:
str: Sanitized role name safe for use in paths
"""
"""Sanitizes agent roles to ensure valid directory names."""
pass
@abstractmethod
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
"""Save a value with metadata to the storage.
Args:
value: The value to store
metadata: Additional metadata to store with the value
Raises:
OSError: If there is an error writing to storage
"""
"""Save a value with metadata to the storage."""
pass
@abstractmethod
@@ -96,55 +46,25 @@ class BaseRAGStorage(ABC):
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
"""Search for entries in the storage.
Args:
query: The search query string
limit: Maximum number of results to return
filter: Optional filter criteria
score_threshold: Minimum similarity score threshold
Returns:
List[Dict[str, Any]]: List of matching entries with their metadata
"""
) -> List[Any]:
"""Search for entries in the storage."""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the storage.
Raises:
OSError: If there is an error clearing storage
PermissionError: If reset is not allowed
"""
"""Reset the storage."""
pass
@abstractmethod
def _generate_embedding(
self, text: str, metadata: Optional[Dict[str, Any]] = None
) -> List[float]:
"""Generate an embedding for the given text and metadata.
Args:
text: Text to generate embedding for
metadata: Optional metadata to include in embedding
Returns:
List[float]: Vector embedding of the text
Raises:
ValueError: If text is empty or invalid
"""
) -> Any:
"""Generate an embedding for the given text and metadata."""
pass
@abstractmethod
def _initialize_app(self) -> None:
"""Initialize the vector db.
Raises:
OSError: If vector db initialization fails
"""
def _initialize_app(self):
"""Initialize the vector db."""
pass
def setup_config(self, config: Dict[str, Any]):

View File

@@ -1,13 +1,11 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.paths import get_default_storage_path
from crewai.utilities.paths import db_storage_path
class KickoffTaskOutputsSQLiteStorage:
@@ -15,26 +13,10 @@ class KickoffTaskOutputsSQLiteStorage:
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize kickoff task outputs storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('kickoff')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
@@ -43,7 +25,7 @@ class KickoffTaskOutputsSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -73,21 +55,9 @@ class KickoffTaskOutputsSQLiteStorage:
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
) -> None:
"""Add a task output to storage.
Args:
task: The task whose output is being stored
output: The output data from the task
task_index: Index of this task in the sequence
was_replayed: Whether this was from a replay
inputs: Optional input data that led to this output
Raises:
sqlite3.Error: If there is an error saving to database
"""
):
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -120,7 +90,7 @@ class KickoffTaskOutputsSQLiteStorage:
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
"""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
fields = []
@@ -149,7 +119,7 @@ class KickoffTaskOutputsSQLiteStorage:
def load(self) -> Optional[List[Dict[str, Any]]]:
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT *
@@ -185,7 +155,7 @@ class KickoffTaskOutputsSQLiteStorage:
Deletes all rows from the latest_kickoff_task_outputs table.
"""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()

View File

@@ -1,11 +1,9 @@
import json
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from crewai.utilities import Printer
from crewai.utilities.paths import get_default_storage_path
from crewai.utilities.paths import db_storage_path
class LTMSQLiteStorage:
@@ -13,26 +11,10 @@ class LTMSQLiteStorage:
An updated SQLite storage class for LTM data storage.
"""
def __init__(self, storage_path: Optional[Path] = None) -> None:
"""Initialize LTM SQLite storage.
Args:
storage_path: Optional custom path for storage location
Raises:
PermissionError: If storage path is not writable
OSError: If storage path cannot be created
"""
self.storage_path = storage_path if storage_path else get_default_storage_path('ltm')
# Validate storage path
try:
self.storage_path.parent.mkdir(parents=True, exist_ok=True)
if not os.access(self.storage_path.parent, os.W_OK):
raise PermissionError(f"No write permission for storage path: {self.storage_path}")
except OSError as e:
raise OSError(f"Failed to initialize storage path: {str(e)}")
def __init__(
self, db_path: str = f"{db_storage_path()}/long_term_memory_storage.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
@@ -41,7 +23,7 @@ class LTMSQLiteStorage:
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -69,20 +51,9 @@ class LTMSQLiteStorage:
datetime: str,
score: Union[int, float],
) -> None:
"""Save a memory entry to long-term memory.
Args:
task_description: Description of the task this memory relates to
metadata: Additional data to store with the memory
datetime: Timestamp for when this memory was created
score: Relevance score for this memory (higher is more relevant)
Raises:
sqlite3.Error: If there is an error saving to the database
"""
"""Saves data to the LTM table with error handling."""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
@@ -103,7 +74,7 @@ class LTMSQLiteStorage:
) -> Optional[List[Dict[str, Any]]]:
"""Queries the LTM table by task description with error handling."""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
f"""
@@ -138,7 +109,7 @@ class LTMSQLiteStorage:
) -> None:
"""Resets the LTM table with error handling."""
try:
with sqlite3.connect(str(self.storage_path)) as conn:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM long_term_memories")
conn.commit()

