Compare commits

..

1 Commits

Author SHA1 Message Date
Devin AI
9af03058fe fix: skip signal handler registration in non-main thread
When CrewAI is initialized from a non-main thread (e.g., in Streamlit,
Flask, Django, Jupyter), the telemetry module was printing multiple
ValueError tracebacks for each signal handler registration attempt.

This fix adds a proactive main thread check in _register_shutdown_handlers()
before attempting signal registration. If not in the main thread, a debug
message is logged and signal handler registration is skipped.

Fixes #4289

Co-Authored-By: João <joao@crewai.com>
2026-01-27 19:45:52 +00:00
29 changed files with 1126 additions and 1791 deletions

View File

@@ -152,4 +152,4 @@ __all__ = [
"wrap_file_source",
]
__version__ = "1.9.1"
__version__ = "1.9.0"

View File

@@ -12,7 +12,7 @@ dependencies = [
"pytube~=15.0.0",
"requests~=2.32.5",
"docker~=7.1.0",
"crewai==1.9.1",
"crewai==1.9.0",
"lancedb~=0.5.4",
"tiktoken~=0.8.0",
"beautifulsoup4~=4.13.4",

View File

@@ -291,4 +291,4 @@ __all__ = [
"ZapierActionTools",
]
__version__ = "1.9.1"
__version__ = "1.9.0"

View File

@@ -1,11 +1,10 @@
"""Crewai Enterprise Tools."""
import json
import os
from typing import Any
import json
import re
from typing import Any, Optional, Union, cast, get_origin
from crewai.tools import BaseTool
from crewai.utilities.pydantic_schema_utils import create_model_from_schema
from pydantic import Field, create_model
import requests
@@ -15,6 +14,77 @@ from crewai_tools.tools.crewai_platform_tools.misc import (
)
class AllOfSchemaAnalyzer:
"""Helper class to analyze and merge allOf schemas."""
def __init__(self, schemas: list[dict[str, Any]]):
self.schemas = schemas
self._explicit_types: list[str] = []
self._merged_properties: dict[str, Any] = {}
self._merged_required: list[str] = []
self._analyze_schemas()
def _analyze_schemas(self) -> None:
"""Analyze all schemas and extract relevant information."""
for schema in self.schemas:
if "type" in schema:
self._explicit_types.append(schema["type"])
# Merge object properties
if schema.get("type") == "object" and "properties" in schema:
self._merged_properties.update(schema["properties"])
if "required" in schema:
self._merged_required.extend(schema["required"])
def has_consistent_type(self) -> bool:
"""Check if all schemas have the same explicit type."""
return len(set(self._explicit_types)) == 1 if self._explicit_types else False
def get_consistent_type(self) -> type[Any]:
"""Get the consistent type if all schemas agree."""
if not self.has_consistent_type():
raise ValueError("No consistent type found")
type_mapping = {
"string": str,
"integer": int,
"number": float,
"boolean": bool,
"array": list,
"object": dict,
"null": type(None),
}
return type_mapping.get(self._explicit_types[0], str)
def has_object_schemas(self) -> bool:
"""Check if any schemas are object types with properties."""
return bool(self._merged_properties)
def get_merged_properties(self) -> dict[str, Any]:
"""Get merged properties from all object schemas."""
return self._merged_properties
def get_merged_required_fields(self) -> list[str]:
"""Get merged required fields from all object schemas."""
return list(set(self._merged_required)) # Remove duplicates
def get_fallback_type(self) -> type[Any]:
"""Get a fallback type when merging fails."""
if self._explicit_types:
# Use the first explicit type
type_mapping = {
"string": str,
"integer": int,
"number": float,
"boolean": bool,
"array": list,
"object": dict,
"null": type(None),
}
return type_mapping.get(self._explicit_types[0], str)
return str
class CrewAIPlatformActionTool(BaseTool):
action_name: str = Field(default="", description="The name of the action")
action_schema: dict[str, Any] = Field(
@@ -27,19 +97,42 @@ class CrewAIPlatformActionTool(BaseTool):
action_name: str,
action_schema: dict[str, Any],
):
parameters = action_schema.get("function", {}).get("parameters", {})
self._model_registry: dict[str, type[Any]] = {}
self._base_name = self._sanitize_name(action_name)
schema_props, required = self._extract_schema_info(action_schema)
field_definitions: dict[str, Any] = {}
for param_name, param_details in schema_props.items():
param_desc = param_details.get("description", "")
is_required = param_name in required
if parameters and parameters.get("properties"):
try:
if "title" not in parameters:
parameters = {**parameters, "title": f"{action_name}Schema"}
if "type" not in parameters:
parameters = {**parameters, "type": "object"}
args_schema = create_model_from_schema(parameters)
field_type = self._process_schema_type(
param_details, self._sanitize_name(param_name).title()
)
except Exception:
args_schema = create_model(f"{action_name}Schema")
field_type = str
field_definitions[param_name] = self._create_field_definition(
field_type, is_required, param_desc
)
if field_definitions:
try:
args_schema = create_model(
f"{self._base_name}Schema", **field_definitions
)
except Exception:
args_schema = create_model(
f"{self._base_name}Schema",
input_text=(str, Field(description="Input for the action")),
)
else:
args_schema = create_model(f"{action_name}Schema")
args_schema = create_model(
f"{self._base_name}Schema",
input_text=(str, Field(description="Input for the action")),
)
super().__init__(
name=action_name.lower().replace(" ", "_"),
@@ -49,12 +142,285 @@ class CrewAIPlatformActionTool(BaseTool):
self.action_name = action_name
self.action_schema = action_schema
def _run(self, **kwargs: Any) -> str:
@staticmethod
def _sanitize_name(name: str) -> str:
name = name.lower().replace(" ", "_")
sanitized = re.sub(r"[^a-zA-Z0-9_]", "", name)
parts = sanitized.split("_")
return "".join(word.capitalize() for word in parts if word)
@staticmethod
def _extract_schema_info(
action_schema: dict[str, Any],
) -> tuple[dict[str, Any], list[str]]:
schema_props = (
action_schema.get("function", {})
.get("parameters", {})
.get("properties", {})
)
required = (
action_schema.get("function", {}).get("parameters", {}).get("required", [])
)
return schema_props, required
def _process_schema_type(self, schema: dict[str, Any], type_name: str) -> type[Any]:
"""
Process a JSON Schema type definition into a Python type.
Handles complex schema constructs like anyOf, oneOf, allOf, enums, arrays, and objects.
"""
# Handle composite schema types (anyOf, oneOf, allOf)
if composite_type := self._process_composite_schema(schema, type_name):
return composite_type
# Handle primitive types and simple constructs
return self._process_primitive_schema(schema, type_name)
def _process_composite_schema(
self, schema: dict[str, Any], type_name: str
) -> type[Any] | None:
"""Process composite schema types: anyOf, oneOf, allOf."""
if "anyOf" in schema:
return self._process_any_of_schema(schema["anyOf"], type_name)
if "oneOf" in schema:
return self._process_one_of_schema(schema["oneOf"], type_name)
if "allOf" in schema:
return self._process_all_of_schema(schema["allOf"], type_name)
return None
def _process_any_of_schema(
self, any_of_types: list[dict[str, Any]], type_name: str
) -> type[Any]:
"""Process anyOf schema - creates Union of possible types."""
is_nullable = any(t.get("type") == "null" for t in any_of_types)
non_null_types = [t for t in any_of_types if t.get("type") != "null"]
if not non_null_types:
return cast(
type[Any], cast(object, str | None)
) # fallback for only-null case
base_type = (
self._process_schema_type(non_null_types[0], type_name)
if len(non_null_types) == 1
else self._create_union_type(non_null_types, type_name, "AnyOf")
)
return base_type | None if is_nullable else base_type # type: ignore[return-value]
def _process_one_of_schema(
self, one_of_types: list[dict[str, Any]], type_name: str
) -> type[Any]:
"""Process oneOf schema - creates Union of mutually exclusive types."""
return (
self._process_schema_type(one_of_types[0], type_name)
if len(one_of_types) == 1
else self._create_union_type(one_of_types, type_name, "OneOf")
)
def _process_all_of_schema(
self, all_of_schemas: list[dict[str, Any]], type_name: str
) -> type[Any]:
"""Process allOf schema - merges schemas that must all be satisfied."""
if len(all_of_schemas) == 1:
return self._process_schema_type(all_of_schemas[0], type_name)
return self._merge_all_of_schemas(all_of_schemas, type_name)
def _create_union_type(
self, schemas: list[dict[str, Any]], type_name: str, prefix: str
) -> type[Any]:
"""Create a Union type from multiple schemas."""
return Union[ # type: ignore # noqa: UP007
tuple(
self._process_schema_type(schema, f"{type_name}{prefix}{i}")
for i, schema in enumerate(schemas)
)
]
def _process_primitive_schema(
self, schema: dict[str, Any], type_name: str
) -> type[Any]:
"""Process primitive schema types: string, number, array, object, etc."""
json_type = schema.get("type", "string")
if "enum" in schema:
return self._process_enum_schema(schema, json_type)
if json_type == "array":
return self._process_array_schema(schema, type_name)
if json_type == "object":
return self._create_nested_model(schema, type_name)
return self._map_json_type_to_python(json_type)
def _process_enum_schema(self, schema: dict[str, Any], json_type: str) -> type[Any]:
"""Process enum schema - currently falls back to base type."""
enum_values = schema["enum"]
if not enum_values:
return self._map_json_type_to_python(json_type)
# For Literal types, we need to pass the values directly, not as a tuple
# This is a workaround since we can't dynamically create Literal types easily
# Fall back to the base JSON type for now
return self._map_json_type_to_python(json_type)
def _process_array_schema(
self, schema: dict[str, Any], type_name: str
) -> type[Any]:
items_schema = schema.get("items", {"type": "string"})
item_type = self._process_schema_type(items_schema, f"{type_name}Item")
return list[item_type] # type: ignore
def _merge_all_of_schemas(
self, schemas: list[dict[str, Any]], type_name: str
) -> type[Any]:
schema_analyzer = AllOfSchemaAnalyzer(schemas)
if schema_analyzer.has_consistent_type():
return schema_analyzer.get_consistent_type()
if schema_analyzer.has_object_schemas():
return self._create_merged_object_model(
schema_analyzer.get_merged_properties(),
schema_analyzer.get_merged_required_fields(),
type_name,
)
return schema_analyzer.get_fallback_type()
def _create_merged_object_model(
self, properties: dict[str, Any], required: list[str], model_name: str
) -> type[Any]:
full_model_name = f"{self._base_name}{model_name}AllOf"
if full_model_name in self._model_registry:
return self._model_registry[full_model_name]
if not properties:
return dict
field_definitions = self._build_field_definitions(
properties, required, model_name
)
try:
merged_model = create_model(full_model_name, **field_definitions)
self._model_registry[full_model_name] = merged_model
return merged_model
except Exception:
return dict
def _build_field_definitions(
self, properties: dict[str, Any], required: list[str], model_name: str
) -> dict[str, Any]:
field_definitions = {}
for prop_name, prop_schema in properties.items():
prop_desc = prop_schema.get("description", "")
is_required = prop_name in required
try:
prop_type = self._process_schema_type(
prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}"
)
except Exception:
prop_type = str
field_definitions[prop_name] = self._create_field_definition(
prop_type, is_required, prop_desc
)
return field_definitions
def _create_nested_model(
self, schema: dict[str, Any], model_name: str
) -> type[Any]:
full_model_name = f"{self._base_name}{model_name}"
if full_model_name in self._model_registry:
return self._model_registry[full_model_name]
properties = schema.get("properties", {})
required_fields = schema.get("required", [])
if not properties:
return dict
field_definitions = {}
for prop_name, prop_schema in properties.items():
prop_desc = prop_schema.get("description", "")
is_required = prop_name in required_fields
try:
prop_type = self._process_schema_type(
prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}"
)
except Exception:
prop_type = str
field_definitions[prop_name] = self._create_field_definition(
prop_type, is_required, prop_desc
)
try:
nested_model = create_model(full_model_name, **field_definitions) # type: ignore
self._model_registry[full_model_name] = nested_model
return nested_model
except Exception:
return dict
def _create_field_definition(
self, field_type: type[Any], is_required: bool, description: str
) -> tuple:
if is_required:
return (field_type, Field(description=description))
if get_origin(field_type) is Union:
return (field_type, Field(default=None, description=description))
return (
Optional[field_type], # noqa: UP045
Field(default=None, description=description),
)
def _map_json_type_to_python(self, json_type: str) -> type[Any]:
type_mapping = {
"string": str,
"integer": int,
"number": float,
"boolean": bool,
"array": list,
"object": dict,
"null": type(None),
}
return type_mapping.get(json_type, str)
def _get_required_nullable_fields(self) -> list[str]:
schema_props, required = self._extract_schema_info(self.action_schema)
required_nullable_fields = []
for param_name in required:
param_details = schema_props.get(param_name, {})
if self._is_nullable_type(param_details):
required_nullable_fields.append(param_name)
return required_nullable_fields
def _is_nullable_type(self, schema: dict[str, Any]) -> bool:
if "anyOf" in schema:
return any(t.get("type") == "null" for t in schema["anyOf"])
return schema.get("type") == "null"
def _run(self, **kwargs) -> str:
try:
cleaned_kwargs = {
key: value for key, value in kwargs.items() if value is not None
}
required_nullable_fields = self._get_required_nullable_fields()
for field_name in required_nullable_fields:
if field_name not in cleaned_kwargs:
cleaned_kwargs[field_name] = None
api_url = (
f"{get_platform_api_base_url()}/actions/{self.action_name}/execute"
)
@@ -63,9 +429,7 @@ class CrewAIPlatformActionTool(BaseTool):
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
}
payload = {
"integration": cleaned_kwargs if cleaned_kwargs else {"_noop": True}
}
payload = cleaned_kwargs
response = requests.post(
url=api_url,
@@ -77,14 +441,7 @@ class CrewAIPlatformActionTool(BaseTool):
data = response.json()
if not response.ok:
if isinstance(data, dict):
error_info = data.get("error", {})
if isinstance(error_info, dict):
error_message = error_info.get("message", json.dumps(data))
else:
error_message = str(error_info)
else:
error_message = str(data)
error_message = data.get("error", {}).get("message", json.dumps(data))
return f"API request failed: {error_message}"
return json.dumps(data, indent=2)

View File

@@ -1,10 +1,5 @@
"""CrewAI platform tool builder for fetching and creating action tools."""
import logging
import os
from types import TracebackType
from typing import Any
import os
from crewai.tools import BaseTool
import requests
@@ -17,29 +12,22 @@ from crewai_tools.tools.crewai_platform_tools.misc import (
)
logger = logging.getLogger(__name__)
class CrewaiPlatformToolBuilder:
"""Builds platform tools from remote action schemas."""
def __init__(
self,
apps: list[str],
) -> None:
):
self._apps = apps
self._actions_schema: dict[str, dict[str, Any]] = {}
self._tools: list[BaseTool] | None = None
self._actions_schema = {} # type: ignore[var-annotated]
self._tools = None
def tools(self) -> list[BaseTool]:
"""Fetch actions and return built tools."""
if self._tools is None:
self._fetch_actions()
self._create_tools()
return self._tools if self._tools is not None else []
def _fetch_actions(self) -> None:
"""Fetch action schemas from the platform API."""
def _fetch_actions(self):
actions_url = f"{get_platform_api_base_url()}/actions"
headers = {"Authorization": f"Bearer {get_platform_integration_token()}"}
@@ -52,8 +40,7 @@ class CrewaiPlatformToolBuilder:
verify=os.environ.get("CREWAI_FACTORY", "false").lower() != "true",
)
response.raise_for_status()
except Exception as e:
logger.error(f"Failed to fetch platform tools for apps {self._apps}: {e}")
except Exception:
return
raw_data = response.json()
@@ -64,8 +51,6 @@ class CrewaiPlatformToolBuilder:
for app, action_list in action_categories.items():
if isinstance(action_list, list):
for action in action_list:
if not isinstance(action, dict):
continue
if action_name := action.get("name"):
action_schema = {
"function": {
@@ -79,16 +64,72 @@ class CrewaiPlatformToolBuilder:
}
self._actions_schema[action_name] = action_schema
def _create_tools(self) -> None:
"""Create tool instances from fetched action schemas."""
tools: list[BaseTool] = []
def _generate_detailed_description(
self, schema: dict[str, Any], indent: int = 0
) -> list[str]:
descriptions = []
indent_str = " " * indent
schema_type = schema.get("type", "string")
if schema_type == "object":
properties = schema.get("properties", {})
required_fields = schema.get("required", [])
if properties:
descriptions.append(f"{indent_str}Object with properties:")
for prop_name, prop_schema in properties.items():
prop_desc = prop_schema.get("description", "")
is_required = prop_name in required_fields
req_str = " (required)" if is_required else " (optional)"
descriptions.append(
f"{indent_str} - {prop_name}: {prop_desc}{req_str}"
)
if prop_schema.get("type") == "object":
descriptions.extend(
self._generate_detailed_description(prop_schema, indent + 2)
)
elif prop_schema.get("type") == "array":
items_schema = prop_schema.get("items", {})
if items_schema.get("type") == "object":
descriptions.append(f"{indent_str} Array of objects:")
descriptions.extend(
self._generate_detailed_description(
items_schema, indent + 3
)
)
elif "enum" in items_schema:
descriptions.append(
f"{indent_str} Array of enum values: {items_schema['enum']}"
)
elif "enum" in prop_schema:
descriptions.append(
f"{indent_str} Enum values: {prop_schema['enum']}"
)
return descriptions
def _create_tools(self):
tools = []
for action_name, action_schema in self._actions_schema.items():
function_details = action_schema.get("function", {})
description = function_details.get("description", f"Execute {action_name}")
parameters = function_details.get("parameters", {})
param_descriptions = []
if parameters.get("properties"):
param_descriptions.append("\nDetailed Parameter Structure:")
param_descriptions.extend(
self._generate_detailed_description(parameters)
)
full_description = description + "\n".join(param_descriptions)
tool = CrewAIPlatformActionTool(
description=description,
description=full_description,
action_name=action_name,
action_schema=action_schema,
)
@@ -97,14 +138,8 @@ class CrewaiPlatformToolBuilder:
self._tools = tools
def __enter__(self) -> list[BaseTool]:
"""Enter context manager and return tools."""
def __enter__(self):
return self.tools()
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None:
"""Exit context manager."""
def __exit__(self, exc_type, exc_val, exc_tb):
pass

View File

@@ -1,3 +1,4 @@
from typing import Union, get_args, get_origin
from unittest.mock import patch, Mock
import os
@@ -6,6 +7,251 @@ from crewai_tools.tools.crewai_platform_tools.crewai_platform_action_tool import
)
class TestSchemaProcessing:
def setup_method(self):
self.base_action_schema = {
"function": {
"parameters": {
"properties": {},
"required": []
}
}
}
def create_test_tool(self, action_name="test_action"):
return CrewAIPlatformActionTool(
description="Test tool",
action_name=action_name,
action_schema=self.base_action_schema
)
def test_anyof_multiple_types(self):
tool = self.create_test_tool()
test_schema = {
"anyOf": [
{"type": "string"},
{"type": "number"},
{"type": "integer"}
]
}
result_type = tool._process_schema_type(test_schema, "TestField")
assert get_origin(result_type) is Union
args = get_args(result_type)
expected_types = (str, float, int)
for expected_type in expected_types:
assert expected_type in args
def test_anyof_with_null(self):
tool = self.create_test_tool()
test_schema = {
"anyOf": [
{"type": "string"},
{"type": "number"},
{"type": "null"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldNullable")
assert get_origin(result_type) is Union
args = get_args(result_type)
assert type(None) in args
assert str in args
assert float in args
def test_anyof_single_type(self):
tool = self.create_test_tool()
test_schema = {
"anyOf": [
{"type": "string"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldSingle")
assert result_type is str
def test_oneof_multiple_types(self):
tool = self.create_test_tool()
test_schema = {
"oneOf": [
{"type": "string"},
{"type": "boolean"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldOneOf")
assert get_origin(result_type) is Union
args = get_args(result_type)
expected_types = (str, bool)
for expected_type in expected_types:
assert expected_type in args
def test_oneof_single_type(self):
tool = self.create_test_tool()
test_schema = {
"oneOf": [
{"type": "integer"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldOneOfSingle")
assert result_type is int
def test_basic_types(self):
tool = self.create_test_tool()
test_cases = [
({"type": "string"}, str),
({"type": "integer"}, int),
({"type": "number"}, float),
({"type": "boolean"}, bool),
({"type": "array", "items": {"type": "string"}}, list),
]
for schema, expected_type in test_cases:
result_type = tool._process_schema_type(schema, "TestField")
if schema["type"] == "array":
assert get_origin(result_type) is list
else:
assert result_type is expected_type
def test_enum_handling(self):
tool = self.create_test_tool()
test_schema = {
"type": "string",
"enum": ["option1", "option2", "option3"]
}
result_type = tool._process_schema_type(test_schema, "TestFieldEnum")
assert result_type is str
def test_nested_anyof(self):
tool = self.create_test_tool()
test_schema = {
"anyOf": [
{"type": "string"},
{
"anyOf": [
{"type": "integer"},
{"type": "boolean"}
]
}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldNested")
assert get_origin(result_type) is Union
args = get_args(result_type)
assert str in args
if len(args) == 3:
assert int in args
assert bool in args
else:
nested_union = next(arg for arg in args if get_origin(arg) is Union)
nested_args = get_args(nested_union)
assert int in nested_args
assert bool in nested_args
def test_allof_same_types(self):
tool = self.create_test_tool()
test_schema = {
"allOf": [
{"type": "string"},
{"type": "string", "maxLength": 100}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfSame")
assert result_type is str
def test_allof_object_merge(self):
tool = self.create_test_tool()
test_schema = {
"allOf": [
{
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"}
},
"required": ["name"]
},
{
"type": "object",
"properties": {
"email": {"type": "string"},
"age": {"type": "integer"}
},
"required": ["email"]
}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfMerged")
# Should create a merged model with all properties
# The implementation might fall back to dict if model creation fails
# Let's just verify it's not a basic scalar type
assert result_type is not str
assert result_type is not int
assert result_type is not bool
# It could be dict (fallback) or a proper model class
assert result_type in (dict, type) or hasattr(result_type, '__name__')
def test_allof_single_schema(self):
"""Test that allOf with single schema works correctly."""
tool = self.create_test_tool()
test_schema = {
"allOf": [
{"type": "boolean"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfSingle")
# Should be just bool
assert result_type is bool
def test_allof_mixed_types(self):
tool = self.create_test_tool()
test_schema = {
"allOf": [
{"type": "string"},
{"type": "integer"}
]
}
result_type = tool._process_schema_type(test_schema, "TestFieldAllOfMixed")
assert result_type is str
class TestCrewAIPlatformActionToolVerify:
"""Test suite for SSL verification behavior based on CREWAI_FACTORY environment variable"""