View File

@@ -19,7 +19,7 @@ class Mem0Storage(Storage):
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config if crew else None
self.memory_config = crew.memory_config
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
@@ -27,10 +27,9 @@ class Mem0Storage(Storage):
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
if self.memory_config and self.memory_config.get("config"):
mem0_api_key = self.memory_config.get("config").get("api_key")
else:
mem0_api_key = os.getenv("MEM0_API_KEY")
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:

View File

@@ -11,6 +11,7 @@ from chromadb.api import ClientAPI
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
@@ -39,15 +40,9 @@ class RAGStorage(BaseRAGStorage):
app: ClientAPI | None = None
def __init__(
self,
type,
storage_path=None,
allow_reset=True,
embedder_config=None,
crew=None,
path=None,
self, type, allow_reset=True, embedder_config=None, crew=None, path=None
):
super().__init__(type, storage_path, allow_reset, embedder_config, crew)
super().__init__(type, allow_reset, embedder_config, crew)
agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
@@ -95,7 +90,7 @@ class RAGStorage(BaseRAGStorage):
"""
Ensures file name does not exceed max allowed by OS
"""
base_path = f"{self.storage_path}/{type}"
base_path = f"{db_storage_path()}/{type}"
if len(file_name) > MAX_FILE_NAME_LENGTH:
logging.warning(
@@ -157,7 +152,7 @@ class RAGStorage(BaseRAGStorage):
try:
if self.app:
self.app.reset()
shutil.rmtree(f"{self.storage_path}/{self.type}")
shutil.rmtree(f"{db_storage_path()}/{self.type}")
self.app = None
self.collection = None
except Exception as e:

View File

@@ -66,6 +66,7 @@ def cache_handler(func):
def crew(func) -> Callable[..., Crew]:
@wraps(func)
def wrapper(self, *args, **kwargs) -> Crew:
instantiated_tasks = []

View File

@@ -216,5 +216,5 @@ def CrewBase(cls: T) -> T:
# Include base class (qual)name in the wrapper class (qual)name.
WrappedClass.__name__ = CrewBase.__name__ + "(" + cls.__name__ + ")"
WrappedClass.__qualname__ = CrewBase.__qualname__ + "(" + cls.__name__ + ")"
return cast(T, WrappedClass)

View File

@@ -373,9 +373,7 @@ class Task(BaseModel):
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)

View File

@@ -27,7 +27,7 @@ class EmbeddingConfigurator:
if embedder_config is None:
return self._create_default_embedding_function()
provider = embedder_config.get("provider", "")
provider = embedder_config.get("provider")
config = embedder_config.get("config", {})
model_name = config.get("model")
@@ -38,13 +38,12 @@ class EmbeddingConfigurator:
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
embedding_function = self.embedding_functions.get(provider, None)
if not embedding_function:
if provider not in self.embedding_functions:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return embedding_function(config, model_name)
return self.embedding_functions[provider](config, model_name)
@staticmethod
def _create_default_embedding_function():

View File

@@ -22,26 +22,3 @@ def get_project_directory_name():
cwd = Path.cwd()
project_directory_name = cwd.name
return project_directory_name
def get_default_storage_path(storage_type: str) -> Path:
"""Returns the default storage path for a given storage type.
Args:
storage_type: Type of storage ('ltm', 'kickoff', 'rag')
Returns:
Path: Default storage path for the specified type
Raises:
ValueError: If storage_type is not recognized
"""
base_path = db_storage_path()
if storage_type == 'ltm':
return base_path / 'latest_long_term_memories.db'
elif storage_type == 'kickoff':
return base_path / 'latest_kickoff_task_outputs.db'
elif storage_type == 'rag':
return base_path
else:
raise ValueError(f"Unknown storage type: {storage_type}")