View File

@@ -224,6 +224,43 @@ class TestCrewaiPlatformToolBuilder(unittest.TestCase):
_, kwargs = mock_get.call_args
assert kwargs["params"]["apps"] == ""
def test_detailed_description_generation(self):
builder = CrewaiPlatformToolBuilder(apps=["test"])
complex_schema = {
"type": "object",
"properties": {
"simple_string": {"type": "string", "description": "A simple string"},
"nested_object": {
"type": "object",
"properties": {
"inner_prop": {
"type": "integer",
"description": "Inner property",
}
},
"description": "Nested object",
},
"array_prop": {
"type": "array",
"items": {"type": "string"},
"description": "Array of strings",
},
},
}
descriptions = builder._generate_detailed_description(complex_schema)
assert isinstance(descriptions, list)
assert len(descriptions) > 0
description_text = "\n".join(descriptions)
assert "simple_string" in description_text
assert "nested_object" in description_text
assert "array_prop" in description_text
class TestCrewaiPlatformToolBuilderVerify(unittest.TestCase):
"""Test suite for SSL verification behavior in CrewaiPlatformToolBuilder"""

View File

@@ -49,7 +49,7 @@ Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = [
"crewai-tools==1.9.1",
"crewai-tools==1.9.0",
]
embeddings = [
"tiktoken~=0.8.0"

View File

@@ -40,7 +40,7 @@ def _suppress_pydantic_deprecation_warnings() -> None:
_suppress_pydantic_deprecation_warnings()
__version__ = "1.9.1"
__version__ = "1.9.0"
_telemetry_submitted = False

View File

@@ -28,11 +28,6 @@ from crewai.hooks.llm_hooks import (
get_after_llm_call_hooks,
get_before_llm_call_hooks,
)
from crewai.hooks.tool_hooks import (
ToolCallHookContext,
get_after_tool_call_hooks,
get_before_tool_call_hooks,
)
from crewai.utilities.agent_utils import (
aget_llm_response,
convert_tools_to_openai_schema,
@@ -754,41 +749,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
track_delegation_if_needed(func_name, args_dict, self.task)
# Find the structured tool for hook context
structured_tool = None
for tool in self.tools or []:
if sanitize_tool_name(tool.name) == func_name:
structured_tool = tool
break
# Execute before_tool_call hooks
hook_blocked = False
before_hook_context = ToolCallHookContext(
tool_name=func_name,
tool_input=args_dict,
tool=structured_tool, # type: ignore[arg-type]
agent=self.agent,
task=self.task,
crew=self.crew,
)
before_hooks = get_before_tool_call_hooks()
try:
for hook in before_hooks:
hook_result = hook(before_hook_context)
if hook_result is False:
hook_blocked = True
break
except Exception as hook_error:
self._printer.print(
content=f"Error in before_tool_call hook: {hook_error}",
color="red",
)
# If hook blocked execution, set result and skip tool execution
if hook_blocked:
result = f"Tool execution blocked by hook. Tool: {func_name}"
# Execute the tool (only if not cached, not at max usage, and not blocked by hook)
elif not from_cache and not max_usage_reached:
# Execute the tool (only if not cached and not at max usage)
if not from_cache and not max_usage_reached:
result = "Tool not found"
if func_name in available_functions:
try:
@@ -836,28 +798,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
# Return error message when max usage limit is reached
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
after_hook_context = ToolCallHookContext(
tool_name=func_name,
tool_input=args_dict,
tool=structured_tool, # type: ignore[arg-type]
agent=self.agent,
task=self.task,
crew=self.crew,
tool_result=result,
)
after_hooks = get_after_tool_call_hooks()
try:
for after_hook in after_hooks:
hook_result = after_hook(after_hook_context)
if hook_result is not None:
result = hook_result
after_hook_context.tool_result = result
except Exception as hook_error:
self._printer.print(
content=f"Error in after_tool_call hook: {hook_error}",
color="red",
)
# Emit tool usage finished event
crewai_event_bus.emit(
self,

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]==1.9.1"
"crewai[tools]==1.9.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]==1.9.1"
"crewai[tools]==1.9.0"
]
[project.scripts]

View File

@@ -36,12 +36,6 @@ from crewai.hooks.llm_hooks import (
get_after_llm_call_hooks,
get_before_llm_call_hooks,
)
from crewai.hooks.tool_hooks import (
ToolCallHookContext,
get_after_tool_call_hooks,
get_before_tool_call_hooks,
)
from crewai.hooks.types import AfterLLMCallHookType, BeforeLLMCallHookType
from crewai.utilities.agent_utils import (
convert_tools_to_openai_schema,
enforce_rpm_limit,
@@ -191,8 +185,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self._instance_id = str(uuid4())[:8]
self.before_llm_call_hooks: list[BeforeLLMCallHookType] = []
self.after_llm_call_hooks: list[AfterLLMCallHookType] = []
self.before_llm_call_hooks: list[Callable] = []
self.after_llm_call_hooks: list[Callable] = []
self.before_llm_call_hooks.extend(get_before_llm_call_hooks())
self.after_llm_call_hooks.extend(get_after_llm_call_hooks())
@@ -305,21 +299,11 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"""Compatibility property for mixin - returns state messages."""
return self._state.messages
@messages.setter
def messages(self, value: list[LLMMessage]) -> None:
"""Set state messages."""
self._state.messages = value
@property
def iterations(self) -> int:
"""Compatibility property for mixin - returns state iterations."""
return self._state.iterations
@iterations.setter
def iterations(self, value: int) -> None:
"""Set state iterations."""
self._state.iterations = value
@start()
def initialize_reasoning(self) -> Literal["initialized"]:
"""Initialize the reasoning flow and emit agent start logs."""
@@ -593,12 +577,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"content": None,
"tool_calls": tool_calls_to_report,
}
if all(
type(tc).__qualname__ == "Part" for tc in self.state.pending_tool_calls
):
assistant_message["raw_tool_call_parts"] = list(
self.state.pending_tool_calls
)
self.state.messages.append(assistant_message)
# Now execute each tool
@@ -633,12 +611,14 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
# Check if tool has reached max usage count
max_usage_reached = False
if (
original_tool
and original_tool.max_usage_count is not None
and original_tool.current_usage_count >= original_tool.max_usage_count
):
max_usage_reached = True
if original_tool:
if (
hasattr(original_tool, "max_usage_count")
and original_tool.max_usage_count is not None
and original_tool.current_usage_count
>= original_tool.max_usage_count
):
max_usage_reached = True
# Check cache before executing
from_cache = False
@@ -670,37 +650,8 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
track_delegation_if_needed(func_name, args_dict, self.task)
structured_tool = None
for tool in self.tools or []:
if sanitize_tool_name(tool.name) == func_name:
structured_tool = tool
break
hook_blocked = False
before_hook_context = ToolCallHookContext(
tool_name=func_name,
tool_input=args_dict,
tool=structured_tool, # type: ignore[arg-type]
agent=self.agent,
task=self.task,
crew=self.crew,
)
before_hooks = get_before_tool_call_hooks()
try:
for hook in before_hooks:
hook_result = hook(before_hook_context)
if hook_result is False:
hook_blocked = True
break
except Exception as hook_error:
self._printer.print(
content=f"Error in before_tool_call hook: {hook_error}",
color="red",
)
if hook_blocked:
result = f"Tool execution blocked by hook. Tool: {func_name}"
elif not from_cache and not max_usage_reached:
# Execute the tool (only if not cached and not at max usage)
if not from_cache and not max_usage_reached:
result = "Tool not found"
if func_name in self._available_functions:
try:
@@ -710,7 +661,11 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
# Add to cache after successful execution (before string conversion)
if self.tools_handler and self.tools_handler.cache:
should_cache = True
if original_tool:
if (
original_tool
and hasattr(original_tool, "cache_function")
and original_tool.cache_function
):
should_cache = original_tool.cache_function(
args_dict, raw_result
)
@@ -741,33 +696,10 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
error=e,
),
)
elif max_usage_reached and original_tool:
elif max_usage_reached:
# Return error message when max usage limit is reached
result = f"Tool '{func_name}' has reached its usage limit of {original_tool.max_usage_count} times and cannot be used anymore."
# Execute after_tool_call hooks (even if blocked, to allow logging/monitoring)
after_hook_context = ToolCallHookContext(
tool_name=func_name,
tool_input=args_dict,
tool=structured_tool, # type: ignore[arg-type]
agent=self.agent,
task=self.task,
crew=self.crew,
tool_result=result,
)
after_hooks = get_after_tool_call_hooks()
try:
for after_hook in after_hooks:
hook_result = after_hook(after_hook_context)
if hook_result is not None:
result = hook_result
after_hook_context.tool_result = result
except Exception as hook_error:
self._printer.print(
content=f"Error in after_tool_call hook: {hook_error}",
color="red",
)
# Emit tool usage finished event
crewai_event_bus.emit(
self,
@@ -901,10 +833,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
@listen("parser_error")
def recover_from_parser_error(self) -> Literal["initialized"]:
"""Recover from output parser errors and retry."""
if not self._last_parser_error:
self.state.iterations += 1
return "initialized"
formatted_answer = handle_output_parser_exception(
e=self._last_parser_error,
messages=list(self.state.messages),

View File

@@ -9,7 +9,6 @@ from crewai.utilities.printer import Printer
if TYPE_CHECKING:
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.experimental.agent_executor import AgentExecutor
from crewai.lite_agent import LiteAgent
from crewai.llms.base_llm import BaseLLM
from crewai.utilities.types import LLMMessage
@@ -42,7 +41,7 @@ class LLMCallHookContext:
Can be modified by returning a new string from after_llm_call hook.
"""
executor: CrewAgentExecutor | AgentExecutor | LiteAgent | None
executor: CrewAgentExecutor | LiteAgent | None
messages: list[LLMMessage]
agent: Any
task: Any
@@ -53,7 +52,7 @@ class LLMCallHookContext:
def __init__(
self,
executor: CrewAgentExecutor | AgentExecutor | LiteAgent | None = None,
executor: CrewAgentExecutor | LiteAgent | None = None,
response: str | None = None,
messages: list[LLMMessage] | None = None,
llm: BaseLLM | str | Any | None = None, # TODO: look into

View File

@@ -16,7 +16,6 @@ from crewai.utilities.agent_utils import is_context_length_exceeded
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededError,
)
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.types import LLMMessage
@@ -549,11 +548,7 @@ class BedrockCompletion(BaseLLM):
"toolSpec": {
"name": "structured_output",
"description": "Returns structured data according to the schema",
"inputSchema": {
"json": generate_model_description(response_model)
.get("json_schema", {})
.get("schema", {})
},
"inputSchema": {"json": response_model.model_json_schema()},
}
}
body["toolConfig"] = cast(
@@ -784,11 +779,7 @@ class BedrockCompletion(BaseLLM):
"toolSpec": {
"name": "structured_output",
"description": "Returns structured data according to the schema",
"inputSchema": {
"json": generate_model_description(response_model)
.get("json_schema", {})
.get("schema", {})
},
"inputSchema": {"json": response_model.model_json_schema()},
}
}
body["toolConfig"] = cast(
@@ -1020,11 +1011,7 @@ class BedrockCompletion(BaseLLM):
"toolSpec": {
"name": "structured_output",
"description": "Returns structured data according to the schema",
"inputSchema": {
"json": generate_model_description(response_model)
.get("json_schema", {})
.get("schema", {})
},
"inputSchema": {"json": response_model.model_json_schema()},
}
}
body["toolConfig"] = cast(
@@ -1236,11 +1223,7 @@ class BedrockCompletion(BaseLLM):
"toolSpec": {
"name": "structured_output",
"description": "Returns structured data according to the schema",
"inputSchema": {
"json": generate_model_description(response_model)
.get("json_schema", {})
.get("schema", {})
},
"inputSchema": {"json": response_model.model_json_schema()},
}
}
body["toolConfig"] = cast(

View File

@@ -15,7 +15,6 @@ from crewai.utilities.agent_utils import is_context_length_exceeded
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededError,
)
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.types import LLMMessage
@@ -465,10 +464,7 @@ class GeminiCompletion(BaseLLM):
if response_model:
config_params["response_mime_type"] = "application/json"
schema_output = generate_model_description(response_model)
config_params["response_schema"] = schema_output.get("json_schema", {}).get(
"schema", {}
)
config_params["response_schema"] = response_model.model_json_schema()
# Handle tools for supported models
if tools and self.supports_tools:
@@ -493,7 +489,7 @@ class GeminiCompletion(BaseLLM):
function_declaration = types.FunctionDeclaration(
name=name,
description=description,
parameters_json_schema=parameters if parameters else None,
parameters=parameters if parameters else None,
)
gemini_tool = types.Tool(function_declarations=[function_declaration])
@@ -547,10 +543,11 @@ class GeminiCompletion(BaseLLM):
else:
parts.append(types.Part.from_text(text=str(content) if content else ""))
text_content: str = " ".join(p.text for p in parts if p.text is not None)
if role == "system":
# Extract system instruction - Gemini handles it separately
text_content = " ".join(
p.text for p in parts if hasattr(p, "text") and p.text
)
if system_instruction:
system_instruction += f"\n\n{text_content}"
else:
@@ -579,40 +576,31 @@ class GeminiCompletion(BaseLLM):
types.Content(role="user", parts=[function_response_part])
)
elif role == "assistant" and message.get("tool_calls"):
raw_parts: list[Any] | None = message.get("raw_tool_call_parts")
if raw_parts and all(isinstance(p, types.Part) for p in raw_parts):
tool_parts: list[types.Part] = list(raw_parts)
if text_content:
tool_parts.insert(0, types.Part.from_text(text=text_content))
else:
tool_parts = []
if text_content:
tool_parts.append(types.Part.from_text(text=text_content))
tool_parts: list[types.Part] = []
tool_calls: list[dict[str, Any]] = message.get("tool_calls") or []
for tool_call in tool_calls:
func: dict[str, Any] = tool_call.get("function") or {}
func_name: str = str(func.get("name") or "")
func_args_raw: str | dict[str, Any] = (
func.get("arguments") or {}
)
if text_content:
tool_parts.append(types.Part.from_text(text=text_content))
func_args: dict[str, Any]
if isinstance(func_args_raw, str):
try:
func_args = (
json.loads(func_args_raw) if func_args_raw else {}
)
except (json.JSONDecodeError, TypeError):
func_args = {}
else:
func_args = func_args_raw
tool_calls: list[dict[str, Any]] = message.get("tool_calls") or []
for tool_call in tool_calls:
func: dict[str, Any] = tool_call.get("function") or {}
func_name: str = str(func.get("name") or "")
func_args_raw: str | dict[str, Any] = func.get("arguments") or {}
tool_parts.append(
types.Part.from_function_call(
name=func_name, args=func_args
func_args: dict[str, Any]
if isinstance(func_args_raw, str):
try:
func_args = (
json.loads(func_args_raw) if func_args_raw else {}
)
)
except (json.JSONDecodeError, TypeError):
func_args = {}
else:
func_args = func_args_raw
tool_parts.append(
types.Part.from_function_call(name=func_name, args=func_args)
)
contents.append(types.Content(role="model", parts=tool_parts))
else:

View File

@@ -693,14 +693,14 @@ class OpenAICompletion(BaseLLM):
if response_model or self.response_format:
format_model = response_model or self.response_format
if isinstance(format_model, type) and issubclass(format_model, BaseModel):
schema_output = generate_model_description(format_model)
json_schema = schema_output.get("json_schema", {})
schema = format_model.model_json_schema()
schema["additionalProperties"] = False
params["text"] = {
"format": {
"type": "json_schema",
"name": json_schema.get("name", format_model.__name__),
"strict": json_schema.get("strict", True),
"schema": json_schema.get("schema", {}),
"name": format_model.__name__,
"strict": True,
"schema": schema,
}
}
elif isinstance(format_model, dict):
@@ -1060,7 +1060,7 @@ class OpenAICompletion(BaseLLM):
chunk=delta_text,
from_task=from_task,
from_agent=from_agent,
response_id=response_id_stream,
response_id=response_id_stream
)
elif event.type == "response.function_call_arguments.delta":
@@ -1709,7 +1709,7 @@ class OpenAICompletion(BaseLLM):
**parse_params, response_format=response_model
) as stream:
for chunk in stream:
response_id_stream = chunk.id if hasattr(chunk, "id") else None
response_id_stream=chunk.id if hasattr(chunk,"id") else None
if chunk.type == "content.delta":
delta_content = chunk.delta
@@ -1718,7 +1718,7 @@ class OpenAICompletion(BaseLLM):
chunk=delta_content,
from_task=from_task,
from_agent=from_agent,
response_id=response_id_stream,
response_id=response_id_stream
)
final_completion = stream.get_final_completion()
@@ -1748,9 +1748,7 @@ class OpenAICompletion(BaseLLM):
usage_data = {"total_tokens": 0}
for completion_chunk in completion_stream:
response_id_stream = (
completion_chunk.id if hasattr(completion_chunk, "id") else None
)
response_id_stream=completion_chunk.id if hasattr(completion_chunk,"id") else None
if hasattr(completion_chunk, "usage") and completion_chunk.usage:
usage_data = self._extract_openai_token_usage(completion_chunk)
@@ -1768,7 +1766,7 @@ class OpenAICompletion(BaseLLM):
chunk=chunk_delta.content,
from_task=from_task,
from_agent=from_agent,
response_id=response_id_stream,
response_id=response_id_stream
)
if chunk_delta.tool_calls:
@@ -1807,7 +1805,7 @@ class OpenAICompletion(BaseLLM):
"index": tool_calls[tool_index]["index"],
},
call_type=LLMCallType.TOOL_CALL,
response_id=response_id_stream,
response_id=response_id_stream
)
self._track_token_usage_internal(usage_data)
@@ -2019,7 +2017,7 @@ class OpenAICompletion(BaseLLM):
accumulated_content = ""
usage_data = {"total_tokens": 0}
async for chunk in completion_stream:
response_id_stream = chunk.id if hasattr(chunk, "id") else None
response_id_stream=chunk.id if hasattr(chunk,"id") else None
if hasattr(chunk, "usage") and chunk.usage:
usage_data = self._extract_openai_token_usage(chunk)
@@ -2037,7 +2035,7 @@ class OpenAICompletion(BaseLLM):
chunk=delta.content,
from_task=from_task,
from_agent=from_agent,
response_id=response_id_stream,
response_id=response_id_stream
)
self._track_token_usage_internal(usage_data)
@@ -2073,7 +2071,7 @@ class OpenAICompletion(BaseLLM):
usage_data = {"total_tokens": 0}
async for chunk in stream:
response_id_stream = chunk.id if hasattr(chunk, "id") else None
response_id_stream=chunk.id if hasattr(chunk,"id") else None
if hasattr(chunk, "usage") and chunk.usage:
usage_data = self._extract_openai_token_usage(chunk)
@@ -2091,7 +2089,7 @@ class OpenAICompletion(BaseLLM):
chunk=chunk_delta.content,
from_task=from_task,
from_agent=from_agent,
response_id=response_id_stream,
response_id=response_id_stream
)
if chunk_delta.tool_calls:
@@ -2130,7 +2128,7 @@ class OpenAICompletion(BaseLLM):
"index": tool_calls[tool_index]["index"],
},
call_type=LLMCallType.TOOL_CALL,
response_id=response_id_stream,
response_id=response_id_stream
)
self._track_token_usage_internal(usage_data)

View File

@@ -2,7 +2,6 @@ import logging
import re
from typing import Any
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.string_utils import sanitize_tool_name
@@ -78,8 +77,7 @@ def extract_tool_info(tool: dict[str, Any]) -> tuple[str, str, dict[str, Any]]:
# Also check for args_schema (Pydantic format)
if not parameters and "args_schema" in tool:
if hasattr(tool["args_schema"], "model_json_schema"):
schema_output = generate_model_description(tool["args_schema"])
parameters = schema_output.get("json_schema", {}).get("schema", {})
parameters = tool["args_schema"].model_json_schema()
return name, description, parameters