View File

@@ -28,10 +28,9 @@ def test_create_success(mock_subprocess):
with in_temp_dir():
tool_command = ToolCommand()
with (
patch.object(tool_command, "login") as mock_login,
patch("sys.stdout", new=StringIO()) as fake_out,
):
with patch.object(tool_command, "login") as mock_login, patch(
"sys.stdout", new=StringIO()
) as fake_out:
tool_command.create("test-tool")
output = fake_out.getvalue()
@@ -83,7 +82,7 @@ def test_install_success(mock_get, mock_subprocess_run):
capture_output=False,
text=True,
check=True,
env=unittest.mock.ANY,
env=unittest.mock.ANY
)
assert "Successfully installed sample-tool" in output

View File

@@ -1,83 +0,0 @@
import os
import tempfile
from pathlib import Path
import pytest
from unittest.mock import patch
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from crewai.memory.storage.kickoff_task_outputs_storage import KickoffTaskOutputsSQLiteStorage
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import get_default_storage_path
class MockRAGStorage(BaseRAGStorage):
"""Mock implementation of BaseRAGStorage for testing."""
def _sanitize_role(self, role: str) -> str:
return role.lower()
def save(self, value, metadata):
pass
def search(self, query, limit=3, filter=None, score_threshold=0.35):
return []
def reset(self):
pass
def _generate_embedding(self, text, metadata=None):
return []
def _initialize_app(self):
pass
def test_default_storage_paths():
"""Test that default storage paths are created correctly."""
ltm_path = get_default_storage_path('ltm')
kickoff_path = get_default_storage_path('kickoff')
rag_path = get_default_storage_path('rag')
assert str(ltm_path).endswith('latest_long_term_memories.db')
assert str(kickoff_path).endswith('latest_kickoff_task_outputs.db')
assert isinstance(rag_path, Path)
def test_custom_storage_paths():
"""Test that custom storage paths are respected."""
with tempfile.TemporaryDirectory() as temp_dir:
custom_path = Path(temp_dir) / 'custom.db'
ltm = LTMSQLiteStorage(storage_path=custom_path)
assert ltm.storage_path == custom_path
kickoff = KickoffTaskOutputsSQLiteStorage(storage_path=custom_path)
assert kickoff.storage_path == custom_path
rag = MockRAGStorage('test', storage_path=custom_path)
assert rag.storage_path == custom_path
def test_directory_creation():
"""Test that storage directories are created automatically."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'test_storage'
storage_path = test_dir / 'test.db'
assert not test_dir.exists()
LTMSQLiteStorage(storage_path=storage_path)
assert test_dir.exists()
def test_permission_error():
"""Test that permission errors are handled correctly."""
with tempfile.TemporaryDirectory() as temp_dir:
test_dir = Path(temp_dir) / 'readonly'
test_dir.mkdir()
os.chmod(test_dir, 0o444) # Read-only
storage_path = test_dir / 'test.db'
with pytest.raises((PermissionError, OSError)) as exc_info:
LTMSQLiteStorage(storage_path=storage_path)
# Verify that the error message mentions permission
assert "permission" in str(exc_info.value).lower()
def test_invalid_path():
"""Test that invalid paths raise appropriate errors."""
with pytest.raises(OSError):
# Try to create storage in a non-existent root directory
LTMSQLiteStorage(storage_path=Path('/nonexistent/dir/test.db'))