View File

@@ -173,6 +173,13 @@ class Telemetry:
self._original_handlers: dict[int, Any] = {}
if threading.current_thread() is not threading.main_thread():
logger.debug(
"CrewAI telemetry: Skipping signal handler registration "
"(not running in main thread)."
)
return
self._register_signal_handler(signal.SIGTERM, SigTermEvent, shutdown=True)
self._register_signal_handler(signal.SIGINT, SigIntEvent, shutdown=True)
if hasattr(signal, "SIGHUP"):

View File

@@ -28,7 +28,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
)
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import ColoredText, Printer
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.string_utils import sanitize_tool_name
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.types import LLMMessage
@@ -37,7 +36,6 @@ from crewai.utilities.types import LLMMessage
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.experimental.agent_executor import AgentExecutor
from crewai.lite_agent import LiteAgent
from crewai.llm import LLM
from crewai.task import Task
@@ -160,8 +158,7 @@ def convert_tools_to_openai_schema(
parameters: dict[str, Any] = {}
if hasattr(tool, "args_schema") and tool.args_schema is not None:
try:
schema_output = generate_model_description(tool.args_schema)
parameters = schema_output.get("json_schema", {}).get("schema", {})
parameters = tool.args_schema.model_json_schema()
# Remove title and description from schema root as they're redundant
parameters.pop("title", None)
parameters.pop("description", None)
@@ -321,7 +318,7 @@ def get_llm_response(
from_task: Task | None = None,
from_agent: Agent | LiteAgent | None = None,
response_model: type[BaseModel] | None = None,
executor_context: CrewAgentExecutor | AgentExecutor | LiteAgent | None = None,
executor_context: CrewAgentExecutor | LiteAgent | None = None,
) -> str | Any:
"""Call the LLM and return the response, handling any invalid responses.
@@ -383,7 +380,7 @@ async def aget_llm_response(
from_task: Task | None = None,
from_agent: Agent | LiteAgent | None = None,
response_model: type[BaseModel] | None = None,
executor_context: CrewAgentExecutor | AgentExecutor | None = None,
executor_context: CrewAgentExecutor | None = None,
) -> str | Any:
"""Call the LLM asynchronously and return the response.
@@ -903,8 +900,7 @@ def extract_tool_call_info(
def _setup_before_llm_call_hooks(
executor_context: CrewAgentExecutor | AgentExecutor | LiteAgent | None,
printer: Printer,
executor_context: CrewAgentExecutor | LiteAgent | None, printer: Printer
) -> bool:
"""Setup and invoke before_llm_call hooks for the executor context.
@@ -954,7 +950,7 @@ def _setup_before_llm_call_hooks(
def _setup_after_llm_call_hooks(
executor_context: CrewAgentExecutor | AgentExecutor | LiteAgent | None,
executor_context: CrewAgentExecutor | LiteAgent | None,
answer: str,
printer: Printer,
) -> str:

View File

@@ -1,72 +1,14 @@
"""Dynamic Pydantic model creation from JSON schemas.
This module provides utilities for converting JSON schemas to Pydantic models at runtime.
The main function is `create_model_from_schema`, which takes a JSON schema and returns
a dynamically created Pydantic model class.
This is used by the A2A server to honor response schemas sent by clients, allowing
structured output from agent tasks.
Based on dydantic (https://github.com/zenbase-ai/dydantic).
"""Utilities for generating JSON schemas from Pydantic models.
This module provides functions for converting Pydantic models to JSON schemas
suitable for use with LLMs and tool definitions.
"""
from __future__ import annotations
from collections.abc import Callable
from copy import deepcopy
import datetime
import logging
from typing import TYPE_CHECKING, Annotated, Any, Literal, Union
import uuid
from typing import Any
from pydantic import (
UUID1,
UUID3,
UUID4,
UUID5,
AnyUrl,
BaseModel,
ConfigDict,
DirectoryPath,
Field,
FilePath,
FileUrl,
HttpUrl,
Json,
MongoDsn,
NewPath,
PostgresDsn,
SecretBytes,
SecretStr,
StrictBytes,
create_model as create_model_base,
)
from pydantic.networks import ( # type: ignore[attr-defined]
IPv4Address,
IPv6Address,
IPvAnyAddress,
IPvAnyInterface,
IPvAnyNetwork,
)
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from pydantic import EmailStr
from pydantic.main import AnyClassMethod
else:
try:
from pydantic import EmailStr
except ImportError:
logger.warning(
"EmailStr unavailable, using str fallback",
extra={"missing_package": "email_validator"},
)
EmailStr = str
from pydantic import BaseModel
def resolve_refs(schema: dict[str, Any]) -> dict[str, Any]:
@@ -301,319 +243,3 @@ def generate_model_description(model: type[BaseModel]) -> dict[str, Any]:
"schema": json_schema,
},
}
FORMAT_TYPE_MAP: dict[str, type[Any]] = {
"base64": Annotated[bytes, Field(json_schema_extra={"format": "base64"})], # type: ignore[dict-item]
"binary": StrictBytes,
"date": datetime.date,
"time": datetime.time,
"date-time": datetime.datetime,
"duration": datetime.timedelta,
"directory-path": DirectoryPath,
"email": EmailStr,
"file-path": FilePath,
"ipv4": IPv4Address,
"ipv6": IPv6Address,
"ipvanyaddress": IPvAnyAddress, # type: ignore[dict-item]
"ipvanyinterface": IPvAnyInterface, # type: ignore[dict-item]
"ipvanynetwork": IPvAnyNetwork, # type: ignore[dict-item]
"json-string": Json,
"multi-host-uri": PostgresDsn | MongoDsn, # type: ignore[dict-item]
"password": SecretStr,
"path": NewPath,
"uri": AnyUrl,
"uuid": uuid.UUID,
"uuid1": UUID1,
"uuid3": UUID3,
"uuid4": UUID4,
"uuid5": UUID5,
}
def create_model_from_schema( # type: ignore[no-any-unimported]
json_schema: dict[str, Any],
*,
root_schema: dict[str, Any] | None = None,
__config__: ConfigDict | None = None,
__base__: type[BaseModel] | None = None,
__module__: str = __name__,
__validators__: dict[str, AnyClassMethod] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
) -> type[BaseModel]:
"""Create a Pydantic model from a JSON schema.
This function takes a JSON schema as input and dynamically creates a Pydantic
model class based on the schema. It supports various JSON schema features such
as nested objects, referenced definitions ($ref), arrays with typed items,
union types (anyOf/oneOf), and string formats.
Args:
json_schema: A dictionary representing the JSON schema.
root_schema: The root schema containing $defs. If not provided, the
current schema is treated as the root schema.
__config__: Pydantic configuration for the generated model.
__base__: Base class for the generated model. Defaults to BaseModel.
__module__: Module name for the generated model class.
__validators__: A dictionary of custom validators for the generated model.
__cls_kwargs__: Additional keyword arguments for the generated model class.
Returns:
A dynamically created Pydantic model class based on the provided JSON schema.
Example:
>>> schema = {
... "title": "Person",
... "type": "object",
... "properties": {
... "name": {"type": "string"},
... "age": {"type": "integer"},
... },
... "required": ["name"],
... }
>>> Person = create_model_from_schema(schema)
>>> person = Person(name="John", age=30)
>>> person.name
'John'
"""
effective_root = root_schema or json_schema
if "allOf" in json_schema:
json_schema = _merge_all_of_schemas(json_schema["allOf"], effective_root)
if "title" not in json_schema and "title" in (root_schema or {}):
json_schema["title"] = (root_schema or {}).get("title")
model_name = json_schema.get("title", "DynamicModel")
field_definitions = {
name: _json_schema_to_pydantic_field(
name, prop, json_schema.get("required", []), effective_root
)
for name, prop in (json_schema.get("properties", {}) or {}).items()
}
return create_model_base(
model_name,
__config__=__config__,
__base__=__base__,
__module__=__module__,
__validators__=__validators__,
__cls_kwargs__=__cls_kwargs__,
**field_definitions,
)
def _json_schema_to_pydantic_field(
name: str,
json_schema: dict[str, Any],
required: list[str],
root_schema: dict[str, Any],
) -> Any:
"""Convert a JSON schema property to a Pydantic field definition.
Args:
name: The field name.
json_schema: The JSON schema for this field.
required: List of required field names.
root_schema: The root schema for resolving $ref.
Returns:
A tuple of (type, Field) for use with create_model.
"""
type_ = _json_schema_to_pydantic_type(json_schema, root_schema, name_=name.title())
description = json_schema.get("description")
examples = json_schema.get("examples")
is_required = name in required
field_params: dict[str, Any] = {}
schema_extra: dict[str, Any] = {}
if description:
field_params["description"] = description
if examples:
schema_extra["examples"] = examples
default = ... if is_required else None
if isinstance(type_, type) and issubclass(type_, (int, float)):
if "minimum" in json_schema:
field_params["ge"] = json_schema["minimum"]
if "exclusiveMinimum" in json_schema:
field_params["gt"] = json_schema["exclusiveMinimum"]
if "maximum" in json_schema:
field_params["le"] = json_schema["maximum"]
if "exclusiveMaximum" in json_schema:
field_params["lt"] = json_schema["exclusiveMaximum"]
if "multipleOf" in json_schema:
field_params["multiple_of"] = json_schema["multipleOf"]
format_ = json_schema.get("format")
if format_ in FORMAT_TYPE_MAP:
pydantic_type = FORMAT_TYPE_MAP[format_]
if format_ == "password":
if json_schema.get("writeOnly"):
pydantic_type = SecretBytes
elif format_ == "uri":
allowed_schemes = json_schema.get("scheme")
if allowed_schemes:
if len(allowed_schemes) == 1 and allowed_schemes[0] == "http":
pydantic_type = HttpUrl
elif len(allowed_schemes) == 1 and allowed_schemes[0] == "file":
pydantic_type = FileUrl
type_ = pydantic_type
if isinstance(type_, type) and issubclass(type_, str):
if "minLength" in json_schema:
field_params["min_length"] = json_schema["minLength"]
if "maxLength" in json_schema:
field_params["max_length"] = json_schema["maxLength"]
if "pattern" in json_schema:
field_params["pattern"] = json_schema["pattern"]
if not is_required:
type_ = type_ | None
if schema_extra:
field_params["json_schema_extra"] = schema_extra
return type_, Field(default, **field_params)
def _resolve_ref(ref: str, root_schema: dict[str, Any]) -> dict[str, Any]:
"""Resolve a $ref to its actual schema.
Args:
ref: The $ref string (e.g., "#/$defs/MyType").
root_schema: The root schema containing $defs.
Returns:
The resolved schema dict.
"""
from typing import cast
ref_path = ref.split("/")
if ref.startswith("#/$defs/"):
ref_schema: dict[str, Any] = root_schema["$defs"]
start_idx = 2
else:
ref_schema = root_schema
start_idx = 1
for path in ref_path[start_idx:]:
ref_schema = cast(dict[str, Any], ref_schema[path])
return ref_schema
def _merge_all_of_schemas(
schemas: list[dict[str, Any]],
root_schema: dict[str, Any],
) -> dict[str, Any]:
"""Merge multiple allOf schemas into a single schema.
Combines properties and required fields from all schemas.
Args:
schemas: List of schemas to merge.
root_schema: The root schema for resolving $ref.
Returns:
Merged schema with combined properties and required fields.
"""
merged: dict[str, Any] = {"type": "object", "properties": {}, "required": []}
for schema in schemas:
if "$ref" in schema:
schema = _resolve_ref(schema["$ref"], root_schema)
if "properties" in schema:
merged["properties"].update(schema["properties"])
if "required" in schema:
for field in schema["required"]:
if field not in merged["required"]:
merged["required"].append(field)
if "title" in schema and "title" not in merged:
merged["title"] = schema["title"]
return merged
def _json_schema_to_pydantic_type(
json_schema: dict[str, Any],
root_schema: dict[str, Any],
*,
name_: str | None = None,
) -> Any:
"""Convert a JSON schema to a Python/Pydantic type.
Args:
json_schema: The JSON schema to convert.
root_schema: The root schema for resolving $ref.
name_: Optional name for nested models.
Returns:
A Python type corresponding to the JSON schema.
"""
ref = json_schema.get("$ref")
if ref:
ref_schema = _resolve_ref(ref, root_schema)
return _json_schema_to_pydantic_type(ref_schema, root_schema, name_=name_)
enum_values = json_schema.get("enum")
if enum_values:
return Literal[tuple(enum_values)]
if "const" in json_schema:
return Literal[json_schema["const"]]
any_of_schemas = []
if "anyOf" in json_schema or "oneOf" in json_schema:
any_of_schemas = json_schema.get("anyOf", []) + json_schema.get("oneOf", [])
if any_of_schemas:
any_of_types = [
_json_schema_to_pydantic_type(schema, root_schema)
for schema in any_of_schemas
]
return Union[tuple(any_of_types)] # noqa: UP007
all_of_schemas = json_schema.get("allOf")
if all_of_schemas:
if len(all_of_schemas) == 1:
return _json_schema_to_pydantic_type(
all_of_schemas[0], root_schema, name_=name_
)
merged = _merge_all_of_schemas(all_of_schemas, root_schema)
return _json_schema_to_pydantic_type(merged, root_schema, name_=name_)
type_ = json_schema.get("type")
if type_ == "string":
return str
if type_ == "integer":
return int
if type_ == "number":
return float
if type_ == "boolean":
return bool
if type_ == "array":
items_schema = json_schema.get("items")
if items_schema:
item_type = _json_schema_to_pydantic_type(
items_schema, root_schema, name_=name_
)
return list[item_type] # type: ignore[valid-type]
return list
if type_ == "object":
properties = json_schema.get("properties")
if properties:
json_schema_ = json_schema.copy()
if json_schema_.get("title") is None:
json_schema_["title"] = name_
return create_model_from_schema(json_schema_, root_schema=root_schema)
return dict
if type_ == "null":
return None
if type_ is None:
return Any
raise ValueError(f"Unsupported JSON schema type: {type_} from {json_schema}")

View File

@@ -26,5 +26,4 @@ class LLMMessage(TypedDict):
tool_call_id: NotRequired[str]
name: NotRequired[str]
tool_calls: NotRequired[list[dict[str, Any]]]
raw_tool_call_parts: NotRequired[list[Any]]
files: NotRequired[dict[str, FileInput]]

View File

@@ -1,224 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator. You are a
calculator assistant\nYour personal goal is: Perform calculations"},{"role":"user","content":"\nCurrent
Task: What is 7 times 6? Use the multiply_numbers tool.\n\nThis is VERY important
to you, your job depends on it!"}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"multiply_numbers","description":"Multiply
two numbers together.","parameters":{"properties":{"a":{"title":"A","type":"integer"},"b":{"title":"B","type":"integer"}},"required":["a","b"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '589'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gblVDQeSH6tTrJiUtxgjoVoPuAR\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532813,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_gO6PtjoOIDVeDWs7Wf680BHh\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"multiply_numbers\",\n
\ \"arguments\": \"{\\\"a\\\":7,\\\"b\\\":6}\"\n }\n
\ }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 100,\n \"completion_tokens\":
18,\n \"total_tokens\": 118,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:53:34 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '593'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator. You are a
calculator assistant\nYour personal goal is: Perform calculations"},{"role":"user","content":"\nCurrent
Task: What is 7 times 6? Use the multiply_numbers tool.\n\nThis is VERY important
to you, your job depends on it!"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_gO6PtjoOIDVeDWs7Wf680BHh","type":"function","function":{"name":"multiply_numbers","arguments":"{\"a\":7,\"b\":6}"}}]},{"role":"tool","tool_call_id":"call_gO6PtjoOIDVeDWs7Wf680BHh","name":"multiply_numbers","content":"42"},{"role":"user","content":"Analyze
the tool result. If requirements are met, provide the Final Answer. Otherwise,
call the next tool. Deliver only the answer without meta-commentary."}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"multiply_numbers","description":"Multiply
two numbers together.","parameters":{"properties":{"a":{"title":"A","type":"integer"},"b":{"title":"B","type":"integer"}},"required":["a","b"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1056'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gbm9NaGCXkI3QwW3eOTFSP4L4lh\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532814,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"42\",\n \"refusal\": null,\n
\ \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 162,\n \"completion_tokens\":
2,\n \"total_tokens\": 164,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:53:34 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '259'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,351 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. You are a
test agent\nYour personal goal is: Try to use the dangerous operation tool"},{"role":"user","content":"\nCurrent
Task: Use the dangerous_operation tool with action ''delete_all''.\n\nThis is
the expected criteria for your final answer: The result of the operation\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is VERY important to you, your job depends on it!"}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"dangerous_operation","description":"Perform
a dangerous operation that should be blocked.","parameters":{"properties":{"action":{"title":"Action","type":"string"}},"required":["action"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '773'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2giKEOxBDVqJVqVECwcFjbzdQKSA\",\n \"object\":
\"chat.completion\",\n \"created\": 1769533220,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_3OM1qS0QaWqhiJaHyJbNz1ME\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"dangerous_operation\",\n
\ \"arguments\": \"{\\\"action\\\":\\\"delete_all\\\"}\"\n }\n
\ }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 133,\n \"completion_tokens\":
17,\n \"total_tokens\": 150,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 17:00:20 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '484'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. You are a
test agent\nYour personal goal is: Try to use the dangerous operation tool"},{"role":"user","content":"\nCurrent
Task: Use the dangerous_operation tool with action ''delete_all''.\n\nThis is
the expected criteria for your final answer: The result of the operation\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is VERY important to you, your job depends on it!"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_3OM1qS0QaWqhiJaHyJbNz1ME","type":"function","function":{"name":"dangerous_operation","arguments":"{\"action\":\"delete_all\"}"}}]},{"role":"tool","tool_call_id":"call_3OM1qS0QaWqhiJaHyJbNz1ME","name":"dangerous_operation","content":"Tool
execution blocked by hook. Tool: dangerous_operation"},{"role":"user","content":"Analyze
the tool result. If requirements are met, provide the Final Answer. Otherwise,
call the next tool. Deliver only the answer without meta-commentary."}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"dangerous_operation","description":"Perform
a dangerous operation that should be blocked.","parameters":{"properties":{"action":{"title":"Action","type":"string"}},"required":["action"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1311'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2giLnD91JxhK0yXninQ7oHYttNDY\",\n \"object\":
\"chat.completion\",\n \"created\": 1769533221,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_qF1c2e31GgjoSNJx0HBxI3zX\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"dangerous_operation\",\n
\ \"arguments\": \"{\\\"action\\\":\\\"delete_all\\\"}\"\n }\n
\ }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 204,\n \"completion_tokens\":
17,\n \"total_tokens\": 221,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 17:00:21 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '447'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. You are a
test agent\nYour personal goal is: Try to use the dangerous operation tool"},{"role":"user","content":"\nCurrent
Task: Use the dangerous_operation tool with action ''delete_all''.\n\nThis is
the expected criteria for your final answer: The result of the operation\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is VERY important to you, your job depends on it!"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_3OM1qS0QaWqhiJaHyJbNz1ME","type":"function","function":{"name":"dangerous_operation","arguments":"{\"action\":\"delete_all\"}"}}]},{"role":"tool","tool_call_id":"call_3OM1qS0QaWqhiJaHyJbNz1ME","name":"dangerous_operation","content":"Tool
execution blocked by hook. Tool: dangerous_operation"},{"role":"user","content":"Analyze
the tool result. If requirements are met, provide the Final Answer. Otherwise,
call the next tool. Deliver only the answer without meta-commentary."},{"role":"assistant","content":null,"tool_calls":[{"id":"call_qF1c2e31GgjoSNJx0HBxI3zX","type":"function","function":{"name":"dangerous_operation","arguments":"{\"action\":\"delete_all\"}"}}]},{"role":"tool","tool_call_id":"call_qF1c2e31GgjoSNJx0HBxI3zX","name":"dangerous_operation","content":"Tool
execution blocked by hook. Tool: dangerous_operation"},{"role":"user","content":"Analyze
the tool result. If requirements are met, provide the Final Answer. Otherwise,
call the next tool. Deliver only the answer without meta-commentary."}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"dangerous_operation","description":"Perform
a dangerous operation that should be blocked.","parameters":{"properties":{"action":{"title":"Action","type":"string"}},"required":["action"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1849'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2giM1tAvEOCNwDw1qNmNUN5PIg2Y\",\n \"object\":
\"chat.completion\",\n \"created\": 1769533222,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"The dangerous_operation tool with action
'delete_all' was blocked and did not execute. There is no result from the
operation to provide.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 275,\n \"completion_tokens\":
28,\n \"total_tokens\": 303,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 17:00:22 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '636'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,230 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. You are
a math assistant that helps with division\nYour personal goal is: Perform division
calculations accurately"},{"role":"user","content":"\nCurrent Task: Calculate
100 divided by 4 using the divide_numbers tool.\n\nThis is the expected criteria
for your final answer: The result of the division\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nThis is VERY important
to you, your job depends on it!"}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"divide_numbers","description":"Divide
first number by second number.","parameters":{"properties":{"a":{"title":"A","type":"integer"},"b":{"title":"B","type":"integer"}},"required":["a","b"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '809'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gbkWUn8InDLeD1Cf8w0LxiUQOIS\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532812,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_gwIV3i71RNqfpr7KguEciCuV\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"divide_numbers\",\n
\ \"arguments\": \"{\\\"a\\\":100,\\\"b\\\":4}\"\n }\n
\ }\n ],\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"tool_calls\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 140,\n \"completion_tokens\":
18,\n \"total_tokens\": 158,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:53:32 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '435'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Math Assistant. You are
a math assistant that helps with division\nYour personal goal is: Perform division
calculations accurately"},{"role":"user","content":"\nCurrent Task: Calculate
100 divided by 4 using the divide_numbers tool.\n\nThis is the expected criteria
for your final answer: The result of the division\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nThis is VERY important
to you, your job depends on it!"},{"role":"assistant","content":null,"tool_calls":[{"id":"call_gwIV3i71RNqfpr7KguEciCuV","type":"function","function":{"name":"divide_numbers","arguments":"{\"a\":100,\"b\":4}"}}]},{"role":"tool","tool_call_id":"call_gwIV3i71RNqfpr7KguEciCuV","name":"divide_numbers","content":"25.0"},{"role":"user","content":"Analyze
the tool result. If requirements are met, provide the Final Answer. Otherwise,
call the next tool. Deliver only the answer without meta-commentary."}],"model":"gpt-4.1-mini","tool_choice":"auto","tools":[{"type":"function","function":{"name":"divide_numbers","description":"Divide
first number by second number.","parameters":{"properties":{"a":{"title":"A","type":"integer"},"b":{"title":"B","type":"integer"}},"required":["a","b"],"type":"object"}}}]}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1276'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gbkHw19D5oEBOhpZP5FR5MvRFgb\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532812,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"25.0\",\n \"refusal\": null,\n
\ \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 204,\n \"completion_tokens\":
4,\n \"total_tokens\": 208,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:53:33 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '523'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
version: 1