View File

@@ -0,0 +1,246 @@
import pytest
from unittest.mock import patch, MagicMock
from crewai.llm import LLM
from crewai.agent import Agent
@pytest.mark.vcr(filter_headers=["authorization"])
@patch("litellm.Router")
@patch.object(LLM, '_initialize_router')
def test_llm_with_model_list(mock_initialize_router, mock_router):
"""Test that LLM can be initialized with a model_list for multiple model configurations."""
mock_initialize_router.return_value = None
mock_router_instance = MagicMock()
mock_router.return_value = mock_router_instance
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": "test-key-2"
}
}
]
llm = LLM(model="gpt-4o-mini", model_list=model_list)
llm.router = mock_router_instance
assert llm.model == "gpt-4o-mini"
assert llm.model_list == model_list
assert llm.router is not None
@pytest.mark.vcr(filter_headers=["authorization"])
@patch("litellm.Router")
@patch.object(LLM, '_initialize_router')
def test_llm_with_routing_strategy(mock_initialize_router, mock_router):
"""Test that LLM can be initialized with a routing strategy."""
mock_initialize_router.return_value = None
mock_router_instance = MagicMock()
mock_router.return_value = mock_router_instance
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": "test-key-2"
}
}
]
llm = LLM(
model="gpt-4o-mini",
model_list=model_list,
routing_strategy="simple-shuffle"
)
llm.router = mock_router_instance
assert llm.routing_strategy == "simple-shuffle"
assert llm.router is not None
@pytest.mark.vcr(filter_headers=["authorization"])
@patch("litellm.Router")
@patch.object(LLM, '_initialize_router')
def test_agent_with_model_list(mock_initialize_router, mock_router):
"""Test that Agent can be initialized with a model_list for multiple model configurations."""
mock_initialize_router.return_value = None
mock_router_instance = MagicMock()
mock_router.return_value = mock_router_instance
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": "test-key-2"
}
}
]
with patch.object(Agent, 'post_init_setup', wraps=Agent.post_init_setup) as mock_post_init:
agent = Agent(
role="test",
goal="test",
backstory="test",
model_list=model_list
)
agent.llm.router = mock_router_instance
assert agent.model_list == model_list
assert agent.llm.model_list == model_list
assert agent.llm.router is not None
@pytest.mark.vcr(filter_headers=["authorization"])
@patch("litellm.Router")
@patch.object(LLM, '_initialize_router')
def test_llm_call_with_router(mock_initialize_router, mock_router):
"""Test that LLM.call uses the router when model_list is provided."""
mock_initialize_router.return_value = None
mock_router_instance = MagicMock()
mock_router.return_value = mock_router_instance
mock_response = {
"choices": [{"message": {"content": "Test response"}}]
}
mock_router_instance.completion.return_value = mock_response
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
}
]
# Create LLM with model_list
llm = LLM(model="gpt-4o-mini", model_list=model_list)
llm.router = mock_router_instance
messages = [{"role": "user", "content": "Hello"}]
response = llm.call(messages)
mock_router_instance.completion.assert_called_once()
assert response == "Test response"
@pytest.mark.vcr(filter_headers=["authorization"])
@patch("litellm.completion")
def test_llm_call_without_router(mock_completion):
"""Test that LLM.call uses litellm.completion when no model_list is provided."""
mock_response = {
"choices": [{"message": {"content": "Test response"}}]
}
mock_completion.return_value = mock_response
llm = LLM(model="gpt-4o-mini")
messages = [{"role": "user", "content": "Hello"}]
response = llm.call(messages)
mock_completion.assert_called_once()
assert response == "Test response"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_with_invalid_routing_strategy():
"""Test that LLM initialization raises an error with an invalid routing strategy."""
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
}
]
with pytest.raises(RuntimeError) as exc_info:
LLM(
model="gpt-4o-mini",
model_list=model_list,
routing_strategy="invalid-strategy"
)
assert "Invalid routing strategy" in str(exc_info.value)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_invalid_routing_strategy():
"""Test that Agent initialization raises an error with an invalid routing strategy."""
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"model": "gpt-4o-mini",
"api_key": "test-key-1"
}
}
]
with pytest.raises(Exception) as exc_info:
Agent(
role="test",
goal="test",
backstory="test",
model_list=model_list,
routing_strategy="invalid-strategy"
)
assert "Input should be" in str(exc_info.value)
assert "simple-shuffle" in str(exc_info.value)
assert "least-busy" in str(exc_info.value)
@pytest.mark.vcr(filter_headers=["authorization"])
@patch.object(LLM, '_initialize_router')
def test_llm_with_missing_model_in_litellm_params(mock_initialize_router):
"""Test that LLM initialization raises an error when model is missing in litellm_params."""
mock_initialize_router.side_effect = RuntimeError("Router initialization failed: Missing required 'model' in litellm_params")
model_list = [
{
"model_name": "gpt-4o-mini",
"litellm_params": {
"api_key": "test-key-1"
}
}
]
with pytest.raises(RuntimeError) as exc_info:
LLM(model="gpt-4o-mini", model_list=model_list)
assert "Router initialization failed" in str(exc_info.value)