View File

@@ -1,22 +1,7 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant.
You are a helpful calculator assistant\nYour personal goal is: Help with math
calculations\n\nYou ONLY have access to the following tools, and should NEVER
make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments:
{\n \"properties\": {\n \"a\": {\n \"title\": \"A\",\n \"type\":
\"integer\"\n },\n \"b\": {\n \"title\": \"B\",\n \"type\":
\"integer\"\n }\n },\n \"required\": [\n \"a\",\n \"b\"\n ],\n \"title\":
\"Calculate_Sum\",\n \"type\": \"object\",\n \"additionalProperties\": false\n}\nTool
Description: Add two numbers together.\n\nIMPORTANT: Use the following format
in your response:\n\n```\nThought: you should always think about what to do\nAction:
the action to take, only one name of [calculate_sum], just the name, exactly
as it''s written.\nAction Input: the input to the action, just a simple JSON
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"},{"role":"user","content":"What
is 5 + 3? Use the calculate_sum tool."}],"model":"gpt-4.1-mini"}'
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant. You are a helpful calculator assistant\nYour personal goal is: Help with math calculations\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments: {''a'': {''description'': None, ''type'': ''int''}, ''b'': {''description'': None, ''type'': ''int''}}\nTool Description: Add two numbers together.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [calculate_sum], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final
answer to the original input question\n```"},{"role":"user","content":"What is 5 + 3? Use the calculate_sum tool."}],"model":"gpt-4.1-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -29,7 +14,7 @@ interactions:
connection:
- keep-alive
content-length:
- '1356'
- '1119'
content-type:
- application/json
host:
@@ -56,18 +41,8 @@ interactions:
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gSz7JfTi4NQ2QRTANg8Z2afJI8b\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532269,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"```\\nThought: I need to use the calculate_sum
tool to find the sum of 5 and 3\\nAction: calculate_sum\\nAction Input: {\\\"a\\\":5,\\\"b\\\":3}\\n```\",\n
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
295,\n \"completion_tokens\": 41,\n \"total_tokens\": 336,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CiksV15hVLWURKZH4BxQEGjiCFWpz\",\n \"object\": \"chat.completion\",\n \"created\": 1764782667,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"```\\nThought: I should use the calculate_sum tool to add 5 and 3.\\nAction: calculate_sum\\nAction Input: {\\\"a\\\": 5, \\\"b\\\": 3}\\n```\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 234,\n \"completion_tokens\": 40,\n \"total_tokens\": 274,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\"\
: \"default\",\n \"system_fingerprint\": \"fp_9766e549b2\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -76,7 +51,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:44:30 GMT
- Wed, 03 Dec 2025 17:24:28 GMT
Server:
- cloudflare
Set-Cookie:
@@ -96,11 +71,13 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '827'
- '681'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '871'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
@@ -121,25 +98,8 @@ interactions:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant.
You are a helpful calculator assistant\nYour personal goal is: Help with math
calculations\n\nYou ONLY have access to the following tools, and should NEVER
make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments:
{\n \"properties\": {\n \"a\": {\n \"title\": \"A\",\n \"type\":
\"integer\"\n },\n \"b\": {\n \"title\": \"B\",\n \"type\":
\"integer\"\n }\n },\n \"required\": [\n \"a\",\n \"b\"\n ],\n \"title\":
\"Calculate_Sum\",\n \"type\": \"object\",\n \"additionalProperties\": false\n}\nTool
Description: Add two numbers together.\n\nIMPORTANT: Use the following format
in your response:\n\n```\nThought: you should always think about what to do\nAction:
the action to take, only one name of [calculate_sum], just the name, exactly
as it''s written.\nAction Input: the input to the action, just a simple JSON
object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"},{"role":"user","content":"What
is 5 + 3? Use the calculate_sum tool."},{"role":"assistant","content":"```\nThought:
I need to use the calculate_sum tool to find the sum of 5 and 3\nAction: calculate_sum\nAction
Input: {\"a\":5,\"b\":3}\n```\nObservation: 8"}],"model":"gpt-4.1-mini"}'
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant. You are a helpful calculator assistant\nYour personal goal is: Help with math calculations\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments: {''a'': {''description'': None, ''type'': ''int''}, ''b'': {''description'': None, ''type'': ''int''}}\nTool Description: Add two numbers together.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [calculate_sum], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final
answer to the original input question\n```"},{"role":"user","content":"What is 5 + 3? Use the calculate_sum tool."},{"role":"assistant","content":"```\nThought: I should use the calculate_sum tool to add 5 and 3.\nAction: calculate_sum\nAction Input: {\"a\": 5, \"b\": 3}\n```\nObservation: 8"}],"model":"gpt-4.1-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
@@ -152,7 +112,7 @@ interactions:
connection:
- keep-alive
content-length:
- '1544'
- '1298'
content-type:
- application/json
cookie:
@@ -181,18 +141,7 @@ interactions:
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-D2gT0RU66XqjAUOXnGmokD1Q8Fman\",\n \"object\":
\"chat.completion\",\n \"created\": 1769532270,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"```\\nThought: I now know the final
answer\\nFinal Answer: 8\\n```\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 345,\n \"completion_tokens\":
18,\n \"total_tokens\": 363,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_376a7ccef1\"\n}\n"
string: "{\n \"id\": \"chatcmpl-CiksWrVbyJFurKCm7XPRU1b1pT7qF\",\n \"object\": \"chat.completion\",\n \"created\": 1764782668,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal Answer: 8\\n```\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 283,\n \"completion_tokens\": 18,\n \"total_tokens\": 301,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_9766e549b2\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
@@ -201,7 +150,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 27 Jan 2026 16:44:31 GMT
- Wed, 03 Dec 2025 17:24:29 GMT
Server:
- cloudflare
Strict-Transport-Security:
@@ -219,11 +168,208 @@ interactions:
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '606'
- '427'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '442'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant. You are a helpful calculator assistant\nYour personal goal is: Help with math calculations\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments: {''a'': {''description'': None, ''type'': ''int''}, ''b'': {''description'': None, ''type'': ''int''}}\nTool Description: Add two numbers together.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [calculate_sum], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final
answer to the original input question\n```"},{"role":"user","content":"What is 5 + 3? Use the calculate_sum tool."}],"model":"gpt-4.1-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1119'
content-type:
- application/json
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-CimX8hwYiUUZijApUDk1yBMzTpBj9\",\n \"object\": \"chat.completion\",\n \"created\": 1764789030,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"```\\nThought: I need to add 5 and 3 using the calculate_sum tool.\\nAction: calculate_sum\\nAction Input: {\\\"a\\\":5,\\\"b\\\":3}\\n```\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 234,\n \"completion_tokens\": 37,\n \"total_tokens\": 271,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\"\
: \"default\",\n \"system_fingerprint\": \"fp_9766e549b2\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Wed, 03 Dec 2025 19:10:33 GMT
Server:
- cloudflare
Set-Cookie:
- SET-COOKIE-XXX
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '2329'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2349'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:
- X-RATELIMIT-LIMIT-REQUESTS-XXX
x-ratelimit-limit-tokens:
- X-RATELIMIT-LIMIT-TOKENS-XXX
x-ratelimit-remaining-requests:
- X-RATELIMIT-REMAINING-REQUESTS-XXX
x-ratelimit-remaining-tokens:
- X-RATELIMIT-REMAINING-TOKENS-XXX
x-ratelimit-reset-requests:
- X-RATELIMIT-RESET-REQUESTS-XXX
x-ratelimit-reset-tokens:
- X-RATELIMIT-RESET-TOKENS-XXX
x-request-id:
- X-REQUEST-ID-XXX
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Calculator Assistant. You are a helpful calculator assistant\nYour personal goal is: Help with math calculations\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\nTool Name: calculate_sum\nTool Arguments: {''a'': {''description'': None, ''type'': ''int''}, ''b'': {''description'': None, ''type'': ''int''}}\nTool Description: Add two numbers together.\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought: you should always think about what to do\nAction: the action to take, only one name of [calculate_sum], just the name, exactly as it''s written.\nAction Input: the input to the action, just a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce all necessary information is gathered, return the following format:\n\n```\nThought: I now know the final answer\nFinal Answer: the final
answer to the original input question\n```"},{"role":"user","content":"What is 5 + 3? Use the calculate_sum tool."},{"role":"assistant","content":"```\nThought: I need to add 5 and 3 using the calculate_sum tool.\nAction: calculate_sum\nAction Input: {\"a\":5,\"b\":3}\n```\nObservation: 8"}],"model":"gpt-4.1-mini"}'
headers:
User-Agent:
- X-USER-AGENT-XXX
accept:
- application/json
accept-encoding:
- ACCEPT-ENCODING-XXX
authorization:
- AUTHORIZATION-XXX
connection:
- keep-alive
content-length:
- '1295'
content-type:
- application/json
cookie:
- COOKIE-XXX
host:
- api.openai.com
x-stainless-arch:
- X-STAINLESS-ARCH-XXX
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- X-STAINLESS-OS-XXX
x-stainless-package-version:
- 1.83.0
x-stainless-read-timeout:
- X-STAINLESS-READ-TIMEOUT-XXX
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: "{\n \"id\": \"chatcmpl-CimXBrY5sdbr2pJnqGlazPTra4dor\",\n \"object\": \"chat.completion\",\n \"created\": 1764789033,\n \"model\": \"gpt-4.1-mini-2025-04-14\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal Answer: 8\\n```\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 280,\n \"completion_tokens\": 18,\n \"total_tokens\": 298,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_9766e549b2\"\n}\n"
headers:
CF-RAY:
- CF-RAY-XXX
Connection:
- keep-alive
Content-Type:
- application/json
Date:
- Wed, 03 Dec 2025 19:10:35 GMT
Server:
- cloudflare
Strict-Transport-Security:
- STS-XXX
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- X-CONTENT-TYPE-XXX
access-control-expose-headers:
- ACCESS-CONTROL-XXX
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- OPENAI-ORG-XXX
openai-processing-ms:
- '1647'
openai-project:
- OPENAI-PROJECT-XXX
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1694'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-requests:

View File

@@ -590,233 +590,3 @@ class TestToolHooksIntegration:
# Clean up hooks
unregister_before_tool_call_hook(before_tool_call_hook)
unregister_after_tool_call_hook(after_tool_call_hook)
class TestNativeToolCallingHooksIntegration:
"""Integration tests for hooks with native function calling (Agent and Crew)."""
@pytest.mark.vcr()
def test_agent_native_tool_hooks_before_and_after(self):
"""Test that Agent with native tool calling executes before/after hooks."""
import os
from crewai import Agent
from crewai.tools import tool
hook_calls = {"before": [], "after": []}
@tool("multiply_numbers")
def multiply_numbers(a: int, b: int) -> int:
"""Multiply two numbers together."""
return a * b
def before_hook(context: ToolCallHookContext) -> bool | None:
hook_calls["before"].append({
"tool_name": context.tool_name,
"tool_input": dict(context.tool_input),
"has_agent": context.agent is not None,
})
return None
def after_hook(context: ToolCallHookContext) -> str | None:
hook_calls["after"].append({
"tool_name": context.tool_name,
"tool_result": context.tool_result,
"has_agent": context.agent is not None,
})
return None
register_before_tool_call_hook(before_hook)
register_after_tool_call_hook(after_hook)
try:
agent = Agent(
role="Calculator",
goal="Perform calculations",
backstory="You are a calculator assistant",
tools=[multiply_numbers],
verbose=True,
)
agent.kickoff(
messages="What is 7 times 6? Use the multiply_numbers tool."
)
# Verify before hook was called
assert len(hook_calls["before"]) > 0, "Before hook was never called"
before_call = hook_calls["before"][0]
assert before_call["tool_name"] == "multiply_numbers"
assert "a" in before_call["tool_input"]
assert "b" in before_call["tool_input"]
assert before_call["has_agent"] is True
# Verify after hook was called
assert len(hook_calls["after"]) > 0, "After hook was never called"
after_call = hook_calls["after"][0]
assert after_call["tool_name"] == "multiply_numbers"
assert "42" in str(after_call["tool_result"])
assert after_call["has_agent"] is True
finally:
unregister_before_tool_call_hook(before_hook)
unregister_after_tool_call_hook(after_hook)
@pytest.mark.vcr()
def test_crew_native_tool_hooks_before_and_after(self):
"""Test that Crew with Agent executes before/after hooks with full context."""
import os
from crewai import Agent, Crew, Task
from crewai.tools import tool
hook_calls = {"before": [], "after": []}
@tool("divide_numbers")
def divide_numbers(a: int, b: int) -> float:
"""Divide first number by second number."""
return a / b
def before_hook(context: ToolCallHookContext) -> bool | None:
hook_calls["before"].append({
"tool_name": context.tool_name,
"tool_input": dict(context.tool_input),
"has_agent": context.agent is not None,
"has_task": context.task is not None,
"has_crew": context.crew is not None,
"agent_role": context.agent.role if context.agent else None,
})
return None
def after_hook(context: ToolCallHookContext) -> str | None:
hook_calls["after"].append({
"tool_name": context.tool_name,
"tool_result": context.tool_result,
"has_agent": context.agent is not None,
"has_task": context.task is not None,
"has_crew": context.crew is not None,
})
return None
register_before_tool_call_hook(before_hook)
register_after_tool_call_hook(after_hook)
try:
agent = Agent(
role="Math Assistant",
goal="Perform division calculations accurately",
backstory="You are a math assistant that helps with division",
tools=[divide_numbers],
verbose=True,
)
task = Task(
description="Calculate 100 divided by 4 using the divide_numbers tool.",
expected_output="The result of the division",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
crew.kickoff()
# Verify before hook was called with full context
assert len(hook_calls["before"]) > 0, "Before hook was never called"
before_call = hook_calls["before"][0]
assert before_call["tool_name"] == "divide_numbers"
assert "a" in before_call["tool_input"]
assert "b" in before_call["tool_input"]
assert before_call["has_agent"] is True
assert before_call["has_task"] is True
assert before_call["has_crew"] is True
assert before_call["agent_role"] == "Math Assistant"
# Verify after hook was called with full context
assert len(hook_calls["after"]) > 0, "After hook was never called"
after_call = hook_calls["after"][0]
assert after_call["tool_name"] == "divide_numbers"
assert "25" in str(after_call["tool_result"])
assert after_call["has_agent"] is True
assert after_call["has_task"] is True
assert after_call["has_crew"] is True
finally:
unregister_before_tool_call_hook(before_hook)
unregister_after_tool_call_hook(after_hook)
@pytest.mark.vcr()
def test_before_hook_blocks_tool_execution_in_crew(self):
"""Test that returning False from before hook blocks tool execution."""
import os
from crewai import Agent, Crew, Task
from crewai.tools import tool
hook_calls = {"before": [], "after": [], "tool_executed": False}
@tool("dangerous_operation")
def dangerous_operation(action: str) -> str:
"""Perform a dangerous operation that should be blocked."""
hook_calls["tool_executed"] = True
return f"Executed: {action}"
def blocking_before_hook(context: ToolCallHookContext) -> bool | None:
hook_calls["before"].append({
"tool_name": context.tool_name,
"tool_input": dict(context.tool_input),
})
# Block all calls to dangerous_operation
if context.tool_name == "dangerous_operation":
return False
return None
def after_hook(context: ToolCallHookContext) -> str | None:
hook_calls["after"].append({
"tool_name": context.tool_name,
"tool_result": context.tool_result,
})
return None
register_before_tool_call_hook(blocking_before_hook)
register_after_tool_call_hook(after_hook)
try:
agent = Agent(
role="Test Agent",
goal="Try to use the dangerous operation tool",
backstory="You are a test agent",
tools=[dangerous_operation],
verbose=True,
)
task = Task(
description="Use the dangerous_operation tool with action 'delete_all'.",
expected_output="The result of the operation",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
crew.kickoff()
# Verify before hook was called
assert len(hook_calls["before"]) > 0, "Before hook was never called"
before_call = hook_calls["before"][0]
assert before_call["tool_name"] == "dangerous_operation"
# Verify the actual tool function was NOT executed
assert hook_calls["tool_executed"] is False, "Tool should have been blocked"
# Verify after hook was still called (with blocked message)
assert len(hook_calls["after"]) > 0, "After hook was never called"
after_call = hook_calls["after"][0]
assert "blocked" in after_call["tool_result"].lower()
finally:
unregister_before_tool_call_hook(blocking_before_hook)
unregister_after_tool_call_hook(after_hook)

View File

@@ -1,6 +1,6 @@
import os
import threading
from unittest.mock import patch
from unittest.mock import MagicMock, patch
import pytest
from crewai import Agent, Crew, Task
@@ -121,3 +121,90 @@ def test_telemetry_singleton_pattern():
thread.join()
assert all(instance is telemetry1 for instance in instances)
def test_signal_handler_registration_skipped_in_non_main_thread():
"""Test that signal handler registration is skipped when running from a non-main thread.
This test verifies that when Telemetry is initialized from a non-main thread,
the signal handler registration is skipped without raising noisy ValueError tracebacks.
See: https://github.com/crewAIInc/crewAI/issues/4289
"""
Telemetry._instance = None
result = {"register_signal_handler_called": False, "error": None}
def init_telemetry_in_thread():
try:
with patch("crewai.telemetry.telemetry.TracerProvider"):
with patch.object(
Telemetry,
"_register_signal_handler",
wraps=lambda *args, **kwargs: None,
) as mock_register:
telemetry = Telemetry()
result["register_signal_handler_called"] = mock_register.called
result["telemetry"] = telemetry
except Exception as e:
result["error"] = e
thread = threading.Thread(target=init_telemetry_in_thread)
thread.start()
thread.join()
assert result["error"] is None, f"Unexpected error: {result['error']}"
assert (
result["register_signal_handler_called"] is False
), "Signal handler should not be registered in non-main thread"
def test_signal_handler_registration_skipped_logs_debug_message():
"""Test that a debug message is logged when signal handler registration is skipped.
This test verifies that when Telemetry is initialized from a non-main thread,
a debug message is logged indicating that signal handler registration was skipped.
"""
Telemetry._instance = None
result = {"telemetry": None, "error": None, "debug_calls": []}
mock_logger_debug = MagicMock()
def init_telemetry_in_thread():
try:
with patch("crewai.telemetry.telemetry.TracerProvider"):
with patch(
"crewai.telemetry.telemetry.logger.debug", mock_logger_debug
):
result["telemetry"] = Telemetry()
result["debug_calls"] = [
str(call) for call in mock_logger_debug.call_args_list
]
except Exception as e:
result["error"] = e
thread = threading.Thread(target=init_telemetry_in_thread)
thread.start()
thread.join()
assert result["error"] is None, f"Unexpected error: {result['error']}"
assert result["telemetry"] is not None
debug_calls = result["debug_calls"]
assert any(
"Skipping signal handler registration" in call for call in debug_calls
), f"Expected debug message about skipping signal handler registration, got: {debug_calls}"
def test_signal_handlers_registered_in_main_thread():
"""Test that signal handlers are registered when running from the main thread."""
Telemetry._instance = None
with patch("crewai.telemetry.telemetry.TracerProvider"):
with patch(
"crewai.telemetry.telemetry.Telemetry._register_signal_handler"
) as mock_register:
telemetry = Telemetry()
assert telemetry.ready is True
assert mock_register.call_count >= 2

View File

@@ -1,3 +1,3 @@
"""CrewAI development tools."""
__version__ = "1.9.1"
__version__ = "1.9.0"