68
uv.lock generated
View File

@@ -1,18 +1,10 @@
version = 1
requires-python = ">=3.10, <3.13"
resolution-markers = [
"python_full_version < '3.11' and sys_platform == 'darwin'",
"python_full_version < '3.11' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version == '3.11.*' and sys_platform == 'darwin'",
"python_full_version == '3.11.*' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version == '3.11.*' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version == '3.11.*' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12' and python_full_version < '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12' and python_full_version < '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version >= '3.12.4' and sys_platform == 'darwin'",
"python_full_version >= '3.12.4' and platform_machine == 'aarch64' and sys_platform == 'linux'",
"(python_full_version >= '3.12.4' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.12.4' and sys_platform != 'darwin' and sys_platform != 'linux')",
"python_full_version < '3.11'",
"python_full_version == '3.11.*'",
"python_full_version >= '3.12' and python_full_version < '3.12.4'",
"python_full_version >= '3.12.4'",
]
[[package]]
@@ -308,7 +300,7 @@ name = "build"
version = "1.2.2.post1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "(os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "colorama", marker = "os_name == 'nt'" },
{ name = "importlib-metadata", marker = "python_full_version < '3.10.2'" },
{ name = "packaging" },
{ name = "pyproject-hooks" },
@@ -543,7 +535,7 @@ name = "click"
version = "8.1.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "colorama", marker = "platform_system == 'Windows'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/96/d3/f04c7bfcf5c1862a2a5b845c6b2b360488cf47af55dfa79c98f6a6bf98b5/click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de", size = 336121 }
wheels = [
@@ -650,6 +642,7 @@ tools = [
[package.dev-dependencies]
dev = [
{ name = "cairosvg" },
{ name = "crewai-tools" },
{ name = "mkdocs" },
{ name = "mkdocs-material" },
{ name = "mkdocs-material-extensions" },
@@ -703,6 +696,7 @@ requires-dist = [
[package.metadata.requires-dev]
dev = [
{ name = "cairosvg", specifier = ">=2.7.1" },
{ name = "crewai-tools", specifier = ">=0.17.0" },
{ name = "mkdocs", specifier = ">=1.4.3" },
{ name = "mkdocs-material", specifier = ">=9.5.7" },
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
@@ -2468,7 +2462,7 @@ version = "1.6.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "click" },
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "colorama", marker = "platform_system == 'Windows'" },
{ name = "ghp-import" },
{ name = "jinja2" },
{ name = "markdown" },
@@ -2649,7 +2643,7 @@ version = "2.10.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pygments" },
{ name = "pywin32", marker = "sys_platform == 'win32'" },
{ name = "pywin32", marker = "platform_system == 'Windows'" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3a/93/80ac75c20ce54c785648b4ed363c88f148bf22637e10c9863db4fbe73e74/mpire-2.10.2.tar.gz", hash = "sha256:f66a321e93fadff34585a4bfa05e95bd946cf714b442f51c529038eb45773d97", size = 271270 }
@@ -2896,7 +2890,7 @@ name = "nvidia-cudnn-cu12"
version = "9.1.0.70"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
@@ -2923,9 +2917,9 @@ name = "nvidia-cusolver-cu12"
version = "11.4.5.107"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-cublas-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-cusparse-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd", size = 124161928 },
@@ -2936,7 +2930,7 @@ name = "nvidia-cusparse-cu12"
version = "12.1.0.106"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c", size = 195958278 },
@@ -3486,7 +3480,7 @@ name = "portalocker"
version = "2.10.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pywin32", marker = "sys_platform == 'win32'" },
{ name = "pywin32", marker = "platform_system == 'Windows'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ed/d3/c6c64067759e87af98cc668c1cc75171347d0f1577fab7ca3749134e3cd4/portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f", size = 40891 }
wheels = [
@@ -5028,19 +5022,19 @@ dependencies = [
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "sympy" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "triton", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
{ name = "typing-extensions" },
]
wheels = [
@@ -5087,7 +5081,7 @@ name = "tqdm"
version = "4.66.5"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "colorama", marker = "platform_system == 'Windows'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 }
wheels = [
@@ -5130,7 +5124,7 @@ version = "0.27.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "attrs" },
{ name = "cffi", marker = "(implementation_name != 'pypy' and os_name == 'nt' and platform_machine != 'aarch64' and sys_platform == 'linux') or (implementation_name != 'pypy' and os_name == 'nt' and sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "cffi", marker = "implementation_name != 'pypy' and os_name == 'nt'" },
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "idna" },
{ name = "outcome" },
@@ -5161,7 +5155,7 @@ name = "triton"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "filelock", marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" },
{ name = "filelock", marker = "(platform_machine != 'aarch64' and platform_system != 'Darwin') or (platform_system != 'Darwin' and platform_system != 'Linux')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a", size = 209376304 },